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CHAPTER 1 

INTRODUCTION 

1.1 The Standard Model and Beyond 

The Standard Model (SM) of elementary particle physics is a chiral gauge theory 

that gives a successful description of strong, weak and electromagnetic interactions 

[l]. It has been highly successful in explaining all experimental observations in the 

energy regime up to MEw rv CJ( 102 Ge V). The theory is invariant under the gauge 

group GsM = SU(3)c x SU(2)L x U(l)y. The SU(3)c Quantum Chromodynamics 

(QCD) describes the strong interaction which is supported by evidence from deep 

inelastic collision experiments. The SU(2)L x U(l)y gauge symmetry corresponds to 

the Weinberg-Salam model of electroweak interaction which has been verified by a 

host of experiments, including the U Al /U A2 [2] and LEP [3]. 

In this thesis, we use the conventional notations for the SM matter fields. They 

are shown in Table 1.1. 

Q Uc de f ec H 

SU(3)c 3 3 3 1 1 1 

SU(2)L 2 1 1 2 1 2 

U(l)y 1/6 -2/3 1/3 -1/2 1 1/2 

TABLE 1.1. Transformation properties of the SM fields under GsM 

1 
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As a chiral theory, the left-handed and right-handed fermions have different 

transformation properties with respect to GsM· Under SU(2)L, the left-handed par

ticles transform as the doublets 

while right-handed particles are SU(2)L singlets: 

The electroweak gauge symmetry is spontaneously broken via the Higgs mechanism 

by a scalar SU(2) doublet [4] 

H=(::). 
The masses of the quarks and leptons arise from Yukawa couplings from the la

grangian: 

(1.1) 

where fl is defined by fl = ia2 Ht and Yu, yd and Ye are dimensionless coupling 

constants known as Yukawa couplings. Note that the generation and color indices are 

contracted here. 

Quantum correction to the Higgs boson mass induces the only quadratic di

vergence in the theory. For example, at the one-loop-level, the top quark Yukawa 

couplings induces a quadratic divergence given by 

D..m2 = >} A2 
H 81r2 ' 

where the cutoff scale A can be as large as Mp1 of order 0(1019 GeV) (5]. If so, the 

entire Higgs mechanism explanation of electroweak symmetry breaking would fail or 

require fine tuning of parameters. In order to address this so-called gauge hierarchy 

problem [5], one would have to introduce new physics at the Te V scale. The most 

elegant solution is known as supersymmetry (SUSY) [6], where to each particle. there 

exists a SUSY partner with different spin. For instance, the superpartner of the 
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matter fermion top quark is a scalar known as stop i. The quadratic divergence in 

the Higgs mass is now removed via the cancellation between top loop and stop loop. 

At the one-loop-level, it is 

(1.2) 

This cancellation is valid up to all loop corrections and is thus technically natural. 

The minimal SUSY version of the SM is called the Minimal Supersymmetric 

Standard Model (MSSM) (6, 7] which is described by the superpotential 

(1.3) 

where all the matter fields are now chiral superfields and two Higgs doublets 

are introduced since the superpotential must be holomorphic, i.e., the MSSM is a two

Higgs model (7]. It is interesting enough to see the extra Higgs boson also playing an 

important role in cancelling the Higgsino contribution to the SU(2)L x U(l)y mixed 

anomaly, U(l)} anomaly, gravitational trace anomaly, and also to cancel the global 

SU(2)L Witten anomaly [8]. 

The SM or MSSM has been an extremely successful theory with exception of 

the puzzles, such as flavor hierarchy, neutrino masses, the µ-term problem, R-parity, 

the strong CP problem, etc. 

In this thesis, our goal is to apply a new model building tool - discrete gauge 

symmetries [9] to solve the problems or puzzles mentioned above [10-13]. 

1.2 Global Symmetries in the SM 

The SM provides one highly successful description the particle physics up to 

MEW· However, it is believed to be only an effective field theory valid up to a cut

off scale A. In the low-energy effective theory, corrections from new physics beyond 

SM arise as non-renormalizable operators which are invariant under GsM- Unlike the 
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renormalizable couplings, the coupling constants of these non-renormalizable opera

tors are expected to be suppressed by appropriate powers of 1 / A and have thus a 

negative dimension of mass [14, 15]. 

In the SM, there is a unique unbroken U(l) gauge symmetry which is known as 

the U(l)y hypercharge symmetry. The hypercharge assignment except of its normal

ization is determined by requiring the theory to be free from triangle gauge anomalies 

[16). The gauge anomalies are violations of conservative laws due to loop corrections. 

They are generated via the triangle diagrams. For example, the (SU(3)c]2 x U(l) 

mixed anomaly arise from the following diagram: 

Figure 1.1. The diagram that generates (SU(3)c]2 x U(l) mixed anomaly. 

where the internal lines are fermions, quarks in this case. 

Being free from triangle gauge anomalies is a required condition for any gauge 

theory to make essential sense, namely the renomalizability. The anomalous Ward 

identity must be avoided. Anomaly matching condition should be satisfied. In order 

to make the discussion more concrete, let us look at the explicit example of computing 

anomaly coefficients invoking the hypercharge symmetry. Suppose under the U(l)y, 

q, u, d, l, e and hare corresponding charge for Q, uc, de l, ec and H. U(l)y invariance 

of the SM Yukawa couplings shown in 1.1 requires 

q + u + h = 0, q + d - h = 0, l + e h = 0. (1.4) 
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The mixed anomaly coefficients should all vanish. 

N 
A[SU(3)c]2xU(l)l, - -;f(2q+u+d) =0 

N 
A[SU(2)LJ2xU(l)y - 2 (3q + l) = 0 

2 
TrU{l)y - Ng(6q + 3u + 3d + 2l + e) = 0 

A[U(l)l,]3 - Ng(6q3 + 3u3 + 3d3 + 2l3 + e3
) = 0, {1.5) 

where the trace is the gravitational anomaly. In this particular case, cubic anomaly 

condition is equivalent to the gravitational anomaly condition. One can then solve 

the set of 6 independent equations and obtain the hypercharge assignment without 

its overall normalization. The hypercharge normalization can be determined when 

imposing conditions from physics beyond SM, e.g., GUTs. 

When the anomaly cancellation constraints are relaxed, the extra degrees of 

freedom correspond to the following global symmetries: 

• Baryon number B 

• Lepton number L. 

They cannot be realized as part of a fundamental gauge symmetry. An ultimate the

ory, like string theory [17], is believed to contain a theory of gravity which presumably 

violates all global symmetries and therefore has to be a full gauge theory. It is then 

unclear where these global symmetries arise from and how they can survive down 

to low energies. One usually expects that global symmetries can arise as accidental 

symmetries in the low energy effective theory. However, there is still no fundamental 

reason for global symmetries to be protected. Both B and L could be violated but 

their violation has not been directly observed yet. When an additional Higgs doublet 

is introduced, the new degree of freedom correspond the Peccei-Quinn {PQ) sym

metry [18]. The PQ symmetry is broken explicitly near fa "' 0(1011 GeV) thereby 

generating an axion to compensate the CP violation in QCD and thus provides a 

solution to the strong CP problem *. 

* A detailed discussion can be found in chapter 6. 
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Q Uc dC t ec Ve Hu Hd 

U(l)B 1/3 -1/3 -1/3 0 0 0 0 0 

U(l)L 0 0 0 1 -1 -1 0 0 

PQ 0 0 -1 0 -1 0 1 0 

TABLE 1.2. Global Symmetries in the two-Higgs SM 

In Table 1.2, we list the global charges with respect to U(l) 8 , U(l)L and the 

PQ symmetry for the two-Higgs SM which can be naturally embedded into a SUSY 

version of the SM. 

Since neither B nor Lis a part of GsM, quantum gravity is believed to violate 

both B or L via non-renormalizable operators of the type: 

.CNR :> UH H / Mp1 + QQQf./ M~1 + h.c. (1.6) 

The first term violates L by two units (6.L = 2) and can give rise to neutrino 

masses, while the second term violates both Band L by one unit (6.B = 1, !::,.L = 

1) which leads to proton decay, for example, via p --+ e+1r0 . Provided the four

dimensional (4D) quantum gravity scale of Mp1 is roughly of order 0(1019 GeV), one 

obtains a lower bound on the neutrino masses ( m 11 ) and a upper bound on the proton 

lifetime ( rp) of the orders: 

mv ~ 10-5 e V and Tp ;S 1045 yrs. 

The above neutrino mass scale does not agree with the current experimental 

bound. For several decades, massless neutrinos have played an important role in un

derstanding the chiral character of weak interaction. The SM does not contain massive 

neutrinos. However, since Super-Kamiokande water Cherenkov Detector discovered 

the oscillation between different flavor states of neutrinos suggesting that neutrinos 

are massive, our knowledge about neutrino masses has been remarkably improved by 

solar [19), atmospheric [20], and reactor [21) neutrino oscillation data. For instance, 

solar and atmospheric neutrino oscillations imply the neutrino mass squared splittings 
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.6.m~ = 7.5 x 10-5 eV2 and .6.m;tm = 2.0 x 10-3 eV2 respectively. These mass squared 

splittings yield a lower bound on neutrino mass around rv 10-1 eV ~ 10-5 eV which 

is much greater than the mass possibly induced by quantum gravity effects. 

Lepton number does not necessarily have to be violated in order to understand 

the existence of massive neutrinos. Neutrinos could be Dirac particles, in which case, 

neutrino masses may arise from the usual Yukawa couplings: 

(1.7) 

where right-handed neutrinos vc are the SM singlet. Then, the hierarchy problem 

in Yukawa coupling constants must be addressed since there exists a 1012 order hier

archy in Yi/Yv rv mtfmv rv 174 GeV/10-10 GeV rv 1012
. The hierarchy provides a 

strong hint that a new physics scale should be much greater than MEw- One natural 

way to understand this hierarchy, i.e., the smallness of neutrino masses, is provided 

by the seesaw mechanism [22]. In this framework, the right-handed neutrinos are 

Majorana particles and the right-handed neutrino scale is MR rv 1014 - 1015 GeV. 

The renormalizable lagrangian responsible for neutrino masses is then given by 

(1.8) 

Note that the Majorana neutrino mass terms MRvcvc explicitly break the L. This 

allows to test the scenario in current and future neutrinoless double beta decay ((3 f3)ov 

experiments. At low energies, the non-renormalizable £-violating operators generated 

by the seesaw mechanism can be realized after integrating out the heavy right-handed 

neutrino as the dimension-five term(15, 23] 

(1.9) 

where AL stands for the effective scale of £-violation which is MR in this case. After 

integrating out the heavy states vc, one arrives at realistic neutrino masses in the 

range M~w/MR ,..._, 10-10 GeV. 

The Tp rv 1045 yrs limit predicted by quantum gravity corrections from operators 

of the type QQQf/ Mi, is much above the current experimental bounds on the proton 
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lifetime [24]: 

Tp > 5 x 1033 yrs for p-+ e+7ro and Tp > 1.6 x 1033 yrs for p--+ vK+. 

These limits indicate that the baryon number violation scale must be A8 > 1015 GeV. 

The high energy scales AL and AB find a natural origin in Grand Unified Theo

ries (GUTs) [25]. As an elegant extensions of the SM, GUTs provide a unified picture 

of the SM gauge interactions SU(3)c x SU(2)L x U(l)y and are consistent with the 

gauge unification picture which LEP and other experiments tested many years ago 

[26]. G UTs give a natural explanation of charge quantization as well. As a result of 

putting baryons and leptons in to the same gauge multiplets, GUTs (with or without 

SUSY) typically generate b,.B = 1 and b,.L = 1 operators with 

AB rv 1014 
- 1016 Ge V' 

which are close to the experimental limits from nucleon decay [27]. 

Besides the new physics effects discussed above, B can be violated even in the 

SM via non-perturbative effect such as electroweak instanton (28] and sphaleron pro

cesses [29]. These effects, however, are at the !:::,.B = 3 mod 3 level due to the existence 

of three generations. For instance, the non-perturbative sphaleron interaction in the 

SM lagrangian can be thought of as state 

3 

IT ( ULdLdLVL)i, {1.10) 
i=l 

where i = 1, 2, 3 stands for generation index. These Band L violating processes play 

an extremely important role in cosmology, e.g., in the context of baryogenesis or the 

electroweak phase transition. It is interesting to note that there exists a symmetry 

known as baryon parity [12, 30] in the SM lagrangian. The physical consequence of 

this symmetry is also an effective Baryon number at the mod three level (!::,.B = 

3 mod 3). In the next chapter, we present this symmetry and discuss its physical 

implications. 



CHAPTER2 

HIDDEN SYMMETRY IN THE SM 

2.1 Discrete Gauge Symmetry and Anomalies 

Discrete global symmetries have been widely discussed in particle physics for 

various phenomenological purposes. As mentioned previously, global symmetries will 

have to face a potential violation induced by quantum gravitational effects [31]. If 

those discrete symmetries can be realized as gauge symmetries, such violation can 

then be avoided. The idea of discrete gauge symmetries was first introduced in the 

Lattice gauge theory [32]. One can make use of these discrete gauge symmetries for 

field regularization purpose on the lattices [33]. In the context of string theory, dis

crete gauge symmetries are also widely discussed as relics, emerging after dimensional 

reduction, of higher-dimensional general coordinate invariance or spontaneously bro

ken high-dimensional gauge symmetries. Moreover, they turn out to be crucial in 

orbifold constructions [34]. Discrete gauge symmetries are also introduced in 4D field 

theories as remnants of a spontaneously broken gauge symmetry [9, 35, 36]. As a new 

model building tool, discrete gauge symmetries have been widely discussed in various 

applications [10 13, 30, 37-40]. 

In order to understand the idea of discrete gauge symmetries, let us consider 

an explicit realization of a discrete gauge symmetry in a U(l) theory. Assume a 4D 

U ( 1) gauge theory containing two scalars fields, the Higgs T/ with charge N and the 

scalar 1./; with charge -1 under the U(l) symmetry. After the Higgs 'fJ develops a 

vacuum expectation value (VEV) and breaks the U(l), the gauge-invariant term TJ'l.pN 

restricts 

(2.1) 

9 
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However, since the term TJ'lpN is non-renormalizable if N > 4, it is not clear whether 

the symmetry should really be preserved. A renormalizable example in a chiral theory 

can be given in terms of the SM language, where masses arise from usual Yukawa 

couplings. For this purpose, we suppose there exists a new U(l)x symmetry. Thus the 

total gauge symmetry of the theory is GsM x U(l)x. Suppose U(l)x is broken along 

the electroweak symmetry via the SM Higgs VEV. The Yukawa coupling invariance 

then leads to 

(2.2) 

where q, ·u and h stand for the U(l)x charges of Q, uc, and H, respectively. Hence, 

the fields transform as 

Q -iq0(x)Q c e-iu0(x)uc H --+ e-iNO(x) H --+e ,u-+ , , (2.3) 

where we also assume all the charges are integers and have set h = N. After elec

troweak symmetry breaking, the lagrangian exhibits a discrete ZN symmetry 

(2.4) 

under which Q and uc transform as 

Q -iq21r/NQ c-+ e-iuc2rrfNuc -+ e , u . (2.5) 

In the effective theory, the two discrete ZN symmetries are indistinguishable. 

However, this indeed provides hints to high energy theory. Our above consideration 

provides a constraint on the proper charge assignment. In fact, a condition must be 

satisfied, since spontaneous symmetry breaking does not induce any gauge anomaly. 

Therefore, if the ZN is a subgroup of a gauge symmetry, it must be free of gauge 

anomaly since the original theory is also anomaly-free. 

Another puzzle arises as how to define a gauge anomaly in terms of discrete 

gauge symmetries [9, 35, 36). At low energies, gauge bosons decouple from the theory 

and there is no gauge current associated with discrete gauge symmetries. It seems then 

to be difficult to realize a triangle anomaly (16). However, as we mentioned earlier, 

gauge anomalies cannot be induced via spontaneous symmetry breaking (SSB), it 
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should be possible to realize the anomaly prior to SSB. We can simply take the discrete 

charges to compute anomaly coefficients in the same way we compute anomalies before 

SSB. It is clear that the linear conditions will still hold. However, the non-linear 

conditions like cubic anomalies cannot be simply extended to discrete symmetries. 

Besides the above change, the anomaly cancellation condition may be modified 

due to possible existence of vectorial heavy fermions. Suppose the discrete ZN gauge 

symmetry arise from a full U ( 1). The field that acquires a VEV and breaks U ( 1) to 

ZN can supply large masses at very high scale to a set of heavy fermions which have 

Yukawa couplings involving this field. Such fields may include Majorana fermions as 

.C:, SQQ, (2.6) 

and Dirac fermions as 

£:, SQQ. (2.7) 

These heavy fields can carry SM gauge quantum numbers, but they must transform 

vectorially under the SM. In order that their mass terms be invariant under the 

unbroken ZN, it must be that 

2qi - O mod N (Majorana fermion) 

Qi + ifi - 0 mod N (Dirac fermion) (2.8) 

where Qi are the U(l) charges of these heavy fermions. The index i is a flavor index 

corresponding to different heavy fields. These heavy fermions, being chiral under the 

U(l)A, contribute to gauge anomalies. Their contribution to the [SU(3)c]2 x U(l) 

gauge anomaly is given by A3 = Li qimi = (N /2) Li Pimi (Majorana fermion) or 

A3 = Li(qi + ifi)mi = (N) Li pimi (Dirac fermion) where fi is the quadratic index 

of the relevant fermion under SU(3)c and the Pi are integers. We shall adopt the 

usual normalization of m = 1/2 for the fundamental of SU(N). Then, for the case 

of a heavy Dirac fermion, one has A3 = p(N/2) where p is an integer, as the index 

of the lowest dimensional (fundamental) representations is 1/2 and those of all other 

representations are integer multiples of 1 /2. The same conclusion follows for the 

case of Majorana fermions for a slightly different reason. All real representations of 
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SU(3)c (such as an octet) have integer values of m, so that LiPimi is an integer. 

Analogous conclusions follow for the [SU(2)£]2 x U(l) anomaly coefficient. 

2.2 Baryon Parity 

In this section, we show that the SM lagrangian with the seesaw mechanism for 

small nPu t rino masses has a discrete Z6 gauge symmetry which forbids all ~B = 1 

and ~ B = 2 baryon violating effective operators *. This can be seen as follows. The 

Sfvl Yukawa couplings incorporating the seesaw mechanism to generate small neutrino 

ma.8ses is 

(2.9) 

lien\ we have used the standard (left-handed) notation for the fermion fields and 

have not displayed the Yukawa couplings or the generation indices. This lagrangian 

respects a discrete Z6 symmetry with the charge assignment as shown in Table 2.2. 

Also shown in Table 2.2 are the charge assignments under the Z3 and Z2 subgroups 

of Z 6 . The Z3 assignment is identical to that in Ref. [41] 

Q Uc de f, ec Ve H 

z6 6 5 1 2 5 3 1 

Z3 3 2 1 2 2 3 1 

Z2 2 1 1 2 1 1 1 

TABLE 2.1. Family-independent Z6 charge assignment to the SM fields along with 
the charges under the Z3 and Z2 subgroups. 

*Since there exists an unbroken U(l)y symmetry, one can always take the hyper
charge subgroup to redefine the discrete symmetry as 

H ~ e-i21r/3x(l) . e-i21ro/Nx(3) H. 

For instance, under all the symmetries we discuss here, Higgs fields transform non
trivially which may lead to potential domain wall problem. But one can always rotate 
it away by shifting a combination of hypercharge. We would then instead obtain a 
Z9 symmetry. 
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From Table 3.1 it is easy to calculate the Z6 crossed anomaly coefficients with 

the S~I gauge groups. We find the SU(3)c or SU(2)L anomalies to be 

A(SU(3)c]2 xZG = 3Ng 

A[SU(2)L]2 xZG = Ng (2.10) 

whPrP N 11 is the number of generations. The condition for a ZN discrete group to be 

anomaly-free is 
N 

Ai= 2 mod N (2.11) 

where i stands for SU(3)c and SU(2)L- For Z6 , this condition reduces to Ai = 

3 mod 6, so when N9 = 3, Z6 is anomaly-free. Obviously, the Z3 and Z2 subgroups 

an-. ahm anomaly-free. The significance of this result is that unknown quantum grav

itational effects will respect this Z6• It is this feature that we utilize to stabilize the 

nucleon. Absence of anomalies also suggests that the Z6 may have a simple gauge 

origin. 

To see how the Z6 forbids LiB = 1 and LiB = 2 processes, we note that it is a 

subgroup of U(lhY-n+3L where Y is SM hypercharge [42]. We list in Table 2.2 the 

charges under the three U(l) symmetries. It is clear that the Z6 can be a subgroup 

U(lhY-B+3L O -1 1 2 -1 -3 1 

TABLE 2.2. Charge assignment under U(lhY-B+3L which contains the Z 6 • 

of U(lhY-B+3L· Any Z6 invariant effective operator must then satisfy 

2~Y - ~B + 3~L = 0 mod 6. (2.12) 

Invariance under U(l)y implies LiY = 0. Consider ~B = I effective operators 

which must then obey (from Eq. (2.12)) 3~£ = 1 mod 6. This has no solution, 

since 3LlL = 0 mod 3 from Table 2.2. Similarly, ~B = 2 operators must obey 

3LlL = 2 mod 6 which also has no solution. ~B = 3 operators, which corresponds 

to 3LlL = 0 mod 6, are allowed by this Z6 . Such operators have dimension 15 or 
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higher and have suppression factors of at least A-11
• These will lead to "triple nucleon 

decay'~ processes where three nucleons in a heavy nucleus undergo collective decays 

leading to processes such as pnn -+ e+1r0. We estimate the rates for such decay in 

Section 2.3 and find that A can be as low as 102 GeV. 

2.3 Triple Nucleon Decays 

The existence of baryon parity ensures the absence of AB = 1 and ~B = 2 

effective operators. We now list the lowest dimensional ( d=15) ~B = 3 effective 

opera.tors which are consistent with the baryon parity. Imposing gauge invariance 

and Lorentz invariance, we find them to be: 

ttc4Jc5 ec' 'Uc2J,c1 ec, Qiic3J,c5 £, Qiic2J,c6 l, Q2Uc3J,c4 eC' 

Q2iicJc6 ec' Q3iic2J,c4f,, Q3ucJ,c5 l, Q4iic2Jc3 ec, Q4iicJc4vc, 

Q4Jc5ec, Q5iicJc3£, Q5J/l, Q6iicJc2ec, Q1J,c2f, Q8Jcec . (2.13) 

Here Lorentz, gauge and flavor indices are suppressed. These operators can lead to 

"triple nucleon decay". The dominant processes are 

PPP -+ e+ + 1T+ + 1T+ 

ppn -+ e+ + 1T+ 

pnn -+ e+ + 1To 

nnn -+ ii+ 1To . (2.14) 

Tritium (3 H) and Helium-3 (3He) are examples of three-nucleon systems in 

nature. These nuclei are unstable and undergo t,-decay with relatively short lifetime. 

In the presence of operators of Eq. (2.13), 3 H -+ e+ + 1r
0 and 3 He ~ e+ + 1r+ 

decays can occur. However, there is no stringent experimental limit arising from 

these nuclei. So we focus on triple-nucleon decay in the Oxygen nucleus where there 

are experimental constraints from water detectors. To estimate the decay lifetime 

we need first to convert the nine-quark operators of Eq. (2.13) into three-nucleon 

operators and subsequently into the Oxygen nucleus. 
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\Ve choose a specific operator Q5Jc4 l/ A 11 as an example to study the process 

pnn ~ e+ + 1r0 triple nucleon decay process. This induces the effective three-nucleon 

01wrator in the Oxygen nucleus 

Q5Jc4l, ,83(1 + D + F) 
A 11 rv V2/1rA 11 ( 1mnpe) ' {2.15) 

wlwn" /3 ~ 0.014 GeV3 is the matrix element to convert three quarks into a nucleon 

[43]. F ~ 0.47, D ~ 0.80 are chiral lagrangian factors, and !1r = 139 MeV is the pion 

decay constant. 

vVe now estimate the wave-function overlap factor for three nucleons inside 

Oxygeu nucleus to find each other. This is based on a crude free Fermi gas model 

where the nucleons are treated as free particles inside an infinite potential well. A 

single nucleon wave function is given by 'l/Jm(x) = /2F sin{m1rx/r), where r is the size 

of the nucleus and m is the energy level. Incorporating isospin and Pauli exclusion 

principle, the highest energy level which corresponds to m = 4 is found to have 2 

protons and 2 neutrons. We assume the highest level has the highest probability 

to form a TI·itium-like "bound state" of three nucleons. The probability for three 

nucleons in the Oxygen nucleus to overlap in a range of the size of the Tritium 

nucleus is 

P - ; 1 v?; d (:1
) d (:2

) d C:) (sin ( 
4:xi) sin ( 

4:x2
) sin ( 

4:x3
) y -0.0253, 

(2.16) 

where ~ is the ratio between the radii of the Tritium and the Oxygen nucleus, 

since R ex: A 1/3 (A is the atomic number). So the effective baryon number violating 

operator of Eq. (2.15) becomes 

P(J3 
----(3H1re). 
V2f1rA11R3 

The triple nucleon decay lifetime can then be estimated to be 

l61r f 1r 2 A 22 R6 
T rv 

p2(36M3H 

By putting the current limit on proton lifetime of 3 x 1033 yrs, we obtain: 

A rv 102 GeV . 

(2.17) 

(2.18) 

(2.19) 
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Thus we> see the Z6 symmetry ensures the stability of the nucleon. To test our crude 

model of nuclear transition, we have also evaluated the double nucleon decay rate 

within the same approach and found our results to be consistent with other more 

detailed evaluations (44). 

2.4 Gauging Baryon Parity 

It is interesting to see if the Z6 symmetry of Table 3.1 can be realized as an 

unhrok0n subgroup of a gauged U(l) symmetry. Although the Z6 is a subgroup 

of tlw U (1 )c21 --B+3 L), this U(l) would be anomalous without enlarging the particle 

content. vVe have found a simple and economic embedding of Z6 into a U(l) gauge 

symmetry associated with Ii+ Li+ Li - 2Lk. Here Li is the ith family lepton number 

and i f:. j f:. k. No new particles are needed to cancel gauge anomalies. With the 

inclusion of right-handed neutrinos, Ii= Y-(B-L)/2 is an anomaly-free symmetry. 

L; + L1 - 2Lk, which corresponds to the As generator acting in the leptonic SU(3) 

family space, is also anomaly-free. 

The charges of the SM particles under this U ( 1) are 

Qi = (0, 0, 0), Uic = (-1, -1, -1), die= (1, 1, 1), 

f; = (-4, 2, 2), e{ = (5, -1, -1), v{ = (3, -3, -3) , H = 1. 

This charge assignment allows all quark masses and mixings as well as charged lepton 

masses. When the U(l) symmetry breaks spontaneously down to Z6 by the vacuum 

expectation value of a SM singlet scalar field </> with a charge of 6, realistic neutrino 

masses and mixings are also induced. The relevant lagrangian for the right-handed 

neutrino Majorana masses is 

(2.20) 

After integrating out the heavy right-handed neutrinos we obtain the following ~L = 
2 effective operators: 

1 
ctl.r.,=2 = A (e1e2H H + f1f3H H + f1e1H HE+ e2e2H HE*+ f2f3H H€* + e3e3H HE*). 

(2.21) 
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Herc A r>,.J At 12 r<J !vl 13 is the scale of £-violation and we have defined € = ( ¢) / A. For 

E << 1, this lagrangian leads to the inverted mass hierarchy pattern for the neutrinos 

which is well consistent with the current neutrino oscillation data. This neutrino 

mas:,; mixing pattern is analogous to the one obtained from Le - Lµ - LT symmetry 

[--15). However, here the U{l) is a true gauge symmetry. 

\,Ve have also investigated other possible U{l) origins of the Z6 symmetry and 

found the lk + Li + Li - 2Lk combination to be essentially unique. To see this, let us 

assign a general U{l)x charge for ith generation of the SM fermions consistent with 

the Z<i symmetry as 

{ Q C' de e C C} { ( i) 5 6 ( i) 1 + 6 ( i) 2 + 6 ( i) 5 + 6 ( i) 3 6 ( i) } 
i' U; , i' ; ' ei' vi = 6m1 ' + m4 ' m3 ' m2 ' ms ' + m5 

where 1ri}1> are all integers. The Higgs field has a charge H = l + 6mo. If we impose 

the invariance of the Yukawa couplings of the charged fermions and Dirac neutrinos 

for each generation, the anomaly coefficients from the ith generation become 

(i) 
A1SU(3)c]2 xU(l)x - 0 

( i) 1 + 9m~i) + 3m~i) 
A1SU(2)L]2 xU(l)x 

-
(i) -(1 + 9m~i) + 3m~i)) 

AIU(l)y)2xU(l)x 
-

( i) (') 

A[U(l)x ]2 xU(l)y 
- [5 + mo]Al~U(2)L]2xU(l)x 

(i) [ ]2 A(i) {2.22) 
A[U(l)x]3 - 5 + mo [SU(2)L)2xU(l)x · 

The coefficient for the mixed gravitational anomaly for each generation is zero. From 

Eq. (2.22), it follows that A 2 = ~i A~iuc2)L]2xu(i)x = ~i{l + 9m~i) + 3m~i)) = 0 can 

be satisfied only when all three generation contributions are included. Once A2 = 0 

is satisfied, all other anomaly coefficients will automatically vanish. A2 = 0 can be 

rewritten in a familiar form as 3 I:i Qi+ I:/'i = 0. Thus we see that any U(l) 

symmetry satisfying this condition and consistent with the Z6 charge assignment 

can be a possible source of Z6 • If the Qi are different for different generations, 

quark mixings cannot be generated without additional particles. By making a shift 

proportional to hypercharge, we can set Qi = 0 for all i. Two obvious solutions to 

Lit\ = 0 are ei = (1, l, -2) and f,i = (1, -1, 0). The latter one does not reproduce 



18 

the Z6 charge assignment while the former one does, which is our solution when !Jl 
is added to it. 

A related B - 3Lr has been discussed in Ref. [46]. This is the same as B - L 

plus L«, + L,, - 2Lr. In Ref [46], only one right-handed neutrino v~ is introduced so 

the seesaw mechanism applies only for one light neutrino. The other two neutrinos 

recei vc small masses from radiative corrections. In our model, since there are three 

right-handed neutrinos, all the neutrino masses arise from the conventional seesaw 

mechanism. 

The 4D simple GUT will explicitly break the Z3 baryon parity as it predicts 

the D = 6 operator which violates the Baryon number at tl.B = 1. One can also see 

that the embedding of Z6 into U(l) of Ii+ Li+ Li - 2Lk is not a consistent picture 

of the simple GUTs. The baryon parity provides a strong hint to GUTs type physics 

beyond SM. It is interesting that the anomaly-free fact of Z6 is a result of existence 

of three generations and consistent with Baryon number violation due to the electric 

instanton or SM sphaleron processes. 



CHAPTER 3 

GAUGED R-PARITY AND B - L SYMMETRY 

3.1 MSSM and Gauged R-parity 

The following couplings 

(3.1) 

are Gsl\i gauge invariant but absent in the non-supersymmetric SM, since they violate 

Lorentz invariance. However, when the theory is extended to MSSM, this constraint 

no longer exists and the couplings will appear in the superpotential. These couplings 

essentially violate B or L at the renormalizable level, which are presumably global 

symmetries in the SM. The L violating couplings can give rise to the neutrino masses 

via one-loop effects but the B violating terms lead to a rapid proton decay. The strong 

experimental bound on the proton lifetime therefore requires these couplings to be 

sufficiently suppressed, such that the MSSM can become an acceptable theory. For 

this purpose, one usually assumes a discrete global Z2 symmetry, under which, the 

SM particles are taken to be even while their superpartners are odd. This symmetry 

is known as R-parity. The assumption of R-parity has profound implications for 

supersymmetric particle search at colliders as well as for cosmology. Due to R-parity, 

e.g., SUSY particles would be produced at collders only in pairs. Moreover, R

pari ty implies that the lightest SUSY particle (LSP), for instance a neutralino in the 

mSUGRA scenario, will be stable. This stable LSP is then a leading candidate for 

cosmological cold dark matter. 

Since the global R-parity is not part of the MSSM gauge symmetry, it is poten

tially violated by quantum gravitational effects. These effects ( associated with worm 

holes, black holes, etc.) are believed to violate all global symmetries [31]. Gauge 

19 



20 

symmetries, however, are protected from such violations. As noted in Chapter 2, 

when a gauge symmetry breaks spontaneously, often a discrete subgroup is left in

tact. Such discrete symmetries, called discrete gauge symmetries [9], are also immune 

to quantum gravitational effects. Not all discrete symmetries can however be gauge 

symmetries. For instance, since the original continuous gauge symmetry was free 

from anomalies, its unbroken discrete subgroup should be free from discrete gauge 

anomalies [47, 48]. This imposes a non-trivial constraint on the surviving discrete 

symmetry and/or on the low energy particle content [9, 30, 37, 46-49]. It will be of 

gr0at interest to see if R ~parity of MSSM can be realized as a discrete gauge sym

metry, so that one can rest assured that it wont be subject to unknown quantum 

gravitational violations [50, 51]. 

After a systematic analysis in [10], we can conclude the simplest exact R-parity 

is family-independent Z2 subgroup of U(l) I~ gauge symmetry. Notice together with 

Z2 2 1 1 2 1 1 1 1 2 

TABLE 3.1. Gauged Z2 R-parity. 

the Z3 Baryon Parity, they form a discrete Z6 R-parity [10]. 

At the U(l) level, I~ can be realized as linear combination of U(I)B-L and 

U ( 1) Y · Therefore, one can always take a hypercharge subgroup to do a redefinition 

of an exact Z2 R-parity. Hence, the exact R-parity can always be realized in terms 

of subgroups of B _ L [50]. 

Proton decay violates both B and L. However, B - L is still conserved. The 

U(I)B-L is known as a global symmetry in the SM. By introducing a right-handed 

neutrino for each generation, it becomes a full gauge symmetry free of anomalies. An 

interesting example of a discrete gauge symmetry in the SM with seesaw neutrino 

masses is the Z6 subgroup of B - L. The introduction of the right-handed neutrino 

for generating small neutrino masses makes B - L a true gauge symmetry. When the 

1/ fields acquire super-large Majorana masses, U(I)B-L breaks down to a discrete Z6 
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subgroup. It is worth mentioning that the Z6 symmetry has a Z2 and a Z3 subgroup 

as well. 

Field Q Uc de f, ec lie Hu Hd 

U(l)n-L 1/3 -1/3 -1/3 -1 1 1 0 0 

z6 1 5 5 3 3 3 0 0 

TABLE 3.2. The B - L charges of the SM fields along with the unbroken Z6 subgroup 
after the seesaw mechanism. 

3.2 Gauged B - L without llR 

One physical consequence of the existence of the Z3 Baryon Parity in the theory 

is that the new physics cut-off scale can be lowered to Te V even without violating 

current proton decay limits. If the threshold of new physics is as low as a few Te V, the 

induced neutrino mass via UHuHu/ A will be too large. Here we show a mechanism 

by which such operators can be suppressed by making use of a discrete ZN symmetry 

(with N odd) surviving to low energy. This ZN has a natural embedding in the 

B - L gauge symmetry. The question arises here is essentially how to gauge U(l)B-L 

without a right-handed neutrino. 

Consider the following effective operators in the low energy lagrangian: 

S6 32N 

.c :> ffHH A7 + A2N-4. (3.2) 

Here S is a scalar singlet field which has charge (1, 3) under ZN x Z5 while f has 

charge (-3, 2). The first term in Eq. (3.2) respects a U(l) symmetry while the 

second term reduces this to Z6 x ZN· If S develops a VEV of order 102 Ge V, realistic 

neutrino masses can arise even when A is low. For example, if A = 10 TeV and 

S = 102 GeV, the neutrino mass is of order v2 (8)6 /A7 
rv 0.4 eV, which is consistent 

with the mass scale suggested by the atmospheric neutrino oscillation data. 

Two explicit examples of the ZN symmetry with N = 5 and 7 are shown in Table 

3.2. These ZN symmetries are free from gauge anomalies. In the Zs example, the 
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crossed anomaly coefficients for SU(3)c and SU(2)L are 5N9 and 5N9 /2 respectively 

showing that Z5 is indeed anomaly-free. For Z7 , these coefficients are 7 N 9 and 7 N 9 /2, 

so it is also anomaly-free. 

Field Q Uc de f, ec H s 
Zs 1 4 4 2 3 0 1 

Z1 1 6 6 4 3 0 1 

TABLE 3.3. ZN charge assignment for N = 5 and 7. 

It is interesting to ask if the ZN can be embedded into a gauged U ( 1) sym

metry. A simple possibility we have found is to embed this ZN into the anomalous 

U ( 1) A symmetry of string origin with the anomalies cancelled by the Green-Schwarz 

mechanism [52). Consider U(I)n-L without the right-handed neutrinos but with the 

inclusion of vector-like fermions which have the quantum numbers of 5(3) and 5(2) 

under SU(5) x U(l)A- This U(l)A is anomaly-free by virtue of the Green-Schwarz 

mechanism. When this U(l)A breaks down to Zs, the extra particles get heavy masses 

and are removed from the low energy theory which is the Z6 x Zs model. 

Without the second term in Eq. (3.2), the phase of the S field will be massless 

upon spontaneous symmetry breaking. This Majoron field [53) would however acquire 

a mass from the second term of Eq. (3.2). In the Z6 x Zs model, the mass of the 

Majoron is of order (S) 7 
/ A 6 rv 100 keV. In the Z6 x Z7 model, the Majoron mass 

is of order (8) 11 
/ A 10 

rv 10 eV. Such a Majoron with a mass of either 100 keV or 

10 e V is fully consistent with constraints from early universe cosmology [54]. The 

interaction term UH H S6 / A 7 induces the Majoron decay S ---+ vv with a Yukawa 

coupling Ys-vv = 6mv/ (S) rv 10-11 • The decay rate of the Majoron can be estimated 

to be 

(3.3) 

This corresponds to a Majoron lifetime of T rv 10 sec for the Z6 x Zs model and T r-..J 

10
5 sec for the Z6 x Z7 model. Such a Majoron can modify the big-bang nucleosynthesis 

processes. However the modification is not significant since the Majoron will decouple 
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before the electro-weak phase transition. Its contribution to the expansion rate is 

equivalent to that of 0.047 x 4/7 rv 0.027 light neutrino species [55]. This extra 

contribution is well within observational uncertainties. 



CHAPTER4 

THE µ-PROBLEM: A SYMMETRY APPROACH 

The µ problem has been an intriguing puzzle of MSSM. One of the main goals of 

SUSY is to solve the gauge hierarchy problem while the arising µ-problem brings the 

hierarchy problem back to the theory (7, 56]. µ and B are the Higgs mass parameters 

in the MSSM, whereµ appears in the superpotential 

(4.1) 

and B is in the soft breaking sector 

(4.2) 

The phase of B is also a main source of CP violation in MSSM, usually known as the 

SUSY CP problem which is strictly constrained by electric dipole moment (EDM) 

experiments. To allow electroweak symmetry breaking, µ has to be of order the soft 

SUSY breaking mass scale Msusv ( rv MEw ), while one would usually expect µ to be 

of order the Planck scale Mp1, the cut-off scale in the 4D theory, since it is a priori not 

protected by any (gauge) symmetry. µ cannot vanish either, otherwise there would 

be massless charged fermions {charged Higgsino). 

Generally, understanding of the µ and B parameters is usually tied up with 

the SUSY breaking mechanism [6, 7]. In some scenario, it is directly related to the 

generation of gaugino masses (56, 57]. 

4.1 Peccei-Quinn Symmetry 

In order to explain theµ and B parameters from physics beyond MSSM, one 

must introduce a new symmetry to ensure the absence of the bareµ term in the super

potential and it is reasonable to assume this new symmetry to be flavor independent. 

24 
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However, the fact that under the new symmetry, Hu and Hd are not vectorial, 

(4.3) 

where hu and hd are the corresponding charges of the MSSM two Higgs doublets and 

n- is the charge of gaugino. This eventually leads to a global PQ symmetry. Suppose 

the new symmetry is an Abelian symmetry G. After imposing the Yukawa couplings 

condition, the mixed QCD anomaly is given as 

A[SU(3)]2 xG 
3 

- 3a: + 2(2(q - a)+ (u - a)+ (d - a)) 

3 
- 3a: - 2(hu + hd), (4.4) 

where q, u, d hu and hd are the corresponding charge under G for the SSM superfields 

Q, 'Uc, de, Hu and Hd. a stands for the gaugino charge. 

It is clear that this additional symmetry which forbids the bare µ term in the 

superpotential carries mixed QCD anomaly so it can be identified as the PQ symmetry 

[18]. 

A naive extension of the MSSM is to introduce a SM singlet S with trilin

ear coupling HuHdS [58]. The quartic-coupling can arise radiatively. After the PQ 

symmetry is broken, S develops a VEV of order of MEw. Hence, µ arises via 

(4.5) 

Global PQ symmetry is explicitly broken by its mixed QCD anomaly giving rise to 

a pseudo-Goldstone particle known as the axion. The axion mass and PQ symmetry 

breaking scale could both lead to phenomenological inconsistency *. 

Based on the different ways to address this PQ symmetry problem, the solutions 

to the µ problem can be classified into the following categories: 

• Explicit breaking of PQ symmetry [58] 

• Gauging the PQ symmetry by adding exotic quarks (59] 

• Addition of a discrete global R-symmetry [60] 

* Details of axion physics are discussed in Chapter 6. 
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• Realization as a subgroup of Anomalous U(l)A gauge symmetry [10, 57] 

• Supersymmetric invisible axion solution [11, 13, 61, 62] 

Tlw first solution is realized as Next-to-Minimal model (NMSSM), which is defined 

by 

(4.6) 

where S 3 breaks explicitly the U(l)PQ· However, at the same time, a new Z3 discrete 

global symmetry has to be introduced, where S transform non-trivially under the 

discrete Z3 symmetry. As a consequence, a domain wall is formed at the scale Msusv 

which is much lower than the inflation scale. So this poses a serious cosmological 

problem. 

Following the second approach, a string motivated U(l)' gauge symmetry has 

been proposed [59]. The µ-term solution here is quite similar to the NMSSM but 

without discrete Z3 symmetry and involves the superpotential terms 

(4.7) 

S gets a VEV near Msusv from soft SUSY breaking sector. It arises from a string 

originated E 6 symmetry with symmetry breaking pattern 

E6 --+ SO(IO) x U(l)w --+ SU(5) x U(l)x x U(l)w, 

so it is a full gauge symmetry. But the theory has many exotic matter particles decou

pled near one TeV. The U(l)' also predicts an extra Z' boson which may contribute 

to precision electroweak tests. 

In the following three sections, we will present here the last two solutions. 

4.2 Giudice-Masiero Mechanism 

One attractive scenario which achieves a µ-term solution in the SUGRA me

diated SUSY breaking mechanism is the Guidice--Masiero mechanism [57] where a 

bare µ-term in the superpotential is forbidden by some symmetry, either discrete or 

continuous. µ is induced in the lagrangian via a non-renormalizable term 

.C = J d40 HuHdZ* ( 4.8) 
Mp1 



27 

where Z is a spurion field which parameterizes SUSY breaking via (Fz) =I= 0, with 

(Fz) / Air1 ,_ 1Hsusv ,_ 102 GeV. For instance, the gaugino masses are generated from 

.Csoft:) J d2
9Wc,W" :Pl (4.9) 

For this mechanism to work, there must exist a symmetry that forbids a bare 

11 term in the superpotential. Such a symmetry cannot be a continuous symmetry, 

consistent with the requirement of non-zero gaugino masses, and therefore must be 

discrete. "' It would be desirable to realize this as a discrete gauge symmetry so 

that the symmetry will be protected even at Mp1. However, as mentioned previously, 

one must avoid the PQ symmetry problem and one of the ways is to gauge the 

PQ symmetry through the Green-Schwarz (GS) mechanism and realize the discrete 

symmetry as a subgroup of the anomalous U(l)A gauge symmetry [52]. 

4.3 Green-Schwarz Anomaly Cancellation Mechanism 

String theory, when compactified to 4D, generically contains an "anomalous 

U ( 1) A" gauge symmetry. A subset of the gauge anomalies in the axial vector U ( 1) A 

current can be cancelled via the Green-Schwarz (GS) mechanism in the following way 

[52]. In 4D, the Lagrangian for the gauge boson kinetic energy contains the terms 

" 2 • " -.Ckinetic = cp(x) L..J ki~ + i17(x) L..J ~F;,F;,, (4.10) 

where cp(x) denotes the string dilaton field and 77(x) its axionic partner. The swn 

i runs over the different gauge groups in the model, including U(l)A· ki are the 

Kac Moody levels for the different gauge groups, which must be positive integers 

for the non Abelian groups, but may be non-integers for Abelian groups. The GS 

mechanism makes use of the transformation of the string axion field 77( x) under a 

U ( 1) A gauge variation, 

Vf ~ Vf + 8µ0(x), 17(x) ~ 17(x) - 0(x)c5as (4.11) 

*Without the µ-term and the gaugino mass term, the MSSM Lagrangian has two 
U(l) symmetries, a PQ symmetry and a U(l)R symmetry. The µ-term breaks the PQ 
symmetry and the gaugino mass term breaks the U{l)R symmetry down to a discrete 
subgroup. 
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where c5cs is a constant. If the anomaly coefficients involving the U(l)A gauge boson 

and any other pair of gauge bosons are in the ratio 

A 1 A2 Aa Agravity _ c5 
k1 = k2 = ka = .... = 24 - GS ' 

(4.12) 

these anomalies will be cancelled by gauge variations of the U(I)A field arising from 

the second term of Eq. 4.11. Oas is known as Green-Schwarz constant which is defined 

in term of the mixed gravitational anomaly. All other crossed anomaly coefficients 

should vanish, since they cannot be removed by the shift in the string axion field. 

Consider the case when the 4D gauge symmetry just below the string scale is 

Gsrv1 x U(l)A. Let A3 and A2 denote the anomalies associated with [SU(3)c]2 x U(l)A 

and [SU(2)L]2 x U(l)A respectively. Then if Aa/ka = A2/k2 = Oas is satisfied, from 

Eq. (4), it follows that these mixed anomalies will be cancelled. The anomaly in 

[ U ( 1)}] x U ( 1) A can also be cancelled in a similar way if A 1 / k1 = Oas. However, 

in practice, this last condition is less useful, since k1 is not constrained to be an 

integer as the overall normalization of the hypercharge is arbitrary. If the full high 

energy theory is specified, there can be constraints on A1 as well. For example, if 

hypercharge is embedded into a simple group such as SU(5) or S0{10), k1 = 5/3 is 

fixed since hypercharge is now quantized. A1/k1 = Oas will provide a useful constraint 

in this case. We shall remark on this possibility in our discussions. Note also that 

cross anomalies such as [SU(3)1 x [U(l)A]2 are automatically zero in the SM, since 

the trace of SU(N) generators is zero. Anomalies of the type [U(l)y} x (U(l)A] 2 also 

suffer from the same arbitrariness from the Abelian levels k1 and kA. Finally, the 

[U(l)A]3 anomaly can be cancelled by the GS mechanism, or by contributions from 

fields that are complete singlets of the SM gauge group. 

As discussed in Section 2.1, discrete version of anomaly cancellation will need 

to be modified due to the possible existence of vectorial fermion pairs. If the ZN 

symmetry that survives to low energies was part of U{l)A, the ZN charges of the 

fermions in the low energy theory must satisfy a non-trivial condition: the anomaly 

coefficients Ai for the full theory is given by Ai from the low energy sector plus an 

integer multiple of N /2. These anomalies should obey GS mechanism, leading to the 
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discrete version of the Green-Schwarz anomaly cancellation mechanism: 

A3 + p1N A2 + Pa: 
____ 2 __ = ----=- = o'cs, 

k3 k2 
(4.13) 

with p 1 , p2 being integers. Since 6as is an unknown constant (from the effective low 

energy point of view), the discrete anomaly cancellation conditions are less stringent 

than those arising from conventional anomaly cancellations. If OGs = 0, the anomaly 

is cancelled without assistance from the Green-Schwarz mechanism. We shall not 

explicitly use the condition that 6Gs -f 0, so our solutions will contain those obtained 

by demanding OGs = 0, viz., A3 = -pi(N/2), A2 -p2(N/2) with P1, P2 being 

integers. 

The anomalous U(l)A symmetry is expected to be broken just below the string 

scale. This occurs when the Fayet-Iliopoulos term associated with the U(l)A sym

metry is cancelled, so that SUSY remains unbroken near the string scale, by shifting 

the matter superfields that carry U(l)A charges [60]. Although the U(l)A symmetry 

is broken, a ZN subgroup of U(l)A can remain intact. Suppose that we choose a 

normalization wherein the U(l)A charges of all fields are integers. (This can be done 

so long as all the charges are relatively rational numbers.) Suppose that the scalar 

field which acquires a vacuum expectation value (VEV) and breaks the U(I)A sym

metry has a charge N under U(l)A in this normalization. A ZN subgroup is then left 

unbroken down to low energies. 

In our analysis we shall not explicitly make use of the condition Ai/ k1 = A2/ k2 , 

since, as mentioned earlier, the overall normalization of hypercharge is arbitrary. 

However, once a solution to the various ZN charges is obtained, we can check for the 

allowed values k1, and in particular, if k1 = 5/3 is part of the allowed solutions. This 

will be an interesting case for two reasons. If hypercharge is embedded in a simple 

grand unification group such as SU(5), one would expect k1 = 5/3. Even without a 

GUT embedding k1 = 5/3 is interesting. We recall that unification of gauge couplings 

is a necessary phenomenon in string theory. Specifically, at tree level, the gauge 

couplings of the different gauge groups are related to the string coupling constant Yst 
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which is determined by the VEV of the dilaton field as [61] 

(4.14) 

where k; are the levels of the corresponding Kac-Moody algebra. In particular, if 

k1 : k2 : k3 = 5/3 : 1 : 1, we would have sin2 0w = 3/8 at the string scale, a scenario 

identical to that of conventional gauge coupling unification with simple group such 

as SU ( 5). For these reasons, we shall pay special attention to the case k1 = 5 /3. 

4.4 Discrete Z4 Gauge Symmetry from U(l)A 

As discussed in the above two sections, the symmetry which is consistent with 

the Giudice-Masiero mechanism must be discrete but carries a mixed QCD anomaly 

[57]. So the only realization of discrete gauge symmetries must arise from the anoma

lous U(l)A gauge symmetry. We have done a systematic analysis in [10]. 

Here, one of examples of Z4 subgroup of the anomalous U(l)A is given in Table 

4.4. 

q u d l e n h h a 

1 1 1 1 1 1 0 0 1 

TABLE 4.1. Z4 subgroup of the Anomalous U(l)A 

The mixed anomaly coefficients are 

A3 = 3 mod 4, A2 = 1 mod4 (4.15) 

which satisfies the discrete version of Green-Schwarz anomaly cancellation condition. 

The charge assignment shown in Table 4.4 is clearly compatible with grand unification. 

The Kac Moody level associated with hypercharge will be k1 = 5/3 with a GUT 

embedding. Gauge coupling unification is then predicted, since sin2 0w = 3/8 near 

the string scale. This is true even if there were no covering GUT symmetry. It also 

acts as a exact R-pari ty. The anomalous U ( 1) A is broken to 
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where after the SUSY breaking, Z4 is broken into the Z2 subgroup of the !ft as in 

chapter 3. 

4.5 QCD Axion Solution to theµ Problem 

As mentioned previously, the PQ symmetry implies the presence of an axion. 

It is interesting to note that an axion is required to solve the Strong CP problem. 

All thP acceptable axion solutions must be "invisible". Here, we present a model 

making use of the real QCD axion to address the µ-term problem. This is a natural 

solution in terms of the PQ symmetry while the QCD axion is an elegant solution 

to the Strong CP problem and at the same time, it provides candidate for cold dark 

matter. 

In all the above approaches, the µ-term solutions eventually make use of 

SUSY breaking and directly relate the Msusv to µ. Imposing a new physics scale 

A1PQ (fa = (1010 - 1012 ) GeV), the axion models provide another approach to the 

Jt-term problem[ll, 13, 62, 63] by relating 

MffeQ 
µrv --. 

Mp1 
(4.16) 

In the case of the Dine-Fischler-Srednicki-Zhitnitskii (DFSZ) axion model [64], a µ-

term automatically arises after PQ symmetry breaking. 

The question is now how to naturally understand the origin of MPQ from a 

higher energy theory. It is interesting that in the SUGRA mediated SUSY breaking 

models, one also has to impose a new physics scale of order 0(1011 GeV). In these 

models, this intermediate scale can be generated dynamically. Practically, this in

termediate scale can then be identified as MPQ· Here we propose a model involving 

SUSY breaking [45]. Having made use of Msusv, this approach certainly requires 

that the SUSY breaking mediation scale is greater than MPQ· A simple realization 

of this idea is the SUGRA model. The superpotential of the model contains 

(4.17) 
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which is also consistent with the Z22 symmetry in the previous section. By minimizing 

the leading-order potential including SUSY breaking effects, 

wh<'n" ms and m 5 are soft breaking masses of order Msusv, one obtains 

J; = C ± Jc2 -12ms2Mpifl2J..2. 

So 

Since the F-component of the field S obeys 

(4.19) 

(4.20) 

(4.21) 

the dominant contribution for the B parameter which appears in the soft bilinear 

SUSY breaking term 

(4.22) 

arises from the superpotential Hv.HdS2 
/ Mp1 as 

Bµ = (S}(Fs}/Mp1 rv MJusv· (4.23) 

So it is difficult to distinguish it from the usual MSSM via electroweak physics. How

ever, as the axion can be a cold dark matter candidate, one can still distinguish the 

model in cosmology. In this model, the two PQ Higgs bosons have masses of order 

lvlsusv but their mixings with the doublet Higgs are highly suppressed. The orthogo

nal combination to the axion acquires a mass of order Msusv. The a.xino and saxino 

masses are both around MsuSY· The axino can mix with the Higgsino with a tiny 

mixing angle of order (Msusv/Mp1) 112 
rv 10-1

• Therefore, the axino can decay to a 

bottom quark and a sbottom squark with a lifetime 

r rv 10-11 sec. (4.24) 

This is a consistent picture with big-bang cosmology since the axino decays occur 

earlier than the nucleosynthesis era. 



CHAPTER5 

DISCRETE FLAVOR GAUGE SYMMETRY 

The flavor hierarchy problem has been a very challenging problem in model 

building for many years [65). It mainly addresses the following two questions: 

• How is the apparent 1012 order hierarchy in mtf mv generated? 

• What is the origin of the observed mass ratios and mixing angles of the SM 

quarks and leptons? 

As mentioned earlier in the discussion of L violation, neutrino masses provides a 

hint for a new physics scale when they are understood as emerging in the low-energy 

theory from operators such as f.f.HuHu/ AL. In the following, we use the seesaw 

mechanism, one natural approach as the realization of this new physics: 

(5.1) 

where there exists heavy Majarona neutrinos vc at MR rv 0(1014 GeV) and the small 

neutrino masses are given by M\wl MR rv 10-10 GeV. 

In the SM quark and charged lepton sectors, the mixing angles are small. How

ever, there has been a strong evidence for large neutrino mixing from recent solar, 

atmospheric and reactor neutrino oscillation data. It is then a challenge to understand 

why there exists such a discrepancy in the mixing angles, especially in the context of 

G UTs where quarks and leptons are unified in the same GUT multiplets. 

In a 4D framework, flavor gauge symmetries have been a leading candidate 

solution to this problem. And even in the string theory which has achieved family 

unification in extra spacetime dimensions, flavor gauge symmetries exist as well. Here, 

the symmetries are usually broke by the boundary conditions explicitly. Such orbifold 

33 
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models, however, correspond to special points in the moduli space of the Calabi-Yau 

manifold at which there is an extra gauge symmetry that acts on the flavors. The 

more generic Calabi-Yau models can then be considered as models in which the flavor 

gaugf• symmetries are spontaneously broken. 

SUSY is a promising candidate for physics beyond SM. But when SUSY is 

introduced, a new flavor problem arises in the soft breaking sector known as the 

SUSY flavor problem. In the SM, one can make use of the GIM mechanism [66] to 

Huppress harmful flavor changing neutral currents (FCNC's) by a suitable unitary 

transformation between mass and gauge eigenstates. Alternatively: it is, however, 

not clear why soft sfermion masses sector and the fermion masses sector in SUSY 

models should transform similarly. The difference between the usual Yukawa and 

~;oft breaking sectors may thus lead to flavor violation, which is strictly constrained 

from I< - I( mixing and lepton flavor violation measurement like µ --+ e,. This issue 

depends on the understanding of the SUSY breaking mechanism as well as the flavor 

gauge symmetries. A popular solution is to assume universality in the soft breaking 

sector. Then universal structure will remain universal after the unitary transforma

tion. For instance, gauge mediated SUSY breaking or string dilaton dominant SUSY 

breaking both provide a universal soft sector. In the most widely discussed SUGRA 

type models, people usually assume the universality. However, any flavor gauge sym

metry will bring a splitting between different generations back to the theory known as 

the D-term splitting problem. A discrete flavor symmetry, on the other hand, would 

avoid this problem as there is no D-term associated with it. In the following sections, 

we present an explicit example of discrete flavor gauge symmetry approach. 

5.1 Froggatt-Nielsen Mechanism and Anomalous U(l)A Realization 

The most straightforward example of a flavor gauge symmetry is the U ( 1) F 

symmetry employed as in the Froggatt-Nielsen mechanism [67]. Here, a SM singlet 

scalar which couples to SM matter Yukawa terms is introduced, which and transforms 

under the new U ( 1) F symmetry. The quarks and leptons also carry different U ( 1) F 

flavor charges. Some new physics generates the non-renormalizable couplings terms 
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coru'.iistent with GsM x U{l)F invariance. In terms of MSSM, the superpotential is 

given as 

{5.2) 

wh('r<:~ i,j - {l, 2, 3} are family indices, nfj, ntj, n'fj, nrj and nrjc are positive in

tegC'rs fixed by the choice of U(l)F charge assignment. The quantities yij, where 

x = u, d, e, v, are Yukawa coupling coefficients which are all taken to be of order one. 

Here, /'vf R is the right-handed neutrino mass scale. 

When the SM singlet S acquires a VEV, the U(l)F symmetry is spontaneously 

broken. Hierarchy and mixings thus arise as suppression of different powers of S / AFN. 

In the Froggatt-Nielsen mechanism, the usual parametrization of the fermion 

mass matrices requires S/ AFN{f) rv 1/5. The anomalous U{l)A symmetry which we 

discuss in Section 4.3 [52, 68] is a promising realization here. The anomalous U ( 1) A 

symmetry is broken below the string scale Mst rv O{l017GeV). Hence, a natural 

realization of € comes as 

E rv (S} / Mst rv .2 {5.3) 

5. 2 A Lopsided Structure and Discrete Flavor Gauge Symmetry 

As mentioned earlier, it is a challenge to address flavor hierarchy problem in a 

GUT framework. 

At low energy, the fermion masses are [69] 

mu(l GeV) = 5.11 MeV, mc(mc) = 1.27 GeV, 1nt(mz) = 174 GeV, 

md(l GeV) = 8.9 MeV, ms{l GeV) = 130 MeV, mb(mb) = 4.25 GeV. {5.4) 

The CKM mixing matrix elements are 

IVusl rv 0.222, IVubl rv 0.0035, IVcbl rv 0.04. {5.5) 
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In (10], we proposed an SU(5) GUT compatible model. An acceptable flavor 

tC"xtun"' which gives the correct pattern of fermion masses and mixings as shown in 

5...1 and ?? is: 

€6 €5 €3 €4 €3 €3 

€5 €4 €2 Hu, Dii = €3 €2 €2 

€3 €2 1 € 1 1 

€4 €3 € €2 € € 

€3 €2 1 €PHd, 
D 1 1 vii= € (5.6) 

€3 €2 1 € 1 1 

where UiJ, Dii, Lii and v8 correspond to the up-quark, down quark, charged lepton 

and Dirac neutrino Yukawa matrices resulting from the appropriate powers of the 

S field in Eq. (5.2). The integer p can be either 0, 1 or 2, corresponding to large, 

medium and small tan ,B = (Hu)/ (Hd) / respectively. Notice that the down-type 

quark mass matrix and the charged lepton mass matrix are transpose of each other 

as required by an embedding into an SU(5) GUT. 

Once the charged lepton sector and Dirac neutrino sector are constructed, we 

can uniquely define the form of the heavy Majorana neutrino mass matrix. In the 

present example it is 

M M V·· = R t] 

€ 1 1 

(5.7) 

Any SU(5) compatible theory automatically satisfies the GS anomaly cancellation 

mechanism. This structure can naturally arise from the anomalous U(l)A type model. 

However, as indicated earlier,the anomalous U(l)A is broken, we then identify discrete 

subgroups of the anomalous U ( 1) A symmetry as the discrete flavor gauge symmetry. 

Three examples of Z 14 symmetric models are presented in Table 5.2. We have 

chosen the charge of S to be 2 and fixed the charge of 0 to be 7 in these examples. 

Discrete anomaly cancellation is enforced via GS mechanism at Kac~ Moody level 

l. We have also imposed the conditions that the Z14 symmetry forbid all R-parity 

violating couplings. 
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Q; uf d<? 
l Li e<: 

i 
v~ 

i Hu Hd 0 s A2 A3 

A 0,2,6 1,3,7 3,5,5 4,6,6 13,1,5 5,7,7 1 13 7 2 6 13 

u 4,6,10 13,1,5 11,13,13 6,8,8 9,11,1 5,7,7 13 1 7 2 13 13 

C 6.8,12 5,7,11 1,3,3 0,2,2 7,9,13 5,7,7 9 5 7 2 13 6 

TAl3LE 5.1. Examples of the flavor-dependent Z14 symmetry which forbids all 
R-parity breaking terms. i = 1, 2, 3 is the flavor index and charges 
are in order of 1-3. 

We are considering p = 2 and q = 0 in Eq. (5.6) which corresponds to medium 

values of tan ,B rv 10. We have taken a2 = 0 in Eq. (5.7) for simplicity. 

The above discrete gauge symmetries are consistent with realistic structure of 

fermion masses hierarchy in 5.4 and ?? . And at the same time, it gives the large 

mixing of neutrinos vµ and vT. Moreover, as discrete gauge symmetries, the famous 

D-tcrm splitting problem can be then avoided. 
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STABILIZATION OF AXION SOLUTIONS 

6.1 Strong CP Problem and QCD Axion 

C P violation ( CPV) can exist in the QCD Lagrangian arising from the inst an ton 

induced Chern-Simons type gluon-gluon coupling 

(6.1) 

Iu addition, there is another CPV source from the quark mass matrices. This results 

in an ob8ervable parameter Ii defined as 

Ii= 0 + arg(detMu detMD), (6.2) 

Such a ii would lead to a neutron electric dipole moment (EDM) of order dn '.::= 

5 x 10- 16 iJ ecm, while the current experiment limit is dn < 10-25 ecm. This puts a 

strong constraint, Ii< 10-10• The PQ symmetry [18] is an elegant solution to this so

called strong CP problem. It introduces a global U(l) symmetry, broken by the QCD 

anomaly, which generates a pseudo-Goldstone particle a, the axion. Non-perturbative 

effects then induce a term in the lagrangian of the form 

(6.3) 

0 is then promoted to this dynamical field axion as a(x)/ la· Minimizing the axion 

potential 

V(a) ex A4Qco(l - cos(a(x)/ la)), (6.4) 

consequently Ii (a)/ la = 0.* The strong CP problem is then solved. la is the (model 

dependent) axion decay constant [70] and it is constrained to be la= (1010
- 1012

) GeV 

* Due to the periodicity of the potential, (a) = 2mr fa· Some detailed discussion 
can be found in various review papers listed in Ref. [42]. 
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by the combined limits from laboratory experiments, astrophysics and cosmology. 

Hence, only the "invisible axion" models, which have appropriate values of fa, are 

favorPd (64, 71). The couplings of the axion with the SM fields are highly suppressed 

iu these models. Although the axion arise as a pseudo-Goldstone particle when the 

PQ symmetry is explicitly broken by its QCD anomaly, the axion can acquire a tiny 

mcu;s through higher order non-perturbative effects. The mass of the axion can be 

estimated to be 

ma rv A~co/ fa rv 10-4 eV. (6.5) 

6. 2 Discrete Gauge Symmetry Stabilizing the Axion 

Quantum gravitational effects can potentially violate the global PQ symmetry 

as they can break all global symmetries while respecting gauge symmetries. In the 

axion models, a possible quantum gravity generated non-renormalizable term 

(6.6) 

is in principle allowed. This term would lead to 

0 ~ r: /(M Pln-
4A~cn)• (6.7) 

Since both 0 and la are highly constrained, n ~ 10 is necessary. To avoid such kind 

of violations, one solution is to introduce a discrete gauge symmetry [9]. The PQ 

symmetry arises only as an accidental global symmetry from it. 

Conventionally, absence of anomalies complicates the particle spectrum of axion 

models. However, the Type I and Type IIB string theories provide a new candidate 

that cancels the anomalies without enlarging the particle content. In the low energy 

effective theory of such string theories, there exists one anomalous U(l)A symmetry as 

mentioned in Section 4.3 [52, 60). There, GS mechanism is effective in cancelling the 

anomalies. The anomalous U(l)A symmetry is broken by a Higgs field spontaneously 

near the Mst· A discrete version of GS mechanism as in the Eq. 4.13 is applied here. 
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6.3 Stabilization of the DFSZ Axion 

The non-SUSY DFSZ axion model [64] introduces two Higgs doublets Hu and 

1-J" and a S:tvl singlet scalar S. The Lagrangian of the model relevant for the discussion 

of cLxion physics is 

ll0n• we have used a standard notation that easily generalizes to our SUSY extension 

The £ has three U{l) symmetries, as can be inferred by solving the six condi

tions imposed on nine parameters. These three U{l) symmetries can be identified as 

the S:tvl hypercharge U{l)y, baryon number U(l)B and a PQ symmetry U(l)PQ· If 

we denote the charges of (Q, uC, de) as (q, u, d), the symmetries can be realized as 

B = q - u - d, PQ = -d, Y/2 = q/6 - 2u/3 + d/3. The U{l) charges of the various 

particles under these symmetries are listed in the Table 6.3. 

Q Uc de l ec Ve Hd Hu s 

Y/2 1/6 -2/3 1/3 -1/2 1 0 -1/2 1/2 0 

B 1 -1 -1 0 0 0 0 0 0 

PQ 0 0 -1 0 -1 0 1 0 -1/2 

TABLE 6.1. Y/2, B and PQ symmetries corresponding to hypercharge, baryon 
number and PQ charge respectively. The charges are assumed to be 
generation independent. 

After Hd, Hu and S fields develop VEVs, the global PQ symmetry is broken and 

the light spectrum contains a Goldstone boson, the axion. Non-perturbative QCD 

effects ind nee an axion mass [72] given by 

1011 GeV 
mfSFZ ~ 0.6 x 10-4 eV fa ' {6.9) 

where la rv (S) is the axion decay constant. 

We now apply the GS mechanism for discrete anomaly cancellation to stabilize 

the axion from quantum gravity corrections. Even though the model under discussion 
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is non-SUSY, the GS mechanism for anomaly cancellation should still be available, 

since SUSY breaking in superstring theory need not occur at the weak scale in princi

ple. Since baryon number has no QCD anomaly, any of its subgroup will be insufficient 

to solve the strong CP problem via the PQ mechanism. On the other hand, the PQ 

symmetry does have a QCD anomaly, although with the charges listed in Table 1 it 

ha~<.; no SU(2h anomaly. Since hypercharge Y is anomaly free, we attempt to identify 

the anomalous U(l)A symmetry as a linear combination of PQ and B: 

U(l)A = PQ + ,B. (6.10) 

According to the Eq. (6.10) and the charge assignment presented in Table 1, we have 

for the anomaly coefficients for the U(l)A, 

3 
A3 - [SU(3)]2 

X U(l)A = -2 
9 

A2 - [SU(2)]2 
X U(l)A = 2 'Y • (6.11) 

If we identify 'Y = -k2/(3k2), the anomalies in U(l)A will be cancelled by GS mech

anism. Thus we have 

(6.12) 

The simplest possibility is k2 = k3 = 1, corresponding to the levels of Kac-Moody 

algebra being one. Normalizing the charge of the singlet field S to be an integer, Eq. 

(6.12) can be rewritten as 

U(l)A = 6(PQ) - 2(B). (6.13) 

The corresponding charge assignment is given in Table 6.2. As discussed earlier, since 

hypercharge Y is anomaly free, one can add a constant multiple of Y /2 to the U ( 1) A 

charges, and still realize GS anomaly cancellation mechanism. The charges listed in 

Table 6.2 assumes the combination -!(6PQ- 2B + iY). As can be seen from Table 

2, this choice of charges is compatible with SU(5) grand unification. 

Suppose that the U(l)A symmetry is broken near the string scale by the VEV 

of a scalar field which has a U ( 1) A charge of N in a normalization where all U ( 1) A 

charges have been made integers. A z N symmetry will then be left unbroken to low 
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scales. Two examples of such ZN symmetries are displayed in Table 2 for N = 11, 12. 

Invariance under these ZN symmetries will not be spoiled by quantum gravity, it is 

this property that we use to stabilize the axion. 

Potentially dangerous terms that violate the U(l)PQ symmetry are sn / M;13
, 

lluHds•m / l\1;:-2 etc, for positive integers n, m. For the induced 0 to be less than 

10-rn, the integers n, m must obey n ~ 10, m ~ 5. The choice of N = 11, 12 satisfy 

thPsP constraints. Note that a Z10 discrete symmetry would have allowed a term S2 , 

which would be inconsistent with the limit on 0. ZN symmetries with N larger than 

12 can also provide consistent solutions. Since by construction, the U(1)A symmetry 

in Tabl0 1 is anomaly-free by GS mechanism, any of its ZN subgroup is also anomaly

free by the discrete GS mechanism, as can be checked directly. In the Z11 model, for 

example, we have A3 = A2 = 4. Consistent with the Zu invariance, terms that vio

late the U(l)PQ symmetry and give rise to an axion mass are S11/MJ1, HuHdS*9 /MJ1 

etc, all of which are quite harmless. We conclude that the DFSZ axion can be stabi

lized against potentially dangerous non-renormalizable terms arising from quantum 

gravitational effects in a simple way. 

Q Uc de I!. ec Ve Hu Hd s 
U(l)A 2 2 4 4 2 0 -4 -6 5 

Z11 2 2 4 4 2 0 7 5 5 

Z12 2 2 4 4 2 0 8 6 5 

TABLE6.2. The anomalous U ( 1) charge assignment for the DFSZ axion model. Also 
shown are the charges under two discrete subgroups Zu and Z 12 which 
can stabilize the axion. 

The discussion can be easily extended to its SUSY version. The superpotential 

of the DFSZ axion model contains a term AHuHdS2 / M Pl· After Hu, Hd and S develop 

VEVs, the global PQ symmetry is broken and the axion arises as a pseudo-Goldstone 

particle. Since the superpotential is holomorphic, one cannot write st2 
S2 type term. 

In addition to the S field, another singlet S is needed so that the axion is invisible 
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and at the same time, PQ can be broken. The superpotential of the model now is 

(6.14) 

One explicit example of Z22 discrete gauge symmetry is given. The charge assignment 

under Z22 is listed as 

{ Q = 3, 'Uc = 19, de = 1, e = 11, ec = 15, Ve= 11, Hu = 22, Hd = 18, S = 13, S = 20}. 

(6.15) 

The mixed anomalies are { A2 = 6, A3 = 17}. It apparently satisfies the GSM con

dition. S 22 
/ M1t1 is the leading allowed term in the superpotential due to potential 

quantum gravity correction, which only induces lJ ;S 10-130• 

In this model, the R-parity is not automatic, for instance, LHuSS is allowed. 

To get an exact R-parity, one can introduce an additional Z2 where all the SM matter 

fields are odd but Hu, Hd, Sand Sare even. This is the unbroken subgroup of the 

gauge symmetry U(l) B-L even with the presence of Majarona neutrino mass term. 

6.4 Stabilization of KSVZ Axion 

The Kim-Shifman-Vainshtein-Zakharov (KSVZ) Axion model[72], can also be 

stabilized by discrete gauge symmetries. The scalar sector of the non-SUSY KSVZ 

axion model [71] contains the SM doublet and a singlet field S. All the SM fermions 

are assumed to have zero PQ charge under the global U(I)PQ symmetry. The Yukawa 

sector involving the SM fermions is thus unchanged. An exotic quark-antiquark pair 

W + \JI is introduced, which transform vectorially under the SM (so the magnitude 

of its mass term can be much larger than the electroweak scale), but has chiral 

transformations under U (I) PQ. The QCD anomaly needed for the axion potential 

arises from these exotic quarks. The Lagrangian involving the singlet field and these 

vector quarks is given by 

!:l.£ = S'11'11 + h.c. (6.16) 

When S field develops a VEV, the PQ symmetry is spontaneously broken leading to 

the axion in the light spectrum. 
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The global PQ U{l) symmetry is susceptible to unknown quantum gravity cor

rections. We shall attempt to stabilize the KSVZ axion by making use of discrete 

gauge symmetries with anomaly cancellation by the GS mechanism. The most dan

gerous non-renormalizable term in the scalar potential that can destabilize the axion 

is sn / 1\1'~1"\ as in the case of the DFSZ axion. We seek a discrete gauge symmetry 

that would forbid such terms. 

In order for the GS mechanism for anomaly cancellation to be viable, the 

anomaly coefficients A2 and A3 corresponding to the [SU{2)L]2 xU(l)A and [SU(3)c]2x 

U(l)A should equal each other at the U(l) level. This would imply that the w+'ll fields 

can not all be singlets of SU(2)L. The simplest example we have found is the addition 

of a 5 + 5 of SU(5) to the SM spectrum. Such a modification is clearly compatible 

with grand unification. The 5 contains a (3, 1) and a (1, 2) under SU(3)c x SU(2)L

We allow the following Yukawa coupling involving these fields: 

£ :) ..\55S + h.c. (6.17) 

If we denote the PQ charges of 5 and 5 as </J and </J, invariance under a surviving 

discrete ZN symmetry would imply 

</J + <fi + s = pN (6.18) 

where P is an integer. In this simple model, all the SM particles are assumed to be 

trivial under the PQ symmetry. The discrete anomaly coefficients are then A3 = 
A2 = ~(¢ + ¢) = !(pN -s). Since A2 = A3 , the gauge anomalies are cancelled by the 

GS mechanism. As long as N ~ 10, all dangerous couplings that would destabilize 

the axion through non-renormalizable terms will be sufficiently small. We see that 

the KSVZ axion can be made consistent in a simple way. 

We have also examined the possibility of stabilizing the axion by introducing 

only a single pair of fermions under the SM gauge group, rather than under the grand 

unified group. Let us consider a class of models with a pair of fermions transforming 

under GsM x U(l)A as 

\JJ(3, n,y, 1/J) + \J/(3, fi, -y, {l) , (6.19) 
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along with a scalar field S(l, 1, 0, s). The Lagrangian of this model contains a term 

\.ll\JJS and its invariance under an unbroken ZN symmetry imposes the constraint 

'lf; + ip + s = pN (6.20) 

where p and N are integers. Since the SM particles all have zero anomalous U ( 1) 

charge, the anomaly coefficients arise solely from the (\JI+ '11) fields. They are 

1 - n 
A3 - 2(n'lf; + n'lf;) = 2(pN - s) 

A2 - (n - l)~(n + 1) (3'1/J + 3.,]i) 

-
( n - 1 )n( n + 1) ( N _ ) 

4 p s. 

The GS discrete anomaly cancellation condition implies 

2(-m + bm') 
8 = pN + n(b(n2 - 1) - 2) 

where b = k 3 /k2 • 

(6.21) 

(6.22) 

By choosing specific values of the Kac-Moody levels, one can solve for s, the 

singlet charge. For instance, in the simple case when k3 = k2 # b = 1, 

8 
= 2(m' - m) N. 

n3 -3n 
(6.23) 

We have normalized all U(l)A charges to be integers, including s, so the unbroken 

ZN symmetry will be transparent. 

When n = 2, '1J and 'l/ are SU(2) doublets. One can calculate the charge 

of S and determine the allowed discrete symmetries. For b = 1, the solution is 

s = 0 mod N. This solution would imply that sn terms in the potential are allowed 

for any n, in conflict with the axion solution. A similar conclusion can be arrived at 

for b = 1/2. For other values of b, the ZN symmetry typically turns out to be too 

small to solve the strong CP problem. For example, if b = (2, 3, 1/3, 3/2), the allowed 

discrete symmetries are (Z4 , Z7 , Z3 , Z5 ). A special case occurs when b = 2/3, in which 

case s is undetermined, since A3 /k3 = A2/k2 . If one chooses s ~ 10, the KSVZ axion 

can be stabilized in this case. 
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If the quarks \JI and \JI are triplets of SU(2)L, stability of the KSVZ axion solu

tion can be guaranteed in a simple way. For b = k3/k2 = (1, 2, 3, 1/2, 1/3, 2/3, 3/2), 

which are the allowed possibilities if we confine to Kac-Moody levels less than 3, 

we have the unbroken discrete symmetries to be (Zg, Z21, Za3, Z5, Za, Z1s, Zao) respec

tively. For all ZN with N ~ 10, the axion solution will be stable against quantum 

gravi taiional corrections. 



CHAPTER 7 

Conclusions 

In this thesis, we study the discrete gauge symmetries in the SM and also as a 

modPl building tool to solve various problems in the SM as well as the MSSM. 

In t l lC' second chapter, we discuss a hidden discrete gauge symmetry in the non

SC SY flavor independent SM at the renormalizable level. A discrete Z3 symmetry 

is found in the SivI and is embedded into a discrete Z6 symmetry in the extension 

of t lw SI\I with seesaw mechanism for the small neutrino masses. Both Z3 and Z6 

are fre0 from mixed GsM anomalies at the discrete level. It is anomaly free as a 

re~ult of the existence of three generations (N9 = 3). The symmetry can effectively 

aet as the baryon number up to the .6.B = 3 mod 3 level which is also consistent 

,vit h the prediction from non-perturbative corrections in the Standard Model, such 

as electroweak instanton and sphaleron processes. 

Quant um mechanically, we estimate the triple nucleon decay rate which is pre

d icted by the existence of this symmetry. It turns out, that as a result of baryon 

parity, the current bounds on the proton lifetime show that the cutoff scale in 4D can 

he as low as 0(102 GeV). 

\Ve also find a simple U{l) realization from which this baryon parity can natu

rally emerge. It is a U(l) of Jl +Li+ Li - 2Lk, where Il is the lepton number. 

Effects arising from simple GUTs will explicitly break the baryon parity. Hence, 

whether there exists a baryon parity puts a strong hint to GUT physics. 

In Chapter 3, gauged R-parity is studied. It is shown that a Z2 subgroup of 

JJ plays an important role as R-parity. After shifting the charges by a hypercharge 

rotation, one can realize this from a Z6 subgroup of the U(l)B-L symmetry. 

In the forth chapter, we study the different approaches to the µ-term problem. 

mw puzzle in supersymmetric model building, via a symmetry classification. Discrete 
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gauge symmetries from the anomalous U(l)A symmetry can be applied to solve this 

problC'm. One explicit example in terms of a Z4 symmetry is given, where t he µ-term 

prohl0m is addressed by the Giudice-Nlasiero mechanism. The SUSY DFSZ QCD 

c1xion is also discussed as other realization of the µ-term problem. Here. new physics 

scale' ,\/pQ is imposed andµ arises asµ,..._, /lifiq/i\tfp1 . 

Discrete flavor gauge symmetries are studied in the following Chapter 5 which 

<'all explain Lhe observed hierarchical structure of fermion masses while avoiding t he 

D-t<'nn spliLting problem in the usual SUSY soft breaking sector. Discrete Z14 gauged 

fh-wor symmetries are found to be consistent of one Lopsided hierarchical structure of 

fermion masses. 

In the last chapter, we show how to use discrete gauge symmet ries to stabilize 

t IH' "invisible'' axion solutions from violation due to quantum gravity. The a.xion is an 

elegant solution to the strong CP problem. Both DFSZ and E S VZ "im·isi ble axion., 

models are discussed. The PQ symmetry only arises as an accidental symm etry. 

Examples of discrete Z11 and Z12 gauge symmetries are given to stabilize the non

S CSY DFSZ axion. For the SUSY DFSZ case, a discrete Z22 gauge symmetry is 

applied to stabilize the solut ion. 
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