PROCEDURE FOR THE SHEAR ANALYSIS OF THIN-WALLED
METAL CYLINDERS SUBJECTED TO BENDING
AND TORSIONAL LOADS

By
John Jo Reid
Bachelor of Science
University of New Mexico
Albuquerque, New Mexico
1951

Submitted to the Faculty of the Graduate School of the Oklahoma State University in partial
fulfillment of the requirements for the degree of MASTER OF SCIENCE August. 1957

PROCEDURE FOR THE SHEAR ANALYSIS OF THIN WWALLED METAL CYLINDERS SUBJECTED TO BENDING AND IORSIONAL LOADS

Report approved:

Report Adviser

Dean of Graduate School

284883

PREFACE

Recently, while employed as a stress analyst for an airframe manufacturer, the author became interested in the load-carrying capabilities of thinwwalled stiffened cylinders such as airplane wings and other types of thin walled structures which result from the requirement that heavy loads be resisted by the lightest possible structure。 An evaluation by the author of his training and experience in what may be termed "civil engineering structures" indicated a sound basis for analytical work with aircraft structures, but also pointed out the need for acquiring know ledge of the behavior of structures common to the airplane and the mew thods used to analyze them.

Since the determination of the shearing stresses is of paxticular interest to the author, and since shearing stresses are required as a preliminary part of a complete analysis of a structure, this subject was chosen for ficsst study. The study was begun with the rudiments of the shear analysis of various shaped thin-walled structures without stiffening members, and progressed through a procedure for the shear analysic of an airplane wing. This report records the results of this study.

The author wishes to express his gratitude to Lloyd Jackson and William Burkitt of the Stress Analysis Group of Douglas Aireraft Coor Inc. Tulsa Division, and to Professor Raymond E. Chapel for their technical assistance; to Roger L. Flanders, Professor and Head of the School of Civil Engineering, and to Professor Jan Jo Tuma who have sead the complete manuscript, made many valuable suggestions, and given freely of
their time to the author during the preparation of this report; to Douglas Aircraft Co. 2 Inco, for making the author's graduate study posm sible: to the Tulsa Division of this company, and to the National Ade visory Committee for Aeronautics, Washington, $D_{\theta} C_{0}$ for making avail able documents used during the study; and finally to the author's wifeg without whose help and undergtanding, the author's graduate study would not be feasible.

TABLE OF CONTENTS

Paxt Page
Io INIRODUCTION 1
II．A SYNOPSIS OF SM．TERANMY PRINGIPLE REGARDING TORSIONAL SHEARING STREGSES IN MHIN－WALLED CYLINDERS 3
III．SHEARTNG STRESSES IN HOLLOW THTNWALLED BEAMS DUE TOBENDING EROM A VERTICAL FORCE ．．．。。．。．．．。．。．。 8
IV．TORSIONAL SHEARING STRESSES IN THINNWALLED OTRCUTAR CYLIINDERS 13
Vo SHEARTIIG STRESSES IN A THINNWALLED CIRCULAR TUBE DUE TO BENDING FROM A VERTICAL FORCE 15
VI．IORSIONAL SHEARING STRESSES IN THINWWALED HLLTPTICAL CYLINDERS 19
VII。 SHEARING STRESSES IN A THIN－WALLED ELLTPTICAL CYLINDER， DUE TO BENDING FROM A VERPICAL FORCE 20
VIII．SHEARING STRESSES IN TAPERED BEAMS 25
IX．AN EXAMPLE PROBLEM OF A THIN WALLED MULTLL－CELL STRUCTURE 35
X。 AN EXAMPIE PROBLEM IJLUSTRATITG A PROCEDIRE FOR THE SHEAR ANALYSIS OF AN AIRPLANE WING 46
XI。 CONCLUSIONS AND RECOMMENDATIGNS 68
SELECTED REFERENCES 70

LIST OF ILLUSTRATIONS

Figure Page

1. Definition Sketch for Sto Venant's Analysis 3
2. Definition Sketch for Derivation 6
3. Definition Sketch Cor Derivation 7
4. Definition Sketch Eor Derdvation 8
5. Definition Sketch for Derivation 9
6. Definition Sketch for Dexivation 10
7. Definition Sketch for Derivation 13
8. Derinition Sketch for Derivation 15
9. Sketch for Stringer Load and Shear Flow Computations 22
10. Sketch for Stwinger Load and Shear Flow Computations 23
11. Definition Sketch of Tapered Beam 26
12. Sketch of Tapered Beam of Example Problem 28
13. Sketch Showing Partial Results of Tapered Beam Problem 29
14. Definition Sketch for Tapered Beam Problem 30
15. Sketch Showing Partial Results of Tapered Beam Problem 31
16. Sketch Showing Results of Tapered Beam Problem 32
17. Sketch Showing Results of Tapered Beam Froblem 34
18. Definition Sketch for Example ThreemCell Problem 36
19. Definition Sketch for Example Three-Cell Problem 37
20. Definition Sketch for Example ThreemCell Problem 38
21. Definition Sketch for Example Three-Cell Problem 40

22．Definition Sketch for Example Threemell Problem．．．．．。． 41
23．Definition Sketch for Example ThreewCell Problem ．．．．．．44
240 Sketch Showing Results of Example Three－Cell Problems ．．． 45
25．Sketch of Airplane Wing for Example Wing Problem．．．．．．． 47
26．Definition Sketch for Example Wing Problem．．．．．．．．．51
27．Definition Sketch for Eifective Skin Area 。．。．。。。． 54
28．Sketch for Computation of Area m．o．。．。．。．。．．．．59

NOMENCLATURE

A
$\mathrm{B}_{9} \mathrm{C}_{9} \mathrm{~K}_{9} \mathrm{~N}$ 。 Coefficients。
D

E

F
 Force in pounds.

Area in square inches; Coefficient.

Diameter of cylinder in inches; Coefficient. Modulus of elasticity in pounds per square inch; Coefficient.

Compressive stress at instant of crippling, pounds per sq. ino Modulus of rigidity in pounds per square inch; Coefficient. Height above the crossmsection of a hollow cylinder of the plane which represents St. Venant's stress function for the hollow portion of the cylinder; Coefficient. Moment of inertia of an area in (inches) ${ }^{4}$. Subscripts x and y designate bending axes. Subscript p designates polar moment of inertia. Length in inches; Coefficient. Bending or torsional moment of forces; Coefficient. Force on stringer in pounds. Radial distance in inches. Torsional moment in inch-pounds. Strain energy in inch pounds. Vertical shearing force in pounds. Subscripts w and f designate web and flange, respectively. Distance along the rear spar of an airplane wing from a fixed origin in inches.

$\mathrm{X}_{9} \mathrm{Y}, \mathrm{Z}$	Designates mutually perpendicular bending axes.
C. Go	Center of gravity of areas of the structural elements of a crossmsection.
a, b, d	
$h_{9} \mathrm{y}$	Distance in inches
c	Distance from the bending axis to the extreme fibre in
	inches: Distance in inches.
f_{b}	Bending stress in pounds per square inch.
$\mathrm{f}_{\text {s }}$	Shearing stress in pounds per square inch.
$f_{s t}$	Stringer average stress in pounds per square inch.
$f_{y p}$	Yield point stress in pounds per square inch.
ℓ	Distance between stringers along the shell in inches.
q^{0}	Relative shear flow from bending in pounds per inch.
q_{0}	Unknown shear flow at a specific point in pounds per incho
$q_{1} q_{2} q_{3}$	Unknown constant shear flows in cells 1,2 , and 3 , respec-
	tively.
t	Thickness of metal shell or web in inches.
$u_{19} u_{2}$	Angular measurement in degreeso
w	Effective width of shell each side of a stringer attach
	ment line in inches.
ds	Elemental distance along the periphery of a cell in inches.
Δ	Designates a change in a quantity or a difference in the
	same quantity measured at two points.
θ	Angular deformation of a cell in degrees or radians.
μ	Poison ${ }^{\text {a }}$ S ratio.
α, β	Angular measurements in degrees or radians.
e	Moment arm or distance in inches.

Distances measured forward from the rear spar of a wing cross-section are negative.

Distances measured downward from the Y-axis in the wing crossessection are negative.

PART 1

INTRODUCTION

To study the action, under load, of the complicated thin-walled structures common to aircraft, an understanding of the basic theory and analytical tools available for the analysis of the elements of these structures must be gained. This information is available in standard texts on aircraft structures, such as Bruhn (1949) and Peery (1950). As the elements of the structure are assembled, the number of analytical tools necessary will be increased and new procedures for the analysis will be developed.

This report will show the origin of the necessary basic theory and procedures for the determination of the shearing stresses in thin walled structures of varying degrees of complexity. The ultimate goal will be to show the procedures for the determination of the shearing stresses of a multi-cell, multiostiffener, thinwwalled structure。

Whenever reports of structural tests are available - particularly for a type of structure with which the interested engineer is not thoroughly familiar - they should be examined with a view to obtaining information of the behavior of the structure under load, and, perhaps more important, to attempt to obtain a "feeling" or degree of intuition regarding the behavior of the structure under load. Some of the more informative test reports regarding thin-walled cylinders which are available from the National Advisory Committee for Aeronautics, Wash-
ington, D_{0}. . are included in the bibliography. Since the research and testing programs reported upon by the aforementioned documents have for their ultimate aim the examination of the tested structure at or near failure, very little effort is spent deriving theory of a basic nature regarding the structure when the stresses are such that the structure does not assume any inelastic deformation. However, among some of the things which can be observed from the curves, graphs and photograph re* productions of the tested structures during various phases of loading are the following: the build-up of stresses during test, the point where inelastic deformation takes place, and the effect of varying the stiffener spacing and other dimensional ratios.

Since the assumption is made throughout the report that the structure examined behaves elastically and does not buckle, the theory noted. and the procedures for analysis shown are valid for elastic behavior only. However, in aircraft practice, since no main part of the structure is allowed to assume inelastic deformation under the loads actually imposed on it, the procedure shown in this report for single and multiocell thin-walled structures is acceptable. Some of these procedures are in use by airframe manufacturexs.

PART II

A SYNOPSIS OF ST. VENANI'S PRINCIPLE REGARDING THE TORSIONAL SHEARING STRESSES IN THIN-wALLED CYLINDERS

In St. Venant's analysis of the torsion of solid prismatic bars of non-circular cross-section, there can be found a stress function φ such that $\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \varphi}{\partial y^{2}}=-2 G \frac{G}{L}$ and $\varphi=0$ allong the boundary. The shearing stresses at any point in the bar are given by the derivatives of $\varphi \cdot \tau_{Z X}=\frac{\partial \varphi}{\partial y} ; \quad \tau_{Z Y}=-\frac{\partial \varphi}{\partial x}$. Also the volume beneath the sureface representing the stress function is equal to $1 / 2$ the twisting moment, $T=2 \iint \varphi d x d y$

FIGURE 1

In Figure $l_{\text {g }}$ let $A B C D E$ be the cross-section of the surface repre senting the function φ for a hollow bar. Since the bar is hollow, the surface $B C D$ extending over the hollow portion can have no physical sige nificance, because stresses here do not exist. Hence the surface $B C D$ must be replaced by a surface which has a slope of zero everywhere over the hollow portion. Such a surface is represented by the plane BD whose distance above the crossosection is H_{0}. The surface representing the stress function φ is therefore $A B D E$. The same use can now be made of the stress function represented by the surface ABDE in solving the problem of the torsional resistance of a hollow bar as was made of the function φ for a solid bar.

The twisting moment T to which the hollow bar is subjected is equal to twice the volume underneath the surface $A B D E$, and is therefore ap proximately

$$
\begin{equation*}
T=2 \mathrm{AH} \tag{I}
\end{equation*}
$$

where A is approximately the inside area of the hollow section (or the area within the mean perimeter) and H is the height of the plane $B D$ above the crossesection. It must be emphasized that the above formula holds only for thin walled sections.

The approximation involves the assumption that the torsional shearu ing stress is constant over the thickness of the wall, an assumption which is common in dealing with the torsional resistance of thinmalled sections. The slope of the surface at any point is equal to the stress in the bar in a direction perpendicular to the direction in which the slope is taken. Hence, if the wall of the hollow bar is relatively thin, the slope at any point along the arcs $A B$ or $D E$ may be taken, without serious exror, as H/t where t is the wall thickness. The shearing
stress in the bar is therefore

$$
\begin{align*}
T & =H / t \\
\text { But } H & =\frac{T}{2 A} \\
\text { Therefore } T & =\frac{T}{2 A t} \tag{2}
\end{align*}
$$

In some applications of thin－walled members subjected to shearing stresses，it is more convenient to use an expression for the shear flow q instead of that for the torsional shearing stress T 。 By definition $q=\tau t_{0}$ Then $q=\frac{T}{2 A}$.

It should be noted that the quantity H is equal to the shear flow g_{o} The equation $T=\frac{T}{2 A t}$ may be used in calculating the stresses in tub ular members under torsion prior to buckling if the thickness of the wall is small，variations in thicknesses are not abrupt，and there are no rementrant corners．（Timoshenko，1956，Pg。248）。 These，then，are the assumptions which are made when using equation（2）or（2a）．

It is very difficult to apply the Soap－Film Analogy as an expert mental tool when concerned with thin walled hollow sections．Howevero one of the major benefits of the Soap－Film Analogy is as an aid in the visualization of the comparative magnitude of the stresses in the seco tion．This can be understood from the fact that the shearing stresses are proportional to the slope of the stretched membrane（analogous to the stress function φ ）。 The SoapmFilm Analogy will apply to hollow bars if the opening representing the crossmsection has the inside boundary raised a distance H above the outside boundaryr as is shown in Figure l_{0}

The equation for the shear flow due to torsion in thin－walled sec－
tions, $q=\frac{T}{2 A^{2}}$ can be derived without the aid of St. Venant ${ }^{1}$ s principle as follows:

FTGURE 2
The above figure represents a portion of the thin-walled tube shown in Figure 1 . 0 is any point, ρ is the moment arm about 0 of the force $d F$, and q is the constant shear flow ($f_{s} t$).

$$
\begin{array}{l|r}
\partial F=q d s & d T=2 q d A \\
d T=\rho q d s & T=2 q \int d A \\
d A=1 / 2 \rho d s & =2 q A \\
d T & =\frac{d A}{q \rho} \tag{2a}
\end{array}
$$

where A is the area enclosed by the mean perimeter of the closed crosssection, and $f_{s}=T=$ shearing stress.

That the shear flow q produced by pure torsion of a thin walled closed section is constant around the walls of the cross-section may be shown with reference to Figure 3. Let any two longitudinal sections, I- 1^{0} and $2-2^{1}{ }^{1}$ be taken in the general thinwwalled member of Figure 3 subjected to torsion only. The length of section l-I' equals the length of section $2=20$ equals L_{0}

The sum of the forces in a longitudinal direction equals zero.

$$
\begin{gathered}
q_{1} L+q_{2} L=0 \\
\left|q_{1}\right|=\left|q_{2}\right| \\
\sum M_{1}=0 \\
q_{1} L d+q L d=0 \\
\left|q_{1}\right|=|q| \\
q_{1}=g_{2}=g
\end{gathered}
$$

The shear flows are equal at points 1 and 2 .
It may be noted that the shear flow $q=f_{s}^{0} t$ may be obtained before the shear stress is determined.

FIGURE 3

PART III
SHEARING STRESSES IN HOLLOW THIN-WALLED BEAMS DUE TO BENDING FROM A VERTICAL FORCE

The thin walled hollow beam shown in Figure 4 will be considered.

FIGURE 4

The shearing force V parallel to the beam crossmsection produces a shearing stress f_{s} of varying intensity over the area of the cross section. Since the shearing stresses on any two perpendicular planes are equal, the shearing stresses on any horizontal plane through the beam are equal to the vertical shearing stresses on the crossmection at the point of intersection of the two planes. Then the magnitude of the vertical shearing stresses at any point on the cross-section will be obtained if the horizontal shearing stresses at the point are
computed.
Consider a portion of the beam between two vertical crossesections, held in equilibrium by the forces and moments shown in Figure 5. At this point in the discussion, assume the line of action of V such as to produce no torsion nor unsymmetrical bending on the beam shown. Also assume that the crossesection of the beam remains constant along its length. The effects on the shearing stress of these restrictions will be discussed at the end of this section.

FIGURE 5

The shearing forces V will be equal in magnitude and opposite in direcu tion. The bending moment on the crossesection to the left will be $\mathrm{M}+$ $V a$, where M is the bending moment on the right crosswsection. Provided the portion of the beam does not buckle or yield, the stress situation will be as shown by Figure 6 。

At a point a distance y from the neutral axis the bending stress will be $\frac{M y}{I}$ on the right face and $\frac{\text { My }}{I}+\frac{\text { Vay }}{I}$ on the leftt face. In order to obtain the shearing stress at a distance y_{1} above the neutral axis, the portion of the besm above this point will be considered as a free body as shown in Figuxe 6 (2). The resultant force on the crossm
section on the left is greater than that on the right. For equilibrium of horizontal forces, the forces produced by the shearing stresses f_{s} on the horizontal area of width b and length a must be equal to the differences in the normal forces on the two crossmections.

(2)
(1)

FIGURE 6

Since only the differences in the forces need be considered, the loading shown in Figure 6 (2) may be used in computing the shearing stresses.

$$
\begin{gather*}
\sum F_{H}=0 \\
f_{S} b a=\int_{y_{1}}^{c} \frac{V a y}{I} d A \\
f_{S}=\frac{V}{I b} \int_{y_{1}}^{c} y d A \tag{3}
\end{gather*}
$$

Where the integral represents the static moment of the area of the cross-section above $y_{I^{2}}$ the point at which the shearing stress is dew sired, and b is the sum of the wall thicknesses along a horizontal plane at the distance y_{I} from the neutral axis. The shearing stress
f_{s} in formula (3) is in a vertical direction and the dimension b is in a horizontal direction. Consider a point A on the left wall of a crossm section of Figure 4 a distance y_{1} above the neutral axis. Let the thickness of the wall at point A in a horizontal direction be b_{A} and the corm responding thickness of the right wall be $b_{A}{ }^{\circ} f_{s} b_{A}$ is a shearing force per inch of wall at point A and acts in a vertical direction. If \propto is the angle between the vertical direction and a tangent to the crosse section boundary at point $A_{,} f_{{ }_{g}} b_{A} \cos \alpha$ will be a shearing force per inch of wall which is tangent to the crossmsection boundary. $b_{A} \cos \alpha$ is the radial thickness of the wall at point A and can be called t_{A}. Then, the shear flow at point A tangent to the crossosection boundary will be given by the equation:

$$
\begin{equation*}
q=f_{s}^{t} A_{A}=\frac{V}{I t_{A}} \int_{y_{1}}^{y_{0}} y d A \tag{3a}
\end{equation*}
$$

where y_{0} is the point of zero shear flow on the cross-section above point A. Since the shear flow at point A given by equation (3 a) is tangent to the crossmsection boundary, it may be combined algebraically with a shear flow at the same point due to torsion, if desired.

It was previously noted that in the above derivation of formula (3), no torsion was introduced. If the vertical shearing foree V is applied at a point other than the shear center, there will be a torque $T=\mathrm{Ve}$ applied to the section, where e is the moment arm from the shear center to the vertical force V 。 An analogous situation is that of a force V and a couple $T=V e$ applied at the shear center. The effects of a torque applied to thin-walled closed sections was discussed in a previous secm tion. The beam shear due to a vertical force V at the shear center was discussed in this section. By the method of superposition the shearing stress f_{s} or the shear flow q may be found.

The condition of unsymmetrical bending deserves further consideration. The simple beam formula applies only to special cases of beam flexure, The resultant bending moment on the cross-section must act about one of the principle axis of the area. The neutral axis will then be parallel to the axis of the resultant bending moment. In the more general cases of beam flexure, however, the resultant bending moment is not about one of the principal axes; then the direction of the neutral axis cannot be determined by inspection. One method of finding the beam shear, $f_{s}=$ $\frac{V}{I b} \int y d A_{\text {, }}$ when the vertical force V is applied to the cross-section at an angle other than 90° to the principle axis is to resolve the force V into components perpendicular to the principle axes and proceed as outlined in this section with each component in turn. The principle of superposition can be used to obtain the beam shearing stress at any point in the cross-section. If the cross-sections of the beam are not constant along its length, changes in the shearing stress from section to section may occur, and the shearing stress given by formula (3) may be considerably in error. For tapered beams, formula (3) may be used if the value V is replaced by a quantity kV , k depending on the dimensions of the taper.

PART IV

TORSIONAL SHEARING SIRESSES IN THINwWALLED CIRCULAR CYLINDERS

According to St. Venant's principal for torsion of bars, the tore sional stress f_{s} in a hollow tube is given approximately by the exm pression $f_{\mathbb{E}}=\frac{T}{2 A t}$ where I is the torsional moment on the section, A is the area enclosed by the mean perimeter and tis the wall thickness at the point where the stress is desired. For a circular thin-walled tube as shown in Figure $7, A=\pi x^{2}$

$$
\begin{equation*}
f_{S}=\frac{T}{2 \pi r^{2} t} \quad q=\frac{T}{2 \pi r^{2}} \tag{4}
\end{equation*}
$$

FIGURE 7

It may again be noted that the approximation involved in expression (4) arises from the assumption that the stresses are constant over the thickness of the wall (constant slope of membrane section $A B$). For wall thicknesses very small as compared to the diameter of the tube ($\frac{D}{t}>50$), the formula gives excellent results. In the use of formula (4), it is furm ther assumed that the tube , or cylinder, does not buckle and that the wall thickness does not change abruptly around the cross-section.

PART V

SHEARING STRESSES IN A THIN-WALLED CIRCULAR TUBE DUE
TO BENDING FROM A VERTICAL FORCE

As stated previously, a vertical shearing force parallel to the beam crossmsection produces a shearing stress of vaxying intensity over the crosswsection. This shearing stress is given by the expressiom

$$
f_{s}=\frac{V}{I b} \int y d A
$$

The expression for shear flow $q=f_{s} t$ will now be developed for the beam of circular cross-section.

FIGURE 8

An approximate value of the moment of inertia derived from the as m sumption that the entire area is concentrated at the distance R from the cater of the tube will be sufficiently accurate for finding the shear flow or shearing stress.

$$
\begin{aligned}
& \text { Cross-sectionsi area }=2 \pi R t \\
& \begin{aligned}
\text { Polar moment of inertia } & =2 \pi R t R^{2} \\
& =2 \pi R^{3} t \\
I_{X}=I_{Y} & \frac{I_{P}}{2}=\pi R^{3} t
\end{aligned}
\end{aligned}
$$

The shear flow is aero at the intersection of the center line with the top and bottom portions of the crossmsection (points A and B) due to symmetry. The integral of $f_{S}=\frac{V}{I b} \int y d A$ represents the moment of the area between the upper center line and the point y_{1} as shown in Figure 8(3), where y_{1} is the distance from the neutral axis to the point where the shear flow or shearing stress is desired.

$$
\begin{aligned}
\int y d A & =\int_{0}^{\alpha} R^{2} t \cos \beta d \beta \\
& =R^{2} t \sin \alpha
\end{aligned} \quad \begin{aligned}
q & =\frac{V}{I} \int y d A \\
& =\frac{V}{\pi R^{3} t} R^{2} t \sin \alpha \\
q & =\frac{V}{\pi R} \sin \alpha
\end{aligned}
$$

In airframe analysis, this expression is frequently used for determining the shear flow in a circular fuselage 。 The longitudinal stiffening memberg, although they are concentrated areas, usually have approximately a uniform spacing around the circumference. It is often sufficiently accurate to assume these areas distributed along the circumference of the fuselage when determining the shear flow.

The shearing stresses due to bending and due to torsion are collinear quantities, since each is tangent to the crossesection boundary. They may be superimposed to give the following result:

$$
f_{S}=\frac{T}{2 \pi R^{2} t} \pm \frac{V}{\pi R t} \sin \alpha
$$

The \pm sign is used with due respect to the direction of the shearing stresses.

When considering the torsion of thin-walled cylinders, it was aso sumed thet the stressed materigl gcted elasticelly and did not buckle, and that the wall thickness was comparatively mall and did not vary abruptiy. These assumptions are also made regarding the present problemo It is reasonable to assume that the shearing stress in thin walled eylw inders due to torsion will be related to the applied torque by a constant, or by a well ordered fiunction, up to a certain point of stress, at which the structure should be expected to assume some of the characterm istics of instability. When g cylinder is subjected to torsion, a point of stress may be reached at which the structure buckles, oharacterized by wrinkling of the walls. In an unstiffened cylinder, immediate colw lapse takes place. But if the cylinder is stiffened by rings and longiou tudinal members, it will continue to carry considerably more loed by teriw sion field beam action, and iff plastic fiow of material does not occur in the structure as a whole, it will teturn to its originel shape, possibly with no wrinkles visible to the eye. In fact, the type of thinowalled cylinders which are common in aircraft construction will usually fail ultimately by the instability of one of the stiffening members, and not by the instability of the shell. The point at which ultimate failure takes place in a thin walled cylinder which is stiffened by rings, frames or
bulkheads, and by longitudinal members is, of course, of concern. It would be difficult to obtain a set of analytical expressions for the stresses in the shell and stiffeners of thinowalled cylinders which were applicable to all designs. Therefore, structural testing has often been depended upon to furnish design information and guidance for engineerso Publications of research and testing programs on this subject dating back twenty-five years and conducted under the auspices of the National Advisory Committee for Aeronautics, Washington, Do Co axe readily available。 Indications are that earier U. S. publications and translations of Eurow pean papers can also be obtained. Most research and testing progrems regarding this subject have for their main purpose the examination of the process at ultimate failure, and from the testing of a large number of different structural configurations, to better aid the judgement of the engineer in the design of the product. In the reports of these tests are found formulas for the torque and stresses in the shell and stiffeners at failure. Such formulas may relate the D / t ratio (dianeter of the cylinder to the thickness of the shell) and the spacing of stiffeners and bulkheads with the applied torque at fiailure. Neaxly all reporets of tests on thin walled tubes show, by curves and graphs, various functions of the stressed structure with respect to the applied torque. A particularly informative report for a person first studying the subject of thin walled cylinders under torsion is MTorsion Tests of Aluminum Alloy Stiffened Circular Cylinders ${ }_{9}{ }^{\text {of }}$ by Jo W. Clark and RoL. Moore, NACA TN 2821, available from the National Advisory Committee for Aeronautics. Washington, D.C.

TORSIONAL SHEARING STRESSES IN THTN-WALLED ELIIPTICAL CYLINDERS

According to St. Venant's principle for torsion of bars, the torme sional streess f_{s} in a hollow tube is given approximately by the exm pression

$$
f_{s}=\frac{T}{2 A t}
$$

where if is the torsional moment on the section, A is the area enclosed by the mean perimeter, and t is the wall thickness at any point where the stress is desired. For an elliptical thinwwalled tube, $A=\pi b h$ where b is the semi-major axis and h is the semi-minor axis of the mean perimeter of the elliptical crosswaction. Therefore

$$
\begin{equation*}
f_{s}=\frac{q}{2 \pi b h t} \tag{6}
\end{equation*}
$$

Prior to wrinkling of the shelly the conditions of stress within the walls of the cylinder will be given by equation (6) in accordance with the membrane analogy for torsion. After the first wrinkling of the sheil has occurred, the stress in the shell probably will vary with the degree of buckling. In the formulation of equation (6), then, the assumptions are made that the cylinder does not assume any inelastic deformation, and that the wall thickness is comparatively small and does not change abruptly.

It has been concluded from torsion tests of a large number of thin aluminum cylinders of elliptical crossosection that the shearing stresses at ultimate torque are the same as those for the circumscribed circular cylinder of the same sheet thickness and length. (Lundquist, 1935)。

PART VII

SHEARING STRESSES IN A THINwWALLED ELLIPTICAL
CYLINDER DUE TO BENDING FROM A VERTICAL FORCE

As stated previously, a vertical shearing force parallel to the beam cross-section produces a shearing stress of varying intensity over the crossmsection. This shearing stress is given by the following expresw sion, provided no torsion or unsymmetrical bending exists:

$$
f_{s}=\frac{V}{I b} \int_{y_{1}}^{c} y d A
$$

This formula was previously developed for a general section. In the development of the above formula, the difference in bending moments on two adjacent sections of the structure was used. It may be seen that the ratio of the bending stress to the shearing stress may vary along the span for a given loading and crossmsectiong and that the ultimate strength of the structure may depend on this ratio. Data from a large number of tests of thin wwalled elliptical cylinders under combined trans verse shear and bending in the plane of the major axis has been recorded (Lundquist, 1935). It has been concluded that at small values of ${ }^{\mathrm{f}^{2}} \mathrm{~b} / \mathrm{f}^{\prime}{ }_{v}$ (the bending stress at the extreme fibre divided by the beam shearing stress at the neutral axis) failure occurred in shear, and as $f_{b / f_{V}}$ approached zero (a condition of pure transverse shear), the shearing stress at a neutral axis at failuxe, as calculated by the ordinaxy beam theory, was approximately 1.25 times the shearing stress at failure in torsion. At large values of $f_{b / f} f_{v}$, the failure occurred in bending. At
intermediate values of $f_{b / f_{v^{9}}}$ there was a transition from shear to ben ding failure. It can be understood that the efficiency of a thin-walled cylinder, in regards to its load-carrying capacity versus weight, can be raised considerably by the addition of stiffening members, such as frames, rings, and longitudinal members. In view of the purpose of this reports it is considered necessary that an examination be made of the shearing stress or shear flow distribution in a thin-walled stiffened cylinder under the action of a vertical shearing force.

The analysis of a thin walled unstiffened cylinder under pure torsion has previously been discussed. The addition of longitudinal stifm feners does not affect this analysis other then possibly adding shear area, provided the magnitude of the shearing stresses in the shell is not such as to cause it to buckle。 Atter buckling of the shell, a propeo erly stiffened cylinder will continue to carry load by a series of in teresting actions, using the combination of shell and stiffeners to a great advantage. The mechanism is known as "tension field beam action ", it is not discussed in this report but is reserved for future study by the author.

The effect on the shear analysis of the addition of longitudinal stiffeners to a thin-walled crosswsection under the action of a load parallel to the crossmsection deserves consideration. Figure 9 is a sketch of a portion of a constent crossmsection box beam of length d with two longitudinal stiffeners, $A B$ and $D E$ attached to a thin metal shell. The difference in the axial load in the longitudinal members (called stringers) between the two crossosections can be found by writing the equation for moments about point B_{ϑ} using arm d with the assumption that the curved shell and web resist no moment.

$$
\Delta P=V \frac{d}{h}
$$

For future convenience, let d equal 1 inch. An examination of Figure 9 will disclose that these forces ΔP must be balanced by the shear flows shown (shear flow $q=f_{s} t$).

FIGURE 9
By summing forces in the horizontal direction,

$$
q_{1}=\Delta p-q
$$

From the membrane analogy for torsion, previously discussed,

$$
\begin{aligned}
& q=\frac{T}{2 A}=\frac{V c}{2 A} \\
& q_{1}=\frac{V}{h}-\frac{V c}{2 A}
\end{aligned}
$$

$q_{2} q_{1} h, c$ and V are noted on the figure and A is the area enclosed by the mean perimeter of the crossesection.

These results may be visualized by replacing the loading situation shown with a vertical force V applied at A and a torsional couple applied
to the crossmsection. If the curved portion of the shell and the vertical web ABED resist no moment, the contribution of V to the shear flow q_{1} will be $\frac{V}{h}$ and that of the torsional moment will be $\frac{V c}{2 A}$ acting in the opposite direction. The shear flow q in the curved portion of the shell will, of course, be $\frac{V C}{2 A^{\circ}}$.

The shear analysis of a thin-walled box beam incorporating many stringers can be made in a similar manner by taking advantage of the rem lationship between the differences in load ΔP in each stringer and the shear flows q in the adjacent shell sections. Reference is made to Figure 10。

FIGURE 10

From a summation of longitudinal loads on various stringers, the shear flows may all be expressed in terms of one unknown sheer flow q_{0}. This shear flow may then be obtained by equating the moments of the shear flows to the external torsional moment about a longitudinal axis. With reference to Figure 10, it can be observed that:

$$
g_{1}=g_{0}+\Delta p_{1}
$$

$$
\begin{aligned}
& q_{2}=q_{0}+\Delta p_{1}+\Delta p_{2} \\
& q_{n}=q_{0}+\sum_{0}^{n} \Delta p_{n}
\end{aligned}
$$

where $\sum_{0}^{n} \Delta P_{n}$ represents the summation of all stringer loads ΔP between the portion of the shell on which q_{0} acts and any point of desired shear flow. After expressing all the shear flows in terms of the unknown $q_{0}{ }^{9}$ the value of q_{0} may be found from torsional moments on the crossesection. Peery (1950) has given an excellent example illustrating the simplicity of this method and affording a visualiza\%ion of the shearing stress dism tribution of single cell, multiostringer thin-walled sections.

It has been noted that all of the previous discussions of the shear analysis of thin-walled cylinders with longitudinal stiffeners is valid provided the shell does not buckle, or undergo any inelastic deformation. Upon buckling of the shell, the structure transfers further load by a degree of tension field beam action. This subject is not discussed in this report.

SHEARING STRESSES IN TAPERED BEAMS

In the preceding discussions of the shear analysis of thin walled beams, it has been stipulated that the crossasections of the beam remain constant. Often, all of the material of such a beam can not be foully utilized. For example, the material near the free end of a cantileyer beam subjected to bending loads may be lightly stressed, whereas the mam terial near the fixed end may be comparatively highly stressed. Increased efficiency, with regard to strength-weight ratio, can be obtained by dem signing the beam so as to cause the bending stresses to be neaxly constant along its length. Such a design may result in a tapered beam. The wing of an aixplane is an example. Although no appreciable error in the bens ding stresses is introduced by using the flexure formula for the tapered beams usually found in aircraft practice, considerable error may be introduced in the shear stresses of such a beam by using the beam shear form mula, $f_{S}=\frac{V}{I b} \int y d A$. Another approach must be used for the determination of the shear stresses in tapered beams.

The tapered beam shown in Figure 11 consists of two concentrated flange areas joined by a vertical web which is assumed to resist no ben ding. The bending loads are assumed to be resisted by axial forces in the flanges. The flanges ore straight and are inclined at angles u_{1} and u_{2} to the horizontal. The resultant axial load in the flanges must be in the direction of the flanges and must have horizontal components $P=V \frac{b}{h}$.

The vertical components of the loads in the flanges P tan u_{1} and P tan u_{2} which are shown in Figure 11 (2) resist some of the external shear V_{0}

(1)

FIGURE 11

Designating this shearing force resisted by the flanges as V_{f} and that resisted by the webs as V_{W} the following equations apply:

$$
\begin{gathered}
V=v_{f}+v_{u} \\
v_{f}=P\left(\tan u_{1}+\tan u_{2}\right) \\
\tan u_{1}=\frac{h_{1}}{c} ; \tan u_{2}=\frac{h_{2}}{c} \\
\tan u_{1}+\tan u_{2}=\frac{h+h}{c}=\frac{h}{c}
\end{gathered}
$$

Substitute the last expression in the above equation for V_{f} o

$$
\begin{equation*}
V_{r}=p \frac{h}{C} \tag{7}
\end{equation*}
$$

Equation (7) will apply for a beam with any system of vertical loads. Since $P=V \frac{b}{h}$, $V_{f}=V \frac{b}{6}$.

From the geometry of Figure $1 l_{2}$

$$
\begin{align*}
V_{\omega} & =V-V_{f} \\
& =V\left(1-\frac{b}{c}\right) \\
V_{\omega} & =V \frac{a}{c} \tag{9}
\end{align*}
$$

Equations (8) and (9) may be expressed in terms of h_{0} and h by making use of the proportion $\frac{a}{0}=\frac{h}{h}$

$$
\begin{align*}
& V_{w}=V \frac{h_{0}}{h} \tag{10}\\
& v_{f}=v \frac{h-h_{0}}{h} \tag{11}
\end{align*}
$$

If a tapered beam has two equal flanges of area A and a depth between flanges of h, the beam shear formula may be used to obtain the shear flow by substituting V_{W} for V as follows,

$$
\begin{aligned}
q & =\frac{V_{w}}{T} \int y d A \\
& =\frac{v_{u}}{2 A\left(r^{2}\right.}\left(A \frac{h}{2}\right) \\
g & =\frac{v_{0}}{h}
\end{aligned}
$$

A similar method may be used to find the shear flow in a tapered beam with several flange areas, if the axeas of the flanges remain constant along the span. The following example will demonstrate a method of computing stringer loads and shear flow for a tapered box beam with several flanges whose area remains constant along the span.

It is desired to foind the stringer loads and shear flows for the tapered box beam shown in Figure 12.

FIGURE 12

Area of stringers

$$
\begin{aligned}
& A_{A}=A_{A^{3}}=2 \text { sq.ino } \\
& A_{B}=A_{B^{2}}=A_{C}=A_{C 0}=1 \text { sq.in." }
\end{aligned}
$$

Angle Functions
$\tan u_{1}=.05$
$\tan u_{2}=.05$

At section $A=A$ 。

$$
\begin{gathered}
h=10 \mathrm{in} \\
I=2(2+1+1) 5^{2}=200(\mathrm{ino})^{4}
\end{gathered}
$$

It is assumed that the moment of inertia of the stringer areas about their own bending axis is negligible。

$$
f_{b}=\frac{M x}{I}=\frac{200,000 \times 5}{200}=5,000 \mathrm{lbs} / \mathrm{in}_{0}^{2}
$$

$P_{A_{H}}=$ Horizontal component of load in stringer A and A° 。

$$
\begin{aligned}
& P_{A_{H}}=5000 \times 2=10,000 \mathrm{lbs} \\
& P_{B_{H}}=P_{C_{H}}=5000 \times 1=5000 \mathrm{lbs}
\end{aligned}
$$

$P_{A_{V}}=$ Vertical component of load in stringers A and A° 。

$$
\begin{aligned}
P_{A_{V}} & =P_{A_{H}} \tan u_{I} \\
& =10,000 \times .05=5001 \mathrm{bs} .
\end{aligned}
$$

$$
P_{B}=P_{C_{V}}=5000 \times .05=250 \mathrm{Ibs}
$$

$V_{f}=$ Vertical shearing load resisted by all flanges

$$
\begin{aligned}
V_{f} & =2 P_{A_{V}}+2 P_{B_{V}}+2 P_{C_{V}} \\
& =1000+500+500 \\
& =2000 \text { lbs. }
\end{aligned}
$$

$V_{W}=$ Vertical shearing load resisted by both webs, $A-A^{3}$ and $C-C^{0}$.

$$
\begin{aligned}
V_{W} & =4000-2000 \\
& =2000 \mathrm{lbs}
\end{aligned}
$$

These loads are shown in the following sketch.

FIGURE 13

To obtain the shear flows in the webs, it is convenient to consider a portion of the beam between parallel cross-sections 1 inch apart, as discussed in Part VI_{2} and illustrated by Figure 140

The change in bending stress on a stringer between two cross-sections one inch apart is

$$
\begin{aligned}
\Delta f_{b} & =\frac{V_{w} y}{I} \\
& =\frac{2,000 \times 5}{200} \\
& =50 \text { lbs per sg. } \mathrm{ln} .
\end{aligned}
$$

The change in axial load on a stringer of area A_{f} is considered to be:

$$
\begin{align*}
& \Delta P=\frac{V_{w} y}{I} A_{f} \tag{12}\\
& \Delta P_{A}=50 \times 2=100 \mathrm{lbs} \\
& \Delta P_{B}=\Delta P_{c}=50 \times 1=50 \mathrm{lbs} .
\end{align*}
$$

FTCURE 14
The error involved in the use of equation (12) is considered negligible for the usual tapered beams found in airoraft practice. The true value of the exial load in a stringer is $\frac{\Delta P}{\cos u}$.

If the assumption is made that the web $B C$ is cut, $q_{0}=O_{2}$ and the relative shear flows $q_{A A}{ }^{0} q_{A B}$ and $q_{C C}$ an be determined by the prom cedure discussed in PART VII of this report. The relative shear flows are:

$$
\begin{aligned}
& q_{A A^{0}}=150 \text { lbs. per in。 } \\
& q_{A B}=50 \text { Ibs. per in. } \\
& q_{C C}=-50 \text { Ibs. per in。 } \\
& q_{C^{0} B}=0 \text { Ibs. per in. } \\
& q_{B^{0} A^{\prime}}=50 \text { Ibs. per in. }
\end{aligned}
$$

The minus sign denotes a countermolockwise shear flow.
The shear flow q_{0} must now be found and the relative values $q_{A A}$ $q_{A B^{2}} q_{C P B^{\prime y}}$ and $q_{C C}$ corrected. q_{0} may be found by taking moments about any spanwise axis, such as one through point 0, Figure 15 (I)。

FIGURE 15

The sum of moments of external forces plus the sum of monents of in ternal forces equal zero.

$$
\begin{aligned}
& -(4000 \times 2)-(2 \times 250 \times 10)-(2 \times 250 \times 20)-(50 \times 10 \times 20) \\
& +(50 \times 10 \times 10)+[(20 \times 10)+(10 \times 20)] q_{0}=0
\end{aligned}
$$

$q_{0}=30$ lbso per in. in a clockwise direction as shown in Figure 15 (2). The resultant shear flows are as follows:

$$
\begin{aligned}
& q_{A A^{\prime}}=150+30=180 \text { Ibs. per in. } \\
& q_{A B}=50+30=80 \mathrm{Ibs} . \text { per in. } \\
& q_{B C}=q_{0}=30 \text { Ibs. per in. } \\
& q_{C C^{\circ}}=-50+30=-20 \text { Ibs. per in. } \\
& q_{C^{\prime} B^{\prime}}=q_{0}=30 \text { Ibs. per in. } \\
& q_{B^{\prime} A^{\prime}}=50+30=80 \text { lbs. per in. }
\end{aligned}
$$

The resultant shear filows and stringer shear loads are shown in Figure 16.

FIGURE 16

The analysis of this type of structure is especially suited to a tabular form. Before proceding with the solution of this problem utilizing a tabular form, a few remarks regarding aircraft practice in the ztress analysis of wings may be in ordex. An airplane wing usually has many stringers, and is tapered in both depth and width. Each string er may have a different angle with both the horizontal and vertical. A solution for both the hoxizontal and vertical componerits of all string er loads would usually require more work than would be justificed. An approximate method of obtaining the torsional moment of the horizontal and vertical components of the stringer forces is usually sufficiently accurate. One approximate method consists of taking torsional moments about some point in the cross-section about which the stringer forces produce no apprectable torsional moment and of omitting the stringer forces in the moment equation. A torsional axis joining the centroids of the cross-section may be satisfiactory.

In the foregoing problem, the resultant of the vertical forces in
the stringers is 7.5 inches from the lefit web, or through the centroid of the areas. Point 0^{3} shown in Figure 17 will be used as the center of moments. The torsional moment of the external shear about 0^{0} is then $4,000 \times 5.5=22,000$ inch pounds. Since the vertical components of the stringer forces are neglected, only the shearing forces carried by the webs will be assumed acting. From equation (10)

$$
\begin{aligned}
V_{w} & =V \frac{h_{0}}{h} \\
& =4,000 \frac{5}{10} \\
V_{w} & =2,000 \mathrm{lbs}
\end{aligned}
$$

$$
\begin{aligned}
\Delta P & =\frac{V_{w} y}{I} A_{f} \\
& =\frac{2000}{200} 5 \mathrm{Af}_{f} \\
& =50 \mathrm{~A}_{f}
\end{aligned}
$$

where A_{f} is the area of the flange. These values of $\triangle P$ axe tabulated in column (2) of Table Io The negative sign indicates compression. The relative shear flows, $q_{A B}$ etco, denoted as Q° and shown in column (3) are obtained by a sumnation of $\triangle P$ in column (2)。 The terms in column (4) represent twice the areas enclosed by the corresponding webs and the lines joining the extremeties of the webs and the center of moments, as shown in Figure 17. The monents of the shear flows in the webs are obtained in columns (5) as the product of the terms in columns (3) and (4). The total moment of the shear flows q^{8} is 10,000 inch pounds and is obtained as the sum of the terms in column (4). The sum of the mow ments of the external forces plus the sum of the moments of the internal forces equals zero.

$$
\begin{aligned}
& 22_{2}, 000-10,000-400 q_{0}=0 \\
& q_{0}=30 \mathrm{Ibs} \text {. per in. }
\end{aligned}
$$

The final shear flows are tabrlated in column (6) and are the result of algebraic addition of q_{0} and q^{0} 。

TABLE I

AN EXAMPLE OF A TABULAR FORM FOR SHEAR FLOW ANALYSIS COMPUTATIONS

FLANGE (1)	ΔP (2)	$q^{\prime}=\Sigma \Delta P$ (3)	$2 A$ (4)	$2 A q^{\prime}$ (5)	$q=q_{0}+q^{\prime}$ (6)
C	-50	-50	125	$-6,250$	-20
C^{\prime}	+50	0	50	0	30
B^{\prime}	+50	+50	50	2,500	80
A^{\prime}	+100	+150	75	11,250	180
A	-100	+50	50	2,500	80
B	-100	0	50	0	30
			400	10,000	

Figure 17

PART IX

AN EXAMPLE PROBLEM OF A THIN-WALLED MULII-CELL STRUCTURE

PART I through PART VIII of this report have been concerned with single cell structures. The shear analysis of multi-cell structures can follow the same methods as those used for the single cell. The assumptions used in the formulation of equations for the shear flow dew termination of the single cell will apply to multimcell structures. When concerned with the torsional deformation of multi-cell structures, the additional assumption is made that the transverse stiffeners are sufficiently rigid so that all cells rotate through the same angle. Transverse stiffening members may be called bulkheads if they ane solid, or almost so, or they may be called frames if they are the open, ring type.

The multiocell structure show in Figure 18 is a cantilever beam of three cells stiffened in a transverse direction by equally spaced bulkheads which are assumed to be rigid and to remain undistorted under load. These bulkheads act as the loading points for point loads of 1,000 pounds each applied in a single line in the plane of one of the webs as shown in Figure 19. The sheet metal shell and longitudinal ${ }^{19}{ }^{101}$ and angle stiffeners are of the same material. Cell 1 is enclosed by a semi-ellipm tical section, cell 2 by a rectangular section and cell 3 by a semiwcircular section. It is required to find the shear flow at section $A=A$ of the three cell structure shown in Figure 18。

Preliminary data

Section properties

Mr $\mathrm{T}^{m p}$ section: $1 / 4 \times 11 / 2 \times 1 / 8$

$$
I_{N A}=0.3\left(i n_{0}\right)^{4} \quad \text { Area }=0.37\left(i n_{0}\right)^{2}
$$

Angle section: $21 / 2 \times 21 / 2 \times 1 / 8$

$$
I_{\mathrm{NA}}=.37\left(\mathrm{in}_{0}\right)^{5} \quad \text { Area }=.62\left(i n_{0}\right)^{2}
$$

Moment of inertia of the cross-section:
Assume that the shell and webs resist no bending stress.
Neglect the moment of inertia of the Mr e and angle sections about their own bending axis.

$$
\begin{aligned}
I & =2 \times(18)^{2} \times \text { Area of } \operatorname{Nar}^{108}+4 \times(18)^{2} \times \text { Area of angle } \\
& =1040(\mathrm{in})^{4}
\end{aligned}
$$

Area enclosed by the periphery of cell I_{9} cell 2_{2} and cell 3

$$
\begin{array}{rl|r|r}
A_{1} & =1 / 2 \pi \times 30 \times 18 & A_{2} & =80 \times 36 \\
& =850\left(i n_{0}\right)^{2} & =2880\left(i n_{0}\right)^{2} & A_{3}=1 / 2 \pi(18)^{2} \\
& =510(\mathrm{in})^{2}
\end{array}
$$

Lengths of curved portions of the cross-section:
Length $A^{9} F A=1 / 2 \times 4 \times 30 \times 1.395$
$=83.75$ in.
Length $C G^{\circ}=18 \pi$

$$
=56.6 \mathrm{in} .
$$

SECTION A-A

FIGURE 19

Shear flows q^{8} from bending only are computed as follows:
It is assumed that:

1. The shear flows at points $M_{9} N_{2}$ and P are equal to zero.
2. The shell and webs resist no bending moment.
3. The introduction of any torsion will not affect the axial load in the stringers.

$$
\begin{aligned}
\Delta M=M_{2}-M_{3} & =4000 \times 36 \\
& =144,000 \\
f_{b_{2}}-f_{b_{3}} & =\frac{\Delta M y}{I} \\
& =\frac{144,000 \times 18}{1040} \\
& =2500 \mathrm{in}-1 \mathrm{ks}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta P_{A}=2500 \times .62=1550 \mathrm{ks} . \\
& \Delta P_{c}=2500 \times .37=925 \text { ibs. } \\
& \text { Reference is made to Figure } 20 . \\
& \begin{array}{l|l}
\prime \\
q_{A^{\prime} F A}^{\prime}=0 & q_{C B C}^{\prime}=0
\end{array} \\
& g_{A B}^{\prime}=0 \quad g_{06}=-\frac{925+1550}{26}=-68.5^{165 / m}
\end{aligned}
$$

$$
\begin{aligned}
& q_{B C}^{\prime}=-\frac{95}{30}=-25.7^{\mathrm{ims} / \mathrm{m}} \quad g_{A^{\prime} B^{\prime}}^{\prime}=0
\end{aligned}
$$

FIGURE 20

Since the shear flows at points $M_{9} N$ and P were assumed equal to zero, the shear flows computed above are relative ones and must be corrected. Regardless of the existence of torsion on the cross-sectiong the moments of the internal shear flows plus the moments of the ex ternal forces about any point would be equal to zero. If the external loads cause no torsion on the cross-section, the angles of twist in each
cell would also be zero. The values of three constant shear flows - one in each cell - could then be determined and added algebraically to the shear flows q° from bending to arrive at the true shear flows in the cross-section.

Since the cross-section of the structure considered here does have a torsional moment applied to it, there will be a twist, or torsional deformation, of each cell. If the assumption is made that the angles of twist in the three cells are equal, a constant shear flow for each cell can be found which is compatible with this assumption. This unknown sheas flow for each cell will be composed of the shear flow from torsion alone and the correction to the shear flow from bending.

Introduction of the shear flows from torsion and correction to the shear flows from bending follow.

It is assumed that:

1. The angles of twist for each $\operatorname{cell} \theta_{1^{\prime}} \theta_{2^{9}}$ and $\theta_{3^{\circ}}$ are equal. 2. The shell and web material act elastically and do not buckle。 3. The modulus of rigidity, G, is constant for the material of the structure。

Since the following analysis makes use of the equation for the angular deformation θ_{2} it is desirable to discuss its derivation.

Much of the classical theory of statically indeterminate structures has been developed for the analysis of comparatively heavy structures in which shearing deformations are of minor importance and can usually be neglected. In the analysis of thin metal shell structures, the shear stress distribution is usually of major importance. The deflections caused by shearing deformations may be determined by energy methods, such as that
of virtual work, in the same manner that other types of deflections are found. Perhaps one of the more simple approaches would be to consider the shearing deformation of a rectangular plate of thickness t, width a_{9} and length b as shown in Figure 21. The shearing strain is obtained from the relation

$$
\begin{equation*}
r=\frac{f_{5}}{G}=\frac{g}{t G} \tag{13}
\end{equation*}
$$

where f_{s} is the shearing stress and q is the shear flow $f_{s} t_{0}$ The strain energy of shearing deformation is

$$
\begin{align*}
u & =\frac{f+t a b}{2} \\
& =\frac{g}{2} a b \frac{g}{t G} \\
u & =\frac{g^{2}}{2 t G} a b \tag{14}
\end{align*}
$$

FIGURE 21

A unit virtual load applied at the point of desired deflection δ produces a system of shear flows q_{u} in the webs. The force $\left(q_{u} a\right)$ acts through the displacement $\gamma \mathrm{b}$ 。 By the principle of conservation of energy, the external work must be equal to the internal work accomplished on the structure.

$$
\begin{align*}
(1) \delta & =\sum q_{u} \gamma a b \\
& =\sum \frac{q_{u} q a b}{t \epsilon} \tag{15}
\end{align*}
$$

The summation symbol is used to include all webs of the structure which affect the deflection. It may be noted that q_{u} represents the shear flows due to the virtual load and q represents the actual shear flows which prom duce the deformation of the structure. Equation (15) applies only to elastic deformations which satisfy equation (13)。

By reference to Figure 22, an expression can be obtained for the an gular deformation of the box beam by applying a unit virtual couple T. The resulting virtual flows are $q_{u}=\frac{1}{2 A}$ where A is the area enclosed by the shell. If the webs have dimensions $\mathrm{a}=\Delta \mathrm{s}$ and $\mathrm{b}=\mathrm{L}_{\text {, }}$ the angle of twist may be found by substituting these values into equation (15) to obtain

$$
\begin{align*}
& \theta=\sum \frac{q a k}{2 A G G} \\
& \theta=\sum \frac{q \angle}{2 A E G} \Delta S \tag{16}
\end{align*}
$$

where the summation includes all webs of the structure.

FIGURE 22

Equation (16) may be used for the angular deformation of a multi-wcell
structure, if the summation is evaluated around any closed path and the area A is enclosed by this path. Thus, for a three cell structure, the summation may be evaluated around the perimeter of any one cell, or of two cells, or around the perimeter of the three cells. The procedure is sometimes defined as a line integral as follows:

$$
\begin{equation*}
\theta=\oint \frac{q L}{2 A t \cdot G} d s \tag{16a}
\end{equation*}
$$

where the integral represents an evaluation along a closed paths returning to the starting point. This expression is used in the present problem considering the values of the summation positive in the clockwise direction. As used in this part of the problem, q is the shear flow which must be added to the relative flexural shear flows, q^{1}, to make the angular deformation of each cell the same; L is the length of the member between cross-sections considered, and is equal to 36 in. for all cells; A is the area enclosed by the periphery of a cell; t is the thickness of the walls of the cell; G is the modulus of rigidity of the shell, web, and stiffener materials; and ds is an elemental distance along a cell periphery. The integral is to be evaluated around a cell periphery. θ is the total angle of twist of a cell.

Let θ_{1}, θ_{2} and θ_{3} be the angles of twist for cells $1_{2} 2$, and 3 , resm pectively.

$$
\theta_{1}=\frac{1}{2 G A_{1}} \int_{1} \frac{q}{t} d s \quad \theta_{2}=\frac{1}{2 G A_{2}} \int_{2} \frac{q}{t} d s \quad \theta_{3}=\frac{1}{2 G A_{2}} \int_{3} \frac{g}{t} d s
$$

Since $\frac{L}{2} G$ is constant, a simplification of computations will be obtained if this quantity is incorporated into the symbol for angle of twist for each cell. The integral $\int \frac{q}{\xi} d s$ for cell 1 can be thought of as being composed of two parts: an evaluation around the path $A^{\circ} \mathrm{FA}$ and an eval.w uation along $A A^{\prime}$ as follows:

$$
\begin{aligned}
& \text { LET } \theta_{1}^{\prime}=\frac{\theta_{1}}{\frac{L}{2 \theta}} \\
& \int_{1} \frac{q}{t} d s=\int_{A^{\prime} F A} \frac{g}{t} d s+\int_{A A^{\prime}} \frac{q}{t} d s \\
&=\frac{q_{A^{\prime} F A}}{t_{A^{\prime} F A}} \int_{A^{\prime} F A} d s+\frac{q_{A A^{\prime}}}{t_{A A^{\prime}}} \int_{A A^{\prime}} d s
\end{aligned}
$$

$q_{A A}$ is the resultant of the superposition of the shear flow in cell I and that in cell 2. Let q_{1} designate the shear flow in cell I and q_{2} the shear flow in cell 2 。

Then: $q_{A A}=q_{1}-q_{2}$ and for cell I_{9}

$$
\int \frac{g}{t} d s=\frac{g_{1}}{t_{A^{\prime} F A}} \int_{A^{\prime} F A} d s+\frac{q_{1}-g_{2}}{t_{A^{\prime} A}} \int_{A^{\prime} A} d s
$$

These expressions are substituted into the equation for $\theta_{,}^{\prime}$ and the effect on θ^{\prime}, of the flexural shear flows added.

$$
\begin{aligned}
& \theta_{1}^{\prime}=\frac{1}{850}\left[\begin{array}{l}
g_{1} \\
.03 \\
3.73
\end{array}+\frac{q_{1}-g_{2}}{.06} 36\right]-\frac{1}{850} \frac{43}{.06} 36 \\
& \theta_{1}^{\prime}=3.99 g_{1}-.71 g_{z}-30.4 \\
& \theta_{2}^{\prime}=\frac{1}{A_{2}}\left[\frac{q_{2}}{t_{A C} C_{A C}} \int_{A^{\prime}} d s+\frac{q_{2}-g_{3}}{t_{C C^{\prime}}} \int_{C C^{\prime}} d s+\frac{g_{2}}{t_{C^{\prime} A^{\prime}}} \int_{C^{\prime} A^{\prime}} d s+\frac{g_{2}-g_{1}}{t_{A^{\prime} A}} \int_{A^{\prime} A} d s\right] \\
& +\frac{1}{A_{2}}\left[\frac{q_{B C}^{\prime}}{t_{B C}} \int_{B C} d s+\frac{q^{\prime} C C^{\prime}}{t_{C C^{\prime}}} \int_{C C^{\prime}} d s+\frac{q_{B^{\prime} C^{\prime}}^{\prime}}{t_{B^{\prime} C^{\prime}}} \int_{B^{\prime} C^{\prime}} d s+\frac{q_{A A^{\prime}}^{\prime}}{t_{A A^{\prime}}} \int_{A A^{\prime}} d s\right] \\
& =\frac{1}{2880}\left[\frac{q_{2}}{.04} 80.0+\frac{8_{2}-8_{3}}{.03} 36+\frac{82}{.04} 80.0+\frac{82-g_{1}}{.06} 36\right] \\
& +\frac{1}{2880}\left[\frac{g_{2}}{.04} 80.0+\frac{q_{2}-q_{3}}{.03} 36+\frac{g_{2}}{.04} 80.0+\frac{8_{2}-g_{1}}{.06} 36\right. \\
& \theta_{2}^{\prime}=-.208 q_{1}+2.0158_{8}-.417 g_{3}-37.49
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{3}^{\prime}=\frac{1}{A_{3}}\left[\frac{q_{3}}{t_{6 G G^{\prime}}} \int_{6 G c^{\prime}} d s+\frac{q_{3}-q_{2}}{t_{6 c^{\prime}}} \int_{6 \sigma^{\prime}} d s\right]+\frac{1}{A_{3}}\left[\frac{q_{c^{\prime}}^{\prime}}{t_{6^{\prime} 6}} \int_{s^{\prime} 6} d s\right] \\
&\left.=\frac{1}{5.3}\left[\frac{q_{8}}{0.3} s 6,6+\frac{q_{3}-q_{2}}{93} 36\right]+\frac{1}{510} \frac{68.5}{03} 36\right] \\
& \theta_{3}^{\prime}=-2.38 q_{2}+6.08 q_{3}+161
\end{aligned}
$$

Then:

$$
\begin{align*}
& \theta_{1}^{\prime}=3.99 q_{1}-.71 g_{3}=30.4 \tag{a}\\
& \theta_{2}^{\prime}=-.208 g_{1}+2.015 q_{z}-.417 q_{3}-37.49 \tag{b}\\
& \theta_{g}^{\prime}=-2.38 g_{z}^{\prime}+6.08 q_{z}+161 \tag{c}
\end{align*}
$$

The summation of the torsional moments of the internal shear flows and external loads must be equal to zero for equilibrium. Torsional moments will be computed with respect to stringer A. The external loads will then have a moment of zero with respect to this point. To aid in the visualization of this procedure, Figure 23 is shown with the relative flexural shear flows and $q_{1}{ }^{2} q_{2^{2}}$ and q_{3} shown thereon.

$$
\begin{align*}
& \sum M_{A}=0 \\
& +(80 \times 36)\left(q_{2}-68,5-q_{3}\right)+\left(80+\frac{2 A_{3}}{36}\right) 36 g_{3}+(36 \times 40)\left(q_{2}-25.7\right) \\
& +\left(\frac{2 A_{1}}{36} 36 q_{1}\right)+\left(36 \times 40 q_{2}\right) \\
& 1700 q_{1}+5760 q_{2}+1020 q_{3}-234,200=0 \tag{d}
\end{align*}
$$

The simultaneous solution of (a), (b), (c), and (d) yields: $q_{1}=+20.7 \mathrm{lbs} . / \mathrm{in} . \quad q_{2}=+34.5 \mathrm{lbs} . / \mathrm{in}, \quad q_{3}=-.08 \mathrm{lbs} . / \mathrm{in}$.

The superposition of q_{2}, q_{2} and q_{3} on the relative flexural shear flows, ${ }^{1}$ ', yields the required shear flows at the section under consider tion. The result is shown in Figure 24.

FIGURE 24

The final shear flows, shown in Figure 24, can be checked by use of the three equations of equilibrium, io $, ~ \Sigma F_{H}=0, ~ \Sigma F_{V}=0$, and $\Sigma M=0$ 。

PART X

AN EXAMPLE PROBLEM ILLUSTRATING A PROCEDURE FOR THE SHEAR ANALYSIS OF AN AIRPLANE WING

The following problem is included in this report to illustrate one method of determining the shearing stresses or shear flows in a thinwalled multi-cell structure of complicated shape subjected to bending and torsional loads. The structure selected is the wing of an actual airplane. It is desired to find the shear flows at station $X_{R S} 237$ of the wing shown in Figure 25. The method of shear analysis used has been adapted from those methods described by Peery (1950) and Bruhn (1949).

By reference to Figure 25, it can be seen that the wing section is a three-cell "torque box" which is redundant to the second degree. Since the shear flows in the three cells must be determined, three equations relating the shear flows must be found. Following the method of Peery (1950) and Bruhn (1949) and others, the assumption is made that the wing ribs have sufficient rigidity so that the three cells rotate through the same angle under torsional loads. Three equations in four unknowns may then be written containing the three unknown shear flows for the three cells. The fourth equation necessary for a solution may be written as the sum of the external torsional moments plus the sum of the internal torsional moment: set equal to zero.

PLAN VIEW

SECTION AMA

The method of solution of the problem will be illustrated by first writing the three equations for the unknown shear flows in the three cells. Reference is made to Figure 25 for structure geometry and to PART IX for theory and assumptions governing the use of the angular deformation equations:
written as:

$$
\begin{array}{ll}
\theta_{1}=\sum_{1} \frac{g_{1} L}{2 A_{1} t_{1} G} \Delta S & \text { This equation may be } \\
\theta_{1}=\frac{g_{1} L}{2 A_{1} G} \sum_{i} \frac{\Delta s}{\hbar} & \tag{17}
\end{array}
$$

where the subscript 1 refers to the first cello q_{1} is the shear flow, A_{1} is the area enclosed by the perimeter of the first cell, G is the modulus of rigidity of the shell material, t is the thickness of the shell, ΔS is the distance along the shell periphery between stringers, and L is the length of the structure between two cross-sections. For convenience, use the symbol \& to replace ΔS_{9} and since only relative magnitudes of $\theta_{1}{ }^{2} \theta_{2}$ and θ_{3} need be considered, let L equal 1 unit of linear measurement. Equation (17) then becomes:

$$
\theta_{1}=\frac{q_{1}}{2 A_{1}} \sum_{1}\left(\frac{d}{t}\right)
$$

In like manner,

$$
\theta_{2}=\frac{\delta_{2}}{2 A_{2} \epsilon} \sum_{2}\left(\frac{1}{t}\right)
$$

and

$$
\theta_{3}=\frac{g_{3}}{2 A_{3} G} \sum_{3}\left(\frac{l}{2}\right)
$$

$q_{1^{9}} q_{2}$ and q_{3} in the above equations are the constant shear fiows for each cell which must be added to the relative flexural shear flows, $q^{0}{ }_{9}$ (to be determined later) in order to make the angular deformations of each cell equal.

In Figure 25, it will be noticed that the webs of the structure are assumed cut at points $A_{2} H$, and K in accordance with the procedure for determining the shear flows in a closed thin-walled structure. The relm
ative flexural shear flows q^{9} from wing bending will not appear in the webs assumed to be cut. The shear flows $q_{1} q_{2}$, and q_{3} will appear in all structure webs of their respective cells. In dealing with a wing or other thin-walled, multi-stringer structure, the word "web" may be used to denote the metal shell between any two stringers.

The equations for $\theta_{1} \theta_{2}$, and θ_{3} may be written

$$
\begin{align*}
& 2 x_{1} 6 \theta_{1}=q^{2}\left(\frac{l}{t}\right)-g_{2}\left(\frac{l}{t}\right)_{G 3} \tag{0}\\
& 2 A_{2} G \theta_{2}=\sum_{2} q^{\prime}\left(\frac{l}{t}\right)+q_{2} \sum_{2}\left(\frac{d}{t}\right)-q_{1}\left(\frac{l}{t}\right)_{5 B}-g_{3}\left(\frac{l}{t}\right)_{F 6} \tag{19}\\
& E A_{3} G \theta_{3}=\sum_{3} q^{\prime}\left(\frac{l}{t}\right)+q_{3} \sum_{3}\left(\frac{b}{t}\right)-g_{2}\left(\frac{l}{6}\right)_{F G} \tag{20}
\end{align*}
$$

Assume that G is constant for the material in all cells. Equating (18) and (19) results in the following

$$
\begin{equation*}
\frac{g_{1}}{A_{1}} \sum_{i}\left(\frac{l}{t}\right)-\frac{q_{z}}{A_{2}}\left(\frac{l}{t}\right)_{6 B}+\frac{g_{B}}{A_{B}}\left(\frac{l}{t}\right)_{G B}-\frac{g_{2}}{A_{z}} \sum_{2}\left(\frac{l}{t}\right)+\frac{q_{B}}{A_{2}}\left(\frac{l_{i}}{t}\right)_{F E}=\frac{1}{A_{2}} \sum_{2} g^{\prime}\left(\frac{l}{t}\right) \tag{2}
\end{equation*}
$$

Equating (18) and" (20) results in the following:

A third equation is obtained by the summation of torsional moments on the section。

$$
T_{\operatorname{ExT}}+\sum_{2} 2 A q^{\prime}+\sum_{3} 2 A q^{\prime}+2 A_{1} q_{1}+2 A_{2} q_{2}+2 A_{2} \%_{3}=0
$$

where $T_{\text {EXT }}$ is the torsional moment on the section due to external loads. A simplification of the above equation will result by letting twice the areas applicable to the computations of q^{8} be designated by the symbol m. This facilitates tabular computations involving the shear flow $\mathrm{q}^{\text {b }}$ from wing bending. The equation then becomes

$$
\begin{equation*}
T_{E_{1}}+\Sigma m q^{\prime}+2 A_{1} q_{1}+2 A_{2} q_{2}+2 A_{3} q_{3}=0 \tag{25}
\end{equation*}
$$

By rearranging and combining terms in equations (21), (22) and (23), a more suitable form is obtained.

$$
\begin{aligned}
& {\left[2 A_{1}\right] g_{1}-\left[2 A_{3}\right] g_{2}-\left[E A_{3}\right] g_{3}=\sum m q^{2}+T_{E X T}}
\end{aligned}
$$

(say

These equations are of the form:

$$
\begin{align*}
& A q_{1}-q_{2}+G q_{g}=L \\
& D q_{1}-E q_{2}-F q_{3}=M \tag{226}\\
& -G q_{1}-H q_{2}-K q_{3}=N
\end{align*}
$$

(236)

Having the form of the necessary equations for the shear analysis and the algebraic values of the constants, attention is turned to the wing section to determine its properties. Figure 26 will aid in the understanding of symbols used in the tabular computations for numerical values of constants and shear flows. The tabular forms which follow represent a method for the orderly computation and methodical checking of numerical values.

Whag CROSS-SECTION

FIGURE 26

In TABLE II are found the computations for the wing section properties at station $X_{R S}$ 273. This station location can be observed in Figure 25. The cross-section at this station consists of 4 spar caps and 41 stringers of the type shown in Figure 27. The large longitudinal beams extending from top to bottom of the cross-section are called spars. and the beam flanges are called spar caps. Computations have been shown for four stringers to illustrate the procedure used. In this example, the numbers 1 to 4 were arbitrarily assigned to the first four string ers toward the top of the section immediately aft of a vertical line through the C. G. of the section. These stringers are in cell 3. From an examination of Figure 24 , and the data in TABLE II, it can be observed that the Y distances are measured with respect to the rear spar centerline EmD and the Z distances with respect to the wing reference plane, which is also the Y axis. Thus, using the rear spar and the wing reference plane as datum planes, the section properties are determined. The sign convention used is as follows:

Y-distances are negative when measured forward (toward the leading edge of the wing)。 Z-distances are negative when measured downward (toward the lower wing shell)。

It may be noted in TABLE II that the area of part of the shell is included with the area of a stringer in the determination of the section properties. This has not been done in previous examples because of the assumption, which was then made, that no part of the shell resisted any bending moment. This assumption results in a simplification of computations for shear flows and the stringer loads and may of ten be justified, particularly in preliminary design or rough checking of a design. A more accurate analysis will show that the stringers of a thin-walled

TABLE II

$$
\text { WING SECTION PROPERTIES } \sim S T A 。 S_{R S} 273
$$

structure subjected to bending loads will transfer a portion of their loads to the metal shell to which they are attached. The metal shell will then act with the stringers to resist bending loads. Figure 27 is

EFFECIIVE SKIN AREA
FIGURE 27
a sketch of a stringer and a portion of the shell of the airplane wing under examination in the present problem. From this sketch, it is seen that the designer has assumed an "effective area" of shell each side of a fivet line equal to 10 times the shell thickness to act with each stringer to resist bending loads. In most cases, the determination of the magnitude of this quantity is based on the judgement and experience
of the designer, often aided by test data and governed by specified limiting values and a desire for a quantity which affords ease in computation. It may be of interest to examine, briefly, the action of the stifo fener-meshell combination under load with a view to the determination of the effective area of shell which may be assumed to act with the stiffener to resist the imposed load.

Consider a 4 or 5 feet square panel consisting of a relatively thin metal sheet to which is attached a number of stringers placed parallel to each other. The dimensions of these structural components may be approximately those indicated in Figure 27. Assume the panel to be loaded in direct compression parallel to the longer axes of the stringers and prevented from column failure as a unit. Upon first loading, the stringers and shell will be equally stressed, but as loading progresses, the shell will begin to form a series of dish-shaped wroinkles about midway betwsen stringers and extending the length of the panel. As these wrinkles form the load will be gradually transferred from the wrinkled area toward the stringer, thereby loading the stringer and shell nearest the stringer heavier than the shell in the immediate vicinity of the wrinkles. Since very little additional load will be resisted by the shell in the vicinity of the wrinkles, the stringers and shell in close proximity will bew come more heavily stressed as loading progresses. If a curve of compresm sive stress in the panel be plotted as ordinates across the width of the panel, it would exhibit a minimum value at the wrinkled portion and a maximum over the stringers with intermediate values between these two points. Bruhn (1949) in his discussion of this subject states that it would not be feasible to use expressions for the actual stress distribution in the shell between stringers for design purposes because of their complexity.

To provide less complex formulas for use in design，attempts have been made to find expressions for an＂effective width＂or＂effective area＂of shell which would be assumed to act with the stiffener to resist load， be uniformly loaded with the same stress as that in the stringer，and be of such dimensions that the total load carried by this effective area would be equal to the total load in the shell between stringers．The shell material not included in this effective area would be assumed to be unstressed．Using the concept of effective areas of shell，then，the actual varied stress distribution across the panel will be replaced with a series of uniformly loaded stringermshell combinations with portions of the shell in the vicinity of the wrinkles，between the stringers， carrying no load．

Let attention now be focused on a portion of the loaded panel con－ sisting of two stringers and the intervening shell．If the sides of the shell are assumed to be simply supported at the stringer attachment，the rectangular shell tends to act as a series of square plates with wrinkles or buckles in each square，and Euler＇s formula for a flat plate can be used．（Peery 1950）。

$$
\begin{aligned}
& F_{C R}=\frac{\pi^{2} E}{i 2\left(i-\mu^{2}\right)}\left(\frac{t}{L}\right)^{2} \quad \text { can be written } \\
& F_{C l R}=K E\left(\frac{E}{b}\right)^{2}
\end{aligned}
$$

where $\mathrm{F}_{\mathrm{C}_{\mathrm{CR}}}$ is the total load on the panel section under consideration divided by the area bt of the shell between lines of attachment，t is the thickness of the shell．，b is the width of the shell between attach－ ment lines，L is the total length of the panel between loaded ends，and K is a function of（ $\left(\frac{L}{b}\right)$ and the degree of edge restraint．The value of K for various edge fixity conditions and（ $\frac{L}{b}$ ）ratios has been determined by experiment and results made readily made available。（Bruhn，1949）。

If the four edges of a long shell are considered simply supported, K is equal to 3.62 and

$$
E_{C R}=3.62 E_{\left(\frac{s}{6}\right)^{2}}
$$

If the effective width of the shell each side of the stringer attachment line is w_{9} and the total effective width of shell which acts with one stringer is $2 \mathrm{w}_{\text {, }}$

$$
F_{E_{G R}}=K E\left(\frac{t}{2}\right)^{2}
$$

It was first proposed by Von Karman and Sechler to solve this equation for the effective width 2 w in place of the shell width b when $\mathrm{F}_{\mathrm{C}_{\mathrm{CR}}}$ was replaced by the yield point of the material (Bruhn 1949). Since experiments have shown that the ultimate strength of the shell simply supported at the edges was independent of the width, the foregoing equation could be written as:

$$
f_{y H}=3 \cdot \operatorname{son}=\left(\frac{t}{2 w}\right)^{2}
$$

where $f_{y p}$ is the yield point of the material and 2 w is the total effeco tive width of the shell between the two stringers of the panel portion under consideration. Then:

$$
w=.95+\sqrt{\frac{E}{f_{u p}}}
$$

Later the yield point stress was replaced by the stiffener stress $f_{\text {ste }}$. Experimental woxk by Newell indicated that the value 05 was too high and should be replaced by .85 (Bruhn, 1949). The following equation has resulted and is widely used in aircraft practice:

$$
w=.85 t \sqrt{\frac{E}{f_{s t}}}
$$

The above equation is approximate when used for most thin walled struc-
tures. If the stringers are stiff in torsion ory in other ways, do not let the shell edge rotate in the fashion of a simply supported one as assumed, the value of K will be greater than 3.62. Fischel's experiments indicate that for some shell-stiffener combinations common to aircraft construction, the edge conditions are more nearly clamped or fixed than simply supported, and K should be 6.35 as a minimum (Bruhn, 1949)。 Howe ever, the equation:

$$
w=. \hat{b} \equiv e \sqrt{\frac{E}{f_{s t}}}
$$

yields a smaller effective width than any other such expression proposed. It is conservative and considered satisfactory for design of normal airm craft structures. A more precise value may be desirable for very high speed aircraft whose wing shell thickness may be many times greater than that used on normel speed airroraft.

The solution to the above equation is a trial and errox process with the values of $f_{\text {st }}$ usually being e.ssumed, w computed, and later corracted by a more accurate estimate of $f_{\text {sto }}{ }^{\circ}$ With rererence to Figure 25 , in $f_{\text {st }}$ is estimated to be 10,500 pounds per square inch, w is 27 t and the effecm tive area as shown in the figure is approximately 7t. The quantity lot was used for convenience in computations, and in view of the foregoing discussion, may be considered as satisfactory as the volue of 7 t computed.

With reference to equation (23a) it has been stated that twice the area connected with the determination of the shear flow q^{3} from wing bending shall be designated by the symbol m_{0} This area is listed in column 15 of TABLE II, and the method of computation shown in Figure 28. It may be noted that the axrangement of computations of this quan
tity, and of others, affords ease of slide rule or desk calculator operation and adaptability to digitel computers, such as the IBM TYPE 650.

$$
\begin{aligned}
& \text { SHOW THAT } m=b c-a d \text { as } \\
& \text { STATED IN COLIS, TABIE } \\
& \frac{m}{2}=b c-\frac{c d}{3}-\frac{a b}{2}-\frac{(c-a)(b-d)}{2} \\
& 2 \frac{m}{3}=b c-a d \\
& m=b c-a d
\end{aligned}
$$

FTGURE 28

DETERMINATION OF AREA m

With the properties of the section determined, attention is turned to the computation of the stringer loads for which TABLE III is a suitm able form. The wing is subjected to unsymmetrical bending. The general bending formula is used and is as follows:

$$
f_{b}=\left[\frac{M_{z} I_{y}-M_{y} I_{y z}}{I_{y} I_{z}-I_{x y}} n_{y}-\left[\frac{M_{y} I_{z}-M_{z} I_{y z}}{I_{y} I_{z}-I_{y z}^{2}}\right] h_{z}\right.
$$

where f_{b} is the bending stress in the stringer, M_{Z} and M_{y} are the ben ding moments about the Z and Y axes respectively, I_{z} and I_{y} are the mom ments of inertia about the X and Y axes respectively, and $I_{y z}$ is the product of inertia. From Figure 25, it can be seen that:

$$
\begin{aligned}
& M_{z}=27,000(500-72)=11.556 \times 10^{6} \quad \text { i. }-16 \mathrm{~s} . \\
& M_{y}=200,000(500-72)=85.6 \times 10^{6} \mathrm{in} .-16 \mathrm{~s}
\end{aligned}
$$

The moments of inertia and products of inertia have been computed in TABLE II. The loads P in the stringers are computed as the bending stress multiplied by the effective area of the stringer-skin combination

> TABLE III

SKIN-STRINGER ELEMENT STRESSES AND LOADS - STA。 $X_{R S} 273$

$\begin{gathered} K_{1}=-\left[\frac{M_{z} I_{y}-M_{y} I_{y z}}{I_{y} I_{z}-I_{y z}^{2}}\right]=-150.451 \\ M_{y}=85.6 \times 10^{\circ} \mathrm{in} .-165 \end{gathered}$				$\begin{gathered} K_{z}=-\left[\frac{M_{y} I_{z}-M_{z} I_{y z}}{I_{y} I_{z}-I_{y z}^{2}}\right]=-2365.686 \\ M_{z}=11.556 \times 10^{6} \mathrm{in} .-165 \end{gathered}$		
(i)	(2)	(3)	(4)	(5)	(6)	(7)
Strinemer	h_{y}	n_{z}	$k_{1} h_{y}$	$k_{2} h_{2}$	f_{b}	P
No.	$\begin{aligned} & \text { COL. (13) } \\ & T A B+E 11 \end{aligned}$	$\begin{aligned} & \text { COL.(12) } \\ & \text { TABLEE } \end{aligned}$	$k_{1} \times(2)$	$k_{2} \times(3)$	(4) + (5)	(6) x (3) TABLEII
1	6.631	19.389	-998	-458868	-46886	-125320
2	14.881	18.753	-2239	-44364	-46603	-124616
3	23.131	18.024	-3480	-42639	-46119	-123 3:
4	31.381	17.185	-4721	-40654	-45375	-18183
						-
Σ						

In the same manner, the section properties of the next two adjacent wing sections are computed, and the stringer loads found. The results are shown in TABLES $I V, V, V I$ and VII which follow.

TABLE IV
WING SECTION PROPERTIES \sim STA 。 $X_{R S} 237$

TABLE V
SKINmSRRINGER ELEMENT STRESSES AND LOADS - STA。 $X_{R S} 237$

$\begin{aligned} & k_{1}=-149.14 \\ & M_{y}=92.8 \times 10^{6} \mathrm{in}-148 \end{aligned}$					$\begin{aligned} & k_{2}=-2217.11 \\ & M_{z}=12.538 \times 10^{6} \text { in ath } \end{aligned}$	
(1)	(2)	(3)	(4)	(5)	(6)	(I)
Strincmer	hy	H_{2}	$k_{1} h_{3}$	$W_{2} h_{2}$	f_{b}	¢
No	$\begin{aligned} & \text { COL(13) } \\ & \text { TABLELV } \end{aligned}$	$\operatorname{Col}_{\operatorname{TAB}, ~(12)}$	12×2	$k_{2} \times(3)$	(6+ 5	(6) + (3) TAB4, Em
1	9.067	19.772	-1360	-43836	-45,196	-123317
2	17.317	18.794	-2597	-41.332	-44,930	$-126,56$
3	23.167	18.324	-3834	- 60,626	-44400	$-125=-4$
4	33.817	17.452	-507	-38,699	-43036	$-123,289$

TABLE VI
WING SECTION PROPERTIES - STA。 $\mathrm{X}_{\mathrm{RS}} 201$

$\bar{Y}=$	-74.648	in .	$\vec{z}=16.215 \mathrm{in}$		$I_{2}=306,559(1 n)^{4}$		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
STRENGER	$\begin{gathered} A B E A O F \\ S \angle A-1 \end{gathered}$	Y	$A Y$	$A Y^{2}$	\%	$A z$	A^{2}
No.	Stminger		(2) \times (3)	(3) $\times 4$		(3) $\times(6)$	(6) \times (7)
1	3.076	-66.85	-203.785	13.501	34.40%	111.828	407\%.
2	3.076	- 58.00	0178.408	10,378	35.8.682	109.758	3916.
3	3.076	-49.75	-153.031	3613	34.877	107.283	97625.
4	3.076	-41,50	-127.654	5,2988	33.968	104486	3549

$I_{y}=50,146(1 n)^{4}$							
(9)	(10)	(11)	(12)	(13)	(14)	(15)	(1)
AYZ	2	$z+\Delta z$	h_{z}	hy	$h_{z}+\Delta z$	m	
(2) $\times(3 \times 6$		(6) + (10)	(6) $-\frac{1}{z}$	(3) -9	(12) + (10)	$\begin{aligned} & 13 \times 1 \times(14) n \\ & -13 n n(14 n+1 \\ & \hline \end{aligned}$	No
-7418.18	489	36.891	20.187	11.388	20.676	178.784	1
-6365.95	. 488	36.171	19.467	19.648	19.956	182.418	2
-5337.26	. 489	35.366	18.662	27.898	19.151	18.3 .355	3
-4336.15	. 489	34.457	17.753	36.148	18.242	186.355	4

$\begin{aligned} & k_{1}=-144.8896 \\ & M_{y}=100 \times 10^{6} \mathrm{in}-1 \mathrm{lbs} \end{aligned}$						
（1）	（2）	（3）	（4）	（5）	（6）	（7）
StRingers	hy	h_{z}	$k_{1} h_{y}$	$K_{2} h_{z}$	f_{b}	P
No	COL 13	COL． 12 tablevi	$k_{1} \times 2$	$\mathrm{K}_{2} \times 3$	$4+5$	6×2 tablevi
1	11.398	20.187	－1651．45	－41，141． 11	－42，792．56	－131629．9
2	19， 4,48	19．467	－2846．79	$-39,673.75$	－42，530，51	$-130,793.2$
3	27.898	18.662	－4042．13	－38．0．33．16	－42，075．69	-1294236
4	36．148	17． 753	－5237．47	－36，180．61	41，418．08	-1234020
「 「						

The wing section properties and stringer loads have been computed in TABLES II to VII for three cross－sections，each thirty－six inches from the other． The cross－section at which the shear flows are desired is the center one of the three．The information contained in TABLES II to VII is a neces－ sary prerequisite to the completion of TABLE VIII which contains the rem quired shear flows at STA．$X_{R S}$ 237．An examination of the information of TABLEE VIII will now be made．

All columns of TABLE VIII，with the exception of column 15 ，may be completed using previous computations and information from the geometry of the structure．The change in load on a stringer，ΔP_{3} is calculated as the difference between loads at the two extreme cross－sections，$X_{R S} 273$ and 201．（ $X_{R S}$ indicates a distance along the rear spar of the wing from

TABLE VIII
WING SHEAR FLOWS AT STA 。 $X_{R S} 237$

a selected origin which may be located in the vertical plane of symmetry of the airplane.) The shear flows in the wing shell are found at the intermediate cross-section, STA。 $X_{R S}$ 237. Hense, the quantities M_{9}, ${ }^{2}$ and t are those at this station. The values of the shear flows found are assumed to be constant between the two extreme cross-sections. The quantities A_{1}, A_{2}, and A_{3} are found from the geometry of the crossm-secm tion as the areas enclosed by the perimeters of cell I_{9} cell 2 and cell 3. respectively. For NACA airfoil sections or company standawds, the total axea enclosed by the airfoil shell is usually readily available.

In column 15 is found the shear flows, $q_{N E T}$ between stringers. $q_{\text {NET }}$ is the result of the algebraic addition of q^{p}, the relative shear flows from wing bending, and q_{1} and q_{2} or a_{3} depending on which cell is under consideration. The values of q^{8} are found in TABLE VIII but $q_{12} q_{2}$ and a_{3} will be unknown at the time this table is filled out. The simultaneous solution of equations (21.a), (22a), and (23a), whose constants are arranged conveniently in TABLE IX, yields these quantities. $q_{1^{9}} q_{2^{9}}$ and q_{3} thus found are shown at the top of TABLE VIII and $q_{\text {NEIT }}$ recorded in column 15。

TABLE IX
CONSTANES OF SHEAR FLOW EQUATIONS (21a) (22a) (23a)

TABLE IX
CONSTANES OF SHEAR FLOW EQUATIONS (21a) (22a) (23a)

TABLE IX
CONSTANES OF SHEAR FLOW EQUATIONS (21a) (22a) (23a)

CONCLUSIONS AND RECOMRENDATIONS

The problem in this report has been to accumulate information on the basic theories and analytical tools used for the determination of the shearing stresses in thinowalled. multiocell. multwstiffener strucw tures and to formulate procedures for the zhear analysis of these structures. Most of the basic theories have been gathered from text books about aircraft structures, such a.s Bruhn (1949) and Peery (1950) and text books regarding mechanics of meterials, such as Seeley (1955) and Timoshenko (1956). The information so gathered and illustrated in this report builds into a procedure for the shear anelysis of a complicated multi-cell, multi-stiffener, thin walled structure in the form of an airw plane wing. This procedure, shown and explained in PART X of this ree port, is especially useful for applicable structures whose boundary surfaces cannot be expressed in easily manipulated mathematical expressions. The arrangement and grouping of the tabular computations of the procedure shown in PART X is such that digital computers, such as the IBM TYPE 650 , may be used for the problem solution with a minimum of effort expended in transposing and rearranging data.

Many publications regarding the results of research and testing programs for the structures with which this report is concerned are avainable from such governmental agencies as the National Advisory Committee for Aeronautics, Washington, D. C. However, these research and testing
programs have for ther ultimate aim the examination of the behavior of the structure at or near failure. Hense, little information regardo ing basic theory of shear analysis will be found in these documents. An examination of the data curves, graphs, and photograph reproductions of tested structures will acquaint the reader with the nature and behavior of these structures under load. For example, the effect of varying dise tances between stiffeners on the point at which inelastic behaviox occurs can be observed.

Regarding thinwalled structures, it can be said that a miltitude of subjects for future study present themselves. Fortunately, a large amount of printed matter is available in the form of books, research and testing reports, and publications of the engineering societies, A source of knowiledge not to be overlooked is found in the persons of those qualified engineers who are willing to teach those students who are wil ling to learn. The following patternfor future study is recommended.

1. Discover iff the procedures outlined in this report for the sheax analysis of multi-cell, multi-stiffener, thin walled structures can be improved so as to result in a more accurate analysis, with less effort, and particularly with a saving of weight for the structure involved.
2. Determine the effect of stress concentrations axound openings, or "cut-outs, ${ }^{\text {" }}$ in the shell and of the close proximity of a longitudinal or transverse stiffener on the shear stresses in the shell.
3. Study the effect on procedures outlined in this report when the thickness of the shell increases to the proportions found on some of the present high speed aircraft。

SELECTED BIBLIOGRAPHY

Bruhn，E．Fo．Analysis and Design of Airolane Structures． Cincimati，Ohio：TrimState Off＇set Coos 1949

Clark J_{0} Wo and R 。L。Moore，Worsion Tests of Aluminum Alloy Stiffened Circular Cylinders．Washington，$D_{0} C_{0}$ ：National Advisory Committee for Aeronautics，NACA TN 282， 1952

Lunquist，E．E0 Strength Tests on Thinwalled Duralumin Cylinders in Torsion．Langley Field，Virginia：Langley Memorial Aeronautical Laboratory，NACA TN 427， 1932

Lunquist，E．E．Strength Tests of Thin－Walled Duralumin Cylinders in Combined Transverse Shear and Bending．Washington，$D_{0} C_{0}$ ： National Advisory Committee for Aeronautics，NACA TN 523， 1935

Lunquist，E．E．and W．F．Burke。 Strength Tests of Duralumin Cylinders of Elliptical Section．Langley Field，Virginia：Langley Memorial Aeronautical Laboratory，NACA TN 527， 1935

Peery，Do Jo Aircraft Structures．New York．N．Yo：McGrawoHill Book Co．o Inc．o 1950

Schapitz， E 。 The Twisting of Thin－Walled，Stiffened Circular Oylinders． Washington，$D_{0} C_{0}$ ：Newional Advisory Committee for Aeronauties． NACA TN 878， 1938

Seely，FoBo and Jo O．Smith．Adyanced Mechanics of Materials．New York，$N_{0} Y_{0}:$ John Wiley and Sons，Inco， 1955

Timoshenko，So Strength of Materials．PART II。 New York，No．Yo： D．Van Nostrand Co．e Irieos 1956

Unpublished data and information received from Douglas Aireraft Co．s Inc．，Tulsa Division，Tulsa，Oklahoma．

VITA

JOHN J. REID
Candidate for the degree of
Master of Science

TITLE: PROCEDURE FOR THE SHEAR ANALYSIS OF THIN WAL工ED METAL CYLINDERS SUBJECTED TO BENDING AND TORSTONAL LOADS

MAJOR: Civil Engineering (Structural Analysis)
Biographical
Personal data: Born April 13, 1921 in Magherafelt, Ireland.
Education: Received Bachelor of Science degree in Civil Engineering from the University of New Mexico, Albuquerque, New Mexico in June, 1951; undertook graduate study at University of New Mex ico, Tulsa University, Tulsa, Oklahoma, and completed require ments for the Master of Science degree at Oklahoma State University, Stillwater, Oklahoma in August, 1957.

Professional Experience: United States Army, 1942w1946. Infantry Officer; U. S.Axmy Corps of Engineers, Albuquerque, New Mexico, 1951-1952, Construction Engineer; Sandia Corporation, New Mexico, 1952-1953, Mechanical Engineer; Douglas Aircraft Co. Santa Monica, Califormia, 1953-1954, Tool Engineer; Lee C. Moore Corporation, Tulsa, Oklahoma, 1954-1955, Structural Engineer, Douglas Aircraft Co. Tulsa, Oklahoma, 1955m1956, Stress Analyst. Member of Sigma Tau and Chi Epsilon engineering honorary societies.

Are ${ }^{\circ}$ 蹰
collsection

