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I. INTRODUCTION 
I.A. Background 

Mercury, a metal with no known physiological function, produces toxic effects in 

both the central nervous system (CNS) and peripheral nervous system (PNS). Figure 1 

depicts the various effects mercury has on cellular function. 

DNA 
(Damage, Mutation, 

Synthesis, etc.) 

N europrotective Defenses 
(Superoxide Dismutase, 
Glutathione, Catalase) 

Figure 1: Diagram of the physiological components mercury is known to affect 

The risk of low-level exposure to mercury is a very realistic threat since mercury exists in 

the environment in multiple forms, including trace metals as well as various 

pharmaceuticals, such as diuretics, antiseptics and skin preparations (U.S. Public Health, 

1989). With its specificity for cerebellar granule cells (Fonfria et al., 2001 ), mercurials 

interact with various CNS components, altering the intracellular calcium concentrations 

(Ca2+) and protein phosphorylation processes, both of which cause damage to the cells of 

the CNS. Mercury can interfere with synaptic transmission through effects on 

neurotransmitters, neurotransmitter receptors and the neuronal membrane. The clinical 



symptoms of mercury toxicity suggest the involvement of several motor, sensory, and 

cortical neuropathies. 

The toxicity of mercury is due, in part, to its oxidative properties. Since 

preceding research has shown that mercury generates reactive oxygen species and lipid 

peroxidation in brain tissues (Lee, et al., 200 I), it can be concluded that the resulting 

oxidative stress may contribute to the development of neurodegenerative disorders caused 

by mercury intoxication (Hussain, et al., 1997). Oxidative stress induced by the divalent 

mercury ion (Hg2
+) increases the phosphorylation of tau protein in neuroblastoma cells 

(Olivieri et al., 2000), which is a common characteristic in patients suffering from 

Alzheimer's disease (AD). Perhaps this toxic metal represents an unexplored 

environmental factor that initiates a pathogenic cascade, resulting in CNS defects related 

to AD. The oxidative stress caused by low-level mercury concentrations over long 

periods of time may increase an individual's susceptibility to certain neurodegenerative 

diseases, like Alzheimer's disease. 

Chelation therapy is a common treatment for metal-induced pathologies. 

Chelation is defined as the formation of a metal ion complex in which the metal ion is 

associated with a charged or uncharged electron donor referred to as a ligand (Goyer, 

1991 ). At present, succimer is the chelation treatment used for acute mercury exposure 

(Dart, 2000). However it remains unclear as to whether the observed increase in mercury 

output upon treatment is a result of chelation action in the CNS. Dimercaptopropane 

sulfonic acid or 2,3-dimercapto-propane sulfonate (DMPS) has been found to remove 

extracellular mercury, but due to its non-Iipophilic properties, this chelating agent is 

unable to penetrate tissues to bind and remove mercury (Goyer, 1991 ). While research 
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has demonstrated that administration of this compound to patients with chronic mercury 

exposure yielded an increase in urinary mercury levels (Godfrey et al., 2003). CHEMET® 

(succimer .. 100mg capsule, NDA#Ol 9998) manufactured by Ovation Pharmaceuticals has 

been approved by the FDA and is available by prescription. In addition to the possible 

safety concerns and risk factors that prevent its approved usage, there is again no 

evidence that DMPS targets mercury in the CNS. While the pursuit for a treatment that 

focuses on the removal of mercury localized in the CNS continues, it is important to 

investigate both the concentration- and time-dependent effects this metal may exert on 

neurons represe~tative of the areas in the CNS predisposed to mercury-induced 

neurotoxicity. · 

I B. Signfficance/Objective of Study 

Due to the fact that the bulk of previous research has focused on acute exposure, 

the purpose of this project was to examine the functional, cellular and pharmacological 

changes that occurred upon exposing neuronal cells to low-level mercury concentrations. 

The rationale for low-level toxin exposure was to define better the intermediary changes 

that may lead to loss of cell function because previous work has shown that in the 

progressive stages of neurotoxic disease, biochemical events usually precede structural 

changes and permanent nervous system lesions or dysfunction (Manzo, et al., 1996). 

Lower concentrations of a toxicant may initiate subtle changes in cellular function .. which 

gradually gives way to cell dysfunction and/or death. It has been suggested that 

sequential measurements of neurochemical biomarkers may be useful to assess end points 

indicative of early manifestations oflater-developing toxicity .. recovery processes or 

adaptive changes during chronic exposure (Manzo, et a)., 1996). The goal of this work is 
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to pinpoint how mercury alters normal cellular mechanisms, ultimately leading to cell 

death, which is seen with acute exposure. 

Although clinical diagnosis and proof of chronic low-level mercury toxicity has 

been difficult to characterize due to the non-specific nature of the symptoms and signs 

(Godfrey et al., 2003), investigations of both the in vivo and in vitro effects upon mercury 

ex po sure have endeavored to identify possible biomarkers so as to prevent debilitating 

neurological long-term effects. The relevance of this work corresponds to the plethora of 

environmental mercury sources and the threat of covert exposure to a multi-faceted 

toxicant. 

The dopaminergic system was the focus of this study since symptoms of mercury 

toxicity, such as sensory, cognitive and motor malfunctions, closely resemble symptoms 

of a dysfunctional dopamine system. Neurological diseases like Alzheimer's, 

Parkinson's and schizophrenia would fall into this category of dopaminergic dysfunction. 

Dopamine uptake was examined as an index of toxicity because the metabolism of excess 

dopamine in the synapse results in an increased production of reactive oxygen species. 

The SK-N-SH cell line was utilized to study mercury toxicity because of its similarity to 

dopaminergic neurons in the substantia nigra and therefore reflect what is to be expected 

with in vivo studies. Functional studies were performed to explore changes in dopamine 

uptake when cells were treated with mercury. Cell viability and mode of cell death was 

examined to understand better necrotic and apoptotic mechanisms. Pharmacological 

concerns were addressed by measuring both transporter affinity and density to determine 

how mercury may alter the efficiency of the transporter as well as its ability to upregulate 

or downregulate the number of transporters in the cells. Evaluating the effects of low 
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levels of mercury will best mimic 'natural' mercury exposure in the environment and 

may shed light on a possible role for mercury in the progression ofneurodegenerative 

diseases. 
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II. LITERATURE REVIEW 

II.A. SK-N-SH Cell Line 

The SK-N-SH cell line, developed by J. L. Biedler, originated from the cells of a 

metastatic site in the brain of a 4-year-old female with bone marrow neuroblastoma 

(A TCC www.atcc.org). These cells have been used as a target cell line for induced 

cytotoxic studies. Researchers have found these particular cells to be noradrenergic in 

nature (Richards and Sadee, 1986), supporting the potential bioactivity of the 

neurotransmitters dopamine (DA) and norepinephrine (NE). Although it has not been 

officially reported that the SK-N-SH cell line specifically expresses dopamine 

transporters (DAT), previous studies have demonstrated that both DA and NE accumulate 

through a single competitive, saturable and active transport process (Richards and Sadee, 

1986). Active transport is indeed both sodium- and temperature-dependent (Richards and 

Sadee, 1986). While the SK-N-SH cell line has been described as neuronal-like cells 

with the ability to produce DA and NE, these cells were found to produce larger amounts 

of DA than NE (Richards and Sadee, 1986). The work of Liu and colleagues (2001) 

revealed that the viability of SK-N-SH cells has been linked to dopamine-induced 

cytotoxicity, which could be due to neuronal cells' increased sensitivity to DA 

neurotoxicity, the mechanism of antioxidants, as well as receptor-mediated signal 

transduction. These cells are routinely used in studies as a model of neurotoxicity as a 

consequence of the cell line expressing a means for both noradrenergic and dopaminergic 

transport. Therefore, the SK-N-SH cell line was utilized as our model system to examine 

mercury toxicity due to their similarity to dopaminergic neurons in the substantia nigra 

and therefore reflect what is to be expected with in vivo studies. 
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11.B. Dopamine Transporter (DAT) Pharmacology 

The dopamine transporter consists of twelve transmembrane spanning regions, 

with a large glycosyiated extracellular loop between regions III and IV (Figure 2). 

1NTAANEUftQNAL 

Figure 2: Sche111atic representation of the amino acid sequence from the rat dop~ine 
transporter. I through XII denote transmembrane spanning regions, (-SH) symbolize 

suggested localization of cysteine groups and w signify glycolsylation sites. (Schweri, 
1994) ' 

The mechanism of transport for the DAT, including the direction and magnitude, is 

dependent on membrane potential and the sodium- (Na+) and chloride- (Cr) ion gradients 

(F alkenburger, et al., 200 I). Located on the presynaptic terminal, the DAT represents a 

major mechanism for the inactivation of DA transmission at the synapse, thus serving a 

pivotal role in the regulation of DA levels in the central nervous system (Jiao~ et al., 

2003 ). Although the primary function of DAT is to move dopamine from the synaptic 
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space into the neuron, there is also evidence that the DA transporter can cause dopamine 

to be released from the pre-synaptic cell in dendritic-dendritic exchanges within the 

substantia nigra (Loupe, et al., 2002), leading to excess synaptic DA. 

In an attempt to characterize the DAT, previous research has examined the 

number of binding sites, conformations of the transporter, and the interaction of different 

ligands. Earlier work has not been able to confirm whether the DAT has one or two 

binding sites (Dersch~ et al., 1994). However, since DAT has high-affinity binding sites 

that are triggered at the low extracellular DA concentration such that DAT can 

accomplish its normal uptake function, the intracellular and extracellular balance of 

neurotransmitter is maintained (Liu, et al., 2001 ). Although both the dopamine and 

norepinephrine transporters (DAT and NET) can effectively transport each other"s 

substrates, NET transports dopamine and norepinephrine with similar affinity (Km of 

approximately 1 µM) values, whereas the DAT displays a 10-fold higher affinity for 

dopamine over norepinephrine (Giros, et al., 1994). It is important to note that the DA 

recognition site on the DAT (where DA binds) can· face the inner or outer surface of the 

membrane, with the direction of DA transport being dependent on which way the 

recognition site is facing (Eshleman, et al., 1994 ). Damage to the membrane, including 

lipid peroxidation., protein oxidation and other effects of oxidative stress, can also change 

the conformation of the DAT protein (Wu, et al., 1997), creating a nonfunctional 

transporter. Certain drugs also have a high affinity for DAT binding sites and once 

bound, they can modulate synaptic DA concentrations through a number of different 

actions. The drug can compete with other ligands, including DA, for the binding site, act 
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as a substrate and in turn increase the release of DA, or completely block the transporter, 

inhibiting the reuptake mechanism. 

In addition to preventing DA reuptake, blocking the DAT prohibits the dendritic 

release of dopamine and self-inhibition of the neuron (Falkenburger, et al., 2001). The 

work of Dersch and associates (1994) suggests that the binding sites for various ligands 

may have overlapping domains of the DA uptake inhibitor recognition site. Due to the 

possibility of indistinct binding domains, it remains unclear whether different DA uptake 

blockers bind to one and the same domain on the DAT or to different domains (Wu, et 

al., 1997). This uncertainty may account for the potency of various drugs, effects on 

different neurotransmitters as well as other elicited responses. Potential conformational 

changes to the transporter can also change the activity of certain DAT inhibitors 

(Eshleman, et al., 1994). For example, an inhibitory drug has a higher affinity for the 

outward facing site. Once the drug binds, the equilibrium shifts to the outward facing 

site, preventing DA release through the DAT. When the outward-facing site is blocked 

by the bound ligand; nothing can get into the cell via the transporter and due to the effects 

of the bound ligand, nothing can get out of the cell by way of the transporter, resulting in 

complete inactivation of DAT. 

The function of the DAT has been linked to apoptosis. It has been suggested that 

the DAT mediates a dopamine-dependent apoptotic signal transduction pathway that is 

independent of dopamine uptake into the cell (Liu, et al., 2001 ). High extracellular 

concentrations of DA can activate the low-affinity binding sites on the transporter, 

stimulating a similar signal transduction pathway, again triggering apoptotic processes 

(Liu, et al., 2001 ). In order to attenuate this phenomenon, administration of a compound 
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that stimulates DA uptake would reduce extracellular DA concentrations and could 

therefore prevent apoptotic signal transduction pathways. 

JI. C. Nm·epinephrine Transporter (NET) Pharmacology 

Like the DAT, the NET also consists of twelve transmembrane spanning regions 

with both the amino and carboxyl tenninals positioned in the cytosol. As a member of 

the monoamine transporter family, activity of NET is dependent on the Na+/cr gradient. 

However .. previous research has uncovered data that suggest NET is less vulnerable to 

inactivation by oxidative stress than other Na+ /Cr dependent transporters (Fleckenstein, 

et al., 2000). Perhaps the difference in transporter activity when subjected to oxidative 

free radicals may be related to the uptake mechanism and regulation of the NET. 

The primary function of NET is to terminate transmission of norepinephrine by 

definition (Zhu, et al., 2000). Although it is not NET's principal substrate, there is some 

evidence of that extracellular dopamine can be regulated by the NET (Yamamoto and 

Novotney, 1998). NET activity is inhibited by antidepressants, such as desipramine and 

reboxetine (Weinshenker, et al., 2002) and psychostimulants, like cocaine and 

amphetamine (Zhu, et al., 2000). By blocking the transporter, NE accumulates in the 

synapse. Norepinephrine signaling modulates a plethora of neurological functions 

including attention, mood, arousal, learning and memory (Schwartz, et al., 2003) as well 

as being involved in cardiovascular function, metabolism, embryonic development, 

susceptibility to seizure, maternal behavior and response to drugs of abuse (Weinshenker, 

et al., 2002). In fact, Boschmann and colleagues (2002) concluded that norepinephrine 

release from postganglionic adrenergic neurons has a central role in the regulation of 

energy metabolism and blood pressure. Thus, compounds that modulate norepinephrine 
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uptake can change or interfere with the connection between the transmitter and its effects 

throughout the body. 

The NET is regulated by neuronal activity, neurotransmitters, peptide hormones 

and second messengers (Apparsundaram, et al., 2001), such as protein kinase C (PKC), 

cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP) and 

nitric oxide (NO). For example, NET protein levels have been reported to be 

downregulated by G protein-coupled receptors linked to protein kinase C 

(Apparsundaram, et al., 200 I). PKC regulation begins through G protein-coupled 

pathways, where adenylate cyclase and phospholipase C (PLC) are activated. Increased 

levels of PLC lead to increased amounts of inositol phosphates and diacylglycerol 

(DAG). The elevation of inositol phosphates causes Ca++ -dependent activation of PKC 

(Apparsundaram, et aL, 1998), which ultimately affects the number of norepinephrine 

transporter proteins. Recalling the systems linked to norepinephrine, it is not surprising 

that the regulation and expression of the NET protein has been linked to the development 

of psychiatric illnesses, such as depression (Zhu, et al., 2000), post traumatic stress 

syndrome and attention deficit disorder (Schwartz, et al., 2003). The work of 

Apparsundaram and associates (200 I) found that impaired NET function or expression 

has been reported in cardiac failure, diabetic cardiomyopathy and hypertension, 

establishing a link between norepinephrine transport and disease. 

11.D. Dopamine Uptake Inhibitors: GBR-12909 and Mazindol 

In order to evaluate the relative extent of catecholamine uptake, selective and 

nonselective transport inhibitors are used to differentiate pharmacologically between 

dopamine transport through DAT and NET. If a selective drug preferentially targets one 
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of the transporter systems, a nonselective drug can be utilized to determine the amount of 

catecholamine uptake through the other transporter system. Fractional occupancy, a term 

used to relate the nwnber of occupied receptor sites and the concentration of ligand 

(Hodgson and Smart, 2001), can be used to calculate the density of transport sites 

inhibited in functional assays. 

1-[2[bis ( 4-fluorophenyl)] ethyl] 4-(3-phenyl propenyl)-piperazine (Hosli and 

Hosli, 1997), commonly termed GBR-12909, was used in the uptake studies due to its 

selectivity for the dopamine transporter. According to Elmer and collaborators (1996), 

G BR-12909 has a Ki of 3. 7 nM for the dopamine transporter, which means this 

concentration of GBR-12909 inhibited 50% of dopamine uptake in comparison to control 

values, taking into account the affinity of GBR-12909 for the DAT. This drug selectively 

inhibits the uptake of dopamine with a 100-fold lower affinity for norepinephrine uptake 

inhibition (Hosli and Hosli, 1997). The in vivo and in vitro differences in the ability of 

GBR-12909 to 'successfully' block dopamine uptake by inhibiting the transporter is 

dependent on its phannacokinetic properties such as permeability to the blood-brain 

barrier, metabolism, or protein binding (Kimura, et al., 2003). The research performed 

by Loupe and associates (2002) determined that GBR-12909 is a highly selective 

dopamine re-uptake blocker that by inhibiting presynaptic dopamine reuptake, makes 

dopamine more available at post-synaptic receptor sites. Kimura and colleagues (2003) 

confirmed that extracellular dopamine levels increased after GBR-12909 is administered 

when compared to control values. 

Since GBR-12909 preferably inhibits uptake at the DAT more than the NET, 

another nonselective inhibitor was chosen for use in functional assays to account for the 
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dopamine being taken up by NET. The work of Richards and Sadee ( 1986) showed that 

mazindol inhibits dopamine accumulation in SK-N-SH cells. Although [3H] mazindol 

has been reported to label both dopamine and norepinephrine uptake sites and block both 

DA and NE transporters (Eshleman, et al., 1994; Richards and Sadee, 1986), a greater 

concentration of extracellular dopamine was measured when using GBR-12909 

compared to using mazindol (Loupe, et al., 2002). According to the work of Nakachl and 

collaborators ( 1995), the physiological use of dopamine uptake inhibitors like mazindol 

and GBR-12909 are to enhance dopaminergic neurotransmission in the central nervous 

system through an increase in dopamine concentration in the synaptic cleft as the result of 

reuptake inhibition at nerve tenninals. For the functional studies employed in this 

project, both the selectivity and inhibitory activity of these drugs can be exploited in 

order to identify the transport system as well as quantify the amount of dopamine being 

taken back into the cells. Mazindol, reported to be a non-addictive dopamine uptake 

inhibitor of moderate potency, has a Ki value of 38.0 nM (Elmer, et al., 1996) for the 

dopamine transporter. The larger Ki value signifies that greater concentrations of 

mazindol are required to achieve 50% inhibition of dopamine uptake. For these studies, a 

concentration of I µM mazindol will inhibit DA uptake through the DAT or NET greater 

than 95% occupancy allowing for mazindol to be used to define nonspecific uptake. 

/I.E. Neurotoxicity: Focus on the Dopaminergic System 

Within the nervous system, there are a number of molecular targets for toxicity 

including membrane-bound receptors, enzymes responsible for synthesis and degradation 

of neurotransmitters, second messengers and high-affinity uptake systems (Manzo, et al., 

1996). With respect to the dopaminergic system, all five dopamine receptor subtypes 

13 



(Dl-05), classified as DI- or D2-like, as well as the dopamine transporter, the primary 

uptake mechanism for DA, are membrane-bound macromolecules (Siegel, et al., 1999). 

As a part of the biosynthetic pathway for catecholamines (Figure 3 ), the synthesis of 

dopamine and further synthesis of norepinephrine and epinephrine are dependent on 

specific enzymes and cofactors. 

L-Tyrosine 

• L-DOPA 

l 
Dopamine 

l 
N orepinephrine 

l 
Epinephrine 

Tyrosine hydroxylase 
[Biopterin, 0 2] 

DOPA decarboxy lase 
[Pyridoxal phosphate] 

Dopamine ~-hydroxylase 
[ 0 2, Ascorbate] 

Phenylethanolamine 
N-methyltransferase 

[S-adenosylmethionine] 

Figure 3: Simplified flowchart depicting the various steps in the pathway for 
catecholamine synthesis. Enzymes responsible for conversion to the next step of the 
pathway are shown to the right. Substrates and cofactors required for each conversion 
process are listed in square brackets. (Siegel, et al., 1999) 

Tyrosine hydroxylase uses molecular oxygen and biopterin to convert tyrosine to 3,4-

dihydroxy-L -phenylalanine (L -DOPA) (Siegel, et al., 1999). This product is then 

converted to dopamine, the final step of the pathway in dopaminergic neurons, by way of 

the enzyme DOPA decarboxylase and its coenzyme pyridoxal phosphate (Siegel. et al... 
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1999). In non-dopaminergic neurons, dopamine ~-hydroxylase, in conjunction with 

molecular oxygen and ascorbate, changes dopamine to norepinephrine, which can then 

further be synthesized to epinephrine by phenylethanolamine N-methyltransferase and S­

adenosylmethionine (Siegel, et al., 1999). Monoamine oxidase (MAO), an enzyme 

responsible for deamination .. inactivates catecholamines by converting them to their 

respective aldehyde (Siegel, et al." 1999). According to the research done by Manzo and 

colleagues ( 1996), neuronal second messenger systems such as intracellular calcium ion, 

adenylyl cyclase, guanylyl cyclase, phosphoinositides, cAMP-dependent protein kinase 

and protein kinase C can be affected by submicromolar concentrations of mercury. This 

same work contends that changes to second messenger systems may create biological 

""factors", which in tum regulate the long-term responses to toxic substances acting on 

that system (Manzo, et al., 1996). Identification and measurement of these factors could 

help to predict the consequences of chronic exposure to mercury. 

The dopaminergic system is rooted in the basal ganglia. This portion of the brain 

is linked to cortical, thalamic, sensory and motor function and regulated by various 

neurotransmitters, including dopamine, norepinephrine, serotonin, glutamate, aspartate, 

acetylcholine, and gamma-aminobutyric acid (GABA) (Siegel, et al., 1999). The 

dopaminergic neurons of the substantia nigra innervate the striatum, making them the 

most important modulators of basal ganglia function (Falkenburger, et al., 2001; Siegel, 

et al., 1999). Currently, serum levels of dopamine ~-hydroxylase and monoamine 

oxidase type Bare being used as biomarkers to gauge dopaminergic function (Manzo, et 

al., 1996). 
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11. F. The Histo,y of Mercury: Different Forms in the Environment and Early Uses . 

Mercury exhibits toxicity in the central and peripheral nervous systems, as well as 

in other organ systems. The general population is constantly subjected to exposure to 

various forms of mercury .. including organic mercury, inorganic mercurial salts, and 

elemental mercury in the form of mercury vapor. Methylmercury, a form of organic 

mercury .. tends to bioaccumulate in the food chain (Tchounwou, et al., 2003 ), especially 

in fish. Organic mercury can be absorbed through the lungs or gastrointestinal (GI) tract, 

as well as through the skin in some cases (Gochfeld, 2003). Inorganic forms of mercury 

are extremely potent enzyme inactivators (Godfrey, et al., 2003), disrupting numerous 

enzymatic reactions. The different forms of inorganic mercury vary in solubility and 

adsorptivity (Gochfeld, 2003)" and therefore in potency and intrinsic activity. Common 

inorganic salts include: mercuric chloride (HgCb) which is used in certain fungicides, 

mercurous chloride (Hg2Cli, also known as calomel) which has been used in medicine, 

mercuric fulminate (Hg(OCN)i) which is used as a detonator for explosives and mercuric 

sulfide (HgS .. also called vermillion) which is used as a high-grade paint pigment 

(Tchounwou, et al., 2003). Elemental mercury, also termed 'quicksilver', is readily 

volatilized (Gochfeld, 2003), producing mercury vapor. Mercury vapor, a common 

contaminant of industrial applications, has been found to be very toxic to the lungs and 

nervous system (Asano, et al., 2000). Researchers have also revealed that the natural 

deterioration of mercury-containing dental amalgams can lead to mercury vapor 

production (Godfrey, et al., 2003). The risk oflow-level exposure to mercury is a serious 

threat due to environmental contamination as a result of mining, smelting, and industrial 
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discharge including ingestion via inhalation and the food chain (Stohs and Bagchi, 19.95), 

as well as commercial, medicinal, and agricultural usage. 

While society may not have been aware of mercury's toxic effects at the time, use 

of this metal has been dated back as early as the 15th or 16th century (Asano, et al., 2000). 

Mercury is a naturally occurring trace metal found in the earth's crust, mainly in sulfide 

ores .. such as cinnabar (Kazantis, 2002). Besides the mining of such ores, additional 

mercury can be released into the environment by way of erosion and volcanic eruption 

(Tchounwou .. et al. .. 2003). Mercury has also been used to extract gold from its ores 

(Kazantis .. 2002), creating yet another potential exposure route. Industrial use for 

mercury has included lamps, measurement, medical instruments as well as a mildew­

proofing agent for paints (Kazantis, 2002). 

At one time, industrial mercury discharge into waterways was commonplace 

because people believed that mercury sank to the bottom and bound to the sediment, 

producing no harmful effects (Tchounwou, et al., 2003); unfortunately they were very 

wrong. In the l 950's, the first major mercury outbreak of mercury poisoning (in the form 

of methylmercury) occurred in Minimata, Japan where local industrial discharge created 

mercury-polluted waters and people were contaminated by eating poisoned fish (Castoldi, 

et al... 2001 ). The chemical company responsible for this deadly pollution was not forced 

to curtail its mercury releases until 1968 (Gochfeld, 2003), allowing for the 

methyl mercury to make its way up through food chain to affect the health of innocent 

citizens. During the early 20th century, the fungicidal properties of mercurial compounds 

led to commercial agricultural applications (Tchounwou, et al., 2003). Mercury's use in 

both pesticides and fungicides afforded this toxic metal another entrance to both the food 
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chain and water supplies. Another significant mercury-poisoning incident took place in 

Iraq in the 1970's when people had eaten bread made from grain that had been treated 

with an organomercuric fungicide ( Castoldi, et al., 2001 ). 

In the realm of medicine, a type of inorganic mercury known as calomel (sweet 

mercury) was once commonly used to treat many ailments, including yellow fever, 

typhus and syphilis (Weinstein and Bernstein, 2003). In fact, it wasn't until the l 940's 

that people realized its toxicity when calomel-based teething powders caused a scourge of 

mercury poisoning called pink disease among infants and children (Weinstein and 

Bemstein'I 2003 ). At one point in time, different forms of mercury were used in 

cosmetic-based pharmaceutical products; ammoniated mercury in skin lightening creams 

and mercuric iodide in skin-lightening soaps (Kazantis, 2002). More recently, the 

American Academy of Family Physicians, the Advisory Committee on Immunization 

Practices and the U.S. Public Health Service have advised that thimerosal, a derivative of 

ethylmercury, should no longer be used as a vaccine preservative or biological agent for 

medical therapy (Tchounwou, et al., 2003). In response to the combination of a desire for 

health preservation and a growing knowledge of its toxic effects, scientists set out to 

investigate the different targets and mechanisms involved in mercury toxicity. 

/1. G. Toxic Action: Pathophysiological Effects Resulting from Mercury Exposure 

The toxicity of a metal is contingent upon several factors, including but not 

limited to: solubility, the ability to be absorbed and distributed into tissues, transport, 

chemical reactivity and complexes formed when the metal binds to certain biological 

molecules (Stohs and Bagchi, 1995). According to the work of Tchounwou and 

colleagues (2003 )'I mercury toxicity specifically depends on exposure route, frequency· 
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dose level.. nutritional status, individual susceptibility and genetic disposition. Though 

they may have different mechanisms of action, inorganic and organic forms of mercury 

exhibit a wide range of toxic properties including nephrotoxicity, neurotoxicity and 

gastrointestinal toxicity with ulceration as well as hemorrhage (Frisk, et al., 2000). 

Studies have shown that inorganic mercury causes toxicity in the kidney; the 

proximal convoluted tubule being the main target for damage in response to acute 

exposure (Rodilla., et al., 1998). The inorganic form of mercury quickly induces 

nephrotoxicity as the mercuric salts accumulate rapidly in the kidneys, producing acute 

tubular necrosis within hours of administration (Rodilla, et al., 1998). According to the 

work of Aleo and collaborators (2002), a possible mechanism in which mercury causes 

nephrotoxicity is via the biochemical damage of mitochondrial function and calcium 

metabolism as well as immune mechanism. 

Exposure to mercury is known to elicit neurotoxic consequences, although the 

pathogenesis of mercury toxicity depends on several factors, including the chemical form 

of mercury., and the developmental period at which intoxication occurs (Monnet-Tschudi, 

et al. .. 1996). The research ofTchounwou and associates (2003) found that mercury 

damages DNA., impairs mitosis, and disrupts neuronal migration, which iJJustrates how 

mercury can be especially damaging to a developing child. Previous work has examined 

the symptoms and general pathology of mercury toxicity with long- and short-term 

exposures. Mattingly and colleagues (2001) found that human exposure to moderate 

levels of mercury can cause neurotoxic manifestations, including sensory, cognitive and 

motor abnormalities. Long-term effects of mercury neurotoxicity include central hearing 

loss., vestibular dysfunction, poor concentration, mental deterioration, speech difficulty, 
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chronic headaches .. impaired vision, autism, chronic fatigue, weakness of extremities, 

insomnia .. ataxia~ tremor, delirium and rigidity (Asano, et al., 2000; Godfrey, et al., 2003; 

Gopal. 2003). In addition to defects in the CNS, mercury exposure has also been 

associated with erythrism, arrhythmias and cardiomyopathy (Tchounwou, et al., 2003). 

Though lower concentrations of mercury may have delayed cytotoxic effects, the 

presence of mercury may still interfere with signal transduction and stimulate protein 

tyrosine phosphorylation (McCabe, et al., 1999) as well as reduce DNA synthesis. Even 

short-term. low-concentration exposure to mercury indicate that mercuric chloride 

increases post-transcriptional elevation of protein and intracellular Ca2
+ concentrations, 

as well as oxidative phosphorylation in the mitochondria (Rao, et al., 2001 ). 

According to the work of Godfrey and associates (2003), mercury is very 

destructive at the mitochondrial level where catalase can demethylate organic mercury 

species into highly reactive inorganic mercury, which can then further damage to cellular 

function. The research done by Uversky, Li and Fink (2001) ascertained that metal­

induced oxidant stress can damage critical biological molecules and initiate a cascade of 

events including mitochondrial dysfunction, excitotoxicity, and a rise in cytosolic free 

calcium, leading to cell death. Mercury has been shown to disrupt cellular metabolism 

and activities through interaction with membrane proteins (Worth, et al., 200 I), resulting 

in membrane polarization and production of both nitric oxide (NO) and other reactive 

oxygen species (ROS). 

Generation of ROS propagates further damage to aspects of cellular function such 

as alteration to DNA, breakage of DNA strands, disruption of protein function, reduction 

of glutathione~ inhibition of glutathione synthesis, alteration in calcium homeostasis and 
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lipid peroxidation (Rao, et al., 2001; Stohs and Bagchi, 1995). In addition to increased 

ROS production~ exposure to mercury decreased the activity of superoxide dismutase 

(SOD) .. Cu/Zn-SOD and Mn-SOD (Hussain, et al., 1997), all of which are enzymes that 

serve as crucial antioxidant defenses. Mercury's ability to interact with the membrane 

can also lead to malfunctions with transporter proteins, inhibiting activity at the Na+ -K+ -

er co-transporter (Jacoby, et al., 1999). The variety of effects seen in mercury-induced 

neurotoxicity moved scientists' focus to mercury's mechanism of action in the central 

nervous system. 

II. H. localized Mechanism of Action: Mercury's Effects in the CNS 

Early studies in the CNS began to shed some light on the activity of mercury in 

the brain. Brookes ( 1988) found that mercury compounds inhibit amino acid transport. 

Mercury has also been shown to alter protein function due to interaction with sulthydryl 

groups (Jacoby, et al., 1999). Others determined that exposure to mercury predisposes 

affected cells to further damage from reactive oxygen species (Aleo, et al., 2002) brought 

on by oxidative stress. 

Mercury's mechanism of action begins with gaining access to the CNS, and 

exerting its toxic effects at certain receptors in specific brain regions, causing dysfunction 

in the sensitive balance of neurological systems. Mercury enters the CNS through a 

variety of different mechanisms. The brain's main defense mechanism against toxicants 

is the blood brain barrier (BBB). According to Zheng and colleagues (2003), a series of 

active or receptor-mediated transport systems inherent to the BBB vasculature serve to 

control the transport of metals into the brain. However, the permeability across the BBB 

is dependent upon the toxicant's lipophilicity and size (Zheng, et al., 2003), in this case 
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mercury. Organic mercury is more lipophilic, allowing it to easily diffuse across 

membranes. Mercury can also gain entry_ to the CNS via "piggy-back" transport due to 

its affinity for sulfl1ydryl groups; by forming complexes with molecules which already 

have well-established physiological transport systems, such as glutathione, methionine or 

cysteine (Hultberg. et al., 2001, Zheng, et al., 2003). Though most inorganic mercury 

salts are less toxic due to their decreased rate of transport across the BBB, certain 

inorganic mercury salts, like HgCh can act as a direct barrier toxicant (Zheng, et al., 

2003) or a choroid plexus toxicant (Zheng, 2001). 

Active defense systems located in the brain, like superoxide dismutase, 

glutathione peroxidase and catalase, work to prevent free radical-initiated oxidative stress 

(Zheng, et al., 2003). However, the effectiveness of the barrier systems may also be 

compromised either in pathological situations or following toxic insults by compounds 

that target the blood brain interface (Zheng, et al., 2003), such as heavy metals. The 

breakdown of said barriers, possibly caused by metal toxicity, can lead to the "leakage" 

of neural macromolecules and immune cells (Manzo, et al., 1996), allowing them to 

become more vulnerable to further damage by metal toxicants such as mercury. 

Earlier studies have suggested that mercury is taken up by microvesicles in 

neurosecretory terminals and conveyed to neuronal bodies by retrograde axonal transport 

(Villegas, et al., 1999). The research of Hare and associates (1990) determined that 

introduction of Hg2+ into the system increases the permeability of the plasma membrane 

to small molecules, enhancing the cellular injury sustained by such toxic action. Other 

work has shown that mercury deposits directly in the choroid plexus; causing damage to 

the structure itself as well as mediating entry for metals and other neuroactive toxicants 
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into brain tissues (Zheng, 2001 ). Due to the fact that mercury disrupts the normal 

function of ion channels (Asano, et al., 2000), this may serve as a means for mercury to 

gain access to brain tissue. Once the toxin has made its way into the cells, mercury can 

bind to a variety of enzyme systems producing non-specific cell injury or cell death 

(Frisk .. et al... 2000). 

Relatively low concentrations of mercury (1 - 1000 µM) can inhibit activity at 

muscarinic, nicotinic, NMDA, GABAA and dopamine receptors (Fonfria, et al., 2001). 

Mercury disturbs the activity of enzymes by binding to electron-rich sulfhydryls, 

carboxyls, and imidizoles (Kumar, et al., 2002) but has the highest affinity for sulfhydryl 

groups, which can be found in glutathione, metallothionine and cysteine. To a lesser 

degree, mercury has also been found to bind to hydroxyl, carboxyl and phosphoryl 

groups (Tchounwou, et al., 2003), all of which are imperative for protein function. 

Previous research has also uncovered mercury's ability to alter neuronal differentiation, 

which can affect the production of neurotransmitters and ultimately activate the apoptotic 

cascade (Rossi, et al.1997). The work of Faro, and others (2001) has indicated HgCh 

exerts a well-known inhibitory effect on membrane transport that is generally attributed 

to its high-affinity interaction with protein sulfhydryl groups. Mercury's reactivity at 

sulfbydryl and other electron-donating groups can cause protein unfolding (Brookes, 

1988), which can result in a breakage of the lipid bilayer membrane or disruption of 

membrane transporter function. The role of metallothionine in metabolism, transport, 

and homeostasis of metals determines whether the pathway leads to toxicity or 

detoxification (Rodilla, et al., 1998). Dithiols, another form of sulfhydryl group, enhance 

the toxic effects of mercury due to its inability to form stable complexes .. which releases 
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mercury ions .. allowing for direct mercury uptake into cells (Hultberg, et al., 2002). The 

work ofTchounwou and colleagues (2003) confirmed that divalent inorganic mercury 

(Hg2
+) binds to multiple cell surface receptors via free sulfhydryl groups and results in 

nonspeci fie receptor clustering, dysregulated signal transduction, and disorders of cellular 

function. 

Due to its electrophilic nature, mercury can complex with DNA by binding to 

negatively charged sites~ altering base pairs and forming cross-linkages between strands, 

resulting in mutagenesis (Rao, et al., 2001), which can lead to the production of 

dysfunctional proteins. Mercury can also interfere with protein production and DNA 

synthesis by binding to the sulfhydryl groups contained in the amino acid sequences that 

make up proteins associated with replication (Rao, et al., 2001), ultimately distorting the 

genetic information so that the affected cell cannot maintain normal function. 

Furthermore, prior work has shown that mercury can bind to the electron-rich bases of 

mitochondrial DNA (Bhattacharya, et al., 1997), causing mutation, fragmentation and 

eventual degradation of DNA, rendering afflicted mitochondria useless. 

11.l Targeted Brain Regions 

There are several factors that determine what regions of the brain are affected by 

the toxic actions of mercury. Areas of the brain affected may be defined by transport 

efficiency (Brookes., 1988); the more efficient the transport systems, the more likely 

mercury will gain entry to initiate its toxic effects. Prior work has also suggested that 

mercury has achieved access to striatal tissue (Faro, et al., 2001 ), due to the increased 

levels of dopamine detected when exposed to mercury (HgCh). 
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One specific cell type in the brain that seems to be targeted by mercury toxicity is 

microglia. According to the work of Monnet-Tschudi and associates ( 1996), even at sub­

cytotoxic concentrations distinct glia-specific reactions could be observed with both 

organic and inorganic mercury compounds. Microglial cells have proven to be extremely 

sensitive to the toxic effects of mercury, exhibiting damage before any sign of neuronal 

degeneration in multiple brain regions (Monnet-Tschudi, et al., 1996). When microglia 

are activated by neuronal insult resulting in inflammation, the release of superoxide anion 

CO2-), hydrogen peroxide (H20 2), and nitric oxide (NO) is increased, further contributing 

to oxidative neurotoxicity (Wang, et al., 2003). The presence of these free radicals 

allows for the formation of peroxynitrite (ONOO), a highly reactive free radical which 

damages lipids, membranes, proteins, DNA and sulfhydryls, as well as inactivates critical 

enzymes (Wang, et al.;·2003). Activated microglia ean also release cytokines or 

proteases, which may trigger secondary cellular responses on astrocytes or neurons 

(Monnet-Tschudi, et al., 1996), possibly initiating apoptotic mechanisms. 

11.J. On A Cellular Level: Systems Affected by Mercury Exposure 

The various toxic effects of mercury play a role in a number of neurological 

systems, including the glutamate/glutamine cycle, dopaminergic, synaptic transmission, 

GABAergic, glutathione, calcium homeostasis, immune response, and motor activity. 

Sub-micromolar concentrations of HgCli have been shown to inhibit selectively 

glutamate uptake (Faro, et al., 200 I), increasing the concentration of glutamate in the 

synaptic space. Since uptake is the primary inactivation mechanism for synaptically 

released glutamate in the brain, inactivation of glutamate uptake could nevertheless 

accelerate processes of excitotoxic neurodegeneration associated with disease or aging 
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(Brookes .. 1992). Excessive stimulation of the glutamate/glutamine cycle results in a. 

state of excitotoxicity and ends up overwhelming neuroprotective systems, increasing DA 

release .. which in turn increases arachidonic acid production and leads to transferritin 

dysfunction (Weber .. 1999). Activation of ionotropic and metabotropic glutamate 

receptors can trigger the Ca2
+ -independent efflux of dopamine (Falkenburger, et al., 

200 I). Even though it is typically an excitatory transmitter, research has suggested that 

glutamate can inhibit dopaminergic pathways in the basal ganglia (Jiao, et al., 2003), 

which would still lead to neurotoxicity because inhibition of the pathways increases the 

amount of excess dopamine in the synaptic space. Although the inhibition of glutamate 

transport can be reversed, this process becomes less reversible when exposed to mercury 

for longer periods of time (Brookes, 1988). Similarly, inhibition of glutamate transport is 

also less reversible with higher concentrations of mercury (Brookes, 1988) due to the 

toxicant's oxidative properties and interaction with membrane proteins. 

Mercury also affects the dopaminergic system. Previous work has shown that 

mercury blocks the degradation pathway of catecholamines (Weinstein and Bernstein, 

2003 ) .. including dopamine. Neuronal dopamine uptake is both sodium- and temperature­

dependent .. indicating an active mechanism for dopamine transport (Hosli and Hosli, 

1 997). The dopamine transporter, located on the presynaptic terminal, terminates 

dopaminergic neurotransmission by accumulation of released dopamine into presynaptic 

neurons ( Dutta, et al., 2001 ). The functional importance of the dopamine transporter lies 

in its ability to clear excess synaptically released dopamine (Wu, et al., 1997). In fact, 

DAT sites represent a major mechanism for the inactivation of DA transmission at the 

synapse .. thus serving a pivotal role in the regulation of DA levels in the central nervous 
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system (Jiao .. et aL. 2003). Dopamine levels can be regulated by drugs that bind to DAT, 

modulating synaptic DA concentrations through different mechanisms (Eshleman, et al., 

1994 ) .. including blocking the transporter, acting as a substrate and increasing DA release 

or competing for the binding site. Excessive dopamine in the synapse is metabolized by 

one of two oxidation mechanisms. The one mechanism consists of monoamine oxidase­

A or -8 (MAO-A, MA0-8) oxidation of dopamine to produce 3,4 dihydroxyphenyl 

acetate (DHPA)., ammonia and hydrogen peroxide (Hodgson and Smart, 2001). 

DA+ 02 + H20 ~ DHPA + NH3 + H202 

Hydrogen peroxide can be further converted to hydroxyl radical, a toxic reactive oxygen 

species, through. the Fenton reaction. The second mechanism for oxidative breakdown of 

dopamine is auto-oxidation, where dopamine reacts with divalent oxygen to produce a 

semiquinone., a hydrogen ion and a superoxide radical, which can react with another 

molecule of dopamine to form a second semiquinone and more hydrogen peroxide 

(Hodgson and Smart, 2001 ). 

DA +02 ~SQ•+ •02-+lt' 

DA+ •02- + lit' ~ SQ•+ H202 

The production of hydrogen peroxide and other reactive oxygen species can be 

especially damaging to membrane integrity, DNA synthesis and overall cellular function. 

Although removing dopamine via reuptake by the DAT can prevent initiation of the 

dopamine metabolism mechanisms, this process can also be enhanced by the stimulation 

of dopamine release or production of reactive oxygen species (Weber, 1999). Excess 

dopamine can bring about dopamine-induced apoptosis in neuronal cells; however .. the 

extent of cell death depends on reuptake of dopamine, intracellular thiol modulation., and 
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mitochondrial function (Zhang, et al., 1998). Alteration and/or disruption of dopamine 

transport leads to dopamine accumulation in the synaptic space, resulting in the 

production of destructive reactive oxygen species via dopamine metabolism. 

Mercury-induced toxicity is known to affect synaptic transmission. Mercury 

interferes with signal transduction pathways due to the fact that this toxicant changes 

tyrosine phosphorylation of proteins and pathways regulated by receptor-associated 

tyrosine kinases, like nerve growth receptors (Mattingly, et al., 2001). The research of 

Wang and colleagues (2003) concluded oxidants such as mercury, are involved in the 

activation of multiple signaling pathways contributing to cytotoxicity, including the 

phosphorylation cascades leading to the activation of mitogen-activated protein kinases 

(MAPK). In addition to evidence of MAPK activation in brains of Alzheimer's patients, 

this enzyme has also been linked to mediation of apoptosis in neuroblastoma cells (Wang, 

et al., 2003 ). The work of Shanker, Hampson and Aschner (2004) tried to correlate 

methylmercury exposure with phospholipase A2 (PLA2) activity, an enzyme that plays a 

key role in the signal transduction pathways of many receptors. Due to its highly 

lipophilic nature, methyl mercury was found to quickly activate cytosolic PLA2 ( cPLA2) 

levels (Shanker, et al., 2004). Activation of cPLA2 not only catalyzes the breakdown of 

membrane lipids, but it also triggers the release of arachidonic acid (AA), whose pro­

inflammatory metabolites can activate voltage dependent and ligand-gated channels as 

well as contribute to ROS generation and impaired mitochondrial energy synthesis 

(Shanker, et aL 2004). The excessive stimulation of this enzyme, cPLA2, has been 

linked to the etiology of metal encephalopathies, stroke, seizures, cerebral ischemia and 

Alzheimer's disease (Shanker, et al., 2004), which potentially links the effects of 
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mercury-induced neurotoxicity to certain pathologies. Mercury triggers neurotoxicity by 

increasing and then suppressing the spontaneous release of neurotransmitters in the 

periphery (Yuan and Atchison, 1994). The effects ofneurotoxic mercurials depend on 

the site and potency of action, which is directly linked to the lipophilicity of the mercury 

compound .. as well as the possible reversibility of that binding action (Yuan and 

Atchison .. 1994 ). Hg2
+ has been shown to increase neurotransmitter release by changing 

intracellular calcium concentrations (Hare, et al., 1990). 

Mercury has also been shown to influence GABAergic function. Alterations in 

GABAergic function have been associated with various neurological and psychiatric 

disorders .. such as Huntington's disease, epilepsy, tardive dyskinesia, alcoholism, 

schizophrenia., sleep disorders, Parkinson's disease and mental retardation (Siegel, et al., 

1999). The two categories of GABA receptors, GABAA and GABA8 , are coupled to 

chloride and potassium ion channels, respectively (Siegel, et al., 1999). The research of 

Gopal (2003) established the GABAA receptor as another neuronal target for mercury, 

interrupting GABA signaling pathways and therefore hindering GABA function. 

Activation of the GABAA receptor mediates er influx, depolarizing the cell membrane, 

which then activates Ca2
+ influx (Siegel, et al., 1999) and can trigger apoptotic 

mechanisms. 

As a primary protective mechanism against oxidative stress, one can easily predict 

that mercury-induced toxicity affects glutathione (GSH), an essential antioxidant 

neuroprotector mainly localized in glial cells (Lee, et al., 2001 ). Previous research has 

found that incubation with inorganic mercury at higher concentrations leads to lipid 

peroxidation and a reduction in glutathione (Stacey and Kappus, 1982) .. causing a loss in 
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cell viability. Glutathione depletion can be resultant of synthesis inhibition, conjugation 

of GSH to electrophilic xenobiotics or the effects of oxidative stress (Hultberg, et al., 

2001 ). Although exposure to mercury has shown an initial increase in extracellular 

glutathione (Hultberg .. et al. .. 2001), the toxic process ultimately ends in glutathione 

depletion. The initial surge of glutathione may represent a compensatory mechanism to 

protect against further damage from oxidative stress or a reserve mechanism to replenish 

the gl utathione that has complexed mercury ions. In addition to cellular GSH, 

mitochondrial GSH levels are also diminished under oxidative conditions. As defensive 

systems like glutathione deteriorate due to the generation of ROS, normal mitochondrial 

activity becomes especially susceptible to disruptions in the energy production pathways. 

The research of Stohs and Bagchi ( 1995) noted that the addition of mercury to a system 

enhances hydrogen peroxide formation under conditions of impaired respiratory chain 

electron transport. The resulting depletion of glutathione leads to an increase in reactive 

oxygen species~ like superoxide ion, hydrogen peroxide and hydroxyl radical (Stohs and 

Bagchi, 1995). Resultant damage induced by ROS includes: lipid peroxidation, DNA 

fragmentation as well as altered calcium and sulfhydryl homeostasis. 

As previously mentioned, mercury-induced oxidative stress leads to impairment 

of calcium homeostasis. Oxidative stress due to free radical oxygen species increases 

intracellular calcium by bringing calcium into the cell and releasing inner stores of 

calcium (Stohs and Bagchi, 1995), which are commonly found in the mitochondria. An 

increase in Ca2
+ concentration can also trigger apoptotic mechanisms (Amoroso, et al., 

2002). Prior research has revealed that Hg2
+ inhibits ATP-dependent calcium uptake into 

intracellular stores (Hare, et al., 1990), such as the mitochondria. The toxic actions of 
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mercury interrupts calcium's role in activating proteases, endonucleases and 

phospholipases (Stohs and Bagchi, 1995). The lack of calcium activity allows for the 

generation of more free radicals, initiating an intracellular signal transduction cascade, 

which can result in long-term potentiation (Weber, 1999) and excitotoxicity. 

Due to the interaction between regulatory mechanisms in the CNS and immune 

systems .. it should not be surprising to learn that mercury's neurotoxic effects can elicit 

peripheral immune responses. Down-regulation of DNA synthesis occurs with mercury­

induced toxicity because mercury hinders this process by binding to the sulfhydryl­

containing amino acids of proteins/enzymes associated with DNA replication; less DNA 

production leads to less cell proliferation, weakening the system. Mercury has been 

shown to influence growth control and regulation of apoptotic mechanisms in 

lymphocytes (Mattingly, et al., 2001), cells whose main function is cell-mediated 

immunity. This same research also observed that Hg2+ alters tyrosine phosphorylation, 

interfering with Ras-mediated signal transduction (Mattingly, et al., 2001). Ras, a small 

G protein that controls growth factor and MAP kinase pathways, mediates cell growth 

(Siegel.. et al., 1999); inactivation or dysfunction of this protein can impede essential 

physiological functions. Due to its high affinity, mercury binds to sulfhydryl groups on 

the cell membrane, creating disulfide bridges, which promotes cellular dysfunction 

(McCabe, et al., 1999). This is a proposed mechanism to explain how mercury interrupts 

the normal activation of tyrosine kinase, an enzyme involved in tyrosine phosphorylation. 

Tyrosine phosphorylation plays a fundamental role in the CNS, including the 

development and function of a neuron, survival and differentiation, the extension of 

axons to their targets and synapse formation and function (Siegel, et al., 1999). This 
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phosphorylation process is also important to synaptic transmission; neurotransmitter 

receptors_ voltage-gated ion channels, enzymes and proteins in neurotransmitter release 

are all dependent on tyrosine phosphorylation (Siegel, et al., 1999). The oxidative 

properties and consequential neurological effects of mercury influence essential 

transduction pathways linked to the immune system, therefore allowing physiological 

systems to become more susceptible to other harmful substances. 

As the clinical symptoms suggest, mercury toxicity affects activity in motor 

neurons. Even at low concentrations, Hg2+ potently depolarizes skeletal muscle and 

reduces the effective resistance of the fibers (Yuan and Atchison, 1994). This 

depolarization could be brought on by the disruption of Ca2
+ homeostasis that occurs 

when mercury blocks Ca2+ uptake into nerve terminals (Yuan and Atchison, 1994 ), 

resulting in neuronal dysfunction and possible neuronal death. The work of Pamphlett 

and Pang ( 1998) demonstrated that the presence of inorganic mercury within motor 

neurons therefore appears to behave as a slow-acting neurotoxin that shrinks motor 

neurons. This same effect could shrink the axons of sensory neurons (Pamphlett and 

Pang, 1998), which might explain some of the symptoms seen with mercury 

neurotoxicity, such as hearing loss and impaired vision. 

Il.K. Factors of Toxicity and Possible Chelation Therapy 

The neurological effects of mercury-induced toxicity are dose-, concentration­

and time-dependent. Although low concentrations of mercury were more toxic to 

undifferentiated brain cells (Monnet-Tschudi, et al., 1996), higher (near cytotoxic) 

concentrations of organic mercury had more neurospecific effects (Monnet-Tschudi, et 

al., 1996 ). Accumulation of mercury in targeted brain regions is concentration-
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dependent. The work of Monnet-Tschudi, and associates (1996) offers that mercury. 

compounds accumulate in a concentration dependent manner. Mercury-induced 

nephrotoxicity is both concentration-and time-dependent (Rodilla, et al., 1998). The 

toxic effects of dopamine in the striatum are also dependent on the duration of mercury 

exposure (Faro .. et al.., 2001). Perhaps this could be due to mercury's direct interaction 

with dopaminergic neurons, affecting membranes, vesicular release, reuptake system and 

transport of dopamine or due to mercury's effects on central synaptic transmission in 

respect to its potency and reversibility of action (Faro, et al., 2001 ). 

In order to remove mercury from the central and peripheral nervous systems, the 

search for chelators remains an on-going venture. For example, vitamin E and EDT A, 

two commonly used chelators, had no effect on ultimate cell death induced by mercury, 

though they did prolong cell death by protecting against oxidative stress (Stohs and 

BagchL, 1995). The later work of Gass6 and colleagues (2001) support this conclusion, 

also finding that vitamin E did not in fact reduce HgCh cytotoxicity. Perhaps mercury 

elicits its toxic effects by displacing other divalent ions, which may contribute to more 

oxidative stress, depletion of protective resources and the cell finally succumbs to the 

damage. Due to its strong antioxidant and nucleophilic nature (Rao, et al., 2001), vitamin 

C works against mercury-induced genotoxicity by directly binding to mercury ions or 

removing and/or reducing free radicals generated by mercury toxicity. Though the 

chelation of excess free Ca2
+ brought on by chemically induced oxidative stress seems 

like a logical treatment, Ca2+-chelation does not halt free-radical-induced cell death 

(Amoroso., et al., 2002). Melatonin has also been suggested as a possible treatment for 

mercury-induced toxicity. And although melatonin may not directly chelate mercury., it 
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has been shown to decrease the effects of mercury-induced oxidative stress (Olivieri, et 

al., 2000), perhaps due to an upregulation in glutathione. Currently DMPS is considered 

an effective therapeutic agent because the mercury levels in urine increased about I 0-fold 

(Godfrey .. et aL 2003). However, there has been no indication that the mercury present 

in the urine is resultant of successful chelation from the brain, which suggests 

administration of this drug is not a comprehensive treatment for mercury-induced 

neurotoxicity. 

11.L. Links to Alzheimer's Disease 

The work of Zheng, et al. (2003) showed that a toxin's influence on the blood 

brain barrier can be linked to neurological disorders, abnormal brain development, 

chemically-induced swelling of the brain or the onset of neurodegenerative disease. 

Previous research has suggested links between mercury-induced neurotoxicity and 

neurodegenerative disease, mainly Alzheimer's disease (AD). In their research, Hock 

and collaborators (1998) found a correlation between high blood mercury levels and 

increased cerebrospinal fluid (CSF) levels of amyloid p-peptide (AP), a characteristic 

closely associated with AD. Although mutations in the amyloid precursor protein, the 

protein responsible for AP production, have been linked to genetic factors, these 

mutations may also be linked to environmental factors (Hock, et al., 1998), such as 

exposure to heavy metals like mercury. An increase in AP levels has been implicated in 

oxidative stress and free radical production (Olivieri, et al., 2000). It has been theorized 

that mercury alters the action of amyloid precursor protein because the toxicant inhibits 

PKC activity, which is responsible for the abnormal cleavage product, AP (Hock, et al., 

I 998) and therefore causes the formation of AP plaques. 
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Oxidative stress induced by Hg++ has also been shown to increase the 

phosphorylation of tau protein in neuroblastoma cells (Olivieri et al., 2000), a constituent 

of neurofibrillary tangles and classic feature of Alzheimer's. Other studies have also 

found increased an10unts of mercury in brains of AD patients (Markesbery, 1 997). 

Mercury-induced toxicity may contribute to the oxidized protein and DNA found in 

conjunction with Alzheimer's disease; so thus, with elevated Fe, Al and Hg levels, and 

the potential of acting synergistically, the microenvironment of the brain in AD is fertile 

for enhancing free radical generation and lipid peroxidation (Markesbery, 1997). Even 

though it has not been isolated as a clinical diagnostic tool for Alzheimer's, the blood 

mercury levels in early onset AD patients was 3-fold higher than those in control groups 

(Hock, et al., 1998). However, current research has not been able to offer any evidence 

of a direct causal effect of mercury in the pathogenesis of AD (Hock, et al., 1998). 

Later research investigated use of Apolipoprotein E (Apo-E) genotyping as a 

biomarker to determine those with an increased risk of developing AD (Godfrey, et al., 

2003). Apo-Eis a crucial element in the mechanisms that dictate amyloid ~ secretion, 

plaque fo1mation and oxidative stress (Weber, 1999). In addition to the E4 allele being 

identified as a risk factor for AD with a 70% successful prediction rate, Alzheimer's 

patients with mercury-associated symptoms had higher amounts of the E4 allele (Godfrey, 

et al., 2003), suggesting a link between mercury toxicity and the genetic factors that 

determine onset of the neurodegenerative disease. This work suggests that individuals 

with a combination of homozygous e4 allele genotype and mercury exposure would have 

an increased risk of early-onset Alzheimer's disease (Godfrey, et al., 2003). Other Apo-E 

al lei es, e2 and e3, contain sulfhydryl groups, which allow for them to bind and chelate 
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mercury. removing the toxicant from the CNS (Godfrey, et al., 2003) and therefore 

preventing the pathway from proceeding to ~-amyloid production. 

11. !vi. 5:,'ummw:v and HJpothesis 

In summary. mercury-induced toxicity has been linked to several cellular 

functions~ including membrane transport, DNA synthesis, mitochondrial efficiency, 

calcium homeostasis and neuroprotective defense systems. Through experimentation 

with lower concentrations of mercury, this research aims to determine at what levels 

toxicity occurs by performing functional, cellular and binding studies. Based on a 

literature value which defines acute neurotoxicity as having blood mercury levels 

exceeding 200 µg/L (Hock, et al., 1998), the loss of cellular function indicated by 

changes in dopamine uptake, lactate dehydrogenase and caspase enzymatic activity as 

well as affinity and density of the transporter is expected to occur at mercury treatments 

greater than 1 µM (Hg MW=200.59). However, since this toxicity threshold specifically 

describes blood mercury levels, which can be measured in the CSF, the concentration of 

toxicant in the blood may not truly reflect the concentration oftoxicant in the synapse. 

Therefore, this project explores the potential functional, cellular and pharmacological 

changes while focused on potential synaptic concentrations of mercury. 

The HYPOTHESIS of this project is: Concentrations of mercuric chloride, at or 

below levels reported as cytotoxic will have effects on the dopaminergic system in SK-N­

SH cells. These changes could have a profound psychological/motor impact in vivo prior 

to cytotoxic effects normally observed with high concentrations of mercury. 
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III. RESEARCH DESIGN AND METHODS 

/JI.A. General A1ethodo/ogies 

//1.A.1. Cell Culture 

SK-N-SH human neuroblastoma cells were obtained from American Type Culture 

Collection (A TCC~ Manassas, VA) and cultured in RPM!' 1640 without L-glutamine 

(Cellgro .. Media Tech Inc., Herndon, VA) supplemented with 10% heat inactivated fetal 

bovine serum (FBS; Hyclone, Logan, UT) and 1 % Penicillin/Streptomycin solution-

I 0,000 I. U ./mL and I 0,000 µg/mL (Cellgro, Media Tech Inc., Herndon, VA) in vented 25 

cm2 cell culture flasks (Coming Inc., Coming, NY). Cultures were maintained at 37°C in 

a 5% CO2 humidified atmosphere. The culture medium was changed twice a week, as 

recommended by A TCC, and confluent monolayers were subcultured once a week at a 

1 :3 ratio using 0.25% ~rypsin, 1.0 mM ethylenediaminetetraacetic acid (EDT A) in HBSS 

without calcium and magnesium salts (Atlanta Biologicals, Lawrenceville, GA) at room 

temperature for 15 minutes in a sterile environment. The cells from passages 4 to 14 

were used to perform the characterization, functional and binding studies. 

For subsequent portions of the project, 1 x 106 cells were seeded into 24-well 

plastic cell culture plates (Costar® 3524, Coming, Inc., Coming, NY) and maintained in 

the complete growth medium. After plating, the cells were allowed at least 24 h to 

adhere to the surface of the well before further experiments were performed. 

111.A.2. [3H] Dopamine Uptake 

After the specified incubation time, the growth medium/assay buffer/nonspecific 

drug/HgCl2 treatment was removed from all wells. Then I 00 µL of assay buffer 

( consisting of 25 mM HEPES, 120 mM NaCl, 5 mM KCl, 2.5 mM CaCJi,. 1.2 mM 
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MgSO.i, 300 mM Ascorbic Acid, 1 µM Pargyline and 2 mg/mL D-(+) Glucose) was . 

added to the control and treatment (drug or metal) wells. The [7, 8 3H] Dopamine (DA), 

0.02 M acetic acid: ethanol ( 1: 1) solution (Amersham Biosciences, UK) required for this 

portion of the assay was prepared by making 1.2X concentration solution diluted with the 

assay butler, yielding a final in-well concentration of20 nM. Next, 400 µL of the 20 nM 

[3H] DA solution was added to all wells and the plate was incubated for twenty minutes 

on a plate shaker (Clinical Rotator, Cat. No. 2500, Eberbach Corp., Ann Arbor, MI) at 

room temperature. D0pan1ine uptake was terminated by removing the [3H] DA solution 

and washing the cells with 2 mL of ice-cold 0.9% NaCl. After the NaCl was removed, 

the cells were detached from the plate upon addition of 150 µL Trypsin-EDTA, 

transferred to scintillation vials (Fisher Scientific, Pittsburgh, PA), and 5 mL scintillation 

cocktail was added to each vial (ScintiVerse®, Fisher Scientific, Pittsburgh, PA), which 

was then capped and vortexed. As well as the vials prepared from each individual well, a 

scintillation vial containing 150 µL of20 nM [3H] DA and 5 mL scintillation cocktail 

was included a means of calculating the amount of dopamine available for actual uptake. 

Uptake was determined by liquid scintillation spectrophotometry using a Beck.man 

Coulter LS 1801 (Beckman Coulter Inc., Fullerton, CA). 

Ill.A. 3. C'ytotoxicity and Necrosis: Measuring Lactate Dehydrogenase (LDH) 

These experiments were carried out using a colorimetric LOH enzyme detection 

kit: CytoTox 96 ® Non-Radioactive Cytotoxicity Assay from Promega Corporation 

(Madison, WI). This kit quantitatively measures lactate dehydrogenase through the series 

of enzymatic reactions seen below: 
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LDH 
NAD+ + Lactate ~ Pyruvate + NADH 

Diaphorase 
NADH + INT ~ NAD+ + Fonnazan 

In the first step of this process, NAD+ is reduced to NADH as the LDH released from 

affected cells catalyzes the conversion oflactate to pyruvate. In the second step, an 

electron-accepting catalyst, such as diaphorase, transfers the proton from NADH to the 

tetrazolium salt (INT), which is reduced to fonnazan, a red-colored product. 

The general protocol begins by transferring 50 µL of each sample into a clear 96-

well flat-bottom cell culture plate (Costar® 3599, Coming Inc., Corning, NY) in 

duplicate. Blanks were included as a means of subtracting out any background 

absorbance attributed to assay buffer or media, again using 50 µL aliquots of assay buffer 

(refer to section 111.A.3) or media. The assay buffer·was then thawed, and while 

protected from the light, acclimated to room temperature. A 12-mL portion of the LOH 

assay buffer was used to reconstitute a bottle of substrate mix. Then 50 µL of substrate 

mix solution was then added to each well of the 96~well plate. After the reaction mixture 

was incubated for 30 minutes at room temperature, again protected from light, 50µL of 

stop solution (1 M acetic acid) is added to each well. Within an hour of when the 

reaction was stopped, the absorbance was measured at 490 nm with the Synergy TM HT 

Multi-Detection Microplate Reader (Bio-Tek Instruments, Inc., Winooski, VT.), which 

uses KC4™ PC Software to report absorbance data. 

111.A.4. Initiation of Apoptotic Mechanisms: Detection of Caspase-3 and-7 

These experiments were done using a caspase enzyme apoptosis kit: Apo-ONE 
TM 

Homogeneous Caspase-3/7 Assay, from Promega Corporation (Madison, WI). Toxin-
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induced apoptosis activates different caspases, which are responsible for triggering a . 

cascade of cleavage events that result in the methodical destruction of cells. The caspase 

3/7 substrate. consisting of rhodaminel 10, bis-(N-CBZ-L-aspartyl-L-glutamyl-L-valyl-L­

aspartic acid amine) (Z-DEVD-Rl 10) allows for the fluorescent detection of caspase 3/7 

activity. The amount of caspase 3/7 activity can be measured because as the caspase 3/7 

enzymes present in the sample initiate the cleavage and removal ofDEVD peptides (Asp­

G I u-Val-Asp ). an intensely fluorescent product (the rhodamine 110 leaving group) is 

created. which has an excitation wavelength of 499 nm and a maximum emission 

wavelength of 521 nm. Therefore, the total amount of fluorescence measured is 

proportional to the amount of caspase 3/7 contained in the cells from each sample. 

First, I 00 µL from each individual sample was put into a black 96-well clear­

bottom cell culture plate (Costar® 3603, Corning Inc., Corning NY) in duplicate. 

Blanks were included (also performed in duplicate) with each assay to account for any 

background fluorescence contributed by the various solutions used during toxin 

incubation, such as the growth medium or uptake buffer, again using 100 µL aliquots. 

While protected from the light, the Apo-ONETM Homogeneous Caspase-3/7 Buffer and 

Caspase Substrate Z-DEVD-Rl IO were thawed to room temperature. The Caspase 

Substrate was diluted I: I 00 with the Caspase-3/7 buffer to the desired volume and mixed 

by inversion. Then I 00 µL of the caspase reagent was then added to each well of the 

plate and incubated on a plate shaker for the desired amount of time, anywhere from 30 

minutes to 18 hours depending on the expected amount of caspase activity at room 

temperature. again protected from light. Within 18 hours of the post-incubation time, the 

fluorescence was measured at 499 nm (excitation wavelength) and 521 nm (emission 
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wavelength) with the Synergy™ HT Multi-Detection Microplate Reader (Bio-Tek 

Instruments. Inc"' Winooski, VT.), which uses KC4 ™ PC Software to report absorbance 

data. 

111.A.5. Binding Studies: Affinity and Density of the Dopamine Transporter 

After treatment with mercury, the cells were trypsinized, centrifuged to form a 

pellet and frozen to later perform saturation analysis. 

Cell pellets were resuspended in assay buffer to yield a final protein concentration 

of 0.003 - 0.03 mg/mL .. using assay buffer. Assay buffer consists of 50 mM Tris-HCI, 

120 mM NaCl and 0.01% bovine serum albumin adjusted to pH of7.7. After 

resuspension~ 400 µL of the cell preparation is added to 12 x 75mm polypropylene 

binding tubes followed by 50 µL of either buffer (control) or unlabeled drug. The 

binding reaction is initiated by the addition of 50 µL of increasing concentrations of [3H] 

GBR-12935 (6 concentrations, 1 nM - 30 nM) both in the absence and presence of 5 µM 

GBR-12909 and allowed to proceed at room temperature for 60 minutes. Binding is 

terminated by filtration under reduced pressure using a Brandel Tissue Harvester 

(Brandel Instruments, Gaithersburg, MD) onto GF/B fiberglass filters which had been 

presoaked in 0.3% polyethyleneimine to reduce nonspecific binding. Filters are then 

washed for 15 seconds (approximately 15 mL) with ice-cold 50 mM Tris-HCl (pH 7.4). 

Specific [3H] GBR-12935 binding is then determined by the subtraction of binding in the 

presence of 5 µM GBR-12909 from binding in the absence of any drugs (total binding). 

These data will allow for the determination of the density and affinity of the dopamine 

transporter. [3H] GBR-12935 binding to the dopamine transporter is then determined by 

liquid scintillation spectrophotometry. 
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Ill. B. Data Ana(vsis and Statistics 

The data from the previously described experiments was recorded as % Control [3H] 

Dopamine Uptake, Absorbance at 490 nm, Relative Fluorescence Units (RFU), Affinity 

of [3H] GBR-12935 for DAT (nM) and Density (pmol/ mg protein) of DAT. Appropriate 

statistical analyses were performed using GraphPad Prism® Version 4.0 (San Diego, 

CA). Parametric analysis using one- and two-way analysis of variance (ANOV A) was 

accepted since the data met both the concept of normal distribution and robustness. Post­

hoc analysis was performed using the Bonferroni correction for multiple comparisons or 

Dunnett's Multiple Comparison Test that compares treatment values to control values. A 

value of P < 0.05 was used to indicate significant differences. 

II I. C. Experimental Design 

111.C. 1. Cell Culture 

The SK-N-SH cultures were prepared as described above and all procedures were 

performed while utilizing 'sterile' techniques. 

Maintenance of cells included changing the complete growth medium twice a 

week and splitting the cultures once a week. To change the media, the old media was 

taken out using a sterile pipette; careful not to disturb the monolayer of cells. 5 mL of 

warmed complete media (heated in 37°C water bath for 20-30 minutes) was added to the 

flasks without creating bubbles. 

Upon achieving confluence, within 7 days, the cells were split and subcultured in 

a 1 :3 ratio. Using a pipette, the medium was removed and 1.5 mL of trypsin (thawed in 

37°C water bath) was added to each 25 cm2 flask. Typically, cells will loosen from the 

culture surface in 5-15 minutes; the flasks can also be returned to the incubator if the cells 
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begin to clump or do not appear to be detaching from the plastic; gentle agitation can.be 

used as a last resort. Once the cells are removed from the surface, 3.5 mL of complete 

media was added to each flask to stop the action of the trypsin. Pipetting the solution up 

and down breaks up any clumps and disperses the cells in the suspension. Depending on 

the confluence of the monolayers, 0.5-1.0 mL of the cell suspension was transferred to a 

new sterile 25 cm2 culture flask and 4.5-4.0 mL of complete media was added to each 

new flask .. again avoiding bubbles, maintaining a 5 mL final volume. After the splitting 

procedures were completed, all culture flasks are recapped and returned to the incubator. 

11/.C.2. Characterization of the Dopamine Transporter Using GBR-12909 and Mazindol 

In order to determine a drug's affinity for the dopamine transporter, competition 

binding assays are performed to measure the competition between a radioligand and an 

unlabeled drug for a specific receptor site (Hodgson and Smart, 2001). The cells were 

treated with a range of drug concentrations and incubated with [3H] DA to measure 

changes in dopamine uptake. The uptake inhibitory drugs examined include: Mazindol, 

Desipramine, GBR-12909 and Nomifensine. 

The cells were plated as described above. The drugs (Mazindol and GBR-12909 

from RBI. Inc ... Natick MA) were prepared by making 5X concentrations diluted with the 

assay buffer .. accounting for the I :5 dilutions into each well (IOOµL drug in a total 

volume of 500µL/well). The growth medium was removed, I 00 µL assay buffer was 

added to control wells ( defining total uptake) and I OOµL of drug concentrations ranging 

from 0.1-1000 nM were added to the treatment wells. After administration of drug, the 

dopamine uptake procedures explained earlier were carried out to quantify the amount of 
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dopamine uptake blocked by the various inhibitors, which correlates to the drug's affinity 

for the dopamine transporter. 

The uptake data was reported as Mean% Control Total [3H] Dopamine Uptake± 

SEM of four experiments performed in duplicate and evaluated using one-site 

competition analysis. The inhibitory constant (Ki), defined as the concentration of drug 

that will inhibit 50% of the observed response taking into account the affinity of the drug 

for its site of action with respect to the affinity of the substrate for its receptor, was 

calculated for the different tested using the equation: 

Ki= EC~ 
I + [ligand]~ 

The effective concentration 50% (EC50) value reflects the ability of the drug to bind to its 

receptor (affinity) and the ability of the drug to cause a response once it is bound 

(efficacy)~ essentially the concentration of drug that competes for half the specific 

binding. For these calculations, the EC50 value for the individual drugs was supplied by 

the analysis from one-site competition, the Kd of [3H] Dopamine for DAT was found to 

be 70 nM and I 00 nM was used for the concentration of ligand to best approximate the 

concentration of [3H] Dopamine having the affinity Ki. 

The term fractional occupancy is used to describe receptor occupancy as a 

function of ligand concentration; for these assays, the amount of dopamine transported 

(uptake) as a function of drug concentration. The formula for fractional occupancy is 

shown below: 

Fractional Occupancy= [Ligand/Drug] 
[Ligand/Drug] + Kd 
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Kd .. the dissociation constant, defines the affinity of the ligand for the binding site of . 

interest~ in this case .. the affinity of the uptake inhibitor for the dopamine transporter. 

Based on the data collected for the different inhibitory drugs, appropriate DA uptake 

inhibitors were chosen to use later in the uptake assays after mercury exposure. 

As prior research indicated, GBR-12909 was shown to have a higher affinity 

{approximately 150-fold) for the DAT compared to NET. Mazindol has been reported to 

have a slightly higher affinity for NET (7-fold) compared to DAT. Thus, suggesting that 

GBR-12909 is a selective uptake inhibitor for the dopamine transporter (DAT) over the 

norepinephrine transporter (NET). Use of appropriate concentrations of both drugs could 

facilitate the determination of DAT and NET density. By incubating with low 

concentrations of GBR-12909 (50 nM/DAT) and high concentrations ofmazindol (1 

µM/DAT+NET), one can mathematically calculate the density of DAT and NET using a 

single radioligand. 

Jll.C.3. HgC/2 Treatments 

SK-N-SH cells were plated as described above and exposed to varying 

concentrations of Mercury (II) Chloride (HgCh; Sigma Aldrich, St. Louis, MO) over 

different periods of time. Incubation with HgCh was carried out in assay buffer, 

complete media and modified assay buffer (without ascorbic acid). 

For the experiments performed in the buffer, the inorganic salt was accurately 

dissolved in Milli-Q water to make a I mM stock solution; then aliquots of the original 

stock solution were diluted with the assay buffer up to the final HgCb concentration used 

for the various treatments. Throughout the course of experimentation, two stock 

solutions were made for the mercury treatments done in the buffer because over time .. the 
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mercury in the first solution had begun to visibly precipitate out of solution. The first 

stock solution ( I mM) was prepared by dissolving 3.30 mg ofHgC12 into 12.15 mL of 

Milli-Q water .. while the second stock solution (lmM) was prepared by dissolving 3.50 

mg of HgCb into 12.89 mL of Milli-Q water. The mercury treatments were prepared, 

being mindful of the I :5 dilution factor (I OOµL of treatment in 500µL total). The growth 

medium was removed and 400 µL of assay buffer was added to each well. Then 100 µL 

of the different HgCb concentrations, ranging from 1 nM to I mM, were added to each of 

the treatment wells and incubated at room temperature for the specified exposure time, 

beginning with I h and extending to 6h. 

For the experiments performed in the growth medium, the inorganic salt was 

accurately dissolved in Milli-Q water to make a 51 mM stock solution. This stock 

solution was prepared by dissolving 13.85 mg ofHgCh into 100.54 mL of Milli-Q water 

and then autoclaved to sterilize the solution. Then aliquots of the sterile stock solution 

were diluted with sterile water up to the final HgC}i concentrations, varying from 1 OµM 

to I mM to be used for the different treatments. Preparation of these mercury treatments 

required a different dilution factor of I :51 because IOµL of treatment was added to the 

SOOµL of media already in the wells, creating a total volume of 51 OµL. The rationale for 

using a lower volume was to minimize the dilution of media constituents. IO µL of the 

various sterile HgCb concentrations were added directly to the complete growth medium 

in each of the treatment wells and maintained in a 37°C, 5% CO2 humidified atmosphere 

for the specified exposure time, ranging from lh to 48h. 

Later experiments investigated the potential effects of specific components in the 

original assay buffer~ namely ascorbic acid. These treatments were performed the same 
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as the other 'in buffer' studies, except that the aforementioned 300 mM ascorbic acid was 

not added to the assay buffer used in this.part of the experiment. This 'modified' buffer 

was utilized to make the mercury treatments and was put in the wells during the exposure 

period. This limited study focused on moderate concentrations, ranging from 1 µM to 

I 00 µM and an exposure time of 6h. 

Ill. C. 4. Measuring [3 HJ Dopamine Uptake After Toxin (Hg2+) Exposure 

This procedure was performed in accordance to the aforementioned protocol with 

a few modifications. Once the exposure period expired and the solution 

(media/buffer/mercury) was removed from all wells, I 00 µL of 250 nM GBR-12909 and 

I 00 µL of 5 µM. mazindol (diluted with assay buffer (refer to section 111.A.3)) were added 

to designated wells (with resultant 'in well' concentrations of 50 nM GBR-12909 and 1 

µM mazindol) while I 00 µL of assay buffer (refer to section 111.A.3) was put into control 

and mercury-treated wells. Nonspecific binding was defined as [3H] DA uptake in the 

presence of 50 nM GBR-12909 and uptake in the presence of I µM mazindol. All other 

steps in the process were carried out as previously ·described. 

Data were reported as Mean % Control [3H] Dopamine Uptake ± SEM of four 

experiments done in duplicate. Data were analyzed by either two-way ANOV A (time by 

concentration) or one-way ANOV A ( concentration) to determine effects on [3H] 

dopamine uptake. 

Ill. C. 5. Cytotoxicity and Cell Viability: Measuring Lactate Dehydrogenase (LDH) 

The concentration(s) and exposure time period(s) were chosen in conjunction with 

the changes noted in the dopamine uptake data. Based on the uptake studies, the cells 

were exposed to 5 µMand 50 µM HgC12 for 24 hours in both media and assay buffer 
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(refer to section 111.A.3). Because of the 1 :10 dilution (a 50 µL mercury treatment in 500 

µl total volume)_ 50 µMand 500 µM solutions were prepared; dissolving 7.1 mg of 

HgCl2 in 52.30 ml of Milli-Q water for the 500 µM solution and dissolving 1.2 mg 

HgCl2 in 88.40 ml of Milli-Q water for the 50 µM solution. To maintain a sterile 

environment during the 24h incubation period, the two mercury treatments were 

autoclaved_ as well as a portion of assay buffer. 

To begin this procedure., SK-N-SH cells were plated out in a 24-well plate as 

previously described. After allowing time for the cells to adhere to the culture surface, 

the growth medium was removed and 450 µL of incubation solution (complete media or 

assay buffer) was added to the respective wells. Then, 50 µL of the 5 µMand 50 µM 

HgCb treatments was added to the proper wells and the plate was returned to the 

incubator (3 7°C) for 24h. 

Once the 24h treatment period had finished, the procedures for measuring LDH 

commenced. The aforementioned protocol was followed with minimal modifications. In 

order to account for background absorbance contributed by both incubation solutions, 

duplicate 50 µl aliquots of complete media and assay buffer served as blanks for the 

experiment. 

Data were reported as Mean Absorbance at 490 nm± SEM of four experimental 

samples run in duplicate. Data were analyzed by one-way ANOV A (absorbance at 

490 nm) to determine any differences between the various groups: control, 5 µM 

treatment and 50 µM treatment. 
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1//.C.6. Initiation ofApoptotic Mechanisms: Caspase-3 and-7 Detection 

Immediately following procedures for the LDH experiment, preparations for 

measuring caspase activity began. From the same 24-well plate, all remaining solution 

was removed and 150 µL of trypsin was added to each well. After the cells had loosened 

from the culture surface, 50 µL aliquots of trypsinized cefls from each of the 24 sample 

wells were transferred in duplicate to a black 96-well plate. In order to maintain the cells 

during incubation period for the caspase assay, 50 µL of complete media was added to 

each of the wells on the 96-well plate, resulting in a total volume of I 00 µL per well, 

diluting the cells by a 1: 1 ratio (50 µL of cells in I 00 µL total). The 96-well black plate 

was allowed to sit for approximately 2h so that the trypsinized cells from each sample 

could re-adhere to the culture surface. 

In order to account for any background fluorescence contributed by the 

combination of incubation solutions, blanks consisting of 50 µL trypsin and 50 µL 

complete media were also performed in duplicate. As indicated in the general protocol, 

the 1 OOX caspase reagent solution required for the assay was prepared by mixing I 00 µL 

of Z-DEVD-Rl IO caspase substrate with 9.9 mL of caspase buffer. The aforementioned 

procedures concerning the Caspase-3/7 Assay were followed, incubating the covered 96-

well black plate for 6h at room temperature, mixing the contents for the first 30 minutes 

on a plate shaker. 

By using KC4 TM PC Software to measure fluorescence, the parameters for the 

excitation and emission wavelengths were slightly modified. Excitation wavelength was 

set at 485 ± 20 nm and emission wavelength was set at 528 ± 20 nm; both of these ranges 

contain the original wavelengths recommended by the general protocol. The data were 

49 



reported as Mean Relative Fluorescent Units (RFU)± SEM of four experimental samples 

run in duplicate. Data were analyzed by one-way ANOVA (RFU) to establish if there are 

changes in relative fluorescence between groups: control, 5 µM treatment and 50 µM 

treatment. 

Ill. C. 7. Binding Studies: Affinity and Density of the Dopamine Transporter 

For these experiments cells were subcultured in 25 cm2 flasks and flasks were 

randomly subdivided into 3 groups; control/vehicle, 5 µM HgCh, and 50 µM HgCb. 

Cells were allowed to adhere for at least 24 hours and then treated by the addition of the 

appropriate solution. Control groups received 500 µL of sterile double distilled water 

( ddH20)~ whereas the mercury groups received either (final concentration) 500 µL of 5 or 

50 µM HgCl2. The flasks were then returned to the incubator (37°C) and allowed to sit 

for 24h. The reaction was terminated by the removal of growth media with ddH20 or 

mercuric chloride and addition of 1.5 mL of 0.25% trypsin/0.03% EDTA. Following 

trypsinization, cells were centrifuged to form a pellet and the pellet frozen until assayed. 

The saturation analysis was performed as described above. The data were 

analyzed by fitting a rectangular hyperbola to determine Kd (affinity) and Bmax (density) 

values. 
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IV. RESULTS 

IVA. ( 'haracterization of the Dopamine Transporter Using GBR-12909 and Mazindol 

Analysis of the data revealed the different affinities each drug had for the 

dopamine transporter. Figure 4 shows competition analy~is curves that were used to 

evaluate the inhibitory constants (Ki values) for mazindol and desipramine. 
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Figure 4. Effects of Mazindol and Desipramine on [31-1] Dopamine Uptake in SK-N-SH cells. 
Uptake in the presence of 0. I nM - I OµM of inhibitol)' drug is expressed as Mean% Control 
[
3

H] Dopamine Uptake± SEM of 4 experiments, each run in duplicate. By using One-Site 
Competition Nonlinear Regression Analysis, the Inhibitol)' Constant (Ki) values for the two 
drugs of interest were calculated. 

Ki values were used to determine which drugs were more selective for DAT. According 

to Hodgson and Smart (2001 ), Ki is the equilibrium dissociation constant of the unlabeled 

competitor mazindol, desipramine, GBR-12909 and cocaine, while Kd is the dissociation 

constant of the radio ligand the [3H] Dopamine. Ki values of different toxicants or drugs 
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can be compared to determine the rank order of potency oftoxicants in competing for the 

radiolabeled receptor site, where a low Ki indicates a high affinity and a higher Ki 

indicates a lower affinity. The data in Table 1 summarizes the inhibitory constants 

obtained from the competition analysis yielding a potency series for the four drugs 

examined. 

Table 1. Dissociation Constants for DAT ligands calculated using One-Site 
Competition Nonlinear Regression Analysis 

Ligand N Ki+SEM(nM) 
Mazindol 4 1.52 ± .52 

Desipramine 4 6.91 ± 6.2 
GBR-12909 3 21.6 + 5.8 

Cocaine 3 56.6 + 20.5 

As the data indicate, GBR-12909 was shown to have a high affinity for the dopamine 

transporter, suggesting that GBR-12909 is a potent uptake inhibitor for the dopamine 

transporter (DAT). Interestingly, all curves were best fit to a single, non-interacting, site. 

One would have expected that if there were two sites (DAT and NET) on the SK-N-SH 

cells, two sites would be observed based on the drugs' inherent selectivity. Or, if there 

were only one site~ for example DAT, that GBR-12909 would exhibit a high affinity and 

desipramine a low affinity. Additional work is needed to further elucidate the exact type 

of transport system that is present on SK-N-SH cells. One hypothesis is that in 

undifferentiated cells, a "generalized" transport system is expressed with high affinity for 

both DAT and NET uptake inhibitors and that following differentiation; more distinct 

DAT and NET transport sites would be observed. 
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Based on Table 2. which summarizes the approximate affinities for various clr.ugs 

based on literature values. the fractional occupancy of GBR-12909 and mazindol was 

calculated ( Table 3) with respect to the different transporters. 

Table 2. Approximate reported affinities of different drugs for the dopamine 
(DAT), norepinephrine (NET) and serotonin (SERT) transporters 

Drug DAT Affinity NET Affinity SERT Affinity 
GBR 12909 lnM I50nM >I µM 
GBR 12935 6nM 220nM >5µM 
Indatraline 6nM 2nM 0.5 nM 
Mazindol 15 nM 1-2nM IOOnM 
Nomifensine 98nM lOnM 840nM 
Nisoxetine >l µM 5nM >I µM 
Desipramine >5 µM 4nM 60nM 
Fluoxetine >5 µM >5µM 3nM 

Table 3. Fractional Occupancy of the two DAT ligands utilized to define 
nonspecific binding in measuring [3H] Dopamine Uptake for SK-N-SH cells. 

Transporter GBR-12909 Mazindol 
(% Receptor Occupied) (% Receptor Occupied) 

DAT 98.04 98.5 
NET 25.0 99.9 
SERT 4.76 90.9 

GBR-12909 occupied a greater percentage of receptors on dopamine transporters when 

compared to norepinephrine and serotonin. The percentages of occupied transporter 

receptors for mazindol were approximately the same whether they were dopamine, 

norepinephrine or serotonin transporters. These data support that GBR-12909 is more 

selective for the dopamine transporter, while the nonselective nature of mazindol is 

confirmed by the comparable percentages of occupied receptors for the different 

transporter proteins. 
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IV. B. Afeasuring [3 HJ Dopamine Uptake After Mercury Exposure 

For the experiments where the incubation period was carried out in assay buffer at 

room temperature prior to performing the dopamine uptake procedures, lower 

concentrations ( I nM-1 µM) of mercury elicited little to no change in dopamine uptake 

when compared to control values. as seen in Table 4. A similar trend was seen at similar 

concentrations over more moderate periods of time (6h). 

Table 4. Dopamine Uptake Values in Assay buffer (refer to section 111.A.3). 
Data expressed as Mean % Control [3H] Dopamine Uptake± SEM of 4 
experi1nents done in duplicate. ND= Not Determined. Control values 
defined as 16.0 ± 1.2 fmol/min of dopamine being taken up for these sets of 
experiments. · 

/HgC/2/ 1 Hour 3Hour 6Hour 
InM 79.4 ± 6.1 90.6 ± 7.6 ND 

10 nM 83.0 ± 3.8 93.8 ± 6.7 ND 
100 nM 83.7 ± 3.9 103.9 ± 7.5 87.6 ± 10.8 
lµM 98.1 ± 12.4 85.2 ± 7.6 82.6 ± 8.2 

10 µM 106.3 ± 7.5 90.3 ± 5.8 72.5 ± 7.8 
100 µM 112.8 ± 8.8 93.5 ± 3.6 54.4 ± 17.9 

Although there was no significant effect of concentration (F 5,54=0.20; p = 0. 9619) 

on dopamine uptake~ the data does indicate a significant concentration X time interaction 

(F 10,s4=2.49; p = 0.0154) and a significant (F2,s4=6.35; p = 0.0033) effect of time. There 

was also a significant (F s,36=2. 79; p = 0.0315) concentration X time interaction with 

comparing 1 h and 3h data sets (Figure 5). 
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Figure 5. Effects of mercuric chloride on [3H] Dopamine Uptake in SK-N-SH cells 
for 1- and 3-hour exposure periods. Uptake in the presence of lnM - 100 µM HgCl2 

was expressed as Mean% Control [3H] Dopamine Uptake± SEM of four 
experiments., each run in duplicate. These mercwy treatments were performed in 
assay buffer. The data indicate a significant interaction between both concentration 
and time in mercury-exposed cells at shorter time points and smaller concentrations 
when compared to control values. Control values defined as 18.6 ± 1.3 finol/minute 
of dopamine being taken up for these sets of experiments. 

At moderate concentrations of mercury ( 1 OOnM-1 OOµM), significant time­

dependent effects (F 1.36 = 7.91; p = 0.0079) were observed between 1- and 6-hour 

exposure periods performed in the assay buffer (refer to section III.A.3). The data in 

Figure 6 demonstrate that as the incubation time for exposing the SK-N-SH cells to the 

same concentrations of mercury increases, there is more of a defined decrease in 

dopamine uptake. 
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Fik,TUre 6. Eftect of mercuric chloride on [3H] Dopamine Uptake in neuroblastoma 
ce I ls for I h and 6h ~xposure periods. Uptake in 'the presence of 1 OOnM - I OOµM 
HgCI2 was expressed as Mean% Control [3H] Dopamine Uptake± SEM of four 
experiments, each run in duplicate. Mercwy treatments were perfonned in the DAT 
assay buffer. A significant effect of time was observed (p<0.01) as the exposure 
time increases, dopamine uptake decreases. Control values defined as 15.1 ± 1.6 
finol/minute of dopamine being taken up for th~se sets of experiments. 

A significant effect of concentration (F3,32 = 43.93; p < 0.0001) in dopamine 

uptake was seen when the neuroblastoma cells were treated with mercury for longer 

periods of time (24h) in the complete RPMl-1640 at 37°C compared to DA uptake buffer 

(Figure 7). During the actual experimentation, after treatment with higher concentrations 

of HgCl2 (> IO µM) it was observed that the cells were no longer attached to the culture 

surface; appearing much like the cells had been trypsinized. The data typifies a biphasic 

response pattern; where incubation with moderate concentrations of mercury reflects 

control values and as the concentration of toxin increases, there is a distinct upsurge in 
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dopamine uptake on the order of 3 times control values followed by a severe reduction in 

dopamine uptake. 
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Figure 7. Effects of mercuric chloride on [3H] Dopamine Uptake in SK-N-SH 
cells after 24-hour exposure treatments. Uptake in the presence of 100 nM - I 
mM HgCl2 was expressed as Mean% Control [3H] Dopamine Uptake ± SEM of 
four experiments, each run in duplicate in complete RPtvfl-1640. A significant 
effect of concentration (p < 0.0001) was observed. Control uptake was 10.3 ± 
1 . 8 fmo I/minute of dopamine being taken up for these sets of experiments. 

A similar phenomenon was noted in the uptake studies performed using greater 

concentrations of mercury over a range of time points, again treating the SK-N-SH cells 

with mercury in the growth medium at 37°C (See Figure 8). In addition to the 

experiments run for 24-hours, cells were also visibly floating in the growth media after l­

and 6-hour exposure periods to concentrations greater than IO µM HgCh. The data 

reveal that dopamine uptake increased by 2.5- to 3-fold at all monitored time points (I, 6, 

24 h) when treated with lesser concentrations (I OµM) of mercury. Incubation with 

higher concentrations of mercury ( I OOµM-500µM) resulted in extreme inhibition of 
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dopamine up take. again at all monitored time points (I, 6, 24 h). Statistical analyses of 

the data reveal a significant effect of con~entration (F3.36 = 298.2; p < 0.0001) in 

dopamine upta ke. Bonlcrroni posttests were employed to compare the uptake measured 

wi th each indi\'idual concentration to the other concentrations. As the data illustrate, 

these analyses revealed a significant difference (p < O.OOi) between dopamine uptake 

measured after l O FM HgC!i treatment and the dopamine uptake measured after 100, 

250. and 500 ~1M I IgCI:! treatments at all time points (1, 6, 24h). No significant effect of 

time (F:u<i = 1.04: p = 0.3641) in dopamine uptake between 100, 250 and 500 µM HgCh 

treatments. It is also important to point out that the amount of dopan1ine uptake did not 

appear to vary over the range of time points at any one individual concentration. 
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Figure 8. Effect of various exposure times and multiple concentrations of 
mercuric chloride on [3H] Dopamine Uptake in SK-N-SH cells. Uptake in the 
presence of I 0-500 µM HgC l2 is expressed as Mean% Control (3H) Dopamine 

Uptake± SEM of four experiments, each run in duplicate. Control values defined 
as 8.0 ± 1.3 finol/minute of dopamine being taken up for these sets of 
experiments. All treatments were perfonned in the growth medium. The data 
reveal a significant effect of concentration between the dopamine uptake 
meas ured after exposure to IO µM HgCI2 and all other concentrations (P < 0.00 I. 
two-way ANOV A. Bonferroni Multiple Comparison Test). 
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As reported earlier. there was minimal difference noted in the dopamine uptake 

compared to control values during the experiments run in assay buffer (refer to section 

111.A.3) ,vhen the neuroblastoma cells were exposed to mercury for 6 h. However, when 

the same experiments were carried out in assay buffer (refer to section 111.A.3) containing 

no ascorbic acid (Vitamin C). there was a substantial decrease in dopamine uptake upon 

exposure to 10 ~tM HgCb. which was not indicated by the previous data. Alterations in 

assay buffer (with or without ascorbate) resulted in significant effects of buffer 

composition (F 1.30 = 14.60; p = 0.0006), concentration (F2,3o = 11.04; p = 0.0003) and a 

significant interaction (F2.30 = 4.369; p = 0.0216) between the two parameters (Figure 9). 
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Figure 9. Effects of mercuric chloride on [3H] Dopamine Uptake for 6 hour 
treatment~ comparing dopamine uptake when the neuroblastoma cells were 
treated in assay buffer or ascorbate- free assay buffer. Uptake in the presence of 
0. 1-200 µM HgCl2 is expressed as Mean% Control [3H] Dopamine Uptake ± 
SEM of four experiments, each run in duplicate. Control values defined as 12.4 ± 
1.3 fmol/minute of dopamine being taken up for these sets of experiments. The 
data shows a significant effect of buffer composition during the 6 h treatment 
period (P < 0.001, two-way ANOV A). 
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The differences in the control values of dopamine taken up (finol/min) are a result 

of several contributing factors, such as what passage the cells were in when the assays 

were performed. how many cells were seeded into the wells, and how much time had 

passed between initial plating and actual experimentation. To standardize these variables 

and normalize the raw information gathered, data were expressed as Mean %Control [3H] 

Dopamine Uptake. 

IV. C. ( )·totoxicity and Cell Viability 

The amount of absorbance measured using the CytoTox 96® Assay relates to the 

quantity of LOH released from the cells in that the colored product is resultant of 

catalysis in the presence of LDH. Absorbance of each sample is obtained by subtracting 

out the average value for the appropriate blank. 

Analysis of the absorbance data using one-way ANOV A revealed a significant 

( F 2.11 = 14. I 8; p = O.0017) difference between groups when treated with these 

intem1ediary concentrations of mercury. Since there is a difference seen in the results of 

ANOVA, post-hoc analysis was employed to identify changes in overall main effects. To 

determine which group means differ and to what extent, Dunnett's Multiple Comparison 

Test., a conservative statistical test which compares treatment groups to control values, 

was used. According to the analysis, a significant difference in cytotoxicity was noted 

between the 50 µM HgCb treatments and control values (p < 0.01), while no significant 

difference was detected between the 5 µM HgCli treatments and control values (P > 

0.05). As seen in Figure 10, there is a distinct increase in absorbance when the cells are 

exposed to mercury, especially the larger concentration; this signifies an increase in LOH 

release upon treatment with mercury. 
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Fih11.1rc I 0. EiTects of mercuric chloride on LOH release in SK-N-SH cells for 24h exposure 
period carried out in complete media. LDH release in the presence of 5 and 50 µM HgCl2 

is designated as Mean Absorbance at 490 nm± SEM of four samples run in duplicate. 
There was a significant difference between the 50 µM HgCJ2 and control values (P < 0.01. 

Dunnett's Multiple Comparison Test), yet no difference was observed between 5 µM HgCl2 
and control values. 

!VD. Initiation <?/Apoplotic lvfechanisms: Caspase-3 and-7 Detection 

. TM 
The amount of fluorescence measured using the Apo-ONE Homogeneous 

Caspase 3/7 Assay is relative to the quantity of caspase 3/7 enzymatic activity contained 

within the control and treated cells. The Relative Fluorescence Units (RFU) of each 

sample is determined by subtracting out the average value for the trypsin/media blank. 

Statistical analysis of the fluorescence data using one-way ANOV A exhibited an 

overall significant (F2•11 = 4.794; p = 0.0383) difference between groups when treated 

with 5 ~tM mercury concentrations. Similar to the procedures used to evaluate the LDH 

data. Dunnett"s Multiple Comparison Test was the post-hoc analysis employed to discern 

differences between treatment groups and control as well as the magnitude of said 
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di fl'crcnces. The data showed the resultant significant difference to be between the . 

fluorescence measured alter the 5~tM HgCh treatments and control values (P < 0.05) and 

not between the fluorescence measured after the 50 µM HgCh treatments and control 

val ucs ( P > 0.05 ). ·rhc data depicts a decrease in RFUs when the cells are exposed to 5 

~LM l lgCI.::! treatments. which represents a decrease in caspase 3/7 enzymatic activity (See 

Figure I I). However. the amount of relative fluorescence then increases back to control 

values when the cells are treated with 50 ~LM HgC12, indicating there is no change in 

caspase 3/7 enzymatic activity for the larger concentration. 
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Figure I I . Effects of mercuric chloride on Caspase 3/7 enzymatic activity in SK-N-SH 
cells during 24h incubation period perfonned in growth medium. Caspase 3/7 enzymatic 
activity is expressed as Mean RFU± SEM of four samples run in duplicate. The data 
indicate a significant difference between the absorbance measured in the 5 µM HgCl2 

treatments and control values (P < 0.05). 
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IV.£. Binding Studies: /{[finity and Density of the Dopamine Transporter 

All curves were fit to a single site with a range of~ values of 6.5 to 27.4 nM 

(Table 5). Affinity for DAT is represented by Kd values, where a higher Kd corresponds 

to a lower affinity and a lower Kd indicates a higher affi~ty. 

Table 5: Smntnary of Kd Values for [3H] GBR-12935 Binding to DAT After 
Mercuric Chloride Treatment (24h) 

Control 5 50 
6.574 

Interestingly~ control Kd values resembled previous report for [3H] GBR12935 binding to 

DAT (6.5 nM). There was a four-fold shift in affinity of [3H] GBR12935 in the 5 µM 

HgCb group (27.4 nM), which returned close to control values in the 50 µM HgCh group 

(9.3 nM). 

Examination of transporter density (Bmax) values reflected the changes that were 

observed in the LOH assays. Control density of 49.7 pmol/mg protein was similar to 

observed Bmax values in the 5µM HgCh group (41.0 pmol/mg protein). Treatment with 

the highest concentration of HgCh (50 µM) resulted in a 69.1 % reduction in [3H] 

GBRl2935 binding (49.7 pmol/mgprotein to 15.4 pmol/mgprotein) (Figure 12). 
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Figure 12. Saturation of [3H] GBR-12935 binding to DAT in SK-N-SH cells. The cells were 

incubated with [3H] GBR-12935 an for a final concentration of I nM - 30 nM for 60 minutes at 
room temperature. Non-specific binding was determined in the presence of 5 µM GBR-12909. 

Data expressed as pmol of [3 H] G BR-12935 bound per mg of protein from one experiment 
perfonned in duplicate. Bmax values determined from these experiments for control, SµM HgCl2, 

and 50 µM HgCl2 are 49. 7, 41.0, and 15.4 pmol/ mg protein, respectively. 
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V. SUMMARY AND DISCUSSION 

V.A .. ~·11111mm:1· <?( Research Findings 

The main thrust for this research was to investigate how subtoxic concentrations 

of mercury aftected normal functional, cellular and phannacological aspects of neuronal 

cells~ specifically the SK-N-SH cell line. The functional studies focused on the dopamine 

transporter due to the fact that it's main substrate, dopamine, has been linked to 

neurotoxicity through contributions to oxidative stress, mainly production of reactive 

metabolites. The cellular studies defined cell viability after mercury treatment by 

measuring the activity oflactate dehydrogenase and caspase, enzymes associated with 

two different methods of cell death, necrosis and apoptosis, respectively. The 

pharmacological studies were employed to detennine the affinity of dopamine for the 

dopamine transporters found in SK-N-SH cells as well as the density of transporters. The 

overall findings from this project reveal that subtoxic concentrations of mercury do 

indeed produce functional, cellular and pharmacological changes in neuroblastoma cells, 

resulting in cell damage and/or cell death. 

VA. 1. Functional Studies 

There were three types of experiments run for the portion of the project focused 

on dopamine uptake: treatments incubated in assay buffer (refer to section 111.A.3), 

treatments incubated in growth medium, and comparisons between treatments incubated 

in assay buffer and ascorbate-free assay buffer. For the 'in buffer' studies, SK-N-SH 

eel ls were exposed to mercury concentrations ranging from I nM - I 00 µM HgCli in the 

presence of assay buffer for I to 6h at room temperature. The 'in media' studies looked 

at cells exposed to mercury concentrations ranging from 100 nM- I mM HgCl2 in the 
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presence of media for 1 to 48h at 37°C. The incubation temperature for the 'in media' 

studies differed in order to maintain the cells during longer treatment periods. The 

comparison studies that examined the effects of ascorbic acid in the assay buffer focused 

on 1 .. 10 .. and 100 ~1M HgCb concentrations incubated for 6h also at room temperature. 

The rationale for different assay conditions was to assess whether the more complex 

complete RPMI-1640 would interfere with the actions ofHgCl2. 

The interaction between time and concentration noted in the uptake measured at I 

and 3h may be caused by the initial action of the toxicant interacting with various cellular 

components .. resulting in functional changes, but which are insufficient to prevent 

dopamine transport. The minimal effect ofmicromolar mercury concentrations on 

dopamine uptake during the 6h exposure period reflects a compensation mechanism 

where the toxic action has temporarily stopped. It is also important to note that the 

uptake data collected for experiments incubated in the assay buffer showed very little 

change in respect to control values, which suggests that certain components of the assay 

buffer may be attenuating damage to the cells or production of species that cause 

oxidative stress. 

Prolonged exposure (> 6h) appears to allow for mercury to accumulate in the 

cells, resulting in cell damage and/or cell death. The uptake studies performed in the 

growth medium for longer periods of time demonstrate this proposed explanation. The 

data illustrate an extreme increase in [3H] dopamine uptake when treated with l O µM 

HgCli, followed by a severe drop in uptake. This may be a result of an overloaded 

dopamine turnover system that can no longer compensate for all the 'free' dopamine 

located in the synapse., which when metabolized can lead to the production of damaging 
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hydroxides. The fact that dopamine uptake does decrease when the cells are treated in 

the growth medium supports the idea that the composition of the media differs from that 

of the assay buffer in that it does not contain as many (if any at all) neuroprotective 

agents. 

The ex peri men ts that compared incubation in the assay buffer to incubation in a 

modi fled assay buffer lacking ascorbic acid showed a significant difference of [3H] 

dopamine uptake measured. Although the cells were exposed to the same concentrations 

of mercury ( 1 .. 1 0 .. l 00 µM HgCh), those incubated in the assay buffer maintained uptake 

values which were similar to control while those incubated in the ascorbate-free assay 

buffer showed a decrease in dopamine uptake between 10 µMand I 00 µM HgCli 

treatments. Perhaps the severe drop in dopamine uptake represents a toxicity threshold 

exhibited by the cells when treated in assay buffer without ascorbate. This difference in 

dopamine uptake also depicts the potency of ascorbic acid as an antioxidant, which can 

conceivably bind to the reactive oxidative species and prevent damage to the transporter 

for the samples run in the unadulterated assay buffer. 

V.A.2. Cellular Studies: Initiation of Necrotic or Apoptotic Mechanisms 

The cellular studies, which focused on enzymatic activity, LDH and caspase 

assays respectively., were used to assess cytotoxicity at different mercury concentrations. 

SK-N-SH cells were treated with 5 and 50 µM HgC12 for a 24h period in both media and 

assay buffer. 

The LOH assay revealed an effect of concentration; as the concentration of 

mercury increases, the amount of LDH release also increases. One can infer that LOH 

release follows a stepwise progression as the concentration of mercury increases until the 
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cells arc completely obliterated and LDH release plateaus. The assay for caspase activity 

showed a decrease with the 5 µM HgCh treatment, with no change in the data for the 50 

µM HgCl2 treatment. The lack of increase in caspase 3/7 activity compared to controls 

suggests apoptosis is not involved in the observed changes in DAT activity. Therefore 

mercury docs not induce apoptotic cell death at these concentrations. The data from the 

LDH and caspase assays indicate that when cells are treated with low levels of mercury 

(5 and 50 ~tM HgC12) in the presence of media, the cells are dying, but not by apoptotic 

mechanisms. 

V.A.3. Pharmacological Studies 

To complement the characterization of the DAT inhibition by HgCh, the 

interaction of HgCl2 with the DAT was examined using binding studies to address 

pharmacological changes in the treated cells. Similar to the cellular studies, SK-N-SH 

cells were treated with 5 and 50 µM HgCh for a 24h period at 37°C in the growth 

medium. 

The data from the binding studies showed changes in both the affinity and density 

of the dopamine transporters when SK-N-SH cells were treated with low-level mercury 

concentrations. When the cells were treated with 5 µM HgCh, the affinity of [3H] GBR-

12935 for DAT decreased four-fold, while there was no effect with 50 µM HgCh. The 

shift to lower affinity means the transporter is moving substrate (DA) at a high capacity 

and DA is able to freely diffuse into the cells, possibly reflecting the increase in DA 

uptake noted with 10 µM HgCh treatments. The changes in transporter density occurred 

with the 50 µM HgCh treatments but not the 5 µM HgCii group; decreasing transporter 

density by over 50%. This corresponds to the differences in LOH release noted earlier; 
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while the transporter density decreases and transport sites are being lost, LDH release 

increases due to toxicity brought on by an incapacitated dopamine turnover system. 

VB. Discussion 

J/:B. /. ( '/wracterization of the Dopamine Transporter Using GBR-12909 and Mazindol 

The data collected during the characterization studies supported the previous 

finding that GBR-12909 is a more selective inhibitor of the DAT. In order to 

differentiate whether the labeled dopamine is being taken up through the dopamine or 

norepinephrine transporters located on the cells, this selective inhibitor was paired up 

with one of the more nonselective DAT inhibitors, mazindol. The amount of dopamine 

uptake measured in the cells treated with GBR-12909 represents the amount of labeled 

dopamine that entered via DAT compared to control values while the amount of 

dopamine uptake measured in the cells treated with mazindol represents the amount of 

labeled dopamine that entered via DAT and NET compared to control values. By 

subtracting the uptake measured with mazindol from total uptake (control values) 

accounts for dopamine entering through DAT and NET. A further step of subtracting out 

the uptake measured with GBR-12909 from that value isolates the amount of dopamine 

that was taken up through DAT. 

V. B. 2. Measuring [3 HJ Dopamine Uptake After Toxin (Hg2+) Exposure 

The data from these functional studies suggest that the toxicity of mercury 

appears to be more concentration-dependent than time-dependent, even at lower 

concentrations. The observation that as the mercury concentration increases, the amount 

of dopamine uptake decreases implies that exposure to low levels of mercury can result in 

consequential effects on dopamine transport. Since the dopamine transporter is the 
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primary compensatory mechanism that regulates extracellular dopamine concentrations 

and maintains the homeostasis of presynaptic function in dopaminergic neurons (Torres, 

et aL 2003 ) .. any modifications in dopamine transport has the potential to interfere with 

normal dopaminergic function. 

The work of Chen and associates (2000) found that substrate uptake by DAT is a 

highly temperature-dependent active transport process. This lends support to the "All or 

Nothing"" phenomenon noted in the data where mercury treatments were carried out in the 

growth medium at 37°C .. which was not apparent in the data where mercury treatments 

were performed in assay buffer (refer to section III.A.3) at room temperature. The 

sudden decrease in dopamine uptake for HgCli concentrations greater than 100 µM for 

the "in media" studies may be resultant of the higher temperature increasing the 

production of free radicals, possibly accelerating the dysfunction of DAT. The observed 

differences in dopamine uptake between the media and assay buffer experiments could 

also be related to the specific components of each solution and how they may react in 

oxidative environments. 

As previously mentioned, when uptake assays were conducted in the media, 

dopamine uptake was virtually abolished following a 3-fold increase in uptake observed 

at 10 µM HgCh. It has been suggested that one reason levels of dopamine ( quantitated 

by [3H] DA uptake) have been shown to increase after administration ofHgCh may be 

due to the toxic metal's mechanism of action on various aspects of neuronal function; 

including release of neurotransmitter, reuptake and transporter systems (Faro, et al., 

2001 ). The fact that amounts of dopamine uptake did not fluctuate over time (1, 6 .. and 

24 h) with 10 µM treatments .. but only changed as the concentration of mercury increased 
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provides evidence that the SK-N-SH cell line may exhibit a toxicity threshold between I 0 

and I 00 µM HgCb. Kim and Sharma (2004) found an EC50 value of approximately 70 

µM of HgC12 in their work with BALB/c macrophage cells, which means this 

concentration of mercury resulted in 50% cell death. This also lends support to the 

severe change in dopamine uptake between 10- 100 µM HgCh noted in the data 

collected. 

The increase in dopamine uptake at 10 µM HgCh treatments performed in the 

growth medium may be indicative of an upregulation of the dopamine transporter. This 

could be due to insertion of reserve or "spare" DAT and not necessarily new transporter 

proteins .. which would take longer than 24 hours to synthesize and insert into the 

membrane. Our data suggests that upregulation did not occur as indicated by no changed 

in Bmax· Increased uptake may reflect an increase in·dopamine release; in order to 

compensate for the higher levels of extracellular dopamine in the synaptic space, the cells 

may increase., or upregulate the number of transporters to take up more dopamine. Wu, 

Coffey and Reith ( 1997) observed Hg2
+ to have a biphasic effect on both [3H] mazindol 

and [3H] WIN 35.,428 binding to the dopamine transporter; with a stimulatory component 

in the low micromolar range and a strongly inhibitory component at 30-100 µM in glioma 

cells expressing human DAT. If the number of binding sites decreases, then the number 

of transporters must also decrease. The data from the experiments performed in the 

growth medium show a similar biphasic pattern with a decrease in dopamine uptake at 

higher mercury concentrations. Perhaps the decrease is due to depletion in the number of 

DAT" a suggestion that is supported by this data, which demonstrated a 70% reduction in 

the Bmax of DAT. 

71 



Due to interaction of metal ions with sulfhydryl groups in the dopamine 

transporter. both dopamine uptake and binding of uptake inhibitors are changed when 

exposed to metal ions ( Ferrer and Javitch, 1998), especially with mercury because of its 

high affinity for sultl1ydryl groups. Previous research has suggested sulfhydryl groups 

play a key role in binding to the dopamine uptake complex (Richfield, 1993). If reduced 

sulf11ydryl groups (bound to electrophiles) have the ability to alter the affinity states of 

uptake inhibitor drugs or transmitter for DAT (Richfield, I 993), the acute decrease in 

uptake noted in the data for higher mercury concentrations could be attributed to a 

reduced atlinity of dopamine for the DAT. 

Sultl1ydryl groups have also been associated with confonnational changes in the 

dopamine transporter protein, which has been shown to affect both inward and outward 

DA transport (Chen. et al., 2000). The human dopamine transporter contains 13 cysteine 

residues (Torres .. et al., 2003); therefore providing 13 potential sites for mercury to bind 

(refer to Figure I) and alter the confonnation of the transporter. In reference to the 

bimodal pattern observed, the stimulatory effect of Hg2+ has been attributed to a 

conformational change in the DAT caused by creating disulfide linkages between two 

intra- or intern1olecular cysteine sulfhydryl groups (Schweri, I 994), whereas the 

inhibitory effect probably involves recognition of cysteine -SH groups intimately linked 

with the binding sites for uptake blockers (Wu, et al., 1997). According to Torres, 

Gainetdinov and Caron (2003), a cysteine residue located in the third intracellular loop of 

DAT was found to be more reactive to thiol-modifying agents like mercury during 

uptake'I implying that this residue participates in a conformational reorganization of DAT 

during substrate translocation, ultimately impeding DAT function. Perhaps the extreme 
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increase in dopamine uptake noted with 1 OµM treatment is resultant from mercury 

binding to sulfhydryl groups, altering the conformation of DAT such that inward 

transport of extracellular dopamine has stopped and in order to remove excess dopamine 

from the synapse, the cells must upregulate DAT expression. The severe decrease in 

dopamine uptake observed at higher concentrations could' be a consequence of the 

dopamine uptake system simply becoming overloaded by excess dopamine and causing 

complete cessation of transporter function. Mercury's ability to alter DAT conformation 

substantiates the biphasic response demonstrated by the data. 

The work of Hussain and colleagues (1997) concluded that exposure to mercury 

(HgCh) decreased SOD~ Cu/Zn-SOD and Mn-SOD activity; all of which play a role in 

the cellular defense mechanisms that work to prevent accumulation of reactive oxygen 

species brought on by oxidative stress. The differences in dopamine uptake between 

experiments run in assay buffer and experiments run in ascorbate-free assay buffer (as 

seen in Figure 8) suggests that the presence of ascorbic acid, a potent antioxidant, may 

attenuate the effects of mercury-induced oxidative ·stress. Similarly, previous research 

found that other antioxidants, DPPD and Trolox, were not effective in the prevention of 

HgCl2-induced cell death (Lee, et al., 2001). Although antioxidants may prolong the life 

of the cell by binding to free radicals and alleviating oxidative stress, they have not been 

proven to ultimately prevent cell death. 

VB. 3. Cytotoxicity and Cell Viability 

In order to relate the changes observed in dopamine uptake to overall cellular 

function, the concentrations of mercury (5 µM and 50 µM ) used for the LDH and 

caspase experiments were chosen because these concentrations surround the increase in 
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dopamine uptake noted with the 10 µM HgC12 treatments. The cells were incubated for 

24h in the growth medium. similar to conditions in the uptake studies, but also in the 

assay buffer to examine any variation in cellular function when exposed to mercury in 

different solutions. 

I .. actate dchydrogenase is a cytosolic enzyme often used as an indicator of 

toxicity .. specifically defining cell death (Hodgson and Smart, 2001). LDH release has 

been closely associated with several cellular properties, including membrane stability, 

transporter channel function and other metabolic activities. According to Allen and 

Rushton ( 1994 ) .. in vitro release of LDH from cells provides an accurate measure of cell 

membrane integrity and cell viability. Through colorimetric or radioactive assays, the 

measurement of lactate dehydrogenase released from cells into the medium has been 

established as a useful parameter affected after toxic cellular events (Reich!, et al., 2001), 

such as incubation with a toxic oxidative metal, like mercury. As purported by previous 

research .. an increase in the LDH release may reflect a wide spectrum of intracellular or 

membrane influences (Reichl, et al., 2001). For these experiments, an increase in LDH 

( compared to control values) is indicative of cell death subsequent to mercury treatment. 

The data from the LDH experiments where the growth medium was the solution 

used for the incubation period showed a similar relationship concerning cellular function 

between absorbance and concentration that was observed between dopamine uptake and 

concentration. As the concentration of mercury treatment increased, the amount of 

absorbance increased .. which equates to the amount ofLDH increased, indicating a loss of 

plasma membrane integrity and/or cell death. A loss of cellular function was suggested 

by a decrease in dopamine uptake as the concentration of mercury treatments increased. 
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In their research. Lee. Ha and Kim (2002) found HgC}i had concentration-dependent 

effects on cytotox ici ty in glioma cells. Reichl and colleagues (200 I) observed a 

comparable phenomenon in their work with lung cells; finding an increase in LDH 

release after exposure to HgCh when compared to control values. 

The data from this assay demonstrated a significant increase in LOH release for 

SK-N-SH cells exposed to 50 µM HgCli for 24h compared to control values, but 

statistical analysis (Dunnetf s Multiple Comparison Test) failed to find a significant 

difference between the LOH release measured from cells treated with 5 µM HgCb for 

24h and control values. In previous work, mercury compounds, including HgCl2, were 

found to increase LDH release, at concentrations greater than IO µM for 8 and 24 hours 

exposure periods in lung cells (Walther, et al., 2002), again suggesting that the cells may 

exhibit a toxicity threshold, and once surpassed, resl:llts in cell death. This conclusion 

corroborates the data gathered from the LDH assay; finding significant LOH release at 

higher concentrations (50 µM HgCh) but not at lower concentrations (5 µM HgCh) 

compared to control levels. 

V. B. 4. Initiation of Apoptotic Mechanisms: Caspase-3 and -7 Detection 

The various stages associated with chemically induced apoptosis are triggered by 

caspase cascades (Hodgson and Smart, 2001), which initiate the sequential dysregulation 

of mitochondrial function, resulting in cell shrinkage and nuclear fragmentation; 

ultimately leading to the 'systematic dismantling' of the cell. Caspases have been 

classified as a family of aspartate-specific cysteine proteases, which are key effectors 

responsible for many morphological and biochemical changes in apoptosis (Kim and 

Sharma .. 2004 ). Due to the fact that activated caspase enzymes participate in the 
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proteolyt ic cleavage events found in dying cells, caspase-3 activation has been deemed an 

essential step to actuate the cascade of apoptotic processes (Kim and Sharma, 2004 ). 

This enzyme is also responsible for activating DNA fragmentation factor, resulting in 

frac tured DNA (Kim and Sharma, 2004), another aspect leading to cellular dysfunction. 

Although statistical analysis sho,ved a significant difference between relative 

/7uoresccncc measured for cells treated with 5 µM HgCh and concrol values, there n-a.s 

not a marked difference between the average RFU values for both groups. Therefore, 

mercury-induced cytotoxicity for these concentrations does not appear to be from 

apopto tic mechanisms. The data presented by Kim and Sharma (2004) reported an ECso 

value of 81 . I ~tM Hg Ch for caspase-3 activity when murine macrophage cells were 

incubated with mercury concentrations (20- 150 µM) for 24h. Since the mercury 

concentrations examined during this study did not exceed the ECso value, this may serve 

as an explanation as to why little increase in relative fluorescence was noted. This 

suggests that larger concentrations of mercury are required to induce apoptotic cell death. 

The work of Yang and colleagues (2002) found that SK-N-SH cells cultured in a 

s imilar medium (RPMI 1640 supplemented wi th 10% heat-inactivated FBS) for longer 

periods of time (5 days vs. I day) exhibited a 6-fold increase in caspase-3 activity. For 

the LDH and caspase studies, a span of four days passed from when the cells were plated 

out to when they were treated with mercury, followed by an additional 24h incubation 

period and another 8h required by the modified caspase 3/7 protocol. Perhaps the lack of 

change in RFU between control values and 50 ~tM HgCb treatments is due to the 

different culture periods; since there is nonnally a low level of caspase activity in the 

cells, and a prolonged culture period may also increase caspase activity, any further 
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caspase activity resultant of mercury-induced apoptosis may not be detectable due to. 

n uorescence saturation. 

1: B. 5. BindinR Studies: A./linity and Density of the Dopamine Transporter 

These data represent the first partial characterization of [3H] GBRI2935 binding 

to DAT in SK-N-SH cells. The affinity of [3H] GBR12935 (6.5 nM) resembled the 

aninity of (3H) GBR I 2935 (5.5 nM) previously reported in mammalian tissue (Andersen, 

1987). Surprisingly. this is contrary to previous beliefs that the predominant 

catecholamine transport system in SK-N-SH is NET. This would suggest that prevalence 

of DAT is actually considerable higher than what was first determined using transporter 

message expression. The changes that were observed in transporter density paralleled the 

changes that were observed in LOH release and loss of [3H) dopamine uptake in the 50 

~tM Hg Cb group fo llowing 24 hour exposure; i.e., cells die, leading to loss of DAT. The 

uptake of dopamine was previously determined to be unchanged in the 5 µM HgCl2 

group at 24 hours. a finding substantiated by the saturation data with minimal changes in 

the Bmax of [3H] GBR I 2935 binding. Interestingly, there is a reduction in affinity in this 

group. Collectively. these data suggest that a reduction in affinity with no observed loss 

in dopamine uptake may be a prelude to the loss of dopamine uptake in functional studies 

and loss of [3H] GBR 12935 binding sites in the saturation analysis. Additional work is 

needed to further the pharmacological characterization of dopamine uptake sites in SK­

N-S H cells. 

V. C. Further Research 

ruture work includes examination of intra- and extracellular events that may lead 

to a decline in neuronal function following mercury exposure. These events could be 
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oxidative stress. changes in intracellular signaling systems and potential damage to cell 

surface proteins and lipids. 

Oxidative stress can be quantified using dichlorofluorescein assay (Wang and 

Joseph. I 999): where reactive oxygen species present in the sample oxidize 

nonfluorescent dichlorofluorescein to produce the extreniely fluorescent 

dichlorotluorescein. By employing this experiment, one can determine whether the 

cytotoxicity induced by mercury is associated with oxidative stress or due to other cell 

damaging mechanisms. Microscopic examination of the cells post-mercury treatment 

may allow for specific cellular changes to the membrane and nuclear material to be 

charted over time. noting especially chromatin and cell condensation, blebbing, DNA 

fragmentation , lysosomal degradation, lysis, etc. This information may provide support 

to the data from the uptake studies, which suggest subtle cellular changes may be 

occurring before DAT function is affected. 

Previous research using neuroblastoma and glial cells concluded that lower and 

intermediate metal concentrations led to inhibition of neurospecific endpoints, defined by 

neuron-specific enolase (NSE) as a neuronal marker and glia-specific beta-S 100 protein 

as a glial marker, while no changes were noted concerning LDH release (Huang, et al., 

1993 ). These findings suggest that although release of LOH is indicative of overall 

cytotoxic effects, these nerve-specific changes may serve as a more sensitive index of 

neurotoxicity in similar cell lines. According to Huang and colleagues (1993), in a neural 

cell line, the most sensitive endpoints to neurotoxic insults are neurospecific, because 

while non-specific cellular endpoints only reflect the generic functions required for cell 

viability, by definition, tissue- or organ-specific endpoints hold special relevance to that 
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particular cell or tissue type. Focusing on neurospecific biomarkers may provide a more 

complete understanding of how mercury affects neuronal function with respect to the 

dopaminergic neurons in the substantia nigra and what intem1ediary changes are 

occurring to initiate toxic mechanisms in these cells. 

Supplementary studies to examine potential temperature- and growth 

medium/assay buffer (refer to section 111.A.3) composition-dependent effects on 

dopami ne uptake could be performed to more closely reflect what would be seen in vivo. 

Parallel in vivo studies using striatal synaptosomes from rats where mercury is 

administered via iqjection or implantation of a mini-pump would also offer data 

concerning functiona l, cellular and phamrncological effects comparing mercury treatment 

and control values. These experiments may help to better gauge the threat of mercury 

contributing to the progression of neurodegenerative disease. In vivo studies could 

additionally be used to directly target the possible link between mercury and A lzheimer's 

disease. After exposing the rats to low concentrations of mercury, tests could be 

performed to measure the quantities of P-amyloid peptide or phosphorylated tau protein 

in conj unction with apolipoprotein genotyping to investigate whether the combination of 

homozygous e.i phenotype and expoSure to mercury increases the animal's susceptibility 

Lo AD. In vivo experiments would also provide an opportunity to evaluate the potential 

. t ' f antioxidants nnd possible chelators after mercury treatments protccl1 ve ac rnn o · 

V. D. ( 'unc/usions 

• 1 (l\\\\\W \n ake are concentration­The data suggest that HgCl2 effects on oopmn,,~ ,i;; 

dependent and not time-dependent. The observation cha r reductions in dopamine 

uptake are concentration-dependent could indicate;' that exposure to low amounts 
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• 

• 

• 

of mercury could result in robust effects on DA transport. Any number of 

changes in DA transport may have the capacity to initiate a cascade of biological 

events leading to cell damage and/or cell death. 

Examination of LDH and caspase enzymatic activity revealed that lower 

concentrations of mercury do indeed result in cytotoxicity. The increase in LDH 

release noted with the 50 µM HgCli treatment and lack of increase in caspase 

activity suggests that apoptosis does not play a role in the observed changes in 

DA transport. Instead, the data demonstrate that mercury-induced cytotoxicity is 

more a result of necrotic mechanisms, due the overall trauma sustained by treated 

cells. 

Although previous research has suggested that the SK-N-SH cell line expresses 

more NET, the data from the binding studies indicate these cells have a high 

density of dopaminergic sites (49.7 pmol/ mg protein). The density of DAT 

decreases as the concentration of mercury increases; the data reveal a 70% 

decrease in density for the higher concentration (50 µM HgC}i). 

Mercury treatment also resulted in pharmacological changes in radioligand 

binding to the DAT. The shift to lower affinity upon treatment with 5 µM HgCh 

switches the DAT to a high-capacity transport system, allowing more DA to cross 

into the cell. The shift back to high affinity observed with 50 µM HgCh may be 

explained by the significant reduction in transporter density, leaving only the 

resilient cells, which express the high affinity transporter. 
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