LIMHOLOGICAL FEATURES AND SUCCESSIONAL CHANGES OF Lare carl blackwell, oklahtoma

LIMNOLOGICAL FEATURES AND SUUCGESSIONAL CHANGES OF LAKE CARL BLACKWELL, ORLAHOMA

By
EDGAR MONROE LEONARD Master of Science Kansas State Teachers College Pittsburg, Kansas
1948

Subnitted to the Faculty of the Graduate School of the Oklahoma Agricultural and Hechanical College
in Partial Fulfillment of the Requirements
for the Degree of
DOCTOR OF PHILOSOPHY
1950

Curagh
 LIBRARY
 APB 11952

THESIS AND ABSTRACT APPROVED:
\qquad
Leo. A. moore
Faculty Representative

ACKHOWLEDGMEMT

The writer is indebted to Dr. William H. Irwin for his guidance and for making available the $1940-41$ data in this paper.

TABLE OF CONTENTS

Page
INIRODUCT TON 1
STHUATIONS STUDIED AND METHODS USED 3
Situations Studied 3
1940-41 3
1949-50 4
Methods Used 4
Physical 4
Chemical 4
Plankton 5
PHYSTCAL FEATURES 7
Thermal Data 7
1940-41 7
1949-50 7
Turbidity 10
1940-41 10
1949-50 14
CHEMTCAL FEATURES 16
Dissolved Oxygen 16
1940-41 16
1949-50 18
Hydrogen-ion Concentration 18
1940-4 18
1949-50 22
Free Carbon Dioxida 27
1940-47 27
1940-50 27
Phenolphthalein Alkalinity 31
1940-41 31
1949-50 31
Methyl Orange Alkalinity 36
1940-4 36
1949-50 36
Page
PLANKTON 42
Phytoplankton 42
1940-41 42
1949-50 48
Zooplankton 53
1940-41 53
1949-50 55
Centrifuged Plankton 58
1940-4 58
1949-50 60
DISCUSSION 63
SUMMARY 71
SELECTED BIBLIOCRA PHY 73

LIST OF TABLES

Table Page
I. Temperature 1940-41 Expressed As Degrees Centigrade 8
II. Prysical, Chemical and Plankton Data Stations II, III, and IV 1940-41 9
III. Temperature 1949-50 11
IV. Dissolved Oxygen Expressed as ppm 1940-41 17
V. Dissolved Oxygen Expressed as ppm 1949-50 19
VI. Fydrogen-ion Concentration Expressed as pH 1940-4I 23
VII. fydrogen-ion Concentration Expressed as pH 1949-50 24
VIII. Free Carbon Dioxide Expressed as ppm 1940-41 28
IX. Free Carbon Dioxide Expressed as ppm 1949-50 29
X. PFH-TH Alkalinity Expressed as ppm 1940-41 32
XI. Ph-TH Alkalinity Expressed as ppm 1949-50 33
XII. MO Alkalinity Expressed as ppm 1940-41 37
XIII. MD Alkalinity Expreseed as ppm 1949-50 39
XIV. Plankton Counts in Numbers Per Liter 1940-41 43
XV. Plankton Counts in Numbers Per Liter 1949-50 49
XVI. Centrifuged Plankton Expressed as Cubic Milliliters Per Liter 1940-41 59
XVII. Centrifuged Plankton Expressed as Cubic Mililiters Per Liter 1949-50 61

INTRODUCTION

This paper concerns the limnology of a manmade impoundment in central Oklahoma. The objectives of the investigation were two-fold: an overall view of general limological conditions was the goal and no attempt was made to find minute relationships and intricacies arising from ephemeral chemical phenomena and the resulting waxing and waning of aquatic populations: further, it was a study oi linnological factors tat change following a lapse of time. A volumetric method of measuring plankton is presented.

Limnological literature concerning large southwestern impoundments is sparse. Harris and Silvey (1940) studied four Texas reservoirs of varying ages existing on different geological formations. Irwin (194]) published some spring and sumer records of physical and chemical features of Grand Lake, Oklahoma. Cheatum, et. al. (1942) investigated an East Texas reservoip that had (teen built about twenty years previous to their work.

The literature concerning annual lentic relationships is also limited. The only outstanding papers in this country containing physical, chemical, and plankton data are those of Dirge and Juday (1922), Chandler (19 10 , 1942a, 1942b, 1944), Chandler and weeks (1945), Cheatun et. al. (1942), Harris and Silvey (1940), Penna (1949), Scheffer anil Hobinson (1939), and Scott (1927). The works of Chandler, and Chandler and Weeks are particumarly notable in that they are an extended study of several years.

The present study is unique because it includes two investigations, separated by a nine year interval, on Lake Carl Blackwell, a 3300 acre inpoundment in Payne County, Oklahoma. The first investigation (conducted by W. H. Irwin) began in 1940 shortly after impoundment, before the lake
had completely filled and wile its oroductivity was high. The second began in 1949 after the basin had filled and the productivity showed a defínite yearly decline.

Southwestern impoundments apvear to metamorphose soon after impoundment changing from biologically productive biomes to unprowidive ones as they age (4oore, 1937; Imin, 1945, 1948). Limmological data mich suport this idea are limited and mostly unpublished (Irwin, umpublished data on Lake Malester, Yost Lake, and Sanborn Lake in Oklahoma: Oklahoma Game and Fish Comnssion, unpublisted, numerous Oklahona impoundments; Loomis and Poole, unpublished, Lake Carl Blackwell; Leonard and Stevenson, umpublished, Oklahona ponds).

SITUATIONS STUDIED AND METHODS USED

Situations Studied

Lake Carl Blackwell is located nine miles rest oi Stillwate：，Oklahoma， on Permian red bed soil．It drains a watershed fourteen times the size of the lake surface，has many shallow arms，which present a lone shore line． The lake lies th the long axis（east－west）at right angles to the prevail－ ing winds which are from the south．

The dam was comped in 2937，but the basin did not completely fill until 1945．Typical of reservoirs，the deepest part is near the dam．
1940-4

Investigations of the $1940-41$ study were conducted monthly．The col－ lection of samples began in October，1940，and contimed through September 20，194．Original plans included four stations，but other duties of the investigator necessitated partial abandonment of three．However，the data available for these stations are included as Table II．These stations were located in the shallow margins near the lake shore．Station I，from which most of the $1940-41$ data were derived was located just west of the dam over a pit formed by the excavation of clay for the dam core．The pit was the deepest part of the lake and later became filled with silt since it could not be found during the 1949－50 study．Station II was in the first arm west of the dam on the north side of the lake in the northeast corner of section 9．The water depth in 1940 was about five feet．Station III was on the first arm west of the am on the south side oi the lake in about 3咅 feet oi water．Station IV was in the main body of the lake in section 7，
two and one-hali miles west of Station I in about feet of water. This area was surrounded by inundated trees.

$$
1948-50
$$

The four stations selected for sampling in the $1949-50$ study wore located in the approximate region of the same 1940-4l stations. Two, Statrons I and IV, were in the main body of the lake, and two, Stations II and III were in the aras nearest the dan. Each station site represented the deepest water of that particular area of the lake. Station 1 (1949-50), Which had the greatest depth, was near tie dam west of the outlet tower over tie strearn bed instead of over tie clay pit as in 194041.
bach station was visited twice monthly at approximately two -meek intervals. An exception to this being in May men only one series of samples was taken. The 1949-50 part of the study began on March 3, 1949, and continned through February 25, 1950.

Methods Used

Physical
Temperature $A l l$ temperature determinations were made with an $H^{*} B$ reversing thermometer. The 19 modal study readings were taken at the surface, eight meters, and bottom. The $1949-50$ readings were taken at the surface, five meters, and bottom. Exceptions to these were during thermal stratification wen readings were also made throughout the thermocline.

Turbidity Turbidity was detennined by the use oi a Jackson turbidimeter.

Chemical
Samples for chemical determinations were collected by means oi a three-

Iiter Kemerer bottle. Depths at which samples vere taken were the same as those given for teaperature.

The ne thods used were those given in the current editions of Standard Methods for twe Examination of Fater and Sewape and Welch's Limnological Methods.

Dissolved oxygen The fideal-Stewart modification of the Pinkler method was used for dissolved oxypen deterninations.

Garbon dioxide Free carbon dioxide was detemined by the titration of a 100 ml . water sample with $\mathrm{N} / \mathrm{L} \mathrm{H} \mathrm{NaOH}$. These determinations were made in the field inmediately after samples were taken.

Bound and half-bound carbon dioxide determinations were nace by titrating 100 ml . samples of water with $\mathrm{N} / 50 \mathrm{H}_{2} \mathrm{SO}_{4}$, employing phenolphtlaiein and methyl orange as indicators.

Hydrogen-ion concentration The Hellige comarator employing, color discs was used torghout the study. This method of hydrogen-ion concentration determination is considered accurate to within 0.1 pH units. Plankton

Plankton collections from the surface, eirht peters (1940-lil), five meters (1949-50), and bottom were obtained by concentrating 30 liters of water usine, a Fisconsin plankton net with number 25 bolting silk. The concentrates were preserved in five per cent formalin.

Examination of the plankton involved two methods: (1) a numerical analysis, and (2) a volunctric analysis. Data derived by the first method are presented for Stations I only. Counts were made with the aid of a compound microscope equipped with a 10X ocular and a 16 mm . objective, a Whipple ocular micrometer, and a 1 ml. Sedgrick-Kafter counting chamber. Counts wore made from the concentrate by selecting ten ocular fields at
random, the numbers in the fields averaged and the necessary computations made to determine the number of organisms or colonies per liter.

A qualitative survey of each concentrate was aade before counting to identify the genera present. Identification was carried only to genus.

The data obtained by the volumetric method, introduced in this paper, were secured by reducing each concentrate to 3 ml . The re-concentrate was placed in a 3 ml . cerebrospinal protein centrifuge tube wich was graduated in 0.004 ml . subdivisions and centrifuged at 3,000 rom for two minutes. The volume of plankton obtained was divided by 30. The quotient thus obtained is the volume of centrifuged plankton per liter of lake water.
fiepeated examination of the supernatent showed it to be free of microscopic organisms. Trroughout the study an occasional Chaoborus iron the bottom samples could not be thrown down in centrifugint, but no adjustment in recording the volume was nade for these iloating organisns.

PFYSICAL FEATURES

Themal Data

1940-41
Surface temperatures varied fran a minimum oi 3.2° C. on Decenver 19, 1940, to a maximum of $28.4^{\circ} \mathrm{C}$. on July 10,1941 (Table I). Little vertical temperature difference occurred throughout the year, except for the thermal stratification period.

Thermal stratification had develoned by May 31, 1941, continued throughout the sumner, and was present when readings were made on September 20. The thernocline began at the eight-meter level on May 31, and continued to tre bottom of the lake. On July 10, 1941, the thermocline began at four meters and extended dowmard for at least two meters. On this date all vertical determinations were not made since strong winds stonned operations on the lake. By August 29, the upper reaches of the thernocline had dropped to the seven-meter level and extenced to the bottom. On September 20, a depth of ten aeters marked the beginning of thermal stratification which extended domward for one neter only. A hypolinnion existed only when the Sentember 20 readirgs were made. This hypolimnion, beginning at eleven meters, was one and one-half meters deep.

$$
1949-50
$$

Themal data for the 191:9-50 study are presonted in Table III. During this meriod vertical differences, except during stratification, were slight, but sonewhat more pronounced than those of 19La. The maximum temperature recorded, 28.5° C., occurred on June 25,1949 , at Station II. Temperatures

TABLE I
TEMPERATURE 1940-41 EXPRESSED AS DEGREES CEATIGRADE

Meters	Station I													
	0	4	5	6	7	8	9	10	102	11	12	12t	138	14
Oct. 24	18.4		17.8			17.2				17.1				
Nov. 21	8.3					8.2			8.4					
Dec. 19	3.2					3.2						3.6		
Jan. 9	5.2					5.0						5.0		
31	5.6					4.2						4.4		
March 9	7.0					5.9								5.9
April 9	13.0					12.9				12.6				
May 31	24.8		23.1			21.8	-			17.4	16.3			
July 10	28.4	28.3	26.7	25.1	24.1	23.6								
Aug. 29	27.4		26.3		25.2	21.4	19.8	18.2		15.2				
Sept. 20	25.4					24.1	23.9	18.1		16.2		16.1		

table II
PHYSICAL, CHEMICAL, AND PLANKTON DATA STATIONS II, III, AND IV 1940 m 1

Station II								
Date	Centrifuged Plankton	Temp. oc.	O_{2}	pH	$\begin{aligned} & \mathrm{CO}_{2} \\ & \mathrm{ppm} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{PH}-\mathrm{TH} \\ \mathrm{ppm} \end{gathered}$	$\mathrm{M}, \mathrm{O} .$ ppsim	Turbidity ppm
Jan. 31	. 0019	5.6	12.5	7.8	2.0	0.0	144.0	25-
Mar. 9	. 0017	6.2	11.5	8.3	0.0	0.0	138.0	25-
Apr. 9	. 0032	13.2	9.8	8.1	0.0	3.5	149.0	25-
May 9	. 0064	21.7	7.5	7.9	2.0	0.0	115.0	88
May 31	.0029	23.9	4.7	7.5	4.0	0.0	97.0	148
Station III								
Oot. 24		19.5	8.8	8.2	0.0	1.0	142.0	25-
Jan. 31	. 0019	18.0	12.7	8.0	0.0	1.5	145.0	25.
Mar. 9	. 0037	8.2	12.4	8.2	0.0	3.5	139.0	25-
Apr. 9	. 0042	13.3	7.2	8.1	0.0	3.5	144.0	25-
May 9	. 0037	20.2	7.4	7.5	2.0	0.0	124.5	135
Nay 31	. 0067	27.0	5.2	7.6	4.0	0.0	99.0	107
Station IV								
Oct. 24	. 0035	18.6	8.0	8.2	0.0	0.5	146.0	25-
Jan. 31	. 0026	7.1	12.7	8.0	0.0	2.0	140.0	25-
Mar. 9	. 0030	12.5	8.8	8.1	0.0	3.0	144.0	25-
Apr. 9	. 0026	14.1	8.6	8.4	0.0	3.5	140.0	25-
May 9	. 0037	20.7	5.1	7.7	2.0	0.0	123.0	64
May 31	. 0104	26.9	7.7	7.7	4.0	0.0	109.0	110

from the other three stations on the same date were 0.1 to $1.0^{\circ} \mathrm{C}$. less. The minimum temperature ($\left.3.5^{\circ} \mathrm{C}.\right)$ was recorded January $30,1950$.

A thermocline was first noted on June 25, 1949, at Stations I and IV. Its upper limit began at five meters and extended through the next io y meters. This upper limit remained at the iivemeter level until thermal stratification disappeared between August 16 and September 3, 1949.

At Station I a hypolimnion beginning at ten meters was found on June 25, and July 8, 1949. No hypolimnion was found at Station IV. Thermal stratification mas not found at Stations II and II.

Turbidity

Turbidities recorded in both the 1940-41 and 1949-50 studies were due mainly to silt as is show by the paucity of plankton populations. 1940-41

These data are characterized by pronounced changes. Readings at Station I ranged from clear to 132 ppm at the surface and from clear to 190 ppm at a dent of eight meters. A bottom reading was not recorded when the eight-meter record of 132 pom was made, but in other instances of increased turbidity the value of the bottom readings exceeded those of the surface and the eight-meter levels.

Turbidities were due mainly to silt carried by run-ori water following rains. Previous to the December 19, 1940 , readings, a rainy period occurred wish increased the lake depth two and onemalf feet and the torbidity from less than 25 pom at all levels to 35 pro at the surface, 32 pron at the eightmeter level, and 55 pom at the bottom.

Normally Oklahoma received its heaviest rainfall in the spring months. This was the case in 1941 since, in the interval between Hay 9 and Hay 31

TABLE III
TEMPERATURE 1949-50

TABLE III (Continued) TEMPERATURE 1949-50								
Station II					Station III			
Meters	0	5	6	$6 \frac{1}{2}$	0	5	6	$6 \frac{1}{5}$
March 3	9.2	9.2			9.2	9.2		
28	10.5	10.5			10.5	10.5		
April 8	13.5	12.5			13.0	12.5		
22	17.2		13.2		17.0	13.0		
May 20	21.0		21.0		21.0	21.0		
June 10	27.2			23.0	27.0	23.0		
25	28.6		25.5		27.9		25.8	
Juiy 8	28.0	26.0			28.0		25.2	
21	28.5		27.5		27.0	25.0		
Aug. 2	27.5	27.0			27.5	26.5		
16	28.2		27.0		28.0	27.0		
Sept. 3	25.0	24.0			25.0	25.0		
20	22.0	21.0			22.0	21.0		
Oct. 10	21.2		20.5		21.2	21.0		
26	16.0	16.0			16.0	16.0		
Nov. 14	13.2	13.2			13.2	13.2		
28	10.7	10.7			10.7	10.7		
Dec. 5	7.0	7.0			7.0	7.0		
30	5.5	5.5			5.5	5.5		
Jon. 17	4.6	4.6			4.6	4.4		
30	3.5	3.5			3.5		3.5	
Feb. 16	5.6	5.6			5.6	5.6		
25	7.5	7.2			7.6	7.2		

TABLE III (Continued)

TEMPERATURE 1949-50

Station IV								
Meters	0	4	5	6	$6 \frac{1}{2}$	7	$7 \frac{1}{2}$	8
March 3	9.2					9.2		
28	10.5					10.3		
April 8	13.5					13.2		
22	17.2		13.2			13.0		
May 20	21.0		21.0				21.0	
June 10	27.0		23.0			23.0		
25	28.3		27.2	26.6		24.2		22.7
July 8	28.0		27.7	26.2		24.0		22.5
21	28.5		28.0	27.5		25.0		24.0
Aug. 2	28.0		27.0	27.0		26.5		25.0
16	28.0	27.0	24.2	24.2		24.0		24.0
Sept. 3	25.0		24.2			24.0		
20	22.3		21.0				20.5	
Oct. 10	21.2		21.2				21.0	
26	16.0		16.0			16.2		
Nov. 14	13.2					13.2		
28	10.7						11.0	
Dec. 5	7.1					7.0		
30	5.5				5.4			
Jan. 17	4.6				4.6			
30	3.5					3.5		
Feb. 16	5.6				5.6			
25	7.5			7.2				

the water level of the lake rose five feet and seven inches. This rise represents the greatest anount of run-off water received in a like period daring the 1940-4I investigations. Turbidities rose from less than 25 ppm at all levels on Hay 9 to 132 pmm at the surface and 198 ppon at the eightmeter level on way 31.

Turbidities nearly as great in rapnitude as those of kay 31 were found at eight ineters (99 ppri) and the bottom (143 ppan) on Soptember 20. Low surface tarbidity (less than 25 nma) at this time indicated that either the run-off water was colder than the surface water, thus forming a density current beginning somenere between the surface and cight meters, or decomosition of the organic material in the run-of 1 water neutralized the negatively charge clay particles near the surface causing then to floculate. The latter seems more logical in view of data on increased iree carbon dioxide ani hydrogen-ions, and decreased methyl orange alkalinity and dissolved oxygen content. If this mere the case the greater turbiuity at the bottom was probably due to concentration oil silt particles as they settled. The influx of this run-off water was not enough to upset thermal and chemical stratification.

Turbidities at other stations (Table II) varied slightly fron those found at Station I. Shallomess and proxinity to shore combined with wind action probably account for these diflerences.
1949-50

Turbiaity data are presented ior Station I only, since the reading at all stations were similar. Variations undoubtedly occurred due to runoff water, but were not found because of the sampling schedule which did not always allow observations to be made imediately following rains.

When the study began (Narch 3, 1949) turbidities at all levels were 40 pmm . These graciually increased to 53 pm on April 22 at all levels. Feadings made on liay 20 showed a decrease at the surface to 38 ppra. The reading at five meters had increased to 34 pran and the botton to 9 ; pom. furbiditics at the surface, five meters, and bottom wore nearly equal on June 10 being 37 to 44 prom . By late June readings were identical at all levels and continued so throughout the remainder oi the investipation. Turbidity was less than 25 pro on June 25 and reasined so until July 21 when it, was 40 ppm . Turbidity increased to 58 pan on August 16 and then a granal decrease occurred to less than 25 pmon Deceraber 30 where it remained throughout the remainder of the investigation.

chemical patinas

> Dissolved Oxygen
> 1940-4I

Surface differences oi dissolved oxygen content (Tables II and IV) varied from 12.9 ppm on January 31, 1941, to 3.2 pam on September 20, 194. Bottom readings showed a maximum of 12.4 in December 1940, and a raininum of 0.0 ppm which existed from hay 31 through September 20, 1941.

Variations from top to bottom were quite constant during the winter circulation period which existed from November through March. The greatest variation found in any one series was 0.5 ppm .

Oxygen depletion had begun when the April readings were made. At this time the surface waters held 9.8 pm , those of the cight-meter level 8.4 prm , and the bottom waters 8.3 prm . One month later surface and eight meter level readings were 7.7 pro and 3.6 pro respectively. There was no record oi a bottom reading. Dissolved oxygen content at the surface remaj ned high and fairly uniform from May until September 20 when it fell to 3.2 ppm. Conversely, however, values at the eight-ineter level and bottom continued to decrease until absent or a fraction of one part per million remained.

Readings at the surface, excluding the reading of September 20, show that dissolved oxygen concentrations at all times were near saturation. Chandler (1940) in his study of western Lake Erie found that suduen increases and decreases of dissolved oxygen content seemed related to the abundance of organic material, either plankton or detritus, present. This appears to be the reason for the low amount present September 20 when the
TABLE IV

Station I										
Metars	0	5	8	102	11	12	122	13	13:	14
${ }^{\text {Oast. }}$ Hovi	9.0		7.8		5.9					
${ }_{\text {doc. }}^{\text {Hov. }}$ (19	10.2 12.4		12.3 12.4	10.1						
Jan, 9	11.9		12.9				12.9			
	12.9		12.4						12.3	
${ }_{\text {Marab }}{ }_{\text {April }} 9$	12.1		12.1		8.3					12.8
Mint 9	7.7		3.6							
	6.9		1.1			0.0				
	8.18	4.5	0.0							
Sept. 20	6.7 .2	1.1	. 5		0.0		0.0			

data on turbidity and reinfall are considered.
1949-50

Dissolved oxygen (Table V) at the surface showed a variation during the study of 5.3 ppal at Station I, 5.6 ppm at Station II, 5.8 ppmat Station III, and 5.9 ppm at Station IV.

The maximum surface content recorded was 11.6 ppm. This determination was made on March 3, 1949, at Station I. Feadings at the same time for Station II, III and IV were 11.2 prm, 11.3 ppm , and 11.5 ppin respectively. These differences are characteristic of those found throughout the insuing year.

Minimum bottom readings at Stations I and IV were 0.0 ppa, which in both cases occurred August 16, 1949; at Station II 0.3 ppm on July 21 , 1949; and at Station III 3.2 ppm on July 3 , 1949.

Oxygen depletion at levels lower than five mete:s had become apparent by June 25, 1949, at Station I and to a lesser degree at Station IV. On this date no marked change was noted at Station II. The deterrination at Station III on the same date was 3.4 ppm only .2 ppm above its lowest reading of 3.2 ppm .

Determinations tade on September 3, 1949, showed that turnover had been in progress long enough to nearly equalize oxygen concentrations at all levels.

Hydrogen-ion Concentration

$$
1940-41
$$

Tables II and VI show pH variations for this period. Readings at the surface ∇ aried from 7.6 on May 31 and September 20,1941 , to 3.3 on August 29. Eight-meter and bottom variations closely coincided with those of the

Table V
IISSOLUED OXYGEN EXPRESSSED AS PFM 1949-50

Meters	0	5	6	Station I		9	10	11	112	12	$12{ }^{2}$
				7	8						
Marah	11.6	11.2						11.0			
	11.1	11.1						10,8			
April	10.4	8.9						8.8			
	9.0	8.5						8.3			
May 20	10.0	7.7						7.7			
June 10	8.1	6.1								5.8	
	6.2	5.9	3.3	2.2	1.9	0.7	0.7	0.5			
July	6.0	5.1	1.4	0.5	0.3	0.1	0.1	0.1			
	7.4	4.9	3.8	1.9	1.9	1.1	0.6	0.5			0.0
Aug.	6.5	5.2			3.2	1.4	1. 2	0.2			
	5.8	4.9			1.7	0.6					
Sept.	5.9	5.8						5.8			
	6.2	6.0						5.9			
Oct. 1	6.8	6.5						6.1			
	7.6	7.5						6.5			
Nov.	8.8	8.5						8.3			
	8.2	8.1							7.6		
Dec.	9.3	9.1						9.0			
	10.5	10.3							9.5		
Jan.	11.2	11.0						10.6			
	10.6	10.4							9.9		
Feb.	9.8	9.5						9.4			
	9.9	9.4						9.2			

TABLE V (Contimied)
IISSOLVED OXTGEN EXPRESSED AS PPM 1949-50

Station IV							
Meters	0	5	6	6	7	$7{ }^{3}$	8
March 3	11.5				11.0		
28	11.0				10.9		
April 8	9.9				9.0		
22	8.2				8.0		
May 20	10.0					6.2	
June 10	7.8				5.8		
25	5.7	5.5	3.4		2.2		0.8
July 8	6.6	5.2	1.2		0.4		0.3
21	7.5	5.0	1.2		0.4		0.3
Aug. 2	6.6	5.0	1.3		0.9		0.3
16	5.6	4.4			0.0		0.0
Sept. 3	5.8				5.6		
20	6.7	5.9				6.0	
Oct. 10	6.7					6.7	
26	7.4				6.8		
Nov. ${ }^{14}$	8.7				8.5		
28	8.0					7.9	
Dec. 5	9.2				9.0		
30	10.4			9.9			
Jan. 17	11.4			10.9			
- 30	11.1				10.5		
Feb. 16	9.5			9.4			
25	10.0		9.2				

surface. The of reading at eight meters varied irom 8.2 on October 24 , 1940, to 7.1 (seven meters) on fuly 10, 1941. Bottom readings varied from 8.2 on October 24,1940 , to 7.2 on May 31 and September 20, 1941. The vertical profile of pH remained nearly constant troughout the study except during stratification. The greatest vertical variation, excluding the period of stratification, was 0.4 pH units which occurred on May 31 and Septcraber 20, 1941.

The greatest change in pH noted occurred between August 29 and September 20, 1941, when the hydrogen-ion concentration increased at the suriace from a pll of 8.3 to 7.6 . This apparently was due to decomposition of organic detritus brought into the lake by mun-aff.

$$
1949-50
$$

The surface range of pll variation, 3.0 to 8.4 , during this period was slightly less than that for 1940-42. Five-meter pH values ranged from 7.6 to 8.4 and the bottom values from 7.2 to 8.4 . The greatest variations of hydrogen-ion content occurred during chemical and thermal stratification. Throughout the remainder of the investigation the pH remained nearly constant (Table VII).

The greatest variations in vertical profile were found at Stations I and IV, with the difierences at Station I slightly greater than those of Station IV.

A single bottom reading (pH 7.9) on August 16, was the only reading below a pH of 8.0 recorded for Station II. The minimum bottom reading for Station III was 7.6 on July 8.

TABLE VI

HYDROCKHMION GONGENTRATION EXPRESSED AS pH 1940 m 4

Meters	Station I									
	0	5	7	8	102	11	12	121	139	14
Oet. 24	8.2			8.2		8.2				
Not. 21	7.9			7.9	7.9					
Dec. 19	8.0			8.0				8.0		
Jan. 9	8.0			8.0				8.0		
31	7.9			7.9					7.9	
March 9	8.1			8.1						8.1
April 9	8.1			8.0		8.0				
May 31	7.6			7.4			7.2			
July 10	8.2	7.5	7.1							
Aug. 29	8.3	7.6		7.4		7.4				
Sept. 20	7.6			7.4				7.2		

TABLIS VII
HYDROCEN-ION OONCEMPRATION EXPRESSED AS DH 1949-50

Meters	Station I										
	0	5	6	7	8	9	10	11	$12 \frac{1}{6}$	12	122
March 3	8.0	8.0						8.0			
28	8.0	8.0						8.0			
April 8	8.4	8.4						8.4			
22	8.0	8.0						8.0			
May 20	8.2	8.2						8.2			
June 10	8.1	8.1								7.9	
25	8,0	8.0	7.8	7.6	7.6	7.6	7.4	7.2			
July 8	8.2	8.0	7.6	7.6	7.6	7.6	7.6	7.4			
21	8.2	7.6	7.6	7.6	7.6	7.6	7.6	7.6			
Aug. 2	8.4	8.4	8.4	8.4	8.2	7.8	7.8	7.8			
16	8.2	8.1			7.7	7.7					7,8
Sept. 3	8,0	8.0						8.0			
20	8.0	8.0						8.0			
Oct. 10	8.2	8.2						8.2			
26	8.0	8.0						8.0			
Nor. 14	8.2	8.2						8.2			
28	8.3	8.3							8.3		
Dec. 5	8.4	8.4						8.4			
30	8.2	8.2							8.2		
Jan. 17	8.2	8.2						8.2			
30	8.2	8.2							8.2		
Feb. 16	8.2	8.2						8.2			
25	8.2	8.2						8.2			

TABLE VII (Contimed)

HYDROGEN-ION CONGENTRATION EXPRESSED AS pH 1949-50

Meters	Station II					Station III			
	0	5	58	6	$6{ }_{6}$	0	5	6	61
March 3	8.0	8.0				8.0	8.0		
28	8.0	8.0				8.0	8.0		
April 8	8.0					8.2	8.2		
22	8.0				8.0	8.0	8.0		
May 20	8.2				8.2	8.2	8.2		
June 10	8.1				8.1	8.1		8.1	
25	8.2	8.2			8.2	8.2	8.2		8.2
July 8	8.2	8.0				8.2		7.6	
21	8.2			8.0		8.2		8.0	
Aug. 2	8.4					8.4			8.4
16	8.2	7.9				8.2	7.8		
Sept. 3	8.0		8.0			8.2		8.1	
20	8.0				8.0	8.0		8,0	
Oct. 10	8.2	8.2				8.2	8.2		
26	8.0	8.0				8.0	8.0		
Nov. 14	8.2	8.2				8.2	8.2		
28	8.3	8.3				8.3	8.3		
Dec. 5	8.4	8.4				8.4	8.4		
30	8.2	8.2				8.2	8.2		
Jan. 17	8.2	8.2				8.2	8. 2		
. 30	8.2	8.2				8.2	8.2		
Feb. 16	8.2	8.2				8.2	8.2		
25	8.2	8.2				8.2	8.2		

TABIE VII (Continued)
HYDROGEN-ION CONOENTBATION EXPRESSED AS PH 1949-50

Station IY							
Meters	0	5	6	$6 \frac{1}{2}$	7	72	8
March 3	8.0				8.0		
28	8.0				8.0		
April 8	8.2				8.2		
22	8.0				8.0		
May 20	8.2					8.2	
June 10	8.1	8.1			8.1		
25	8.2	8.2	7.8		7.6		7.6
July 8	8.4	8.2	7.6		7.6		7.6
21	8.2	8.0	8.0		7.9		7.9
Aug. 2	8.4	8.4	8.3		8.2		7.8
16	8.4	7.8					7.7
Sept. 3	8.0	8.0			8.0		
20	8.0	8.0				8.0	
Oet. 10	8.2	8.2				8.2	
. 26	8.0				8.0		
Nov. 14	8.2				8.2		
28	8.3					8.3	
Dac. 15	8.4				8.4		
- 30	8.2						
Jon. 17	8.2			8.2			
30	8.2				8.2		
Feb. 16	8.2			8.2			
25	8.2		8.2				

Free Carbon Dioxide

1940-41

Free carbon dioxide conditions are summarized in Tables II and VIII. The year-round range, including all depths, was 0.0 to 7.0 para. The maximum concentrations occurred in the period between May 31, and September 20, 1941. Free CO_{2} was present at all levels except the surface throughout this period. Twice, July 10, and August 29, 1941, the surface waters did not contain free CO_{2} -

Carbon dioxide was either absent or its concentration was greatly reduced at all levels during the winter months.

$$
1949-50
$$

The occurrence of free carbon dioxide for Stations I and IV is given in Table IX. No tables for Stations I and III are given since carbon dioxide in the free state occurred at these locations only on August 16, 1949, at Station II. Concentrations at the surface and bottom were both 0.1 pron.

The interval from June 25 to August 16, 1949, marked the period of free carbon dioxide occurrence at Station I. During this time concentretins at the surface ranged from 0.0 to 1.6 ppm. The stratified area, beginning at five meters, possessed 1.0 to 14.0 ppm throughout the same/ period. The greatest amount, 14.0 ppm , occurred at the five-meter level on July 8, 1949. On the same date readings at 6, 7, 8, 9, 10, 11, and 11.5 meters were $12.0,9.0,8.0,6.0,1.0,10.0$, and 11.0 ppm, respectively.

Free carbon dioxide occurred in lesser amounts at Station IV than at Station I during this same period (June 25 to August 16, 1949). The range of variation was from 0.0 to 8.0 ppm. Free carbon dioxide was found in the surface water once only - August 16, 1949. The amount present was

table IX
FEBE CARBON DIOXIDE EXPBESSED AS PPM 1949-50

Meters		Station I										
		0	5	6	7	8	9	10	11	117	12	122
March	3	0.0	0.0						0.0			
	28	0.0	0.0						0.0			
April	8	0.0	0.0						0.0			
	22	0.0	0.0						0.0			
May	20	0.0	0.0						0.0			
June	10	0.0	0.0								0.0	
	25	0.0	0.0	3.0	6.0	6.0	6.0	8.0	9.0			
July	8	0.0	14.0	12.0	9.0	8.0	6.0	1.0	1.0			
	21	0.0	8.0	8.0	8.0	9.0	9.0	9.0	9.0			
Aug.	2	0.0	5.0	5.0			6.0	6.0	6.0			
	16	1.6	5.0			7.0	7.0					7.2
Sept.	3	0,0	0.0						0.0			
	20	0.0	0.0						0.0			
Oct.	10	0,0	0.0						0.0			
	26	0.0	0.0						0.0			
Nov.		0.0	0.0						0.0			
	28	0.0	0.0							0.0		
Dec.	5	0.0	0.0						0.0			
	30	0.0	0.0							0.0		
Jan.	17	0.0	0.0						0.0			
	30	0.0	0.0							0.0		
Feb.	16	0.0	0.0						0.0			
	25	0.0	0.0						0.0			

TABLE IX (Contsmed)

FREE CARBON DIOXIDE EXPRESSED AS PPM 1949-50

Station IV								
Meters		0	5	6	$6 \frac{1}{2}$	7	$7{ }^{1}$	8
March	3	0.0	0.0			0.0		
	28	0.0	0.0			0.0		
April		0.0	0.0			0.0		
	22	0.0	0.0			0.0		
May	20	0.0	0.0				0.0	
June	10	0.0	0.0			0.0		
	25	0.0	0.0	3.0				6.0
July	8	0.0	0.0	4.0				4.0
	21	0.0	0.0	0.0				8.0
Aug.	2	0.0	0.0	0.0	0.0			6.0
	16	0.2	1.8					5.6
Sept.		0.0	0.0			0.0		
	20	0.0	0.0				0.0	
Oct.		0.0	0.0				0.0	
	26	0.0	0.0			0.0		
Nov.		0.0	0.0			0.0		
	28	0.0	0.0				0.0	
Dec.	5	0.0	0.0			0.0		
	30	0.0	0.0		0.0			
Jan.	17	0.0	0.0		0.0			
	30	0.0	0.0			0.0		
Feb.	16	0.0	0.0		0.0			
	25	0.0	0.0	0.0				

0.2 ppn. The condition of greater concentration in the upper than in the lower part of the thermocline did not occur at this station as it did at Station I.

Phenolphthalein Alkalinity

1940-41

Phenolphthalein alkalinity values at all levels were nearly uniform (Tables II and X). During more than half of this year of investigation the water was characterized by the absence of bound carbon dioxide. Bound carbon dioxide was found on the following dates: October $24,1940,1.0$ ppry. at the surface, 1.5 ppn at eight meters, and 2.0 ppan at the bottcan; March 9, 1941, 3.0 ppm at the surface, 3.0 pman at eight meters, and 0.0 ppail at the bottom; April 9, 1941, 2.5 ppm at the surface, 3.0 ppm at eight meters, and 0.0 ppom at the bottom; July 10, 191.1, 5.0 ppm (the highest recorded) at the surface, and 0.0 ppan at eight meters and the botton; August 29, 1941, 3.5 ppm at the surface, and 0.0 ppm at eight meters and the botton.

$$
1949-50
$$

Phenolphthalein alkalinity was present for a longer period in 194950 than in 1940-41 (Table XI). With the exception of March, 4949 , it was absent only during the swamer months. The range was from 0.0 to 13.0 pm at the surface, 0.0 to 13.0 ppan at the fivemeter level and the bottom. The values were nearly constant at all stations and in vertical prafile, except during the period of stratification.

TABLE X
PH-TH ALKATITITI EXPRESSED AS PPM 1940-41

Meters	0	5	8		Station I					
				$10 \frac{1}{2}$	11	12	127	13	132	14
0et. 24	1.0		1.5		1.0					
Nov. 21	0.0		0.0	0.0						
Dec. 19	0.0		0.0				0.0			
Jan. 9	0.0		0.0				0.0			
31	0.0		0.0						0.0	
March 9	3.0		3.0							0.0
April 9	2.5		3.0		3.0					
May 31	0.0		0.0			0.0				
July 10	5.0	0.0	0.0							
Aug. 29	3.5	0.0	0.0							
Sept. 20	0.0		0.0				0.0			

PKETH ALKAIINITY EXPRESSED AS PYM 1949-50
Station I

Meters		0	5	6	7	8	9	10	11	122	12	$12 \frac{1}{2}$
March 3	3	0.0	0.0						0.0			
	28	0.0	0.0						0.0			
April 8	8	11.0	9.0						8.0			
	22	6.0	7.0						8.0			
May 20	20	7.0	1.0						8.0			
June 10	10	0.0	0.0								0.0	
	25	2.0	2.0						2.0			
July 8	8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
	21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
Aug. 2	2	5.0	0.0			0.0	0.0	0.0	0.0			
	16	0.0	0.0		0.0	0.0	0.0					0.0
Sept. 3	3	2.0	2.0						0.0			
	20	7.0	7.0						6.0			
Oct. 10	10	4.0	4.0						4.0			
	26	5.0	4.0						4.0			
Nov. 14	14	4.0	6.0						6.0			
	28	6.0	5.0							6.0		
Dec. 5	5	5.0	5.0						5.0			
	30	5.0	4.0							5.0		
Jan. 17	17	5.0	5.0						4.0			
	30	9.0	8.0							8.0		
Feb. 16	16	6,0	5.0						5.0			
	25	5.0	5.0						4.0			

TABLE XI (Contimod)
PH_TH AIXAUIMITY EXPRESSIBD AS PPM 2949-50

Meters	Station II			68	Station III			
	0	5	6		0	5	6	$6 \frac{1}{2}$
March 3	0.0	0.0			0.0	0.0	0.0	
28	0.0	0.0			0.0	0.0	0.0	
April 8	13.0	12.0			10.0	9.0		
22	7.0	8.0			8.0	8.0		
May 20	7,0		7.0		7.0		7.0	
June 10	0.0	0.0	0.0		0.0	0.0	0.0	
25	2.0	2.0	2.0		4.0	3.0		3.0
July 8	0.0		0.0		0.0	0,0	0.0	
21	0.0	0,0	0.0		0.0	0.0	0.0	
Aug. 2	4.0	4.0	3.0		4.0	4.0	4.0	
16	0.0		0.0		0.0	0.0		
Sept. 3	2.0		0.0		2.0	200		
20	8.0		8.0		0.0	0.0		
00t. 10		3.0	3.0		4.0	3.0		
26	4.0	3.0	3.0		4.0	4.0		
Nov. $\frac{14}{38}$	7.0	6.0			5.0	6.0		
- ${ }^{28}$	5.0	5.0			5.0	5.0		
Dec. $\begin{gathered}5 \\ 30\end{gathered}$	40	4.0			5.0 5.0	6.0 5.0		
Jan. 17	6.0		6.0		5.5	5.5		
. 30	8.0	7.0			8.0		8.0	
Fob. 16	6.0	5.0			5.0	5.0		
25	4.0	3.0			5.0	5.0		

TABLE XI (Contimed)
FEMTH ALKAEIMITI EXPRESSSD IN PFM 1949-50

Station IV							
Meters	0	5	6	$6 \frac{1}{2}$	7	$7 \frac{1}{2}$	8
March 3	0.0				0.0		
28	0.0				0.0		
April 8	5.0				3.0		
22	6.0				5.0		
May 20	7.0					4.0	
June 10	0.0	0.0			0.0		
25	5.0	3.0	0.0		0.0		0.0
July 8	0.0	0.0	0.0		0.0		0.0
- 21	0.0	0.0	0.0		0.0		0.0
Aug. 2	6.0	5.0	4.0				0.0
(16	0.0	0.0	0.0				0.0
Sept. 3	1.0	0.0			0.0		
20	2.0	0.0				0.0	
Oot. 10	5.0	4.0				4.0	
26	5.0				3.0		
Nov. $\frac{14}{24}$	5.0				6.0		
28	6.0					6.0	
Dec. 5	4.0				4.0		
30	5.0			4.0			
Jan. 17	6.0			5.0			
30	8.0				7.0		
Feb. 16	6.0		0.0	6.0			
25	7.0		7.5				

Methyl Orange Alkalinity

$$
1940-41
$$

Annual surface variation of half-bound carbon dioxide (Tables II and VII) was 67.0 pmm ; the greatest amount, 146.0 ppm being present on November 21, 1940 and the least amount, 79.0 ppn on way $31,194$.

The annual fluctuation at eight meters was 60 ppm; the naximum concentration, 14h.0 prom occurring on October 24, 1940, and the minimum, 84.0 ppm on 1 Nay 31, 1941.

The minimum bottom reading, 91.0 ppm , was obtained on May 31, 1941, and the maximum, 159.5 ppw , on September 20 , 1941 , showing a variation of 69.5 ppan for the year.

Vertical differences were usually slight, two to seven parts per million. Notable exceptions to this occurred on May 31, and September 20, 1941. Hay 31 the methyl orange alkalinity at the surface was 79.0 ppm and that at the bottom 91.0 pm . The September surface reading was 113.0 prom and the bottom reading 159.5 pom.

$$
19 L 9-50
$$

The annual methyl orange alkalinity values (Table XIII) were lower and more constant during 1949-50 than in 1940-41.

The minimum surface concentration was 93.0 ppm at Station IV on June 25 , 1949. Surface values for Stations I, II, and III on the same date were $117.0,116.0$, and 119.0 ppm respectively. The maximum suriace methyl orange alkalinity, 136.0 pm , was found at Stations II and IV in January, 1950, while readings at Stations I and III were one or two parts per million lower. Values at the fivemeter level closely approximated those of the suriace.

headings from samples taken at the bottom showed an amual variation of 69.0 ppm . The minimum, 70.0 ppm , occurred at Station IV on June 25 , 1949, and the maximu, 139.0 pm , from the same station on rebruary 16 , 1950.

Vertical concentrations on any given date generally had a difference of less than 10 ppm. One outstanding exception to this being on August 16, 1949, at Station IV when the surface reading was 118.0 pm and that of the botrom 137.0 pra.

TABLE XIII
100 ALKALIMTY EXFRESEBD AS PFM 1949-50

Meters	0	5	6	7	$\frac{\text { Station I }}{8}$	9	10	11	112	12	123
March	125.0	117.0						119.0			
	114.0	118.0						118.0			
April	122.0	121.0						125.0			
	123.0	122.0						125.0			
Mey 20	129.0	126.0						136.0			
June 10	103.0	117.0								115.0	
	117.0	125.0	120.0	121.0	122.0	123,0	121.0	124.0			
July	115.0	110.0	117.0	123.0	123.0	122.0	122,0	124.0			
	114.0	113.0	277.0	123.0	122.0	124.0	124.0	126.0			
Aug. 16	127.0	130.0			125.0	132,0	128.0	127.0			
	125.0	128.0			124.0	126.0					135.0
Sept. 20	123.0	126.0						128.0			
	128.0	132.0						133.0			
Oct. 10	126.0	120.0					132.0	132.0			
	128.0	126.0						130.0			
Hov. 1	124.0	130,0					131.0	131.0			
	128.0	128.0							132.0		
Dec.	127.0	128.0						130,0			
	127.0	128.0							129.0		
Jan. 17	131.0	132,0						134.0			
	135.0	134.0							133.0		
Fob. 16	134.0	135.0						137.0			
	130.0	132.0						132,0			

TABLS XIII (Contimed)

NO ALKALINITY BXPRESSED AS PHA 1949-50

Station II					3tation III			
Meters	0	5	6	61	0	5	6	61
March 3	118, 0	120.0			114.0	118.0		
28	114.0	129.0			116,0	117.0		
April 8	125.0	127.0			120.0	125.0		
22	125.0		126.0		126.0	127.0		
May : 20	230.0		127.0		129*0	130.0		
Jume 10	101.0	115.0	108.0		105.0	116.0	118.0	
25	116.0	125.0		125.0	119.0	124.0	126.0	
July 8	115.0	118.0			116.0	119.0	119.0	
21	116,0	113.0	117.0		113.0	111.0	118,0	
Axag. 2	127.0	128,0	129.0		125.0	131.0	131,0	
- 26	116.0		122.0		120.0	122.0		
Sept. 3	123.0	125,0			127.0	127.0		
20	133.0			132.0	120.0		124.0	
Oet. 10	125.0	125.0		131.0	129.0		132.0	
26	128.0	127.0	129.0		127.0		129.0	
Hov. 14	130.0	131.0			130.0		13440	
28	128.0	130.0			128,0		128,0	
Dec. 5	125.0	129.0			128,0		131.0	
. 30	126.0	128.0			125.0		130.0	
Jan* 17	132.0		137.0		124.0	128.0		
- 30	136.0	132.0			134.0		132.0	
Peb. 16	135.0	137,0			132,0	136.0		
25	134,0	234.0			129.0	132.0		

TABLE IIII (Contimed)

MO AIXALITITTY EXPRESSED IA PPM 1949-50

Maters	gtation IV						
	0	5	6	$6 \frac{3}{8}$	7	72	8
March 3	115.0				117.0		
28	215.0				119.0		
April 8	112.0				116.0		
22	123.0				124.0		
May 20	129.0					129.0	
June 10	103.0	116.0			110.0		
25	93.0	86.0	73.0		73.0		70.0
July 8	126.0	116.0	118.0		124.0		123.0
21	115.0	211.0	117.0		128.0		124.0
Aug. 2	126.0	132.0	132.0		131,0		129.0
16	118.0	121,0					137.0
Sept. 3	128,0				129.0		
20	121.0	122,0				124.0	
0et. 10	125.0	133.0				132.0	
- 26	129.0	128,0			130.0		
Nov. 14	127.0				130.0		
28	129.0					130.0	
Dec. 5	127.0				129.0		
- 30	126.0			127.0			
Jan. 17	128.0			136.0			
- 30	136.0				133.0		
Feb. 16	136.0			139.0			
25	134.0		136.0				

Phytoplankton
 1940-41

General features of seasonal distribution and relative abundance of genera are shown in Table XIV. These data were derived from collections at Station I.

The following list shows the classes and genera of phytoplankton found during a qualitative study.

Bacillarieae
Fraeillaria
Gyrosifya
Melosira
Smedra
Chrysophyceae
Lallomonas
Dinophyceae
Ceratiom

Chlorophyceas Closterium
Cosmarinm
Pandorina
Pediastrum
Scenodegras
Staurastrum
Ulothrix
诲yxophyceae
Anabaena
Aphanotheca
Coeloapharium
ficrocystis
Oscillatoria

Five classes and eighteen genera were identified. Some of the forms accurred too infrequently to influence total counts. The discussion following presents information concerning relative abundance, seasonal, and vertical distribution of the classes and the dominant forms of each class.

BACILLAPIEAE. Representatives oi both orders were present.
Melosira. Collectively the whole Pennales group found were not

TABLE XIV

PLANKYON COUMPS IN HINBERS PMR LITRR 1940 m 41

	Surfage										
	Odt. 24	Mov. 21	Dec. 19	Jan 9	Jan. 31	Mareh 9	$\begin{gathered} \text { April } \\ 9 \end{gathered}$	$\begin{gathered} \text { May } \\ 9 \end{gathered}$	$\begin{array}{r} \text { May } \\ 31 \end{array}$	$\begin{aligned} & \mathrm{July}_{10} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { mag. } \\ & 29 \\ & \hline \end{aligned}$
Myrophyeeac	39800	97100	5500								11700
Ohlorephyeate		200	6500	1600	2100	2700	23400	200			
Bactilarioee		900		600	700	800	700	400			
Ohrysophyseae			1300	4100	2000	500	700		200		800
Dinophyeeae											
Protozoa				200	200						
Rotifera			200	600	600		700		200		3300
Oladopera					100				200		300
Cepppoda				200	300		300	400	200		
Totel	39800	98200	13800	7300	6000	4000	25800	1000	800		16100
Mipht Materx											
Mysuphyceae	32800	99800	5200	4100			1200				5500
Chlorophyreae		500	600	400		6000	188500				200
Bagiliarione	300	300	100	300		300	600	100			200
Ohryaophycese			400	600		1200	1200	300			400
pinophycese											
Protosoa	500	100	300	200			300	100			400
Rotifera		100	500	200		1200	2400	400	200		
Cladocera	400		100	400			300				
Copeproda			100	100							
Total	34000	20850	2300	6300		8700	24800	900	200		6700

table uiv (Contimed)

	Bottan										
	$\stackrel{\text { oot. }}{24}$	Nor.	$\begin{gathered} \text { Doo. } \\ 19 \end{gathered}$	$\mathrm{Jana.}$	$\mathrm{J}_{\substack{\mathrm{Jnn}_{31}}}$	$\underset{9}{\substack{\text { March } \\ \hline}}$	$\underset{9}{\text { April }}$	$\underset{9}{\text { May }}$	May 31	${ }^{\text {July }}$	${ }_{29}{ }^{\text {aug. }}$
Mraphyoene	3000	106300	3800	4500	5200	5200					
Chlorephryoene	200		700	1000	3100	8600	22200	100			900
		300	400	400	300 300	200 500	300 500	200			
Dinophycose		300									
Protoroa	200	400		${ }_{200}$	3300						
Retifera	400	100	400	200	300	1200		${ }^{500}$			00
${ }^{\text {Copapopode }}$					200		300				
Totai	4700	108000	5300	6300	9700	15850	23600	900			1500

There seems to be only a slight correlation between occurrance of Chloronhyceae and depth of water. Considering the study as a whole, the counts showed a slightly larger number of organisms in the surface samples, but counts from the bottom more often contain sufficient numbers of this groun to influence the total count.

Closterium. This genus ranked second in number of tines present as well as in total organisms per liter, and it appeared more consistantly during the interval between November 1940 and April 1941 than at any other like interval during the study. The maximum peak noted, 1000 cells per liter, occurred on April 9, 19li, fron a sample taken at the surface. Counts at other tines were usually about 200 cells per liter.

Cosmarium. This form did not occur in numbers sufilicient to be included in any oi the counts.

Pancorina. A sample from the eight-neter level on Sarch 21, 1941, yielded a count of 100 colonies per liter. This was the only time this genus was encountered.

Pediastruag. This genus ranked third in occurrance and in numbers per liter. It was found throughout the year in the qualitetive surveys of the plankton, but it rarely contributed to the total count. The maximum concentration found, 600 per liter, was from the bottom on August 8, 1941.

Seenedesmus. This form was found once only, November 1911. It was not prevelant enough to influence the total plankton count.

Staurastrum. Staurastrum was quantitatively and seasonally the most important genus of the green algae. It was present in all collections and greatly influenced Chlorophyceae counts throughout the study. Fith the exception of August 8, 1941, bottom sample mentioned in connection with Pediastrum, it was the dominant green algae genus in all the
quantitatively equal to Melosira whose maximum abundance was 1100 organisms per liter.

Fragillaria, with a maxirum count of 300 organisms per liter, ranked second to Melosira in quantitative numbers.

Gryrosigna ranked third with a maximum peak of 300 organisms per liter.

Synedra was relatively rare.
The diatoms were not an outstanding constituent af the plytoplankton found in 19l0-4.

Surface counts usually shoved a greater number of diatons ner liter than did the other levels. One outstanding exception to this occurred on September 20, 1941, when the surface count totaled 500 per liter, the eight-meter level 100 per liter, and the bottom 1400 per liter.

Data are not available to allow a statement concerning the seasonal maxima of the genera, but the total diaton counts were greater from November 21, 1940, to Karch 9, 1941. The previously mentioned count of September 20 was the largest of the 1940-41 period.

CHLOROPFYCLAE. Seven genera of this class were found in the 1910-41 study. This group had the most genera but their maxima counts were not as great as were those of the bluo-greens.

Data on seasonal distribution of total Chlorophyeae show that this group produced its peak on April 9, 194. On this date the surface had 23,400 organisms per liter, and the bottom 22,200. They were not encountered when counting samples taken in October 1940, and May 31, 1941, however in the qualitative surveys, Staurastrum and Closterium were usually founc. On other dates the counts, except in the pulse previously mentioned, ranged from 200 to 8500 organisms per liter.
collections. Its maximum peaks for all levels appeared on April 9, 1941. The surface concentration was 22,400, the eight meter $\mathbf{1 8}, 500$, and the bottom 21,900 organisms per liter.

Whothrix. This genus was found only in the October 9, 1941, surface sample. It was not present in quanities great enough to influence the total Chlorophyceae count.

GARYSOPFYCEAE. Mallamonas was the sole representative of this group. It was generally present throughout the stuay, although, as of the diatoms, at times in insufficient numbers to be included in the counts. Its maximum peak occurred on Jarmary 9, 1941, when the surface count was 4100 per liter. The maximum at eight meters occurred on March 9 and May 9, 194], when the counts were 1200 organisms per liter in each casc. The above is also true of samples from the bottom except the number was 500 organisms per Liter.

DIFOPHYCEAE. This group numerically unimportant, seldom influenced quantitative surveys. The one genus, Ceratiug, appeared in one count with 300 organisas per liter Irom the bottom on Noveaber 21, 1940.

MYXOPHYCEAE. This class was of numerical importance in october, November, and December of 1940 and from August to September of 1941. at these times it was responsible for the pulses shown in Table XIV.

Coelospharium was the only genus that occurred in sufficient mumbers to influence the total count ai blue-green algae. Data from te October 24,1940 , sarples showed 39,800 organisms per liter at the surface, 32,800 at eight meters, and 3,000 at the bottom. On November 21, 1940, the values had risen to $97,000,99,300$, and 106,300 for surface, eight meters and the bottom, respectively. These figures represent the largest pulse noted in the 1940-41 study.

$$
1949-50
$$

Total number of individuals and occurrence of the various classes are shown in Table XV. These data were derived from collections made at Station I.

Two maxima occurred during the 1949-50 study; one in August 1949, and one, of longer duration, in November 1949, which extended into February 1950. The August maximum was due to an increase of plankton in the surface water only, while that of the winter period was due to organisms found at all depths with their surface vaines generally lower than those of the fivemeter level, and only slightly higher than those of the bottom. Bottom counts were greater than those of the surface in two instances and the February 16, 1950, sample with 8400 organisms per liter provided the largest count of the $1949-50$ study.

The classes and genera found during 1949-50 are given below.
Bacillariese
Amphipleura
Gymbella
$\frac{\text { Gomphonema }}{\text { Melosira }}$
Narlcula
Smedra
Dinophyceae
Ceratima
Qlenodinium
Peridinium

Chlorophyceae
Chlanydomonas
Closterixum
Coelastrum
Cosmarinm
Hydrodicton
Pediastrum
Spixotaenda
Stamasastrum
Tetrespora
Myxophyceae
Anabaena
Oseillatoria

There was little difference in the seasonal frequency, both were present throughout the study, but in numbers of organisms per liter the diatons exceeded the green algae.

The wyophyceae were found at the surface on June 10 and August 16, 1949, at five meters on July 21 and September 20, 1949, and at the bottom

TABLE XV
PLANKTON COUNTS IN MUMBERS PER LITIER 1949-50

	Surface											
	$\begin{gathered} \text { March } \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} \text { Narch } \\ 28 \\ \hline \end{gathered}$	$\begin{gathered} \text { April } \\ \hline \end{gathered}$	$\begin{gathered} \text { Apri1 } \\ 22 \\ \hline \end{gathered}$	$\begin{array}{r} \text { May } \\ 20 \\ \hline \end{array}$	$\begin{gathered} \text { June } \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} \text { June } \\ 25 \end{gathered}$	$\begin{array}{r} \text { July } \\ 8 \\ \hline \end{array}$	$\begin{gathered} \text { July } \\ 21 \end{gathered}$	$\begin{array}{r} \text { Aug. } \\ 2 \\ \hline \end{array}$	$\begin{gathered} \text { Aug. } \\ 16 \\ \hline \end{gathered}$	$\begin{gathered} \text { Sept. } \\ 3 \\ \hline \end{gathered}$
Myzophyceae						100						
Chlorophyoeae	1200	1000		300	300	100	200	500				500
Baccillarieae	1400	1300			2100	100	400	3700		4300	4800	3000
Chryeophy ceae												
Dincply eeae												
Protozaa		600	1100			100	100					
Rotifera	200	200			200			200		100	100	300
Cladocera	500	200	200	100							100	300
Copepoda				100	200	400						
Lotal	3300	3300	1300	500	2800	800	700	4400		4400	5000	4100
	Surface (Continued)											
	Sopt. 20	$\begin{gathered} \text { Oct. } \\ 10 \end{gathered}$	oct. 26	Nov. 14	Nov. 28	$\begin{gathered} \text { Dec. } \\ 5 \\ \hline \end{gathered}$	$\begin{array}{r} \text { Dec. } \\ 30 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{Jan} . \\ & 17 \\ & \hline \end{aligned}$	Jan. 30	Feb. 16	Feb 25	
Myxopliyceae												
Chlorophycere Baccillarieas	200	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	400	$\begin{aligned} & 100 \\ & 400 \end{aligned}$	$\begin{array}{r} 900 \\ 1600 \end{array}$	$\begin{array}{r} 300 \\ 1400 \end{array}$	$\begin{aligned} & 1500 \\ & 3100 \end{aligned}$	$\begin{aligned} & 1700 \\ & 2000 \end{aligned}$	$\begin{aligned} & 1300 \\ & 1700 \end{aligned}$	$\begin{aligned} & 1900 \\ & 2600 \end{aligned}$	1200	
Chrysophyoeae												
Dinophyreae												
Roterifera					300	800		800	700	400	300	
Cladocera		200	100									\%
Total	200	600	500	500	2800	2500	4600	4500	3700	4900	3000	

TABLE XV (Contimed)

PLANKTON COUNTS IN NOMBERS PER LITER 1949-50

	5 Moters											
	March 3	March 28	$\begin{gathered} \text { Aprin } \\ 8 \\ \hline \end{gathered}$	$\begin{array}{r} \text { Apri1 } \\ 22 \\ \hline \end{array}$	$\begin{array}{r} \text { May } \\ 20 \\ \hline \end{array}$	$\begin{gathered} \text { June } \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} \text { June } \\ 25 \\ \hline \end{gathered}$	$\begin{array}{r} \mathrm{Jul}_{8} \mathrm{y} \\ \hline \end{array}$	Juily 21	$\begin{array}{r} \text { Aug. } \\ 2 \\ \hline \end{array}$	Aug.	Sept. 3
Mreophyceae									100			
Chloroplyseae	400	100	100	200		100		100	3600		100	
Bacillarieae	2300	1300	300	200	1400	100	200	2500		2200	1000	700
Chrysephycea.												
Dinophyceae												
Protozoa		300	100				100		100			
Rotifere	400	300	400		100			100				
Cladocerra		100		200					100			
Copopoda			200	500					400	100		
Total	3100	2100	1100	1100	1500	200	300	2700	4300	2300	1100	700
					eters	Ontinued						
	Sept. 20	$\begin{gathered} \text { Oct. } \\ 10 \end{gathered}$	oct. 26	Nov. 14	Hov. 28	Dec. 5	$\begin{array}{r} \text { Dee. } \\ 30 \end{array}$	JEn. 17	$\begin{gathered} \mathrm{Jan} . \\ 30 \\ \hline \end{gathered}$	Feb. 16	$\begin{gathered} \text { Feb. } \\ 25 \end{gathered}$	
Nyxophyceae	100											
Chlorpphyceae		200	300		500	200	800	2600	2800	1100	1000	
Bacillaricae	300		100	500	900	3900	4100	3200	2800	3600	2700	
Chrysophyceae												
Dinophyceas												
Protozoa						200			800			
Rotifera					100	800	1200	500		700	700	
cladocera		200	300	200					400		300	
Copepoda							200					
Total	400	400	700	700	1500	5100	6300	6300	6800	5400	4700	

PLANTTON COUNTS IN MOMBERS PER LITER 1949-50

on April 22, 1949. Total numbers counted for these dates did not exeeed 100 per liter except when 600 were found on the surface on August 16, 1949. Anabaena alone occurred in countable numbers.

DIMOPHYCEAE. Three genera were encountered in the qualitative surveys but were not found in the quantitative counts.

BACILLARIEAE. The Pennales group was represented by five genera but only Synedra oceurred in sufficient mumbers to be counted and then not exceeding 100 organisms per Liter.

Melosira was the only Centrales genus encountered.
The diatoms were the outstanding group of the 19199-50 phytoplankton, Melogina being the numerically dominant genus. This genus was absent from only a few collections. In nearly all instances it occurred in numbers greater than any other.

The mumerical analyses show the fivemeter and bottom values exceeded those of the surface about half of the time. The maximum count for the year occurred at the bottom on February 16, 1950, with 6100 organisms per liter. Surface and fivemeter values on the same date were 2600 and 3600 organisms per liter.

The 1949-50 maxima of kelosira account for the August and Hovember February phytoplankton maxima previously mentioned. A general statement only can be given concerning minima concentrations. 县losira was absent from a few counts, but in qualitative surveys it was always present. It appears from the data that sumer and fall are the times of lowest concentration.

CHLOROPHYCEAE. Nine genera were found, the largest number for any one phytoplankton class in the 1949-50 study.

Closterium was the only genus that occurred in numbers great enough to influence the count. Quantitatively it was exceeded only by the diatoms, its maximum reaching 3600 organisms per liter at five meters on July 21, 1949. It was present in the qualitative surveys of each concentrate although at times its numbers were not significant. The period between April and November 14, 1949, marked its lowest ebb at all levels with the exception of the previously mentioned count of 3600 organisms found at five meters on July 21. At other times during this period surface and five-neter levels did not exceed 500 organisms per liter. Finter Concentrations were greater, the winter maxima being 3100 organisms per liter at the surface and 2800 at five meters. Green algae were absent from counts made from bottom collections in the period between July and October 10, 1949.

Zooplankton

$$
1910-427
$$

Data on the seasonal distribution and relative abundance of genera (Table XV) were derived from collections taken at Station I.

Listed below are the various groups and their genera found during the 1940-4l period. All the genera listed except Chaoborus larvae pere present in sufficient numbers to be included in the counts at some time throughout the study; many were sporadic in occurrence and will be treated as groun rather than separate genera.

Protozoa Codonella
CopepodaGyclons
Nauplif

Fotifera
Asplanchna
Reratella
Notholca
Notroge
Pedalion
Pleosone
Polyarthra
Rotifer

Cladocera Bosmina Cerjodaphnia Daponia

Fifteen genera were found in the 1940-41 study excluding the contracted rotifers and larval forms of the Copepods.

PFOTOZOA. The genus Codonella was the only protozoan found in the concentrates. This form was present throughout the year at all levels, but it occurred in greater numbers and a greater number or times at the eight-meter level.

The counts made from the surface concentrates show that Codonella was present only on January 9 and 31, 1941, in quantities of 200 per liter. It was present eight tines in the counts from the eight-neter level concentrates. The naximum numbers per ilter occurred in the fall of 1940 and summer of 1941. The greatest number counted (October 9, 1940) was 500 per liter. Bottom occurrence and concentrations were similar to the eight-meter level with the naximum being 400 per liter.

COPLPODA. The Copepoda, represented by two genera and nauplii, occurred in the surface counts in greatest concentrations in the late winter and early spring (Jamary 31 to May 9, 1941). The naximan number per liter was 400 . They were absent from many of the counts.

Numbers from the eight-meter level were somewhat less than those given for the surface. They were present in counts three times during the study. These occurred during the late wintermearly spring interval previously mentioned. The maximum count at this level was 300 per liter on May 9, 1941.

Copepods were most numerous in samples taken from the botton, the maximum count of 900 per liter on October 9, 1910, being the greatest of the study. The late winter - early spring period represented the most prolonged concentration of these olankters in the bottom waters.

CLADOCEPA. Cladocera were present in each concentration throughout the year, but in quantitative counts they were present only a few times at any of the levels studied. No pulse of these plankters appeared maxima were 800 per liter at the suriace and bottom and 400 at eight meters. Usually the counts were 100 to 200 per liter.

ROTIFERA. This group was represented by the largest number of zooplankton genera. Six genera were recognized. Some rotifers were contracted beyond recognition by the formalin.

Totifers mere counted in the surface samples seven times, the eightmeter samples seven times, and the bottom samples nine tines. Reratella and Polyarthra were the most numerous.

The greatest abundance of rotifers at eight-meters and the bottom occurred during march and kay, 1941. The surface maximum was somerhat later, occurring in August, 1941. The maximua was 3300 per liter at the surface, 2400 at eight meters, and 1200 at the bottom. mhroughout the study surface concentrations were usually greatest and those of the bottom least.

Chaoboris. These larval forms were present in a great many of the samples, but none were encountered when counting.

$$
1949-50
$$

The seasonal distribution and relative abundance of genera found in collections taken at Station I are show in Tablo XV.

The following list gives the various groups and their genera found during the $1940-50$ period. All the forms except Chaoborus larvae and Vorticella were present in sufficient numbers to be included in the counts at various times, but, as with the 1940-4i study, many were sporadic in occurrence making it advantageous to discuss them as groups rather than genera.

Protozoa
Codonella
Vorticella
Copepoda
Cyclops
Diantomas
Mamplii
Cladocera
Bosmina
Ceriodaphnia
Daphnia
Insects
Chaoborus

Rotifera
Asplanchna Brachiomis Keratella Notous
Pedates
ploesoma
pterodina
Rattaplas
Rotifer
Simacerphalus
Srnchagta
Friarthra
Contracted rotifers

Trenty genera were found in the 1949-50 study excluding the contracted rotifers and larval Copepoda.

PROTOZOA. Xorticella and Codonella were the only Protozoa found in the surveys of the plankton concentrate.

Vorticella atas found once in these surveys. It was not present in any of the counts.

Codonella was present throughout the year at all levels. Numbers sufficient to influence the surface counts occurred four times. These larger populations were found in the period from March 3 to June 25, 1949. A count of 600 per liter was found in the March 28 sample, 1700 (the greatest number encountered at any level) on April 8, while the other counts were 100 each on June 10 and June 25.

Coconella were present in the fivemeter level counts six times. Occurrence was similar to that of the surface except for the maximum of 300 per liter which occurred on Jamuary 30,1950 . Other counts were from 100 to 30 per Iiter.

Counts for the bottom samples mere usually greater than for the other levcls although the maximura was not so pronounced.

COPEPODA. Genera were the sane as those of the $1910-41$ study. Copepoda were present at the surface in quantities great enough to count three times. These occurred in concentrates taken during the spring. Four hundred per liter was the maximum in the surface samples. This count was made on June 10, 1949. The other counts were 100 and 2% per liter.

Concentrations at five neters were somewhat greater than those at the surface. The maximum number, 500 per liter, occurred earlier in the spring (April 22). The sumer maxinum was 400 per liter. Throughout the remainder of the study the Copepoda were absent from counts.

Copepoda mere found in the bottom samples only twice in sufficient nuabers to count. On May 20 and August 2, 1949, 200 per liter were found.

CLADOCERA. The surface concentrates provided numbers great enough to count during spring and late summer - early autumn. The maxinum number, 500 per liter, was from the March 3, 2949 , concentrate.

Populations great enough to count occurred at fivemeters at similar periods as those given for the surface. The maximum count, 400 per liter, was made from the January 30,1950 , concentrate. The spring maximum was 200 per liter and the sumner - fall maximum was 300 per liter.

The Cladocera were not as abundant at the bottom as at other levels. During the spring they were encountered once. At that time the number
per liter was 100. They were present in three samples in October and November, 1949. The maximum number per liter for this fall period was 200.

RUTIFBAA. Twelve genera of rotifera were found in the $1949-50$ study. This comprised the largest number of genera of any zooplankter group encountered. Some forms were contracted beyond recognition. The rotifers occurred more frequently and more abundantly in the surface concentrates taken furing the winter months. 简e maximum nuber at this level, 800 per liter, was collected on December 5, 1949, and Jamuary 17: 1950. Other samples taken during the winter period had 300,100 , and 700 per liter. The maximan sumer count of 200 was from the $J u l y$, 1949 , concentrate.

In the winter five-meter and bottom counts differed from the surface in size and time of peak occurrence with 1200 per liter at five meters and 600 at the bottom on December 30, 1949. It is of interest to note that Rotifera were absent from the surface on this date when maximum occurrence appeared at five meters.

Centrifuged Plankton 2940-45

Regults obtained from centrifuged plankton concentrates are given in Tables II and XVI as ml. per liter of lake water.

Three surface maxima were found during the study. The first, November 21. 1910 , showed a volume of 0.0043 ml . the second and third, April 9 and August 29, 1917, each a volume of 0.0053 ml .

The only notable peak found at the eight-meter level occurred on April 9, 19li with a volume of 0.0066 ml . This was the second largest volume found at ary level.

TABLE XVI

Station I

	Oct. 24	Nov. 21	Dec. 19	Jan. 9	Jen. 31	March 9	$\begin{gathered} \text { April } \\ 9 \end{gathered}$	$\begin{array}{r} \text { My } \\ 9 \end{array}$	May 31	$\underset{29}{ }{ }_{2}^{\text {Aug. }}$	Sept. 20
Surface	. 0035	. 0028	. 0020	. 0032	. 0024	. 0002	. 0053	. 0029	. 0037	. 0053	. 0017
8 Meters:	. 0040	. 0044	. 0026	. 0037	. 0000	. 0019	. 0066	. 0009	. 0029	. 00019	. 00019
Bottom	. 0500	. 0029	. 0035	. 0027	. 0059	. 0015	. 0048	.0007	. 0000	. 0016	. 0012

Three maxima were noted in the bottom concentrates. The first in October with a volume of 0.05 ml . This was the greatest valume recorded. The second maximun recorded was 0.0059 ml . from the sample taken on Jarmary 31., 1941. The third peak, the smallest, was 0.0048 mil. collected April 9, 1941.

It can be noted from Table XVI that these maxima at the various levels did not occur simulaneously even though their rise and decline are similar and that minina volumes are associated with inereased turbidity.

When the volume of centrifuged plankton, 0.05 ml. , for actober 24 , 1940, and the quantitative count of the same sauple with 900 copepoda per liter are compared the profound effect of these zooplankters on volume can be seen. Peaks of polume and peaks of total mmbers of plankton do not coincide in all cases, although, with rare exceptions, they do show similar fluctuations.

$$
1949-50
$$

The centrifuged plankton valumes in the $1949-50$ study were not outstandingly large and the concentrate values were nearly equal (Table XVII) tious presenting a sowewhat undulating aspect. Centrifuge data agree nore closely with total quantitative eounts in 1949-50 than in 1940-lu.

Volumes of centrifuged plankton in 1949-50 were considerably Less than in 1940-41. The maxima at the surface and bottom were 0.0036 nil. and at the fivemeter level 0.0034 mi . (Station I) and oceurred in the spring of 1949. finima volumes occurred during the summer and fall. Plamkton volumes ior all stations are quite similar.

Plankton volume change as associated with turbidity fluctuation was not so apparent as in 1940-42. Still, planktion volumes were greater in early spring of 1949 and winter of 1949-50 when the turbidity was less.

TABLE XVII

CENIRITUGED PLANYTON EXPRESSED AS CUBIC MIHLILITERS PER LITER 1949-50

Station I

	Narch 3	March 28	$\begin{gathered} \text { April1 } \\ 8 \end{gathered}$	$\begin{gathered} \text { Apri1 } \\ 22 \\ \hline \end{gathered}$	$\begin{array}{r} \text { May } \\ 20 \\ \hline \end{array}$	$\begin{gathered} \text { June } \\ 10 \end{gathered}$	June 25	$\begin{array}{r} \text { Juily } \\ 8 \end{array}$	$\begin{gathered} \text { Ju2y } \\ 21 \\ \hline \end{gathered}$	$\begin{array}{r} \text { Aug. } \\ 2 \\ \hline \end{array}$	$\begin{gathered} \text { Aug. } \\ 16 \\ \hline \end{gathered}$	Sept.
Surface	. 0036	. 0034	. 00016	. 0027	.0019	. 0007	. 0008	. 0009	. 0009	. 00010	. 0002	. 0070
5 Meters	. 0030	. 0029	.0025	. 0025	. 00016	.0008	. 0009	. 00018	. 00010	.0012	. 00013	. 0009
Bottom	. 0034	. 0039	. 0009	. 0020	. 0021	. 0005	. 0005	. 00017	. 0008	. 0009	. 0009	. 0007
	$\begin{aligned} & \text { Sept. } \\ & 20 \end{aligned}$	$\begin{gathered} \text { oct. } \\ 10 \end{gathered}$	$\begin{gathered} \text { Oct. } \\ 26 \end{gathered}$	Nov. 14	$\begin{gathered} \text { Nor. } \\ 28 \end{gathered}$	$\begin{gathered} \text { Dec. } \\ 5 \end{gathered}$	$\begin{gathered} \text { Dec. } \\ 30 \end{gathered}$	$\begin{gathered} \text { Jan. } \\ 17 \end{gathered}$	$\begin{array}{r} \mathrm{Jan} \\ 30 \end{array}$	Feb. 16	Feb. 25	
Surface	. 0004	. 0004	. 0005	. 0004	. 0009	. 0016	. 00012	. 00012	. 0009	. 0002	. 00015	
5 Maters	. 00012	. 0008	. 0009	. 0016	. 00089	. 00019	. 0025	. 00019	. 00014	. 0002	.0019	
Bottom	.0004	. 0008	. 0008	. 0012	.0023	. 00016	. 00016	. 0020	. 0016	. 0026	. 0020	

Station II

	$\begin{gathered} \text { March } \\ 3 \end{gathered}$	$\begin{aligned} & \text { March } \\ & 28 \\ & \hline \end{aligned}$	$\begin{gathered} \text { April } \\ 8 \end{gathered}$	$\begin{gathered} \text { April } \\ 22 \end{gathered}$	$\begin{array}{r} \text { May } \\ 20 \end{array}$	$\begin{gathered} \text { June } \\ 10 \end{gathered}$	June 25	$\begin{array}{r} \text { July } \\ 8 \\ \hline \end{array}$	$\begin{gathered} \text { July } \\ 20 \end{gathered}$	$\begin{array}{r} \text { Aug. } \\ 2 \end{array}$	$\begin{gathered} \text { Aug. } \\ 16 \end{gathered}$	Sept. 3
Surface Bottom	$\begin{aligned} & .0034 \\ & .0036 \\ & \hline \end{aligned}$	$\begin{aligned} & .0026 \\ & .0034 \end{aligned}$	$\begin{array}{r} .0026 \\ .0025 \\ \hline \end{array}$	$.0020$	$\begin{aligned} & .0005 \\ & .0007 \end{aligned}$	$\begin{array}{r} .0005 \\ .0007 \\ \hline \end{array}$	$\begin{array}{r} .0013 \\ .0005 \end{array}$	$\begin{array}{r} .0003 \\ .0024 \end{array}$	$\begin{array}{r} .0007 \\ .0020 \end{array}$	$\begin{aligned} & .0008 \\ & .0010 \end{aligned}$	$\begin{aligned} & .0008 \\ & .0030 \end{aligned}$	$\begin{aligned} & .0009 \\ & .0008 \end{aligned}$
	Sept. 20	$\begin{gathered} \text { oct. } \\ 10 \end{gathered}$	$\begin{gathered} \text { oct. } \\ 26 \end{gathered}$	Hov. 14	Nov. 28	$\begin{gathered} \text { Dec. } \\ 5 \end{gathered}$	Dec. 30	$\begin{aligned} & \mathrm{Jan} \\ & 17 \end{aligned}$	$\begin{gathered} \text { Jan. } \\ 30 \end{gathered}$	Feb. 16	Feb 25	
Surface Bottom	$\begin{aligned} & .0004 \\ & .0005 \end{aligned}$	$\begin{aligned} & .0007 \\ & .0008 \end{aligned}$	$.0004$	$\begin{array}{r} .0003 \\ .0005 \end{array}$	$\begin{aligned} & .0007 \\ & .0007 \end{aligned}$	$\begin{aligned} & .0019 \\ & .0011 \end{aligned}$	$\begin{aligned} & .0011 \\ & .0015 \end{aligned}$	$\begin{array}{r} .0010 \\ .0092 \end{array}$	$\begin{aligned} & .0002 \\ & .0019 \end{aligned}$	$\begin{aligned} & .0018 \\ & .0019 \end{aligned}$	$\begin{array}{r} .0001 \\ .0017 \end{array}$	

TABLE XVII (Continued)

CEATRTFUGED PLANKTON EXPPESSED AS CUBIC MIULIHITKRS PER LITER 1949-50

Station IV

DISCUSSION

Thermal data of 1940-41 and 1949-50 were similar and differences found were in all probability due to climatio variations. The greatest difference between the two years gtudied was the behavior of thermal stratification. Stratification occurred earlier in the spring of 194 than it did in 1949. The upper limite of the 1941 thernocline began at eight meters, changed later to four meters, and still later descended to ten meters. These difierences ware more than likely due to the relatively small amount of water in the lake and high winds and rains in autumn. The thermocline in the sumer of 1949 remained constant at five meters indicating that the influence of climatic factors had less effect on the larger area of water present.

The winters included by the two investigations produced no ice cover and circulation was continuous fron early fall to early spring.

The lack of thermal stratification in the summer of 1949 at Stations II and III whose depths were greater than the upper reaches of the thermocline found at Stations I and IV was probably due to the obtuse V-shaped bottan, the relatively mall mount of water below the fivemeter level, and the fact that these stations are in arms that lie paraliel to the prevailing vinds. It is hardly probable that shore line and bottom contours could have produced depression individuality as described by Welch (1935).

Turbidity differences of 1940-41 and 1949-50 were great. Those of 1940-41 were characterized by great variations and comparatively long periods of clarity while those of 1919-50 did not show great variations
but remained more or less stable, lacking elarity most of the time, and especially at the times ordinarily assigned as the periods of greatest phytoplankton production.

It has been stated that clay (袘loh, 1935), and specifically montmorillonite clay (Irwin, 1945), belong to a group of non-settling turbidity producing agents. The turbidities found in Lake Carl Blackwell are due to clay of the latter type. Irwin (1945) stated further that this non-settiling clay can be floculated in impoundments by employing plant manures to increase the hydrogen-ion concentration. The clarity thus produced remains until water exchange in the basin or/and inflowing mud deereased the hydragen-ion concentration by the buffer effect of dispersed clay particles. This seems to have happened in Lake Carl Blackwell. The vegetation inundated by impoundment, decayed, released hydrogen-ions and clarified the mater, although turbidities following rains were great in 1940-42. As the years passed, this floculating ability was lost due to inflowing mud, and water exchange. The turbidities became more constant ereating the condition found in 1949-50. "The possibility seems great that Lake Carl Blackwell will remain turbid unless remedial measures are taken.

Turbidity and temerature readings are insuificient to prove the presence or absence of density currents.

The dissolved oxygen differences of the two periods studied were negligable, climatic conditions being the governing factor in the oxygen Values. Oxygen values of aach investigation were nearly equal in vertical profile except during stratification. Super-saturation of dissolved axygen was not found.

Hydrogen-ion coneentration differed considerable regardless of a similar range during both years. Fluctuations of pH values in 1910-41 were more pronounced than those of $1949-50$. The iluatuations of pH from surface to bottom in both investigations during the months of thermal and cheraical stratification was in keeping with hat might be expected in a stratified lake.

None of the readings in ether study indicated a condition of acidity as the minimum pH recorded was 7.1.

The relationships betreen pH and carbon dioxide as well as the fluctuations of carbon dioxide in its free, bound, and half-bound statea (Tables II, VI, VII, VIII, IX, X, XI, XII, and XIII) show a substantial difference in the two studies.

At times these relationships resemble those found by other investigators, but at other times there mas no explainable reason for these changes except as given by Stevenson (1950, unpublished doctoral thesis, Oklahoma A. and M. College) who stated that a rough correlation exists between the occurrence of carbon dioxide, either in the free state or as bicarbonates, and the precipitation of colloidal clay, each of these being utilised in floculating the elay. If one examines the turbidity, pH, and bicarbonate data of this paper this correlation ean be seen. This is espeoially true in the case of 1949-50 data. Too, it should be noted that bicarbonate concentrations were greater in 1940-lin when turbidities were low, than in 2949-50. This is true also in the data of Harris and Silvey (2940) although they did not mention it except in comection with the density current found in Lake Bridgeport.

In the light of past research on the effecte of silting and turbidity on aquatic organisms (Chandler, 1937, 1940, 1942a, 1942b, 1944;

Chandler and Weeks, 1945; Doan, 1941, 1942; Ellis, 1936; Harris and Silvey, 1940; Irwin, 1945, 1948; Moyer and Heritage, 1941; Moore, 1937; Welch, 1935; Whipple, et. al., 1927; and unpublished data from O\%lahoma A. and M. College) it appears that clay turbidity rather than chemical conditions as found in Lake Carl Blackwell are responsible for plankton paucity and succession. It seems doubtful that the turbidity producing clay in Lake Carl Blackwell would produce direct injury as noted by Chandler (1937).

Plankton succession was fron a more or less typical ayxophyceanchlorophycean phytoplankton population ir 1940-4 to one in 1949-50 characterized by an almost complete absence of blue-greens, relatively few greens, quantitatively, and dominated in mumbers by a diatom (halosira) population. The succession correaponded to that found by Chandler (1942b) in Lake Erie when its waters were turbid. The same succession is suggested in Chandler's (1940) work as well as that of Farris and Silvey (1940).

Nyxophycese pulses occurred in the fall of 1940 and to a lesser extent in August of 1941. The blue-greens were not importent constituents of the plankton at other times of the year. The fall pulse approximated 100,000 organisms per liter at all levels. Coelosphaerium was the doninant organism in numbers. The August pulse was small in comperison to that of the preceding fall, being only 11,700 organisms per liter. Whetrer or not this concentration was the forerumer of a pulse conparable with that of 1940 is not lnown due to the profound effect of physicalchemical phenomena that occurred between August 20 and September 20, 1941.

The Chlorophyceae were most abundant during the spring months of 1941. The greatest concentrations noted were from the April 9 collections.

The surface count was the highest with 23,400 organisms per liter. Staurastrum wes the numerically dominant form throughout 1940-41.

The maximum diatom count of 1940-41, 800 per liter, occurred in the spring of 1941 just preceding the green algae pulse. At other times they vere either absent or occurred in very amall mumbers.

The phytoplankton population of 1949-50 showed marked differences quantitatively from that of 1940 -41. Vaxima did not occur at the same tince and were considerably less in mumers then were those of 1940-41. Many investigators heve noted the inconsistancy of phytoplankton pulse apmearances and the only sienificance thet can be attached to phytoplankton behavior in this study is that caused by the clay turbidity of the water.

Phytoplankton maxima did not present outstanding peaks as were found in 1940-41, but were of an undulating nature in 1949-50.

Two noteable peaks occurred in August, 1949, and winter, 1949-50, They were small numerically when compared to those of 1940-42. The August pulse wes apnorentily minimized and later decreaced because of high turbidity, as September 3 concentrates yielded very low counts. The winter peak coincided with turbidity decline.

Characteristic \#yxophyceae peaks did not appear in this yecr of study, in fact, the bluemreens were umimportont in 1949-50. The numerically dominant phytolankter was the diatom Malogira. This genas occurred throughout the study and at timea of increased turbidity was the main constituent of the plankton.

Closterium was tie only green algaipresent in quantities in 1949 50. Its maximam concentration was found at five moters on July 21, 1949, but in other sarmples teken during spring and summer it was scarce. The
winter concentrations which began in Kovember were much greater than those of spring and summer.

Yallompnas which occurred often in countable numbers in 1940-41 was not found in 1949-50.

The number of samples taken and the relative scarcity of the zooplankters allow little more than generalities coneerning seasonal distribution in both 1940-41 and 1949-50.

The Potifera in the two years stuiled were the mumericolly dominant zooplankters. Concentrations were greater in 1940-41, the maxivam muber per liter being 3300. This meximum was found in the surface water. The maximum in 1949-50, from the fivemeter level, was 1200 per liter. It is noteworthy of attention that these plankters reached their maxima, or were present in greater numbers, at times that coincided with phytoplankton increase. Concentrations of rotifers in $1940-41$ were greateat during spring and cummer and during the winter months of 1949-50.

The only notable difference in ocearrance of Protomea in 1940-41 and 1949-50 was the greater Eurface conoentrations of Cedonalla in 1949-50. This was the only protoroan found in 1940-41. In 1949-50, two, Codonelia and Vorticella, were present.

Cladocera were more abundant and oecurred more frequently during the spring and autumn months of both years stadied. Eightmeter concentrations of these plankters were the greatest in 1940-41, but they were found more often at the surfece in 1949-50. Regardless of their scarcity it must be recognized that these zooplankters greatily influence plenkton volume because of their size.

The volumes obtained by centrifuging the plankton concentrates were cons1derably larger for 1940-41 than for 1949-50.

The trends show by volumetric and total count data resemble each other, but the seasonal peaks vary in time of occurrence in some cases. The differences of peak occurrences were due to a greater number of large plankters. The pulsea of 1940-41 shown by the volumetric data are more sharply delineated then those of 1949-50 which is in keeping with the total count data.

Both volumetric and total count data show an inverse relation to turbidity readings, indicating that the zooplankters which greatly influence the centrifuged plankton volumes are reduced by clay turbidity. There is need for more research concerning this reletionship.

The main advantages of the polumetric method presented lie in the relative short time required for analysis and the fact that the data obtained are besed on volume of plankton present rather than numbers.

Pany fisheries biologists have been prone to ignore planiton as an index of productivity in waters with which they are concerned. This attitude anpears to be due to an inability to visualize the food value of large numbers of small phytoplankters when they observe fish stomachs filled with zooplankters which appeor insignificant in counts.

Welch (1948) stated that in centrifuge data exuriae, wind-blown material, dead orgenisms remains, and silt present an incorrect neasure of the ifving planiton. This without doubt is true, but complications arising because of adjustments to conpensate for organisn size in momerieal counts also present inaccuracies.

The fact that organic detritus was not separated from the plankton wes recognized at the beginning of the study. However, this did not cause mach concern as nost organic material adds to the sum total of productivity of a body of water.

Suspended silt does present a matter of vital concern. Preliminary experinentation glowed that it could imfluence the total volume obtained oven though the amount present was not concentrated but consisted merely of that in the weter collected with the concentrated plankton. Since the suspended silt in Lake Carl Bleckwell is of a colloidal nature and the volume of the concentrate was reduced to $3 \mathrm{ml} .$, the arount centrifuged, the silt remaining in this concentrato did not influence the readings. If care is not exercieed when collecting samples from the water noar the bottom, or in ceses of suspension from turbulence, inorganic particles too large to pasc through the bolting silk will be retained.

Lake Carl Rlackwell, typical of central Ollahowa impoundments, both large and small, has changed only slightly physically and chemically during the nine-year interval between the two investigations of this study. The only notable difference has been the greater constancy of clay turbidity and its direct effect on carbon dioxide in its various forms.

Mankton crops have greatly decreased numerically and volumetrically. The succession of phytoplenlton has been from a myxophycean-chorophycean population to one of diatome. This diatom population which has been associsted uith intervals of increased turbidity in the studies of other workers was year-long in 1949-50. 'Workers have shown that plankton have been effected by great increasec in turbidity, but in this strate it ap nears also thet rolonged turblditier :s liay, even though not extreme, hove wn mondided effect.

SUMMAT

1. Two one-year limological investigations, separated by a nine-year interval, on Lake Carl Blackwell, an Impoundment in Payne County, Oklahoma, are presented. The first began then productivity was high; the second when productivity was on the decline.
2. Physical-chemical data show that turbidity, pH , and carbonates have increased while bicarbonates have decreased. It is strongly suepected that the negatively charged clay particles which cause the turbidity in Lake Carl Blackwell behave as a buffer producing these changes.
3. Turbidity or its cause seems to be the limiting physical factor influencing productivity of the water in Lake Carl Blackwell.
4. Quantitative surveys of the phytoplankton revealed eighteen genera present in 1940-41 and twenty in 1949-50.
5. Succession was shown to be from a myxophycean-chlorophycean phytoplankton population with characteristic behavior in 1940 to a predominantly diatom population in 1949-50. The blue-greens had almost disappeared in 1949-50.
6. The phytoplankton, quantitatively, was greater in 1940-41 than in 1949-50.
7. Fifteen zooplankton genera were found in 1240-41 and twenty in 194, 50 , the numerically dominant group being the Rotifers in both studies.
E. Zooplankton, quantitatively, was more abundant in 1940-41 than in 1949-50.
8. A volumetric method of meesuring plankton was developed which was successful in analyzing the plankton in Lake Carl Blackwell and is belleved to be usable by fisheries biologists.
9. quantitative and volumetric analyses do not agree in all respects.

American Public Health Association. 1936. Standard Mothods for the Ecamination of Water and Sewage. Hew York: Mmer. Pub. Health Aseociation. 8th ed., 309 pp .
1946. Standard Methode for the Examination of Weter and Semage. Hew York: Amer. Pub. Health Assoc. 9th ed., 286 pp.

Birge, E. A., and C. Judiay. 1922. The inland lakes of Wisconsin. The plankton. I. Its quantity and chemieal composition. Bail. Wis. Geol. and 渔t. Hist. Surv ; 64: 1-222.

Chandler, D. C. 1937. Fate of typical lake plankton in atreams. Ecol. Nonogr. $7: 445-479$.
1940. Limological stradies of vestern Lake Firie. I. Plankton and certain phyalcal-chemical data of the pasa Islands region, from September, 1938, to Hovember, 1939. Ohio Jour. Sci., 40: 291-336.

1942a. Limmological stuaiea of western Lake Erie. II. Light penetration and its relation to turbidity. Ecol., 23: 41-52.
19420. Liwnological studies of western Lake Frie. III. Pirytom plankton and physical-chemical data from November, 1939, to Novenber, 1940. Onto Jour. So1., 421 24-44.
1944. Limological stadies of western Lake Erie. N. Relation of limological and climatic factors to the phytoplankton of 1941. Trans. Amer. Micros. Soc., 63: 203-236.

Cheatum, E. P., Yayne Longnecker, and Alvin Metler. 1942. Liwnological observations on an kast Texas lake. Irans. Amer. Micros. Soc., 62: 336-348.

Conger, Fanl S. 1943. Ebullition of gasea from marsh and lake waters. Chesapeake Biological Laboratory, Pub. Mo. 59: 42 pp.

Dean, Fenneth H. 1942. Relation of sauger catch to turbidity in western Lake Erie. Ohio Jour. Sci., 412 449-452.
_1942. Soma meteorological and limnological conditions as factors in the abundance of certain fishes in Lake Erie. Ecol. Monogr., 12: 293-314.

Eggleton, Frank E. 1939a. Role of the bottom fauna in the productivity of lakes. A.A.A.S., Pub. Ho. 10: 123-131.

1939b. Freshwater comsanities. Amer. Midl. Nat., 21 (1): 56-74.

EH11s, M. M. 1936. Brosion silt as a factor in aquatic erviromonts. Ecol., 17: 29-42.

Rarris, B. B., and J. K. G. Silvey. 1940. Limmological investigations on Texas reservoir lakes. Ecol. Monogr., 10: 111-143.

Hutchinson, G. Evelyn. 1944. Limological studies in Connecticut. VII. A critical examination of the supposed relationship between phytoplankton periciicity and chemical changes in lake waters. Ecol., 25(1): 3-26.

Irwin, William H. 194. Preliminary recorde of phyaical-chentcal featurea of Grand Lake, Oklahoma. Proc. Okla. Acad. Sci., 21 : 19-23.
1945. Methods of precipitating colloidal soil particles from 1 m pounded waters of central Oklahom. Bull. Ocla. A. \& M. College, 42: 16 pp .
1948. The developanent and decline of southwestern lakes. Okia. Game and Fish Fews, 4(7\&8):4-5.

Littleford, Robert A., C. L, Hewocube, and B. B. Shepherd. 1940. An experimental strudy of certain quantitative plankton methods. Chesapeake Biological Laboratory, Contribution 10. 37: 309-322.

Meyer, Bernard S. and Albert C. Heritage. 194. Effect of turbidity and depth of ivenersion on apparent photosynthesis in Cerstcohyliwn demargsam. Ecol., 22: 17-22.

Moore, Franaline. 1937. The effects of silting on the productivity of waters. Trans. Sec. N. A. Wildilfe Con., 658-661.

Pennak, Robert W. 1945. Some aspects of the regional 14mology of northern Colorado. Univ. Colo. Studies, Seriea D_{2} 2: 263-293.
_ 1949. Anmal inmological cycles in some Colorado reaervoir lakes. Ecol. Monogr ., 19: 233-267.

Flev, Wayne F. and R. W. Pemak. 1949. A seasonal investigation of the vertical movement of sooplankters in an Indiana lake. Ecol., 30(1):93-100.

Rawson, D. S. 1939. Some physical and chemical factors in the matabo11.sm of lakes. A.A.A.S., Pub. No. 10: 9-26.

Riciker, William E. 1938. On adequate quantitative gampling of the pelagic net plankton of a lake. J. Fiah. Res. Bd. Can., 4(1): 19-32.

Scheffer; V. B. and R. J. Robinson. 1939. A limmological atudy of Lake Washington. Ecol. Nonogr., 9: 95-143.

Scott, F. M. 1927. Introduction to the limnolagy of Seareville Lake, Stanford Univ. Pub., Univ. Ser., Biol. Ser., 5s 1-83.

Smith, Gilbert M. 1933. The Fresh-Water Algae of the United States. New York: McGraw-Hill, 716 pp.

Wallen, I. Eugene. 1949. The plankton population of a small fertile pond in central Oklahoma. Trans. Amer. Mícros. Soc., 68(3): 200205.

Ward, Henry B. and G. C. Whipple. 1918. Fresh-Water Biology. New York: John Wiley and Sons, 1111 pp. -

Welch, Peul S. 1935. Limmology. New York: McGraw-Hill, 471 pp.

- 1948. Limnological Methods. Philadelphia: The Blakiston Co., 381 pp .

Whipple, G. C., G. M. Fair, and M. C. Whipple. 1927. The Mieroso0py of Drinking Water. New York: John Wiley and Sons, 4 th ed., 586 pp .

Mary May Burris

