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PREFACE

Recently, while employed as a stress analyst for an airframe manu-
facturer, the author became interested in the load=-carrying capabilities
of thin-walled stiffensd cylinders such as airplane wings and other typss
of thin-walled structures which result from the requirement that hesavy
loads be resgisted by the lightest possible structure. An evaluation by
the author of his training and experience in what may be termed "ecivil
enginsering structures” indicated a sound basis for snalytical work with
aircraft structures, but also pointed out the need for acquiring know-
ledge of the behavior of structures common to the airplans and the me-
thods used to analyze them,

Since the determination of the shearing stresses is of particular
interest to the author, end since shearing stresses are reQuired as a
preliminary part of a complete analysis of a strucbure, this subject was
chosen for first study. The study was begun with the rudiments of the
shear analysis of various shapsd thin-walled structures without stif-
fening members, and progressed through a procedure for the shear analysis
of an airplane wing., This report records the results of this studje

The author wishes to express his gratitude to Lloyd Jackson and
William Burkitt of the Stress Analysis Group of Douglas Aircraft Co.,
Inco, Tulsa Division, and to Professor Raymond E. Chapel for their tech-
nical assistance; to Roger L, Flanders, Professor and Head of the School
of Civil Engineering, and to Professor Jan J. Tuma who have read the com-

plete manuscript, made many valuable suggestions, and given freely of
iiil



their time to the author during the preparation of this report; to
Douglas Aircraft Co., Inc., for making the author’s graduate study pos=-
sible; to the Tulsa Division of this company, and to the National Ad-
visory Committee for Aeronautics, Washington; Do C., for making avail-
able documents used during the study; and finally to the authorls wife,
without whose help and understanding, the author's graduate study would

not be feasible.
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NOMENCLATURE
Area in square inches; Coefficient,
Coefficients.
Diameter of cylinder in inches; Coefficient.
Modulus of elasticity in pounds per square inchj; Coefficient,
Force in pounds.
Compressive stress at instant of crippling, pounds per sg. in.
Modulus of rigidity in pounds per square inchj; Coefficient,
Height above the cross-section of a hollow cylinder of the
plane which represents St., Venant's stress function for the
hollow portion of the cylinder; Coefficient.
Moment of inertia of an area in (inches)4°
Subseripts x and y designate bending axes, Subscript p
designates polar moment of inertia,
Length in inches; Coefficient.
Bending or torsional moment of forces; Coefficient.
Force on stringer in pounds.
Radial distance in inches.
Torsional moment in inch-pounds,
Strain energy in inch-pounds.
Vertical shearing force in pounds,
Subscripts w and f designate web and flange, respectively.
Distance along the resr spar of an airplane wing from a

fixed origin in inches.

ix
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ds
A

Designates mutually perpendicular bending axes.
Center of gravity of areas of the structural elements

of a cross-section.

Distance in inches
Distance from the bending axis to the extreme fibre in
inches: Distance in inches.
Bending stress in pounds per square inch.
Shearing stress in pounds per square inch.
Stringer average stress in pounds per square inch,
Yield point stress in pounds per square inch.
Distance bstween stringers along the shell in inches,
Relative shear flow from bending in pounds per inch,
Unknown shear flow at a specific point in pounds per inch.
Unknown constant shear flows in cells 1, 2, and 3, respec-
tively.
Thickness of metal shell or web in inches.
Angular measurement in degrees.
Effective width of shell each side of a stringer attach-
ment line in inches,.
Elemental distance along the p@riphary of a cell in inches,
Designates a change in a quantity or a difference in the
same quantity measured at two points.
Angular deformation of a cell in degrees or radians.
Poison's ratio,
Angular measurements in degrees or radians.

Moment arm or distance in inches.

S



W Symbol for St. Venant's stress function,

Sign convention:
Clockwise shear flows are positive.
Bending moments causing tension in lower extreme fibre
are positive,
Distances measured forward from the rear spar of a wing
cross-section are negative.,
Distances measured downward from the Y~axis in the wing

cross-sechion are negative.



PART 1
INTRODUCTION

To study the action, under load, of the complicated thin-walled
structures common to aircraft, an understanding of the basic theory
and analytical tools available for the analysis of the elements of
these structures must be gained. This information is available in
standard texts on aircraft structures, such as Bruhn (1949) and Peery
{1950). As the elements of the gtructure are assembled, the number
of analytical tools necessary will be increased and new procedures
for the analysis will be developéde

This report will show the origiﬁ of the necessary basic theory
and procedures for the determination of the shearing stresses in thin-
walled structures of varying degrees of complexity. The ultimate goal
will be to show the procedures for thekdetermination of the shearing
stresses of a multi-cell, multi-stiffener, thin-walled structure.

Whenever reports of structural tests are available - particularly
for a type of structure with which the interssted sngineer is not
thoroughly familiar m‘they should be examined with a view to obtaining
information of the behavior of the structure under load, and, perhaps
more imp@rtant9 to attempt to obtain a "feeling" or degree of intuition
regarding the behavicr of the structure under load. Some of the more
informative test reports regarding thin-walled cylinders which are

available from the National Advisory Committee for Asronautics, Wash-

1



ington, D, C. are included in the bibliography. Since the research and
testing programs reported upon by the aforementioned documents have for
their ultimate aim the examination of the tested structure at or near
failure, very little effort is spent deriving theory of a basic nature
regarding the structure when the stresses are such that the structure
does not assume any inelastic deformation. However, among some of the
things which can be observed from the curves, graphs and photograph re-
productions of the tested structures during various phases of loading

are the following: +the build-up of stresses during test, the point

 where inelastic deformation takes place, and the effect of varying the

stiffener spacing and other dimensional ratios.

Since the assumption is made throughout the report that the struc-

ture examined behaves elastically and does not buckle, the theory noted

and the procedures for analysis shown are valid for elastic behavior
only., However, in aircraft practice, since no main part of the struc-
ture is allowed to assume inelastic deformation under the loads ac-
tually imposed on it, the procedure shown in this report for single
and multi-cell thin-walled structures is acceptable. Some of these

procedures are in use by airframe manufacturers.



PART II
A SYNOPSIS OF ST, VENANT'S PRINCIPLE REGARDING THE TORSIONAL SHEARING
STRESSES IN THIN-WALLED CYLINDERS
In St, Venant's analysis of the torsion of solid prismatic bars
of non-circular cross-section, there can be found a stress function
0 such that %’E + a;wg =26 F and fu o along ths boundary. The
shearing stresses at any point in the bar are given by the derivatives
of P . T, = g—: ;o Tay = _g-:-:i. Also the volume bensath the sur-

face representing the stress function is equal to 1/2 the twisting

moment, | = Zf/:,DG/XO/j

FIGURE |



In Figure 1, let ABCDE be the cross-section of the surface repre-
senting the function ¢ for a hollow bar. Since the bar is hollow, the
surface BCD extending over the hollow portion can have noc physical sig-
nificance, because stresses here do not exist., Hence the surface BCD
must be replaced by a surface which has a slope of zero everywhere over
the hollow portion. Such a surface is represented by the plane BD
whose distance above the cross-section is H. The surface representing
the stress function ¢ is therefore ABDE. The same use can now be mads
of the stress function represented by the surface ABDE in solving the
problem of the torsional resistance of a hollow bar as was made of the
function ¢ for a solid bar,

The twisting moment T to which the hollow bar is subjected is equal
to twice the volume underneath the surface ABDE, and is therefore ap-
proximately

T = 2AH (1)
where A is approximately the inside area of the hollow section (or the
area within the mean perimeter) and H is the height of the plane BD
above the cross—section. It must be emphasized that the above formula
holds only for thin-walled sections.

The approximetion involves the assumption that the torsional shear-
ing stress is constant over the thickness of the wall, an assumption
which is common in dealing with the torsional resistance of thin-walled
gsectbions., The slope of the surface at any point is equal to the stress
in the bar in a direction perpendicular to the direction in which the
slope is taken, Hence, if the wall of the hollow bar is relatively thin,
the slope at any point along the arcs AB or DE may be taken, without

serious error, as H/t where % is the wall thickness. The shearing



stress in the bar is therefore

T = H/t

0o L.

But H = 5%
Therefore T = T (2)

2A%

In some applications of thin-walled members subjected to shearing
stresses, it is more convenient to use an expression for the shear flow
q instead of that for the torsional shearing stress 7 . By definition

]

T : X,
qg=Tt, Then g = i (2a)

It should be noted that the quantity H is egual to the shesar flow qo
The equation T = i%g‘may bs used in calculating the stresses in tub-
ular members under torsion prior to buckling if the thickness of the
wall is small, variations in thicknesses are not abrupt, and there are
no re-entrant corners., (Timoshenko, 1956, Pg. 248). Thess, then, are
the assumptions which are made when using equation (2) or (2a).

It is very difficult to apply the Soap~Film Analogy as an exper-
mental tool when concerned with thin-walled hollow sections. However,
one of the major benefits of the Socap-Film Analegy is as en aid in the
visuvalization of the comparative magnitude of the stresses in the sec-
tion. This can be understood from the fact that the shearing stresses
are proportional to the slope of the stretched membrane (analogous to
the stress function ¥ ). The Scap-Film Analogy will apply to hollow
bars if the opening representing the cross-section has the in&ide
boundary raised a distance H above the cutside boundary, as is shown
in Figuﬁe Lo

The eguation for the shear flow due to torsion in thin-walled sec-
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tions, q = %Kg cen be derived without the aid of St. Venant'!s principle

as follows:

FIGURE 2

The above figure represents a portion of the thin-walled tube shown in

Figure 1. O is any point; @ is the moment arm about O of the force dF,

and q is the constant shear flow (fg t)

dF = qds dT = 2qdA
dT = ©qds T:qudx.x
dA = 1/2 pds = 29A
- da - L ;.
dT = 2 ¢ 4 © q =50 (22)

where A is the area snclosed by the mean perimeter of the closed cross-
section, and f_ = T = ghearing stress.

That the shear flow g produced by pure torsion of a thin-walled
closed section is consbtant around the walls of the cross-section may be .
gshown with reference to Figure 3. Lebt any two longibudinal sections,
1-1" and 2-2', be taken in the general thin-walled member of Figure 3
subjected to torsion only. The length of section 1-1' equals the length
of section 2-2' equals L.

The sum of the forces in a longitudinal direction equals zero,



-

.

gL+ G2l = O
%1 = (%]
M =0
21d +gLd =0
|7/1= 12|
PR F
The shear flows are equal at points 1 and 2.
It may be noted that the shear flow g = fst may be obtained before

the shear stress is determined,

FIGURE 3
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PART ITI
SHEARING STRESSES IN HOLLOW THIN-WALLED BEAMS
DUE TO BENDING FROM A VERTICAL FORCE

The thin-walled hollow beam shown in Figure 4 will be considered.

FIGURE 4

The shearing force V parallel to the beam cross-section produces
a ghearing stress fs of varying intensity over the area of the cross-
gection, Since the shearing stresses on any two perpendicular planas
are equal, the shearing stresses on any horizontal plans through the
beam are equal to the vertical shearing stresses on the cross-section
at the point of intersection of the two planes. Then the magnituds
of the vertical shearing stresseskat any point on the crogs-section

will be obtained if the horizontal shearing stresses at the point are

8



computed.

Consider a portion of the beam between two vertical cross-sections,
held in equilibrium by the forces and moments shown in Figure 5. At
this point in the discussion, assume the line of action of V such as

to produce no torsion nor unsymmetrical bending on the beam shown. Also

~assums that the cross-section of the beam remains constant along its

length. The effects on the shearing stress of these restrictions will

be discussed at the end of this section.

M +Vea. M

FIGURE 5

The shearing forces V will be equal in magnitude and opposite in direc-
tion. The bending moment on the cross—section to the left will be M +

Va, where M is the bending moment on the right cross-section. Provideﬁ
the portion of the beam does nobt buckle or yield, the stress situation

will be as shown by Figure 6,

At a point a distance y from the neutral axis the beﬁding stress

will be %& on the right face and %X + E%X on the left face. In

order to obbtain the shearing stress at a distance y, above the neutral

- axis, the portion of the beawm above this point will be considered as a

free body as shown in Figure 6 (2), The resultant forcs on the cross-
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\ secbion on the left is greater than that on the right, For equilibrium
of horizontal forces, the forces produced by the shearing stresses fs on
the horizontal area of width b and length a must be equal to the dif-

ferences in the normal forces on the two cross-sections..

£, ey ke | —
- Neutral q?a; S _Z/ Xiﬂfj fsba
D (2)
(n
FIGURE 6
Qv/ Since only the differences in the forces need be consgidered, the

loading shown in Figure 6 (2) may be used in computing the shearing

stresses,
ZFH:O
[
o O~ I
S
[=
L% = Ii>,§ ﬂd% (3)
%
where the integral represents the static moment of the area of the

cross-section above Yy the point at which the shearing stress is de-
sired, and b is the sum of the wall thicknesses aléng a horizontal

plane at the distance Yy from the neutral axis. The shearing stress
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£ in formla (3) is in a vertical direction and the dimension b is in a
horizontal direction. Consider a point A on the left wall of a cross-
section of Figure 4 a distance y, above the neutral axis. Let the thick-
ness of the wall at point A in a horizontal direction be bA and the cor-
responding thi@kness of the right wall be bAqo fsbA is a shearing force
per inch of wall at point A and acts in a vertical direction., If ol is
the angle between the vertical direction and a tangent to the cross-
section boundary at point A, fébA cos o& will be a shearing force per
inch of wall which is tangent to the cross-section boundary. bA cos oL
is the radial thickness of the wall at point A and can be called tAo Then,
the shear flow at point A tangent to the cross-section boundary will be
given by the equations:

- Yo
q=ft, == ydA (3a)

s A ItA /, |

where y, is the point of zerc shear flow on the cross—-section above point
A, Since the shear flow at point A given by equation (3a) is tangent to
the cross—section boundary, it may be combined algebraically with a shear
flow at the same point due to torsion, if desired.

It was previously noted that in the above derivation of formula (3),
no torsion was introduced. If the vertical shearing force V is applied
at a point other than the shear center, there will be a torque T = Ve
applied to the section, where e is the moment arm from the shear center
to the vertical force V., An analogous situation dis that of a force V
and a couple T = Ve applied at the shear center. The effects of a torque
applied to thin-walled closed sections was discussed in a previous sec~
“t:\i.,‘on«n The beam shear due to a vertical force V at the shear center was

discussed in this section., By the method of superposition the shearing

stress fs or the shear flow q may be found,
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 The condition of unsymmetrical bending deserves further consideration.

The simple beam formula applies only to special cases of beam flexure.

- The resultant bending moment on the cross-section must act about one of

the principle axis of the area. The neutral axis will then be parallel
to the axis of the resultant bending moment. In the more general cases
of beam flexure, however, the resultant bending moment is not about one
of the principal axes; then the direction of the neutral axis cannot be

determined by inspection., One method of finding the beam shear, fs =
v
Ib
an angle other than 90° to the principle axis is to resolve the force V

’Jﬁ yd&, when the vertical force V is applied to the cross-section ab

into components perpendicular to the principle axes and proceed as out-
lined in this section with each component in turn. The principle of
guperposition can be used to obtain the beam shearing stress at any
point in the cross-section. If the cross-sections of the beam are not
constant along its lengbh, changes in the shearing stress from section
to section may occur, and the shearing stress given by formula (3) may
be considerably in error. For tapered beams, formula (3) may be used if
the value V is replaced by a quantity kV, k depending on the dimensions

of the taper. )



PART IV

TORSIONAL SHEARING STRESSES IN THIN-WALLED CIRCULAR CYLINDERS

According to St. Venant's principal for torsion of bars, the tor-
sional stress fs in a hollow tube is given approximately by the ex-
pression fg = 5%%= where T is the torsionsal moment on the section, A
is the area enclosed by the mean perimeter and t is the wall thickness

at the point where the stress is desired. For a circular thin-walled

tube as shown in Figure 7, A = TTr2

R S (<)
- T =
"%"ZWV% f 2T re

/4@ H

gt |

A F ™
bt |
FIGURE 7
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It may again be noted that the approximation involved in expression (4)
arises from the assumption that the stresses are constant over the thick-
ness of the wall (constant slope of membrane section AB). For ﬁall thick-
nesses very small as compared to the diameter of the tube (%.>’50)9 the
formula gives excellent results. In the use of formula (4), it is fur-
ther assumed that the tube, or cylinder, does not buckle and that the

wall thickness does not change abruptly around the cross-—section.
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PART V
SHEARING STRESSES IN A THIN-WALLED CIRCULAR TUBE DUE

TO BENDING FROM A VERTICAL FORCE

As gtated previcusly, a vertical shearing force parallel to the
beam cross~section produces a shearing stress of varying intensity over
the cross-section. This shearing stress is given by the expression

=4

The expression for shear flow g = fst will now be developed for

the beam of circular cross-section.

FIGURE 8

15



An spproximate value of the moment of inertia derived from the as-
sumpbtion that the enbire arss is concentrated at the distance R from the

)

center of the tube will be sufficiently accurate for finding the shear
flow or shsaring stress,
Cross-sectionsl arsa = 2T Rt

. o - 2
Polar moment of inertia = 2TTRLR

= 2T R3%

~

I, = 1,=F = TR’
The shear flow is zerc at the inberssction of the centerline with the
top and bottom portions of the cross-section (points A and B) due to
ymmetryo The integral of f ¥ §jah represents the moment of the
area between the upper cenber line and the point yq a8 shown in Figure
8 (3), where 1 is the distance Ar@m the neutral axis to the point where

the shear flow or shearing stress is desired,

o - R Cosgls 9" -.}4530//\
-~ R*t Sin Tfﬁaﬁ[? 1 Sina
% Sinec

In airframe snalysis, this expression is frequently used for determining
the shear flow in s circular fuselage. The longitudinal stiffening mem-
bers, although they ars concentrated areas, usually have approximetely
a uniform spacing around the circumfersnce, It is often sufficiently
accurate to assume these sreas distributed along the circumfersnce of

the fuselage when determining the shear flow.



The shearing stresses due to bending and due to torsion ars collinear
quantities, since each is tangent to the cross-section boundary. They may
be superimposed to give the following resulb:

‘pg = T b Y Sinec

2 TRt T TRt

The + sign is used with due respsct to the direction of the shearing
stresses.

When considering the torsion of thin-walled cylinders, it was as-
sumed that the stressed material scted elastically and did not buckle,
and that the wall thickness was comparatively small and did not very a-
bruptly. These assumptions are alse made regarding the present problem,
It is reasonable to assums that the shearing stress in thin-walled cyl-
indsrs due to torsion will be related to the applied torque Ey a con=
gtant, or by a well ordersd function, up to a certain point of stress, at
which the structure should be expscted to assume some of the character—
istics of instability. When a cylindsr is subjecbed to torsion, a point
of stress may be reached at which the structure buckles, characterized
by wrinkling of the walls. In an unstiffened cylinder, immediate col-
lapse takes place. Bubt i1f the cylinder is sbiffensd by rings and longi-
tudinal members, it will continue to carry considerably more lead by ten-
sion field beam action, and if plastic flow of maberial does not occour in
the structure as a whols, it will return to its original shaps, possibly
with no wrinkles visible to the eye. In fact, the type of thin-walled
oylinders which are common in aireraft construction will uswally fail ul-
timately by the instability of one of the stiffening m@mberép and not‘&y
the instability of the shell. The point at which ultimate failure takes

place in a thin-walled cylinder which is stiffened by rings, frames or
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bulkheads, and by longitudinal members is, of cbur369 of concern, It
would be difficult to obtain a set of analytical expressions for the
stresses in the shell and stiffeners of thin-walled cylinders which were
applicable to all designs. Therefore, structural testing has of'ten besen
depended upon to furnish design information and guidance for enginsers.
Publications of research and testing programs on this subject dating back
twenty-five years and conducted under the auspices of the National Advisory
Committee for Aeronautics, Washington, D, CQQ are readily available., In-
dications ars that earlier U, S. publications and translations of Euro-
pean papers can also bs obtainasd., Most research and testing programs re-
garding this subject have for their main purpose the examination of the
process at ultimate failure, and from the testing of a large number of
different structural configurations, to better aid the judgement of the
engiheer in the design of the product. In the reports of these tests are
found formulas for the torque and stresses in the shell and stiffeners at
failure, Such formulas may relate the.D/t ratio (diameter of the cylinder
to the thickness of the shell) and the spacing of stiffeners and bulkheads
with the applied torque at failure., Nearly all reports of tesbs on thin-
walled tubes show, by curves and graphs, various functions of the stressed
structure with respect to the applied torque. A& particularly informetive
report for a person firgt studying the subject of thin-walled cylinders
under torsion is "Torsion Tests of Aluminum Alloy Stiffened Circular Cyl-
inders,"™ by J, W, Clark and R. L. Moore, NACA TN 2821, available from the

National Advisory Committee for Aeronautics, Washingbon, D. C.
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PART VI

TORSIONAL SHEARING STRESSES IN THIN-WALLED ELLIPTICAL CYLINDERS

According to St. Venant's principle for torsion of bars, the tor-
sional stress fs in a hollow tube is given approximately by the ex-

rression

where T is the torsional moment on the section, A is the arsa enclosed
by the mean perimeter, and t is the wall thicknsss at any point where
the stress is desired. For an elliptical thin-walled tube, A = Tbh
where b is the semi-major axis and h is the semi-mincor axis of the mean
perimeter of the elliptical cross-ssction. Therefore

s = S ©

Prior to wrinkling of the shsll, the conditions of stress within the

walls of the cylinder will be given by equation (6) in accordance with

the membrane analogy for torsion. After the first ﬁrinkling of the shell

has occurred, the stress in the shell probably will vary with the degree

of buckling, In the formulation of equation (6), then, the assumpbions

are made that the cylinder does not assume any inelastic deformation, and

that the wall thickness is c&mparatively small and does not change abruptly,
It has been concluded from torsion tests of a large number of thin

aluminum cylinders of elliptical cross—section that the shearing stresses

at ultimate torque are the same as those for thg ecircumscribed cif@ular

cylinder of the same sheet thickness and length; (Lundquist, 1935),

19



PART VII
SHEARING STRESSES IN A THIN-WALLED ELLIPTICAL

CYLINDER DUE TO BENDING FROM A VERTICAL FORCE

As stated previously, a vertical shearing force parallel to the bean
cross—section produces a shearing stress of varying intensity over the
cross—section. This shearing stress is given by the following sxpres-

sion, provided no torsion or unsymmetrical bending exists:
) .

ydA

H
This formula was previously developed for a gensral section. In the

fs =1
development of the above formula, the difference in bending moments on
two adjacent sections of the structure was used. It may be seen that

the ratio of the bending stress to the shearing stress may vary along

the span for a given loading and cross—section, and that ths ultimate
strength of the structure may depend on this ratic, Data from a largs
number of tests of thin-walled elliptical cylinders under combined trans-
verse shear and bending in the plane of the major axis has been recorded
(Lundquist, 1935). It has been concluded that at small values of fb/fv
(the bending stress at the extreme fibre divided by the bsam shearing
stress at the neutral axis) failure cccurred in shear, and as fb/i"v
approached zero (a condition of pure transverse shear), the shearing
stress at a neutral axig abt failure, as calculated by the ordinary beam
theory, was approximately 1,25 times the shearing stress at failure in

torsion. At large values of fb/fv o the failure occurred in bending. At
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intermediate values of fb/fv9 there was a transition from shear to ben-
ding failure, It can be understood that the efficiency of a thin-walled
cylinder, in regards to its 1®adw@arryiﬂg capacity versus weight;can be
raised considerably by the addition of stiffening members, such as frames,
rings, and longitudinal members., In view of the purpose of this report,
it is considered necessary that an examination be made of the shearing
stress or shear flow distributicn in a thin-walled stiffened cylinder
under the action of a vertical shearing force.

The analysis of a thin-walled unstiffened cylinder undsr purs tor-
sion has previously been discussed. The addition of longitudinal stif-
feners does not affect this analysis other than possibly adding shear
area, provided the magnitude of the shearing stresses in the shell is
not such as to cause it to buckle. After buckling of the shell, a prop-
erly stiffened cylinder will contiaue to carry load by a series of in-
teresting actions, using the combination of shell and stiffeners to a
great advantage, The mechanism is known as "tension field beam action "j
it is not discussed in this report but is reserved for future study by
the author,

The effect on the shesr analysis of the addition of longitudinal
stiffeners to a thin-walled cross-section under the action of a load
parallel to the cross-sectlon deserves consideration. Figure 9 is a
sketch of a portion of a constant cross-ssection box beam of length d
with two longitudinal stiffensrs, AB and DE, attached to a thin metal
shell, The difference in the axial load in the longitudinal members
(called stringers) between the two cross-sections can be found by writing
the equation for moments about point B, using arm d with the assumption

that the curved shell and web resist no moment
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= v
AP \/h

For future convenience, let d squal 1 inch,

An examination of Figure 9 will disclose that these forces AP must

be balanced by the shear flows shown (shear flow q = fst)°

FIGURE 9
By summing forces in the horizonbal direction,
%/ = _/_&P-—f.
From the membrane analogy for torsion, previously discussed, -

Z= s = Y

ZA ZA
._._\_/,-—-y__C__
7/ h ZA

gy qlg,h)c and V are noted on the figure and A is the arsa enclosed by

the mean perimeter of the cross—ssction.

These results may be visualized by replacing the loading situation

shown with a vertical force V applied at A and a torsional couple applied



to the cross—section. If the curved portion of the shell and the ver-

tical web ABED resist no moment, the contribution of V to the shear flow

dq will be % and that of the torsional moment will be gﬁ acting in the

opposite direction. The shear flow g in the curved portion of the shell
v
will, of course, be Eﬁ,
The shear analysis of a thin-walled box beam incorporating many
gtringers can be made in a similar manner by taking advantage of the re-
lationship between the differences in load AP in each stringer and the

shear flows q in the adjacent shell sections., Reference is mede to Figure

10,

FIGURE 10 -

From a summation of longitudinal loads on various stringers, the shear
flows may all be expressed in terms of one unknown shear flow Qe This
shear flow may then be obtained by equating the moments of the shear flows

to the external torsional moment about a longitudinal axis.

- With reference to Figure 10, it can be observed that:

7= ;o ""'AP!



| s

N

24

Fo = For AR +AP;

dn=Fo + .§AF’n
where %? AR, represents the summation of all stringer loads AP bgtween
the portion of the shell on which q, acts and any point of desired shear
flow. After expressing all the shear flpws in terms of ‘the unknown s
the value of q, may be found from torsiqnal moméhts on the cross»sectiono
Peery (1950) has given an excellent example illustrating the simplicity
of this method and affording a visualization of the shearing stress dis-
tribution of single cell, multi-stringer thin-walled sections.

It has been noted that all of the previous discussicns of the shear
analysis of thin-walled cylinders with longitudinal stiffeners is valid
provided the shell does not buckle, or undergo any inglastic deformation,
Upon buckling of the shell, the structure transfers fﬁrther load by a
degree of tension field beam action. This subject is not discussed in

this report,



PART VIII

SHEARING STRESSES IN TAPERED BEAMS

In the pre@eding discussions of the shear analysis of thin-walled
beams, it has been stipulated that the cross-sections of the beam remain
constant. Often, all of the material of such a beam can not be fully
ubilized., For example, the material near the frese end of a cantilever
beam subjected to bending loads may be lightly stressed, whereas the ma-
terial near the fixed end may be comparatively highly stressed. Increased
of ficisency, with regard to strength-weight ratio, can be obtained by de-
signing the beam so as to cause the bending stresses to be nearly constant
along its length. Such a design may result in a tapered beam. The wing
of an airplane is an example. Although no appreciable error in the ben-
ding stresses is inbroduced by using the flexure formula for the tapered
beams usuvally found in aireraft practice, considerable error may be in-
troduced in the shear stresses of such a beam by using the beam shear for-
mula, fs = %gvgiydAo Another approach must be used for the determination
of the shear stresses in tapered beams,

.The tapered beam shown in Figure 11 consists of two concentrated
flange areas joined by a vertical web which is assumed to resist no ben~
dingo The bending loads are assumed to be resisted by axial forces in
thelflangesn The flanges are straight and are inclinediat‘angles Uy and
U, to the horizontal. The resultant axial load in the flanges must be in

the direction of the flanges and must have horizontal components P = V:'Qo

h

25
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The vertical components.of the loads in the flanges P tan Uy and P tan

u, which are shown in Figure 11 (2) resist some of the external shear V.

_ b 1
~ i
) a w
Y, N~ Ptan Uy
- M""”! =
" n"&-‘-_“ ' Q
20 \,j '( % E
(TTRp—— {
F«”s‘z_‘-m&umm% — _‘!‘iﬁ ?‘1’..— —L
AV FPtan U-Z'T
r Y ‘
’ (2)

FIGURE 11

Designating this shearing force resisted by the flanges ag Vf and that

resisted by the webs as Voo the following equations applys
N\ = \4 e Ny

= P{tao G tae o
% FLLQH Wt tan Ug )

. - N . — \
toan M, = =L 2 tan U-= Tz
- s b <
. b+ N
ta I u‘ - '{*_‘; ar ‘J—/ = _.v.a._:-;._.‘.m&“ =
1= N N
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Equation (7) will apply for a beam with any system of vertical loads.

. b
Since P=V Ve = VE (8)

o
=

5o

From the geometry of Figure 11,

\“j-'u = \/ - \’{F
o\ s
=\ - —f,
Vi =V %” (1)

Equations (8) and (9) may be expressed in terms of h  and h by making
h

&
e

, !
use of the proportion s h

If a tapered beam has two equal flanges of area A and a depth betwsen
flanges of h, the beam shear formula may be used to cbtain the shear

flow by substituting Vw for V as follows,

A similar method may be used to find the shear flow in a tapered beam
with several flange areas, if the areas of the flanges remain constant
along the span., The following example will demonstrate a method of
computing stringer loads and shear flow for a tapered box beam with

gseveral flanges whose area remains constant along the span.
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QJ“ It is desired to find the stringer loads and shear flows for the

tapered box beam shown in Figure 12,

he D Sa l e = ;
e .‘”’ : o ’ f i i
" ¢”[::“ yc NI NE
1@7 ]“M"Tﬁi‘gﬂ'_"“'ﬂ\' ? ‘%___::‘SAES_.M__‘Q;R?‘ N J
ot 2| Eq.{:;ou lps. Lo A
4000 s, ’
SELINEN 2 ob
FIGURE 12
Area of stringers i Angle Functions
(L Ay = Ay, =2 sq. in, % tan u; = .05
A = ABQ = Ay = AG“ = 1 89, in. tan Uy = 005

At section A=A,
h =10 in,
I=2{2+1+1)5 =200 (in. )%

It is assumed that the moment of inertia of the stringer areas about

their own bending axis is negligible,

- My . 200,000 x5 4 2
fp= 7 500 5,000 1bs./in.
PA = Horizontal component of load in stringer A and Af,
H

P, = 5000 x 2 = 10,000 1bs,

“H

P, =P, = 5000 x 1 = 5000 lbs,

By Oy |

P, = Vertical component of load in stringers A and A',

P, =P tan u
- AV AH

= 10,000 x .05 = 500 lbs,

1



PB = PC = 5000 x .05 = 250 1bs.
- v »
£ Vertical shearing load resisted by all flanges

<
1

\Y

2P +2P, +22P
f AV BV Cy

1000 + 500 + 500

il

= 2000 lbs.
Vw = Vertical shearing load resisted by both webs, A-A' and C~C',
V., = 4000 - 2000
= 2000 1bs,

These loads are shown in the following sketch.

T i

& K /@/ ‘9'6//3

FIGURE 13

To obtain the shear flows in the webs, it is convenient to consider a
portion of the beam between parallel cross-sections 1 inch apart, as
discussed in Part VI, and illustrated by Figure l4.

The change in bending stress on a stringer between two cross-sections

one inch apart is N
2g- Yt

= 2000 x 5
2 OO0

= S0 lbs per Sg- Ih.

29
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The change in axial load on a stringer of area Af is congidered to bes

APA = 50 x2 = |00 Ibs.

Afg = AR=50x 1= 50 Jbs.

FIGURE 14
The ervor involved in the use of equation (12) is considered ne-
gligible for the usual tapered beams found in aircraft practice. The

_ ; . . AP
true value of the axial lead in a stringer is ===,

cos u
If the assumpbion is made that the web BC is cut, a, = 0, and the
relative shear flows dupes dppe 20d Qpgo can be determined by the pro-

cedure discussed in PART VII of thig report. The relative shear flows

ares
_ Appt = 150 1lbs. per in.
4 g = 50 lbs. per in.
degr = =50 1lbs., per in.

Qg = O 1bs. per in.

Agape= 50 1bse per in,



N The minus sign denotes a counter-clockwise shear flow.
The shear flow A must now be found and the relative values IVRE
Apps dgopes and Aage corrected. q, may be found by taking moments aboutb

eny spanwise axis, such as one through point 0, Figure 15 (1),

i IOI N 107
4 b2 jbs
S0 ’?‘ea == * sl r
' o 2506 > B
ol | I
Fi A 30
50 2] M
150, 304 |0
4000 &2
) 5o
0 g » °- -
s 5 1 le2 Y o502 30 30
HOO6 |2 Z250
() (2)
~ ' FIGIRE 15

The sum of moments of external forces plus the sum of moments of in-
ternal forces equal Zero,
~(4000 x 2) = (2 x 250 x 10) = {2 x 250 x 20) - {50 x 10 x 20)
+ (50 x 10 x 10) + [ (20 x 10) + (10 x 20) | q_ =0
- - 0
9, = 30 1lbs. per in. in a clockwise direction as shown in Figure 15 (2).

The resultant shear flows are as follows:

Qppe = 150 + 30 = 180 lbs. per in,
Qg = 50 + 30 = 80 lbs. per in.
dpp = 9, = 30 1bs. per in.

Qpge = <50 + 30 = <20 lbs, per in.

Agigs = 4, = 30 lbs. per in.

-

dgugs = 50 + 30 = 80 1lbs. per in.
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The resultant shear flows and stfinger shear loads are shown in Figure 16,

N Le? 1250’*”"'
507/1:7/“ 30 & ~
|
b
4000 == s
_8c%n 30
? .
| b pe L2
159”45 PE
2
FIGURE 16

Tne analysis of this type of structure is especially suited to a
tabular form. Before proceding with the solubtion of this problem
ubtilizing a tabular form, a few remarks regarding aircraft practice in
the stress analysis of wings may be in order. An airplane wing usually

has many stringers, and is tapered in both depth and width. Each ghtring-

er may have a different angle with both the horizontal and vertical.

A solution for both the horizontal and vertical componerts of all string-
er loads would usually require more work than would he justified., An
approximate method of obtaining the torsionsl moment of the horizontal
and vertical components of the stringer forces is ﬁsually sufficiently
accurate, One approximste method consists of taking torsional moments
about, some point in the cross-section about which the stringer forces
produce no appreciable-torsional moment and of omitting thé s@ring@r‘form
ces in the moment equation., & torsional axis joining the centroids of the

cross-gection may be satisfactory.

In the forsgoing problem, the resultant of the vertical forces in
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the stringers is 7.5 inches from the 1eft web, or through the centroid
of the areas. Point 0’ shown in Figure 17 will be used as the center of
moments, The torsional moment of the external shear about 0' is then
4,000 x 5.5 = 22,000 inch-pounds. Siﬂce the vertical componsnts of the
stringer forces are neglected, only ths shearing forces carried by the

webs will be assumed acting, From equation (10)

Vo, Y
Vi = v e AP = Sud— Ag
‘V} .
= 4 5 = ZE000 ‘
4,000 v 5A
Vi, = 2,000 ihs = SOAi

where Af is the arsa of the flange., These values of A P are tabulated
in column {2) of Table I. The negative sign indicates compression. The
relative shear flows, Appo eto,, denoted as g and shown in columa (3)
are obtained by a summation of AP in column (2)., The terms in column
(4) represent twice the areas enclosed by the correspending webs and
the lines joining the extremeties of the webs and the center of momsnts,
as shown in Figure 17. The moments of the shear flows in the webs are
obtained in columns (5) as the product of the terms in columns (3) and
(4)e The total moment of the shear flowsg! is 10,000 inch-pounds and
is obtained as ths sum of the terms in column (4)., The sum of the mo-
ments of the external forces plus the sum of the moments of the internal
forees equals zero.

22,000 = 10,000 = 400 g, = 0

q, = 30 1bs. per in.
The final shear flows are tabulated in column (6) and are the result of

algebraic addition of q, and g’,
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AN EXAMPLE OF A TABULAR FORM FCR SHEAR FLOW ANALYSIS COMPUTATIONS

FLANGE AP g'= 5 AP 2 A ZAG’ F=got2’ |
(n (2) €)) () (5) (&)
< 50 -5o 125 -6,250 - 20
/
c +50 5 =5 = 55
/ +50
B +50 50 Z2,500 8o
! 100
A T +|5C 75 ih2so Yo
-100
= ! + 50 50 2,500 o
B -[{00
o) 50 (@) 30
400 =) -
‘ 2.5 " "‘i
go b5 i s
A n. B 30 . c
2A= 50 (inf/ 24A=50 (n)?
=75 2a= 125 (n)°
2A= 75 (In) = . o 155/,
180 ", /
- S za= 50 unS\ 2a=50(n)
A/ C’

——— s
8o Ibéﬁh‘

V= 2,000 k2

FIGURE 177

T = <000 x5.5=22060 in-lbs
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PART IX

AN EXAMPLE PROBLEM OF A THIN-WALLED MULTI-CELL STRUCTURE

PART I through PART VIII of this report have been concerned with
single cell structures. The shear analysis of multi-cell structures
can follow the same methods as those used for the single cell.  The
assumptions used in the formulation of equations for the shear flow de-
termination of the single cell will apply to multi-cell structures.
When concerned with the torsional deformation of mulbi-cell structures,
the additional assumption is made that the transverse stiffeners are
sufficiently rigid so that all cells rotate bhrough the sams angle.
Transverse stiffening members may be called bulkheads if they are solid,
or almost so, or they may be called frames if they are the open, ring
type.

The multi-cell structure shown in Figure 18 is a canbilever beam
of three cells stiffened in a transverse direction by equaily spaced
bulkheads which are assumed ﬁd be rigid and to remain undistorted under
load. These bulkheads act as the loading points for point'loads of 1,000
pounds each applied in a single line in the plane of one of the webs as
shown in Figure 19, The sheet metal shell and longitudinal "T" and angle
stiffeners are of the same material. Cell 1 is enclosed by a semi-ellip-
tical section, cell 2 by a rectangular section and cell 3 by a semi-cir-
cular section. It is required to find the shear flow at section A~A.of

the three cell structure shown in Figure 18,

35
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Preliminary data
Section properties
W0 geetion: 1 1/4 x 1 1/2 x 1/8

I, = 0.3 (1n.)%  Area = .37 (in.)?

N
Angle section: 2 1/2 x 2 1/2 x'1/8
~ 79 5 o 2

I, = 037 (in.) Area = .62 (in.)

NA
Moment of inertia of the cross-section:
Assume that the shell and wsbs resist no bending stress.
Neglect the moment of insrtis of the "I'" and angle sections

about their own bending axis.

I

it

2 x (18)2 X Area of "T® + 4 x (18)2 x Area of angle

1040 (ino>4

i

Area enclosed by the periphery of cell 1, cell 2, and cell 3

A =1/2T x 30 x 18 Ay =80 x 3 Ay = 1/2T (18)%
= 850 (in.)? = 2880 (in.)? = 510 (in,)>
A
lbs lbs s s
1,000 1,000 = LODD yjoo!o = 1,000
/

\‘.’,
f
|
BuLkHEAD l

i
} rfﬁgﬂg
|
|
|

FIGURE 18
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Lengths of curved portions of the cross—section:

Length A'FA = 1/2 x 4 x 30 x 1,395

i

83075 in.

Length CGC*Y = 181

it

56,6 ine

e LINE OF AZPLICATION OF ALl LOADS

SEMI-ELLIPTI AL . ) ,
51:'_(; "O'\i"‘";\ ) A\N B r’t—‘ofc
- LAy o e} _ , !
_/k(“,.-" M &E‘,ZX ZLLX’IE /_\‘-ngl(;jl{ilzx l'i)("g' Tee \
4 ; £= 0% ey 3
= cELL ! CFLL 2 &,
~‘t=005” v\__t=,oé,” B/ m
e -
A . Eeedn c’
o |
» 300 ) l 40// "’1‘-_1 l‘“]z 4_0/, ._;

SECTION A-A

FIGURE 19

Shear flows q' from bending only are computed as follows:
It is assumed thatbs
1. The shear flows at points M, N, and P are equal to zero.
2. The shell and webs resist no bending moment.
3. The introduction of any torsion will not affect the axial load
in the stringers.,

AM :MZ"N\g = 4000 x 36
= |44 000

A gl A,
f, - = amy

2 93 1
= |d4000 X1&
[ O <

= 2sno  in-lks
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~ AFy = 2500 x.b2 = 1550 |bs

4 = 2500 x.37 = 925 Jes.

FEFERENCE. 1S MADE To FIGURE Zo.
- |
= - -
gA'FA © ' gﬁr,;@' =
o' ) L GRS TIETO .. by
dAP\ = O ‘/‘,..,./ - “"‘_“;’;Z‘—""— - éf.? 0.
! i 55 . bs 4 9",’5 - gon o /;(:‘iﬁ
R LR o = - 2 - 2ET Y,
LN LB Bt G
P : TES o 185/ oy -
= gl @ 2507 g g o
Fe: Jue'

FIGURE 20

Since the shear flows at points M, N, and P were assumed equal to
zero, the shear flows computed above are relative ones and must be cor-
rected. Regardless of the existence of torsion on the cross-section,
the moments of the internal shear flows plus the moments of the ex-
ternal forces about any point would be equal to zero. If the external

loads cause no torsion on the cross-section, the angles of twist in each



cell would also be zero. The values of three constant shear flows - one
in each cell - could then be determined and added algebraically to the
shear flows q' from bending to arrive at the true shear flows in the
cross-section,

Since the cross-section of the structure considered here does have
a torsional moment applied to it, there will be a twist, or torsicnal
deformation, of each cell., If the assumption is made that the angles of
twist in the three cells are equal, a constant sheaer flow for each cell
can be found which is compatible with this assumption. This unknown sheaxr
flow for each cell will be composed of the shear flow from torsion alone
and the correction to the shear flow from bending.

Introduction of the shear flows from torsion and correction to the shear
flows from bending follow,
Tt is‘aSSUmed that:

1. The angles of twist for each cell 619 929 and GB” are equal.

2. The shell and web material act elastically and do not buckle.

3. The modulus of rigidity, G, is constant for the material of the

structure.

Since the following analysis mekes use of the equation for the angular
deformation 8, it is desirable to discuss its derivation.

Much of the classical theory of statically indeterminate structures
has been developed for the analysis of comparatively heavy structures in
which shearing deformations are of minor importance and can usually be
neglected. In the analysis of thin metal shell structures, the shear
stress distfibution is usually of major importance. The deflections caused

by shearing deformations may be determined by energy methods, such as that
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of virtual work, in the same manner that other types of deflections are
found, Perhaps one of the more simple approaches would be to consider
the shearing deformation of a rectangular plate of thickness %, width a,

and length b as shown in Figure 21, The shearing strain is obtained from

the relation

g

where fs is the shearing stress and q is the shear flow fste The strain
energy of shearing deformation is

G- Bteb o

Lo

: o
= /-
ué?_- o b &

“zte U4

\‘
P
5

FIGURE 21

A unit virtual load applied at the point of desired deflection & produces
a system of shear flows q, in the webs, The force (q,2) acts through the

displacement ¥b. By the principle of conservation of energy, the external

work must be equal to the internal work accomplished on the structure.

]

NS =2 g,yab
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The summation symbol is used to include all webs of the structure which
affect the deflection., It may be noted that a, represents the shear flows
due to the virtual load and q represents the actual shear flows which pro-
duce the deformation of the structure, Equation (15) applies only to elas-
tic deformations which satisfy equation (13).

By reference to Figure 22, an expression can be obtained for the an-
gular deformation of the box beam by applying a unit virtual couple T.
The resulting virtual flows are 9 = %K where A is the area enclosed by
the shell., If the webs have dimensions a = & s and b = L, the angle of

twist may be found by substituting these values into equation (15) to

obtain
=2
o=} Jeeos (1)

where the summation includes all webs of the structure.

FIGURE 22

Equation (16) may be used for the angular deformation of a multi-cell



s

~.

gtructure, if the summation is evaluated around any closed path and the
area A 1s enclosed by this path. Thus, for a three cell structure, the
summation may be evaluated around the perimeter of any one cell, or of
two cells, or around the perimeter of the three cells. The procedure is
sometimes defined as a line integral as follows:

o = (7{5?‘4— ds (16a)
where the integral represent an evaluation along a closed path, returning
to the starting point. This expression is used in the present problem,
considering the values of the summation positivé in the clockwise di-
rection. As used in this part of the problem; g is the shear flow which
must be added to the relative flexural shear flows, q', to make the an-
gular deformation of each cell the same; L is the length of the member
between cross-—sections considered, and is equal to 36 in. for all cells;
A is the area enclosed by the periphery of a cell; t is the thickness
of the walls of the cell; G is the modulus of rigidity of the shell, web,
and stiffener materials; and ds is an elemental distance along a cell
periphery. The integral is to be evaluated around a cell periphery. ©
is the total angle of twist of a cell.

Let 919 929 and 93 be the angles of twist for cells 1, 2, and 3, res-

pactivelyo

z d P— (} e T F g
(E‘ 2 ©z 2eAs )T ds ©3= 2ehy ) T de

Since %G is constant, a simplification of computabtions will be obtained

if this quantity is incorporated into the symbol for angle of twist for

each cell, The integral j{%?a@ for cell 1 can be thought of as being
i

composed of two parts: an evaluation around the path A'FA and an eval=

uation along AAY as follows:
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QFA C?/‘S -+ ﬁAA j- C/g

t,\ A JAFA AN
Upps is the resultant of the superposition of the shear flow in cell 1 and
that in cell 2, Let a3 designate the shear flow in cell 1 and g, the shear
flow in cell 2.

Thens Appe = 97 =~ 9y and for cell 1,

R + #& [ o
[_{?C/ TAFA A‘Fﬁ\&‘/5 :E:m—wLA'&s

These expressions are substitubed into the equation for Q,/ and the effect

on @,/ of the flexural shear flows added,
- 3 Z% =
““'g[”’ 373 + L2 30] -5k 2 sc

o'
e = 3799 @ T el 3o.4

©, =5 23,5 ds ﬁz—f‘-’- L oE “Zz‘ e/ fe=i: c/S:f
: A'A

= +
a Az t Ac ot Zee’ C.q U tAA

tpe Jpe Cee' Jeor (Y

j?@lf;[a/s - _{Z_,__ s -+ iﬁﬁ . ge T+ f [ j
P I AA'

[%2 0.0 +?273\34 +5f= F0.0 +?z 5‘7 ;:

Z?EO o

+2580 iz Fo.o +;2 Z':_% + Z‘“ 500 -+ ?,im 547

e, = —~.208 g, + 2,018 Gg — HTIFs — 3. 47
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& = L~=£§:‘;g>j:? +6.0F 7, 4+ 1L/ | ©)
The summation of the torsional moments of the internal shear flows and
external loads must be equal to zero for equilibrium. Torsional moments

-

N will be computed with respect to stringer A, The external loads will
then have a moment of zero with respect to this point. To aid in the
visualization of this procedure, Figure 23 is shown with the relative
flexural shear flows and dys Qoo and 93 shown thereon.,

b EXTERNAL LOADS
B 5 getois ,
gA'FA ‘\43 *"?l r
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FIGURE 23
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700 %,~% 5960 g, + 1020 gy — 239,200 =0

The simultaneous solution of (a), (b), (c), and (d) yields:

qp = +20.7 1bs./in. Gy = 345 1bs./in. Ay = -.08 1bs./in.

The superposition of Qs 9os and ag on the relative flexural shear

flows, q', yieldsthe required shear flows at the section under considera-

tion. The result is shown in Figure 24.

ERTERNAL LOMDS

35 c
6.8
29| ©B
16
o =25t
FIGURE 24

The final shear flows, shown in Figure 24, can be checked by use of

the three equations of equilibrium, i.e., TZFH = 0, 'zfﬁ.z 0, and =M = 0,
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PART X
AN EXAMPLE PROBLEM ILLUSTRATING A PROCEDURE

FOR THE SHEAR ANALYSIS OF AN AIRPLANE WING

The following problem is included in this report to illustrate one
method of determining the shearing stresses or shear flows in a thin-
walled multi-cell structure of complicated shape subjected to beﬁding
and torsgional loads. The structure selected is the wing of an actual
airplane., It is desired to find the shear flows at station Xpg 237 of
the wing shown in Figure 25. The method Qf shear analysis used has been
adapted from those methods described by Peery (1950) and Bruhn (1949).

By reference to Figure 25, it can be seen that the wing section is
a three-cell "torque box" which is redundant to the second degree. Since
the shear flows in the three cells must be determined, three equations
relating the shear flows must be found. Following the method of Peery
(1950) and Bruhn (1949) and others, the assumption is made that the ﬁing

ribs have sufficient rigidity so that the three cells rotate through the

same angle under torsional loads. Three equations in four unknowns may

then be written containing the three unknown shéar flows for the three
cells. The fourth equation necessary for a solution may be written as
the sum of the external torsional moments plus the sum of the internal

torsional moment. set equal %o zero.

46
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The method of solution of the problem will be illustrated by first
writing the three equations for the unknown shear flows in the three
cells, Reference is made to Figure 25 for structure géometry and to PART

IX for theory and assumptions governing the use of the angular deforma-

“tion equationss

bo

6, = Z;ZA&aG This equation may be
. . N &s
written as: o, = 45 2% (11)
where the subscript 1 refers to the first cell, q, is the shear flow, A1

is the area enclosed by the perimeter of the first cell, G is the modulus
of rigidity of the shell material, t is the thickness of the shell, &3

is the distance along the shell periphery between stringers, and L is the
length of the structure between two cross-sections. For convenience, use
the symbol £ to replace A3, and since only relative magnitudes of 919 @2

and ©, need be considered, let L equal 1 unit of linear measurement.

3
Equation (17) then becomes:

)
o, = :,;'j’;’“ S(5)

In 1like manner, _ 2 §m<é3
Fu= 25,6 & F

L
and Gy = ‘Z“{iv; ?(Z,)

Q15 dps and d3 in the above equations are the constant shear flows for
each cell which must be added to the relative flexural shear flows, q';
(to be determined later) in order to make the angular deformatibns Qf
each cell equal.

In Figure 25, it will be noticed that the webs of the structure are
assumed cut at points A, H; and K in accordance with the procedure for

determining the shear flows in a closed thin-walled structure. The rel-
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ative flexural shear flows q' from wing bending will not appear in the
webs assumed to be cut. The shear flows Gps oo and dg will appear in
all structure webs of their respective cells. In dealing with a wing or
other thin-walled, multi-stringer structure, the word bt may be used
to denote the metal shell between any two stringers.:

The equations for 919 929 and 93 may be written

2N, B, @ 52(%3 "”jz("é)s; ¢
PP s (< 4 £ 09
Py, D, %?(g) + 72 2(%) ‘i/(‘&)gg = 5‘3(?’:);:5 19
L] s > //"‘ﬂ" 2 > :é‘ / l«‘-.

5A3&6j=%ftc)% jfé(d/ﬂi;/)m &)

Assume that G is constant for the material in all cells. Equating (18)

and (19) results in the following

254y 9.4 a Ay N A S I
SUD - B R, 2T v EF., = A3 w

Fquating (18) and (20) results in the following:

;/

5 4 4 L Tedy S B s Ly
% ?)"g%(ﬁéﬁf”%élthv Z,?(ﬁ/ ,AQQJ

@’Emﬁ

S 'y
{d o J

)‘ I

Y]

A third equation is obtained by the summation of torsional moments on the

section.
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Tegr T 2 2ag" +22A2" + ZAG + B2Azg, +Z2A;9, =0

2

where TEXT is the torsional moment on the section due to external loads.
A simplification of the above equation will result by letting twice the
areas applicable to the computations of q' be designated by the symbol

m., This facilitates tabular computations invelving the shear flow g°

from wing bending., The squation then becomes

Ter T 2mnp o zag 249, t2hs g7, =0 (23)

By rearranging and combining terms in equations (21), (22) and (23),

a more suitable form is obtained,

(“ ..{. _L,. L ’1)‘ Y 1‘ . ha - . X “
N~ EA éf( T A, (E) IZ:“"E}A‘ZZZ(“?‘\ }: ({';)&8'2: +[:J/:z{%)F"Ef Z‘f = ﬁmz‘d@/(é’\ (‘EK@:)
6& =~ ™~ o ) .,“1 P

A "‘?];’ J.A;(/ C~ /ITC% f_?’j'g “!,"i)z%_'\%)u//” = }‘I\"q%j’\/{i) y‘f/f;’g}
[ealg ~[eadl gy~ [o4slpe = Srg’ + Ter

These =guotions are of the form:
Ag - By ok Cgy =i (21 le)
Dg = Egz = Fgy = M (22b)
N&Z,“ﬁgz wkgngw @3@

/
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Having the form of the necessary equations for the shear analysis
and the algebraic values of the constants, attention is turned to the
wing section to determine its properties., Figure 26 will aid in the
understanding of symbols used in the tabular computations for numerical
values of constants and shéar flows, The tabular forms which follow
represent a method for the orderly computation and methodical checking

of numerical values,

. m»<‘l
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3 ’ cegﬁf Yaxis
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T’ € Y AXIS
|
[ i
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FIGURE 206
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In TABLE IT are found the computations for the wing section proper-

ties at station XRS 273, This station location can be observed in Fig-
ure 25° The cross-section at this station consists of 4 spar caps and
41 stringers of the type shown in Figure 27. The large longitudinal
beams éxtending from top to .bottom of the cross-section are called spars,
and the beam flanges are called spar caps. Computations have been shown
fér four stringers to illustra@e the procedure used. In this example,
the numbers 1 to 4 were arbitrarily assigned to the first four stringm
ers toward the top of the section immediately aft of a vertical line
through the C, G, of the section, These stringers are in cell 3., TFrom
an examination of Figure 24, and the data in TABLE II, it can be ob-
served that the Y distances are measured with respect to the rear spar
centerline E-D and the 7 distances with reépect to the wing reference
plane, which is also the Y axis. Thus, using the rear spar and the wing
reference plane as datum planes, the section properties are determined.
The sign convention used is as follows:

Y~distances are negative when measured fbrward (toward the leading
edge of the wing), Z-distances are negative when measured downward (to-
ward the lower wing shell),

It may be noted in TABLE II that the area of part of the shell is
included with the area of a stringer in the determination of the section
properties. This has not been done in previous examples because of the
assumpbion, which was then made, that no part of the shell resisted any
bending moment. This assumption results in a simplification of computa-
tions for shear flows and the stringer loads and may often be justified,
particularly in preliminary design or rough checking of a design. A

more accurate analysis will show that the stringers of a thin-walled
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TABLE 1II

WING SECTION PROPERTIES -

STA. Spq R73
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structure subjected to bénding loads will transfer a portion of their
loads to the metal shell to which they are attached, The metal shell

will then act with the stringers to resist bending loads. Figure 27 is

EEFECTIVE SN AREA 30N Er@glTic® D ERFECT L E SRIN ZEFECTIVE DION ATEL mi0h
b - ‘ | : s
i BuT LIMITED To 2.375% | AREA = 0k BuyT SREA = 10t BUT
t 1 b
PiALTER To 1MEL | LINITED T 5k !
|
}
i
‘ |
! | -
I | !
! % Pl
e |
1
i / // |
/ g |
AN
i — ! i 4 i
2. 8vs" /.75 N 2.375
. i

TormL GFEECTIVE Siim AZEA = 8,28 X .24 = Z.psg UM

EFFECTIVE SKIN AREA

FIGURE 27

8 sketch of a stringer and a portion of the shell of the airplane wing
under examination in the present problem. From this sketch, it is seén
that the designer has assumed an "effective areal of shell each side of
a rivet line equal to 10 times the shell thickness to act with each
stringer to resist bending loads. In most cases, the determination of

the magnitude of this quantity is based on the Jjudgement and experience



of the designer, often aided by test data and gbvefned by specified lim-
iting values and a desire for a quantity which affords ease in computa-
tion, It may be of interest to examine, briefly, the action of the stif-
fener-shell combination under load with a view to the determination of
the effective area of shell which may be assumed tq act with the stif-
fener to resist the imposed load.

Consider a 4 or 5 feet square panel consisbing of a relatively thin
metal sheet to which is attached a number of stringers placed parallel
to each other. The dimensions of these structural components may be
approximately those indicated in Figure 27. Assume the panel to be loaded
in direct compression parallel to the longer axes of the stringers and pre-
vented from column failure as a unit. Upon first loading, the stringers
and shell will be equally stressed, but as loading progresses, the shell
will begin to form a series of dish-shaped wrinkles about midway between
stringers and extending the length of the panel. As these wrinkles form,
the load will be gradually transferred from the wrinkled area toward the
stringer, thereby loading the stringer and shell nearest the stringer
heavier than the shell in the immediate vieinity of the wrinkles. Since
véfy little additional load will be resisted by the shell in the vicin-
ity of the wrinkles, the stringers and shell in close proximiby will be-
come more heavily stressed as loading progresses. If a curve of compres-
sive stress in the panel be plotted as ordinates across the width of the
panel, it would exhibit a minimum value at the wrinkled portion and a max~
imum over the stringers with intermediate values between these two points.
Bruhn {1949} in his discussion of this subject stateé that 1t would not
be feasible to use expressions for thg actual stress distribution in the

shell between stringers for design purposes because of their complexity.
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To‘ﬁrovide less complex formulas for use in design, attempts have been
made to find expressions for an "effective width" or "effective area" of
shell whiéh would be assumed to act with the stiffener to resist load,
be uniformly loaded with the same stress as that in the stringer, and be
of such dimensions that the total load carried by this effectiﬁe area
would be equal to the total load in the shell between stringers. The
shell material not included in this effective area would be assumed to
be unstressed. Using the concept of effective areas of shell, then, the
actual varied stress distribubion across the panel will be replaced with
a series of uniformly loaded stringer-shell combinations with portions
of the shell in the vicinity of the wrinkles, between the stringers,
carrying no load.

Let attention now be focused on a bortion of the loaded panel con-
sisting of two stringers and ﬁhe intervening shell. If the sides of the
shell are assumed to be simply supported at the stringer attachment, the_
rectangular shell tends to act as a series of square plates with wrinkles
or buckles in each square, and Euler's formula for a flat plate can be

used. (Peery, 1950),

2 -2
. T E = , S e
2 = [ can be ten
o 20 [T n be writhen
E=ke(g)?
“CR B

where FCCR is the total load on the panel section undef.consideration
divided by the area bt of the shell between lines of attachment, t is
the thickness of the shell, b is the width of the shell between attach-
ment linesy, L is the total length of the panel between loaded ends, and
Kis «a function of (%) and the degree of edge restraint., The value of

K for various edge fixity conditions and (%) ratios has been determined

by experiment and results made readily made available. (Bruhn, 1949).
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If the four edges of a long shell are considered simply supported,

K is equal to 3.62 and

r = 3 oY
pe - :.1:9’:,‘ :,'_'% j
Cer “HE

If the effective width of the shell each side of the stringer attach-

ment line is w, and the total effective width of shell which acts with

one stringer is 2w,

»

fé%ﬁl

It was first proposed by Von Karman and Sechler to solve this equation

}5)
Co

= W

@
e

for the effective width 2w in place of the shell width b when FCCR
was replaced by the yield point of the material (Bruhn, 1949), Since
experiments have shown that the ultimate strength of the shell simply
supported at the edges was independent of the width, the foregoing

equation could be written as:

Z

" -

- - e ko

Typ © Z6k E {50)

where fyp is the yield point of the msterial and 2w is the toltal effec-
tive width of the shell between the two stringers of the panel portion

under consideration. Then:

Later the yield point stress was replaced by the stiffener stress, fsto
Experimental work by Newell indicated that the value .95 was too high
and should be replaced by .85 (Bruhn, 1949). The following equation

has resulted and is widely used in aircraft practice:

ws= .85t \/ =
ek

The above equation is approximate when used for most thin-walled struc-



58

tures. If the stringers are stiff in torsion or, in other ways, do not
let the shell edge rotate in the fashion of a simply supported one as
agsumed, the value of K will be greater than 3.62. Fischel's experiments
indicate that for some shell-stiffener combinations common to aircraft
construction, the edge conditions are mors nearly clamped or fixed than
simply supported, and K should bs 6,35 as a minimum (Brubn, 1949). How-

ever, the equations

vields s smaller effective width than any other such expression proposed.
It is conservative and considered satisfactory for design of normal air-
craft structures. A more precise value may be desirable for very high
speed aircraft whose wing shell thickness may be many times greéter
than that used on normel speed aireraft,

The solution to the above equation is a trial and error process with

ths values of fs‘ usually being assumed, w computed, and later corrected

t

by a more accurate estimate of fq%o With reference to Figurs 25, if f
. w2

0!

t
is estimated toc be 10,500 pounds per square inch, w is 27t and the seffsc-
tive area as shown in the figure is approximately 7t. The quantity 10t
was used for convenience in computations, and in view of the foregoing
discussion, may be considered as satisfactory as the value of 7t com-
puted,

With reference to equation (23a) it has been stated that twice the
area connected with the determination of the shear flow g' from wing
bending shall be designated by the symbol me This area is listed in
column 15 of TABLE II, and the method of computation shown in Figurs

28, It may be noted that the arrangement of computations of this quan-
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tity, and of others; affords ease of slide rule cr desk calculator op-

sration and adaptability to digital computers, such as the IBM TYPE 650,

SHowW THAT m= bc-ad gs

STATED N CcOL.I5 , TABLE [,

m . - (c-a) (b~d)
’Z‘bcw%*m—f"i——v——'

0N
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FIGURE 28

DETERMINATION OF ARFA m

With the properties of the section determined, attention is turned
to the computation of the stringer locads for which TABLE III is a suilt-
able form. The wing is subjected to unsymmetrical bending. The gen-

eral bending formula is used and is as follows:

r — . . MM I,' - N‘EI -
oiye L T Mula Maly,

where fb is the bending stress in the stringsr, N% and My are the bsn-
ding moments about the Z and Y asxes regpectivaly, IZ and Iy are the mo-
ments of inertia about the X and Y axes respesctively, and Iyz is the

product of inertia, TFrom Figure 25, it can be seen thats

Mz = 27, 000(500-72) =I11.55¢ x16° |+ -ibs,

My = 200,000 (500-72) =85.6 x10° n.-lbe
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e
-’ The moments of inertia and products of inertia have been computed in
TABLE IT, ‘The loads P in the stringers are computed as the bending
stress multiplied by the effective area of the stringer-skin combination.
TABLE III
SKIN~-STRINGER ELEMENT STRESSES AND LOADS ~ STA, XRS 73
My ~ My Ive - My Tz ~Maly,
| =-‘[ BT JME | = —50.45] K :-{_”‘4 - !*]r»,é 68
My = 856 X160 in-lbs Mgz = 11,856 x10° in.-fbs
O]l |6 | @ 06| @
STRINGER hj na i hy Kz ha -plﬂ i |
Col (i3 coL-.(2 _ v ‘
No TA%LQ! TaslE 11| K x(2) SEORNCE G) © x(2 TeBLE Y
I 603l | 19.337 |— 997 | =45 gey |4 fec | =125 B0
(‘V z 4,881 18 753 | —2239 |-44 364 |9l 403 |- /14 ¢/:
3 | 28./30 | 18 pze | —3480 |—gz (39 |"46 17 |—i22 BTz
4 31 .39/ 17188 | =472/ |~40 454 |~45 375 |- /72/ FI3 ?
> - - — - —L
3 _

O

In the same manner, the section properties of the next two adjacent

wing sections are computed, and the stringer loads found. The results

are shown in TABLES IV, V, VI and VII which follow.
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WING SECTION PROPERTIES - STA. XRS _37
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TABLE V

SKIN-STRINGER ELEMENT STRESSES AND LOADS - STA. XRS 37

K= =149 14 K,= ~Zzl7.i! !
1
4 o o
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TABLE VI
WING SECTION PROPERTIES - STA, XRS 201
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TABLE VII

SKIN-STRINGER ELEMENT STRESSES AND LOADS -~ STA, XRS 201

K, == 144. 859 Kg =~ 2,038

' . . b
My = 106 x10° in.-lbs Mz = 13.5 x10° in-lbs

cle|[oe]eloe]le]| o

STRINGEE hy h, Ky hy Kz hs ﬁL P
Cot I3 Col-. 12
No TABLE Wi TaRLE V] | ¢ x Z Kax 2 4 + 5 G X Z TABLE !
1 . 399 | 2o 187 |~ /651.45\44141. || |42792.5¢|~ /31 ¢22.9
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4 | 36, 148 | /7 753 |-5227.47|~3 506! "l Ag 08 |Z /25 £02.0 |

~ - < = T e

The wing section properties and stringer loads have been computed in TABLES
IT to VIi for three cross-sections, each thirty-six inches from the other.
The cfoss-section at which the shear flows are desired is the center one
of the three., The information contained in TABLES II to VII is a neces~-
sary prerequisite to the completion of TABLE VIII which contains the re-
quired shear fiows at STA, XRS 237, An examination of the information of
TABLE VIII will now be made,

All columns of TABLE VIII, with the exception of column 15, may be
completed using previous computations and information from the geometry
of the structure. The change in load on a stringer, AP, is calculated
as the difference between loads at the two extreme cross-sections, XRS 273

and . 201, (XRS indicates a distance along the rear spar of the wing from
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TABLE VIII

WING SHEAR FLOWS AT STA, Xpg 237
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a selected origin which may be located in the vertical plane of symmetry
of ‘the airplaneﬁ)' The shear flows in the wing shell are found at the
intermediate cross~section, STA, Lpg 237, Hense; the quantities M, J |
and t are those at this station. The values of the shear flows found
are assumed to be constant between the two extreme cross-sections. The
qugnﬁities Al9 A29 and AB are found from the geometry of ths cross-sec-
tion as the areas enclosed by the perimeters of cell 1, cell 2 and cell
3, respectively. For NACA airfoil sections or company standards, the
total aréa*enelosed by the airfoil shell is usually readily available.
In column 15 is found the shear fl@msg qNETg‘be%W@en stringers.
UEr is the result of the algebraic addition of q'; the relative shear
flows from wing bending, and A9 and Qs OF Ggs depending on which cell
is under consideration. The values of qﬂ are found in TABLE VIII but
915 g0 and a3 will be unknown at the time this table is filled out,
The simultanecus sclution of equations {21a), (223}, and (23a), whose
constants are arranged conveniently in TABLE IX, yields these quantities,
s Qps -and 3 thus found are shown at the top of TABLE VIIL and gy

recorded in column 15,
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PART XI

CONCLUSIONS AND RECOMMENDAT IONS

The problem in this report has besn to accumulate information on
the basic theories and analytical tools used for the determination of
the shearing stresses in thin-walled, multi-cell, multi-stiffener struc-
tures and to formulate procedurss for the shear analysis of these struc-
tures. Most of the basic theories have been gathered from text books
about aircraft structures, such as Bruhn (1949) and Peery (1950) and

text books regarding mechanics of maberials, such as Seeley (1955) and

Timoshenko (1956), The information so gabthered and illustrated in this

report builds into a procedure for the shear analysis of a complicated
multi-cell; multi-stiffener, thin-walled structure in the form of an air-
plane wing. This procedurs, shown and explained in PART X of this re-
port, is especially useful for applicable s%ructu:es whose boundery
surfaces cannot be expressed in easily manipulated mathematical ex-
pressionso The arrangemsnt and grouping of the tabular computations of
the procedure shown in PART X is such that digital computers, such as
the IBM TYPE 650, may be used for the problem solubtion with a minimum
of effort expended in transposing and rearranging data.,

Many publications regarding the results of research and.testing
programs for the structures with which this report is concerned are avail-
able from such governmsntal agencies as the National Advisory Committee

for Aeronautics, Washington, D, C. However, these research and testing
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- programs have for their ultimate aim the examination of the behavior

of the structure at or near failure. Hense, little informstion regard-
ing basic theory of shear analysis will be found in these documents. An
examinatién of’ the data curves, graphs, and photograph reproductions of
tested structures will acquaint the reader with the nature and behavicr
of these structures under load, For example, the effect of varying dis-
tances between étiffeners on the point at which inelastic beha&ior oceurs
can bs observed,

Regarding thin-walled structures, it can be said that a mulbitude
of subjects for future study present themselves, F@ftunatelygla large
amount of priﬂted matter is available in the form of books, research
and testing reports, and publications of the engineering societies. A
source of knowledge not to be overlooked is found in the persons of those
qualified engineers who are willing to teaéh those students who are wil-
ling to learn, The following pattersfor future study is re@@mmendedo

1. Discover if the procedures oubtlined in this report for the shear
analysis of multi=cell, mnltiwstiffenér9 thin-walled structures can be
improved so as to résult in a more accurabte analysis, with less effort,
and particularly with a saving of weight for the structure involved,

2. Determine the effect of stress concenbrations around openings,
or'ﬁcutwoutsyw in the shell and of the close proximity of a longitudinal
or transverse stiffener on the shear stresses in the shell.

3, Study the effect on procedures outlined in this report when the
thickness of the shell increases to the proportions found on some of the

present high speed aircraft.
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