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1. INTRODUCTION 

Data mining is the task that extracts or "mines" knowledge from large amounts of data. In 

recent years, data mining has attracted a great deal of attention in the information 

industry due to the wide availability of huge amounts of data and the imminent need for 

turning such data into useful information and knowledge. The obtained knowledge can be 

used for applications such as science exploration, engineering design, production control, 

business management, and market analysis. 

Data mining is the result of the natural evolution of information technology and can be 

traced in the database industry in the development of the following functionalities: data 

collection and database creation, data management (including data storage and retrieval, 

and database transaction processing), and data analysis and understanding (involving data 

warehousing and data mining). As an example, data collection and database creation 

mechanisms acted as a prerequisite for 1 ater development of effective mechanisms for 

data storage and retrieval, and query and transaction processing. With the blooming of 

database systems that have query and transaction processing as common practice, data 

analysis and understanding has turn out to be the next target. 

Data mining is an essential step in the process of knowledge discovery in databases. 

Knowledge discovery as a process consists of an iterative sequence of the following 

1 



seven steps: data cleaning, data integration, data selection, data transformation, data 

mining, pattern evaluation, and knowledge presentation. The data mining step may 

interact with the user or a knowledge base. The interesting patterns are presented to the 

user, and may be stored as new knowledge in the knowledge base. 

Data mmmg can be applicable to different kind of information repository such as 

relational databases, data warehouses, transactional databases, advanced database 

systems, flat files, and the World Wide Web (WWW). Advanced database systems 

include object-oriented and object-relational databases, and specific application-oriented 

databases, such as spatial databases, time-series databases, text databases, and multimedia 

databases. Each of the repository systems has its own challenges and techniques of data 

mining. 

In general, data mining tasks can be divided into two groups: descriptive mining and 

predictive mining. Descriptive mining tasks extract the general characteristics of data 

from the database while predictive mining tasks emphasize predicating future activities 

based on the analysis of current data. 

In some cases, users do not know what kinds of patterns in their data may be interesting, 

and may search for several different kinds of patterns in parallel. This demands the data 

mining system to mine multiple kinds of patterns for different user expectations or 

applications. Furthermore, data mining systems should be able to discover patterns at 

various granularities. On the other hand, users should have the flexibility to specify hints 

2 



to guide or focus the search for interesting patterns. Since some patterns may not hold for 

all of the data in the database, a measure of certainty or "trustworthiness" is usually 

associated with each discovered pattern. 

A data mining system may generate thousands or even millions of patterns, or rules. In 

general, only a small fraction of the generated patterns would actually be of interest to a 

given user. A pattern is interesting if it (1) could be easily understood by humans, (2) is 

valid on new or test data with some degree of certainty, (3) is potentially useful, and (4) 

is novel. A pattern is also interesting if it confirms an assumption. An interesting pattern 

represents know ledge. 

There are two kinds of measures of pattern interestingness: objective interestingness 

measures and subjective interestingness measures [ 4]. Objective interestingness measures 

are based on the structure of discovered patterns and the statistics underlying them. For 

two patterns X and Y constrained on transactions, an association rule denoted by X => Y 

indicates the conditional consideration of Y under the hypothesis of X. One objective 

measure for association rules of the form X => Y is the rule support, representing the 

percentage of transactions from a transaction database that the given rule satisfies. This is 

taken to be the probability pr( at ransition satisfying both X and Y). Another objective 

measure for association rules is confidence, which assesses the degree of certainty of the 

detected association. This is taken to be the conditional probability Pr(a transition 

satisfying Y I a transition satisfying X), that is, the probability that a transaction 

containing X also contains Y. More formally, support and confidence are defined as: 
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support ( X => Y) = Pr( a transition satisfying both X and Y), 

confidence( X => Y) = Pr( a transition satisfying Y I a transition satisfying .x). 

Subjective interestingness measures are based on user beliefs in the data. These measures 

find patterns interesting if they are unexpected ( contradicting a user's belief) or offer 

strategic information on which the user can act. 

Expecting data mining systems to generate all of the possible patterns is unrealistic and 

inefficient. Instead, constraints and interestingness measures provided by user should be 

used to guide the search. This is often sufficient to ensure the completeness of the 

algorithm. As an example, constraints and interestingness measures can be applied to 

association-rule mining to ensure that all qualified patterns and rules can be found out in 

the mining. It will be much more efficient for users and data mining systems if data 

mining can generate only interesting patterns. However, such optimization remains a 

challenging issue in data mining technology. 

Efficiently selecting valuable patterns to the given user from large amounts of potential 

patterns is essential for data mining task. This can be done after the data mining step by 

ranking the discovered patterns according to their interestingness, filtering out the 

uninteresting ones. More importantly, this step can be pushed into the discovery process 

of data mining and thus improve the search efficiency by pruning away subsets of the 

pattern space that do not satisfy pre-specified interestingness constraints [7] [8]. 
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1.1 Transaction Database Mining 

With massive amounts of data continuously being collected and stored, many industries 

are b ecoming i nterested in mining association rules from their databases. Association­

rule mining finds interesting association or correlation relationships among a large set of 

data items. The discovery of interesting association relationships among huge amounts of 

business transaction records can help in many business decision making processes, such 

as catalog design, cross-marketing, and loss-leader analysis. 

A typical example of association-rule mining is the market basket analysis [ 1]. The 

transaction database of the merchant is analyzed between the different items that 

customers place in their "shopping baskets" by data mining process to find out customer 

buying habits. Retailers can develop marketing strategies from the data mining result by 

gaining insight into which items are frequently purchased together by customers. 

A Boolean variable of an item represents the presence or absence of that item when we 

think of the universe as the set of items available at the store. Each basket can then be 

represented b y a Boolean vector o f values assigned to these variables. All the present 

items in a Boolean vector consist of an item set. Conventionally, we use the term k­

itemset to describe an item set with cardinality k. Through analyzing the Boolean vectors, 

one can get the buying patterns that reflect items that are frequently associated or 

purchased together. These patterns can be represented in the form of association rules. 
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Apriori is an influential algorithm [2] for mining frequent itemsets for Boolean 

association rules. The name of the algorithm is based on the fact that the algorithm uses 

prior knowledge of frequent itemset properties. Apriori employs an iterative approach 

known as a level-wise search, where k-itemsets are used to explore (k + 1 )-itemsets. First, 

the set of frequent 1-itemsets is found. This set is denoted by L1. The set L1 is used to find 

Li, the set of frequent 2-itemsets, which is used to find L3, and so on, until no more 

frequent k-itemsets can be found. The finding of each Lk requires one full scan of the 

database. 

To improve the efficiency of the level-wise generation of frequent itemsets, an important 

property called the Apriori property, is used to reduce the search space. Apriori property 

is known as that all nonempty subsets of a frequent itemset must also be frequent. This 

property belongs to a special category of properties called anti-monotone, in the sense 

that if a set cannot pass a test, all of its supersets will fail the same test as well. 

A typical Apriori algorithm and its related procedures are shown as follows: 

Algorithm Apriori. Find frequent itemsets using an iterative level-wise approach based on candidate 
generation. 

Input: Database, D, of transactions; minimum support threshold, min_sup. 
Output: L, frequent itemsets in D. 
Method: 
(1) L, =findJrequent_l-itemsets(D); 
(2) for(k=2; Lk-I ¢ ¢; k++) { 

(3) Ck = apriori_gen (Lk-J, min_sup); 
(4) for each transaction t e D { II scan D for counts 
(5) C, = subset(C1c, t); II get the subsets oft that are candidates 
(6) for each candidate c E C, 
(7) c. count++; 
(8) } 

(9) Lk = {c e Ck I c.count ~ min_sup} 
(JO) } 

(I I) return L = Uk Lk,· 
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procedure apriori_gen(lk-i;frequent (k-1)-itemsets; min_sup; minimum support threshold) 
(/) for each itemset /1 E lk.J 
(2) for each itemset 11 E lk-1 
(3) if (11[/} = /2{/}) I\ (/1[2] = 11[2]) I\··· I\ (l,[k-2] = li[k-2]) A (l,[k-1] < l1[k-JJ) then { 
(4) c = 11 t> <l /2; II join step: generate candidates 
(5) if has _infrequerrt.subset(c, Lk_,J then 
(6) delete c; II pnme step; remove unfruitful candidate 
(7) else add c to Ck; 
(8) } 
(9) retllrn C1c,; 

procedure has_infrequent_subset(c: candidate k-itemset; L1c,.,.frequent {k-1)-itemsets); 
II use prior knowledge 
(/) for each(k-lJ-subset s of c 
(2) ifs elk./ then 
(3) return TRUE; 
(4) return FALSE; 

The apriori _gen procedure generates the candidates and then uses the Apriori property to 

eliminate those having a subset that is not frequent. The apriori _gen procedure performs 

two kinds of actions, namely, join and prune. By convention, we assume that items within 

a transaction or itemset have been sorted in lexicographic order before applying Apriori 

algorithm. In the join component (steps 1-4), a new candidate k-itemset c is generated as 

(/1[1], /1[2], ... , ft[k-1], li[k-1]) in step 4 if the condition in step 3 is satisfied. The prune 

component ( steps 5 -7) employs the A priori property to remove candidates that have a 

subset that is not frequent. 

Once the frequent itemsets from transactions in a database D have been found, it is 

straightfotward to generate strong association rules from them, where strong association 

rules satisfy both minimum support and minimum confidence. This can be done using the 

following equation for confidence, where the conditional probability is expressed in 

terms of itemset support count: 
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confidence(A => B) 

= Pr(a transaction containing itemset BI a transaction containing itemset A) 

= support count( Au B) 

support_ count( A) 

where support_ count ( A u B ) is the number of transactions containing the itemset 

A u B , and support_ count ( A) i s the number oft ransactions containing the i temset A . 

Based on this equation, association rules can be generated as follows: 

• For each frequent itemset l, generate all nonempty subsets of l. 

• For every nonempty subset s of/, output the rule "s => I" if 

support count(/) . if -.........____;=---~-=-~mm con , 
support_count(s) -

where min_confis the minimum confidence threshold. 

Since the rules are generated from frequent itemsets, each one automatically satisfies 

minimum support. 

In many cases the Apriori candidate generate-and-test method reduces the size of 

candidate sets significantly and leads to good performance gain. However, it may suffer 

from two nontrivial costs: 

• It may need to generate a huge number of candidate sets. 

• It may need to repeatedly scan the database and check a large set of candidates by 

pattern matching. This is especially the case for mining long patterns. 

Frequent pattern (FP) [6] growth is a method of mining frequent itemsets without 

candidate generation. It constructs a highly compact data structure (an FP-tree) to 
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compress the original transaction database. Rather than employing the generate-and-test 

strategy of Apriori-like methods, it focuses on frequent pattern (fragment) growth, which 

avoids costly candidate generation, resulting in greater efficiency. 

1.2 Sequence Data Mining 

Recent years, besides mining on relational databases, transactional databases, vast 

amounts of data in various complex forms ( e.g., structured and unstructured, hypertext 

and multimedia) have been growing explosively owing to the rapid progress of data 

collection tools, advanced database system technologies, and WWW technologies. 

Therefore, an increasingly important task in data mining is to mine complex types of 

data, including time-series data, sequence data, text data, and WWW. 

In our proposed work, we will focus on sequence data mining. Examples of such data are 

alarms in a telecommunication network, user interface actions, crimes committed by a 

person, occurrences of recurrent illnesses, etc. Abstractly, such data can be viewed as a 

sequence of events, where each event has an associated time of occurrence. 

Given a set E of event types, an event is a pair (A, t) where A e E is an event type and t is 

an integer, the occurrence time of the event. We assume that all events will last one time 

unit. An event sequence on Eis a triple (s, Ts, Te), wheres= <(A1, t1), (A2, t2), ... , (An, 

tn)> is an ordered sequence of events such that A; eE for all i = 1, 2, ... , n, and t; =s; t;+1 

for all i = 1, 2, ... , n-l. Further on, Ts and Te are integers: Ts is called the starting time and 

Te the ending time, and Ts ~ t; < Te for all i = 1, 2, . . . , n. 
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A window on an event sequence (s, Ts, Te) is an event sequence (w, Is, le), where Is < Te 

and le> Ts, and w consists of those pairs (A, t) from s where ts S I< te. We abbreviate an 

event sequence (s, Ts, Te) and a window (w, Is, le) bys and w, respectively. The time span 

le - Is is called the width of the window w, and it is denoted by width(w). Given an event 

sequences and an integer w _width, we denote by W(s, w _width) the set of all windows w 

on s such that width(w) = w _width. 

a 

0 
0 

0 

Figure 1-1. Serial episode a , parallel episode p, and complex episode r. 

r 

An episode can be understood as an acyclic directed graph with node-set V and edge-set 

S . An episode a is a triple (V, s, g) , where Vis a set of nodes, S is a partial order on V, 

and g : V -+ E is a mapping associating each node with an event type. We define the size 

of episode a , I a I as I V I . Depending on the graph structure, we can divide episodes into 

three categories: serial episodes, parallel episodes, and complex episodes as shown in 

Figure 1-1. An episode a is parallel if the partial order S is trivial (i.e., x ,{ y for all x, y 

E V such that x "* y). An episode a is serial if the relation S is a total order (i.e., x s y 

or y =:; x for all x, y e V). An episode a is complex if it is not serial or parallel. A 

complex episode can be reduced to the recognition of a hierarchical combination of serial 

and parallel episodes. 
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An episode p = (V ', S ', g 1 is a subepisode of a = (V, S, g), denoted by p --< a , if there 

exists an injective mapping f:V'->Vsuch that g'(v)=g(f(v))for all veV', and for 

all v, we V', if v S 'wthen f(v) S f(w). An episode a is a superepisode of P if and 

only if P--< a. We write P-<a if p ~ a and a/. /3. 

An episode a= (V,S,g) occurs in an event sequences= (<(Ai, ti), (A2, t2), ... ,(An, tn)>, 

Ts, Te) if there exists an injective mapping h: V ~ {l, ... , n} from node-set of a to the set 

of all event-indices of s such that g(v)=A1icv> for all ve V, and for all v, we V with v:;t: w 

and v ~ w, we have t1,(v)<t1i(w)· 

The frequency of an episode is the fraction of windows in which the episode occurs out 

of all possible windows. Given an event sequence s = (s, Ts, Te) and aw indow width 

w _ width, the frequency of an episode a ins is: 

fi ( .d h) I {we W(s, w width) I a occurs in W} I r a, s, w wz t = .;.._,,;_ __ ..;._--=;...__-..;__;_ _____ ~ • 

- I W(s, w _ width) I 

We say that a is frequent if fr(a,s, w _width)~ minJr, where minJr is a frequency 

threshold given by the user. The collection of all frequent episodes is denoted by 

F(s, w _ width,minJr) with respect to the givens, w_width, and min Jr. 

Once we find all frequent episodes, we can use them to generate rules that describe the 

relationship between episodes. An episode rule is an expression /J => r where P is a 

subepisode of r, i.e., f3 ~ y. The confidence of the episode rule is: 
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confidence(p => y) = fr(y,s, w - width) . 
fr(P, s, w _width) 

The algorithm that discovers all frequent episodes [3] [5] is an Apriori-like algorithm that 

has been described in Section 1.1 Transaction Database Mining. It performs a level-wise 

search. From the episode set with only one event, i.e., set of all size-I episodes, the 

search algorithm first computes a collection of candidate episodes, then checks the 

frequencies by scanning the event sequence. The episodes with frequency of at least 

min Jr form the frequent episode set of current episode size. The algorithm then 

computes the collection of candidate episodes for next episode size and generates the 

frequent episode set of next episode size accordingly, until no frequent episodes are 

generated at certain episode size. 

The candidate-generation algorithms for parallel episodes and serial episodes are slightly 

different, but both of them follow the same logic as the apriori _gen() procedure. Since 

the partial order ~ is trivial for parallel episodes, the number of parallel episode 

candidates is smaller than that of serial episodes. In the candidate-generation algorithm, a 

parallel episode is represented as a lexicographically sorted array of event types. Parallel 

and serial episodes in their episode collections are also sorted by lexicographical order. 

Candidates can be generated by arranging appropriate combinations of two episodes of 

size I that share the first /-1 common events. 

Comparing with the candidate-generation algorithms, the episode-recognizing algorithms 

for parallel episodes and serial episodes are in different approaches. For parallel episode 
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recognition, each candidate parallel episode a is associated with an event counter, 

namely a.event_ count, to indicate the number of events of a in the window. If at some 

point when we slide the window, the a.event_ count = I a I, it means that a fully enters 

in the window, as W2 shown in Figure 1-2. While a remains in the window at the last 

timestamp, if we observe that a .event_ count < I a I at the current timestamp, it means 

that from this point a is no longer entirely in the window. We maintain a.freq_ count to 

hold the number of windows between the enter point and exit point. At the end of the 

algorithm, a.freq_ count contains the total number of windows in which a occurs. 

©®®® 
parallel episode a 

W1 W2 W3 

E D F A B E 
I I I I I I I I 
I I I I I I I I 

WI: a is not in the window; W2: a is in the 
window; W3: a remains in the window; W4: a 
is out of the window and a.freq_ count is 
increased by 2 relative to WI. 

W4 
D D F A D E D F A 
I I I I I I I I I I -I I I I I I I I I . .. 

ti me 

Figure 1-2. Four consecutive windows along the time axis in the episode-recognizing algorithm for 
parallel episode a . 

Serial episodes can be recognized by usmg automata. The algoritlun constructs an 

automaton for each serial episode a every time the first event A first of a comes into the 

window. The active state of an automaton reflects a prefix of a in the window. When the 

same state Afirst of a leaves the window, the corresponding automaton is removed. When 

an automaton reaches its accepting state at time t, it means that the corresponding episode 

is entirely in the window. Since there could be multiple instances of the same automaton 

existing in a window, the starting time tis saved in a.inwindow if no other automata for 
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a are in the accepting state. When an automaton for a in the accepting state is removed 

and no other automata for a in the accepting state, the counter a .freq_ count 1s 

increased by the number of windows that a has been remained in the window. 
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2. COMPLEX EPISODE AND PARALLEL-OF-SERIAL EPISODE 

2.1 Complex Episode 

Using the algorithms described in Section 1.2: Sequence Data Mining, one can recognize 

all the frequent parallel episodes and serial episodes from a given event sequence. All 

parallel episode rules and all serial episode rules can be generated easily with certain 

confidence. However, the real world is much more complex, and representing groups of 

events with parallel-only episodes or serial-only episodes cannot always work for 

complex sequence data mining tasks. 

In parallel episode mining, the partial order is trivial. A frequent parallel episode a 

means that a group of events happen together with respect to the 

frequency fr(a,s, w _ width) for a given event sequences with window width w_width. 

Parallel episode mining can find more frequent episodes and discover more episode rules 

than serial episode mining. However, in sequence data mining, people usually want to 

find rules in which the relative event sequence is considered. The result of parallel 

episode mining cannot satisfy this requirement. 

Serial episode puts rigid restriction on the episode configuration. The nodes in the graph 

have to be totally ordered. Using the rules obtained from serial episode mining, people 
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can predict the coming events as well as the coming sequence accurately. Unfortunately, 

only a few of real world scenarios can be represented as serial episodes. Most of them 

are complex episodes and can be hierarchically divided into parallel episodes and serial 

episodes. 

Complex episode can provide the power to represent more general real-world scenarios. 

For example, suppose that course A is the prerequisite of courses B and C, and both 

course B and C are the prerequisite of course D. There is no constraint between courses B 

and C. The partial order of the four courses can be explained by Figure 2-1. 

0 

r 8' 8" 8"' 

Figure 2-1. Complex episode y and a serial combination of three episodes. 

This is a complex episode and cannot be mined by parallel or serial episode data mining 

algorithm. The recognition of complex episodes can be reduced to the recognition of a 

hierarchical combination of serial and parallel episodes. For the example in Figure 2-1, 

episode r can be considered a serial combination of three episodes: an episode 8' 

consisting of A alone, a parallel episode 8" consisting of B and C, and an episode 8"' 

consisting of D alone. 
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2.2 Parallel-of-Serial Episode 

Mining complex episodes is a nontrivial task; and no known algorithms are in the 

literature. A complex episode is an acyclic directed graph, which can be arbitrarily 

complex. Among these complex episodes, one type of complex episode is particularly 

useful to data mining users. This special complex episode can be defined as: an episode 

consists of two serial subepisodes that share the common start event and the end event, as 

shown in Figure 2-2. 

r 

Figure 2-2. A PoS-episode y . 

We call this type of complex episode PoS-episode for it is a parallel connection of two 

serial episodes that connects two events together. A PoS-episode has m+n+2 nodes with 

m ~ 1 , n ~ 1, and has at least four nodes when m = n = 1 . We can divide the PoS-episode 

into two serial subepisodes, which are r' and r", as depicted in Figure 2-3. 

r' 

r" 

Figure 2-3. Decomposing a PoS-episode y into two serial subepisodes Y' and Y". 
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This work aims to solve the PoS-episode mining problem by developing algorithms that 

extend the previous work on parallel episode mining and serial episode mining. 
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3. ALGORITHMS 

The PoS-episode mining algorithms consist of two parts, generation of candidate PoS­

episodes and recognition of frequent PoS-episodes. 

3.1 Generation of Candidate Parallel-of-Serial Episodes 

As the output of the serial episode mining algorithm described in Section 1.2: Sequence 

Data Mining, the frequent serial episode array, FSE, is used in this work as the input of 

the PoS-episode candidate-generation algorithm. 

The frequent serial episode array FSE is the array of all frequent serial episode sets: 

FSE[ i] is the set of all frequent serial episodes that have the same size i, i.e., have the 

same number of events. The number of frequent serial episode sets in FSE and the 

number of episodes in FSE[i] are denoted by IFSEI and IFSE[i]I, respectively. The serial 

episodes of size i in FSE[i] are sorted in the lexicographical order, and FSE[i]U] gives the 

}th serial episode of size i in FSE[ i]. 

A PoS-episode a is a parallel connection of two serial episodes that connects two events 

together. We label these two serial episodes as a 1 and a 2 • Since we employ state-

transition automata to recognize episodes, we use the term state interchangeable with the 

term event when the context is clear. The sizes of a 1 and a 2 can be different but each is 
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at least 3. Since a 1 and a 2 share the same beginning state and the ending state, the size 

of a is a .size = a 1 .size + a 2 .size - 2, and the size of a P oS-episode is at least 4. A 

PoS-episode a remains the same ifwe interchange the serial episodes a 1 and a 2 in it. If 

we have a 1 = a 2 , then a becomes a serial episode. 

Algorithm 1 generates all possible candidate PoS-episodes a consisting of two serial 

episodes a 1 and a 2 with a
1 

< a 2 in term of the lexicographic order. We assume that all 

the event types have been mapped into contiguous integer numbers beginning from 1. 

Thus, we use the event type as the index of arrays in our algorithm. 

Algorithm 1. Generating all the possible PoS-episode using the frequent serial episode set. 
Input: An array FSE of frequent serial episode set. 
Output: An array C of all candidate PoS-episodes. 
Method: 
C:=¢; 

for i := 3 to IFSEI do 
for J := 1 to IFSE[i]I do 

a := FSE[i][i]; 
form:= i to IFSEI do 

for n := 1 to IFSE[m]I do 
/J := FSE[m][n]; 

if ( /J :s;; a ) then 

continue; 

//since a < fJ 

if( a[l] = /J[l] and a[a.size] = p[/3.size]) then 

output C. 

construct candidate PoS-episode y based on a and fJ ; 
C:=Cu{y}; 

According to the Apriori property that all nonempty subsets of a frequent set must also be 

frequent, the two subepisodes a 1 and a 2 must also be frequent serial episodes for any 

given a that is frequent. 
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Since FSE is the complete set of frequent serial episodes, Algorithm 1 can explore all 

possible combinations of the serial episode pairs and obtain the complete candidate PoS­

episode set. Also, because FSE consists of only frequent serial episodes, the candidate 

PoS-episode set generated by Algorithm 1 is a small set since it utilizes the known 

frequent serial episode information. This can greatly reduce the search space when 

detecting the frequent PoS-episodes. 

3.2 Recognition of Frequent Parallel-of-Serial Episodes 

Frequent PoS-episodes can be recognized by constructing two deterministic finite 

automata M1 and M2 for each candidate PoS-episode a as shown in Figure 3-1: M1 and 

M2 correspond to a 1 and a 2 of the candidate PoS-episode a . 

a 

a,[SJAa,[61~ 

~'lv 

a,[5)~ 

Figure 3-1. Construct two deterministic finite automata M1 and M2 for PoS-episode a . 
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When symbols, i.e., event types are fed in, both M1 and M2 will do state transitions 

according to the input event types. A PoS-episode a is recognized when both M1 and M2 

are in the accepting states. During the recognition, a sliding window with width w _ width 

is advancing along the time axis. For the event sequence <(A 1, t1), (A2, t2), ... , (An, tn)>, 

the timestamp of the first sliding window is t1 and the timestamp of the last sliding 

window is tn + w _ width -1. Each moving represents the passing of one time unit and will 

bring in zero or one event (A, t), where t is the timestamp of current window. 

Algorithm 2 recognizes all of the frequent PoS-episodes from the given event sequence, 

window size, and the minimum frequency threshold. This algorithm initializes a pair of 

instances of automata (M1, M2) for each PoS-episode a whose first event type is the 

same as the event that comes into the sliding window. The automata M1 and M2 are 

equivalent to the subepisodes a
1 

and a 2 of PoS-episode a. The instances of automata 

pair (M1, M2) will be removed when the same event falls out of the sliding window. A 

PoS-episode a is completely enclosed in the window if both M 1 and M 2 of a reached 

their accepting states. We call the earliest time that a is enclosed in the sliding window 

the entrance time of a. The entrance time is saved into variable a .inwindow. When an 

automata pair in the accepting states is removed, we calculate the window number that 

the PoS-episode a stayed in the sliding window and save it into a freq_ count. 

There may be multiple instances of automata of PoS-episode a that exist in the sliding 

window. One or more of them may be in the accepting state. However, according to the 

frequency definition in Chapter 1, only the number of windows that contain the PoS-
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episode will be counted. In other words, for a certain window, it is important that PoS­

episode a is present or not, while the number of a is not important. Based on this 

analysis, the entrance time of a is defined as the time that the instance of automata of a 

reaches the accepting states and no other instances of a in the window are in the 

accepting states. The removal time of automata of a in the accepting states is defined as 

the time that the automata of a are removed and no other instance of the automata in the 

accepting states. 

We use a two-dimensional array waits[i][i] to keep track of the automata pair (M1, M2) 

that accept event type i in M1 andj in M2. In the algorithm, symbols a 1 and a 2 are used 

interchangeably with M1 and M2• The automata pair (M1, M2) is preserved in the linked 

list. The cell waits[i][j] is the head of the linked list. The automata pair (M1, M 2) is 

represented in the form (a, i,j, T, w) where a is the PoS-episode and the data structure 

of a preserves the states and transition information, i and} are the next states in M1 and 

M 2, T is the time when the first state of a enters the window, and w is the description of 

the last transitions of the automata pair (M1, M2) as shown in Table 3-1. 

Table 3-1. Description of the last transitions of automata pair (M., M2). 

w 0 1 2 3 
Description of the M1 moved forward M, moved forward M2 moved forward Both M, and M2 
last transitions of one state; M2 one state; M2 one state; M, remained in the 
automata pair (M., moved forward remained in the remained in the same states. 
M2). one state. same state. same state. 

All the automata pairs that are initialized at time T are linked at begins et[ TJ. If the 

automata pair is removed, then it is removed from this linked list. Unlike the automata 

pair stored in the waits[i][i] that i and j are the next states for transitions, the automata 
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pair (a, i, j, T, w) stored in beginset[Tj give the states i andj on which transitions just 

happened. 

For each input symbol, all the transitions are organized in a linked list transitions. 

Automata stored in transitions are in the form of (a, i,j, T, A) where a , i,j, and T have 

the same meanings as beginset[1] and A is the input symbol, i.e., current processing 

event. 

Algorithm 2. Recognizing all of the frequent PoS-episodes from the given event sequence, window size, 
and the minimum frequency threshold. 

Input: number of event type ET, candidate PoS-episode array C, an event sequence s = (s, Ts, Te), a window 
width w _ width, and a frequency threshold min Jr. 

Output: a set of frequent PoS-episodes FPoS. 
Method: 
II initialization 
for i : = 1 to ET 

for j : = 1 to ET 
waits[i]U] := ¢,; 

for each a E C do 
waits[a.[1]] [a2 [1]] :=waits[a

1
[1]] [a2 [1]] u{(a, 1, 1,-1,-1)}; 

a .freq_ count := O; 
a . in window := - oo ; 

II recognition 
for start:= Ts - w_width +1 to Tedo 

t :=start+ w_width - 1; 
begins et[ t] : = ¢, ; 
transitions : = ¢,; 
for all events (A, t') e s such that t' = t do 

for all ( a , i,j, T, w) e waits[A][*] u waits[*][A] do 
if i =Ia 11 and}= I a 21 and a .inwindow = -00 then 

a .inwindow = start· 
if i = j = 1 then ' 

transitions := transitions u { ( a , 1, 1, t, A)}; 
else 

transitions := transitions u {( a , i,j, T, A)}; 
ifw = 0 then 

beginset[TJ := beginset[TJ \ {(a, i-1,j-1)}; 
else if w = 1 then 

begins et[ TJ := beginset[ Tj \ {( a , i-1,j)}; 
else if w = 2 then 

beginset[TJ := beginset[TJ \{(a, i,j-1)}; 
else if w = 3 then 

beginset[TJ := beginset[TJ \{(a, i,j)}; 
waits[ a 1 [i]] [ a 2 U]] := waits[ a1 [i]] [ a 2 Ull \ {( a , i,j, T, w)}; 
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for all (a. i.j. T, w) e transitions do 
ifw = a 1 [i] a11d w = a 2 [,1 then 

if i< a 1 .size andj< a 2 .size then 

waits[ a 1 [i+ 1]] [ a 2 U+ 1]] := waits[ a 1 [i+l]] [ a 2 U+ 1]] u {( a , i+ l,j+l, T, 0)}; w':=O; 

else if i< a 1 .size then 

waits[ a 1 [i+ 11] [ a2 Ull := waits[ a1 [i+ 1]] [ a2 U]] u {( a , i+ 1,j, T, 1)}; w':=1; 

else if j< a 2 .size then 

waits[a1 [i]] [a2 U+l]] :=waits[a1[i]] [a2 U+l]] u {(a, i+l,j, T, 2)}; w':=2; 

else if 1v = a 1 [i] then 

if i< a 1 .size then 

waits[a1[i+l]] [a2 Ull :=waits[a1[i+l]] [a2 U]] u {(a, i+l,j, T, 1)}; w':=1; 
else 

waits[ a 1 [i]] [ a 2 U]] := waits[ a1 ['11 [ a2 U]] u {( a , i,j, T, 3)}; w':=3; 
else if w = a 2 U] then 

if j< a 2 .size the11 

waits[ a. [ i]] [ a2 U+ 1]] := waits[ a. [i]] [ a2 u+ 1]] U { ( a , i,j+ 1, T, 2)}; w':=2; 
else 

waits[ a, [i]] [ a 2 Ull := waits[ a, [i]] [ a2 U]] u {( a , i,j, T, 3)}; w':=3; 

beginset[Tj := beginset[T] u {(a,;, j, T, w,}; 
for all ( a , i,j, T, w) e beginset[start-1] do 

if i= a, .size and j= a2 .size then 
if no other a in current sliding window in the accepting state then 

a .freq_count = a .freq_count- a .inwindow + start; 
a . inwindow = -oo · 

e~e ' 
colltinue; 

else if w=O then 
waits[ a 1 [i+ 11) [ a2 U+I]] := waits[ a1 [i+ 1]] [ a2 U+ 11] \ {( a , i+l,j+ 1, 1)}; 

else if w=l then 
waits[a1 [i+l]] [a2 U]] := waits[a1[i+l]] [a2 [i]] \{(a, i+l,j, 1)}; 

else if w=2 then 
waits[ai[i]] [a2 U+l]] := waits[a1[i]] [a2 U+l]] \{(a, i,j+l, 7)}; 

else if w=3 then 
waits[ a 1 [i]] [ a 2 U]] := waits[ a 1 [i]] [ a2 [i]] \ {( a , i,j, 7)}; 

FPoS := ¢; 

for all PoS-episode s a e C do 
if a . freq_ count I ( Te - Ts + w width) ~ min Jr then 

FPoS := FPoS u {a}; -
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4. EXPERIMENTS 

In this chapter, the PoS-episode mining algorithms are studied by carrying out web page 

traversal pattern mining using web server log data set. When a user is visiting a website, 

each visit of a web page can be viewed as an event, in which the web page name is the 

event type and the visiting time is the event time. Thus, a website access event E has the 

form of (web page name, visiting time). All the events in a web server log file constitute 

of an event sequences. 

4.1 A Simple Example on Parallel-of-Serial Episode Mining 

To show how the PoS-episode mining algorithms work and explain that it is a useful 

extension of serial episode mining, a simple example is given below. 

Figure 4-1. Structure of a three-page website. 
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Suppose that we have a website that has only three web pages, namely, A, B, and C. Each 

page has links to other two pages and itself. Figure 4-1 illustrates the structure of the 

website. The default entrance of the website is page A. From page A, a user can browse 

any pages in any sequence. 

While a user is visiting the website, the web server records the online activities in a log 

file. Each entry of the log file includes a page name and the time of the request. Usually, 

the user activities are different from websites to websites. A website like google.com 

serves users all over the world and has the workload equally distributed in a day. While a 

website that serves only the local users may have the peak load time interlaced with a 

long silence period usually happened dwing the night. Figure 4-2 shows the web server 

log of the three-page website. 

A BCACBCAA ABCCBAB AACBAB C A 

I I I I I I I I I I I I I L. ..... .J I I I I I I I I I I I I 1... ..... ...1 I I I I I I I I I I 1 .. 
5 10 995 1000 1005 1990 1995 2000 

Figure 4-2. The web log of a three-page website. 

To find the user visiting patterns, we can run our PoS-episode mining algorithm as well 

as serial episode mining algorithm on the web log data set. We set the sliding window 

size to 10 and the minimum frequency ratio to 1 %. Table 4-1 gives the mining result of 

the serial episode mining. 

There is no frequent serial episode with size greater than 3 that can be found using the 

serial episode mining algorithm. From the frequent serial episodes given in the Table 4-1, 
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we can get the candidate serial episodes of size 4. Table 4-2 shows the candidate serial 

episodes of size 4 and the frequency. 

T bl 4 1 S . l . d a e - ena ep1so e numn ~ resu t o a ee-1>age we site. I f thr b' 
Frequent Frequency Frequency Frequent Frequency Frequency 
Serial Episode Count Ratio Serial Episode Count Ratio 

A 53 0.026 B 41 0.020 

C 40 0.019 AA 32 0.015 

AB 37 0.018 AC 31 0.015 

BA 32 0.015 BB 24 0.011 

BC 30 0.014 CA 34 0.016 

CB 27 0.013 cc 24 0.011 

ABA 25 0.012 ABC 26 0.012 

ACA 25 0.012 ACB 22 0.010 

BAB 22 0.010 BCA 24 0.011 

CAB 21 0.010 CBA 23 0.011 

T bl 4 2 C d"d a e - an 1 ate sena ep1so es o stze . 1 . d f . 4 

Serial Episode 
Frequency Frequency 

Serial Episode 
Frequency Frequency 

Count Ratio Count Ratio 

ABCA 20 0.0099 ACBA 18 0.0089 

Because the minimum frequency ratio was set at 1 %, these two serial episodes are 

eliminated from the final mining output. Then we run our PoS-episode mining algorithm 

on the result of the serial episode mining. The candidate PoS-episodes are generated 

from the frequent serial episodes by selecting frequent serial episode p air ( a , /3 ) that 

has: a .size';?:. 3, /3 .size';?:.3; a firstevent = fJ .firstevent; and a .lastevent = P. lastevent. 
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The only candidate PoS-episode generated by the PoS mining algorithm is AB A and it 
C 

is the combination of the frequent serial episodes ABA and ACA. The PoS-episode 

mining result is listed in Table 4-3. 

Although no frequent serial episode can be found for size 4, we discover one frequent 

PoS-episode of size 4. This PoS-episode can also provide the sequence information of 

events as the serial episodes do. From the result, we can get such information on the web 

page visiting pattern as: if the current visiting page is A, then in the next 10 time units, 

we can predict that page sequence B, C and A, or page sequence C, B and A will be 

visited in the order in terms of the minimum frequency. 

T bl 4 3 Th P S . d I f thr a e - e o -ep1so e nunmg resu t o a ee-page we site. 

Frequent PoS-episode Frequency Count Frequency Ratio 

B 
A A 25 0.012 

C 

4.2 Parallel-of-Serial Episode Mining on a Large Web Log Data Set 

The experiment data set is the website (cybermath.okstate.edu) access log data. This 

website is a remote education website which belongs to College of Arts and Sciences of 

Oklahoma State University. It provides college-level calculus courses to high school 

students all over the country. Students use this website to view lessons, take quizzes, and 

communicate with other users. The basic information of the website and log data set is 

shown in Table 4-4. 
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T bl 4-4 B . ilID a e as1c orrnation o fth e expenment d ata set. 
Website Name cybermath.okstate.edu 

Individual Web Pages Number 304 

Log Starting Time 08/Jan/2003 :09 :09 :03 

Log Ending Time 28/Feb/2003: 19:18:22 

Total Log Entries 44955 

Effective Web Pages Entries 19710 

Average Visiting Length 493 seconds 

Average Web Page Visiting Length 44 seconds 

In this experiment, the purpose of data mining is to discover the web page traversal 

patterns. In the website, each web page has more than one links that point to other web 

pages and may even have links point back to itself. If we treat each web page as a node 

and each link as an edge, then we can view the web pages in a website as a complex 

graph. From one node to another node, there could be many ways to move a long. To 

improve the website design or to efficiently put advertisements on the right web pages, 

the frequent web page traversal patterns are needed. 

Before we input the log data to the data mining algorithm, data need to be cleaned first. 

The web log includes two categories of entries, effective web page entries and associated 

web entries. An effective web page is the web page that is opened by users with intent. 

Usually an effective web page name has extensions like html, htm, asp, and php. An 

associated web entry records the object that is opened by the effective web page while it 

is visited. Most of the associated web entries are the images embedded in the web pages 

or the cascading style sheet files. The associated web entries are not helpful to the mining 

of website usage patterns and need to be cut off before data mining. 
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To distinguish the frequent episodes, i.e., web page traversal patterns from the low 

frequent ones, users need to give criteria to decide whether an episode is frequent or not. 

Two parameters c an be used for this purpose, one is frequency count and the other is 

frequency ratio. Frequency count is the number of the sliding windows that contain the 

target episode. It would be more visualized if we know the total sliding windows in 

advance. However this count can be changed from case to case and is not convenient for 

comparing the results of data mining with each other. Frequency ratio is the fraction of 

the number of the sliding windows that contain the target episode over the total sliding 

windows. Frequency ratio is easier to use in episode mining than frequency count and the 

results can be compared among different cases. We use frequency ratio in this work. 

One of the characters of the web log data is the sparseness of the visit events compared to 

the total available timestamps. During the night, there are long gaps of silence without 

users' visit. This leads to a very small frequency ratio to be set. On the other hand, the 

algorithms iterate on every sliding window. In the web server log, there could be an event 

in any second. So, the step for the sliding windows is one second. The sparseness of the 

event can slow down the computation time dramatically. Thus, condensing of web log 

data is needed. The data condensing process should not introduce new relationship 

among any events. This means that any two adjacent events with a gap width Wgap > 

w _width+ 1 should be moved together and leave a gap width of w _ width+ I between 

them. A 11 other relative distances between events a re preserved during the condensing 

process. Figure 4-3 shows the condensed result of Figure 4-2. 
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-······· Sliding Window-····-······· -·---------···································· 
A B C A C B C A Ai IA B C C B A B! !A A C B A B C A 

I I I I I I I I I I q I I I I I I I I I ii I I I I I I !I I I I I I I I I I ii I I I I I I I I 1 .. 
I 5 10: ~l 27

1 
:38 45 

Figure 4-3. Condensing of web log data. 

We can see from Table 4-4 that the average website visit length and the average web 

page visit length are 493 seconds and 44 seconds respectively. The experimental window 

sizes are chosen based on these values and are listed in the Table 4-5. The frequency 

ratios for each window size are decided by making the algorithms generate suitable 

number of output frequent PoS-episodes since too many or too few output of frequent 

PoS-episodes are not desirable. In this work, we use the output frequent PoS-episodes 

number range of 10 - 1000 to decide the frequency ratios. In the experiment, we first 

guessed a frequency ratio and used it to get the frequent PoS-episodes number under this 

ratio. Then we gradually increased or decreased this ratio to let the output frequent PoS­

episodes number fall into the desired range. The frequency ratio and the frequent PoS­

episodes numbers obtained from the experiments are listed in Figure 4-5. 

T bl 4 5 F a e - requent o -ep1so es num er m l erent com matton o wm ow w1 t an p s . d b . d"ffi b" f . d "d h d fr equency ratio. 
Window Frequency Ratio(%) 
Width 

0.8 1 1.5 2 3 4 5 6 7 8 9 10 12 15 18 20 (seconds) 
30 887 639 280 171 45 4 

50 812 311 144 38 13 6 
100 813 532 214 136 13 12 10 

200 870 668 534 259 143 36 8 
300 877 552 170 30 3 
400 717 544 133 22 8 
500 1059 638 179 44 19 

By running the PoS algorithms on the parameters described in Table 4-5, we can get all 

the candidate episode data and the frequent episode data for both serial episodes and PoS­

episodes. For each category, the candidate episodes are generated first and then the 
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frequent episodes are recognized by the database passes. In Table 4-6, these values are 

listed out. 

The ratio of the candidate episode number to the frequent episode number can provide 

how efficient the candidate-generation algorithms are. The larger the ratio is, the more 

efficient the algorithms are. From Figure 4-4, we can see that the PoS candidate­

generation algorithm has a high ratio and the efficiency is high. Only about I 0% of the 

candidates turn out to be not frequent. 

0 

~--~----~--~---------------------, 

1 

The Ratio of Candidate Episode Number to Frequent Episode 
Number under Different Window Sizes 

... 
0.9 - --.- --- -+-Serial 
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0.4 ------------------

------ --------------! 
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Window Size 
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Figure 4-4. Ratio of candidate and frequent episode numbers under different window size. 

Among the discovered frequent PoS-episodes, there are two categories of PoS-episodes. 

We name one the fresh PoS-episode and the other the associating PoS-episode. A PoS­

episode a is an associating PoS-episode if there is at least one input string on event type 

set that makes the automata pair (M1• M2) for a to reach their accepting states and also 

makes at least one frequent serial episode based automaton Ms reach the accepting state. 

We say that these frequent serial episodes are associated with the PoS-episode a. 
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T bl 4 6 D ·1 d a e - eta1 e I f P S . d resu to o -ep1so e munng. 

Min 
Candi. Freq. Fresh 

Min 
Candi. Freq. 

Win. 
Freq. 

PoS- PoS- PoS- Frresh Win. 
Freq. 

Serial Serial 
Size 

Ratio 
episode episode episode (D/4) Size 

Ratio 
Episode Episode 

# # # # # 
30 0.008 1004 887 27 3.0 30 0.008 2222 373 
30 0.01 723 639 73 11.4 30 0.01 1896 302 
30 0.015 301 280 4 1.4 30 0.015 1383 201 
30 0.02 186 171 20 11.7 30 0.02 1321 144 
30 0.03 49 45 3 6.7 30 0.03 992 91 
30 0.05 5 4 1 30 0.05 462 31 
50 0.02 847 812 10 1.2 50 0.02 1440 260 
50 0.03 354 311 4 1.3 50 0.03 1232 171 
50 0.04 165 144 25 17.4 50 0.04 964 110 
50 0.05 45 38 3 7.9 50 0.05 759 76 
50 0.06 16 13 1 7.7 50 0.06 483 44 
50 0.07 10 6 1 16.7 50 0.07 449 35 
100 0.04 832 813 5 0.6 100 0.04 1281 218 
100 0.05 559 532 61 11.5 100 0.05 1020 172 
100 0.06 236 214 21 9.8 100 0.06 890 131 
100 0.07 159 136 20 14.7 100 0.07 521 88 
100 0.1 14 10 1 10.0 100 0.08 478 66 
100 0.08 48 42 0 0.0 100 0.09 442 49 
100 0.09 25 25 0 0.0 100 0.1 433 38 
200 0.06 952 870 22 2.5 200 0.06 1078 219 
200 0.07 726 668 54 8.1 200 0.07 991 183 
200 0.08 559 534 63 11.8 200 0.08 658 152 
200 0.09 291 259 33 12.7 200 0.09 557 126 
200 0.1 168 143 23 16.1 200 0.1 511 95 
200 0.12 42 36 3 8.3 200 0.12 456 61 
200 0.15 12 8 1 12.5 200 0.15 395 34 
300 0.08 967 877 27 3.1 300 0.08 892 204 
300 0.1 577 552 68 12.3 300 0.1 608 152 
300 0.12 201 170 28 16.5 300 0.12 496 103 
300 0.15 33 30 3 10.0 300 0.15 449 55 
300 0.2 4 3 0 0.0 300 0.2 370 24 
400 0.1 848 717 71 9.9 400 0.1 705 186 
400 0.12 567 544 65 11.9 400 0.12 562 150 
400 0.15 166 133 23 17.3 400 0.15 480 86 
400 0.18 23 22 2 9.1 400 0.18 405 45 
400 0.2 12 8 1 12.5 400 0.2 393 33 
500 0.1 1212 1059 53 5.0 500 0.1 797 219 
500 0.12 774 638 69 10.8 500 0.12 634 169 
500 0.15 213 179 26 14.5 500 0.15 503 108 
500 0.18 58 44 6 13.6 500 0.18 443 65 
500 0.2 20 19 6 31.6 500 0.2 405 44 
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Apparently, there could be one or more serial episodes associated with a PoS-episode. A 

PoS-episode is a fresh PoS-episode if it is not an associating PoS-episode. An associating 

PoS-episode a represents a class of serial episodes that accept the same inputs with a . 

A fresh PoS-episode is a new discovery of the PoS-episode mining algorithm and no 

frequent serial episode is associated with it. All the associated serial episodes of a fresh 

PoS-episode are eliminated from the output of serial episode mining because their 

frequencies are lower than the minimum frequency threshold. 

We can use the fraction of fresh PoS-episode F fresh and the fraction of associating PoS­

episode Fassociating to evaluate the performance of the parameter settings for serial episode 

mining algorithm and PoS-episode mining: 

F, _ number of fresh PoS-episodes 
fresh - • ' number of all freqnent PoS-ep1sodes 

F . . = number of associating PoS-episodes 
assoc1atmg . d number of all freqnent P0S-ep1so es 

A high fraction of fresh PoS-episode Frresh means that the PoS-episode mining algorithm 

picks up a large number of frequent PoS-episodes that have been missed by the serial 

episode mining algorithm. Table 4-6 lists the numbers of fresh PoS-episode and the 

values of F fresh· We can see from the Table 4-6 that for a specific window size, the 

number of frequent PoS-episodes decreases while the minimum frequency ratio 

increases. However, the F fresh increases first, then reaches a maximum value, and then 

begins to decrease. We can easily discover that when Frresh reaches its maximum value, 
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the number of fresh PoS-episodes and the number of frequent serial episodes reach 

reasonable values for data mining users who will eventually examine the result manually. 

If we plot out these window sizes and minimum frequency ratios that corresponding to 

the maximum values of F fresh, we can find that they are almost in a linear relation as 

shown in Figure 4-5. This can give the PoS-episode mining a guide on how to choose the 

mining parameters. 
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Figure 4-5. A linear relation between window sizes and minimum frequency ratios when Frresh reaches its 
maximum value. 

For an associating PoS-episode, its sliding window count Cassociating has such relationship 

with the count of the associated serial episodes Cassociated as the following equation: 

L c:ssociated ~ cassociating ~ m(!X( c:ssociated) • 
i I 

We define the variable Rassociating as the ratio of the maximum value of the Cassociated to the 

Cassociating: 
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nl(!,X( c~ociated) 
R associating = 1 

C 
associating 

which can be used to evaluate the discreteness of the associated serial episodes of an 

associating PoS-episode . If Rassociating = 1.0, it means that there is only one serial episode 

associated with the PoS-episode. A low value of Rassociating gives a hint that there could be 

several associated serial episodes and each of them has a low frequency. The data for 

evaluating the discreteness of this web log episode mining are listed in Table 4-7. 

T bl 4 7 E I a e - va uate th di e screteness o fth' b 1 1s we . d og ep1so e rmmng. 

Window size 
Sum of the maximum 

Sum of the Cassociatins Rassociating value of the Cassociated 

30 7202124 7414343 0.97 
50 12711858 13043078 0.97 
100 43591203 44569178 0.98 
200 142462501 145425962 0.98 
300 143962251 147034334 0.98 
400 171119403 174538600 0.98 
500 286804882 292511138 0.98 

We can see that the values of Rassociating for all the window sizes are almost 1.0. For this 

reason, the PoS-episode mining tasks can ignore the associating PoS-episodes and focus 

on the fresh PoS-episodes mining only while dealing with the similar data that is 

analyzed in this work. 
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5. CONCLUSION 

This work extended the existing parallel and serial episode mrmng algorithms by 

developing the PoS-episode mining algorithms. The existing parallel and serial episodes 

either lack the ability to preserve the sequence information or are too rigid toe xpress 

more general real world scenarios. The PoS-episodes can model more general situations 

and preserve the sequence information as well. The PoS-episode mining algorithms can 

provide episode mining users a powerful mining tool and make the episode mining more 

flexible. 

The P oS-episode mining algorithms use the serial episode mining output as the input. 

There are two parts of the PoS-episode mining algorithms, candidate PoS-episode 

generation algorithm and frequent PoS-episode recognition algoritlun. Candidate PoS­

episodes are generated by analyzing the frequent serial episode set. Frequent PoS-episode 

recognition is carried out by using automata. While sliding the window along the time 

axis, the algorithm generates and maintains multiple instances for each possible 

automaton to recognize and count each candidate PoS-episode. After users input the 

algorithm a suitable window width and a minimum frequency ratio, they will get frequent 

PoS-episode set as the output. 

To use the P oS-episode mining algorithm, users need to decide reasonable parameters 

like window width and minimum frequency ratio. As examples of how to 
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analyze the real PoS-episode mining case and how to decide reasonable parameters, 

experiments are performed in this work by studying the web server log data set and 

mining the web page traversal patterns. Concepts and methods are provided for this 

speci fie mining case to evaluate the mining process. A linear relation between window 

sizes and minimum frequency ratios is found and can be used as a guide when further 

PoS-episode mining tasks are carried out for the similar cases. 
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APPENDIX 

The programming language used to implement the PoS episode mining algorithms and 

the serial episode mining algorithms is java. The program runs on the csa machine at the 

Computer Science Department of Oklahoma State University. There are totally 21 java 

classes with the Thesis.java as the main program. The source codes are listed below with 

the Thesis.j ava at the leading position and others in the lexicographical order according 

to the class names. Also, a screen copy of the file list is provided for reference. 

$ ls -al • .java 
-rw-r--r-- 1 guohuan guohuan 
-rw-r--r-- 1 guohuan guohuan 
-rw-r--r-- 1 guohuan guohuan 
-rw-r--r-- 1 guohuan guohuan 
-rw-r--r-- 1 guohuan guohuan 
-rw-r--r-- 1 guohuan guohuan 
-rw-r--r-- 1 guohuan guohuan 
-rw-r--r-- 1 guohuan guohuan 
-rw-r--r-- 1 guohuan guohuan 
-rw-r--r-- 1 guohuan guohuan 
-rw-r--r-- 1 guohuan guohuan 
-rw-r--r-- 1 guohuan guohuan 
-rw-r--r-- 1 guohuan guohuan 
-rw-r--r-- 1 guohuan guohuan 
-rw-r--r-- 1 guohuan guohuan 
-rw-r--r-- 1 guohuan guohuan 
-rw-r--r-- 1 guohuan guohuan 
-rw-r--r-- 1 guohuan guohuan 
-rw-r--r-- 1 guohuan guohuan 
-rw-r--r-- 1 guohuan guohuan 
-rw-r--r-- 1 guohuan guohuan 

2279 Mar 16 16:34 PoSECG.java 
6456 Mar 29 22:54 PoSER.java 
2646 Mar 19 07:43 PoSEpisode.java 
2432 Mar 15 23:12 PoSEpisodePool.java 
3574 Mar 29 22:59 SECG.java 
6098 Mar 29 22:56 SER.java 
5394 Apr 1 15:17 Thesis.java 
2640 Mar 29 22:05 analysis.java 
4386 Mar 29 20:27 beginsetPoSE.java 
4385 Mar 29 22:09 beginsetSE.java 
1332 Mar 4 00:06 eventPool.java 
1575 Mar 12 16:02 eventSequence.java 
1691 Mar 4 16:20 frequentSE.java 
2074 Mar 19 07:38 instancePoSEpisode.java 
1504 Mar 11 17:13 instanceSerialEpisode.java 
2553 Mar 9 16:14 serialEpisode.java 
4126 Mar 6 15:53 serialEpisodePool.java 
862 Mar 4 11 :40 theEvent.java 

2039 Mar 17 15:00 transitionsPoSE.java 
1624 Mar 12 11:11 transitionsSE.java 
5087 Mar 22 05: 18 waitsPoS.java 

/1------------------------------------------------------------
//Name:Guohuan Wang 
I /Course: Master Thesis 
//Instructor:Dr. Dai 

/1-------------------------------------------------------------
//To compile: javac Thesis.java 
//To run: java Thesis input_file_name w_width min_fr >output_file_name 
!!-------------------------------------------------------------
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//-----------------------------------------------------
//Class name:Thesis 
//Purpose: main program ofGuohuan Wang's Master Thesis. 

//----------------------------------------------------------

import java.io. •; 
import java.util.StringTokenizer; 
import java.text.DecimalFormat; 
public class Thesis 
{ 
public static void main(String [] args) 
{ 
File inFiletmp = new File (args[O]); //check if the input file exist. 
BuffereclReader inFile; 
PrintWriter outfileBF = null; 
StringTokenizer tokenizer; 
DecimalFormat myFormatter = new DecimalFonnat("#0.00011

); 

eventPool EvnPool = new eventPool(306); //maximum 30 different event types 
eventSequence EvtSeq = null; 

//---------------------------------------------------------------------// 
//Task 1: Open input file, that is the output of class ESG, fill Event // 
//Type Pool(EvnPool: class eventPool) and form Event Sequence // 
//(EvtSeq: class eventSequence). // 
I/----------------------------------------------------------------------- I I 
if(! inFiletmp.exists()) 
{ 

} 

System.out.println("Input file "+args[O]+" is missing!"); 
return; 

try 
{ 
//open input file, read data and initial variables. 
inFile = new BufferedReader (new FileReader (args[O])); 

String line; 
line = inFile.readLine(); 

//generate event Pool, using input file data 
while(line != null && line.compareTo("Event Type")!=O) //throw away the leading 

lines until line "Event Type" 

} 

line = inFile.readLine(); 
line = inFile.read.Line(); //event type line 
if(line != null) 
{ 
tokenizer = new StringTokenizer (line); 

while( tokenizer.hasMoreTokens()) 
EvnPool.setEventType(tokenizer.nextToken()); 

II EvnPool.print(); 

//generate event sequence, using input file data 
line = inFile.readLine(); 

while(line != null && line.compareTo("Event Sequence")!=O) //throw away the leading 
lines until line "Event Sequence" 
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line= inFile.read.Line(); 
line = inFile.read.Line(); //total events # 
EvtSeq = new eventSequence(lnteger.parselnt(line)); 
line = inFile.read.Line(); //first line of event data 
while(line != null) 
{ 
tokenizer = new StringTokenizer (line); 
int tmp_e,tmp_t; 
tmp_t = Integer.parselnt(tokenizer.nextToken()); 
tmp _ e = EvnPool.getEvent( tokenizer .nextToken() ); 
theEvent MyEvent = new theEvent(tmp_e,tmp_t); 
EvtSeq .setEvent(MyEvent); 

line= inFile.readLine(); 
} 
//EvtSeq.print(EvnPool); 

} 
catch (IOException e) //handle error. 
{ 
System.out.println( e ); 

} 

I 1---------------------------------------------------------------------- I I 
/ /End Of Task 1 // 
I 1----------------------------------------------------------------------- I I 

frequentSE FSE = new frequentSE(); 
SER mySER=null; 
SECG secg; 
int w _ width, round = 1; 
double min_fr; //minimum frequency 
int EvnPoolSize = EvnPool.pointer; 

w_ width= Integer.parselnt(args[l]); 
min_fr = 1.0*Integer.parselnt(args[2])/1000; 
System.out.println("w _width= "+w_ width+"\t\tmin_fr = "+min_fr+"\n\n"); 
System. out. println( "--------------------Serial Episode Generation and Recognition--------------------"); 
while(round = 1 II (FSE.pointer>O && FSE.SEParr[FSE.pointer-1].pointer>O)) 
{ 
secg = new SECG(EvnPool, EvtSeq, FSE); 
secg.nextSCS(); 

// secg.print(); 
System.out.println("Size = "+secg.candidateSE.episodeSize+"\t\tCanclidate Count= 

"+secg.candidateSE.pointer); 
mySER = new SER(secg.candidateSE, EvtSeq, w_width, min_fr, FSE, EvnPoolSize); 
mySER.run(); 
if{FSE.pointer>O) 
{ 
System.out.println("Frequent Episode Count= 11+FSE.SEParr[FSE.pointer-l].pointer); 

II System.out.println(11\n------------- Frequent Serial Episode -------------\n11
); 

I I FSE.SEParr[FSE.pointer-1 ].print(); 
// System.out.println(11\n------------- END of Frequent Serial Episode -------------\n"); 

round++; 
} 
mySER. beginset=null; 
mySER =null; 
System. out. println( 11 --------------------PoS Episode Generation and Recognition--------------------11

); 

43 



PoSECG PoSEcg = new PoSECG(FSE); 
PoSEcg.run(); 
System.out.println("PoS Candidate Count= 11+P0SEcg.candidateP0S.pointer); 

II PoSEcg.print(); 

PoSER PosEr = new PoSER(PoSEcg.candidatePoS, EvtSeq, w_width, min_fr, EvnPoolSize); 
PosEr.run(); 
System.out.println("Frequent PoS Count= "+PosEr.frequentPoSE.pointer); 

II System.out.println("\n------------ Frequent PoS Episode ------------\n"); 
II PosEr.frequentPoSE.print(); 
II System.out.println("\n------------- END of Frequent PoS Episode -------------\n"); 

analysis anlz = new analysis(FSE,PosEr.frequentPoSE); 
anlz.run(); 

} 
} 

class analysis 
{ 
frequentSE FSE; 
PoSEpisodePool frequentPoSE; 

analysis(frequentSE FSE,PoSEpisodePool frequentPoSE) 
{ 
this.FSE = FSE; 
this. frequentPoSE = frequentPoSE; 

} 

public void run() 
{ 
int ij ,k,m,n,p,q,counter,flag; 
PoSEpisode alpha; 
serialEpisode beta; 
System.out.println("PoS Size\t\tPoS Freq_count\t\tMax Serial Freq_count"); 
for(i=O;i<frequentPoSE.size;i++) //for each frequent PoS Episode 
{ 

if{fre~uentPoSE.PoSPool[i] null) //skip the null ones 
contmue; 

alpha = frequentPoSE.PoSPool[i]; 
counter= O; //sum of the counts of all possible serial episodes of the corresponding PoS 
forU=O;j<FSE.size;j++) //for each frequent serial episodes set 
{ 

if{FSE.SEParr[j] null) 
continue; 

if{FSE.SEParr[j].episodeSize<alpha.size_2 II FSE.SEParr[j].episodeSize>(alpha.size_l +alpha.size_2-
2)) 

continue; 
for(k=O;k<FSE.SEParr[j].size;k++) //for each frequent serial episodes in one set 
{ 

if{FSE.SEParr[j].SEPool[k] null) 
continue; 

beta= FSE.SEParr[j].SEPool[k]; 
n=p=flag=O; //alpha's states; n:alphal; p:alpha2 
for(m=O;m<beta.size;m++) //for each state in serial automaton 
{ 
q = n+p; 
if{n<alpha.size_l && alpha.eventType_l[n]=beta.eventType[m]) 
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n++; 
iftp<alpha.size_2 && alpha.eventType_2[p] beta.eventType[m]) 

p++; 
i ft q --n+p) //beta is not matching alpha 
{ 

} 
} 

flag= 1; 
break; 

iftflag = 0 && n = alpha.size_l && p = alpha.size_2) 
{ 
counter = beta. freq_ count>counter? beta.freq_ count:counter; 

// beta.print(); 
II System.out.println("beta.freq_count = "+beta.freq_count+"\n"); 

} 
} 

} 
// alpha.print(); 

} 
} 

System.out. println( (alpha.size_ 1 +alpha.size_ 2-2)+"\t\t"+alpha.freq_ count+"\t\t"+counter); 
} 

class beginsetPoSE 
{ 
instancePoSEpisode iPoSE[];//each cell corresponds to a time, and is the head oflink list, dummy 
int size; 
int beginpoint; 
int firstindex; 

beginsetPoSE( int size) 
{ 

} 

this.size = size; 
this.iPoSE = new instancePoSEpisode[lOOO]; 
this.beginpoint=O; 
this.firstindex=O; 

public int convertindex(int w,int fst, int bgpit) //in w from 1; 
{ 
int diff; 
w=w-1; //input w from 1 to ... 
iftw<fst II w>=fst+lOOO) //range ofhanclle 

return w-fst; 
diff = w-fst; 
ift diff+bgpit< 1000) 

return diff+bgpit; 
else 

return (diff+bgpit)-1000; 
} 
public instancePoSEpisode getiPoSE(int index) //input index from 1 
{ 
int index 1 = convertindex( index, firstindex, beginpoint); 
if( index 1 <O II index 1 >999) //range of handle 

return null; 
else iftiPoSE[indexl] null II iPoSE[indexl].w!= -1 *index) 

return null; 
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else 
return iPoSE[indexl ]; 

public void insert(PoSEpisode PoSE, int activeState_l, int activeState_2, int initTime, int status) 
{ 
if(PoSE = null) 

return; 
int index= convertindex(initTime,firstindex,beginpoint); 
if(index>=O && index<=999) 
{ 
if(iPoSE(index] null II iPoSE[index].w!= -1 *initTime) 

iPoSE[index] = new instancePoSEpisode(null,-l,-l,0,-1 *initTime); 
instancePoSEpisode tmpiiSE = new 

instancePoSEpisode(PoSE,activeState 1,activeState_ 2,initTime,status ); // copy 
tmpiiSE.insert(iPoSE[index])· -

} ' 
else if(index>999) 
{ 
int move= index-999; 
if(beginpoint+(move% 1000)<1000) 

beginpoint = beginpoint+(move%1000); 
else 

b:ginpoint = beginpoint+(move%1000)-1000; 
firstmdex = firstindex+move; 
index= convertindex(initTime firstindex,beginpoint); 
i~ iPoSE~index]-null II iPoSE[index].w!= -1 *initTime) •· . . 
. iPoSE[mdex] = new instancePoSEpisode(null,-l,-1,0,-1 irutTrme); 

. mstancePoSEpisode tmpiiSE = new . . . 
mstancePoSEpisode(PoSE,activeState 1,activeState _ 2,irutTrme,status ); // copy 

} tmpiiSE.insert(iPoSE[index]); -

} 
public void delete(PoSEpisode PoSE, int activeState_l, int activeState_2,int initTime) 
{ 
if(PoSE = null) 

return; 
~nt. index= convertindex(initTime,firstindex,beginpoint); 
if( mdex>=O && index<=999) 
{ 
if( iPoSE[ index]-null) 

return; 
instancePoSEpisode tmpiiSE = iPoSE[index].next; //first real node in the link list 
while( tmpiiSE ! =null) 
{ 
if(tmpiiSE.Alpha = PoSE && tmpiiSE.activeState_l = activeState_l && tmpiiSE.activeState_2 = 

activeState_2) 

} 
} 

} 

tmpiiSE.delete(); 
tmpiiSE = tmpiiSE.next; 

//check no other ( alpha, !alpha 11, jalpha21) in window range start - ( start+w _width-I), i.e. 
//no same episodes in current window in the accept state. 
public boolean checkDuplicate(PoSEpisode alpha, int start, int w _ width) 
{ 
instancePoSEpisode tmpiSE; 
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;_, 

for( int i=start; i<start+w _ width;i++) 
{ 
ifti<l lli>size-1) 

continue; 
int index= convertindex(i,firstindex,beginpoint); 
ift index>=O && index<=999) 
{ 
iftiPoSE[index] null) //head is null or not 

continue; 
tmpiSE = iPoSE[index].next; 
while(tmpiSE!=null && iPoSE[index].w= -1 *i) 
{ 
ifttmpiSE.Alpha=alpha && tmpiSE.activeState_l=(alpha.size_l-1) && 

tmpiS E.acti veState _ 2 =(alpha.size_ 2-1)) 

} 

} 
} 

return true; 
tmpiSE = tmpiSE.next; 

} 

return false; 

public void print() 
{ 
System.out.println("\n-------- BeginSet PoSE ----------\n"); 
for( int i =O;i< 1 OOO;i++) 

iftiPoSE[i] !=null) 
{ 
System.out.println("\n-------- i = "+i+" ------------\n"); 
iPoSE[i].print(); 

} 
System.out.println("\n-------- END OF BeginSet PoSE -----------\n"); 

} 

class beginsetSE 
{ 
~nst~nceSerialEpisode iSE[];//each cell corresponds to a time, and is the head of link list, dununy 
mt size; 
int beginpoint; 
int endpoint; 
int firstindex; 

beginsetSE(int size) 
{ 
this.size = size; 
this.iSE = new instanceSerialEpisode[lOOO]; //size index used from 0 
this. beginpoint=O; 
this. firstindex=O; 

} 

public int convertindex(int w,int fst, int bgpit) //in w from l; 
{ 
int diff; 
w=w-1 ; //input w from 1 to ... 
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if{w<fst II w>=fst+lOOO) //range of handle 
return w-f st; 

diff = w-fst; 
if{ diff+bgpit<l 000) 

return diff+bgpit; 
else 

return (diff+bgpit)-1000; 
} 

public instanceSerialEpisode getiSE(int index) //input index from 1 
{ 

int index 1 = convertindex( index, firstindex, beginpoint); 
if{indexl<O II indexl>999) //range ofbandle 

return null; 
else if{iSE[index 1] null II iSE[indexl].activeState!= -1 *index) 

return null; 
else 

return iSE[indexl ]; 

public void insert(serialEpisode SE, int activeState, int initTime) 
{ 

if{SE = null) 
return; 

int index= convertindex(initTime,firstindex,beginpoint); 
//System.out.println("index="+index+" initTime="+initTime+" firstindex="+firstindex+" 
beginpoint="+beginpoint); 

if{ index>=O && index<=999) 
{ 

} 

i~ iSE_[index] null II iSE[index].activeState!= -1 *initTime) 
1SE[mdex] = new instanceSerialEpisode(null,-1 *initTime); 

instanceSerialEpisode tmpiiSE = new instanceSerialEpisode(SE,activeState ); // copy and get a new iiSE 
tmpiiSE.insert(iSE[index]); 

else if{index>999) 
{ 

} 
} 

int move = index-999· 
if{beginpoint+(move% 1000)<1000) 

beginpoint = beginpoint+(move% 1000); 
else 

beginpoint = beginpoint+(move%1000)-1000; 
firstindex = firstindex+move· 
. ' 
mdex = convertindex( initTime,firstindex,beginpoint); 

if(iSE[index]-null II iSE[index].activeState!= -1 *initTime) 
iSE[index] = new instanceSerialEpisode(null,-1 *initTime); 

instanceSerialEpisode tmpiiSE = new instanceSerialEpisode(SE,activeState); // copy and get a new iiSE 
tmpiiSE.insert(iSE[index]); 

public void delete(serialEpisode SE, int activeState, int initTime) 
{ 
if{SE = null) 

return; 
int index= convertindex(initTime,firstindex,beginpoint); 
if(index>=O && index<=999) 
{ 
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if{iSE[index] null) 
return; 

instanceSerialEpisode tmpiiSE = iSE[index].next; //first real node in the link list 
while( tmpiiSE ! =null) 
{ 

} 

if{tmpiiSE.SE = SE && tmpiiSE.activeState = activeState) 
tmpiiSE.delete(); 

tmpiiSE = tmpiiSE.next; 

} 
} 
/ /check no other ( alpha, lalphal) in window range start - ( start+w _width-I), i.e. 
//on same episodes in current window in the accept state. 
public boolean checkDuplicate(serialEpisode alpha, int start, int w _ width) 
{ 

} 

instanceSerialEpisode tmpiSE; 
for( int i=start;i<start+w _ width;i++) 
{ 

} 

ift i< 1 II i>size-1) 
continue; 

int index= convertindex(i,firstindex,beginpoint); 
if{index>=O && index<=999) 
{ 

} 

if{iSE[index] null) //head is null or not 
continue; 

tmpiSE = iSE[index].next; 
while(tmpiSE!=null && iSE[index].activeState= -1 *i) 
{ 
if{ tmpiSE.SE=alpha && tmpiSE.activeState=(alpha.size-1)) 

return true; 
tmpiSE = tmpiSE.next; 

} 

return false; 

public void print() 
{ 
System.out.println("\n-------- BeginSet SE -----------\n"); 
for(int i =O;i<lOOO;i++) 
{ 

} 

if{iSE[i]!=null) 
{ 

} 

System.out.println("\n-------- i = "+i+" ------------\n"); 
iSE[i].print(); 

System.out.println("\n-------- END OF BeginSet SE ------------\n"); 
} 

class eventPool 
{ 
String eventType []; 
int size; 
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int pointer; 

eventPool( int size) 
{ 
this.size = size; 
eventType = new String[size]; 
this.pointer= O; 

} 
public void setEventType(String et) 
{ 
int flag= O; 
for( int i=O;i<pointer;i++) 

if(eventType[i].compareTo(et)=O) 
flag= 1; 

if{pointer<size && flag = 0) 
eventType[pointer++] = et; 

} 
public String getEventType(int index) 
{ 
if(index<size) 

return eventType[ index]; 
else 

return""; 
} 
public int getEvent(String et) 
{ 

} 

inti; 
for( i=O;i<size;i++) 

if{ eventType[ i] .compare To( et)=O) 
return i; 

return -1 ; //not found 
} 
public void print() 
{ 

} 

System.out.println("Event Pool"); 
for(int i=O;i<pointer;i++) 

System.out. print( eventType[ i]+"\t"); 
System.out.println(); 

class eventSequence 
{ . 
theEvent evt []; //the Ts=l, Te=evt[pointer-1].theTIDle 
int size; 
int pointer; 
int mark; //for output next event at time t 

eventSequence( int size) 
{ 

} 

this.size = size; 
evt = new theEvent[size]; 
this.pointer= O; 
this.mark = O; 
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public void resetMark() 
{ 
mark =O; 

} 
public int getEvent(int t) 
{ 

} 

while( mark<size) 
{ 
if{ evt[mark].theTime = t) 

return evt[mark++ ].eventType; 
else if{evt[mark].theTime < t) 

mark++; 
else 

return -1 ; / /no event found at t 

return -1; 

public void setEvent(theEvent e) 
{ 
evt[pointer++] = e; 

} 
public void print( eventPool EP) 
{ 
System.out. println("Event Sequence"); 
for(int i=O;i<pointer;i++) 

evt[ i] .print(EP); 
System.out.println(); 

} 
public void print() 
{ 
System.out. println("Event Sequence"); 
for(int i=O;i<pointer;i++) 

System.out.println("event = "+evt[i].eventType+" time="+ evt[i].theTime); 
System.out.println(); 

} 
} 

class frequentSE 
{ 
serialEpisodePool SEParr[]; //dynamic array, initial size 5, each time double size by self-adjusting 
int size; //capacity of SEParr 
int pointer; //next free cell in SEParr, also the# of non-empty cells 

frequentSE() 
{ 

} 

this.size= 5; 
SEParr = new serialEpisodePool[ size]; 
this.pointer= O; 

//Insert a new serialEpisodePool in. 
/ /Each serialEpisodePool should has difference size. 
public void setSEP(serialEpisodePool SEP) 
{ 
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if{pointer<size) 
insert(SEP); 

else //dynamic increase the SEParr array 
{ 
int i; 
serialEpisodePool tmp _ SEParr[]= new serialEpisodePool[ size*2]; 
for(i=O;i<size;i++) 

tmp _ SEParr[i] = SEParr[i]; 
SEParr = tmp _ SEParr; 
size = size*2; 
insert(SEP); 

} 
} 
public void insert(serialEpisodePool SEP) 
{ 
SEParr[pointer++] = SEP; 

} 

public void print() 
{ 
System.out.println("Frequent Serial Episode"); 
for(int i=O;i<pointer;i++) 

SEParr[ i].print(); 
} 

} 

class instancePoSEpisode 
{ 
PoSEpisode Alpha; 
int activeState_l; //0 - Alphal.size-1 
int activeState_2; //0 - Alpha2.size-1 
int T; //time 
int w; / /0 diagonal, 1 le~2 top; 
instancePoSEpisode pre= null; //double linked list 
instancePoSEpisode next = null; 

instancePoSEpisode(PoSEpisode Alpha, int activeState_l, int activeState_2, int T, int w) 
{ 

} 

this.Alpha = Alpha; 
this.activeState 1 = activeState I· 
this.active State - 2 = activeState-2: 
this.T = T; - - ' 
this.w = w; 

I /insert Alpha behind Beta 
public void insert(instancePoSEpisode Beta) 
{ 
if(Beta = null) 

return; 
this.next = Beta.next; 
if(Beta.next != null) 

Beta.next.pre= this; 
Beta.next = this; 
this. pre = Beta; 
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//delete this itself 
public void delete() 
{ 
this.pre.next= this.next; 
if\this.next != null) 

this.next.pre = this.pre; 

public boolean compare(instancePoSEpisode Beta) 
{ 
if\Beta.Alpha = this.Alpha && Beta.activeState_l = this.activeState_l && Beta.activeState_2 = 

this.activeState _2 

} 

&& Beta.T = this.T && Beta.w=this.w) 
return true; 

return false; 

public void print() 
{ 

} 
} 

if\ Alpha! =null) 
{ 
System.out.println("Instance PoS Episode"); 
Alpha.print(); 
System.out.println("i = "+activeState 1+" j = "+activeState_2+" T = "+T+" w = "+w); 

} -
if\next != null) 

next. print(); 

class instanceSerialEpisode 
{ 
serialEpisode SE; 
int activeState; //0 - SE.size-I 
~nstanceSerialEpisode pre = null; //double linked list 
mstanceSerialEpisode next = null; 

instanceSerialEpisode( serialEpisode SE, int activeState) 
{ 

} 

this.SE = SE; 
this.activeState = activeState; 

//insert this behind iSE 
public void insert(instanceSerialEpisode iSE) 
{ 
if\iSE = null) 

return; 
this.next= iSE.next; 
if(iSE.next != null) 

iSE.next.pre = this; 
iSE.next = this; 
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this.pre= iSE; 
} 

//delete this itself 
public void delete() 
{ 
this.pre.next= this.next; 
if(this.next != null) 

this.next.pre= this.pre; 

public void print() 
{ 

} 
} 

if(SE!=null) 
{ 

} 

System.out. println("lnstance Serial Episode"); 
SE.print(); 
System.out.println("Active State = ''+activeState); 

if(next != null) 
next.print(); 

public class PoSECG //PoS episode candidate generation 
{ 
PoSEpisodePool candidatePoS; 
frequentSE FSE; //frequent serial episode set, all sizes 

PoSECG( frequentSE FSE) 
{ 
this.FSE = FSE; 

} 

//generate all size of PoS episode candidate in one nm 
public void run() 
{ 
serialEpisode alpha, beta; 
candidatePoS = new PoSEpisodePoolO; 
for(int i=O;i<FSE.pointer;i++) 

for(int j=O;j<FSE.SEParr[i].pointer;j++) 
{ 
alpha = FSE.SEParr[i].SEPool[j]; 
if( alpha.size<3) 

continue; 

for( int m=i;m<FSE.pointer;m++) 
for(int n=O;n<FSE.SEParr[m].pointer;n++) 
{ 
beta= FSE.SEParr(m].SEPool(n]; 
if(beta.size<3) 

continue; 
if(alpha.compareTo(beta)>=O) //alpha<beta 

continue; 

54 



iftalpha.eventType[O] = beta.eventType[O] && alpha.eventType[alpha.size-1] = 
beta.eventType[beta.size-1]) 

} 

{ 

} 
} 

PoSEpisode PoSE = new PoSEpisode(alpha.size,beta.size); 
for( int nnpi=O;tmpi<alpha.size;bnpi++) 

PoSE.setEventType(alpha.eventType[bnpi],1); //1 means first episode alpha 
for( int tmpi=O;tmpi<beta.size;bnpi++) 

PoSE.setEventType(beta.eventType[bnpi],2); //2 means second episode beta 
candidatePoS.setPoSEpisode(PoSE); //form and add one PoS candidate 

public void print() 
{ 
System.out.println("\n------------ PoS Candidate -----------\n"); 
candidatePoS.print(); 
System.out.println("\n------------- END of Candidate ------------\n"); 

} 

class PoSEpisode 
{ 
int eventType_l []; 
int eventType _ 2 []; 
int size_l; 
int size_2; 
int pointer_ 1; / /this variable is used when initialize the PoS Episode, then reset to 0. 
int pointer_2; //when do state transition, 
int freq_ count; 
int inwindow; 
PoSEpisode(int size_l,int size_2) 
{ 

} 

this.size 1 = size 1 · 
this.size - 2 = size-2: 
eventType_l = n-;w' int[size_l]; 
eventType_2 = new int[size 2]; 
this.pointer_} = O; -
this.pointer_2 = O; 
this.freq_count = O; 
this.inwindow = -1000000; 

public void setEventType(int et,int swap) //swap= 1, for 1st serial episode, swap= 2, for 2nd serial 
episode, 

{ 
if(swap==l) 

if(pointer_ 1 <size_l) 
eventType _ 1 [pointer_ 1 ++] = et; 

if(swap=2) 
if(pointer _ 2<size _ 2) 

eventType_2[pointer_2++] = et; 

//compare this episode with input episode 
//this=se = 0, otherwise= 1 
public int compareTo(PoSEpisode se) 
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} 

inti; 

iftthis.size_l !=se.size_l II this.size_2!=se.size_2) 

return 1; 

for( i=O;i<size _ l ;i++) 

if(this.eventType _ 1 [i]!=se.eventType_ l [i]) 

return l; 

for(i=O;i<size_2;i++) 

if(this.eventType_2[i]!=se.eventType_2[i]) 

return I ; 
return 0; 

public void print() 

{ 
inti; 

System.out.println("PoS Episode"); 

for(i=O;i<size_ l ;i++) 

System.out.print(eventType_l[i]+" "); 

System.out.print("\n"); 

for( i=O;i<size_2; i++) 

System.out.print( eventType_2[i]+" "); 

System.out.print("\n"); 

} 
System.out.println(" freq_ count="+freq_ count+" inwindow="+inwindow); 

} 

class PoSEpisodePool 

{ PoSEpisode PoSPool[]; 1/dynaflllc array, llli."al size 5, each time double size by self-adjustin 

int size; //capacity of PoS episode # m the pool g 

int pointer; //next free cell in the pool, also the # of PoS episode in the pool 

PoSEpisodePool() 

{ 
this.size= 5; 
PoSPool = new PoSEpisode[size]; 

this .pointer= O; 

!ublic void setPoSEpisode(PoSEpisode alpha) 

{ 

//this method calls insertP SE . 
o p1sode() 

} 
} 

if(pointer<size) 
insertPoSEpisode(alpha); . 

else //dynamic increase the PoSEp1sode array 

{ 

int i; SE · d [ · *2] 
PoSEpisode tmp_Pool[]= new Po p1so e size ; 

for( i=O;i<size;i++) . 

tmp_Poolfi] = PoSPool[1]; 

PoSPnol~ tmp_Poo\; 

size = sizfl*2; 
lnsertP0SEp lsode(Hlpha)1 
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} 

public boolean isExist(PoSEpisode alpha) //check if alpha in the pool 
{ 

} 

for( int i=O;i<pointer;i++) 
{ 
iftPoSPool[i].compareTo(alpha)=O) 

return true; 
} 
return false; 

public void insertPoSEpisode(PoSEpisode alpha) 
{ 
PoSPool[pointer++] = alpha; 

} 

public void print() 
{ 
inti; 
System.out.println("PoS Episode Pool\nSize = 11 + pointer+"\n"); 
for( i=O;i<size;i++) 

iftPoSPool[i]!= null) 
PoSPool[i].print(); 

} 

public class PoSER //PoS Episode Recognition 
{ 
PoSEpisodePool candidatePoSE; 
eventSequence EvtSeq; 
int w _ width; 
PoSEpisodePool frequentPoSE; 
double min_ fr; //minimum frequency 
int EvnPoolSize; 
waitsPoS waits; //each entry i is a likned list ofiSE that next state is eventType[i]. 
beginsetPoSE beginset; 

PoSER(PoSEpisodePool candidatePoSE, eventSequence EvtSeq, int w_width, double m.in_fr, int 
EvnPoolSize) 

{ 

} 

this.candidatePoSE = candidatePoSE; 
this.EvtSeq = EvtSeq; 
this. w width = w width· 
this.min_fr = min=fr; ' 
this.EvnPoolSize = EvnPoolSize; 
waits= new waitsPoS(EvnPoolSize); 
for( int i=O;i<candidatePoSE.pointer;i++) 
{ 

} 

//set all episodes in candidate set to wait in the first states 
waits.add( candidatePoSE.PoSPool[i], 0,0,-1,-1 ); 

//waits.print(); . . 
this.beginset = new beginsetPoSE(EvtSeq.evt[EvtSeq.pomter-l].theT1me+ 1); 

public void run() 
{ 
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int start,Ts, Te, event_A,t,T,ij,w,episode_size_l,episode_size_2; 
transitionsPoSE tranPoSE; 
PoSEpisode alpha; 

Ts= 1; 
Te = EvtSeq.evt[EvtSeq.pointer-1].theTime; 
EvtSeq.resetMark(); 
for(start=Ts-w_ width+l; start<=Te+l; start++) 
{ 
t = start+w _width-I; 

instancePoSEpisode tmpiSE = null; 
if{ start> 1 ) 
{ 

trnpiSE = beginset.getiPoSE(start-1); 
} 
while(start> 1 && trnpiSE != null && tmpiSE.next != null) 
{ 
alpha trnpiSE.next.Alpha; // alpha.print(); 
i = trnpiSE.next.activeState 1; 
j = trnpiSE.next.activeState - 2; 
w = trnpiSE.next.w; -
T = trnpiSE.next.T; 

if(alpha.size_l-1 = i && alpha.size_2-l = j) //if remove an automaton in the accepting state 
{ 
if(!(beginset.check.Duplicate(alpha, start, w_ width))) //ifno the same alpha in window in the 

accepting state 

} 

} 

{ 
alpha.freq_count = alpha.freq_count- alpha.inwindow + start; 
alpha.in window=- I 000000; //reset episode status 

} 
else 
{ 
trnpiSE = trnpiSE.next; 
continue; //avoid doing 'alpha.initialized[L] = -1;' 

} 

else if'{w=O) waits.delete(alpha, i+l,j+l,T); 
else if'{w=l) waits.delete(alpha, i+l,j,T); 
else if'{w=2) waits.delete(alpha, i,j+l,T); 
else if'{w=3) waits.delete(alpha, i,j,T); 

trnpiSE = trnpiSE.next; 

tranPoSE = new transitionsPoSE(null,-1,-1,0,-1); //just as head of link list 
event_A = EvtSeq.getEvent(t); 

while(event_A!=-1) //for all events(event_A,t) in EvtSeq such that t = start+w_width-1 
{ 
waits.reset( event_ A); 
instancePoSEpisode alphaj == waits.get(event_A); 

while(alpha_j!=null) //for all (alpha,ij) in waits(event_A) 
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{ 
i alpha_j.activeState_l; 
j = alpha_j.activeState_2; 
T = alpha_j.T; 
w = alpha_j.w; 
alpha= alpha_j.Alpha; 
episode_ size_ 1 = alpha.size_ I; 
episode_size_2 = alpha.size_2; 

if(i = (episode_size_l-1) &&j = (episode_size_2-l) && aJpha.inwindow=-1000000) 
{ 
alpha.inwindow = start; 

} 
if(i j &&j = 0) 
{ 
tranPoSE.insert(alpha,0,0,t,event_A); //0,0 - first states; 0 same states 

} 
else 
{ 

} 

tranPoSE.insert( alpha,ij,T ,event_ A); 
if(w=O) 

beginset.delete( alpha, i-1 j-1, T); 
else if(w=l) 

beginset.delete( alpha, i-1 j, T); 
else if(w=2) 

beginset.delete(alpha, ij-1,T); 
else if(w=3) 

beginset.delete( alpha, ij,T); 

waits.delete(alpha, i, j, T, w); 

alpha_j = waits.get(event_A); 
} 
event_A = EvtSeq.getEvent(t); 

} 

while(tranPoSE.next!= null) //for all (alpha, i, j, t, w) in transitions 
{ 
alpha = tranPoSE.next.PoSE; 
i = tranPoSE.next.activeState 1; 
j = tranPoSE.next.activeState - 2; 
T = tranPoSE.next. trantime; -
w = tranPoSE.next.status; 
int ww=O; 

if(w==alpha.eventType_l[i] && w=alpha.eventType_2[j]) //ifboth alphal,alpha2 changed states 
{ 
if(i<alpha.size_l-1 &&j<alpha.size_2-l) 

{ waits.insert( alpha,i+ 1 j+ l ,T ,O);ww=O;} 
else if( i<alpha.size _ 1-1) 

{ waits.insert( alpha,i+ 1 j, T, 1 );ww= 1;} //alpha2 already in accepting state 

else if(j<alpha.size _ 2-1) 
{waits.insert(alpha,ij+ I,T,2);ww=2;} //a\phal already in accepting state 

} 
else if(w==alpha.eventType_l[i]) //ifonly alpha I changed state and hasnot reached the last state 
{ 
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} 
} 

} 
} 

if{i<alpha.size_l-1) 
{waits. insert( alpha,i+ 1 j, T, 1 );ww= I;} 

else 
{waits.insert(alpha,i,j,T,3);ww=3;} 

} 
else if{ w=alpha.eventType _ 2[j]) 
{ 
if(j<alpha.size_2-l) 

{ waits.insert(alpha,i,j+ l ,T,2);ww=2;} 
else 

{waits.insert(alpha,i,j,T,3);ww=3;} 

beginset.insert(alpha, i, j, T,ww); //beginset(t) = beginset(t) Union {(alpha, i, j)} 

tranPoSE = tranPoSE.next; 

frequentPoSE = new PoSEpisodePoolO; 
double ratio; 
for( i=O ;i<candidatePoSE.size && candidatePoSE.PoSPool[i] !=null;i++) 
{ 
alpha= candidatePoSE.PoSPool[i]; //alpha.print(); 
ratio = alpha.freq_ count* 1.0/(Te - I + w _ width); 
ift ratio>=min_ fr) 

frequentPoSE.setPoSEpisode(alpha); 
} 

public class SECG //serial episode candidate generation 
{ 
eventPool EvnPool; 
eventSequence EvtSeq; 
serialEpisodePool candidateSE; 
frequentSE FSE; //frequent serial episode set, all sizes 

SECG( eventPool EvnPool,eventSequence EvtSeq, frequentSE FSE) 
{ 

} 

this.EvnPool = EvnPool· 
this.EvtSeq = EvtSeq; 

1 

this.FSE = FSE; 

//generate next serial episode candidate set with size+l 
public void nextSCS() //next Serial Candidate Set 
{ 
//get next episode size to process. 
int nextSize; 
iftFSE.pointet 0) //empty set so far 

nextS ize = I; 
else 

nextSize = FSE.SEParr[FSE.pointer-1].episodeSize + I; 
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/ /set up a new candidate set for size = nextSize episodes 
candidateSE = new serialEpisodePool(nextSize); 

//when nextsize=l, i.e. all size 1 candidate serial episodes, 
//use all event type as candidates 
if(nextSize=l) 
{ 
for( int i=O;i<EvnPool.pointer;i++) 
{ 
serialEpisode tmpSE = new serialEpisode(nextSize); 
tmpSE.setEventType(i); 
candidateSE.setserialEpisode(tmpSE); 

} 
} 
else 
{ 
int begin=O; 
//for all largest size frequent episodes in frequent set 
serialEpisodePool F _L; 
for( int i=O;i<FSE.SEParr[ nextSize-2].pointer;i++) 
{ 
boolean flag_j; 
I /check if we entered a new block, and update block info if it is 
F _ L = FSE.SEParr[nextSize-2]; 
if(!(F _L.SEPool[i].islnSameBlock(F _L.SEPool[begin]))) 
begin= i; //reset the mark of beginning of next block 

//for eveny episodes in the block 
for(intj=beginj<F _L.size && F _L.SEPool[j]!=null && 

F _L.SEPool[j].islnSameBlock(F _L.SEPool[i])j++) 

} 

{ 

} 
} 

flag_j = false; 
serialEpisode alpha= new serialEpisode(nextSize); 
//build a potential candidate alpha 
for(int k=O;k<nextSize-l;k++) 

alpha.setEventType(F _ L.SEPool[i] .eventType[k ]); 
alpha.setEventType(F _L.SEPoolfj].eventType[nextSize-2]); 
//build and test all subepisodes beta of alpha 
for( int k=O;k<nextSize-2;k++) 
{ 
serialEpisode beta= new serialEpisode(nextSize-1); 
for(int m=O;m<k;m++) 

beta .setEventType( alpha.eventType[ m]); 
for( int m=k;m<nextSize-1 ;m++) 

beta.setEventType( alpha.eventType[ m+ 1 ]); 
if(!(F _L.isExist(beta))) //find an infrequent subepisode 
{ 

} 
} 

flag_j = true; 
break; 

if(flag_j = true) //try next episode in the block 
continue; 

candidateSE.setserialEpisode(alpha); 
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} 

} 
public void print() 
{ 
System.out.println("\n----------- Candidate ------------\n"); 
candidateSE.print(); 
System.out.println( 11\n------------ END of Candidate ----------\n"); 

} 

public class SER //Serial Episode Recognition 
{ 
serialEpisodePool candidateSE; 
eventSequence EvtSeq; 
int w _ width; 
frequentSE FSE; //frequent serial episode set, all sizes 

double min_ fr; //minimum frequency 
int EvnPoolSize; 
instanceSerialEpisode waits[]; //each entry i is a likned list of iSE that next state is eventType[i]. 

beginsetSE beginset; 

SER(serialEpisodePool candidateSE, eventSequence EvtSeq, int w_width, double min_fr, frequentSE 

FSE, int EvnPoolSize) 
{ 
this.candidateSE = candidateSE; 
this.EvtSeq = EvtSeq; 
this. w _ width = w _ width; 
this.min_fr = min_fr; 
this.FSE = FSE; 
this.EvnPoo1Size = EvnPoolSize; 
this. waits = new instanceSeria1Episode[EvnPoo1Size]; 

for(int i=O;i<EvnPoolSize;i++) //initialize heads 

this. waits[i] = new instanceSerialEpisode(null,-1); 

for( int i =O;i<candidateSE.pointer;i++) 

{ 
//set all episodes in candidate set to wait in the first states . 

instanceSerialEpisode iSE = new instanceSerialEpisode(candidateSE.SEPool[i],O); //2nd O means the 

first state 
iSE. insert( this. waits[ candidateSE.SEPool[i].eventType[O]]); 

} 
this.beginset = new beginsetSE(EvtSeq.evt[EvtSeq.pointer-1 ]. the Time+ 1 ); 

} 

public void run() 
{ 

int st~i:t,Ts, Te, event_A,tj,episode_size; 
trans1t1onsSE tranSE· 
serialEpisode alpha; ' 

episode size = O· 
Ts= 1 · - , , 
Te = EvtSeq.evt[EvtSeq.pointer-1].theTime; 
E vtSeq .resetMark(); 
for( start=Ts-w _ width+ 1; start<=Te+ 1; start++) 
{ 
t = start+w _width-I ; 
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instanceSerialEpisode trnpiSE = null; 
iftstart> 1) 
{ 

tmpiSE = beginset.getiSE(start-1); 
} 
while(start>l && tmpiSE != null && bnpiSE.next != null) 
{ 
alpha = tmpiSE.next.SE; 
int L = tmpiSE.next.activeState; 
iftalpha.size-1 = L) //if remove an automaton in the accepting state 
{ 
ift!(beginset.checkDuplicate(alpha, start, w_width))) //ifno the same alpha in window in the 

accepting state 

} 

} 

{ 
alpha.freq_count = alpha.freq_count- alpha.inwindow + start; 

} 
else 
{ 
tmpiSE = tmpiSE.next; 
continue; //avoid doing 'alpha.initialized[L] = -1;' 

} 

else 
deleteWaits(alpha.eventType[L+l], alpha, L+l); 

alpha.initialized[L] = -1; 
tmpiSE = tmpiSE.next; 

tranSE = new transitionsSE(null,-1,0); //just as head oflink list 
event_A = EvtSeq.getEvent(t); 
while( event_ A! =-1) //for all events( event A,t) in EvtSeq such that t = start+w _width-I 
{ -
instanceSerialEpisode alpha _j = waits[ event_A ].next; 
while(alpha_j!=null) //for all (alphaj) in waits(event_A) 
{ 
j = alpha_j.activeState; 
alpha alpha _j .SE; 
episode_size = alpha.size; 

if(j = (alpha.size-I) && alpha.initialized[j]=-1) 
{ 
alpha.inwindow = start; 

} 
iflj = 0) 
{ 
tranSE.insert(alpha,0,t); 

} 
else 
{ 
tranSE.insert(alphaj,alpha.initialized[j-1]); 
beginset.delete(alpha, j-1, alpha.initialized[j-1 ]); 
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} 

alpha.initialized[j-1 ]=-1; 
deleteWaits(event_A, alpha, j); 

} 
alpha_j = alpha_j.next; 

} 
event_A = EvtSeq.getEvent(t); 

} 
while(tranSE.next!= null) //for all (alpha, j, t) in transitions 

{ 

} 

alpha = tranSE.next.SE; 
j = tranSE.next.activeState; 
t = tranSE.next. trantime; 
alpha.initialized[j] = t; 
beginset.insert(alpha, j, t); //beginset(t) = beginset(t) Union {(alphaj)} 

ifU<alpha.size-1) //if j < lalphal, waits(alpha[j+ 1]) = waits(alpha[j+ 1]) Union {(alphaj+ 1)} 

{ 
instanceSerialEpisode iSE = new instanceSerialEpisode(alphaj+ 1 ); 

tmpiSE = this.waits[alpha.eventType(j+l]].next; 

int flagiSE = O; 
while(tmpiSE!=null) 
{ 
if{ tmpiSE.SE = alpha && tmpiSE.activeState = j+ 1) 

} 

{ 

} 

flagiSE = 1; 
break; 

tmpiSE = tmpiSE.next; 

if{ flagiSE = 0) 
iSE.insert( this. waits[ alpha.eventType[j+ 1 ]]); 

tranSE ;: tranSE.next; 

} 

serialEpisodePool tmpsEP = new serialEpisodePool(episode_size); 

double ratio; 
for(int i=O;i<candidateSE.size && candidateSE.SEPool[i]!=null;i++) 

{ 

} 

alpha = candidateSE.SEPool[i]; 
ratio = alpha.freq_ count* 1.0/(Te - 1 + w _ width); 

if(ratio>=min_ fr) 
tmpsEP .setserialEpisode( alpha); 

FSE.setSEP(tmpsEP)· 
} , 

public void deleteWaits(int event_A, serialEpisode SE, int activeState) 

{ 
instanceSerialEpisode tmpiSE = wnits[event_A].next; //first real node 

while( tmpiSE ! =null) 
{ 

if( tmpiSE.SE = SE && tmpiSE.activeState = activeState) //found 
tmpiSE.delete(); 
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} 
} 

tmpiSE = tmpiSE.next; 

public void printWaits(int event_A) 
{ 
System.out.println( "\n------ Waits ------\n"); 
System.out.println("\n------ Event "+event_A +" ------\n"); 
waits[ event_ A ].print(}; 
System.out.println("\n------ END of Waits ------\n"); 

} 

class seria!Episode 
{ 

int eventType []; 
int size; 
int pointer; 
int initialized[]; //cell i of this array stores the tirnestarnp at which the automaton instance 

//with active state eventType[i] initialized. 
int freq_count; 
int inwindow; 
serialEpisode( int size) 
{ 

} 

this.size = size; 
eventType = new int[size]; 
this.pointer = 0; 
initialized= new int[size]; 
for(int i=O;i<size;i++} 

initialized(i] = -1; //means no legal value 
this.freq_count = O; 
this.inwindow = O; 

public void setEventType(int et) 
{ 

if(pointer<size) 
eventType[pointer++) = et; 

} 
//compare this episode with input episode using lexicographical order, 
//this<se = -1, this=se = 0, this>se = +1, 
public int compareTo(seria!Episode se) 
{ 
int min,i; 
min = this.size<se.size?this.size:se.size; 
for(i=O;i<min;i++) 
if(this.cvcntTypc[iJ<se.eventType[i]) 

return -1; . 
else if(this.cventTypef iJ>s~-~ycntTypc[•J) 

return 1 · 
if(min == ~his.size && min = sc.s1ze) 
return O; 

else if(min = this.size) 
return -1 ; 

else 
return 1; 
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//check if This is in the same block with se, i.e., the first size-I 
//event types are same 

} 

public boolean islnSameBlock(seria!Episode se) 
{ 

} 

if{ this.size! =se.size) 
return false; 

if{this.size = 1) 
retun1 true; 

for( int i=O;i<this.size-1 ;i++) 
if(this.eventType[i] != se.eventType[i]) 

return false; 
return true; 

public void print() 
{ 
inti; 
System.out.print("Serial Episode Event Type:"); 
for(i=O;i<size;i++) 
System.out.print( eventType[i]+" "); 

System.out.print("\n"); 
} 
public static void main(String [] args) 
{ 
seria!Episode SE= new seria!Episode(3); 
SE.setEventType( 1 ); 
SE.setEventType(2); 
SE.setEventType( I); 
SE.print(); 
serialEpisode SEl = new seria!Episode(2); 
SE l .setEventType( 1 ); 
SE I .setEventType(2); 

SE I .print(); 
System.out.println(SEI .compareTo(SE)); 

} 

class seria!EpisodePool 

{ h . 
seria!Episode SEPool[]; //dynamic array, initial size 5, eac time double size by self-adjusting 
int episodeSize; //event# in serial episode, must be the same 
int size; //capacity of serial episode# in the pool . . . 
int pointer; //next free cell in the pool, also the# of senal episode m the pool 

serialEpisodePool(int episodeSize) 
{ 

} 

this.episodeSize = episodeSize; 
this.size= 5; 
SEPool = new serialEpisode[size]; 
this.pointer= O; 

public void setseria!Episode(serialEpisode SE) //this method calls insertSerialEpisode() 
{ 
if(SE.size != episodeSize) 
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return; 
if{pointer<size) 

insertSerialEpisode(SE); 
else //dynamic increase the serialEpisode array 
{ 
int i~ 
serialEpisode tmp_SEPool[]= new seria1Episode[size*2]; 
for( i=O;i<size;i++) 

tmp_SEPool[i] = SEPool[i]; 
SEPool = tmp_SEPool; 
size = size*2; 
insertSeria IEp isode( SE); 

} 
} 
public boolean isExist( serialEpisode SE) //check if SE in the pool 
{ 
if{SE.size != episodeSize) 

return false; 
for( int i=O;i<pointer;i++) 
{ 

if{ SEPool[ i] .compareTo(SE)=O) 
return ttue; 

else if{SEPool[i].compareTo(SE)=l) 
return false; 

return false; 
} 
public void insertSerialEpisode(serialEpisode SE) //keep the lexicographical order 
{ 
int tmp _pointer = 0; 
if{pointe1 0) 

SEPool[pointer++] = SE; 
else if{SEPool[pointer-1].compareTo(SE)=-1) //less than SE (newly insert to be) 

SEPool[pointer++] = SE; 
else if{SEPool[pointer-1].compareTo(SE) 0) //equal to SE 

return; 

} 

else if{SEPool[pointer-1].compareTo(SE)=l) //great than SE 
{ 
while(SEPool(tmp_pointer].compareTo(SE)=-1) //move up from beginning and stop at 1st one >=SE 

tmp _pointer++; 
if{SEPool[tmp_pointer].compareTo(SE)=O) 

return; 
else 
{ 

} 
} 

for(int i=pointer;i>tmp_pointer;i--) //move items up one step 
SEPool[ i]=SEPool[i-1 ]; 

SEPool[tmp_pointer] = SE; 
pointer++; 
return; 

public void print() 
{ 
inti; 
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System.out.println("Serial Episode Pool\nSize = 11 + pointer+"\n"); 
for( i=O;i<size;i++) 

if{SEPool[i]!= null) 
SE Pool[ i].print(); 

} 
} 

class theEvent 
{ 

} 

int eventType; 
int theTime; 

theEvent(int eventType, int theTime) 
{ 

} 

this.eventType = eventType; 
this.theTime = theTime; 

public void print( eventPool EP) 
{ 
iftEP==null) 

System.out.println("Event: "+eventType+" "+theTime); 
else 

System.out.println("Event: "+EP.getEventType(eventType)+11 "+theTime); 
} 

class transitionsPoSE 
{ 
PoSEpisode PoSE; 
int activeState_l; //0 - PoSE.size_l-1 
int activeState 2; //0 - PoSE.size 2-1 
int trantime; - //begin from 1 -
transitionsPoSE next = null; 
transitionsPoSE last = null; 
int status; //if both automata change states, status=O; if 1st only, status=l; if 2nd only, status=2; 

transitionsPoSE(PoSEpisode PoSE, int activeState_l, int activeState_2,int trantime, int status) 
{ 

} 

this.PoSE = PoSE; 
this.active State 1 = activeState 1; 
this.activeState -2 = activeState-2; 
this.trantime trantime; -
this.status status; 

public void insert(PoSEpisode PoSE, int activeState_l, int activeState_2,int trantime, int status) 
{ 
transitionsPoSE tranPoSE = new transitionsPoSE(PoSE, activeState_l, activeState_2,trantime, status); 
if(next = null) 
{ 
this.next = tranPoSE; 
this.last= tranPoSE; 

} 
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else 
{ 

} 
} 

this.last.next = tranPoSE; 
this.last = tranPoSE; 

public void print(transitionsPoSE tmptranSE) 
{ 
Sys tem.out.println("\n------------ Transition PoSE ------------\n"); 
transitionsPoSE tranPoSE = tmptranSE; 
while( tranPoSE ! =null) 
{ 
tranPoSE = tra11P0SE.next; 
i f(tranPoS E !=null) 
{ 
tranPoSE. PoSE.prin r( ): 
Sys tem.out.print ln("ac 1iveS1a1c_ l - "+tr.m.Po~c.actin :, ra te 1+" ac ti\'e$ ta te_ 2 = 

"+tranPoSE.activeState_2+" tranti me = "+tranP0S E . tJ::.Wtin-1c) ; 

} 

} 
} 
System.out.println("\n------------ END ot1'ro\\ \\\()\\ \l £ " ···--·--"\n''t 

} 

class trans itionsSE 
{ 
serialEpisode SE; 
int activeState; //0 - SE.size-I 
int trantime; //begin from I 
transitionsSE next = null; 
trans itionsSE last = null; 

transitionsSE(serialEpisode SE, int activeState, int trantime) 
{ 

} 

this .SE = SE; 
this .activeState = activeState; 
this .trantime = trantime; 

public void insert(serialEpisode SE, int activeState, int trantime) 
{ 
transitionsSE tranSE = new transitionsSE(SE,activeState,trantime); 
if(next == null) 
{ 

} 

this. next = tranSE; 
this.last = tranSE; 

else 
{ 

} 
} 

this.last.next = tranSE; 
this .last = tranSE; 

public void print(transitionsSE tmptranSE) 
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} 

{ 
System.out.println("\n---------- Transition SE ----------\n"); 
transitionsSE tranSE = tmptranSE; 
while( trans E ! =nu 11) 
{ 

} 

tranSE = tranSE.next; 
ifttranSE!=null) 
{ 
tranSE.SE.print( ); 
System.out.println( "activeState = "+tranSE.activeState+" trantime = "+tranSE.trantime); 

} 

System.out.println("\n------------ END of Transition SE-----------\n"); 
} 

class waitsPoS 
{ 

instancePoSEpisode iPoSE[][]; 
int size; //# of event types 
int rw; //row or column#. depends on direction 
instancePoSEpisode pointer; //use for search next element in waits[A)[*] and waits[*)[A] 
int direction; //indicate current is waits[A][*]:O or waits[*)[A):1 

waitsPoS(int size) 
{ 
this.size = size; 
this.iPoSE = new instancePoSEpisode[size][size]; 
for(int i=O;i<size;i++) 

for(int j=O;j<size;j++) 
this.iPoSE[i][j] = new instancePoSEpisode(null,-l,-1,-1,-1); 

} 
public void insert(PoSEpisode PoS, int i,int j,int T,int w) 
{ 
instancePoSEpisode tmpPoS = iPoSE[PoS.eventType _ 1 [i]](PoS.eventType _ 2[j]].next; 
while( tmpPoS !=null) 
{ 

} 

if(tmpPoS.Alpha=PoS && tmpPoS.activeState_l==i && tmpPoS.activeState_2=j) 
{ 
if(trnpPoS.T<r) 
{ 

} 

tmpPoS. T = T; 
tmpPoS.w = w; 

return; 
} 
tmpPoS=tmpPoS.next; 

add(PoS, iJ, T, w); 
} 

public void add(PoSEpisode PoS, int i,int j,int t,int w) 
{ 
instancePoSEpisode tmpiPoSE = new instancePoSEpisode(PoS,ij,t,w); 
tmpiPoSE. insert( iPoSE[PoS.eventType _ 1 [i]][PoS.eventType _ 2[j]]); 
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//PoS.print( ): 
//System.out.println("i="+i+" j="+j+" t=11+t+" w="+w+" j="+j+" 

PoS.eventType_ 1 [i]=11+PoS.eventType_l [i)+" PoS.eventType_2[j]="+PoS.eventType_2[j]); 
> 
public void delete(PoSEpisode PoS, int i,int j,int t,int w) 
{ 
instancePoSEpisode tmpiPoSE; 
ttnpiPoSE = iPoSE[PoS.eventType_l[i]][PoS.eventType_2[j]].next; 
while( tmpiPoSE ! =null) 
{ 
if(tmpiPoSE.Alpha == PoS && tmpiPoSE.activeState_l = i && tmpiPoSE.activeState_2 && 

} 
} 

tmpiPoSE.T == t && tmpiPoSE.w=w) 
tmpiPoSE.delete(); 

tmpiPoSE = tmpiPoSE.next; 

public void delete(PoSEpisode PoS, int i,intj,int T) 
{ 
instancePoSEpisode tmpiPoSE; 
tmpiPoSE = iPoSE[PoS.eventType_ 1 [i]][PoS.eventType_2[j]].next; 
while( tmpiPoSE ! =null) 
{ 
if(tmpiPoSE.Alpha = PoS && tmpiPoSE.activeState_l = i && tmpiPoSE.activeState_2 = j && 

tmpiPoSE.T = T) 
tmpiPoSE.delete(); 

tmpiPoSE = tmpiPoSE.next; 
} 

} 
public void reset(int A) 
{ 

} 

rw=O; 
pointer= iPoSE[A][O]; 
direction O; 

public instancePoSEpisode get(int A) //search from iPoSE[A][*] then iPoSE[*][A] 
{ 
if(pointer.next!=null) //do all the linked list 

if(!(direction = 1 && rw=A)) 
{ 

} 

pointer = pointer.next; 
return pointer; 

//System.out.println("get a POS >>>>>>>>>>>>> 1 direction="+direction+" nv="+rw); 
iftdirection == 0 && rw<size-1) 
{ 
pointer= iPoSE[A][ ++rw]; 
while(pointer.next--null && rw<size-1) 
pointer= iPoSE[A][++rw]; 

if(pointer.next!=null) 
{ 

// System.out.println("get a POS >>>>>>>>>>>>> 2"}; 
pointer= pointer.next; 
return pointer; 

} //end of horizontal search 
else 
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} 

// ~ystem.out.println("get a POS >>>>>>>>>>>>> 3"); 
direction = l; 
rw= O; 
pointer = iPoSE(O)[A]; 
return get(A); 

} 
} 
else if(direction == 0 && rw==size-1) 
{ 

} 

direction = I; 
rw = O; 
pointer = iPoSE[O](A]; 
return get(A); 

else if(direction == I && rw<size-l) 
{ 

// System.out.println("get a POS >>>>>>>>>>>>> 4"); 
pointer= iPoSE[ ++rw)[A]; 
while((pointer.next==null && rw<size-l)ll(rw=A && rw<size-1)) 
pointer= iPoSE[++rw](A]; 

if(pointer.next ! =null) 
{ 

// System.out.println("get a POS >>>>>>>>>>>>> 5"); 

} 

pointer = pointer.next; 
return pointer; 

} //end of horizontal search 
} 
return null; 

public void print(.) 
{ 

. \n")· System.out. println( "\n------------- waits -------------- , 
instancePoSEpisode tmpPoS; 
for( int i=O;i<size;i++) 

for( int j=Oj<sizej++) 
{ 
tmpPoS = iPoSE[i]fj].next; 
if(tmpPoS!=null) 
{ 

} 

System. out. println( "i =" +i+" j="+j); 
tmpPoS. print(); 

S} t:ll\.\\) WII\\S -·· ······------\n")· 
ystcm.out.println( "' Tl------------- 111, ""'· ' 
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