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PREFACE 

Recently9 while employed as a stress analyst for an airframe manu= 

fac:turer 9 the author became interested in the load-carrying capabilities 

of thin-walled stiffened cylinders such as airplane wings and other tYJ)es 

of thin-walled structures which result, from the requirement, t,hat heavy 

loads be resisted by the lightest possible struct,UI"eo An eva.luat,ion by 

the author of his training and experience in what may be termed uucivil 

engineering structures 88 indicated a sound basis for analytfoal work with 

a.irc:ra.ft structures9 but also poird~ed out the need for acquiring know= 

ledge of' the behavior of strucrt:ures common to the airplaJ'te and the me~~ 

thods used to analyze them., 

S::lLnce the determination of the shearing stresses is of particular 

interest 't,o the author 9 and since shearing stresses are required as a 

preliminary part of a comple't,e analysis of a structure 9 this subject was 

chosen for first studyo The study was begun with the rudiments of the 

shear analysis of various shaped thin=walled structures wlthout stif= 

fening members» and progressed through a. procedurf, for the shear analysis 

of an airplane wing., Thls :report records the results of this studyo 

The author wishes to express his gratitude to Lloyd Jackson and 

William Burkitt of the Stress Analysis Group of Douglas Aircraft, Coo 9 

Inco 9 Tulsa Division9 and to P..t•ofessor Raymond Ee Chapel for their tech­

nical assistan<.H~; to Roger Lo FJ.anders 9 Professor and Head. of the School 

of Civil Engineering9 and to Professor ,Jan Jo Tuma who have read the com= 

plete manuscrip·t 9 made many valuable sugge::rtions 9 and given freely of 
:til 



·their t,ime to the author during the preparation of this report.? 

Douglas Aircraft Co,, 9 Inco 9 for making the autho:r 0 s graduate st,udy pos­

sible; to the Tulsa Division of this cmnpany9 and to the Nat,ional Ad= 

visory Committee for 11.e:riemauticsv Washington9 DQ C. 9 for making avail= 

able documents used during the study, and finally the a.uthorns wife,, 

without whose help and tmderstanding 9 the authorn s graduate study would 

not ba feas:ible., 
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NOMENCLATURE 

Area in square inches; Coefficient,, 

Coefficients o 

Diameter of cylinder in inches; Coefficiento 

Modulus of elasticH,y in pounds per square inch; Coeffi.cien:to 

Force in poundso 

Compressive stress at instant of crippling, pounds per sq,, ::Lno 

Modulus of rigidlty in pounds per square inch; Coefficient,, 

Height above the cross·=section of a hollow cylinder of the 

plane which represents St,, Venant Os stress function for t,he 

hollow portion of the cylinder; Coefficient,, 

Moment of inertia of an area in (inches)4,, 

Subscripts x and y designate bending axes,, Subscript, p 

designates polar moment of inertia. 

Length in inches; Coefficiento 

Bending or torsional moment of forces; Coefficiento 

Force on stringer in poundso 

Radial distance in incheso 

Torsional moment in inch-poundso 

Strain energy in inch=poundso 

Vertical shea.I'ing force in pounds,, 

Subscripts wand f designate web and flangeJ respectivelyo 

Distance along the rear spar of an airplane wing from a 

fixed origin in incheso 

i:x 
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f 
st 

f 
yp 

J 
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w 

ds 
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A 

d,)jl 

<? 

Designates mutually perpendicular bending axeso 

Center of gravi'ty of areas of the structural elements 

of a cross-sec:tion6 

Distance in inches 

Distance from the bending axis to the extreme fibre in 

inches9 Distance in inc:hesc 

Bending stress in pounds per square inch~ 

Shearing stress in pounds per square inch~ 

Stringer average stress in pounds per square incho 

Yield point S'tress in pounds per square incho 

Distance between stringers along the shell in inc:heso 

Relative shear flow from bending in pounds per incho 

Unknown shear flow at a specific point in pounds per incho 

Unknown const,ant shear flows in cells 1 9 2 9 and 3~ respec­

tivelyo 

Thickness of metal shell or web in incheso 

Angular measurement in degreeso 

Effective width of shell each side of a stringer attach,­

ment line in incheso 

Elemental distance along t,he periphery of a cell in incheso 

Designates a change in a. quantity or a difference in the 

same quantity measured at two pointso 

Angular deformation of a cell in degrees or radians., 

Angular measurements in degrees or radians., 

Moment arm or distance in inches. 

X 



Symbol for Sto Venantns stress function. 

Sign convention~ 

Clockwise shear flows are positive. 

Bending moments causing tension in lower extreme fibre 

are positive. 

Distances measured forward from the rear spar of a wing 

cross-section are negative. 

Distances measured downward from the Y-axis in the wing 

cross-,section are negative. 

xi 
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PART 1 

INTRODUCTION 

To study the action9 under load 9 of the complicated thin-walled 

structures common to aircraft J an ux1derst,and:lng of the basic theory 

and analytical tools available for the analysis of the elements of 

these structures must be gainedo This information is available in. 

standard texts on aircraft st,ructures 9 such as Bruhn (1949) and Peery 

(1950)0 As the elements of the structure are assembledJ the number 

of analytical tools necessary will be increased and new procedures 

for the analysis will be developed~ 

This report will show the origin of the necessary basic theory 

and procedures for the determination of the shearing stresses in thin= 

walled structures of varying degrees of complexity., The ultimate goal 

will be to show the proc,edures for the determination of the shearing 

stresses of a multi-cell 9 mul'ti-stiffener 9 thin=walled structureo 

Whenever reports of structural tests are available - particularly 

for a type of structure with which the interested engineer is not 

thoroughly familiar = they should be exanrl.ned with a view to obtaining 

information of the behavior of the structure under load9 and 9 perhaps 

more impo:rtant 9 to attempt to obtain a vufeeling 18 or degree of intuit,ion 

regarding the behavior of the strucrture u.11.der loado Some of the more 

informative test reports regardlng thin-walled cylinders which are 

available from the National Advisory Committee for Aeronautics~ Wash-

1 
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i:ngtonJ Do Co are included in the bibliographyo Since the reseat"ch and 

testing programs reported upon by the aforementioned documents have for 

their ultimate aim the examination of the tested structure at or near 

failure 9 very little effort is spent deriving theory of a basic nature 

regarding the structure when the stresses are such that the structure 

does not assume any inelastic deformat,ion. However 9 among some of the 

things which can be observed from the curves 9 graphs and photograph re­

productions of the tested s'tructures during various phases of loading 

are the following: the build-up of stresses during test, the point 

where inelastic deformation takes place, and the effect of varying the 

stiffener spacing and other dimensional ratioso 

Since the assumption is made throughout the report that the struc­

ture examined behaves elas'~ically and does not buckle~ the theory noted 

and the procedures for analysis shown are valid for elastic behavior 

onlyo However 9 in aircraft practiceD since no main part, of 'the struc­

ture is allowed to assume inelastic deformation under the loads ac­

tually imposed on it 9 the procedure shown in this report for single 

and multi-cell thin-walled structures is acceptableo Some of these 

procedures are in use by airframe manufactttr'erso 
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PART II 

A SYNOPSIS OF ST. VENANTUS PRINCIPLE REGARDING THE TORSIONAL SHEARING 

STRESSES IN THIN-WALLED CYLINDERS 

In Sto Venant 0s analysis of the torsion of solid prismatic bars 

of non-circular cross-sectionJ there can be found a stress function 

c/J/j o"w $ 
\.f) such that 1s:z + ~ "' - ZG Y "'nd p..,,. o along the boundary o The 

shearing stresses at any point in the bar are given by t,he deriva·tives 

'2>'P a of lp o 'ex =- 0 :I ;' ~y .::. _if• Also the volume beneath the sur-

face representing the stress fur1ction is equal to 1/2 the twisting 

/ 

I 
l"'-t 

f-/ 
C - -- -

F!G·Uf'l:E 

3 
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In Figure 1 9 let ABCDE be ·the cross-section of the surface repre= 

sent,ing the function tp for a hollow bar o Since the bar is hollow 9 the 

surface BCD extending over the hollow portion can have no :physical sig­

nificance9 because stresses here do not existo Hence the surface BCD 

must be replaced by a surface which has a slope of zero everywhere over 

the hollow portiono Such a surface is represented by the plane BD 

whose distance above the cross=,section i.s Ho The surface representing 

·the stress funct:ton tp is therefore ABDEo The same use can now be ro.ade 

of the stress function represented by the surface ABDE in solving the 

problem of the torsional resistance of" a hollow bar as was made of t,he 

function tp for a solid baro 

The twisting moment T to which the hollow bar is subjected equal 

to twice the volume underneath the surface .ABDE.,, and is there.fore ap,~ 

proximately 

T = 2AH (1) 

where A is approximately the inside area of the hollow section (or the 

area within the mean perimeter) and His the height of the plane BD 

above the cross=sectiono It must be emphasized that the above formula 

holds only for thin=vmlled sectionso 

The approximation involves the assumption that t:he tors:lLonal shear-0 

ing stress is constant over the thickness of the wall 9 an assurnption 

which is common in dealing wi,th the torsional resistance of thin=,mlled 

sectionso The slope of the surface at any point is equal to the stress 

in the bar in a direction perpendicular to the direction in which the 

slope is takeno Hence 9 if the wall of the hollow bar is relatively thin 9 

the slope at any p::iint along the arcs AB or DE may be taken 9 without 

serious error 9 as H/t where t is the wall thiclmesso The shearing 
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stress in the bar is therefore 

"I= H/t 

But H = ~A 

Therefore'/ = ..L 
2At 

(2) 

In some applicati.ons of thin=walled members subjected to shearing 

stresses 9 it is more convenient to use an expression for the shear flow 

q instead of that for the torslonal shearing st,ress I o By definition 

'I" Then q = =, 
2A t,·,a.i 

~~ ' 

It should be noted that; the quantity H is equal to the shear flow qo 

The equation / :: l may be used in calculat_,ing the stresses in tub·= 2At 

ular members under torsion prior to buckling if the thickness of the 

wall :fa small9 variations in thicknesses are not abrupt 9 and there are 

no re-entrant cornerso (Timoshenko 9 1956~ Pgo 248)0 These 9 then9 are 

the assumptions which are made when using equat:i.on (2) or (2a)o 

It is very difficult to apply the Soap-Film Analogy as an e:xper.:., 

mental tool when concerned with thin-walJ,.ed hollow sec"tionso However 9 

one of the major benefits of the Soap-Film Analogy is as an aid in the 

visualization of the comparative magnitude of the stresses in the sec"­

tiono This can be understood from the fact that the shearing stresses 

are proport,ional to the slope of the stretched membrane (a.nalogous to 

the stress function lp ) o The Soap=Film Analogy will apply to hollow 

bars if the opening representing the cross--section has the inside 

boundary raised a dis'lt,ance H above the outside boundary 9 e.s is shown 

in Figure lo 

The equation for the shear flow due to torsion in thin-walled sec-
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kwns 9 q = 2A9 can be derived without the aid of Sto Venant 1 s principle 

as follows; 

FIGURE 2 

The above figure represents a portion of the thin-walled tube shown in 

Figure L O is any point 9 p is the moment arm about O of the force dF9 

and q is the constant shear flow (f s t). 

dF - qds dT = 2qdA 

dT _, e qds T = 2qs dA 

dA ,_ 1/2 eds = 2qA 

dT = 2 E_J dA q - '.L o,J 
q~ 2A 

where A is the area enclosed by the mean perimeter of the closed cross·= 

secti.o:n9 and f 8 ::: T = shearing stresso 

That the shear flow q produced by pure torsion of a thin_,walled 

closed section i.s constant, around the walls of the cross-section 1M.y be 

shown with reference to Figure J. Let any two longitudinal secti.onsJ 

l-0 1 ° and 2=2 ° 9 be taken in the gene1"'al thin~vralled member of Figure 3 

subjected to torsion only o The length of sec:tfon 1~~1 ° equals the length 

of section 2=2° equals Lo 

The sum of the forces in a longitudinal direction equals zeroo 
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I ~I I ::: 11.e I 

'i:M11 =O 

j,ld -+ Cf Ld-== o 

IJ,/: Itri 
11 .::~ .:::? 

The shear flows are.equal at points 1 and 2o 

7 

It may be noted that ·the shea:c .flow q = f t; may be obtained before - s 

the shear stress is determinedo 

FIGURE 3 
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PART III 

SHEARING S'I'RESSES IN HOLLOW THIN-WALLED BEAMS 

DUE TO BENDING FROM A VERTICAL FORCE 

The thin-walled hollow beam shown in Figure 4 w Ul be considerede 

V 

FIGURE 4 

The shearing force V parallel to the beam cross-section produces 

a shearing stress f of varying intensity over the area of the cross= 
s 

secticme Since the shearing stresses on any two perpendicular planes 

are equal1i the shearing stresses on any horizontal plane through the 
' 

beam are equal to the vertical sheari.ng stresses on the cross--section 

at the point of intersection of ·the two planes., '.I'hen the magnitude 

of the vertical shearing stresses at any point on the cross-section 

will be obtained if the horizontal shearing stresses at the point are 

8 
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cmnput,edo 

Consider a port,ion of the beam between two vertical cross-sections9 

held in equilibrium by the forces and moments shown in Figure 5o At 

this point in the discussion9 assume the line of action of V such as 

to produce no torsion :nor unsymmetrical bending on t,he beam shown. Also 

assume tha·t the cross·~·sectlon of' the beam remains constant along its 

lengtho The effects on the shearing stress of these restrfotions will 

be discussed at the end cif ·this sectio:n. 

/YI -t-Va... j I M 

V V 
------

I .. q_ -I 

FIGURE 5 

'l'he shearing forces V will be equal :in magnitude and opposite JJ'.l d:Lrec·~ 

t;iono The bending moment on the crose=section to the left, will be M + 

Va 9 whe:.re M is the bending moment on 'the right cross=sectiono Provided 

the portfo:n of the beam does 

w:!.11 be as shom1 by Figure 60 

buckle or yield9 the stress situation 

At a point a distance y :from the neutral axis the bending stress 

will be m on the :right face and 11z ·r ~Y. o:n the left fa.Ceo In 
I I I 

order to obtain the shearing st,:ress at a dist;ance y 1 above the neutral 

axis~ the portion of the bE:B.:m. abo,rn 

free body as ,shown in Figure 6 0 

point will be considered as a 

re,sultant force on the cross-· 
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section on the left is greater than that on the right o For equi.librium 

of horizontal forcesJ the forces produced by the shearing stresses f 8 on 

the horizontal area of width band length a must be equal to the dif­

ferences in the normal forces on the two cross-sectionso 

t,==~+V~ 
b r .r 

· Neu+r-al 

( 2) 

( I) 

FIGURE 6 

Since only the differences in the forces need be com.lidered 9 the 

loading shown in Figure 6 (2) may be used in computing the shearing 

stresseso 

2. PH== 0 

trha.= sc~~YJA 

(' =- _Ji__ (C \,\ JA 
-t-5 · I h ),_ -J 

':J, 

where the integral represents the static moment of the ai:ea of the 

cross-section above Yp the point at which the shearing stress is de,= 

siredy and b is the sum of the wall t;hick:nesses along a horizontal 

plane at the distance y1 from the neutral axiso The shearing stress 

(3) 



( / 
'--

( 

11 

f in formula (J) is in a vertical direction and the dimension bis in a 
s 

horizontal directiono Consider a point A on the left wall of a cross-

section of Figure 4 a distance y1 above the neutral a.xiso Let the thick­

ness of the wall at point A in a horizontal direction be bA and the cor= 

responding thickness of the right wall be bAao f 8 bA is a shearing force 

per inch of wall at point A and acts in a vertical direc:tiono If oC. is 

the angle between the vertical direction and a tangent to the cross­

section boundary at point A9 f 8bA cos o<... will be a. shearing force per 

inch of wall which is tangent to the cross-section boundaryo bA cos°"-

is the radial thickness of the wall at point A and can be called tAo Thenj 

the shear flow at point A tangent to the cross=sec:tion boundary will be 

given by the equatiom Jjo 
q=ft =J._ yd.A 

s A ItA 
'Ji 

(Ja) 

where y0 is the point of zero shear flow on the cross-section above point 

Ao Since the shear flow at point A given by equation (3a) is tangent to 

the cross-section boundary9 it may be combined algebraically with a shear 

flow a"t the same point due to torsion~ if desired., 

It was previously noted that in the above derivation of formula (3), 

no torsion was introducedo If the vertical shearing force Vis applied 

at a point other than the shear center 9 there will be a torque T = Ve 

applied to the section9 where e is the moment arm from the shear center 

to the vertical force Vo An analogous situation is that of a force V 

and a couple T = Ve applied at the shear centero The effects of a torque 

applied to thin-walled closed sections was discussed in a previous sec­

tion~ The beam shear due to a vertical force Vat the shear center was 

discussed in this sectiono By the method of superposition the shearing 

stress f or the shear flow q may be foundo 
s 
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The condition of unsymmetrical bending deserves further consideration~ 

The simple beam formula applies only to special cases of beam flexure~ 

The resultant bending moment on the cross-section must act about one of 

the principle axis of the areao The neutral axis will then be parallel 

to the axis of the resultant bending memento In the more general cases 

of beam flexure~ however 9 the resultant bending moment is not about one 

of the principal axes, then the direction of the neutral axis cannot be 

determined by inspectiono One method of finding the beam shear 9 f 8 = 

ib J ydA 9 when the vertical force Vis applied to the cross-section at 

an angle other than 90° to the principle axis is to resolve the force V 

into components perpendicular to the principle axes and proceed as out­

lined in this section with each component in turna The principle of 

superposition can be used to obtain the beam shearing stress at any 

point in the cross=sectiono If the cross-sections of the beam are not 

constant along its length9 changes in the shearing stress from section 

to section may occur» and the shearing stress given by "formula (3) may 

be considerably in erroro For tapered beams 9 formula (3) may be used if 

the value Vis replaced by a quantity kV 9 k depending on the dimensions 

of the taper., 



PAi1.T IV 

TORSIONAL SHEARING STRESSES IN THIN,=WALLED CIRCULAR CYLINDERS 

According to S'Go Venant us principal f'or torsion of bars 9 the tor,­

sional st,ress f i.n a hollow tube is given approximately by the ex= 
s 

pression f = e;~t where T is the torsional moment on the secti.on9 A 
s ~-. 

is the area enclosed by the mean perimeter and t i,s th.e wall thickness 

at ·the point where the stress is desi.redo For a circular thin-walled 

tube as shown in Figure 79 A= 1Tr2 

(4) 

H H 
t 

FIGURE 7 

13 



I 
\___../ 

( 
\__j 

<~ 

14 

It may again be noted that the approximation involved in expression (4) 

arises from the assumption that the stresses a.re constant over the thick­

ness of the wall (constant slope of membrane section AB)o For wall thick-

D nesses very small as compared to the diameter of the tube (t > 50), the 

formula gives excellent resultso In the use of formula (4), it is fur­

ther assumed that the tube 9 or cylinder~ does not buckle and that the 

wall thickness does not change abruptly arotmd the cross-section. 
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PART V 

SHEARING STRESSES IN A THIN-WALLED CIBCULAR TUBE DllE 

TO BENDING FROM A VER'.l'IC.AL FOR.CE 

As stated previously~ a verttcal shearing force parallel to the 

beam cross-section produces 1,i she1aring stress of varyi.ng intens:itt,y o·,rar 

the cross-sectiono 'I'his shear:tng st1"'ess is given by the express1.ox1 

The expression for shear flow q =ft will now be developed for 
s 

the beam of circular cross-sectione 

v 
( 2) 

V (3) 
( I ) 

FIG1JRE 8 

15 
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·1,he moment (c,f inertia derived from the :as= 

sui'f'foiently ac:m:.i.rate fo,r finding the shear 

Po lax moment of i:nertia. :::: 2 1T Rt R 2 

'.I':he shear flow is zero 

V r 
symmetryo The integral cif tc = --b· \ iJ dA S 1 J 0 

represents the moment of the 

area 'be·tweem. the u.ppe:t cer.d,;er 1.:l:ne and the point y 1 as shown ln Figure 

8 (.3) :l where y 1 .i.s the d:l.st,a:ncre from tb.e n,sut:ral a:x:ls to the point, wherf, 

th,e shear flow or she&J'ing st:ress :i.s d.,';'lsired o 

5:3dA "::. }R'tCos.$iJ 
Cl 

In airframe a.nalysia 9 this e:xpreseion is frequently used for determining 

the shear flow in a ci:rcula.r fuselage,, 'I'he longitudinal stiffening mem­

bers.9 although they are conc:ent,:ra:t.ed areas 9 usually have approxinJa:tely 

a uniform spacing around the c:h0 c:lun:f'er,enceo It is often s.u.ff:V::iently 

accu:r·at;e to assume ·these areas dlstrlbv:ted along the circumference of 

the fuselage when det,ermini.ng the shea;;r flow o 
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The shea.ring stresses due to bending and due to torsion are collinear 

quantities 9 since each is tangent to t,he cross=sectio:n boundar'y o They may 

be superimposed to give the following result: 

,- + 

The.:!_; sign is used with due respect to the direction of the shearing 

When considering 

au.med that 1~he S':Gress12ld ma:te:r:i.al ac"ted elast:ltm.lly and did not buckle.9 

and that ·the wall thickness was eompara.tiYely small and did not vary a·~ 

bruptlyo These assumptions are also made regard.i.ng the pre:sent problemo 

i:nders due to t;ors:i.on wi.11 he rel.ated to the applied torque by a con-

wh:lch the str0uc:ture should be expected to assume some of the char1:tct,er~ 

ist,fos of i.nstab:i.lityo When a cylinder is sub,iec:ted to t!orsion 9 a point 

of stress llk"il,Y be reached at which the structure buckles 9 characterized 

by wrinkling o.f the wallso In an unstif.fe:ned cylinder~ immediate col·, 

lapse takes placeo But if the cylinder is stiffened by rings and longi-­

tudinal members 9 it will con.ti:nue to carry considerably roore lot1.d by 

si.on field beam action9 and if plast,ic flow of material does not oocu1:· 

the structure as a whole 9 it will return to its original shape 9 possibly 

with no wrinkles Yisible the eyeo In fact 9 the type of thin=walled 

cylinders which are corrm10n in aircraft construct.ion will usually fail ul0= 

timately by the instability of one of the sti.ffening members9 and not by 

instability of the shello The point at which ultimate failure takes 

place in a thin=,walled cylinder which is stiffened by rings~ frames or 
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bulkheads 9 and by longitudinal members is, of course 9 of concerri-o It 

would be difficult to obtain a set of analytical expressions for the 

stresses in the shell and sti.ffeners of thin=v.ralled cylinders which we:re 

applicable to all designso Therefore 9 structural testing has often been 

depended upon to furnish design iri.forrnatlon and guidance for engineerso 

Publications of research and testing progra.ms on this subject dating back 

twenty-fi've years and conducted under t,he auspices of the National Advisory 

Committ,ee for Aeronautics 9 Washington? Do Co .9 arce readily a:vailableo In-

dicatfons are ·that; earlier Uo So publicat:lons and tran,slat:tons of Euro~, 

pean papers can also be obtaL't1edo Most research and testing progre.ms re,= 

garding this subject have for their main purpose the examination of the 

process at ultimate fai11.u:e 9 and from the testing of a large number of 

different, s·tructural c:onf:lgu.:t"'atio:ns,9 t,o better ald ·the judgement of the 

engineer in the des:tgn of' the producto In the reports of "~hese tests a:re 

found formulas for th(9 torque and stresses :ln the·, shell and stiffeners at 

failureo Such formulas may relate the D/t ratio {diameter of the cylinder 

to the thiclmess of the shell) and the spacing of stiffeners and bulkheads 

with the applied torque at failureo Nearly all reports of 

walled tubes shmi.r9 by cm~ves and graphs 9 VB.rious functions 

structure wUh respect to the applied torqueo A particularly inf.'ormat.lve 

report for a person first studying the subject of thin,,-walled cyH,nders 

t,mder torsion i,s ''T'orsion Tests of AlumL"lum Alloy Stiffened Circcular Cyl·= 

National AdYisory Cormn:i.ttee for Aeronautics 9 Washingtonf D. c. 
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PAR'r VI 

l'OR.SIONAL SHEARING STRESSES IN "l'HIN-:WALLED ELLIP'.t'IGAL CYLINDERS 

According ·to Sto Venant.; 0 s principle for torsion of bars 9 the tor=· 

sional stress f in a hollow tube is given appro:x.i'.JrJately by the ex-
s 

pression 

f :;:;; 
s 2At 

where T is the torsional moment o:n the sec:t:i.ony A is the ar·13a enclosed 

by the mean perimeter 9 and t is the wall thiekness at any point where 

the stress is desired., F'or an elliptical thina,walled tube~ A = 1Tbh 

where b is the semi00major axi.s and h is th1~ S8lIJ:L00·11linor a.xis of the mean 

perim~ter of the elliptical cross 0 •·secd;io:no T'herefo:re 

Prior to winkling of the shell~ t,he c:ondi.tions of s·tress within the 

walls of the cylinder will be given by equatfon (6) in acco:tda:rJ,c& with 

the membrane analogy for torsiono After the first wrinkling of the shell 

has occurred 9 the stress in the shell probably will vary with-the degree 

of bucklingo In the formulation of equation (6) 9 then 9 the assumptions 

are made 't,hat the cylinder does not assmne any inelastic deformation 9 and 

that the wall thickness is comparatively small and does not change abruptlyo 

It has been concluded from torsion tests of a large number of thin 

aluminum cylinders of ,alliptical cross·~section that the shearing stresses 

at ultimate torque are the same as those for the circumscribed circular 

cyli.nder of' ·the same sheet thickness and le:ngtho {Lundquist 9 1935) o 

19 
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PART VII 

SHEARING STRESSES IN A THIN-WALLED ELLIPTICAL 

CYLINDER DUE TO BENDING FROM A VERTICAL FORCE 

As stated previously 9 a vertical shearing fo:cce parallel to the beam 

cross-sectfon produces a shearing stress of varying intensity over t,he 

cross-secrtiono This s.hearing stress is given by the following e:xpr~s«, 

sion9 provided no torsion or unsymmetrical bending existsg 

rs= lb fydA 
JI 

This formula was previously developed for a general sectiono In the 

development of 'the above form:ula 9 the difference in bending moments on 

'!::,wo adjacent sectiions of the structure was usede It m.iiy be seen that 

the ratio of the bending stress to the shearing stress may vary along 

the span for a given loading and cross=,section9 and that the uH;ima.te 

strength of the struc·tur",9 may depend on this ra:tfo o Dat,a from a large 

number of tests of thi.:n·~walled elliptic:al cylinders u.:nder corribined trans~" 

verse shear and bending in the plane of the major axis has been recorded 

(Lundquist 9 1935)0 It has been concluded that at small values of fb/f' - - V 

(the bending stress at the extreme fibre divided by ·the beam she&.ring 

) - f / stress at ·the neutral axis failure occurred in shear 9 and as b f 
V 

approached zero (a condition of' pure transverse shear) 9 the shearing 

stress at a neutral axis at failure 9 as calculat,ed by ·the ordinary beam 

theory 9 was approximately lo25 times the shearing stress at failure in 

torsion~ At large values of fp/f 9 the failure occurred in bending. At 
V 

20 
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intermediate values of fb/fv9 thEire was a transition from shear to ben°~ 

ding failure,, It can be understood that the efficiency of a thin=walled 

cylinder 9 in regards to its load-·c:arryirig capaci'ty versus weight) can be 

raised considerably by the addition of stiffening members 9 such as frames9 

rings 9 and longitudin~l memberso In view of the purpose of this report, 

:it is considered necessary that an examination be made of the shearing 

stress or shear .flow diirtribution in a thin=,walled stiffened cylinder 

l'he analysis of a thin=walled unstiffened cylind<~r under pllX'e tor­

sicm has previously been disc:ussedo The addit,ion of longitmdinal stif= 

feners does not affect this analysis other than possibly adding shear 

area 9 provided the magnit.;ude of the shearing st;:i:•esses in the shell is 

not, such as to cause it to buc:klth Aft,er buckling of the shell9 a prop~, 

erly stiffened cylinder will continue to carry load by a series of in= 

teresting actions 9 using the combinaticm of shell and stiffeners to a 

great advantageo The mechanism is known as uu,tension field beam action in. 

' 
it is not discussed in this report btxt is reserved for future study by 

the authoro 

The effect on '!;he shear analysis of the add.ition of longitudinal 

stiffeners "to a thin-walled cross"-section under the action of a load 

parallel ·l:;o the cross-section deserves oonsiderati.cmo Figure 9 is a 

sketch of a port::Lon of a constant cross=section box beam of length d 

wit,h two longitudinal stiffeners 9 AB and DE9 attached to a thin metal 

shello The difference in t,he axial load in the longitudinal members 

(called stringers) between the two cross=sections can be found by writing 

the equation for moments about point B9 using arm d with the assumption 

that the curved shell and web resist no moment,o 



For future convenience 9 let d equal 1 incho 

An examination of Figure 9 will disclose that 'these forces !:::,. P must 

be balanced by the shear flows shown (shear flow q =ft)~ 
s 

J--'~c 
\/ 

FIGURE 9 

By summing forces in the horizontal di.rection 9 

From the membrane analogy for torsi.on9 prevlously discussed~ · 

CZ= I = Ve 
fJ 2A 2A 

_ V Ve 
'11 - h 2.A 
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q 9 q19 h)c and V are noted on the figure and A is the area enclosed by 

the mean perimeter of the cross=sectiono 

These results may be visualized by replacing the loading situation 

shown with a vertical force V applied at A and a torsional couple applied 
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to the cross-·sect,i.on. If the curved portion of the shell and the ver­

tical web ABED resist no moment 9 the contribution of V to the shear flow 

q1 will be ~ and that of the torsional moment will be ~1 acting in the 

opposite direction. The shear flow q in the curved portion of the shell 

Ve will 9 of course 9 be 2A. 

The shear analysi.s of a thin-walled box beam incorporating many 

stringers can be made in a similar manner by taking advantage of the re­

lationship between the differences in load 6 P in each stringer and the 

shear flows q in the adjacent shell sections. Reference is made to Figure 

10. 

FIGURE 10 

From a swnmation of longitudinal loads on various stringers 9 the shear 

flows may all be expressed in terms of one unknown shear flow q. This 
0 

shear flow may then be obtained by equating the moments of the shear flows 

to the external torsional moment about a longitudi.nal axis. 

With reference to Figure 10 9 it can be observed that,~ 



L, 
fz = fo + l:..Pi +L::..Pz 

jr,, == Jo -t- t 6-Pn 
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n 
where :f ,0,.Pn represents the summation of all stringer loads 6P between 

0 

the portion of the shell on which q acts a.nd any point of desired shear 
0 

flowo After expressing all the shear flows in terms of the unknown q ~ 
0 

,. 

the value of q0 may be found from torsional moments on the cross-sectiono 

Peery (1950) ha~ given an excellent example illustrating the simplicity 

of this method and affordi:ng a visualizat,ion of the shearing stress dis­

tribution of single cell 9 multi=stringer thin-walled secrtionso 

It has been noted that all of the previ.ous discussions of the shear 

analysis of thin-walled cylinders with longit,udinal stiffeners is valid 

provided the shell does not buckle 9 or undergo any inelastic deforrnationo 

Upon buckling of the shell 9 the st;ructure transfers further load by a 

degree of tension field beam act;iono 'l'his subject is not discussed in 

this reporto 
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PART VIII 

SHEARING STRESSES IN TAPERED BEAMS 

In the p:recedi,ng discussions of the shear analysis of 'th:m-"Walled 

beams 9 has been stipulated that the c:ross=secrtions of the beam remain 

constanto Often9 all of the material of' such a beam can be fully 

utili.z,edo For example 9 the material near the free end of a cantilever 

beam subjected to bending loads may be lightly stressed 9 whereas the ma,= 

t,eri.al near the fixed end may be comparatively highly stress,ede .Increased 

efficiency,) with regard to strength=weight ::ratio 9 can be obtained by de­

slgning 'the beam so as t,o ca.use 'the bending stresses to be nearly constant, 

ak1ng its lengtho Such a design may res1..ut in a tapered beamo 'rhe wing 

of an airplane is an e.xamplec Although no appreciable error in the ben-, 

ding st,resses is introduced by usi:ng ·the flexure formula for t,he tapered 

beams usually found i:n aircraft practic19 9 considerable error may be :in­

troduced in the shear stresses of such a beam by using t,he beam shear fo,:r,~ 

V r--
mula9 fs = Ib \ ydAo Another approach must be used for the determination 

"' 
of the shear stresses in tapered bearnso 

The tapered beam shown in Figure 11 consists of two concentrated 

flange areas joined by a vertical web which is asswned to resist no ben­

ding., The bending loads are assumed t,o be resisted by axial forces in 

the flanges" The flanges a.re straight and a:re inclined at.angles u1 and 

u2 to the horizontal. The resultant axial load in the flanges must be in 

the direction of the flanges and must have horizonta.1 components P = V 12 0 
h 

25 
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The vertical components.of the loads in the flanges P tan u1 and P tan 

u2 which are shown in Figure 11 (2) resist some of the external shear Vo 

C 

I 7 

ii,. 
! ,) 

I~IGURE 11 

Designa·ting this shearing force resist,ed by the flanges as V f and that 

resisted by the webs as Vw 9 'Lhe following equations apply~ 

\f = P(to.n 

I 

-c: c;;J h i\J, I ::: ~j_ 0 

5 

-1--'t_f''f''. II \ ,.... ,,)_ ?./ 

_h_. 
,,,,-.• ,_ 

Substitute the last expression in the above equation for Vro 
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Equation (7) will apply for a beam with any system of' vertical loadso 

Since b P=\/- .. h j 

\ / 1, 
V .~ 

From the geometry of Figure llJ 

-:;.: \/ Q,,,_ 
. C.~ 

Equa:t;:i.ons ((8) and {9) may be expressed in terms of h0 and h by making 
h 

, • a o use of the propor"t1on =, ;;: =h~ 
. C -

If a tapered beam has tiWo equal flanges of area A and a depth between 

flanges of' hJ the beam shear formula may be used to obtain the shear 

flow by substituting Vw for Vas follows~ 

27 
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A similar method may be used to find the shear flow in a 't,apered beam 

wi'th several flange areas 9 if the areas of the flanges r'emain constant 

along the spano 'The followi.ng example will demonstrate a me·thod of' 

computing stringer loads and shear flow for a tapered box beam with 

several flanges whose area remains constant along the spano 
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It is desired to find ·the stringer loads and shear flows for the 

tapered box beam shot,m in Figure 12,o 

i! 

I"' 
100 

FIGURE 12 

Area of stringers 

AA= AAO = 2 sqo ino 

Angle Functions 

AB :::: AB I = Ac = Ac O ,_ 1 sq O in. 

tan u.1 = 005 

tan u2 = 005 

At section A=,Ao 

h ~= 10 ino 

I= 2 + 1 + 1)52 = 200 (i.no) 4 

It is assumed that the moment of i.ne:rti.a of the stringer areas about 

their own bending axis is negligibleo 

f = l:1,y:, = goo.!)OOO_l\'. _ _2 = 5v000 lbso/ino 2 
· b I 200 

P :::: Horizontal component of' load in str:l.nger A and AO o 
AH 

p ::: 5000 X 2:::: 109000 lbSo 
AH 

PB = pc = 5000 x 1 = 5000 lbso 
H H . 

P¾ = Vertical component of load in stringers A and A0 • 

PA· = P~ tan u1 V .ttH 

::: 109000 X 005 = 500 lbso 

28 



PR = Pc ~ 5000 X 005 = 250 lbs. 
-i V 

V f :::: Ver·tic:al shearing load :resisted by all flanges 

V :::: 2 PA + 2 P + 
f' V Bv 

= 1000 + 500 + 500 

= 2000 lbso 

V = Vertical shearing load resisted by both webs~ A-A~ and C-,C O • 
w 

V = 4.000 - 2000 w 

= 2000 lbs. 

These loads are shown in the following sketch. 

FIGURE 1.3 

To obtain t,he shear flows in the webs 9 it is convenient to consider a 

portion of' the beam between parallel cross-sections 1 inch apart~ as 

discussed in Part VI~ and illustrated by Figure 14. 

The change in bending stress on a stringer between two cross-sect.ions 

one inch apart is 

=. 2,000 K 5 
2'.00 

_ 5o llos !°er 5ff· /h. 

29 
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The change in axial load on a stringer of area Af is considered to be: 

\/VJ~ A 
-I- f 

-6, 1A = 5 0 X 2. = Io O lbs. 

L\P5 =-Afc == 50 x I=- So lbs. 

FIGURE 14 

( I 2.) 

The error involved in the use of e,quation (12) is consider,ed ne·­

gligible for the usual tapered beams found in a.ircraf't pract.iceo The 

true value of the axial load in a stringer is fa E o cos u 

If the assumpti.cm :i.s made that the web BC :i.s cut 9 q0 = 0~ and the 

rela.ti:ve shear flows qAA O 9 qABD and q00 0 can be determined by the pro­

cedure discussed in PART VII of this reporto The r,~latiye shear flows 

q_AAD:::: 150 lbSo per ino 

qAB = 50 lbso per ino 

qcc n :::: -~50 lbso per :ino 

qc DB = 0 lhso per ino 

qB 0A 0= 50 lbso per ir10 
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'.Iha minus sign denotes a counter"·,clockwise shear flowo 

'rhe shear .flow ~ must now be found and the relative values q.A.A ~ 9 

q may be found by taking moments about 
0 

any spanw:tse axis 9 such as one through point 0 9 Figure 15 (l)o 

! 

;!\ \k,<., 
500~ 

1~ 
1501 

I 

l2solbs 
,. 

1c/' 10// 

1- ?-'L 1-· ~-~7 
.... i----=--<@>,,_ 

11 
3D 

._ ___________ __,,, 
-..-- ----30 30 

(2) 

1 FIGURE 15 

30 
iO 
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The sum of moments of external forces plus the sum of moments of in,-, 

ternal forces equal zeroo 

·"(4000 X 2) - (2 :X 250 X 10) - (2 X 250 X 2.0) .,, (50 X 10 X 20) 

+ ( 50 X 10 X 10 ) . + [ ( 20 X 10) + ( 10 X 20) J q0 ::: 0 

q0 = JO lbs. per ino in a clockwise dlrection as shown in Figure 15 • 

The resultant shea:r flcrws are as follows~ 

qAA i = 1.50 + JO ··- 180 lbso per ino 

qAB -- 50 + 30 -- 80 lbs. pe::r in. 

qBC = q0 = 30 lbs. per ino 

qccv = =50 + 30 = ,~20 lbso per 

qCVBV - qo ::::: 30 lbso per ino 

in. 

qBVAf = 50 + 30 = 80 lbso per in. 
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The resultant shear ±'lows and stri.nge:r shear loads a.re shown in Figure 160 

FIGURE 16 

T:ne analysis of t,his type of struc:ture is especially suited to a 

tabular formo Before proced:i.ng with the solution of this problem 

utilizing a tabular form. 9 a few remarks regarding aircraft practice in 

the stress analysis of wings may be in ordero An airplane wing usually 

has many stringers 9 and ls tapered in both depth and widt;ho Each string, .. 

er may have a different angle with berth the horizontal and vertfoalo 

A solut;ion for bo't;h t;hie hor:lzont;al and vert:ic:al components of all s·tring-, 

er loads would usually require more work than wou1d be justif:ied. .An 

approxlmate mi;.rthod of' obtaining th,:;1 torsfone.l moment of the horizontal 

and ve:r·~foal components of the si;r.inge:t" _fo:rces is usually sufficiently 

accu:r:"11rte. One approxima.te method consists o.f ta.king torsional moments 

about, some point in the cross--section about which ·the stringer forces 

prod1,1ce no appracia.ble ·torsional momer.rt and of omitting t,he str·inger for­

ces in tht~ moment equ.at,ion. A tm.'sional axis joining the centroids of the 

In the foregoing problem// the :r1e~mltant of ·the vertical forces in 
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the stringers is 7a5 inches from the left web 9 or through the centroid 

of the areaso Point oa shown in Figure 17 will be used as the center of 

momentso The torsional moment of the external shear about 0° is then 

49 000 x 5o5 == 22 9 000 inch-poundso Since the vertical components of the 

stringer forces are neglected 9 only the shearing forces carried by the 

webs will be assumed actingo From equation (10) 

Vw -· V _I::_~ 
h 

nP:=. Vw-=-~ Af 
1 . 

-- ·{000 5 - 2000 .5Af -
/0 200 

Vw -· 2,000 lhs ::: soAs,._ 
' 

where Af is the area of the flangeo 'These values of L::.. P are tabulated 

ln column (2) of '.ra.ble Io 'l'he negative sign indicates compressiono The 

relat,ive shear flows 9 qABv etco 9 denot,ed as q 1 and shown in col:unm. (3) 

a.re obta:ined by a summation of 6. P in column (2) o The terms in column 

(4) represent twice 'the areas enclosed by the corresponding webs and 

the lines joining ·hhe extremeties of the webs and the center of momrcmts 9 

as shown in Figure 17 o The mome;nts of the shea:r flows in the webs are 

obtained in columns (5) as the product; of the terms in columns (:3) and 

(4) ~ The total moment of the shear flowsq a is lODOOO inch,,pounds and 

is obtained as the swn of the terms in column (4) o "I'he sum of the mo= 

ments of ·the external forces plu.s the sum of the moments of the internal 

forces equals zeroo 

22 9000 = 10~000 -, 400 q0 = 0 

q = 30 lbso per i,no 
0 

The f:i.nal shear flows are tabulated in column (6) and are the :result of 

algebraic addition of q0 and q 1 o 
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TABLE I 

AN EXAMPLE OF A TABULAR :B'ORM FOR SHEAR FLOW ANALYSIS COMPUTATIONS 

FL/>.NbE. L\P f = I.t.P 2A 2ACf 1 ff==:Joi-Cj' 

(f) (2) (3) (4) (5) (G) 

C -50 -50 l 2 5 -0...,250 - 20 
c1 +so 0 50 0 :30 
81 +50 

+50 50 '2,500 eo 
A' t-100 

+150 75 //) 250 rio 
A -/00 

-t- 50 50 2,500 80 
B -/00 

50 30 0 0 

400 Io, ooo 

,.- 4, ooo X 5, 5::. 22,000 !Yl-lbs 

\J = 2) 000 1..\2§ 

FIGURE. Ir 



PART IX 

AN EXAMPLE PROBLEM OF A THIN·=WALLED .MOL'rI-CELL STRUCTURE 

PART I through PAR'.11 VIII of ·this report have been concerned with 

single cell structureso 1~he shear analysis of multi-cell structures 

can follow the same methods as 'those used for the single cello The 

a.ssumption,s used in the formulat,ion of equations for the shear flow de·~· 

termination of the single cell will apply to· multi:-·cell struotureso 

When concerned with the torsiona1 deformat,ion of multi-cell structuresJ 

the additional assumpt,ion is made that the transverse stiffeners are 

sufficient,ly rigid so that all ct,,lls rotate t:hrough the same angleo 

Transverse stiffening members may be call,ed bulkheads if they are solidp 

or almost so 9 or ·they may be ealled frames if they are the open9 ring 

typeo 

'l'he mult,i=cell structure shown in Figure 18 is a cantilever beam 

of t,hree cells stiffened in a transverse direction by equally spaced 

bulkheads which are assumed to be :rigid and to remain undistorted under 

load. These bulkheads aet as the loading points for point loads of 1 9 000 

pounds each applied in a single line in the plane of one of the webs as 

shown in Figure 19. The sheet metal shell and longitudinal unTen and angle 

stiffeners are of the same materiaL Cell l is enclosed by a semi-·ellip­

tical section~ cell 2 by a rectangular section and cell .3 by a semi-cir·­

cular sec'tion. It is :required t;o find the shear flow at section A-A of 

the three cell structure shown in Figure 18a 

.35 
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Preliminary data 

Section properties 

10T11 sectiom 1 1/ 4 x 1 1/2, x 1/8 

I O ':l (" )4 NA = o,,,) 1.no, .Area = o.37 (ino )2 

Angle secti.om 2 1/2 x 2, 1/2 x · 1/8 

Area -·· 062 (ino )2 

Moment of inertia o.f the cross-sectioni 

Assume -that the shell and webs resist, no bending stresso 

Area 

vu and angle sections 

about their own bending ax:iso 

I = 2 x (18/ x Area of 00Trn + 4 x (18 x Area of angle 

= 1040 (ino )4 

enclosed by the periphery of cell 1 9 cell 29 and cell 3 

Al = 1/2 ii X 30 X 18 A2 - 80 X 36 A3 - 1/2 T( (18)2 

= 850 (ino )2 -· 2880 (ino )2 = 510 (ino) 2 

' 
3G, II 

..3~11 - l ... 

FIGURE 18 
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~ Lengths of curved porti.ons of the cross-sectiom 

Length A°FA = 1/2 x 4 x 30 x 1.395 

·- 830 75 ino 

Length CGC 1 = 181f 

·- 56.6 ino 

5ECT\0N A- A. 

FIGURE 19 

Shear flows q 1 from bending only are computed as follows~ 

It is assumed that~ 

1. 'rhe shear flows at points M9 N,9 and P are equal to zero. 

2. The shell and webs resist no bending moment. 

37 

3. The introduction of any torsion will not affect the axial load 

in the stringerso 

LJ. M = Mr M3 -= ""fooo x .3~ 

:::. /44, ooo 

-~ -·f-:::. ~/'Y\j 
62: b3 T 

:::: \4.c/POO xrf5 
/040 

= 2500 m- I b.s 
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0. 
OAE> = 0 

,~1,/ • 1050 - "5 1~x1~. =f~ r 
I 

fB·~, 
I ?71::5 rec -=-~ ,.._.,,,-:; "' !!5.7 

ib_,5/ 
/il], !1i'/8 I -:,C 0 

FIGURE 20 

Since the shear flows at points M~ N:i and P were asswned equal to 

zero~ the shear flows computed above are relative ones and must be cor­

rectedo Regardless of the existence of torsion on the cross-section~ 

t,he moments of the internal shear flows plus the moments of the ex-" 

ternal forces about any point would be equal to zero. If the external 

loads cause no torsion on the cross-sect,ions the angl~s of twist in each 
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cell would also be zero. The values of three constant shear flows - one 

in each cell - could then be determined and added algebraically to the 

shear flows q 1 from bending to arrive at the true shear flows in the 

cross-section. 

Since the cross-section of the struct,ure considered here does have 

a torsional moment applied to it 9 there will be a twist 9 or torsional 

defo:rmation9 of each cell. If the assumption is made that the angles of 

twist; in the three cells are equ.al 9 a constant shear flow for each cell 

can be found whic:h is compatible with this assumption$ This unknown shea'.'.' 

flow for each cell will be composed of the shear flow from torsion alone 

and the correction to the shear flow from bending. 

Introductfon of' the shear flows from torsion and correction to the shear 

flows from bending follow. 

It is assumed that g 

L The angles of twist for each cell 019 e29 and e39 are equal. 

2. The shell and web material act elastically and do not buckle. 

3. The modulus of rigidity 9 G, is constant for the material of the 

structure. 

Since the following analysis makes use of the equation for the angular 

deformation e~ it is desirable to discuss i'ts derivation. 

Much of the classical theory of statically inde·terntinate st.,ructures 

has been developed for the analysis of comparatively heavy structu.t>es in 

w~foh shearing deformations are of minor importance and can usually be 

neglected. In ·the analysis of t,hin metal shell struct;uresj the shear 

st,ress dlstribut:i.on is usually of major i.mportanceo The deflections ca.used 

by shearing deformations may be determined by energy methods~ such as that 
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of virtual work~ in the same manner that other types of deflections are 

foundo Perhaps one of the more simple approaches would be to consider 

the shearing deformation of a rectangular plate of thickness t~ width a 9 

and length bas shown in F'igure 210 The shearing strain is obtained from 

the relation 

'-.f',,. '\_ = L 
tG 

(13) 

where f is the shearing stress and q is the shear flow f to 'rhe strain s s 

energy of' shearing deformation is 

Lt,= t,t~ b 
z __ 

FIGURE 21 

/U4l 

A unit virtual load applied at the point of desired deflection b produces 

a syst,~m of shear flows qu in the webso The force (qua) acts through 'the 

displacement d'bo By the principle of conservation of energy 9 the external 

work must be equal to the internal 1.rmrk accomplished on the structure o 

(15) 
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The summation symbol is used to include all webs of the structure which 

affect the deflectiono It may be noted that 4u represents the shear flows 

due to the virtual load and q represents the actual shear flows which pro­

duce the deformat,ion of the structureo Equation (15) applies only to elas­

tic deformations which satisfy equation (13)o 

By reference to Figure 22J an expression can be obtained for the an= 

gular deformation of the box beam by applying a unit virtual couple To 

The resulting virtual flows are¾= ~A where A is the area enclosed by 

the shello If the ·webs have dimensions a = 6. s and b = 1 9 the angle of 

twlst may be found by substltuti:ng ·these values into equati.on (15) ·to 

obtain 

e = ~-1: al L .2.At:.G 

where the summation includes all webs of the structureo 

FIGURE 22 

Equa.t,ion (16) may be used fo:I' the angular defo:rmati,on of a multi-cell 



structurey if the summation is evaluated around any closed path and the 

area A is enclosed by this path. Thus 9 for a three cell structure, the 

summation may be evaluat,ed around the perimeter of any one cell,, or of 

two cells» or around the perimeter of the three cellso The procedure is 

sometimes defined as a line integral as follows: 

9 = f f L cl 5 (16a) 
2At.& 

.,I 

where the integral represents an evaluation along a closed pa.th~ retu.rning 

to t,he starting pointa Thfa expression is used in the present problem~ 

considering t,he values of the summation positive in the clockwise di­

rect,ion. As used in this part of the problem9 q is the shear flow which 

must be added to the relative flexural shear flows 9 q O » to make the an­

gular deformation of each cell the same; Lis the length of the member 

between cross-sections considered 9 and is equal to 36 ino for all cells; 

A is the area enclosed by the periphery of a cell, t, 1s the thickness 

of the walls of the cell; G is the modulus of rigidity of the shell 9 web 9 

and stiffener materials; and ds is an elemental distance along a cell 

peripheryo The integral is to be evalmrted around a cell peripherye e 

is the ~,otal angle of twist of a cello 

Let 8l9 G2; and e-3 be the angles of twist for cells l~ 2 9 and 3 9 res­

pectivelyo 

Since ½G is const;ant ,9 a simplification of computations will be obtained 

i,f this quantity is incorporated into the symbol for angle of twist for 

' n.. rJ__1 1,m;egral J -as 
I t. 

for cell l can be thought, of as belng each cell. The 

composed of two parts g an evaluation around the path A UFA and an eval-

uation along AA 1 as followsg 
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J ! ds =- ( f ds + I .i d.s 
)A'FA t 'AA' t 

_ 1-;,'FA 1 els + 'JAi>.' r cl,; 
- t.,,_' fA A'FA t 1>.A; ) I'-('-.' 

qAAn is the resultant of the superposition of the shear flow in cell 1 and 

that in cell 2o Let q1 designate the shear flow in cell 1 and q2 the shea:r. 

flow in cell 2o 

Theng 

These expressions are substituted into the equation for 9/ and the effect 

I , 
on e, of the flexural shear flows addedo 

e' =- _,_ [ $'-1 83,73 + '1,- %2 31.,,] - _L -43 3,:, 
1 350 .,03 .or.o 8'50 ,oc;, 

e/ = 3.?9 c;1 - •7/jz - 3o.4 

+ %1-~J!J. f els ] 
t AA. A'A 

/ [o - - /f2 0 
- zc/O(; _, ?o, 

0 0 ,01/-
] 



+ ~, 0 f! f.? + I<., I 

(S( '° J, 99 t)I - ,7/ i{Z -· '3(),4' 

'1~ :::- ,f2o8'c; +2.01s9 - ,417q_--37,4'f) 
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(Q) 

(6) 

(c) 

The summation of the torsional moments of the internal shear flows and 

ext,ernal loads must be equal to zero for equilibrium. Torsional moments 

will be computed with respect to stringer A~ The external loads will 

then have·a moment, of zero with respect to this pointo To aid in the 

visualization of this procedure~ Figure 23 is shown with the relative 

flexural shear flows and q1,9 q2~ and q3 shown thereono 

6 

FIGURE 23 
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2..1\1\A :::-c, 

+(8ox3~)CJ2 -tfl:5-J-a) + (fo+;~9 )3(,,f3 + (3t,,x4o)(fz-2.-S:7) 
Ip, A 

+( ;,:3t 3r,, 6J + (3, X 4o ffz) 

17 0 0 q + 51 & 0 9 n + I OZ. O q,:; - 2 34 2 o o '""-· o t.F' (I" IJ~ ) 

The simultaneous solution of (a) 9 (b) P (c) 9 and (d) yields r 

q~ = -.08 lbso/in. 
:> 

The superposition of q19 q29 and q3 on the relative flexural shear 

(d) 

flows,, q ~ i yields the required shear flows at the section under c onsidera-

tione The result is shown in Figure 24e 

C 

8,8,r 

A.' 6' 

FIGURE 24 

The final shear flowsJ shown in Figure 24.9 can be checked by use of 

the three equations of equilibrium~ i.,e.,~ "2.FH = 0 9 2.Fv = 0$ and ::E.M = O., 



PART X 

AN EXAMPLE PROBLEM ILLUSTRATING A PROCEDURE 

FOR THE SHEAR ANALYSIS OF AN AIBPLANE WING 

The following problem is included in this report to illustrate one 

method of' determining the shearing stresses or shear flows in a thin­

walled multi-cell structure of complicated shape subjected to bending 

and torsional loads. '.l'he structure selected is the wing of an actual 

airplaneo It is desired to find the shear flows at station XRS 237 of 

the wing shown in Figure 25. The method of shear analysis used has been 

adapted from those methods described by Peery (1950) and Bruhn (1949). 

By reference to Figure 25, it can be seen that the wing section is 

a three-cell 111,orque box 11 which is redundant to the second degreeo C' ~iince 

the shear flows in the three cells must be deterrninedj three equations 

relating the shear flows must be found. Following the method of Peery 

(1950) and Bruhn (1949) and others, the assumption is made that the wing 

ri.bs have sufficient rigidity so that the three cells rotate through the 

same angle under torsional loads. Three equations in four unknowns may 

then be written containing the three unknown shear flows for the three 

cells. The fourth equation necessary for a solution may be writ,ten as 

the sum of the external torsional moments plus t,he sum of the internal 

torsional momentset equal to zeroo 

46 
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The me·thod of solution of the problem will be illustrated by first 

writing the three equations for the unknown shear flows in the three 

cells. Reference is made to Figure 25 for structure geometry and to PART 

IX for theory and assumpt,ions governing the use of the angular def orma­

tion equations: 

written as: 
-; 

This equation may be 

( 11) 

where the subscript 1 refers to the first cell 9 q1 is the shear flow~ A1 

is the area enclosed by the perimeter of the first cel.1 9 G is the modulus 

of rigidity of the shell :material,, t is the thickness of the shellJ b S 

is the distance along the shell periphery between stringers 9 and Lis the 

length of the structure between two cross-sectionso For convenience~ use 

the symbol .J, to replace L..\S 9 and since only relative mag~itudes of e1 ,9 02 

and e3 need be considered 9 let L equal 1 unit of linear measuremento 

Equation (17) then becomesg 

91 C: _.l!.-; 2 ( t) 
2-~!~ l .,. 

In like manner~ 

and 

q19 q29 and q3 in t,he above equations are the constant shear flows for 

each cell which must be added to the relative flexural shear flows 9 q 0 9 

(t,o be determined later) in order to make the angular deformations of 

each cell equalo 

In Figure 25, it will be noticed that the webs of the struc·ture are 

assumed cut at points AJ H9 and Kin accordance with the procedure for 

determining the shear flows in a closed thin-walled structureo 'I'he rel-
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ative flexural shear flows qg from wing bending will not appear in. the 

webs assumed to be cuto The shear flows q1~ q2y an::l q3 will appear in 

all structure webs of their respective cellso In dealing with a wing or 

other thin-walled~ multi-stringer st,ructure~ the word rnwebn may be used 

to denote the metal shell between any two stringerso 

(;, i! 
', .. 

Assume that G is constant for the r.na'~erial in all cellso Equating (18) 

and (19) results in the following 

Equating (18) and (20) results in the following~ 

A third equation is obtained by the .summation of torsional moments on the 

section. 
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T -l"Z.2· 2ACl.- 1 +?,2Ao 1 + 2A\,. 
!:)(i" () "' ~ 

where TEXT is the torsional moment on the section due to external loadso 

A simplification of the above equation will result by letting twice the 

areas applicable to the computations of q O be designa·ted by the symbol 

mo This facilitates tabular computations involving the shear flow q 0 

from wing bendingo The equation then becomes 

=o 

By rearranging and combining terms in equations (21) 9 (22) and (23) 9 

a more suitable form is obtainedo 

2b) 

-&q -1../e; 
pl ·l)Z 
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Having the form of the necessary equations for the shear analysis 

and the algebraic values of the constants 9 attention is turned to the 

wing section to determine its properties. Figure 26 will aid in the 

understanding of symbols used·in the tabular computations for numerical 

values of constants and shear flowsc The tabular forms which follow 

represent a method for the orderly computation and methodical checking 

of numerical values. 

~-----4«::i..JL..,<"e,c_··----· 
G-

v 
' 

·~·--t 
I C ~r...._,_f._, 7dl~r. ... ~r -----==;I D 

y 

F 

-2' AXIS 

FIG-URE 26 
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In TABLE II are found the computations for the wing section proper-

ties at station Y'RS 2730 This station location can be observed in Fig­

ure 25. The cross-section at this station consists of 4 spar caps and 

41 stringers of the type shown in Figure 27. The large longitudinal 

beams extending from top to.bottom of the cross-section are called spars 9 

and the beam flanges are called spar caps. Computations have been shown 

for four stringers t,o illustrate the procedure used. In this example~ 

the numbers 1 to 4 were arbitrarily assigned to the first four string­

ers toward the top of the sect~,on immediately aft of a vertical line 

through the C. G. of the sectiono These stringers are in cell 3. From 

an examination of Figure 249 and the data in TABLE IIJ it can be ob­

served that the Y distances are measured with respect to the rear spar 

centerline E-D and the Z distances with respect to the wing reference 

plane 9 which is also the Y axiso Thus 9 using the rear spar and the wing 

reference plane as datum planes,9 the section properties are determinedo 

The sign convention used is as follows~ 

Y-distances are negative when measured forward (toward the leading 

edge of the wing). Z-dis'tances are negative when measured downward (to­

ward the lower wing shell)o 

It may be noted in TABLE II that the area of part of the shell is 

included with the area of a stringer in the determination of the section 

propertieso This has not been done in previous examples because of the 

assumption~ which was then made 9 that no part of the shell resisted any 

bending moment. This assumption results in a simplification of computa­

tions for shear flows and the stringer loads and may often be justifiedJ 

particularly in preliminary design or rough checking of a designo A 

more accurate analysis will show that the stringers of a thin-walled 
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TABLE II 
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structure subjected to bending loads will transfer a portion of their 

loads to the metal shell to which they are attachedo The metal shell 

will then act with the stringers to resist bendi.ng loadso Figure 27 is 

Sr=1:::zcoT\V/iE'. s:1..1:½ ,'.\K.."i.A:;; ·o~!: C;;::·r::,;G=r·.\: s:, '$'.<. 
.-:---------------;·---~-----= 

i3'JT (.J!"'/\\\:~::, iO 2,.375D,~ A~G:.~-:..; ,;;) <: ~IUT 

;·_IJ-.J\·.-·~p "'r'"~ 1,~fS·i·~ 

;, 
"' 8,25 X, 21,=.: ":: Z,06fi (1;,.J. 

EFFEC'i'IVE SKIN .AREA 

FIGURE 27 

a sketch of a stringer and a portion of the shell of the airplane wing 

under examination in the present problemo From this sketch9 it :.ts seen 

that the designer has assumed an 11effective a.rea 1u of shell each side of 

a rivet line equal to 10 times the shell thickness to act with each 

stringer to resist bending loadse In most cases:, the determina.t:i.on of' 

U1e ma.gnitude o.f this quantity is based on the judgement, and experience 
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of the designer 9 often aided by test data and governed by specified lim­

i:ting values and a des.ire for a quanti:ty which affords ease in computa­

tion. It may be of interest to examine 9 briefly, the action of the stif=, 

fener-shell combination under load with a view to the determination of 

the effective area of shell which may be assumed to ac·t with the stif­

fener to resist the imposed load. 

Consider a 4 or 5 feet square panel consisting of a relatively thin 

metal sheet to which is att,ached a number of stringers placed parallel 

to each other~ The dimensions of these structural component,s may be 

approximately those indicated in Figure 27. Assume the panel t,o be loaded 

in direct compression parallel to the longer axes of the stringers and pre= 

vented from column failure as a unito Upon first loading 9 the stringers 

and shell will be equally stressed~ but as loading progresses~, the shell 

will begin to form a series of dish-shaped wrinkles about midway between 

stringers and extending 1;he lengi;;h of the panelo As these wrinkles form9 

the load will be gradually transferred from the wrinkled area toward the 

stringer 9 thereby loading the stringer and shell nearest the stringer 

heavier than the shell in the immediate vicini:ty of the cw.rinkleso Since 

very little addltional load will be resisted by the shell in the vicin-, 

ity of the wrinkles, the stringers and shell in close proximity will be­

come more heavily stressed as loading progresseso If a curve of compres-· 

si.ve stress in the panel be plotted as ordinates across the wid'th of the 

panel9 it would exhibit a minimum value at the wrinkled portion and a max­

imum over the stringers with intermediate values between these two pointso 

Bruhn (1949) in his discussion of this sub,ject states that it would not 

be feasi,ble ·to use expressions for the actual stress distribution in the 

shell between stringers for design purposes because of their com11lexity. 
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To provide less complex formulas for use :in designJ attempts have been 

made to find expressions for an neffective widthnu or 11 effective area" of 

shell which would be assumed to act with the stiffener to resist load 9 

be uniformly loaded with the same stress as that in the stringer~ and be 

or' such dimensions that the total load carried by this effective area 

would be equal to the total load in the shell between stringers. The 

shell material not .included in this effective area would be assumed to 

be u:tistressed. Using the concept of effective areas of shell 9 thenc1 the 

actual varied stress distribution across the panel will be replaeed with 

a series of unJ.formly loaded stringer-shell combinations with porti.ons 

of the shell in the vicinity of the wrinklesJ between the stringersJ 

carrying no load. 

Let attention now be focused on a portion of the loaded panel con­

sisting of two stringers and the intervening shello If the sides of the 

shell are assumed to be simply support,ed at the stringer attachment 9 the 

rectangular shell tends to act as a series of square plates wi.t.h wrinkles 

or buckles in each square 9 and Euler I s formula for a flat, plate can be 

where Fe 
CR 

F: >:. i(E:.l~\2 
''-CR. \:1,:>, 

is the total load on the panel section under consideration 

divided by the area bt of the shell between lines of attachment, 9 t is 

the thickness of the shell.~ b is the width of the shell between attach­

ment lines 9 Lis the total length of the panel between loaded ends 9 and 

K is a, function of (t) and the degree of edge restraint. The value of 

K for various edge fixity conditions ~nd (t) ratios has been determined 

by experiment and results made readily made available. (Bruhn9 1949). 
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If the four edges of a long shell are considered simply supported 9 

K is equal to 3e62 and 

If the effective width of the shell each side of the stringer attach­

ment line is wfe and the total effective wid·th of shell which acts with 

one stringer is 2w9 

It was first proposed by Von Karman and Sechler to solve this equation 

for the effective width 2w in plac:e of the shell width b when Fe 
CR 

was replaced by the yield point of the material (Bruhn9 1949). Si.nee 

experiments have shown that the ultimate strength of the shell simply 

supported a't; t.he edges was independent of the widthp the foregoing 

equation could be written as~ 

where fyp is the yield point of the :roo:t,erial and 2w is the total effec­

'tive width of the shell between 'the t;wo stringers of the panel portion 

under considera'tiono 'I'hem 

Lat,er the yield point stress was replaced by the. st;iffener stress~ .fsto 

Experimental work by Newell indicated that the value 095 was too high 

and should be replaced by o 85 (Bruhn9 1949) o The following equation 

has resulted and :is widely used in aircraft practice~ 

w = , 85 t V ~. 
"!St. 

The above equation is approximate when used for most thin°-walled struc-
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tureso the stringers a.re stiff in torsion or 9 in other ways 9 do not 

let the shell edge rotate in the fashion of a simply supported one as 

assumed,9 the value of K will be greater than Jo62o F'ischel us expe1·iments 

indicate that, for some shell-stiffener combinations common to aircraft, 

construc:tion9 the edge conditions a.re more nearly clamped or f.ixed than 

simply supported 9 and K should be 6035 as a minimum (Bruhn9 1949)0 How= 

ever 9 the equatiom 

'l T7:3 
·i: V 'F"" 

-,~st 

yi,elds -~ smaller effective width Um.:n any other such expression proposed. 

It is conservative and considered satisfactory for design of normal air-· 

craft st;:ructures~ A more precise value may be desirable for very high 
j 

speed ai·rc:ra.f't whose wing shell t,hickness may be many times greater 

th.a.t used on normal spe,ed a:lrcraft o 

The solut,io:n to the above equation :is a t,rial and error process with _ 

values of f 0 _,. usually being assmnedp w computed 9 and latf.3r correct,ed 
~u 

by a more accu:rat,e est.i.mate of f ir: o W:it,h reference 
Su 

is esti:ma:1.;ed to be 10 9 500 pounds per square .inch9 w is 27t and the 

tive area as shown in the figure is approximately ?to The quantity lOt 

was used for convenience in computations J and in view of ·the .foregoing 

discussion9 may be considered as satisfactory as the value of 7-t, com-· 

putedo 

With reference to equation (23a) it has been stated that twice the 

area connected with the determination of t,he shear flow q 1 from wing 

bending shall be designat,ed by the symbol m6 'This area is listed i.n 

column 15 of 'rABLE II9 and t;he method of comput,at,ion shown 1.n Figure 

280 It may be noted that the ar::rangE:im.ent of computa.t,ions of this qua1:1m 
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tity9 and of others9 affords ease of slide rule or desk calculator ~\I?'.'."' 

erat:ton and adaptabili.ty to digit~J.1 comput£{J.~s 9 ,su.ch as the IBM 0rYPE 6500 

51-1ow ,HAT m=bc.-cid qs 

ti'.!: cd _ <a.l? _ {c-ei) (b-o') 
2. -z:: ~ ' 2· .. tr>AeeA~· 

I o~ J_ m = bc-acl 311111'! • l 

C. ; 

FIGURE 28 

DETERMINATION OF AREA m 

Wit,h the properties of 'it,he secr!;ion determined 9 a'tt,ention is turned 

to the computat,ion of the stringer loads for which :CABLE III is a suit= 

able formo The wing is subjected to unsymmetrical bendingo The gen-· 

eral bending formula is used and is as follows~ 

where fb is the bending stress in tl::us string,:.ir.9 Mz and ~ are the b,1:m­

ding moments about the Z and Y axes :respectively9 Iz and Iy ar"e the mo­

ments of inertia about the X and Y axes respeeti.vely9 and I :Ls th,e yz 

producrt of inertiao From Figure 25 9 it can be, seen that g 

M:1 -: 200,00 o (.500-7z) =- 85, l.o X !01, 1 n.-lbs 
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The moments of inertia and products of inertia have been computed in 

TABLE IIo The loads Pin the stringers are computed as the bending 

stress multiplied by the effective area of the stringer-skin combination. 

TABLE III 

SKIN-STRINGER ELEMENT STRESSES AND LOADS - STAo ~S 273 

\ =-rv\;;.ty - tv\'l' Ly·., l = -iso.451 1, _ -\ f-./1'.I Ii?a - Ma,L1= J = - z.:%5.l,,f6 I I t "t -;,. ' p - 1 z ' ~ ·"i!. - l Ye J - _ 'ii°'" -Lf;, 

,_, 
:ri,-/bs, 

I 
; Y\ ,- iii?s {\l\:;i = 85,~ X/0 Ml = !l.55G, X!O' 

G) ® ® G) ® ® 0--) 
---·· 

h~ 
I 

I< I h~ l<z. hi!, -!\ p Sn:1N6Er. n-t. i ., 
Cot...QJ COL-,Q3) 

1<1 ~w 1<2- t(]) (4) .\ ® @x(?J TP~l-=-~-1 /VO, TABl-ia.. II TAB 1-"'- I I 

l '19? -45 !:Mi -4{, if?(, - /25 3.?o 
i 

~, G.31 1·1.32'9 - -------~ 

2 14. 'jf{/ I 8' ,7:53 -Z'l.39 ,-44 3t.f -4t &03 - 114 t /.{ 
,,,_. ____ , _ _,, 

3 23 , I 3/ i~ .o'Z4 -348'D -42 (,,39 -4-e: /Fl -1,?_J ~? 2 

+ 31 3:JI 17 , I ~5 -472 I -40 t,.54 -45' 37:J - I;?/ z·.?~3 
.,, ,..- /' ~-
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In the same manner~ 'the section properties of ·the ne:irt two adjacent 

wing sec'tions are computedJ and t,hs stringer loads foundo 'rhe resuUs 

are shown in TABLES DT 9 V 9 VI and VII which follow o 
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TABLE IV 

WING SECTION PROPERTIES - STA. XRS 237 
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TABLE V 

SKIN-STRINGER ELEMENT STRESSES AND LOADS - STAo ~S 237 
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TABLE VI 

WING SECTION PROPERTIES - STAu XRS 201 
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TABLE VII 

SKIN-STRINGER ELEMENT STRESSES AND LOADS - STA. ~S 201 
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The wing section properties and stringer loads have been computed in TABLES 

II to VII for three cross-sections.~ each thir·ty-six inches from the otht1r. 

The cross-section at which the shear flows are desired is the center one 

of the three. The information contained in TABLES II t,o VII is a neces~" 

sary prerequisite to the completion of TABLE VIII which contains the re­

quired shear flows at STA. ::~8 2.37. An examination of the information of 

TABLE VIII will now be made o 

All columns of TABLE VIII~ with the exception of column 15~ may be 

completed using previous computations and information from the geometry 

of the structure. The change in load on a stringer j Li P 9 is calculated 

as the difference between loads at the two extreme cross 0-sect:i.ons, XRS 273 

and 20lo (¾s indicates a distance along the rear spar oft.he wing from 
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TABLE VIII 

WING SHEAR FLOWS AT STAo XRS 237 
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a selected origin which may be located in the vertical plane of symmet,ry 

of the airplane;,) The shear flows in the wing shell are found at, the 

intermediate cross-sedion9 STA" XRS 237" Hense 9 the quantities MJ J, ~ 

and t are those a't this stat,ion. '.I'he values of the shear flows found 

are assumed to be constant between the two extreme cross-sectionso The 

quantities .AP A2,9 and A3 are found from the geometry of the cross-sec:-, 

tion as the areas enclosed by the perimeters of cell 19 cell 2 and cell 

total ar'ea enclosed by ·the airf'o:il shell is usually read:Hy av-ailabl1;1" 

In colurnn 15 is found the shear flows 9 qNE'I" 9 between stringers. 

qNET is the result of the algebraic additi.on of q u 9 the :relative shee.r 

flows from wing bendi:ngD and q19 and q;2i; or q3,9 depending on which cell 

is und8r conside:rationo The valm:'le: of q u are found in '.I'ABLE VIII 

qp q29 and q3 will be unknown at the time this t,able :Ls filled o 

The simultaneous solution of equations {21a) ,9 (22a) v and (23a) 9 whose 

constant,s are arranged conveniently :in TABLE IX9 yields t,hese quantitieso 

q19 q29 and q3 'thus found are shown at the top of "rABLE VIII and qNE'r 

recorded in column 150 
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TABLE IX 

CONSTANTS OF SHEAR FLOW EQUATIONS (21a) ~ (22a) ~ (2,3a) 
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PAR'I' XI 

CONCLUSIONS AND RF,COMMENDA"r!ONS 

The problem in this report has been t,o accumulate inf'ormat,ion on 

the basic theories and analytical t.,ools used for Jthe det,el'.:omine.tion of 

the shearing stresses in thin-walled 9 multi=,cell,9 multi=stiffe::ner 

tures and to formulate procedvx·es f'o:r tha .shear analysis of t1!ese 

tu.res. Most of' the basic theori.es have been gathered from t,ext books 

about aircraft structurefl~ such a.s Bruhn (1949) and Peery (1950) and 

text books regarding m9chanics of materials,9 such as Seeley (1955) and 

Timoshenko (1956). 'I'he information so ga1Lhe:r'ed and illustrated ::tn this 

report builds in:to a procedure for the shear analysis of a complicat,ed 

multi-·cellJ rrmlti-stiffe:ner,~ thin-walled structure :in the form of a:rt 

plane wingo This procedure 9 shown and explained in PART X of this re-0 

port 5, is especially useful .for applicable st,ructures whose bott.'\'ldar,y· 

surfaces cannot be expressed. in easily manipulated mathematical ex-· 

pressionso The arrangem::mt and grouping of the tabular 1::omputat;ions of 

the procedure shown in PART X is such that digital compu:ters 3 such as 

the IBM TYPE 650D may be used for the problem solut;ion with a mi.n:l.mum 

of effort expended in transposing and rearranging data$ 

Ma.ny publications regarding the resul"ts o.f resear0ch and testing 

programs for the struct;u:res wi'th which this report is concerned are avaJJ.­

able from such governmental agencies as the National Advisory Gonind.ttee 

for Aeronautics.9 Washington~ Do Co HoweverJ these research and testing 
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programs have for· th,::d!' ultimate ai.m the examination of the behavior 

of the structure at or near f.ailureo Hense~ litt,le information regard 0 • 

ing basic ·theory of shear analysis will be found in these documentso An 

examination of the data cu.t'ves 9 graphs 9 and phcr't.ograph reproductions of 

tested struetures will acquaint the reader with the natu.1"e and behavior 

of these structures unde:J:' loado For example.9 the effect of varying dis=· 

ta.noes betweer1 st,lffBrJ,Errs on. the point at which inelastfo behavior occn.rrs 

can be observedo 

Regarding thin---wa1led strucrtures.9 can be said that a mi.1lM:tude 

of subjects for futu:ce study present 'themselves., I!'ortuna.'!:;ely9 a large 

amount of printed matter is available :tn t,he form of books 9 research 

and testing raportsD and publications of the (angineering .societiesa A 

source of knowledge not to be overlooked is found in 'thra persons of those 

qualified engineers who are willing to teach ·those students who are wil= 

ling to learno The following pattern for future st,udy is recoi:moondedo 

lo Discover if the procedures outlined in this report for the shear 

analysis of multi-,cell9 multi=stiffene.r 9 thin-walled structures can be 

improved so as 1~0 result in a more accurate analysis 9 with less effort 9 

and part,icularly with a saving of weight for the structure involv,ado 

2o Determine the effect of stress concentrat;ions a.round openings 1> 

or 10 cut=outs 9 iu in the shell and of the close proxind,ty of a longitudinal 

or transverse stiffener on the shear stresses in the shello 

3o Study the effect on procedures outlined in this report, when the 

thickness of the shell increases to the proportions found on some of the 

present high speed aircrafto 
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icoj) 1951--1952 9 Const,ruc·tion Engineer; Sandi.a Corporatfon)) New 
Mexico 9 1952-195.3 9 Mechanical Engineer; Douglas Aircraft Co. 1, 
Santa. Monicaj) California 0, 195}·»195/+9 Tool Engineer; Lee Co Moore 
Corporat,ionJ Tulsa 9 OklahomaD 195lrl955~ Structural Engineer, 
Douglas Aircraft Goo,9 Tulsa 9 Oklahoma 9 1955-·19569 St.ress .Analyst. 

Member of Sigma Tau and Chi Epsilon engineering honorary soci.etiese 
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