
A WEB DAT ABASE SYSTEM TO MANAGE

GRADUATE STUDENT INFORMATION

BY

JING YANG

Bachelor of Management Engineering

Beijing Institute of Machinery Industry

Beijing, P. R. China

1993

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December 2004

A WEB DATABASE SYSTEM TO MANAGE

GRADUATE STUDENT INFORMATION

Thesis approved:

ti?esis Advisor

D~~ Graduate College

II

PREFACE

The use of Web pages has grown beyond simple information display to collection

and presentation of data. The volume and structure of data presented on a Web page

warrant storing and organizing the data into a database and then generating Web pages

based on this database. Database management systems (DBMS) such as MySQL, MS

Access, Oracle, and SAS provide the software tools needed to organize large amounts of

data in a flexible manner. The thesis intended to develop a customized database application

to store and extract graduate student information, and build a data driven Web site to

provide users with the ability to view the database using a web browser. This thesis report

includes the process of evaluation and selection of an appropriate database management

system and the corresponding server-side Web language (e.g., ASP and PHP).

This thesis reports on the preparatory work done to select the MS Access DBMS

from among three database information management systems. The ASP server-side

scripting language was chosen to develop a dynamic and interactive database-driven Web

site for the thesis work. This thesis report also contains the details of the design and

implementation of a database management system that was used to obtain more detailed

and specific requirements from the potential end-users of the system. A Graduate Student

Web Database system was proposed and successfully implemented. Web visitors can

secure login into this database-driven Web site and view the student information extracted

from the database.

lll

ACKNOWLEDGEMENTS

There are many people I would like to thank who helped me with this thesis. First

and foremost I would like to acknowledge the continued support and guidance from my

thesis advisor, Dr. Mansur H. Samadzadeh. He provided deep insight and technical advice

on all aspects of this thesis work.

I am greatly thankful to Dr. John P. Chandler and Dr. Nohpill Park for taking time

out of their busy schedules and providing valuable feedback while serving as members of

my graduate committee.

Special thanks go to Mr. Terry Wright, our Systems Manager. He has been a

tremendous help in many areas.

I especially thank Mr. & Mrs. Duncan and Mr. & Mrs. Johnson. They have given

me a big help in my English studies.

I am grateful to my husband Jian Chang for his patience and suggestions. A special

thank-you must go to my son Matthew. He gives me many joyous moments in my life.

IV

TABLE OF CONTENTS

Chapter Page

I INTRODUCTION .. 1

II BACKGROUND .. 3

III DESIGNING AND BUILDING A DAT ABASE STRUCTURE 5

3 .1 Planning Database Creation ... 5

3 .1.1 Purpose of a Database ... 5
3.1.2 A DBMS Used to Manage Student Information ... 7
3.1.3 Comparison of Current DBMS ... 8

3.1.3.1 Availability ... 8
3.1.3.2 Ease of Use for End-Users .. 9
3.1.3.3 Ease of Use for Database Managers .. 11
3.1.3.4 Security ... 13

3.1.4 Solution ... 15

3 .2 Database Design and Implementation 16

3 .2.1 Categorization of the Applicants .. 16

3.2.1.1 Determining the Fields .. 17
3.2.1.2 Determining the Tables ... 19
3 .2.1.3 Determining Relationships Among Tables 22

3.2.2 Data Entry and Creating Other Database Objects 24

IV WEB DAT ABASE DISPLAY ... 28

4.1 Creating ASP Files .. 29
4.2 Adding Code in Order to Read the Database .. 30
4.3 Publishing the ASP Files ... 31
4.4 Running the Page and Reviewing the Result ... 32

V

Chapter Page

V USER GUIDE .. 38

5.1 Database System .. 38

5.1.1 Database Tables .. 38
5.1.2 Database Queries .. 47
5.1.3 Database Forms .. 52

5 .2 Web Database Display ... 56

5.2.1 Hosting .. 56
5.2.2 ASP Files .. 56
5.2.3 Create or Edit ASP File ... 60

VI SUMMARY A:ND FUTURE WORK ... 63

6.1 Summary · ... 63
6.2 Future Work .. 63

REFERENCES ... 65

APPENDICES .. 68

APPENDIX A: GLOSSARY .. 69
APPENDIX B: TRADEMARK INFORMATION ... 71
APPENDIX C: WEB VISITOR MANUAL ... 72
APPENDIX D: WEB DATABASE MANAGER MANUAL 75
APPENDIX E: SYSTEM ADMINISTRATOR MANUAL 78
APPENDIX F: CSDB TABLES AND QUERIES LIST ... 82

APPENDIX F.1: TABLES ... 82
APPENDIX _F.2: QUERIES ... 83

APPENDIX G: CSDB ASP AND IMAGE FILES LIST ... 86
APPENDIX G.1: ASP FILES ... 86
APPENDIX G.2: IMAGE FILES IN THE IMAGES FOLDER 90

APPENDIX H: CSDB ASP CODES ... 92
APPENDIX H.1: HEADER.ASP CODE ... 92
APPENDIX H.2: SEARCH.ASP CODE .. 94

VI

LIST OF FIGURES

Figure Page

1. MySQL Statements on a Unix System .. 10

2. MySQL Display Overflow on a Windows System ... 10

3. Categorization of the Applicants .. 17

4. Academic History Table ... 21

5. Thesis and Dissertation Table ... 22

6. CS Graduate Student Database Relationships .. 23

7. CS Graduate Student Information Form ... 24

8. "Applied Students for Each Year" Query Using QBE .. 26

9. SQL Code for "Applied Students for Each Year" Query .. 26

10. ASP Retrieves Data to Produce Web Pages .. 29

11. Login Page .. 32

12. Enrolled Student Name List Page ... 33

13. Student Information View Page .. 34

14. Statistics Page ... 35

15. Applied Students for Each Year Page ... 36

16. Search Page .. 3 7

17. CSGraduateStudent Tables ... 39

18. Datasheet View of Personal Information Table .. 40

Vll

Figure Page

19. Design View of Personal Information Table ... 42

20. Validation Rule on the Degree Field of the Enrollment Table 44

21. Create a New Table in Design View ... 46

22. Create New Relationships Among Tables .. 4 7

23. CSGraduateStudent Queries ... 48

24. Design View of Enrolled M.S. Students Name Query .. 49

25. Enrolled Students for Each Year_Crosstab Query .. 51

26. Courses Form .. 54

27. Header.asp Page ... 59

28. Search_Results.asp Page .. 59

vm

LIST OF TABLES

Table Page

I. Some Database Design Questions and Possible Responses .. 6

II. Ease of Use for Database Managers .. 12

III. Input Mask Characters .. 43

IV. Query Criteria ... 50

V. Code Structure of CS Graduate Student ASP Files ... 61

ix

CHAPTER I

INTRODUCTION

A database is an organized collection of data. Database management systems

(DBMS) [Shelly et al. ·2001] such as MySQL, Microsoft Access (MS Access), Oracle, and

Statistical Analysis System (SAS) provide the software tools needed to organize large

amounts of data in a flexible manner. A DBMS includes facilities to add, modify, or delete

data from a database, ask questions about the data in a database, and produce reports

summarizing selected contents of a database. DBMSs can be divided into two categories:

desktop databases and server databases. Desktop databases (e.g., MS Access) are oriented

toward single-user applications and typically reside in standard personal computers. Server

databases (e.g., SQL Server or Oracle) contain mechanisms to ensure the reliability and

consistency of data, and are geared toward multi-user applications. Server databases are

designed to run on high-performance servers and carry a correspondingly higher price tag.

This thesis work involved building a database application for the Computer Science

Department graduate students. The design included the capability to generate a number of

statistical results that can be obtained from the database through a user-friendly interface.

The goal was to provide the ability to conveniently store and extract information about

graduate students for advising, career counseling, and generating summary reports. The

resulting Web database system is designed to require a login procedure to access the

1

database. The built-in search capabilities can be used to produce textual and statistical

reports about graduate students. One of the system's design goals was to provide the users

with the ability to view and search the information using a Web browser.

The rest of this Thesis is organized as follows. Chapter II provides a general

background for database systems. A number of different types of databases are discussed

with a brief history of database processing. Chapter III contains a comparison of three

database systems, a discussion of the components of a database system, and an overview of

the process of building a database system. Chapter N introduces Active Server Pages and

describes the use of a Web browser to access and view database information. Chapter V is

the user guide for the system which offers advice on how to edit and use the database

system and the ASP pages. Several examples are used to introduce creation, design,

implementation, and proper use. Chapter VI covers the summary of the thesis and some

possible areas of future work.

2

CHAPTER II

BACKGROUND

Databases have been in use since the earliest days of electronic computing, but the

building of a database has traditionally been a complex and expensive process. This

situation has changed since the dramatic decline in the cost of computers and the explosive

growth of the Internet and the Web.

It is now relatively easy to produce a database, but this does not guarantee that the

database will be useful. A house is only as good as its foundation. This principle is equally

true in the world of databases. Creating a database is analogous to laying down the

foundation and frame of a house.

There is a large number of database products on the market today. In computing,

databases are sometimes classified according to their organizational approach. The

dominant model in use today is the relational model, a tabular database in which data is

defined so that it can be reorganized and accessed in a number of different ways [Sarin

2000]. The relational model is used in the Structured Query Language, or SQL data

manipulation/analysis tool [Kroenke 1997]. SQL is a standard language for making

interactive queries and updating a database such as MySQ L, the MS Access system, and

database products from Oracle. There are also the hierarchical models and the network

models, and data manipulation/analysis tools such as SAS and Focus.

3

Three database systems (namely, MySQL, MS Access, and SAS) were considered

and evaluated comparatively for use in the construction of the graduate student database

system. They are introduced below.

MySQL [Axmark and Widenius 1999] is an open source software (OSS) database

management system offered by MySQL AB under its "dual license" business model. It

supports the standard Unix interface and more than 20 other interfaces. It is a relational

DBMS and is very tightly integrated with Perl and PHP [Atkinson 2000]. The first MySQL

version was released in 1996. MySQL is essentially an SQL server- it responds to requests

for information that are written in SQL. MySQL is a small, compact database server ideal

for small applications.

MS Access [Getz et al. 2001] is a relational DBMS that runs under the Windows

operating system. The first version of Access came out in 1992. As a component of the

Microsoft Office Suite, MS Access has the same look and feel as other Office products

such as Word and Excel. This database is relatively easy to use. Access stores an entire

database application in a single file. An Access .mdb file can contain data objects such as

tables, indexes, and queries as well as application objects such as forms, reports, and

Visual Basic code.

SAS [Delwiche and Slaughter 2002] stands for Statistical Analysis System. SAS

software is developed and distributed by the SAS Institute Inc. The first product was

released in 1976. It is a statistical information system that performs simple or complex

statistical analysis, predictive and descriptive modeling, calculations, forecasting, and

simulation design. It is ''an integrated system of software providing complete control over

data access, management, analysis, and presentation" [Schlotzhauer and Littell 1997].

4

CHAPTER III

DESIGNING AND BUILDING A DAT ABASE STRUCTURE

3 .1 Planning Database Creation

Good databases are well planned and they are designed to suit their purposes. The

first step in designing a database is to determine its purpose and how it is to be used. From

that, we can determine what facts we need to store in the database and to what subject each

fact belongs. These facts correspond to the fields (columns) in the database, and the

subjects that those facts belong to, correspond to the tables. Without a good database

design, there may be irrelevant data that will not be used, omitted data, inappropriate

representation of entities, and lack of integration between various parts of the database.

3.1.1 Purpose of a Database

Creating a robust, high-performance database requires careful thought and

planning on every aspect of the DBMS. Database designers should plan carefully and ask

questions about the information needed and the services desired. A database cannot be

designed well if the right questions are not asked. Table I presents some of the questions

that a database designer should ask and some possible responses. The questions in this

table are based on the work of Sarin [Sarin 2000].

5

Questions Possible Responses
I. Allow an assortment of contents to

be saved in a secure dynamic
database.

What do you need the database
2. Provide the ability to extract all types designer to do for this project?

of saved contents in the database to
produce reports and statistical results
about graduate students.

It is going to be used as a data
How is this database going to be warehouse online for looking up
used? graduate student information and

generating summary reports.

It is going to store more than I 00
How large is the database? How will fields for each student. It should have
the database change over time? capacity to keep more than I 000

students' records.

What database· system will be used
Compare several commonly available
database systems and select a database

for this project? What primary
system and the associated

programming language will the programming language to create a new
database designer use? database system.

How many simultaneous users will A fixed number (5-10) or a variable
the database need to accommodate? number.

How many standard reports will be
One per week, one per day, on demand,

needed to be generated from this
database?

etc.

What factors are most likely to Performance related initialization
become performance bottlenecks? parameters or frequent updates.

What security is needed? Who should
The database manager is responsible

be able to redefine the schema - new
attributes, objects, object classes? Who

for redefining schema, editing and

should be able to edit and update? updating database.

What are the operational requirements
The operational configuration archive

for the database? Will it need to be
available 24 hours a day, 7 days a log mode should be available 24x7 or

week? on weekdays only.

What is the primary operating system
Unix, Linux, Windows XP/NT/2000,

that will be used in this database
project?

etc.

Table I. Some Database Design Questions and Possible Responses

6

With the possible responses to the questions m mind, several DBMSs were

compared, a database system was selected to store CS graduate students' data, and a

dynamic database-driven Web site was created for the CS Department.

3.1.2 A DBMS Used to Manage Student Information

There are many different types of DBMSs in existence and they are suitable for

different requirements. The objective of this thesis work was to design and build a CS

Graduate Student database and a database-driven Web site. So, the focus was on the

DBMSs used in universities. An effort was made to evaluate some DBMSs to discover

whether a sophisticated multi-user server platform (such as Oracle) or a desktop database

(such as MS Access) would meet our needs.

Our university's Student Information System, the University of Oklahoma, and

Texas A&M use the Oracle DBMS since they need a big and complicated system to store

and manage all the student and staff information. These universities need Oracle's

professional technicians for installation and support. This DBMS and its technical support

are expensive. This multi-user server platform is large and more expensive than we

desired.

For the purpose of this thesis, the objective was some small-scale DBMS that can

provide a relatively inexpensive and powerful database solution. A brief list of some

desktop databases that are currently used at OSU follows. The Library, Department of

Agricultural Economics, College of Business Administration, College of Human

Environmental Sciences, and OSU-Tulsa use MS Access to generate and keep track of

customized reports. The Information Technology Division uses SAS to store and analyze

7

both student and staff information. There are also some science or technology departments

that use SAS for data analysis. The Computer Science Department uses MySQL to manage

the student email system.

3.1.3 Comparison of Current DBMS

Given a specified purpose, database designers will need to choose a DBMS and a

primary programming language to design the database. For the thesis work, three database

information management systems were examined and evaluated for the database

requirement. These three, which were available on the Computer Science Department's

computer systems, were MySQL, MS Access, and SAS.

The four aspects of comparison considered were availability, ease of use for

end-users, ease of use for database managers, and security. These aspects are discussed in

the following four subsections.

3.1.3.1 Availability

A brief description of these three systems and their operating system, and platform

requirements is listed below.

MySQL is supplied by MySQL AB that provides it at no cost under the free

software GNU General Public License (GPL) [MySQL 2004]. It is available for free

download from the MySQL AB Web site. MySQL compiles on a number of platforms and

has multithreading capabilities on Unix/Linux servers. MySQL can also run as a service on

Windows NT and as a normal process in Windows machines. It can be said that MySQL is

cross-platform [Axmark and Widenius 1999], which means that the database can be

8

developed under Windows and also on a Unix/Linux platform. The application

programming interface (API) for MySQL is the MySQL language and SQL.

MS Access is one of the MS Office products that run on Windows 2000/XP/NT. lt

is not an open source database and cannot be executed directly under the Unix/Linux

system. To connect to a MS Access database from a Unix/Linux platform, a driver with the

Server component is needed to run on the server side. The API for MS Access is SQL and

Query By Example (QBE).

The SAS System is an integrated suite of software for information delivery and

analysis [Delwiche and Slaughter 2002]. Applications of the SAS System include

executive information systems, data management, statistical and mathematical analysis,

and application development. SAS is very powerful and is particularly useful for dealing

with large data sets. SAS runs on Windows 2000/XP/NT and Unix/Linux, and it is possible

to transfer a SAS data table from a Unix environment to a PC environment [Spector 2001].

The API for SAS is the SAS language and SQL.

3.1.3.2 Ease of Use for End-Users

When the end-users view the reports and statistical results about graduate students

from this database, the database source of the information is of no interest to them. They

need an easy to use interface, fast responses, and correct results from the database. A

database that can be searched and sorted according to the rules for each specific

requirement is very important for anyone developing database products.

MySQL's commands are analogous to the Unix commands. The user should type

the commands line by line to enter the requirements and to get results. Figure I is an

9

example of MySQL statements running on a Unix system. The MySQL command line

interface allows you to put a statement on one line or spread it across multiple lines. Ifthere

are too many fields in _a table, the display of the table will overflow which does not give a

good view (Figure 2). MySQL AB offers several levels of technical support, from email

access to complete 24/7 telephone support.

mys~l> select* from tableOl;
+---------+-----------+------------------+------------+----------+
I ID I Order I Index I Date I TL"'Ii.e I

+---------+-----------+------------------+------------+----------+
I 1 I first I new info I 2004-10-22 I 15:29:01 I
I 2 I second I another I 2004-10-23 I 15:29:01 I
I 3 I third one I more foo for you I 2004-10-24 I 15:29:01 I
+---------+-----------+------------------+------------+----------+
mysql> delete from tableOl where ID=3;
Query OK, 1 row affected (0,01 sec)

Figure 1. MySQL Statements on a Unix System

~ysql> select* fro~ ~ableOl;

+---------+-----------+------------+-----------+---------+---------+---------+-
-------+---------+
I f1eld01 I !ield02 I field03 I f1eld04 I !ieldOS I field06 I !ield07 I :
ield08 I :ield09 I

+---------+-----------+------------+-----------+---------+---------+---------+--
-------+---------+
I 1 I firse

liULL I HULL I
I 2 I aeccnd

HULL I HULL I

1999-10-22 06:22:18 I NULL

I 1999-10-23 I 10:30:00 HULL

HULL

I NULL

I HULL

I A."l.cthe= I

+---------+-----------+------------+-----------+---------+---------+---------+-
-------+---------+
2 rcws in se~ (0.00 sec)

Figure 2. MySQL Display Overflow on a Windows System

10

Using MS Access, users can do dynamic backups, either incremental or complete,

of the database while it is in use [Kroenke 1997]. This database does not force the users to

exit the database to back up the data. Access provides an integrated application

environment, which enables users to perform query and analysis of enterprise data sources

from the interface. The users use the mouse to view the data back and forth, and easily sort

the results by clicking buttons. MS Access has an easy to use interface.

The SAS system supports many different devices and modes of editing, displaying,

running, and reporting of the SAS jobs. The SAS interface enables users to run a display

manager, the program editor, log, and output screens [Delwiche and Slaughter 2002]. It

also provides high quality, bit-mapped graphics output. SAS enables users to view the

updated information dynamically.

3.1.3.3 Ease of Use for Database Managers

Table II shows some of the features that make a database easy to use for a database

manager. Some of the features mentioned in the table are explained below.

As far as design view is concerned, MySQL is a function-call API for data access

and management. The database manager would write the associated command to build the

database and extract the data form the database library. MS Access has templates to help

database managers get started creating the database. Database managers can create pages,

forms, and reports using toolbars, toolbox, themes, and other features that are similar to the

tools they use to create Word and Excel files. SAS uses the SAS language to perform

statistical analyses. To use SAS effectively, database manager must have some knowledge

of SAS software, statistics, or both [Olson et al. 2003].

11

The second fe~ture is the capability to analyze data and to make projections. Using

MS Access or SAS, database managers can organize data in different ways, make

projections, do complex calculations using a spreadsheet control, and view data

graphically in a chart. They are easy to use and their graphic user interfaces can do a lot

more in graphical analyses than the mainframe or UNIX versions can. MS Access offers

the ability to print a visual diagram of the relationships window, which makes it easier for

users to see how the database is structured.

Feature/Capability MS Access SAS MySQL

Design View MS Access SAS system Unix system

Analyze Data Yes Yes No

Web Display Text HTML,ASP HTML HTML,PHP

Reduce Data Can be reduced
Duplication by good design No No

View Data Graphically
Yes Yes No in a Chart

Output can be cut,
pasted, dragged, and

Yes Yes No dropped to other
applications

Sort and Filter Records Yes Sort only No

Help Menu Yes Yes No

Table II. Ease of Use for Database Managers

Considering the third feature, which is displaying HTML text, MySQL, MS Access,

and SAS can store HTML code in fields of a database and display it as formatted HTML

text on a Web page. Unfortunately, HTML is a static language. We cannot directly make

12

database calls from HTML. To access the database from a Web page, we need an

intermediary language such as ASP (Active Server Pages), JSP (Java Server Pages), or

PHP (PHP Hypertext Preprocessor) [Meloni 2000). ASP, JSP, and PHP are server-side

scripting languages with embedding code within an HTML page, and are processed by the

Web server. To develop a dynamic and interactive database-driven Web site, the best

match for MySQL is PHP and the best match for of MS Access is ASP.

The reduction of data duplication is a desired feature of a DBMS. A well-designed

MS Access database can reduce data duplication. If existing tables contain redundant data,

the database manager can use the Table Analyzer Wizard to split the tables into related

tables to store data more efficiently.

Having the capability to cut, past, drag, and drop outputs to other applications is

useful and convenient. The field list of MS Access enables users to easily add information

to a data access page view simply by dragging-and-dropping the field names from an easily

accessible list. When a user renames a field in a table, the change is automatically going

through the dependent objects such as queries and forms so the user can continue to work

with the application. Using SAS, database managers can edit and manipulate files in a

number of different formats such as MS Word or PowerPoint.

3.1.3.4 Security

For database administrators, security ranks as a top concern. The security system is

typically applied at two levels: server connection verification and database request

verification. When a -user tries to access a database, that user must first have access

privileges to the database server. Server and database access must be blocked to

13

unauthorized users. Authorized users can also potentially damage data accidentally or

maliciously.

MySQL database uses security based on Access Control Lists (ACLs) [Widenius et

al. 2002] for all connections and queries or other operations that a user may attempt to

perform. MySQL has a privilege and password system to verify that the user has

connection rights to the server before the user can request to use a database that exists on

the server. MySQL and PHP work together to build a database-driven Web site. PHP goes

with a Web server with Apache's track record means security remains a top priority.

MS Access has a security wizard that may secure any database that has been

created while joined to the System. It has been claimed that "the MS SQL Server can

integrate with the Windows NT operating system security to provide a single logon to the

network and the database" [MS 2001]. MS Access database on a server is better protected

since unauthorized users cannot get to the database file directly due to the fact that they

must access the server first. MS Access and ASP work together to build a database-driven

Web site. ASP runs on IIS (Internet Information Services) [Spector 2001]. IIS has a

number of security access-Gentrol mechanisms that can be applied to help make for safe

surfing. Unfortunately, IIS has a long history of vulnerabilities. Whether these weaknesses

are because of inherent problems or because IIS is a red flag to hackers, is irrelevant. Those

\ , systems have a history of being hacked and compromised.

SAS can support different security requirements. SAS login definitions on the

enterprise directory ensure that only authorized portal users can obtain access to the SAS

data and proce~ses [Delwiche and Slaughter 2002]. Each SAS server has a login definition

that specifies which users or groups of users can access the server.

14

'

3.1.4 Solution

MySQL cannot fully analyze data and it is in general not easier to design than an

MS Access interface or a SAS interface. MS Access and SAS are easier to use because they

have design interfaces that users can use to construct the necessary tables and reports.

Occasionally, it may not be necessary for users to write programs, which reduces the

overall compile and debug time. MySQL cannot build a table relationship chart and draw

other charts [Axmark and Widenius 1999]. Users must write specific MySQL programs to

design data queries.

SAS needs a specialized language to perform statistical analysis and generate

reports. A database manager must learn the specialized knowledge of SAS software and be

knowledgeable about statistics to be able to use SAS effectively. MS Access provides users

with a programmer-friendly API that facilitates the rapid development of database-oriented

custom applications. When using MS Access, the regular users of MS products will notice

the familiar Windows "look and feel" as well as the tight integration with other MS Office

family of products.

Overall, MS Access has the following advantages. The design tools and the API

generally facilitate the rapid development of database applications. Specialized knowledge

or training is not required. Users are generally able to build a dynamic database application,

i.e., if a record is changed in the database, the change automatically appears throughout the

database. The disadvantage of MS Access is that the security is not better than using

MySQL which runs on Unix systems. In the future, the IIS security model will no doubt

continue to mature, hopefully allowing even finer levels of access control to allow for

greater ease, flexibility, and security in the generation of active content for the Web.

15

Based on the comparative evaluation mentioned above, this thesis work focused on

the construction of a dynamic database application using MS Access.

3 .2 Database Design and Implementation

In this section, a MS Access DBMS named CSGraduateStudent.mdb, which was

designed and implemented as part of this thesis, is discussed.

3.2.1 Categorization of the Applicants

The files ofth~ graduate applicants to the CS Department constitute the data of this

database. The students who satisfy the admission requirements are accepted, otherwise

they are rejected. Most of the candidates, who meet the requirements and are admitted,

enroll within the required time period, there are also some candidates who postpone or

abandon their admission. Students are considered active if they enroll in a minimal number

of credit hours each semester. A student who interrupts his/her enrollment for one year or

does not earn enough credit hours is considered inactive. Some of the active students

graduate and others continue to work toward their degrees. The overall categorization of

the graduate app Ii cant~ is shown in Figure 3.

The categorization of the applicants helps the database designer to design the fields

and tables, determine which table each field belongs to, and build relationships among the

tables. The following three subsections address these three issues respectively.

16

Pendin

Non-enrolled Enrolled

Active Inactive

Continuin Graduated

Figure 3. Categorization of the Applicants

3.2.1.1 Determining the Fields

Each field is a fact about a particular subject. For example, database managers

might need to store background information about the students, e.g., major, GRE score,

colleges attended, address, and GP A. A separate field should be created for each of these

items. The following are some examples of fields for all graduate applicants.

• Personal Information

Last Name
First Name
Middle Name
OSUID
Gender
Date of Birth
Country of Birth
Visa Type

• Address

Street Address

-- optional
-- OSU identification number

--for international students

17

City
State
Zip code
Phone
Fax
Email Address-

• Academic History

TOEFL Score
GRENerbal
GRE/Quantitative
GRE/ Analytical
GRE/ Advanced

Colleges Attended
Degrees Earned
Major
GPA

• Enrollment

Application Date
Requested Semester and Year
Degree Sought
Status

Rejection Reason
Semester and Year Enrolled
Semester and Year Graduated
Miscellaneous

-- optional
-- optional

-- two kinds of TOEFL
-- score and percentile
-- score and percentile
-- score and percentile
-- the type of subject tests, score, and

percentile
-- full name of the institutions
-- all degree of bachelor, master, or Ph.D.

-- M.S., Ph.D., or Ed.D.
-- rejected, postponed, pending,

graduated, enrolled, withdrawn
-- for the rejected students
-- for the enrolled students
-- for the graduated students

If the status of a student is enrolled or graduated, more fields should be included in

the database as shown below.

• Students and Courses

CourselD
Grade

• Thesis and Dissertation

Advisor
Committee Members
Thesis or Dissertation Title

-- prerequisite or core course
-- prerequisite or core course grade and GP A

-- the principal advisor

-- also provide a link to the thesis

18

Abstract
Proposal Date
Defense Date

-- or provide a link to the abstract

We should also track the following fields if a student has a teaching or research

assistantship position in Computer Science Department.

• Assistantship

Semester
CourselD
Time
Remarks

-- semester and year

-- how may hours per week
-- the advisers' remarks

When determining the fields, the database designer must keep the following design

principles in mind [Kroenke 1997].

I. Include all of the information needed.

2. Store information in the smallest logical parts. For example, students' names are often

split into two fields, first name and last name, so that it is easy to sort the data by the

students' last names.

3. Do not include derived or calculated data (data that is the result of evaluating an

expression). For example, if the database has fields named GREN erbal,

GRE/Quantitative, and GRE/ Analytical, there is no need to create an additional field

that sums the scores in those three fields.

3.2.1.2 Determining the Tables

Each table should contain information about one subject. The list of fields provides

clues about the tables that the database managers would need. For example, if a field is

named FirstName, its subject is student personal information, so it belongs to the Personal

19

Information table.

In order for MS Access to connect the information stored in separate tables -- for

example, to connect a student's personal information with the same student's enrollment

information -- each table in the database must include a field (or a set of fields) that

uniquely identifies each individual record in the respective table. Such a field (or set of

fields) is called a primary key [Shelly et al. 2001]. Without a primary key, a duplicate

record may exist in the database and this may cause the database to become unusable. The

primary key is used to link the subordinate table records to the corresponding record in the

master table. In most of CSGraduateStudent database design and implementation, the

primary key of each table is the OSUID.

Some of the students continue their degree from M.S. to Ph.D. or Ed.D. in the

Computer Science Department. These students keep the same OSUID but have different

enrollment, thesis or dissertation, and course records. In such cases, the candidate key and

foreign key are introduced. A candidate key is a combination of one or more fields whose

value uniquely identifies a record in a table [Shelly et al. 2001]. When a key in one table is

referenced in another table, the key in the second table is called a foreign key [Shelly et al.

2001]. In the Enrollment and Thesis and Dissertation tables, the "Degree" field is added as

a candidate key, and in the Students and Courses table, the "Degree" and "CourseID" fields

are added as candidate keys. That are no two records in these three tables can have the same

key values. In the Courses table, the field "CourseID'' is foreign key into the Students and

Courses tables.

A number of design principles, which can be used to design tables after

determining the required fields [Kroenke 1997], are listed below.

20

I. Add each field to one table only. When each piece of information is stored only once, it

will be updated in one place. This is more efficient and it also eliminates the possibility

of duplicate entries that may contain different information.

2. Define the primary key.

3. A table should not contain duplicate information, and infom1ation should not be

duplicated among the tables.

Based on the fields listed earlier in this section, there are at least eight main tables

that should be included in this database: Personal lnfom1ation, Address, Academic History,

University, Enrollment, Students and .Courses, Thesis and Dissertation, and Assistantship.

For security considerations, a table nan1ed Users, which includes the authorized

users' IDs and passwords, was included in this CSGraduateStudent database. For ease of

sorting and calculation, other supplementary tables were added. For example, a table

named Courses was created with three fields: CourseID, the description of the course, and

the credit hours for each course, which works with Students and Courses table to calculate

the students' GP A of core courses and the prerequisite courses. Figures 4 and 5 show some

samples of these main tables from the implementation of the graduate student database.

i : Academic History : Table .. ~~~
OSUID

+ 0000000000006001
+ 0000000000000002
+ 0000000000000003
+ 0000000000000004
+ 0000000000000005

~ + 0000000000000006
+ 0000000000000007

Record : I~ j ~ 11 fi

TOEFL GREN GRE/Q GRE/A GRE Adv GPA
573
563
617 470 600 600
607
627
603 430 730 570
550 430 780 760

~ 1 ~• 1~*1 of 400

Figure 4. Academic History Table

21

" I

3.43 Adams St
2.32 S outh Oak<
3.57 Portland St
2.19 Texas We~
2.25 University c
3.45 Troy State
2.28 New Mexic~

_,__ _ __.I ~

+ 0000000000000001
+ 0000000000000003
+ 0000000000000006
+ 0000000000000007
• 0000000000000008
• 0000000000000009
+ 0000000000000010

MS
MS
MS
MS
MS
MS

Dr. Chandler
Or. Chandler

Dr. Chandler
Dr. Chandler

Record: I~ I ~ 11 10 .--i ·;, 1.-*T of 3·2s

Figure 5. Thesis and Dissertation Table

3.2.1.3 Detennining Relationships Among Tables

A relationship is an association established between the common fields (columns)

in two tables [Spector 2001]. After setting up the different tables for the subject in the

database, the database manager needs to tell the DBMS (MS Access in this case) how to

bring the related infomrntion together. The first step in this process is to define

relationships among the tables. After that, queries, fonns, and reports can be created to

display infonnation from several tables.

A relationship works by matching data in primary and foreign key fields (usually a

field with the same name in both tables). As it was pointed out previously, most of the

tables in the graduate student database contain an OSUID field which works as a

connection among tables. Also, the candidate and foreign keys work with the primary key

to define the relationships.

This design and implementation involves two types of relationships among the

tables:

• One-to-one relationship

A one-to-one relationship is created if both of the related fields are primary keys or

22

have umque indexes. The relationships among Personal lnfom1ation, Address, and

Academic History are one-to-one relationships.

• One-to-many relationship

A one-to-many relationship is the most common type of relationship. It is created if

only one of the related fields is a primary key or has a unique index. A record in

Courses table can have many matching records in Students and Courses table, but a

record in Students and Courses table has only one matching record in the Courses table.

The relationship between Personal Information and Enrollment tables is another

example of one-to-many relationships.

Figure 6 illustrates the relationships among the thirteen tables existing m the

current implementation of the CSGraduateStudent database.

,; Rclalionships ___ _ __ ~~

Lastrl ome

Flrsuiome

Mlddletfome

Gender

Dirth Country
v ,s,, typ e

BlrU1dMe

Academic Misconduct

! Enrolled Yeor

DO I Enrolled Semester
Graduoted Year

00
DO Graduated semester

Computer-Based TOEFL

l
l'llper·Bosed TOEFL

GRE/V
GRE/Q

Yeor
11--"---------------'00

'-"'Semester
CourselD

Time

DO

Figure 6. CS Graduate Student Database Relationships

23

Univers,ty l

\ LocoUon, City and C
,

1

Date Entered 1

Dote Left l
Major l

]
Degree Eamed 1

GPA 1

Credit Hours

3.2.2 Data Entry and Creating Other Database Objects

Once the table. structures are finalized, it is time to add all the existing data to the

database. Then the other database objects such as forms, queries, reports, and data access

pages can be created. There are several ways to enter data. Data can be entered through

tables or forms.

To enter the entire data for each student, the easy and convenient method is though

the use of forms. A form named Computer Science Graduate Student Information was

created in the CSGraduateStudent database to enter, display, and edit data in the fields. The

resulting form is shown in Figure 7.

•
Computer Science Graduate Student Information

Personal Information
OSUID

last Name

First Name

10000000000000226

jStrail

!Kevin

Middle Name ._!H ____ _

Gender U
Birth Country :=iu=s=========I
Academic Misconduct .__!N _ ___,!

Address

Visa Type

Birthdate

Street Address !13 University Apartment #6

City lstit.vater State

Country Zip Code

Phone I< 40s) 000-0030

Fax I I
E-mafl Address lstrailkevin@okstate.edu

!04/04/1976! (MM/00/VYVV)

~
!74075!

Record: .. l~J.~ .. J I

Figure 7. CS Graduate Student Information Form

24

Each page of this form shows the entire information for a student in the database.

The database manager may enter and edit the data though the use of a selected OSUID.

When the data in this form is changed at any time, the associated data fields in the related

tables will be changed correspondingly.

Forms are also good at editing or updating data in the fields. Some fields in tables

may be changed and these changes may involve several tables. For example, if a student's

OSUID is changed, this change should go through 7 tables; if a student's Degree is

changed, this change should go through 4 tables. The database manager should update all

these data in the tables, otherwise errors will be generated or the database will no longer

provide correct information.

After data are stored in tables, users want to query the data to answer questions or to

identify problems or particular situations. Queries are questions about data stored in tables,

or a request to perform an action on tbe stored data [Spector 2001].

A query can bring together data from multiple tables to serve as the source of data

for a form, report, or data access page. Queries offer the ability to retrieve data, filter data,

and calculate summaries. Well designed queries in a database are very important, they

make the database more flexible, easier to use, and yield better performance. In this thesis

work, more than 80 queries were created to suit the users' perceived requirements. The

following list contains some queries created in this CSGraduateStudent database:

• Applied M.S./Ph.D. Students for Each Year/Semester
• Applicants Who Graduated from OSU
• Graduated M.S./Ph.D. Students for Each Year/Semester
• Pending Student Information
• Rejected Reason
• Rejected University
• Assistantship Query
• Core/ Prerequisite Courses

25

• Gender by Year/Semester
• TOEFL and GRE Scores for Each Year/Semester

There are a number of ways that a query can be expressed. A database manager

may design queries by using Query By Example (QBE) [Kroenke 1997] design view or by

writing SQL code. Figure 8 shows the creation of "Applied Students for Each Year" query

using QBE, and Figure 9 shows that query using SQL code.

Applied Students for Each Year _Crosstab : Crosstab query

Requested Year MS PHO Total Applied Student
1996 1 1 - 1997 21 2 23
1998 40 4 44

~ 1999 53 4 57
2000 72 8 80
2001 67 5 72
2002 26 3 29
2003 49 3 52
2004 30 5 35
2005 8 1 9

Record: ~f"nj 4 rnliil ~+ of 10

Figure 8. "Applied Students for Each Year" Query Using QBE

TRANSFORM Sum(f Aoolied Students for Each Yearl.fApplied Studentl)

AS fSumOfAoolied Studentl

SELECT rApplied Students for Each YearURequested Yearl.

Sum(fApplied Students for Each Yearl.fApplied Studentl)

AS [Total Applied Student]

FROM rApplied Students for Each Yearl

GROUPBY rApplied Students for Each YearURequested Year]

PIVOT f Applied Students for Each Year].Oegree;

Figure 9. SQL Code for "Applied Students for Each Year" Query

26

Before using this graduate student MS Access database to enter actual data, it is a

good idea to refine the design. After the tables, table relationships, fields, and forms have

been built, it is time to study the design and detect any flaws that might remain. To test the

design of this CSGraduateStudent database, contrived data for 400 students were entered.

All necessary queries and forms were created and tested to see if they show the answers

expected. Data duplications were carefully examined and eliminated. It is obviously easier

to change the database design while using contrived data than it will be after the tables have

been filled with actual student data.

27

CHAPTER IV

WEB DAT ABASE DISPLAY

In addition to designing and building a database, this thesis work involved creating

a dynamic database-driven Web site which allows the content of the site to reside in a

database and to be dynamically pulled from the database to create Web pages for Web

visitors to view with a regular Web browser.

ASP was used to create and run dynamic, interactive Web server applications. A

Web page containing ASP cannot be run by just simply opening the page in a Web browser.

The page must be requested through a Web server that supports ASP.

After a Web page is created, database managers can "publish" the page to Web

folders or a Web server. Publishing refers to the process of exporting datasheets, forms, or

reports to static HTML or server-generated HTML such as ASP pages, and setting up these

files and all related files as a Web application on a Web server [MS-2 2003].

As shown in the Figure 1 O [Yank 2003] below, the ASP scripting language

processes the page request, fetches the data from the MS Access database, and generates it

dynamically as the formatted HTML page that the browser expects.

Creating a Web database display using MS Access involves four steps [Buyens,

2000]: create ASP files, add code in order to read the database and add the corresponding

HTML code, publish the ASP files and the database to the Web folders or a Web server,

28

and run the page and review the result. These steps are briefly discussed below.

WebSenH D.-namic
page

~ ASP ·webBro\v-ser

ASP
~e file
required

Figure 10. ASP Retrieves Data to Produce Web Pages [Yank 2003]

4.1 Creating ASP Files

An ASP file is a text file with the extension .asp that contains any combination of

the following: text, HTML tags, and server-side scripts. ASP pages are essentially HTML

pages with embedded ASP code. So an ASP page contains HTML which is static as well as

ASP tags which are processed on the server.

Since ASP pages have the extension .asp instead of .htm or .html, when a page with

the extension .asp is requested by a browser, it is interpreted before sending the resulting

HTML document to the browser [Corkhill 2001]. So the ASP is run on the Web server and

not passed to the Web browser. If a file is saved with a .htm file name extension, the Web

sever would not recognize or execute the respective VBScript code.

An ASP command needs to be placed between tags, < % %>, to indicate

server-side script. The code extracts the roster from the database and presents it as HTML.

The following example shows a simple HTML page that contains an ASP script command:

29

<html>
<body>
Hello, World!

<%
= now()
%>
</body>
</html>

The VBScript function now() returns the current date and time. When the Web server

processes this page, it replaces<%= now()%> with the current date and time, and returns

the page to the browser with the following result:

Hello, World! 9/18/2004 8:33:22 AM

A database manager needs to create and manage HTML and ASP Web page. MS

FrontPage editor is a way to create and manage Web sites.

4.2 Adding Code in Order to Read the Database

For security consideration, authorized Web visitors have to enter their user name

and password to gain access to the site. All of the login details are stored in a

CSGraduateStudent database table. The ASP files involved in the graduate student

database include codes to check if the login information is matched in the database.

To read the database, we must first open it. Here is the code to co1U1ect to the

Student Information query of the CSGraduateStudent database.

<%
Set conn = Server.CreateObject("ADODB.Connection")
conn.Open xDb_Conn_Str
strsql ="SELECT* FROM [Student Information] WHERE

· OSUID ="' & key & "'AND Degree="' & s & "'"
Set rs = Server.CreateObject("ADODB.Recordset")
rs.Open strsql, conn %>

30

In the graduate student database, similar database open, connect, and close

commands are included in the ASP pages which involve extracting data from tables and

queries.

4.3 Publishing the ASP Files

In graduate student database implementation, more than 100 ASP files and more

than 40 graphic files are used to create the database-driven Web site. The followings files

are the ASP files dealing with the currently enrolled students' information that will be

published to the Web site.

• Assistantship_ Querylist.asp
• Enrolled_ MS_ Graduated_ from_ OSUlist.asp
• Enrolled_ MS_Students_Namelist.asp
• Enrolled_ Students_ by_ Country list.asp
• Enrolled_Students_for_Each_ Yearlist.asp
• Gender _Enrolled_ by_ Yearlist.asp
• Student_Information_ View.asp
• TOEFL_and_GRE_Enrolled_for_Each_Yearlist.asp

To see the database Web pages in action, all files should be copied to a properly

configured location on the Web server. A folder should be created at this location to store

all the associated files. Care must be taken to copy the CSGraduateStudent database, all

ASP files, and all graphics files to this specified folder which is located on the Web server.

There are two requirements for proper configuration of publishing ASP files

[Buyens 2000]. First, the Web server must have the software necessary (e.g., MS Personal

Web server 4 or later) to process the VBscript code and the software necessary (e.g., IIS) to

process the Access database. Second, the Web server folder where the ASP files and all

other related fi1es are placed must be flagged as executable.

31

t

l
,ri

'

I
t
:t
'I ,,
I

I
~
'j,

l
j

I

4.4 Running the Page and Reviewing the Result

The ASP script runs under Windows 2000/XP Web Server which supports IIS.

Once a page is uploaded, a Web page designer can test the page by typing the Uniform

Resource Locator (URL) into a browser. A display of the implementation of the CS

Graduate Student Web Database System login page is shown in Figure 11.

(

Computer Science Department
Graduate Students

log in to the graduate student database system

User ID

I ___ ~--__.,

Password

J
I Login J

F ergot Your Password?
Please contact the assistant belo\v.

Figure 11. Login Page

V

>

In the login page, the database manager creates user-level security by requiring user

ID and password to allow Web visitors to access the database from the Web page. The user

ID and password record set must match the user ID and password that Web visitors enter in

the dialog boxes that appear when the database manager outputs the ASP fil es. Then, a

Web visitor has entered the site, or an error message will appear through this page.

32

There are five main link directories in this Web page: Home page, Students page,

Statistics page, FAQ page, and Search page. These Web pages are explained below.

In the Students page (Figure 12), there are eight hyperlinks that the Web visitor can

follow: Enrolled students page, Graduated students page, Postponed students page,

Pending Students page, Rejected students page, Withdrawn students page, All students

page, and Assistant students page.

------------- · . Computer Science Department
Graduate Students

Enrolled

Students
Student > Inroll,d Students

Enrolled :\IS Students (Click to s" PhD Smdencs)

last :\" a.m e Fu st ;\°au\e :\liddle ;\"au1e

Poole Ethan

Eton Oli,-ia

Strain Ke,-in F.

TI\ompson \\"illiam

Garcia Da,-id R

Le\,is Christopher C

Lee Daniel L __ .;. __

Figure 12. Enrolled Student Name List Page

\ 'iew

\"ie"·

\"iew

For each hyperlink, the page shows a name list of M.S or Ph.D. students. Web

visitors may click a student First Name, Last Name, and Middle Name to sort records in

ascending or descending order. For all ASP Web pages in the CS Graduate Student Web

Database System, if there is an underline under a record name, this record may be sorted in

33

ascending or descending order by clicking on it. Web visitors may also click the Students

Infonnation View link to see the detailed information of the selected student.

The key that connects the Students page and Students lnfom1ation View (Figure 13)

is the student's OSUID number.

<

Computer Science Department
Graduate Students

Personal Infonnation

0000000000000217

Poole

Ethan

•i

M

China

Fl

4/ 17/ 1976

N

Address -- CuiTeut

Figure 13. Student Information View Page

,.

V

)

The Students Information View page lists all CS Department students' infonnation.

To hyperlink different locations in the same page, bookmarks [MS-2 2003] were used to

identify the locations within the files that Web visitors can later refer or link to. When Web

visitors click on a student's View link, there are five bookmarks they may link to: Personal

34

Information, Address, Academic History, Enrollment information, and Courses and

Thesis/Dissertation record.

The statistics page (Figure 14) provides statistical inforniation extracted from the

CSGraduateStudent database.

[I]J
-2~~

carnPUTer science
Applied

Computer Science Department
Graduate Students

Enrolled Graduated Rejected

Statistics > Applied Students

Applied Students Categorized by
-<,;:, Year and Semester

~ Counm•

., Gender

..;.z,. :\1S Students with BS Dee.ree from OS'C,;

lo(>- PhD Students \\ith :vIS BS Deeree from OSl.7

a(>- TOEFL and GRE Scores

I HOiVlE I STUDENTS I STATISTICS ! FAQ I SEARCH I H ELP I
I CS HO[VlE PAGE I LOGOUT I

Figure 14. Statistics Page

In this page, there are six category hyperlinks that a Web visitor can follow: applied

students statistics links page, enrolled students statistics links page, admitted students

statistics links page, graduated students statistics links page, rejected students statistics

links page, and over all students statistics links page.

35

Following any one of the hyperlinks, a Web visitor will get the statistics associated

with the selected category. Some of the major topics of interest are the data grouped by

year and semester, country, gend~r, and TOEFL/ GRE scores. In the current

implementation, 65 statistics pages have been created for this thesis work. Most statistical

data for these pages come from queries. Figure 15 is an example statistics page for

"Applied Students".

Applied Students for Each Year (Click to ,iew Semester)

Reguested Year
Degree Program

Total
Master PhD

1996 1 1

1997 21 3 24

199S 40 i 4 44

1999 S3 ,l 57

2000 72 s so
2001 61 5

.,., ,_

2002 26. 3 29

2003 49 3 52

2oo.i 30 4 3..J

2005 8 1 9

TOT.s.\L 367 3:5 402

Figure 15. Applied Students for Each Year Page

The FAQ page addresses the questions that are regularly asked by Web visitors or

the database manager of the database-driven Web site, statistics requirements, and problem

reports.

The search page (Figure 16) offers a number of ways in which Web visitors can

find the resources they are seeking. Web visitors can perform database tables or queries

36

search by entering a student's First and Last Nan1e, OSUID Number, or a Key Word into

the respective box. When the search is finished a list of matches will appear.

Student Information

Student Name

Computer Science Department
Graduate Students

Search]

0 Exact phrase O ~AJI words O A.ny word

OSlJID Number [:J [Search J

0 Exact phrase O All Number O Any Number

Key Word ~------~ [Search I
0 Exact phrase O All words O Any word

Figure 16. Search Page

37

CHAPTER V

USER GUIDE

There are two. components that make up CS Graduated Student Web database

system. The first component is the MS Access database named CSGraduateStudent which

includes tables, queries, and forms associated with the CS graduate student information.

CSGraduateStudent database runs on a Windows sever machine. The second component

consists of the CS Graduate Student Web pages that run on the Windows HS server

machine. The CS Graduate Student Web pages use the ASP scripts language to

communicate with the CSGraduateStudent database.

5 .1 Database System .

The CSGraduateStudent database will eventually contain all graduate student data.

There are a total of 14 tables, 81 queries, and 3 forms in the current implementation of the

database. These object numbers could be increased as needed. The following three

subsections describe the tables, queries, and forms of the database.

5.1.1 Database Tables

A table is a collection of data about a specific topic, such as Personal Information or

Enrollment. Using a separate table for each topic means that we store the data only once.

38

This results in a more efficient database and fewer data-entry errors. Tables organize data

into columns (called fields) and rows (called records).

View an Existing Table

r> Double click on the CSGraduateStudent.dbm file and a Database window appears. For

security reasons, you should change the database's name when you upload your

database and database-driven Web pages to the server. As a result, it will not be easy

for others to try to -track the system's database .

.., In the Database window, click on Tables under Objects. A name list of all tables in the

CSGraduateStudent database is displayed as Figure 17.

Design _:_,_;~~-P!c,: . -~~~- :,, __ ~-=_:-:- =~L ___ _
view : Objects : Name 1-------1·---------------:I um Tables . ! [create table in Design view f

Gil Queries ; ~ Create table by using \ViZard

~

18

~
B

4

Forms

Reports

Pages

Macros

Modules

~ Create table by entering data
rim Academic History
1ml Address
mn Assistantship
rilD Class
liiil Enrolled Semester Code

! i [II Enrollment
Groups 111D Graduated Semester Code

·-- ----··········---·---·-··--··---; I DI Personal Information
Ill Favorites , 1

1 ID Requested semester code
llill Students And Courses
liDl Thesis and Dissertation
tiiD University
filil Users
IDB Withdrawn Semester Code

Figure 17. CSGraduateStudent Tables

39

• Click on the table you want to open. The default view window is Datasheet view

(Figure 18) which displays data from a table, form, or query procedure in a

row-and-column fom1at. In this table datasheet, you can edit field names, add or delete

data, and sort data in a field. You also can open the table in the Design view by clicking

on Design (Figure l 7) on the Database window toolbar. A detailed discussion of the

Design view is covered in the field design section below .

. . , Personal Information : Table -
OSUID LastName FirstName MiddleName Gender Birth Country Vis, t•IeI•IeI•I•I•I•I•I•I•IeI•Iel•II Garcia Carol F us

0000000000000002 Calder _Benjamin T M us
0000000000000003 , Caldwell Nathan M China
0000000000000004 Chadwick Logan R M us
0000000000000005 Chilton Kevin K M Bangladesh
0000000000000006 Church Gabriel M China
0000000000000007 Clay Robert M India

Record: •~ I , II 1 ~ I~• 1~*1 of 400 • I ~

Figure 18. Datasheet View of Personal lnfomrntion Table

Add New Records to an Existing Table

Open the CSGraduateStudent database and the table you want to edit. If the table is

empty and you want to add a bunch of data at one time from other format out of this

database, click fi le -> Get External Data-> Import, give the import data path, then click

Import. If the table is not empty and you want to add a bunch of data from another fomrnt

file, copy all the data you want to enter from the other fomrnt file, then go back to

Datasheet view window of the table, click the "*" at the end of the table, then paste. You

can also simply enter a record directly in the associated field.

There are three things that should be emphasized when some new records are added

40

to an existing table.

• The primary key filed is unique and not empty.

• The data type you entered should match the defined data type of each field.

• If the table is related to other tables, enter the data necessary to other related tables.

Add, Rename, or Delete a Field in the Existing Table

1. Add a Field

A Field is a logical group of bytes in a record. The Design view of a table (Figure

19) is use to add some new fields. To create a field, you should carefully define the Field

Name, Data Type, an~ Field Properties. The Description is optional to display the text of

what the field is.

In Design view, you can insert a new field at any position you want. To insert a new

column at the desired position, you can click anywhere on the column that will succeed it.

On the main menu, cli_ck Insert~> Rows and type the field name. To add a new column at

the end of the table, click the first empty field under Field Name and type the field name.

The Field Name column is used to type a name for each field. The Data Type

column is used to choose the data type you want. The data type starts out as default Text,

however there are many other data types that can be used. Each field can have only one

data type. All data types used in the CSGraduateStudent database are explained as below.

o Text Data Type

This type is text or a combination of text and numbers, as well as numbers that do not

require calculation, such as OSUID. Almost all of the data in the CSGraduateStudent

database are this type.

41

11

11

I

i'
;1

I

i
I

i'
1·

Ii
1·

I
l
r
l
l

LastName
FirstName
MiddleName
Gender
Birth Country
Visa type
Birthdate
Academic Misconduct

General [Lookup

Id Size Fie
Fo
In

rmat
put Mask

I Ca
I De

ption
fault Value

I
Va lidation Rule

lidation Text Va
Re

I Al
quired

low Zero Length
dexed In

' Un
I IM

IM
!sm

icode Compression
EMode
E Sentence Mode

I art Tags

,16

Text
Text
Text
Text
Text
Text
Date/Time
Text

0000000000000000

>---

Yes
No
~ (No Duplicates)
No
No Control
None

Primary key. 16 digital OSU Student ID number.
Student last name
Student first name
Student middle name
Student gender
Student birth country
Student's visa type if the student is not a US citizen
Student birthday

- --- --

==J
l
l -----1
I

-
~

~
I

I
I
f
I
I
I

I
I

I

.

l

I A field name can
be up to 64

1
characters long,

induding
spaces. Press
F 1 for help on

field names.

Figure 19. Design View of Personal Information Table

o Number Data Type

A numeric data is used in mathematical calculations. You can select options, such as

Integer and Double, from Field Size. TOEFL and GRE Score fields in Academic

History table are examples of this kind of data type.

o Date/Time Data Type

This type shows date and time values for the years 100 through 9999. There are a

variety of fom1ats that can be found under Format of Field Properties. Fields named

Bilihdate and Defense Date are of Date/Time data type using the mm/dd/yyyy format.

42

After a data type is selected, field properties should be determined. Field properties

are field size, input mask, validation rule, and required, as explained below.

o Field Size

It is up to 25 5 characters.

o Input Mask

An input mask ensures that the data will fit in the format you define, and you can

specify the kind of values that can be entered in each blank space. For example, the

input mask of OSUID is "0000000000000000", which requires that all entries contain

exactly 16 digits and only digits be entered in each field. Some Input Mask characters

are given below in Table III.

0 Digit must be entered
9 Digit or space - entry not required
Digit or space - entry not required -

spaces removed when data saved

L Letter - entry required
A Letter or digit - entry required
& Any character or space - entry required
.,:;-/ Placeholders/separators
< Conversion to lowercase
> Conversion to uppercase

Table III. Input Mask Characters

o Validation Rule

You can use a validation rule to restrict data entry to certain types of data. The

validation rule allows the field designer to put in an expression to test the data for

acceptability. The associated error message can be put in the Validation Text to

43

display. For example, the validation rule on Computer-Based TOEFL field is "<=300

And >=O" and the Degree field is "Like "B.S." Or "M.S." Or "Ph.D."". To input this

validation mle, you may go to the "Validation Rule" of the field, press the build button

(three dots) to print up the expression builder, and then enter the validation mle as

shown below in Figure 20.

I I OK

I Cancel

' L Undo

+ - I ~1~ = > <<>j And Or Not Like jJJJ Help

Figure 20. Validation Rule on the Degree Field of the Enrollment Table

o Required

If a required entry is set to "yes" , it means that something must be entered in this field.

The required prope1iy of the OSUID field, shown in Figure 19, is set to yes and it does

not allow users to enter a record without an OSUID data, or only de lete an OSU ID data

from an existing record.

2. Rename a Field

One of the jobs involved with database design and maintenance is to review fi elds

and make sure they are explicit enough for the user. A field's name is stored in the

corresponding table and is involved in perfonning calculations and other programming

issues. If the renamed field s are involved in some relationships, you should be careful

44

when deciding to change their name. To rename a field in the Design view, click it and type

the new name. After you have typed the name, the new name will replace the old one.

3. Delete a Field

When in the Design view, you can delete a field that you do not need anymore or

was added by mistake. If the delete field is part of one or more relationships, you can not

delete it unless you delete its relationships in the Relationship window first. To delete a

column, you should carry out the following steps:

.., right-click anywhere on its line and click Delete Rows,

• click Yes to permanently delete the field(s), and

1> save and close the table.

Add a New Table

The three ways to create a new table are: create a table in the Design view, create a

table by using the Wizard, and create a table by entering data. The preferred way is using

the Design view, which consists of creating a list of field names, specifying the data type,

and controlling their properties. Follow these steps to create a new table in the Design

view.

"" Click Insert-> Table-> Design view on the menu bar. You can also click Tables under

Objects, double click Create table in the Design view on the right side, then Figure 21

will be displayed .

.., Follow "Add a Field" which was discussed on page 41 to define each of the fields in

this table.

45

• Select the primary key.

r> Click View bar (circled in Figure 21), click Yes to save the table.

• Name the table and click OK.

Desai tion

--------~--- ________ Field Properties __________ -·· _

General } Lookup I

Figure 21. Create a New Table in Design view

Build Relationship among Tables

When fields, which have relationships, are changed or a new table has been created,

one or more new relationships between the tables could be built. The related fields do not

have to have the same names. However, related fields must have the same data type and

properties setting. The followings are the necessary steps to create a relationship between

two tables.

"' Click Relationships icon on the menu bar.

s,.. Click Relationships -> Show Table.

• Double click the table you want. Then it is shown in the Relationships window.

• Click on the common field in this table and drag the mouse to the common field in the

46

related table. A dialog box (Figure 22) is brought up in which you can specify the

relationship between the two tables .

.,. Click Create.

Iable/Query: Belated Table/Query: Q'eate

IOSUIO ...:j OSUIO ~I
·- - -----------, P- !Enforce Referential Integ~ l

1 Cascade !,!pdate Related Fields

Cl!ncel

Join Type ..

Create ,Mew .. I

I
1 Cascade Qelete Related Records j'

---·--- ---- --------------
Relationship Type : . One-To-One

Figure 22. Create New Relationships Among Tables

5 .1.2 Database Queries

A Query is issued to find and retrieve just the data that meets the specified

conditions, update or delete records, or perform predefined or custom calculations on data.

It may include data from multiple tables or other queries and also can be used as a source of

records for fom1s and for other queries. When dealing with a query whose data originate

from more than one table, those tables must have been previously joined. You can add a

query if the data you need does not exist in the query, or remove a query if you decide you

do not need them.

There are several types of queries in MS Access. The CSGraduateStudent database

only involves the select query and the crosstab query. In the current complementation of

47

the databse, there are 62 select queries and 19 crosstab queries.

Create a Select Query

A select query is the most common type of query. It retrieves data from one or more

tables and displays the results in a datasheet. It is also used to group records, count records ,

and calculate sums. Creating a select query can be accomplished by using either the query

Design view or the Query wizard (Figure 23).

~ CSGraduateStudent : Database (Access 2000 file format) ~~~

Objects ' Name A j

(lil) Tables I im Create query in Design view

@ Queries 1@ Create query by using wiZard

§I
,, @ Admitted MS Students for Each Year

u Forms I lffii] Admitted PhD Students for Each Year
Ill Reports

I

11: Admitted Students by Country

~ Pages Admitted Students for Each Semester

[; Macros ~ Admitted Students for Each Semester_Crosstab '
[S1 Admitted Students for Each Year

~ Modules I @ Admitted Students for Each Year and Country
.J.

Groups I I m ArlmittPrl ~h1rlPnt<. fnr F;1rh Yp;1r rrnc:.,t;1h
... < II I >

V

-- --- -

Figure 23. CSGraduateStudent Queries

The steps to create a select query by using wizard are:

..,. Click on the Queries under Objects in the Database window .

.,. Pull down the Tables/Queries list and choose the table or query source. Fields should

be displayed in the Available Fields.

.. Double click the fields you want in Available Fields, then these fie lds are displayed in

Selected Fields.

48

.. Click on the Next button to move to the next item.

.. Give your new query a name.

• In the final step, the wizard will create the new query with the option of open or

modify. If you choose "Open the query" to view the information and click on the Finish

button. the wizard will execute the query and show the data. If you choose '"Modify the

query design", the wizard will switch to the Design view to allow modifications to the

query, as depicted in as Figure 24.

Edit a Select Query

Open up the "Enrolled M.S. Students Name query" in the Design view by

highlighting the name of the query and clicking on the Design view button (circled m

Figure 24). After the query is modified, click View bar to see the datasheet, save and close

this query to return to the Database window.

ame : Select Query _ _ ____ ___ ~ _

SQL SQLV..ew

'" PivQtTable View
00 ...

~um
... OSUID

OOl PjyotChart vi.ew stName Degree

r l rstName Application Date
l\·liddleName V Requested Year V

<

Field : OSUID LastName FirstName Middlel~ame Status Deoree
Table: Personal Information Personal Info Personal Info Personal Info Enrollment Enrollment
Total: Group av Group Bv Group By Group By Where \Vhere
Sort: Ascendino

Show: @ @ 0 @ D D
Criteria: "Enrolled" · r-.·15"

or:

Figure 24. Design View of Enrolled M.S. Students Name Query

49

The Query Design view has two major sections. In the top section, the tables used

for the query are displayed along with the available fields. In the bottom section, those

fields that have been selected for use in the query are displayed. Each field has several

options associated with it: Field, Table, Total, Sort, Show, and Criteria.

• Total

Use "Group By" to calculate separate amounts for groups of records in a field. Use an

aggregate function, such as Sum Count or Avg, to calculate one amount for all the

records in each field.

• Sort

You should arrange the fields you want to sort from left to right, since the leftmost field

will be sorted first. The "Sort" order is by ascending, descending, or not sorted.

• Show

This field will be displayed in the query output or not.

• Criteria

The most important part of the query design is the criteria which controls how to limit

the records in the query's results. The "Or" row is used for alternative criteria in the

same field. Some examples of criteria are:

Expression Meaning

>550 TOFEL score greater than 550

"M.S." list all M.S. students

ln("Enrolled","Graduated") The status is one of the values
in parentheses

Is Null, Is Not Null The field is blank or not blank

And, Or, Between, Not compound condition

Table IV. Query Criteria

50

For this example, to filter the records to only display enrolled Master students,

"Enrolled" is typed by clicking the Criteria area beneath the Status field and " M.S." is

typed by clicking the Criteria area beneath the Degree field.

Create a Crosstab Query

Crosstab query is used to calculate and restructure data for easier analysis. Enrolled

Students for Each Year_ Crosstab query (Figure 25) in the CSGraduateStudent database is

an example of Crosstab query. There are at least three fields of data to create a crosstab

query. In this example, the Required Year field is displayed as row heading, the Degree

field (M.S. and Ph.D.) is displayed as column heading, and then calculated the total

enrolled student by Degree and Required Year.

~Jew Insert FQrmat B.ecords Iools Window t!elp

Total Enrolled Student
~· 5 5

2001 21 3 24
2002 24 3 27
2003 45 3 48
2004 8 1 9

Record: [EJ '1 I 1 (}](BJ ~,., of 5

Figure 25. Enrolled Students for Each Year_Crosstab Query

To create the Enrolled Students for Each Year_ Crosstab crosstab query, do the

following steps.

_. Click on the Queries under Objects in the Database window.

51

• Click the New button at the top of the Database window.

r> Select the Crosstab Query Wizard and click OK.

• Select the table or query you would like to pull your fields from. In this case, "Enrolled

Students for Each Year query" is selected. Then click Next.

"' Select the field (Required Year) you would like to use as row a header. Click Next.

.., Select the field (Degree) you would like to use as a column header.

• Select the type of calculation you like to perform. In this case, Sum is selected. Click

Next.

111- Name the created query. In this case, the default name, "Each Year_Crosstab crosstab",

is used. Click Finish and Figure 25 is displayed. If you like to make changes to the

query, click the View button at the top left of the screen.

Field Replacement or Deletion in a Query

A query provides just a temporary means of studying the information in the

database, and we can add, insert, delete, replace, or move the fields at will.

If you do not need a field in a query any more, you can either replace it with another

field or delete it. To replace a field, click the arrow on the combo box of Field and select a

different field name from the list. To delete a field, click the gray bar of the column header

in the Design view to select the whole field, click the right mouse button, and press Cut.

5.1.3 Database Forms

Forms are used as an alternative way to easily view, enter, and change data directly

in a table. It is often impossible to enter all of the information from a single table,

52

especially if the set of tables has relationships. In the CSGraduateStudent database, there

are more than 100 fields, and 5 tables are involved to each graduate applicant when a

student data are first entered. The Computer Science Graduate Student Information form

(Figure 7) is designed to help the database manager when larger amount of data are

entered.

Create Forms by Using the Wizard

To create a form using the assistance of the wizard, follow these steps:

... Click the Create form by using the wizard option on the Database window.

~ Select the table or query from the Tables/Queries drop-down menu .

.,.. Select the fields that will be included on the form by highlighting each on the Available

Fields window and clicking the single right arrow button > to move the field to the

Selected Fields window. To move all of the fields to Select Fields, click the double

right arrow button >>.

r> Click the Next button to move on to the next screen.

s. Select the layout of the form and click Next.

• Select a style of the form and click Next.

• Name the form and select "Open the form to view or enter information" to open the

form in Form View or "Modify the form's design" to open it in the Design view.

1> Click Finish to create the form.

Create Subform by Using Wizard

The CSGraduateStudent database also contains two other forms: Course form and

53

Assistantship form. These two fon11s deal with the enrolled students whose records need to

be frequently edited. Subfom1 and drop-down lists controls (Figure 26) are added to these

fom1s to make data entry easier and more reliable.

A subfonn is a fonn that is placed in a parent fom1, called the main form. Subforms

are particularly useful to display data from tables and queries that have one-to-many

relationships. For example, in Figure 26 below, data on the main fonn is drawn from

student Personal lnfonnation table while the subform contains all of the courses for that

student. "One" enrolled student has "many" related courses.

!El Courses ______ _ __ ~~
~

Students OSUIO Jooooooooooooooo1 J Degree I PHD I
last Name jGarcia I
First Name jcarol I
Middle Name

Courses cou rseID Grade Index •
cs5423 A C

cs5553 B C

cs5 653 B C

cs5663 B C

~

cs1003,.
csll03 "

csll13 ...
Re cs2133 11 ~ ~· ~ of

cs2301
cs2331
cs2351
cs2432"

Record: I~ j < I l ~ H ~* of 402

Figure 26. Courses Fonn

Follow these steps to create a subfom1 within a fom1:

.., Double-click Create fonn by using the wizard on the Database window.

54

..., Select the first table or query from Tables/Queries drop-down menu and choose the

fields that should be displayed on the form.

• Select another table or query from the same window and choose the fields that should

be displayed on the form. Click Next.

..., Choose a table as the main form by selecting form with subform(s), and click Next.

..., Do the rest of the steps as in "Create Form" by Using the Wizard.

Add or Edit Records Using a Form

A new record can be created by clicking the New Record button at the bottom of the

form window or by clicking Tab after the last field of the last record, as shown in Figure 26.

Fill out the data into the blank fields of the form. The records or data are automatically

stored into tab le as they are entered.

Editing Forms

The following points may be helpful when modifying forms in the Design view.

"" Grid Lines - By default, a series of lines and dots underlie the form in Design view so

form elements can be easily aligned .

.., Resizing Objects - Form objects can be resized by clicking and dragging the handles on

the edges and corners of the element with the mouse .

..., Change Form Object Type - Right click on the object with the mouse and select

"Change To'' and select an available object type from the list.

~ Label/Object Alignment - To change the position of the object and label in relation to

each other, click and drag the large handle at the top left comer of the object or label.

55

• Form Appearance - Change the background color of the form by clicking the Fill/Back

Color button on the formatting toolbar and click one of the color swatches on the

palette. The font and size, font effect, font alignment, border around each object, the

border width, and a special effect can also be modified using the formatting toolbar.

i,. Page numbers can also be added to these sections by selecting Insert! Page Numbers.

Di> A date and time can be added from Insert! Date and Time.

5.2 Web Database Display

The CSGraduateStudent database, ASP pages, and Images folder are stored in a CD

named CSDB. Appendix G lists all the .asp pages and image files in this database-driven

Web site. Upload all the files from the CD to the directories indicated. If any files need to

be overwritten, back up your old files for safety. If you do not back up these files and you

want to start over, you may have a problem.

5.2.1. Hosting

An ASP file on the Web-server is requested by the way of a URL, such as

http://www.domainNameNourAccount/login.asp, where the domainName is the Web

server name of the CS computer system hosting this database-driven Web site, and

Your Account is given by the system administrator which provides you the space to upload

all the Web database files.

5 .2.2. ASP Files

Some ASP pages which will be introduced here are: Login.asp, DatabasePath.asp,

56

Default.asp, Header.asp, and Search.asp.

Login.asp

The user ID and password record set have been stored in one of the

CSGraduateStudent database table named Users. The login details are picked up from the

login page using the Request method [Buyens 2000], i.e., if the record set is found, the

login status is changed to login and the Web visitor is redirected to enter the Website,

otherwise an error message is shown.

Database Path.asp

To connect to the database using the physical path to the ASP file, you must first

determine the path. DatabasePath.asp file provides the data source for other ASP files. As it

has been mentioned before (Section 5.1.1), the database name must be changed from

CSGraduateStudent to something else when the Web-driven database site is actually run.

The following DatabasePath.asp code is included in most ASP pages by using <!--#include

file=" DatabasePath.asp"-->.

<%
xDb_Conn_Str ="Provider= Microsoft.Jet.OLEDB.4.0;
Data Source·=" & server.mappath ("CSGraduateStudent.mdb") & ";"
%>

So, after the database name is changed, the only thing you need to do is to update

the DatabasePath.asp script to specify this path. Otherwise, you should go through all the

ASP files related to the database.

57

Default.asp:

When you successfully login to the Web database site, the server calls default.asp

to direct an ASP file. In the following default.asp code, Students.asp page will be shown on

the Web site. You may change the Students.asp to what you want as the default page.

; <% Response.Redirect "Students.asp" %>

Header.asp

A header file will feature a CS top banner and a menu with different links that will

be featured on the left hand side of each CS Graduate Student Web page. By design, all

pages across the CS graduate student domain will look and feel the same. If the CS

Department wants to change the look and feel of the Web page design, the designer can

make one change in a single location and all Web pages that use the header file will be

changed.

In this CS Graduate Student Web site, there are several header ASP files that are

included in other ASP·pages for various required purposes. These header files appear after

the login status is checked and the database connection is opened at the top of the page.

And they should be placed before the data is displayed. For example, the Header.asp

(Figure 27) is included in all statistics ASP files. The code for Header.asp is included in

Appendix H.

Search.asp

The Search.asp facility allows the Web visitors to search the student record through

the CSGraduateStudent database. Search.asp refers to Search_Results.asp page (Figure 28)

58

to give a list of OSUID and student name records which contains the searched Keyword.

Click on the "View" to see the individual records fonn the database.

Ll] .. ~
-!___t

camPurer science

Computer Science Department
Graduate Students

I ApplH Admi«ed J Gradualrd I Rejeclrd 1 0veru1 ei

Figure 27. Header.asp Page

Search Result

Quick Search ..._ ______________ , t~-1
0 Exact phrase O All ,~.rords O Any word

,.:: .. -•.. . .

0000000000000001 Carol Garcia Yiew

0000000000000010 Faith Harding View

0000000000000011 Isaiah Cross \·iew

0000000000000012 Amanda DaYis K \'iew

0000000000000013 Allison Radcliff Vie,Y

0000000000000014 Mackenzie Oxford J \·iew

Figure 28. Search_Results.asp Page

59

The main code in Search.asp is given below.

For Each kw In arpSearch
b_search = b_search & "("
b_search = b_search & "[OSUID] LIKE'%" & Trim(kw) &

"%'OR"

After the database connection is created, the b_search builds the search criteria of

the data which equals a value- OSUID, FirstName, LastName, etc. The code for Search.asp

is available in Appendix H.

5.2.3. Create or Edit ASP File

The structure and sample code of ASP pages which deal with the extracting data

from tables and queries are shown in Table V. We will follow this structure to create and

edit the ASP files.

1. Check the Login Status: The code for checking the status follows.

· <% If Session("CSDB~status") <> "login"
Then Response.Redirect "login.asp"

I%>
<%

· Response.expires= 0
Response.expiresabsolute = Now() - 1

; Response.addHeader "pragma", "no-cache"
Response.addHeader "cache-control", "private"
Response.CacheControl = "no-cache"
%>

The first three lines of the above code indicate that the Web visitors must re-login to the

database if the default login status is expired. The rest of the lines tell the server that the

login will expire if this Web page does not get a response within a finite time. The

60

Session object may keep the variables stored until the Web visitor leaves the domain.

The timeout property can be set to the number of minutes that the Session lasts before it

is ended by calling the Abandon method and then redirecting to a new page.

<%

I. Check the login status
If Session("CSDB _status")<> "login"
Then Response.Redirect "login.asp"
%>

2. Include the database path file <!--#include file="DatabasePath.asp "-->

<%
Set conn = Server.CreateObject

3. Open the database connection ("ADODB.Connection")
conn.Open xDb _Conn_ Str
%>
<%
strsql = "SELECT * FROM

4. Build SQL [Graduated MS Students Name]
order by Class1D"'

%>

5. Include the header file <!--#include file="header.asp"-->

<%
6. Read the data X_ OSUID = rs("OSUID")

%>
<%

7. Display the data Response.Write X_ ClassID
%>

<%

8. Close the database connection conn.Close
Set conn = Nothing
%>

Table V. Code Structure of CS Graduate Student ASP Files

2. Include the database path file at the top of your source code by using an include

statement.

3. Create and Open Database Connection Object: Server is an object that is built into the

ASP scripting environment and CreateObject is a method to create objects. Creating a

61

database connection object does not automatically open communications with any

database. The conn.open method is called to open a connection.

4. Build SQL: Embedded SQL allows programmers to connect to a database and process

data from a database. The standard SQL commands such as Select, From, Where, and

Order-by can be used to accomplish almost everything that one needs to do with a

database.

5. Include the header file by using an include statement.

6. Read the Data: You should read and define all of the data you need in order to program

or display from the database tables or queries.

7 · Display the Data: The Response Object is responsible for sending data from the client

to the server. For example, you can print strings such as HTML and character sets. The

Write method writes a specified string to the current HTTP output using this syntax:

"Response. Write variant", where Variant can be any data type supported by the Visual

Basic Scripting data type, including characters, strings, and integers.

8. Close Database Connection: When the database is finished accessing, use the

conn.Close to close the connection. If you forget to close a Connection object, the ASP

scripting processor will eventually find it, close it, and remove it from memory

[Buyens 2000]. Even after you close a Connection object, it still remains in memory.

To remove a Connection object, use "Set conn= Nothing" in the respective code. The

server will probably be more stable if you always close and release any objects you

create.

62

CHAPTER VI

SUMMARY AND FUTURE WORK

6.1 Summary

This thesis work had two parts: database design and Web database display. The

first part involved the design and implementation of a dynamic database application using

the MS Access database management system to build tables, queries, and forms. This

database has the capability to generate different types of queries and forms to suit the CS

Graduate Student Information system requirements. The implementation was refined and

streamlined using data constructed closely based on actual data.

The second part involved developing Web pages to display the desired tables and

queries. The Web pages for the final implementation are Active Server Pages. Finally, a

series of data tests and security tests were performed to insure that the system works

correctly.

6.2 Future Work

In the current system, the users are limited to edit or create new attributes based on

existing attributes present in the corresponding tables from the Web site. In the future, the

users should be able to create new attributes based on existing attributes from across

multiple tables in the database. This would allow users to go in and edit their current

63

information, as opposed to emailing the site administrator and having the administrator

remove old information, and then adding in a new entry. Due to limited time, this thesis

work did not attempt to implement this function.

The current system has been designed to support only the MS Access database as

the source database. In the future, the system can be enhanced to support multiple source

databases.

Due to the author's limited knowledge of ASP, HTML, the MS Access database,

and lack of time to learn the three completely, this DBMS does not include any error

checking code. There are a vast number of errors that could be checked for, e.g., when the

database manager entered a record in a table which is related to other tables, the other

tables should have some necessary data entry (such as OSUID) to make them join together.

An error checking code may test it and prompt the related tables and the fields.

The implementation part·ofthis thesis work is meant to be used by a small group of

users, releasing it on a wide scale would involve some improvements to the search and

security functionalities.

64

REFERENCES

[Atkinson 2000] Leon Atkinson, Core PHP Programming: Using PHP to Build Dynamic

Web Sites, 2i:td edition, Prentice Hall PTR, Upper Saddle River, NJ, August 2000.

[Axmark and Widenius 1999] David Axmark and Michael Widenius, Linux Journal,

''MySQL Introduction", URL: http://www.linuxjoumal.com/article.php?sid=3609,

creation date: November 1999, access date: August 2004.

[Buyens 2000] Jim Buyens, Web Database Development Step by Step, Microsoft Press,

Redmond, WA, 2000.

[Corkhill 2001] Bruce Corkhill, "Creating Your First ASP Page", Web Wiz Guide, URL:

http://www.webwizguide.com/aspltutorials/first _ asp _yage.asp, creation date:

September 2001, access date: January 2004.

[Delwiche and Slaughter 2002] Lora D. Delwiche and Susan J. Slaughter, The Little SAS

Book: A Primer, 2nd edition, SAS Inst. revised, SAS Publishing, Cary, NC, 2002.

[Getz et al. 2001] Ken Getz, Mike Gunderloy, and Paul Litwin, Access 2002 Developer's

Handbook Set, Sybex Inc., Alameda, CA, 2001.

[Kroenke 1997] M. David Kroenke, Database Processing: Fundamentals, Design, &

Implementation, 6th edition, Prentice Hall, Upper Saddle River, NJ, 1997.

[Martella et al. 1994] Giancarlo Martella, Maria G. Fugini, and Silvana Castano, Database

Security, Addison-Wesley, New York, NY, 1994.

[Meloni 2000] Julie Meloni, PHP Essentials, Prima Tech Linux Series, Rocklin, CA, April

2000.

65

[MS 2001] "When to Upsize a Microsoft Access Database to Microsoft SQL Server -

Improved Security", Microsoft Corporation, URL: msdn.microsoft.com/library/

en-usloff2000/htmllacconWhenToUpsizeMDBtoSQLServer.asp, creation date:

June 2001, access date: January 2004.

[MS-1 2002] "Get Started with Access 2003", Microsoft Corporation, URL: http://office.

microsoft. comlassistancelpreview.aspx? Asset/D=HP05 J 86384 J 033 &CTT=98,

creation date: 2002, access date: January 2004.

[MS-2 2003] "Glossary -- FrontPage 2003 Assistance", Microsoft Corporation, URL:

http://offtce.microsofl.com/assistance/preview.aspx? Asset/D=HPOJ 03813 71033&

CTT=4&0rigin=CH010503741033, creation date: February 2003, access date:

January 2004.

[MySQL 2004] "MySQL AB Trademark Policy'', URL: http://www.mysql.com/, creation

date: January 2004, access date: August 2004.

[Olson et al. 2003] A. Michael Olson, Keith Bostic, and Margo Seltzer, "Berkeley DB",

S leepycat Software Inc., URL: http://www.sleepycat.com!docslref/refs/bdbusenix.

html, creation date: December 2003, access date: January 2004.

[Orwant et al. 2000] Jon Orwant, Larry Wall, and Tom Christiansen, Programming Perl,

3rd edition, Oreilly & Associates Inc., Sebastopol, CA, 2000.

(Sarin 2000] Sumit Sarin, Oracle DBA Tips and Techniques, McGraw-Hill Osborne Media,

Berkeley, CA, 2000.

[Schlotzhauer and Littell 1997] Sandra Schlotzhauer and Ramon C. Littell, SAS System for

Elementary Statistical Analysis, 2nd edition, SAS Institute Inc., Cary, NC, 1997.

[Shelly et al. 2001] B. Gary Shelly, Hilip J. Pratt, Mary Z. Last, and Thomas J. Chashman,

Microsoft Access 2002: Complete Concepts and Techniques, Course Technology,

Boston, MA, 2001.

[Sleepycat 2001 J Sleepycat Software Inc., Berkeley DB, Sams Publishing, Indianapolis, IN,

2001.

66

[SPD 2001] "Sun Product Documentation-- Enable or Disable the Basic Security Module

(BSM) on Solaris", Sun Microsystems, URL: http://docs.sun.com/db/doc/816-021

l/6m611c6611j?a=view, creation date: May 2001, access date: January 2004.

[Spector 200 I] Paul E. Spector, SAS Programming for Researchers and Social Scientists,

2nd edition, Sage Publications, Thousand Oaks, CA, 2001.

[Widenius et al. 2002] Michael Widenius, David Axmark, and MySQL AB, MySQL

Reference Manual: Documentation from the Source, O'Reilly & Associates Inc.,

Sebastopol, CA, July 2002.

[Yank 2003] Kevin Yank, Build Your Own Database Driven Website Using PHP &

MySQL, Sitepoint Pty Ltd., Quartz Hill, CA, March 2003.

67

I
I'

APPENDICES

,.

I

68

APPENDIX A

GLOSSARY

ASP In MS Access, Active Server Page is a set of software components
that run on a Web server and allow Web developers to build dynamic
Web pages [Buyens 2000].

Candidate Key A combination of one or more fields whose value uniquely identifies a
record in a table, hence no two records in a table can have the same
key value.

Data Access Page A Web page that has a connection to a database.

DBM DataBase Manager is a program that consists of the server part and the
client part of a distributed database.

DBMS A DataBase Management System provides users with the software
tools needed to organize and access data.

Field A logical group of bytes in a record that is used in file processing.

Foreign Key A foreign key is a field in a relational table that matches the primary
key column of another table. The foreign key can be used to
cross-reference tables.

Form An Access database object for taking actions or for entering,
displaying, and editing data in fields.

IIS Internet Information Server is Microsoft's suite of Internet-related
software which is included with the Windows 2000 and above
operating system software. IIS provides both FTP server and web
server capabilities.

MS Access Microsoft Access database is a collection of data and objects such as
tables, queries, and forms.

MySQL MySQL is an open source relational database management system
that uses Structured Query Language for processing the data in a

69

Object

ODBC

Primary Key

QBE

Query

Report

SAS

SQL

Table

database. It works best when used for managing content and not for
executing transactions [Widenius et al. 2002].

A term used to refer to tables, reports, indexes, or other structures of a
database.

Open DataBase Connectivity is a standard method of sharing data
between databases and programs. ODBC drivers use Structured
Query Language (SQL) to gain access to external data.

One or more fields (columns) whose value or values uniquely identify
each record in a table. A primary key cannot allow null values and
must always have a unique index [Shelly et al. 2001].

Query By Example is a style of query interface that allows users to
express queries by providing examples of the results they seek.

A question about the data stored in tables, or a request to perform an
action on the data. A query can bring together data from multiple
tables in order to serve as the source of data for a form, report, or data
access page.

An Access database object that prints information formatted and
organized according to given specifications.

The Statistical Analysis System is an integrated system of software
components providing complete control over data access,
management, analysis, and presentation.

Structured Query Language is a language that is used for defining the
structure and processing of a relational database. It is used as a
stand-alone query language, or it may be embedded in application
programs. SQL has been accepted as a national standard by the
American National Standards Institute. It was developed by IBM.

A database object that stores data in records (rows) and fields
(columns).

70

APPENDIXB

TRADEMARK INFORMATION

ASP is a registered trademark of Microsoft Corporation.

JSP is a registered of Sun Microsystems, Inc.

Microsoft, Microsoft Access, Microsoft FrontPage, SQL server, Windows, Windows 2000,

Windows NT, and Windows XP are registered trademarks or trademarks of Microsoft
Corporation.

MySQL is a registered trademark of MySQL AB.

OS/2 is a registered trademark of International Business Machines Corporation.

Other companies, products, and services mentioned in this document may be trademarks or

registered trademarks of their respective owners.

PHP is a registered trademark of The PHP Group.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc.

Solaris is a registered trademark of Sun Microsystems, Inc.

SQL is a registered trademark of International Business Machines Corporation.

71

APPENDIXC

WEB VISITOR MANUAL

This database contains Computer Science Department Graduate Student information.

When you login to the database Web site, you will be shown a CS logo and a link to the CS

home page on top of all pages. All CS Web pages also contain menu bars on the left and

some links on the bottom. The left bar always provides links to the different functions of

the database which include Student, Statistic, Search, and FAQ. The bottom list

mcorporates the links from the menu, and also includes Logout and Contact. The Logout

section lets you exit the Web database system and the Contact section lets you submit

questions or comments to Web database manager.

1. Logging on to the CS Database

Access the CS Web database through the Login page that appears when you visit the

Web address provided by your system administrator. Using the UserID and password that

the Web database manager provided, l~gin to the database system. If you want to change

the UserID and password, contact the Web database manager. The first screen you will see

when coming to the Web database site is the Home page. This screen lays out all the main

functions of the database.

72

2. Students Pages

Click Student link in left menu bars which is available from all this Web database

pages, the student information screen is shown up. There is a group oflinks on the top of all

student pages, just below the CS logo and link. The links of students are organized by

enrolled student, graduate student, and so on. Choose the link ofinterest and you may view

the specified student information in detail. Click on any blue hyperlinked database fields

name to sort the record by ascending or descending.

3. Statistics Pages

Click Statistic link in left menu bars which is available from all this Web database

pages, the Statistic screen is shown up. You may narrow the topic by clicking a link on the

top menu, just below the CS logo and link. After choosing a subject, a listing of related

statistic pages will appear. Select the title which you would like, it will bring you to the

more detailed statistic description of the topic.

4. Search

Search Database is a quick search feature that lets users enter a keyword to search for

student information. By selecting Search (either at the left or bottom of the screen), you can

search database by keywords. You have the ability to choose a more advanced method of

search by selecting any words, all words, or exact phrases.

5. FAQ

You can select FAQ (either at the left or bottom of the screen) to go to the FAQ

73

section where you may find answers to some of the more frequently asked questions.

If you need additional help of the database, please feel free to contact the database

manager through the "Contact" link on the site.

74

APPENDIXD

WEB DAT ABASE MANAGER MANUAL

The CS Graduate Student Web Database System is supported by the Computer

Science Department. In order to obtain authorization to view or update the CS Graduate

Student Web Database System, you must contact a system manager at the CS Department.

1. Installation of Web Database Files

Go to the C:/Inetpub/wwwroot directory of your computer. Insert the supplied CD

in the CD drive. Copy the entire CSDB folder in the CD into the directory and ensure that

the directory structure has been preserved when you extract the files from the CD. Then,

you should have the following files in your computer:

C:\Inetpub\wwwroot\CSDB\Images

C :\lnetpub \wwwroot\CSDB\CSGraduateStudent.dbm

C:\lnetpub\wwwroot\CSDB\all the ASP files

You may rename CSDB folder if you want. Open http://localhost/CSStudent using

your web browser, the login page should show up. You can use the UserID "guest" and

password "123456" to login to the Web database. Since there is no data in the database, the

Students and Statistics pages have no data.

75

2. Configuring Database and ASP File

There are a few things you should setup to make the Web database work correctly.

• The attributes of CSGraduateStudent database is set to Read Only. Highlight the file in

your computer, right-click and select Attributes. Remove the tick from the Read Only

check box.

• Rename the CSGraduateStudent.mdb database to whatever you want. This is very

important for security considerations. Let's use Students.mdb for example.

• Find the DatabasePath.asp. Open it to edit. Change the

server.rnappath("CSGraduateStudent.mdb") to

server.mappath("Students.mdb")

Open http://localhost/CSStudent using your web browser, login to the CS Graduate

Student Web Database System to see if the changes were made successfully.

3. Creating User Codes and Password

Open Students.mdb. Double click the Users table to open it. Enter a ten character

UserName and a six character Password to create a new user. Then, click the Save button to

record the entry. You may change the format property, and for validation one would need a

UserName and a Password. The valid Web visitors may use these UserID and Password to

login to the CS Graduate Student Web Database System.

4. Data Entry and Upclalc

You may use tables or fonns to enter or edit data in the Student database. The

recommend method is using Students.mdb fom1s.

76

5. Upload Files to System Server

Every time a file is updated, you should upload the file to the server. Make sure the

file property in server is marked as read.

6. Backing up Your Data

It is the responsibility of the Web database manager to backup data on a regular

basis. The ASP files and CSGraduateStudent database may be re-installed in the event of a

hard disk failure or other critical problems, but the data will not be included. The file to

backup for your data is CSGraduateStudent.mdb. This database file will be found in the

CSDB directory of the supplied CD. The backup must be made to a device such as a

floppy, a disk, or a CD, i.e., any storage device other than the hard disk on which the

original data resides.

77

APPENDIXE

SYSTEM ADMINISTRATOR MANUAL

System Requirement

1. Web Database Server

• Software Requirements

Operating System: Win NT, XP, or Win 2000 Server or up

Web Server: Internet Infonnation Server (IIS) Version 4 and up

Web Browser: Microsoft Internet Explorer 5.0 or greater

Database: Microsoft Access 2000 or 2002

Other: VB Script Version 5 .0 or later.

• Hardware Requirements

CPU: 400Hz or higher

Memory: 128MB or higher

Available Disk Space: 20 MB (or greater). 10 GB if students' theses are stored also.

Network: Use 10/ 100 network cards for better performance.

CD ROM Drive: 48X and up

2. Client Workstation

• Software Requirements

Operating System: Microsoft Windows 98/2000/XP/NT

78

Microsoft Internet Explorer 5.0 or greater

Microsoft FrontPage 2002 or up

Microsoft Access 2000 or 2002

• Hardware Requirements

CPU: Pentium 200 Mhz (or greater)

Memory: 64MB (or greater)

Available Disk Space: 20 MB (or greater)

Monitor: Color SVGA

Network: Network Interface card and cable

CD ROM Drive: 48X and up

Installation

I . Installation on the Server

The supplied CD includes a CSDB folder which contains ASP files and a folder

named Images. By default for IIS, the CSDB is entirely installed into the

/Inetpub/wwwroot directory.

Insert the CD in the CD drive. Copy all of the files in the CSDB into the directory

directly. When copying files, make sure that the directory structure remains unchanged.

When this is completed, you should have the following path:

\Inetpub\wwwroot\CSDB\lmages

\Inetpub\wwwroot\CSDB\CSGraduateStudent.dbm

\Inetpub\wwwroot\CSDB\all the ASP files

79

Rename CSDB folder to NewDirectory, for example, and generate the login name

and password for the Web database manager so that he/she can login to the NewDirectory

folder and edit the files. This folder's name is part of the CS database-driven Web site

address: http://www.ServerName/NewDirectory. The login name and the password are

given to the Web database manager for possible further reference.

2. Installation on Client Computer

Go to the /Inetpub/wwwroot directory. Insert the CD in the CD drive. Copy the

CSDB folder in the CD into the directory. When this is completed, you should have the

following path:

\Inetpub \wwwroot\CSDB\Images

\Inetpub\wwwroot\CSDB\CSGraduateStudent.dbm

\Inetpub\wwwroot\CSDB\all the ASP files

Open http://localhost/CSDB using your web browser to see if the installation was

made successfully.

Backing up the CSDB System

It is the responsibility of the system manager to backup the CSDB on a regular

basis. The backup should be made to a device such as a floppy, a disk, or a CD, i.e., any

storage device other than the hard disk on which the original data resides. Then, the CSDB

database may be re-installed in the event of a hard disk failure or other critical problems.

80

Un installation

To uninstall the program from your web server or client, just delete the

New Directory folder and all files.

Running the Web Database System for the First Time

Type the Web address in the Web browser, the CS Graduate Student Login page

will now be enabled. Enter the UserID "guest" and password "123456" to login the Web

database.

81

APPENDIXF

CSDB TABLES AND QUERIES LIST

This appendix contains the CSDB tables and the list of queries. The following two sections
contain the names of 14 tables and 81 queries in the CSGraduateStudent database.

APPENDIX F.l TABLES

Academic History

Address

Assistantship

Courses

Enrollment

Enrolled Semester Code

Graduated Semester Code

Personal Information

Requested Semester Code

Students and Courses

Thesis and Dissertation

University

Users

Withdrawn Semester Code

82

APPENDIX F.2 QUERIES

Admitted MS Students for Each Year

Admitted PhD Students for Each Year

Admitted Students by Country

Admitted Students for Each Semester

Admitted Students for Each Semester_Crosstab

Admitted Students for Each Year

Admitted Students for Each Year_Crosstab

Admitted students with Degree from OSU

Admitted students with Degree from OSU Name

Admitted TOEFL and GRE Scores for Each Semester

Admitted TOEFL and GRE Scores for Each Year

Age_ App lied/Enro lied/Graduated Students

All Gender

All Students TOEFL and GRE Scores for Each Semester

All Students TOEFL and GRE Scores for Each Year

Applicants Who Graduated from OSU_CS

Applicants Who Graduated from OSU_ Name

Applicants Who Graduated from OSU_ Total

Applied Date

App Ii ed Status

Applied Students by Country

Applied Students for Each Semester

Applied Students for Each Semester_Crosstab

Applied Students for Each Year

Applied Students for Each Year_Crosstab

Assistantship Query

Assistantship Semester

Core Courses

Country

83

Country_ Crosstab

Enrolled MS Students Name

Enrolled PhD Students Name

Enrolled Students for Each Semester

Enrolled Students for Each Semester_ Crosstab

Enrolled Students for Each Year

Enrolled Students for Each Year_Crosstab

Gender

Gender Admitted by Semester

Gender Admitted by Semester_ Crosstab

Gender Admitted by Year

Gender Admitted by Year_ Crosstab

Gender by Semester

Gender by Semester_ Crosstab

Gender by Year

Gender by Year_ Crosstab

Gender _All Applied by Semester

Gender _All Applied by Year

Gender _Applied by Semester

Gender _Applied by Year

Graduated MS Students Name

Graduated PhD Students Name

Graduated Students for Each Semester

Graduated Students for Each Semester_ Crosstab

Graduated Students for Each Year

Graduated Students for Each Year_ Crosstab

MS with Degree from OSU

Pending MS Students Name

Pending PhD Students Name

PhD with Degree from OSU

Postponed MS Students Name

84

Postponed PhD Students Name

Prerequisite Courses

Rejected MS Students Name

Rejected PhD Students Name

Rejected Reason

Rejected Reason_ Crosstab

Rejected Students for Each Semester

Rejected Students for Each Semester_Crosstab

Rejected Students for Each Year

Rejected Students for Each Year_Crosstab

Rejected University

Rejected University-China

Rejected University-India

Rejected University-USA

Status

Status Query

Student Information

TOEFL and ORE Score for Each Semester

TOEFL and GRE Score for Each Year

Withdrawn MS Students Name

Withdrawn PhD Students Name

85

APPENDIXG

CSDB ASP AND IMAGE FILES LIST

This appendix contains the CSDB ASP and the list of image files. The following two sections contain the names of 113 ASP pages and 47 image files of the CSDB.

APPENDIX G.1 ASP FILES

Admitted_MS_ Graduated_from_ OSUlist.asp
Admitted MS Graduated from OSU Namelist.asp - - - - -
Admitted_ PhD_ Graduated_ from_ OSUlist.asp
Admitted_PhD _ Graduated_from_ OSU_Namelist.asp
Admitted_ Students_ by_ Country list.asp

Admitted_ Stu dents_ for_ Each_ Semesterlist:asp
Admitted_Students_for_Each_ Yearlist.asp
Agelist.asp

All_Students_Nerlist.asp

All Students TOEFL and GRE Scores for Each Yearlist.asp - - -- - -- -
Applicants_MS_Graduated_from_OSU_Namelist.asp
Applicants_ MS_ Graduated_from_ OSU _ Totallist.asp
Applicants PhD Graduated from OSU _Namelist.asp - - - -
Applicants PhD Graduated from OSU Totallist.asp - - - - -
Applied_ MS_ Graduated_ from_ OSUlist.asp

Applied_ Students_ by_ Country list.asp

App Ii ed _Stu dents_ for_ Each_ Semesterlist.asp

Applied_ Students_ for_ Each_ Yearlist.asp

Assistantship_ Query list.asp

Assistantship_ Semester.asp

86

Countrylist.asp

Database Path.asp

default.asp

Enrol led_MS _ Graduated_from_ OSUlist.asp

Enrolled_MS _ Graduated_from_ OSU _Namelist.asp

Enro I led_ PhD_ Graduated_ from_ OS Ulist.asp

Enrolled_PhD _ Graduated_from_ OSU _Namelist.asp

Enrolled_PhD _Students_Namelist.asp

Enro I led_ Students_ by_ Countrylist.asp

Enrol led_ Students_ for _Each_Semesterlist.asp

Enrolled_Students_for _ Each_ Yearlist.asp

FAQ.asp

Footer.asp

Genderlist.asp

Gender_ Admitted_ by_ Semesterlist.asp

Gender_Admitted_by_ Yearlist.asp

Gender_ Applied_ by _Semesterlist.asp

Gender_Applied_by _ Yearlist.asp

Gender_Enrolled by Semesterlist.asp

Gender_Enrolled_by_ Yearlist.asp

Gender_ Graduated_by _Semesterlist.asp

Gender_ Graduated_by_ Yearlist.asp

Gender_ Rejected_ by_ S emesterlist.asp

Gender_ Rejected_ by_ Y earlist.asp

Graduated_ MS_ Graduated_ from_ OSUlist.asp

Graduated_ MS_ Graduated_ from_ OSU _Namelist.asp

Graduated_ MS_ Students _Namelist.asp

Graduated PhD Graduated from OSUlist.asp - - - -
Graduated_PhD _ Graduated_from_ OSU _Nameli5t.asp

Graduated_PhD _Students_Namelist.asp

Graduated_ Stu dents_ by_ Country list.asp

87

Graduated_ Students_ for _Each_ Semesterlist.asp
Graduated_Students_for_Each_Yearlist.asp
Header.asp

Header_ A.asp

Header_ Al I.asp

Header_Enrolled.asp

Header_FAQ.asp

Header_ Graduated.asp

Header _Pending.asp

Header_ Postponed.asp

Header_ Rejected.asp

Header_ Search.asp

Header_ Withdrawn.asp

Home.asp

login.asp

logout.asp

pass.JS

Pending_ MS_ Students_ Namelist.asp
Pending_PhD _Students_Namelist.asp
Postponed_ MS_ Students_ Namelist.asp
Postponed_ PhD_ Students _Namelist.asp
Rejected_ MS_ Graduated_ from_ OSU1ist.asp
Rejected_ MS_ Graduated_ from_ OSU _ Namelist.asp
Rejected_ MS_ Students _N amelist.asp
Rejected _PhD_ Graduated_ from_ OSUlist.asp
Rejected_ PhD_ Graduated_ from_ OSU _ Namelist.asp
Rejected_ PhD_ Students _Namelist.asp
Rejected_ Reason.asp

Rejected_ Students_ by_ Countrylist.asp
Rejected_ Students_ for_ Each_ Semesterlist.asp
Rejected_ Students_ for_ Each_ Year list.asp

88

Rejected_ UniversityD _ Chinalist.asp

Rejected_ UniversityD _ lndialist.asp

Rejected_ Uni versi tyD _ USAlist.asp

Rejected_ Universitylist.asp

Search.asp

Search_ Name_ Results.asp

Search_ OS UID _ Results.asp

Search_Results.asp

Statistic.asp

Statistic _Admitted.asp

Statistic_ Applied. asp

Statistic _Enrolled.asp

Statistic_ Graduated.as·p

Statistic_Rejected.asp

Students.asp

Student_Information_ view.asp

TO EFL_ and_ GRE _Admitted_ for_ Each_ Semesterlist.asp

TOEFL_and_GRE_Admitted_for_Each_Yearlist.asp

TOEFL_and_ GRE_Applied_for_Each_Semesterlist.asp

TOEFL_and_GRE_Applied_for_Each_Yearlist.asp

TOEFL_and_ GRE_Enrolled_for_Each_Semesterlist.asp

TOEFL_and_ GRE_Enrolled_for_Each_ Yearlist.asp

TOEFL_and_GRE_Graduated_for_Each_Semesterlist.asp

TOEFL_and_GRE_Graduated_for_Each_Yearlist.asp

TOEFL _and_ GRE_Rejected_for_Each_ Semesterlist.asp

TOEFL_and_ GRE_Rejected_for_Each_ Yearlist.asp

With drawn_ MS_ Students_ Namelist.asp

Withdrawn_ PhD_ Students _Namelist.asp

89

APPENDIX G.2 IMAGE FILES IN THE IMAGES FOLDER

01.png

AcaHis.gif

Address.gif

Coures _ Thesis.gi f

cunentbanner.jpg

Enrollment.gif

first.gif

firstdisab.gif

last.gif

lastdisab.gif

login_ orange.gif

Logout.gif

menu.gif

menu_Admitted.gif

menu_All.gif

menu_All 1.gif

menu_Applied.gif

menu_Assis.gif

menu_Assisl .gif

menu_ Enrolled.gif

menu_Enroilcd / ,gif

menu_ Enro lled2 .gif

menu_FAQ.gif

menu_ Graduated.gif

menu_ Graduated 1.gif

menu_ Graduated2.gif

menu_ Overall.gif

menu_Pending.gif

menu_Pendingl .gif

90

menu_ Postponed.gi f

menu_Postponed l .gif

menu_ Rejected.gi f

menu_Rejected l .gif

menu_Rejected2.gif

menu_ Search.gi f

menu_ S tatistics.gi f

menu_ Student.gi f

menu_ Withdrawn.gif

menu_ Withdrawn l .gif

newlogo4.gif

next.gif

nextdisab.gi f

paper_ blue.gif

paper_orange.gif

Perlnf.gif

prev.gif

prevdisab. gi f

91

APPENDIXH

CSDB ASP CODES

This appendix contains the CSDB ASP codes. The following two sections contain CSDB
ASP codes: Header.asp and Search.asp.

APPENDIX H. I Header.asp Code

<html>

' Setup page frame
<body leftmargin="O" topmargin="O" marginheight="O" marginwidth="O"

background="images/newlogo4.gif'>

' Begin wrapper table
<table width="760" height="322" border="O" cellspacing="O" cellpadding="O"

style="border-collapse: collapse" bordercolor="#l 11111 ">
<tr align="center"> <td colspan="2" height="32" width="660">
<p style="margin-top: O; margin-bottom: O" align="left">

<img border="O" src="images/currentbanner.jpg" loop="2" a1ign="1eft"
hspace="O" width="280" height="96"><i><font color="#OOOOFF" size=:="4.5"
face="Comic Sans MS">Computer Science
Department Graduate Students</i>

<p style="margin-top: O; margin-bottom: O"> </p>

<table :Width="2 l 6" border="O" cellpadding="O" cellspacing="O" align="left">
<tr vahgn="top" align="left">

<td nowrap width="640" align="center">
<ltd>

</tr>
</table>
'End wrapper table

' Build the top menu and links
<tr><td width=" 180" height=" I" nowrap align="left" valign="bottom"></td></tr>
<tr><td width="l 70" height="22" nowrap align="right" bgcolor="#FF6600"></td>

92

<td width="580" height="22" nowrap align="right" bgcolor="#FF6600">
<p align="left">

<la> <img border="O" src=

</tr>

"images/menu_ Enrolled I .GIF"><img
border = "O"src="images/menu _ Admitted.GIF"><img border="O"
src="images/menu Graduated I .GIF"><img border="O"
src=" images/menu_ Rejected 1. GIF"></ a><img
border=" 0" src="images/menu _ Overall. GIF"><img
border="0° src="images/Logout 1. GIF" width="73" height="21 "></td>

1 End the top menu and links

' Build the left column menu and links
<tr>

<td width=11 180" height="266" valign="top">
<map name="FPMapO">

<area href="Students.asp" shape="rect" coords="O, 24, 96, 49">
<area coords="l, 49, 96, 75" shape="rect" href="statistic.asp">
<area coords="O, 75, 96, 96" shape="rect" href=.,Faq.asp">
<area href="Search.asp" shape="rect" coords="O, 99, 96, 120">
<area href="http://www.cs.okstate.edu" shape="rect" coords="l, 120, 96, 183">
<area href="http://Home.asp" shape="rect0 coords=0 1, 0, 94, 22">

</map>
<p>
 <p> </td> -

'End the left column menu and links

'Right column

<td width="358" valign="top" height="266">
<p> </p>

</html>

APPENDIX H.2 Search.asp Code

'Check the login status
<% If Session("CSDB _status") <> "login" Then Response.Redirect "login.asp" %>
<%

93

Response.expires = 0
Response.expiresabsolute = Now() - 1
Response.addHeader "pragma", "no-cache"
Response.addHeader "cache-control", "private"
Response. CacheControl = "no-cache"
%>

<!--#include file=" DatabasePath.asp"-->

' Set the display size
<%
displayRecs = 20
recRange = 10
%>

' Set the search parameters
<%
dbwhere = ""
masterdetailwhere = ""
searchwhere = "''
a_search = ""
b _ search = ""
whereClause = '"'
%>

1
Get search criteria for basic search

<%
pSearch = Request.QueryString("psearch")
pSearchType = Request.QueryString("psearchType")

' Set the search fields of the database
If pSearch <> '"' Then

pSearch = Replace(pSearch,'"",""")
pSearch = Replace(pSearch, "[", "[[]")
If pSearchType <> "" Then

While InStr(pSearch, '"') > O
pSearch = Replace(pSearch, "", " ")

Wend
arpSearch = Split(Trim(pSearch), " ")

' Search the fields as "Exact phrase"
For Each kw In arpSearch

b_search = b search & "("
b_search = b-search & "[OSUID] LIKE'%" & Trim(kw) & "%'OR"
b_search = b=search & "[LastName] LIKE'%" & Trim(kw) & "%'OR"
b_search = b_search & "[FirstName] LIKE'%" & Trim(kw) & "%'OR"

94

b_search = b_search & "[MiddleName] LIKE 1%" & Trim(kw) & "%
1
OR"

b_search = b_search & "[Gender] LIKE'%" & Trim(kw) & "%'OR"
b_search = b_search & "(Birth Country] LIKE'%" & Trim(kw) & "%'OR"
b_search = b_search & "[Visa type] LIKE'%" & Trim(kw) & "%'OR"
b_search = b_search & "[Academic Misconduct] LIKE 1%11 & Trim(kw) & "%'

OR"
b_search = b_search & "[Street Address] LIKE'%" & Trim(kw) & "%'OR"
b_search = b_search & "[City] LIKE'%" & Trim(kw) & "%'OR"
b_search = b_search & "[State] LIKE'%" & Trim(kw) & "%'OR"
b_search = b_search & "[Country] LIKE'%" & Trim(kw) & "%' OR fl

b_search = b_search & "[Zip Code] LIKE'%" & Trim(kw) & "%'OR"
b_search = b_search & "[Phone] LIKE'%" & Trim(kw) & "%'OR"
b_search = b_search & n[Fax number] LIKE'%" & Trim(kw) & "%'OR"
b_search = b_search & "[PennanentAddress] LIKE'%" & Trim(kw) & "%' OR

ti

b_search = b_search & "[Pennanent City] LIKE'%" & Trim(kw) & "%'OR"
b_search = b_search & "[Pennanent State] LIKE'%" & Trim(kw) & "%'OR"
b_search = b_search & "[Pennanent Country] LIKE'%" & Trim(kw) & "%' OR

"
b_search = b_search & "[Pennanent Zip Code] LIKE'%" & Trim(kw) & "%'

OR"
b_search = b_search & "[Pennanent Phone] LIKE'%" & Trim(kw) & "%'OR"
b_search = b_search & "[EMAIL] LIKE'%" & Trim(kw) & "%'OR"
b_search =·b_search & "[Non-OSU EMAIL] LIKE'%" & Trim(kw) & "%' OR

II

b_search = b_search & "[Requested Year] LIKE'%" & Trim(kw) & "%' OR fl
b_search = b_search & "[Requested Semester] LIKE'%" & Trim(kw) & "%'

OR"
b_search = b_search & "[Degree] LIKE'%" & Trim(kw) & "%'OR"
b_search = b_search & "[Status] LIKE'%" & Trim(kw) & "%'OR"
b_search = b_search & "[Enrolled Year] LIKE 1%" & Trim(kw) & "%'OR"
b_search =b_search & "[Enrolled Semester] LIKE'%" & Trim(kw) & "%' OR

"
b_search = b_search & "[Graduated Year] LIKE'%" & Trim(kw) & "%'OR"
b_search = b_search & "[Graduated Semester] LIKE'%" & Trim(kw) & "%'

OR"
b_search = b_search & "[Reason] LIKE'%" & Trim(kw) & "%'OR"
b_search = b_search & "[Postponed or Withdrawn Year] LIKE'%" & Trim(kw)

& "%'OR"
b_search = b_search & "[Postponed or Withdrawn Semester] LIKE'%" &

Trim(kw) & 11%1 OR"
b_search = b_search & "[Miscellaneous] LIKE'%" & Trim(kw) & "%'OR"
b_search = b_search & "[GRE Adv Type] LIKE'%" & Trim(kw) & "%'OR"
b_search = b_search & "[University I] LIKE'%" & Trim(kw) & "%'OR"
b_search = b_search & "[Location, City and Country I] LIKE'%" & Trim(kw)

& "%'OR"

95

b_search = b_search & "[Major 1] LIKE'%" & Trim(kw) & "%'OR"
b_search = b_search & "[Degree Earned l] LIKE'%" & Trim(kw) & "%'OR"
b _search = b _search & "[University 2] LIKE'%" & Trim(kw) & "%' OR"
b_search = b_search & "[Location, City and Country 2] LIKE'%" & Trim(kw)

& "%'OR"
b_search = b_search & "[Major 2] LIKE'%" & Trim(kw) & "%'OR"
b_search = b_search & "[Degree Earned 2] LIKE'%" & Trim(kw) & "%'OR"
b_search = b_search & "[University 3] LIKE'%" & Trim(kw) & "%'OR"
b_search = b_search & "[Location, City and Country 3] LIKE'%" & Trim(kw)

& "%'OR"
b_search = b_search & "[Major 3] LIKE'%" & Trim(kw) & "%'OR"
b_search = b_search & "[Degree Earned 3] LIKE'%" & Trim(kw) & "%'OR"
b_search = b_search & "[University 4] LIKE'%" & Trim(kw) & "%'OR"
b_search = b_search & "(Location, City and Country 4] LIKE'%" & Trim(kw)

& "%'OR"
b_search = b_search & "[Major4] LIKE'%" & Trim(kw) & "%'OR"
b_search = b_search & "[Degree Earned 4] LIKE'%" & Trim(kw) & "%'OR"
If Right(b_search, 4)=" OR" Then b search= Left(b_search, Len(b_search)-4)
b _ search = b _ search & ") " & pSear~hType & " "

Next

' Search the fields as "Any word;'
Else

b_search = b_search & "[OSUID] LIKE'%" & pSearch & "%'OR"
b_search = b_search & "[LastName] LIKE'%" & pSearch & "%'OR"
b_search = b_search & "[FirstName] LIKE'%" & pSearch & "%'OR"
b_search = b_search & "[MiddleName] LIKE'%" & pSearch & "%'OR"
b_search = b_search & "[Gender] LIKE'%" & pSearch & "%'OR"
b_search = b_search & "[Birth Country] LIKE'%" & pSearch & "%'OR"
b_search = b_search & "[Visa type] LIKE'%" & pSearch & "%'OR"
b _ search =· b _ search & "[Academic Misconduct] LIKE '%" & pSearch & "%'

OR"
b_search = b_search & "[Street Address] LIKE'%" & pSearch & "%'OR"
b_search = b_search & "[City] LIKE'%" & pSearch & "%'OR"
b_search = b_search & "[State] LIKE'%" & pSearch & "%'OR"
b_search = b_search & "[Country] LIKE'%" & pSearch & "%'OR"
b_search = b_search & "[Zip Code] LIKE'%" & pSearch & "%'OR"
b_search = b_search & "[Phone] LIKE'%" & pSearch & "%'OR"
b_search = b_search & "[Fax number] LIKE'%" & pSearch & "%'OR"
b_search = b_search & "[PennanentAddress] LIKE'%" & pSearch & "%'OR"
b_search = b_search & "[Pennanent City] LIKE'%" & pSearch & "%'OR"
b_search = b_search & "[Pennanent State] LIKE'%" & pSearch & "%'OR"
b_search = b_search & "[Pennanent Country] LIKE'%" & pSearch & "%'OR"
b_search = b_search & "[Pennanent Zip Code] LIKE'%" & pSearch & "%' OR

II

b_search = b_search & "[Pennanent Phone] LIKE'%" & pSearch & "%'OR"

96

b_search = b_search & "[EMAIL] LIKE'%" & pSearch & "%' OR 11

b_search = b_search & "[Non-OSU EMAIL] LIKE'%" & pSearch & "%' OR 11

b_search = b_search & "[Requested Year] LIKE 1%11 & pSearch & "%'OR"
b_search = b_search & "[Requested Semester] LIKE'%" & pSearch & "%' OR

11

b_ search = b_search & "[Degree] LIKE'%" & pSearch & "%'OR"
b_ search = b_search & "[Status] LIKE'%" & pSearch & "%'OR"
b_search = b_search & "[Enrolled Year] LIKE'%" & pSearch & "%'OR"
b_ search = b_search & "[Enrolled Semester] LIKE'%" & pSearch & "%'OR"
b_search = b_search & "[Graduated Year] LIKE '%" & pSearch & "%'OR"
b_search = b_search & "[Graduated Semester] LIKE'%" & pSearch & "%' OR

11

b_search = b_search & "[Reason] LIKE'%" & pSearch & "%'OR"
b_ search = b_search & "[Postponed or Withdrawn Year] LIKE'%" & pSearch

&"%'OR"
b_search = b_search & "[Postponed or Withdrawn Semester] LIKE'%" &

pSearch & "%' OR "
b_ search = b_search & "[Miscellaneous] LIKE'%" & pSearch & "%'OR"
b_sea.rch = b_search & "[GRE Adv Type] LIKE'%" & pSearch & "%'OR"
b_search = b_search & "[University l] LIKE'%" & pSearch & "%' OR"
b_search = b_search & "[Location, City and Country 1] LIKE'%" & pSearch &

"%'OR"
b_search = b_search & "[Major 1] LIKE'%" & pSearch & "%'OR"
b_search = b_search & "[Degree Earned l] LIKE'%" & pSearch & "%'OR"
b_search = b_search & "[University 2] LIKE'%" & pSearch & "%'OR"
b _search= b _search & "[Location, City and Country 2] LIKE '%" & pSearch &

"¾'OR"
b_search = b_search & "[Major 2] LIKE'%" & pSearch & "%'OR"
b_search =.b_search & "[Degree Earned 2] LIKE'%" & pSearch & "%'OR"
b_search = b_search & "[University 3] LIKE'%" & pSearch & "%'OR"
b_search = b_search & "[Location, City and Country 3] LIKE'%" & pSearch &

"%'OR"
b_ search = b_search & "[Major 3] LIKE'%" & pSearch & "%' OR"
b_search = b_search & "[Degree Earned 3] LIKE'%" & pSearch & "%'OR"
b_search = b_search & "[University 4] LIKE'%" & pSearch & "%'OR"
b_search = b_search & "[Location, City and Country4] LIKE'%" & pSearch &

"%' OR II

b_search = b_search & "[Major 4] LIKE'%" & pSearch & "%' OR "
b_search = b search & "[Degree Earned 4] LIKE'%" & pSearch & "%'OR"

End If -
End If
If Right(b_ search, 4) ="OR" Then b search= Left(b search, Len(b_search)-4)
If Right(b_search, 5) ="AND" Thenb search= Left(b search, Len(b_search)-5)
%> - -

' Build search criteria

97

<%

%>

If a search <> "" Then
searchwhere = a search' Advanced search

Else If b_search <>'"'Then
searchwhere = b_search' Basic search

End If

' Save search criteria
If searchwhere <> "" Then

Session("Student_lnfonnation_searchwhere") = searchwhere

' Reset start record counter (new search)
startRec = 1
Session("Student_Infonnation_REC") = startRec

Else
search where = Session("Student_lnfonnation _ searchwhere")

End If

' Get clear search cmd
<%

If Request.QueryString("cmd").Count > O Then
cmd = Request.QueryString("cmd")

If UCase(cmd) = "RESET" Then
'Reset search criteria
searchwhere = ""
Session("Student_Infonnation_searchwhere") = searchwhere

ElselfUCase(cmd) = "RESETALL" Then

' Reset search criteria
searchwhere = '"'
Session("Student Information searchwhere") = searchwhere

End If - -

'Reset start record counter (reset command)
startRec = I
Session("Student Information REC")= startRec

End If - -

' Bui Id dbwhere
If masterdetailwhere <> "" Then

dbwhere = dbwhere & "(" & masterdetailwhere & ") AND "
End If

98

If searchwhere <> ""Then
dbwhere = dbwhere & 11

('
1 & searchwhere & ") AND "

End If
If Len{dbwhere) > 5 Then

dbwhere = Mid{dbwhere, 1, Len(dbwhere)-5) 1 Trim rightmost AND
End If

%>

1 Load Default Order
<%

DefaultOrder = 1111

DefaultOrderType = 1111

'No Default Filter
DefaultFilter = 111

'

' Check for an Order parameter
OrderBy = 1111

If Request.QueryString("order").Count > 0 Then
OrderBy = Request.QueryString("order")

' Check if an ASC/DESC toggle is required
If Session(''Student_Infom1ation_OB 11

) = OrderBy Then
If Session(''Student_Infonnation_ OT'')= "ASC" Then

Session("Student_Information_ OT")= "DESC"
Else

Session("Student_Information_OT") = "ASC"
End if
Else

Session("Student_Infonnation _ OT") = "ASC"
End If

Session(''Student_Infom1ation_OB11
) = OrderBy

Session("Student_Information_REC") = 1
Else

Order By = Session(''Student_ Information_ OB")

If OrderBy = "" Then
OrderBy = DefaultOrder
Session("Student_lnformation_ OB")= OrderBy
Session("Student_Information_ OT")= DefauitOrderType

End If
End If

' Open connection to the database
Set conn= Server.CreateObject("ADODB.Connection")
conn.Open xDb_Conn_Str

99

'Build SQL

strsql ="SELECT* FROM [Student Infonnation]"

If dbwhere <> "'' Then

End If
whereClause = whereClause & "(" & dbwhere & ") AND "

If Right(whereClause, 5)=" AND" Then whereClause = Left(whereClause,

Len(whereClause)-5)

IfwhereClause <>""Then strsql = strsql & "WHERE 11 & whereClause
End If

If OrderBy <> "" Then strsql = strsql & " ORDER BY [" & OrderBy & "] " &

Session("Student_ Information_ OT")
End If

'Response. Write strsql

Set rs= Server.Create0bject("AD0DB.Recordset")
rs.cursorlocation = 3
rs.Open strsql, conn, 1, 2
totaIRecs = rs.RecordCount

'Check for a START parameter

If Request.QueryString("start").Count > 0 Then

startRec = Request.QueryString("start")

Session(nStudent Information REC") = startRec

Elself Request.QueryString("page-;;:o").Count > 0 Then

pageno = Request.QueryString("pageno")

If IsNumeric(pageno) Then

startRec = (pageno-1)*displayRecs+ 1

If startRec <= 0 Then startRec = 1

Elself startRec >= ((totalRecs-1)\displayRecs)*displayRecs+ 1 Then

startRec = ((totalRecs-1)\displayRecs)*displayRecs+ 1
End If

Session("Student Information REC") = startRec
Else - -

startRec = Session("Student_ Information_ REC11
)

If Not IsNumeric(startRec) Or startRec =""Then

startRec = 1 ' Reset start record counter

Session("Student_ Information_ REC") = startRec
End If

100

%>

End If
Else

startRec = Session("Student_Infonnation_REC")
If Not IsNumeric(startRec) Or startRec =""Then

start Rec = l 'Reset start record counter
Session("Student Information REC") = startRec

End If - -
End If

<!--#include file="header.asp"-->
<p>S tudent Information</p>

' Search the student information using Student Name
<form action="Search _Name_ Results.asp">
<table border="O" cellspacing="O" cellpadding="4" width="500" style="border-collapse:

collapse" bordercolor="#l 11111 ">
<tr><td width="l 14" bgcolor="#ElFOFF">Student Name</td>

<td width="370" bgcolor="#ElFOFF">
<input type="text" name="psearch" size="20n>
<input type="submit" name="Submitn value="Search" style="color: #OOOOFF;
font-weight: bold; font-family: Arial"></td>

</tr>
<tr><td width="l 14" bgcolor="#ElFOFF"> </td>

<td width="370" bgcolor="#EIFOFF">
<input type="radio" name="psearchtype" value='"' checked>Exact phrase
<input type="radio" name="psearchtype" value="AND">All words
<input type="radio" name="psearchtype" value="OR">Any word</td></tr>

</table>
</form>

' Search the student information using Student OSUID
<p style="margin-top: O; margin-bottom: O"> </p>
<form action="Search _ OSUID _ Results.asp"> "
<table border="O" cellspacing="O" cellpadding="4" width="500" style= border-collapse:

collapse" bordercolor="#l 11111 ">
<tr><td width="l 14" bgcolor="#ElFOFF">OSUID Number</td>

<td width="370" bgcolor="#ElFOFF">
<input type="text" name="psearch" size="20">
<input type="submit" name="Submit" value="Search" style="color: #OOOOFF;
font-weight: bold; font-family: Arial"></td>

</tr>
<tr><td width="l 14" bgcolor="#ElFOFF"> </td>

<td width="370" bgcolor="#EIFOFF">
<input type="radio" name="psearchtype" value='"' checked>Exact
phrase

101

<input type="radio" name="psearchtype" value="AND">All words
<input type="radio" name="psearchtype" value="OR">Any word</td></tr>

</table>
</form>

'Search the student information using Key Word
<p style="margin-top: O; margin-bottom: O"> <lp>
<form action="Search_Results.asp">
<table border="O" cellspacing="O" cellpadding="4" width="SOO" style="border-collapse:

collapse" bordercolor="#l 11111">
<tr><td width=" 112" bgcolor="#ElFOFF">Key Word</td>

<!d width="3 72" bgcolor="#EIFOFF">
<~nput type="text" name="psearch" size="20">
<mput type="submit" name="Submit" value="Search" style="color: #OOOOFF;
font-weight: bold; font-family: Arial"></td>

</tr>
<tr><td width=" 112" bgcolor="#EIFOFF"> </td>

<td width="372" bgcolor="#ElFOFF">
<~nput type="radio" name="psearchtype" value="" checked>Exact phrase
<~nput type="radio" name="psearchtype" value="AND">AII words
<mput type="radio" name="psearchtype" value="OR">Any word</td></tr>

</table>
</form> *

<!--#include file="footer.asp"-->

102

VITA

Jing Yang

Candidate for the Degree of

Master of Science

Thesis: A WEB DATABASE SYSTEM TO MANAGE GRADUATE STUDENT
INFORMATION

Major Field: Computer Science

Biographical:

Personal Data: Born in Shanxi, P. R. China, on May 18, 1970, daughter of
Xisheng Yang and Xiusheng Zhang.

Education: Received the Bachelor of Management Engineering degree from
Beijing Institute of Machinery Industry in May 1993; completed the
requirements for the degree of Master of Science in Computer Science at
the Computer Science Department of Oklahoma State University in
December 2004.

Experience: Worked with Tingyi International Food Corporation Ltd., China, as a
manager from April 1994 to September 1999. Employed by the Computer
Science Department as a Graduate Teaching Assistant from August 2001
to December 2004.

Honors: Member of Phi Kappa Phi.

,.-...,

l \;
\,_J

