
REDUCING THE NUMBER OF PAGE FAULTS BY

SEPERA TING INSTRUCTIONS AND DAT A

By

PAVAN KUMARATHOTA

Bachelor of Technology

Kakatiya University

Andhra Pradesh, IND IA

1997

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May 2004

REDUCING THE NUMBER OF PAGE FAULTS BY

SEPERA TING INSTRUCTIONS AND DAT A

Thesis Approved:

11

PREFACE

In a typical paged memory management system .. a high number of page faults

generally decreases the performance of a computer system by increasing the average

memory access time. The objective of this study was to increase the performance of a

computer system by reducing the number of page faults through separation of instructions

and data. In the adopted scheme., data and instructions are stored separately in the

secondary memory. The page frames allocated to particular process in memory are

divided between the data pages and the instruction pages. Each portion is managed in a

different way to get optimum results in terms of a lower overall page fault rate.

A trace-driven simulation was implemented to evaluate the performance of the

new design. Four standard page replacement algorithms., i.e . ., FIFO., LRU., LFU., and

Second Chance, were used to evaluate the performance of the new design. The design

was tested with both pre-generated input traces and random traces. In both cases .. a

significant improvement in the performance of the system., in terms of the number of

page faults generated, was observed. It was observed that the number of page faults

generated for the partitioned address space scheme., i.e ... with data and instructions

separated., was high if the allocation to the instruction pages and data pages in memory is

uneven. But if the allocation is even, it was observed that the minimum number of page

faults generated was less by an average of 3.5 percent than the minimum number of page

faults generated by the standard algorithms., when applied to the same input.

111

ACKNOWLEDGEMENTS

My sincere gratitude is due to my adviser Dr. Mansur H. Samadzadeh for his

inspiration., guidance., and continuous encouragement throughout my thesis work. The

presented work is the result of his support, motivation., and valuable time.

I also thank Dr. Blayne Mayfield and Dr. Nohpill Park for serving on my graduate

committee. Their comments and suggestions are greatly appreciated.

My heartfelt thanks go to my family members for their extreme love and

continuing support. Finally, I would like to thank my friends for their encouragement and

moral support.

IV

TABLE OF CONTENTS

Chapter Page

I INTRODUCTION .. 1

1.1 Problem Statement .. 1
1.2 Tl1esis Outline ... 2

I I LITERATURE REVIEW ... 3

2 .1 Men1ory Management ... 3
2.1.1 Paging... 3
2. 1.2 Segmentation.. 4
2.1.3 Paged Segmentation ... 5

2.2 Paging... 5
2.2. l Simple Algorithms ... 6
2.2.2 Enhanced Algorithms .. 7

2.2.2.1 Second Chance Algorithm 7
2.2.2.2 Page Fault Frequency Algorithm 8
2.2.2.3 SFIFO Algorithm .. 8
2.2.2.4 MLF Algorithm... 9
2.2.2.5 EELRU Algorithm ... 9

III DESIGN AND IMPLEMENTATION ISSUES 11

3.1 Implementation Platform and Environment.................................. 11
3.2 Objective ... 11
3 .3 Input Parameters .. 12

3.3.I Input Traces ... 12
3.3.2 Page Frames ... ··········· 12
3.3.3 Page Size .. 13
3 .3 .4 Page Replacement Algorithm . 13
3 .3 .5 Separate Consideration of Instruction Pages and Data Pages 13

3.4 Design of the Simulation.. 14
3.4.1 Random Trace Generation ... 14
3.4.2 Page Table... 15
3 .4.3 Clock.. 16

3 .5 Implementation Detail.. ... 1 7

V

IV EVALUATION OF THE SIMULATION .. 19

4.1 Graphs .. 19
4.2 Observations ... 20

V SUMMARY AND FUTURE WORK ... 24

5.1 Summary ... 24
5.2 Future Work .. 25

REFERENCES ... 27

APPENDICES ... 29

APPENDIX A - GLOSSARY .. 30

APPENDIX B - TRADEMARK INFORMATION 32

APPENDIX C - EXPERIMENTAL RESULTS 33

APPENDIX D - PROGRAM LISTING ... 36

VI

LIST OF FIGURES

Figure Page

Structure of a page table entry ... 15

2 Structure of each entry of the array holding additional information for memory-
resident pages ... 16

3 Performance Graph 1 (Results produced for pre-generated traces with 30
memory page frames, I 024 words per page) .. 21

4 Performance Graph 2 (Results produced for random trace with 30 memory page
frames~ I 024 words per page) ... 23

Vll

LIST OF TABLES

Table Page

Results produced using pre-generated traces with 30 memory page frames
and I 024 words per page with input #4 ... 33

II Results produced using random traces with 30 memory page frames and I 024
words per page .. 34

III The inputs taken from the public site at New Mexico State University 35

Vlll

CHAPTER I

INTRODUCTION

The memory of a computer system is made up of different levels. The memory at

the highest level of the hierarchy consists of the registers in the CPU. Next comes the

cache memory. Just below the cache memory there is the random access memory which

is also referred to as main memory. Excluding external memory, at the bottom of the

hierarchy there is the secondary memory or disk storage [Burger 96].

Typically, the CPU can only perform operations on the program instruction words

and data words in the registers that have been loaded from main memory. So any word of

instruction or data that is not in the registers will have to be fetched from the memory for

the CPU to do its job. Since the number of program instruction words or data words that

can be stored in the registers is very small, words of instruction and data keep moving in

and out of the registers. When a required word of instruction or data cannot be found in

the registers, the system fetches the instruction or data word from the next lower level of

the memory hierarchy. And, if the word of instruction or data cannot be found in that

level of the memory system, it is fetched from a lower level.

I. I Problem Statement

Instruction word or data word transfers in the memory hierarchy can consume a

significant amount of time, thereby decreasing the processing speed. Instruction or data

\vord transfers can take different amounts of time depending on the levels of memory

hierarchy between which a transfer is occurring. Typically, it takes about I 00 ns

(nanoseconds) for a transfer between main memory and registers, and about IO ms

(milliseconds) for a transfer between secondary memory and main memory [Morris 99].

Typical memory clock cycle times are between 2.5 to 5.0 ns [Morris 99]. So accesses to

main memory are fast enough and do not generally hamper the performance of the CPU.

But. accesses to secondary memory take a lot more comparatively so that the CPU has to

\vait for a transfer before it can proceed with execution. A significant improvement in the

performance of a system can be achieved if the number of accesses from secondary

memory can be minimized.

1.2 Thesis Outline

In this thesis work, a new design was implemented to reduce the number of

accesses to secondary memory and thus improving the performance of a system. In

Chapter II, an introduction to various memory management schemes is given and the

paging memory management system is discussed in detail. In Chapter III, the

implementation issues of the new design are discussed. In Chapter IV, the performance of

the simulation is evaluated and, finally, the summary and future work are discussed in

Chapter V.

2

CHAPTER II

LITERATURE REVIEW

This chapter gives a brief description of various memory management schemes

and then discusses the paging memory management system in detail.

2.1 Memory Management

Generally. every time data cannot be found in main memory, they have to be

fetched from secondary memory (unless the system has an intervening layer of cache). It

is common in such cases to transfer a block of data instead of just the requested piece of

data.

Since the higher levels of the memory hierarchy can typically hold smaller

amounts of data than the lower levels, one must make sure that, as much as possible, only

the temporally and spacially relevant data reside in the higher levels of the memory

hierarchy. For this purpose, a memory management system is needed to decide where

each data item, or at least each block of data, is to be stored.

2.1.1 Paging

Paging is the memory management scheme that stores the instruction and data

words of a process in fixed size blocks in the physical memory. In this scheme. the

3

physical memory is divided into blocks of fixed size called page frames. The logical

memory is also broken into blocks of the same size called pages. In this scheme., all

addresses generated by the CPU consist of two parts: a page number and an offset. A

page table (a mapping mechanism between a process' pages and frames) converts each

page number to the starting address of the corresponding page frame in the physical

memory. A disadvantage of paging is that the physical memory could have internal

fragmentation. which is the unused space in a page frame for all processes in the system.

2.1 .2 Segmentation

Segmentation is the memory management scheme in which the program

instruction words and data words as viewed by the user are stored in the physical

memory. i.e .• in terms of functions, subroutines, tables, etc. [Silberschatz et al. 03]. In this

scheme. the physical memory consists of variable size blocks called segments. The

addresses generated by the CPU consist of a segment name and an offset. A segment

table (a mapping between a process' logical segments and physical segments) helps

convert the addresses generated by the CPU into physical addresses. The main problem

with segmentation is that it can cause external fragmentation where none of the empty

slots in memory may be sufficient to accommodate an incoming process' segments due to

inetlicient handling of the lists of free memory segments or holes.

4

2. 1 .3 Paged Segmentation

Both paging and segmentation have some disadvantages. In order to overcome

them. the features of both schemes are combined to obtain a memory management system

cal led paged segmentation. In paged segmentation, each segment is divided into pages

and has its O\Vn page map table. Paged segmentation incurs less external fragmentation

than segmentation because the segments no longer need to be stored whole. But this

scheme causes a significant overhead, i.e., maintaining more tables. In addition, two

memory accesses are required for logical-to-physical address translation: one for the

segment table and the other for the page table of that particular segment [Silberschatz et

al. 03].

2.2 Paging

This section describes the memory management scheme of paging and then

briefly discusses a number of popular page replacement algorithms.

In a typical computer system with a paged memory, a block of data (consisting of

program instruction and/or program data words) is called a page, and a request for a page

made to the disk by main memory is called a page fault. Whenever main memory is full

at the time of a page fault, a memory resident page is removed from it and the requested

page is loaded in its place from the secondary memory. This is called page replacement.

The algorithm that selects the page to be removed is called a page replacement algorithm.

Handling page faults consumes a significant amount of time because of the time it

takes to search the secondary memory for the desired page of instructions or data., and

5

also the time it takes to transfer the information between the levels of the memory

hierarchy.

Since it takes time to transfer information between main memory and secondary

memory, a computer system should use a page replacement algorithm that leads to a

minimum number of page faults. A number of page replacement algorithms are discussed

in the following subsections.

2.2. 1 Simple Algorithms

In this section, three simple page replacement algorithms are discussed that

require some hardware and software support for their implementation [Silberschatz et al.

03].

The First In First Out (FIFO) algorithm is the simplest of all page replacement

algorithms conceptually. This algorithm states that when there is a page fault and

memory is full, the page to be removed first is the page that has been in main memory for

the longest period of time.

The Least Recently Used (LRU) algorithm generally yields the best results,

among the page replacement algorithms of the early days, in terms of the fewest number

of page faults generated. According to this algorithm, whenever there is a page fault and

memory is full, the page to be replaced is the one that has not been used for the longest

period of time. LRU-based algorithms are predominant in virtual memory management

systems because of their efficiency and simplicity [Smaragdakis et al. 99].

6

According to the Least Frequently Used (LFU) algorithm, whenever there is a

page fault and memory is full, the page that has to be replaced is the page that has the

minimum number of hits in the time period it has resided in memory.

2.2.2 Enhanced Algorithms

The page replacement algorithms mentioned in Subsection 2.2.1 above are

relatively simple in the sense that they require little hardware support and no dynamic

calculations. In this section, a number of page replacement algorithms are discussed that

require relatively more hardware support and/or dynamic calculations.

2.2.2.1 Second Chance Algorithm

This is an extension of the FIFO algorithm. In this algorithm, when a page fault

occurs and memory is full, instead of replacing the selected page, the reference bit of that

particular page is checked to see if it has been used recently. In such a case, that page is

given a second chance and another page is selected to be removed from main memory.

When a page gets a second chance, its reference bit is cleared [Silberschatz et al. 03].

This algorithm needs some hardware to store the bits. This algorithm generally reduces

the number of page faults by preventing the removal of the recently used pages, which

arguably are more likely to be used in the near future.

7

2.2.2.2 Page Fault Frequency Algorithm

The Page Fault Frequency (PFF) replacement algorithm attempts to dynamically

control the rate of page faults produced by a program running in a paged virtual

environment by varying the amount of memory allocated to the program [Sadeh 99].

/\ccor<ling to this algorithm. when the page fault frequency rises above a critical level,

some of the referenced pages that are not in main memory are brought into main memory.

Similarly. when a number of pages in memory are not being used, some of the unused

pages are removed from main memory [Chu and Opderbeck 76]. The PFF algorithm

measures the inter page fault intervals during execution. At page fault times, the

algorithm compares those intervals with a selected threshold T. If the interval exceeds T,

all the pages that are not referenced during the interval are removed from memory.

Otherwise. no page is dumped and the referenced page is brought into memory, thereby

increasing the allocation of the respective process [Sadeh 75].

2.2.2.3 SFIFO Algorithm

The Segmented First In First Out (SFIFO) page replacement algorithm tries to

decrease the number of page faults by dividing the memory into two segments, of which

one is the primary buffer and the other is the secondary buffer. When a page is removed

from the primary buffer, it is placed in the secondary buffer and remains in it until some

other page replaces it [Turner and Levy 81]. This algorithm can be viewed as a

combination of FIFO and LRU. As the percentage of the primary buffer increases. the

8

algorithm behaves more like FIFO; and if the percentage of the secondary buffer

increases. the algorithm behaves like an LRU algorithm.

2.2.2.4 MLF Algorithm

The Marginal Loss Functions (MLF) page replacement algorithm is a three-level

replacement policy. in which. the kernel captures the distribution among many competing

processes [Ujaldon et al. 97]. It uses compile time information about an application's

access patterns to the kernel. In the first step, the kernel chooses a process that must give

up a page by detennining the process with least MLF. In the second step, the kernel

chooses a segment of the process from which a page has to be removed by determining

the MLF of each segment. And in the third step, a page is chosen to be replaced. Compile

time analysis is used to insert system calls that determine the MLF of each segment. MLF

estimates the number of page faults that a segment would incur if a page is removed from

the system. The MLFs of all active segments of a process are added to calculate the total

MLF of the process. Then the segment with the least MLF is selected as the victim

segment. A number of system calls are inserted to determine the active segments of a

process. Finally a page is removed from the victim segment.

2.2.2.5 EELRU Algorithm

Early Eviction LRU (EELRU) is a page replacement algorithm which addresses

the situation in which the repeating page fault sequences contain more pages than

allocated main memory can hold. So, each page has to be removed from memory before

9

it is used again if the LRU algorithm is used, because main memory cannot hold that

page long enough. But the removed page has to be loaded into memory again possibly

because of a loop or a data structure in the program. Thus all pages have to be loaded into

memory each time they are used. When a repeating page fault sequence is detected,

EELRlJ reduces the number of page faults by removing some pages shortly after they are

used so as to allow other pages to stay in memory for a longer period of time

I Smaragdakis et al. 99].

10

CHAPTER III

DESIGN AND IMPLEMENTATION ISSUES

3. I Implementation Platform and Environment

The simulation was implemented on the OSU Computer Science Department's

Sun Blade l 50~ which is a workstation-class computer. The system has 256 mega bytes of

RAM. It also has 7.5 gigabytes of hard disk. It runs the Sun OS 5.9 operating system,

which is a UNIX-based operating system.

3.2 Objective

The objective of this thesis was to reduce the number of the page faults generated

m a paged memory system by separating how instruction pages and data pages are

managed. Actual traces and a random trace consisting of virtual address references were

used to evaluate the new implementation. The performance of the proposed scheme was

evaluated by comparing it with standard algorithms such as FIFO, LRU, LFU, and

Second Chance (see Chapter II for details). The performance of the implementation was

evaluated on the basis of the number of the page faults generated.

11

3 .3 Input Parameters

3.3.1 Input Traces

The input traces used to evaluate the algorithms in the simulation were obtained

from pre-generated traces of virtual memory addresses from the public ftp site of New

Mexico State University generated on a SPEC3000 benchmark [Tracebase 94].

Randomly generated traces using a synthetic trace generator [Thiebaut et al. 92] were

also used to evaluate the algorithms in the simulation.

3.3.2 Page Frames

In a paged memory management system, a process is assigned a number of page

frames in memory based on fixed or variable allocation. Too few page frames will result

in a high number of page faults, which may result in thrashing or excessive page traffic

with a process making no headway. On the other hand, allocating a large number of page

frames to a process will probably result in a very small number of page faults generated,

but it will cause low utilization of the memory system.

In the simulation environment used to evaluate the algorithm proposed in this

thesis, the user is given an option to choose among 20, 30, and 40 page frames for a

process. The total size of the memory can be ignored here because the focus of this

research was static, fixed allocation of memory page frames to a program, and the

evaluation was done by considering one program (i.e., one trace tape) at a time.

12

3.3.3 Page Size

The size of a page is the number of words that can be stored in each memory page

frame. The typical range of a page size is from 512 words to 8192 words [Hennessy and

Patterson 00). In the simulation environment used to evaluate the design proposed in the

thesis. the user is given an option to choose from among three different page sizes: 512.,

1024. and 2048.

3 .3 .4 Page Replacement Algorithm

A page replacement algorithm has to be applied to select a victim page whenever

a page fault is caused by the execution of the program and the memory page frames

allocated to the program are already used up. In the simulation implemented for this

thesis., a page replacement algorithm has to be chosen in three situations: one for data

pages., one for instruction pages, and one for both instruction and data pages, when the

simulation is run without considering the distinction between instructions and data.

In the simulation environment used to evaluate the design proposed in this thesis.,

the user is given a choice to choose from among four page replacement algorithms: FIFO.,

LRU., LFU., and second chance.

3.3.5 Separate Consideration of Instruction Pages and Data Pages

In the design proposed in the thesis, memory page frames allocated to a process

are divided into data pages and instruction pages. This is because instructions and data

might behave differently. So treating the instructions and the data differently might

13

produce better results in terms of the number of page faults generated, thus potentially

improving the performance of the system. The results (see Chapter IV) show that when

the percentage of page frames allocated to data is low, a high number of page faults are

generated for data pages. Similarly, when the percentage of pages allocated to data pages

is high~ a high number of page faults are generated for instruction pages. So the

percentage of data frames must be neither too high nor too low for optimum results.

In the simulation environment used to evaluate the design proposed in this thesis,

the user can allocate a fixed percentage from the total page frames allotted to a process to

data pages. The rest of memory page frames are allocated to instruction pages.

3.4 Design of the Simulation

The simulation was implemented in the C++ language on a Sun Microsystems

machine running Sun OS 5.9 operating system. The application runs with traces of

references to virtual memory addresses. The traces used were from two sources: 1) input

files containing pre-generated traces of virtual memory addresses (generated on a

SPEC3000 benchmark obtained from the public ftp site of New Mexico State University

[Tracebase 94]), and 2) random traces produced by a synthetic trace generator (explained

below).

3.4.1 Random Trace Generation

The random traces were generated by simulating a random walk in a finite

address space with references governed by a hyperbolic probability law [Thiebaut et al.

14

92). This algorithm works on the basis of locality of the reference and working set size. A

random number generator was also used to determine the "type" of each reference~ i.e.,

data or instruction. To produce the type of each reference randomly, a Mersenne twister

random number generator was used [Ladd 01]. This algorithm is capable of producing

long sequences of order 219937 [Nishimura and Matsumoto 88]. The instruction references

were generated with a probability of 0.3. This was determined by calculating the

percentage of instruction references among all memory references in each of the five

sample input trace files. The average of these values was observed to be approximately

30%. As for the randomly generated traces, different traces can be generated by using

different seed values.

3 .4.2 Page Table

The Page Table was implemented as a hash table to decrease the search time for a

referenced page. The hash key is calculated based on the page number of a referenced

page. The structure of each page table entry is shown in Figure 1.

struct pageEntry {
long SAdr; //starting address on disk (32 bits)
int InsData; //indicates whether a page is instruction or data

page (1 bit)
int resBit; II residency bit of the page (1 bit)
int FrameNum; //memory page frame number (8 bits)

};

Figure 1. Structure of a page table entry

15

The memory references in the input traces are 32 bits. So, with each page

consisting of at least 512 (the options are: 512, 1024, and 2048) words, a maximum of 23

bits would be sufficient to identify each page uniquely. 32-bit time stamps were used to

represent instances of time [Cleary et al. 97].

The entries of the page table implemented in this thesis consist of the following

information about each page: time of entry, number of uses, most recent use, etc. This

information is required only for the pages residing in main memory. So, a small 2-

dimcnsional array was used to store this information for each page residing in main

memory. The structure of an entry in this array is shown in Figure 2.

PMT[i][O]-----virtual page number of page 'i' (23 bits)
PMT[i][1]-----insruction/data of page 'i' (I bit)
PMT[i][2]-----reference bit of page 'i' (I bit)
PMT[i][3]-----entry time of page 'i' (32 bits)
PMT[i][4]-----number of uses of page 'i' (4 bits)
PMT[i][5]-----recent use of page 'i' (32 bits)

Figure 2. Structure of each entry of the array holding additional information
for memory-resident pages

3.4.3 Clock

In the simulation, the clock is incremented after each reference is read from an

input trace file or is generated by the random number generator. The clock values are

recorded in the PMT (Page Map Table) at the corresponding times when necessary.

16

3 .5 Implementation Detail

The simulation of the page replacement algorithms was done in C++ on the

Oklahoma State University Computer Science Department's Sun Blade 150 machine

running Sun OS 5.9 operating system. The input traces were taken from the public

directory of the ftp site http://tracebase.nmsu.edu/ or randomly generated using random

number generators.

The simulation was designed as a menu-based application. First, the user is asked

to choose between a random trace and a pre-generated trace. If the user chooses a random

trace, random number generators are used and a random trace is generated. In this case,

both the referenced addresses and the type of the references (data or instruction) are

generated randomly. If the user chooses a pre-generated trace, the user is asked to select a

file name from the displayed list of input trace files which contain the reference strings.

The lengths of the reference strings in the traces obtained from the public ftp site at New

Mexico State University (http://tracebase.nmsu.edu/) are I million. So, in order to

maintain consistency, the lengths of the reference strings generated randomly were also

set to I million.

In the next step, the user is asked to choose between running the simulation with a

standard algorithm or with separation between instructions and data. If the user chooses

to run the simulation using a standard algorithm, the user is asked to choose from among

four page replacement algorithms in the menu: FIFO, LRU, LFU, and Second Chance.

Then the simulation is run using the selected algorithm. If the user chooses to run the

simulation with data and instructions separated, the user is asked to enter a percentage for

17

the data pages in memory. And then the user is asked to choose between the four

available page replacement algorithms for the data pages and for the instruction pages.

In the case of running the simulation with a standard algorithm, each time the

page containing referenced address is not found in memory, a page fault is generated and

the required page is loaded into memory. Each time a page is loaded into memory, the

page table entry for that page is updated. If a page fault occurs and memory is full, a page

is chosen to be removed from memory using the selected page replacement algorithm.

In the case of running the simulation with the new design, memory is allocated

separately to data pages and instruction pages based on the percentage entered by the

user. When a page fault occurs and there are unused page frames allocated to the

conesponding segment (i.e., data or instructions), the requested page is loaded into

memory into one of the available page frames. If there are no empty page frames

al located to the corresponding segment, a page allocated to that segment is removed from

memory using the page replacement algorithm selected for that segment, and the

requested page is loaded into memory.

Finally, the number of page faults generated is printed at the console and the user

is given a choice to run the simulation again or to exit the system.

The results produced by the simulation were used to produce comparative

performance display graphs. These graphs are discussed in Chapter IV.

18

CHAPTER IV

EVALUATION OF THE SIMULATION

This chapter discusses the performance of the new page replacement algorithm in

terms of the number of page faults generated.

4.1 Graphs

A number of graphs were produced depicting the number of page faults generated

for various input parameters (Figures 3 and 4). The performance of the new

implementation can be evaluated by the graphs produced. The graphs were produced

using Microsoft Excel by inserting the averages of the results obtained from the

simulation into a spreadsheet. The x-axis of the graphs indicate the percentage of the

program's main memory frames allocated to data pages. The y-axis of the graphs indicate

the number of page faults generated. The number of page faults generated were measured

for the increments of five percent of page frames allocated to data pages in main memory.

The values used for the graphs are the averages of the outputs (number of page faults)

generated by different input traces while keeping other parameters, i.e., the number of

page frames allocated and the number of words per page, constant. The graphs contain

the results obtained by the standard page replacement algorithms, i.e., FIFO, LRU, LFU~

Second Chance, and also the results obtained by managing instruction pages and data

pages separately, using each of the FIFO, LRU, LFU, and Second Chance page

19

replacement algorithms for the instruction and data parts. Based on the graphs, we can

investigate the optimum partition of memory allocated to a program between instructions

and data.

4.2 Observations

From the graphs (Figures 3 and 4), it can be observed that better results are

produced by the new design in terms of number of page faults generated, both with the

random traces and the pre-generated traces by the benchmark programs. The new design

generated the smallest number of page faults for a particular allocation of a program's

memory frames to instruction pages and data pages. This number is on the average 3 .5%

less than the minimum value produced by the standard algorithms.

Figure 3 shows the results when the simulation was run with 30 memory page

frames with each page containing 1024 words. The inputs used for this simulation are

input# I. input#4, and input#? (see Table III in Appendix C). Among the standard

algorithms, the LRU algorithm produced the best results. But when the instructions and

the data were managed separately, a decrease in the number of page faults generated was

observed for a particular allocation to instruction pages and data pages. A high number of

page faults was observed when the data pages were allocated less than ten percent of the

total available memory page frames for the program. A decrease in the number of page

faults generated was observed with the increase of the allocation until the minimum was

reached. which was observed to occur when the data pages are allocated between forty

percent and sixty percent of the program's memory page frames, depending on the

algorithms and the input traces used. Then the number of page faults generated increased

20

N

Results generated by pre-generated traces with 30 memory page frames allocated to the program with
1024 words per page.

E
~

20000 !

18000

g> 16000
'-a.
Q)

:5 14000
~
"C
.S 12000
~
Q)
C:

~ 10000

"' ::!:
:::,
J2
Q)
C)
ca a.

'+-
0
'-
Q)
.c
E
:::,
C:

8000

6000

4000

2000

-1
. ~---. -·-·-~· . -+-Data FIFO, Instruction FIFO .t -10-Data FIFO, Instruction LRU

Data LRU, Instruction FIFO

--:-1.- Data LRU, Instruction LRU

0 -t----r---,----.------,.---,---,-----,.---,----,----,.---,---,-----,,----,---,-----,,-----,

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

percentage of the program's memory page frames allocated to data pages
(100-x gives the percentage of the program's memory page frames allocated to instruction pages)

The number of page faults generated by standard algorithms for the same memory allocation and page size
are: FIF0=2782,LRU=2816, LFU=85210, Second Chance=2782.

Figure 3. Program performance Graph 1

\Vith the increase in allocation of the program's memory frames to data pages. The results

are shown in figures 3 and 4 with FIFO and LRU applied to data parts and instruction

parts. Not much difference was observed by changing algorithms for data pages and

instruction pages. as all curves in the graphs exhibit identical behavior.

Figure 4 shows the results produced when the simulation was run with 30

memory page frames with each page containing 1024 words. Random traces were used as

inputs for the simulation. Among the standard algorithms, the LRU algorithm generated

the minimum number of page faults. The behavior was observed to be identical to the

behavior depicted in figure 3. The minimum number of page faults generated by the new

design was observed to be on the average 3.5% less than the minimum value produced by

the standard algorithms.

It was observed that the new design generates fewer page faults both for random

traces and pre-generated traces. The new design can improve the performance of a

computer system in terms of the number of page faults generated if different page

replacement algorithms are used for instruction pages and data pages.

22

N
w

U)

Results generated by random traces with 30 memory page frames allocated to the program with 1024
words per page.

70000 1 - .

; 30000
~

~ Data FIFO, Instruction FIFO

--m- Data FIFO, Instruction LRU

Data LRU, Instruction FIFO
Cl)
0)
co
~ 20000 ·--·-·-~--· -~----~--~-~ ----~ -···- --- --
0
L..
Q)
.c

j 10000 l
0 -t-----.--~--.----.---.----r--r---r----.------r--r--~--,,-----.---,-----,,-----,

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

percentage of the program's memory page frames allocated to data pages

-·._., ___ Data LRU, Instruction LRU

(100-x gives the percentage of the program'smemory page frames allocated to instruction pages)

The number of page faults generated by standard algorithms for the same memory allocation and page
size are: FIF0=26106, LRU=24803, LFU=38750, second chance=26106.

Figure 4. Program performance Graph 2

CHAPTER V

SUMMARY AND FUTURE WORK

This chapter gives a summary of this thesis report and also discusses the future

work that can be done in this area.

5.1 Summary

In Chapter I, the memory scheme of a computer system was discussed. In Chapter

I I. various memory management schemes such as paging, segmentation, and paged

segmentation were discussed. The scheme of paging, which is the main focus of this

thesis. was discussed in detail. Chapter III discussed the design and implementation

issues. It gave a detailed description of the design of the algorithm with its

implementation details. Chapter IV evaluated the performance of the new page

replacement algorithm in terms of page faults generated.

This thesis concerned the design and development of algorithms to reduce the

number of the page faults generated by separating a program's memory space into

instruction pages and data pages. The input parameters provided are the percentage of

main memory page frames allocated to data pages, and the algorithms used to handle

page replacement for instruction pages and for data pages. The simulation helps in

determining the optimal allocation of memory pages to instruction pages and data pages.

24

The simulation was exercised by using pre-generated inputs (trace tapes) taken

from the public ftp site at New Mexico State University (http://tracebase.nmsu.edu/) and

by randomly generated traces. It was observed that the new design generated the smallest

number of page faults for a particular partition of a program's memory frames to

instruction pages and data pages. This minimum value was observed to be on the average

3.5% less than the minimum value produced by the standard algorithms. The new

algorithm generates too many page faults when the data or instruction segments were

al located too few page frames, because of the possibility of excessive page traffic or even

thrashing.

5 .2 Future work

In the design implemented in this thesis, memory page frames are statically

allocated to instruction pages and data pages of a program at the beginning of the

execution of the program. The design can be modified to allocate memory page frames to

data pages and instruction pages based on history data, i.e., the number of page faults

generated for instruction pages and data pages in the recent past. It is conceivable that the

performance of the system can be further improved if a program's memory resident pages

are allocated dynamically based upon the page faults generated in the recent past, by

increasing the number of page frames allocated to data pages if data pages cause more

page faults than the instruction pages, and vice versa.

In this thesis work, it was assumed that no cache was present. So the performance

of the algorithm can be analyzed in the presence of a cache.

25

The perfommnce of the algorithm can also be analyzed for other memory

management systems like paged segmentation, where the data is transferred in pages for

each segment. In this case, different algorithms can be used to handle page faults m

di ffcrcnt segments.

Another area of future work is to investigate the overhead incurred in the process

of handling instructions and data separately.

26

REFERENCES

f Burger 96 J Doug Burger, "Memory Systems", ACM Computing Surveys ., pp. 63-65.,
Vol. 28, No. 1, March 1996.

(Clrn and Opderbeck 76] Wesley W. Chu and Holger Opderbeck, ''Analysis of the PPF
Replacement Algorithm via a Semi-Markov Model", Communications of the
AC 'A,t Vol. 19, No. 5, pp. 298-304, May 1976.

l Cleary et al. 97] John G. Cleary, J. A. David McWha, and Murray Pearson, "Timestamp
Representations for Virtual Sequences", Proceedings of the Eleventh Workshop
on Parallel and Distributed Simulation, pp. 98-105, Lockenhaus, Austria, June
1997.

[Hennessy and Patterson 00] John L. Hennessy and David A. Patterson, Computer
Architecture - A Quantitative Approach, Second Edition, Morgan Kaufmann
Publishers, Inc., San Francisco, CA, 2000.

[Ladd O 1] Scott Robert Ladd, "libcoyote - A Library of C++ Tools",
http:lllnvw.covotegulch.comldocs/libcovote/a00033.html,
Creation date= 10/18/2001, Access date= 09/27/2003.

[Morris 99] John Morris, ''The Memory Hierarchy in Modern Processors",
http:l/ciips.ee.uwa.edu.aul-morris/Year2/PLDS2JO/mem hierarchy.html,
Creation date = ??/??/1999, Access date= 10/03/2003.

[Nishimura and Matsumoto 88] Takuji Nishimura and Makoto Matsumoto, "Mersenne
Twister: a 623-Dimensionally Equidistributed Uniform Pseudo-Random Number
Generator"., A CM Transactions on Modeling and Computer Simulation
(TON/ACS), Vol. 8., No. 1, pp. 3-30, January 1998.

[Sadeh 75] E. Sadeh, "An Analysis of the Performance of the Page Fault Frequency
(PFF) Replacement Algorithm", Proceedings of the Fifth Symposium on
Operating Systems Principles, pp. 6-13, Austin, TX, November 1975.

[Silberschatz et al. 03] Abraham Silbershatz, Peter Baer Galvin, and Greg Gagne,
Operating System Concepts, Sixth Edition, John Wiley & Sons, Inc., New York,
NY., 2003.

[Smaragdakis et al. 99] Yannis Smaragdakis, Scott Kaplan, and Paul Wilson~ "'EELRU:
Simple and Effective Adaptive Page Replacement", Proceedings <~(the 1999

27

ACM 5i'IGA1ETRICS International Conference on Measurement and Modeling of
('omputer Systems, pp. 122-133, Atlanta, GA, May 1999.

(Thicbaut et al. 92] D. Thiebaut, J. L. Wolf, and H. S. Stone, "Synthetic Traces for
Trace-Driven Simulation of Cache Memories", IEEE Transactions on Computers,
Vol. 41. No. 4. pp. 388-410, April 1992.

(Traccbasc 941 An International Trace Archive, NMSU Tracebase, New Mexico State
University. Las Cruces. NM, 1994.

l Turner and Levy 81] Rollins Turner and Henry Levy, "Segmented FIFO Page
Replacement"". Proceedings of the 1981 ACM SJGMETRJCS Conference on
Afeasurement and ,Modeling of Computer Systems, pp. 48-51, Las Vegas, NV,
September 1981.

l Ujaldon et al. 97) Manuel Ujaldon, Shamik Das Shanna, and Joel Saltz, "Page
Replacement Using Marginal Loss Functions", Proceedings of the 1997
AC,\l!IEEE C01?ference on Supercomputing, pp. 1-12, San Jose, CA, November
1997.

28

) I•,

.... ~' I
i .

·" ,!,

A,fPENDICES

29

Demand Paging:

EELRU:

FIFO:

LRU:

MLF:

Page:

Segment:

Page Fault:

Page Map Table:

PFF:

APPENDIX A

GLOSSARY

A method of paging in which a page is brought into main memory
only when that page has been referenced.

The Early Eviction LRU page replacement algorithm removes the
pages early from memory if memory is not large enough to hold
the entire sequence of recurring patterns. This can reduce the
number of page faults by optimally removing some pages.

When a page has to be removed from memory because of a page
fault, First In First Out removes the page that has been in the
memory for the longest time.

According to the Least Recently Used algorithm, a page that has
not been used for the longest time will be removed from the
memory when there is a page fault (when the set of frames
allocated to the program under consideration have all been used
up).

Marginal Loss Function calculates the number of page faults that a
process could incur if a page is removed from memory.

A block of logical memory that is of the same size as a frame in
the physical memory.

A block of logical memory as viewed by a user, e.g., functions or
subroutines.

A Page Fault occurs when a page, which a program is trying to
access, is not present in memory.

The data structure that stores the details about all the pages of a
program residing in main memory. There are as many page tables
as the number of active programs in a computer system.

Page Fault Frequency is the number of page faults occurring per
unit time.

30

PR.AD:

PR.Al:

Trace:

Victim Page:

Page Replacement Algorithm for Data.

Page Replacement Algorithm for Instructions.

The sequence of memory references generated by a program.

The page that is selected to be removed from memory as a result of
a page fault when the set of page frames allocated to a job are all
used up.

31

Excel:

Sun Blade 150:

Sun OS 5.9:

APPENDIXB

TRADEMARK INFORMATION

A registered trademark of Microsoft Corporation.

A registered trademark of Sun Microsystems Inc.

A registered trademark of Sun Microsystems Inc.

32

APPENDIXC

EXPERIMENT AL RESULTS

This appendix contains the results generated by separating instructions and data.

The number of page faults generated with increments of 5% in the allocation of the data

pages is listed. The results produced by applying the FIFO and LRU algorithms to the

instruction and data partitions are listed.

Percentage of Number of page faults generated
memory page

Data=FIFO Data=LRU Data=FIFO Data=LRU frames
allocated to I nstruction=FIFO lnstruction=FIFO Instruction=LRU Instruction= LRU

data pages
10 36005 36005 35960 36040
15 23942 23942 23886 24145
20 14846 14846 14770 14986
25 12119 12119 12050 12134
30 6035 6035 5956 6034
35 5904 5908 5827 5955
40 5289 5289 5210 5288
45 5125 5125 5145 5239
50 5232 5232 5168 5374
55 5315 5315 5226 5403
60 5452 5452 5395 5603
65 5575 5575 6207 6472
70 6526 6522 7975 8938
75 8603 8603 11573 12833
80 14490 13490 14439 21271
85 21259 19678 20232 24641
90 27543 27550 31172 33406

TABLE I: RESULTS PRODUCED USING PRE-GENERA TED TRACES
WITH 30 MEMORY PAGE FRAMES AND 1024 WORDS
PER PAGE WITH INPUT #4 (SEE TABLE 3)

33

Percentage of Number of page faults generated
memory page

Data=FIFO Data=LRU Data=FIFO Data=LRU frames
allocated to lnstruction=FIFO Instruction=FIFO Instruction=LRU Instruction=LRU

data pages
10 60234 60261 61342 62143
15 55102 54642 55710 55722
20 40784 45627 45305 44933
25 38136 39736 41361 38192
30 36707 36344 35531 34712
35 33205 33114 36549 32319
40 30526 30103 29200 28335
45 28744 28213 27482 26931
50 26856 26277 25484 24645
55 26532 25831 25229 24258
60 26244 25694 24703 23938
65 26145 25632 24660 23926
70 26147 25628 24655 23919
75 26457 25842 24506 23959
80 26718 26243 25374 24681
85 27129 27225 25817 25505
90 30450 29909 29589 29315

TABLE II: RESULTS PRODUCED USING RANDOM TRACES WITH 30
MEMORY PAGE FRAMES AND 1024 WORDS PER PAGE

34

Input#

I
2
3
4
5
6
7
8
9
IO

Corresponding file in the
site

008.espresso.din.Z
0 l 3.spice2g6.din.Z
023 .eqntott.din.Z
026.compress.din.Z
04 7. tomcatv .din.Z
052.alvinn.din.Z
072.sc.din.Z
078.swm256.din.Z
090.hydro2d.din.Z
094. .din.Z

TABLE III: THE INPUTS TAKEN FROM THE PUBLIC FTP
SITE AT NEW MEXICO ST ATE UNIVERSITY

35

APPENDIXD

PROGRAM LISTING

This program demonstrates the behavior of the memory system when memory is

divided into two parts: a data part and an instruction part. The standard algorithms, i.e.,

FIFO. I , R l J. I~ FU. and Second Chance are also implemented to compare the performance

to the ne\v design. The basis of comparison is the number of page faults generated.

!':'\\'i\tJ EUMAR l\THOT.Z\

rt.(·:, , ,, r i · :,!T>llClNG THE NUMBER OF PAGE FAULTS BY SEPARZ\TING
l tJSTRIJCTIONS Atrn DATA

M:'\NSUR H.SAMADZADEH

E,,,. i:n 1· (d l'1:t1<,s: :)!-:SIGNING: 40-50 hrs

IMl'LEMENTATION: 75-80 hrs
TEST ING: 150-200 hrs

............. ··!
llincludc <iostream>
j nc l url.-:• , f st ream>
#include <string>
#include "randomc.h"
usinq nc1mespace std;
;• •••.•••• ·······················•••*************************************

l!!/!!!/!!/!!!!!!lll!l!/II/III/II/I/I////I/I/I//II//IIIIII//II//I/IIII/III
/ I T!!F: '., I ST OF ALL STUCTURES USED IS DESCRIBED HERE / /
l!l!!!!!!!!/!!/!lll//!l/l!//!l//!!l!/ll!lll/l/l/!///////!//////II/III/III!

1,c.,pL<:.·-;,_·Lt:-; tnr, ~,tructure of page table entries .

.. ···! struct pageEntry{

) ;

long SAdr;
int InsData;
int resBit;
int FrameNum;

/ " ... * * .. •. ,, ~':I'********"**********"'***'*****"**********.,.'*"' ... '*
Th 1 .-; 1 :-; ci:-;,,j 1 :1 t ht:> rc1ndom trc1ce generation, where all the different
['C::-:,1bh, memcry lccati.ons dre to be stored in a stack for the algorithm
t ,; P r-;i,i.: ~ th~ random traces .

.. ·························••**************'****'****•········!

36

s•

I ;

!.F 1-1!L 1 j,, (

l,·nq i\ddrt'SS;

LRlJ!Jod,~ • Ne:,t;

::1:1 1 !!!!!!!!!!!!///lll//!!!//l!!/I/I/////////I///I///
I :l:·· 1.: l L'F i\Li, .:;LOBAL VARIABLES USED IS DESCRIBED HERE / /

i!!!!!!l!!l//l/!lllllll!ll!lllllll/ll//l//l/!!I

int i\ct u,1lP.1t,1Frc1mes;

1 nt i\r·t 11,11 Inst n1rt i0nFrames;

1 nt .l\l l0c[)i1taFram('s;

1n1 .l\l loclnstructionFrames;

int NumberOtFrames=768;

int NoOtPageFaults=O;

/'*the total memory page frames
allocated to data pages*/

/'*the total memory page frames
allocated to instruction pages*/

/*the total memory page frames
occupied by data pages*/

/*the t0tal memory page frames
occupied by instruction pages*/

/* the total munber of page frames
allocated to a process.*/

/~the total number of page faults
generated in a particular method*/

/*the clock variable of the system*/

'Ji::, 1:· 1.i1t• .'-,l1n,(':lStL't:,1l c1rray- representing the additional information
· ::,- l i.:t · 1ldl c::t:·ics residing in the memory.

l!·'.T [l J (i)) - - - - \' J PTIJ,"\L FAl~E NTJMgER OF PAGE I i 1

Fl'-il' ! l l [I j - . - ·- - ! N~~f..llCT !ON/DATA OF PAGE Ii I
fMT[1 I I.)-----!JIP.TY BIT Ol-~ PAGE 'i'
PMT[1 I [,J-----PMTRY TTMF. OF PAGF. 'i'
1'MT [.i I I ·l J - - - - -tJUMB!::R vF usss (1F PAGE 'i'
l'M'l ! 1 ! ['1 l - - - - -· Ri-:·:~!·:rn tr~~E cw PAGE 'i'

int PMT I 7 6 8 } [8 J ;

int blockSize=8;

int seedType=36;

int mainSeed=45;

LRUNode* LRUStack;

/*This represents the size of each
page frame in the memory*/

/*This is the seed used to produce
the type of the reference, which
is used in the random trace
generation*/

/*this is the seed used to produce
the referenced address, which
is used in the random trace
generation*/

/*the stack which contains the list
of all the unique addresses that can
be generated in the random trace*/

ThPs0 ~r~ rh0 parameters to the random trace generator.
····························****•****************•**********************/
doublP. Theta=2.5;
double A==3;
int memorySize=20000; /*the si=e of the program space to be

used by the random trace generator*/

lll/!l!!l!!l!!!!l/!ll/l!!l/l/!/l/l/l//////ll/lll!!l//lll!!ll!II//!/!!!!/
I I l\LL F"lll·l,:TIOl'lS llSED ARE DESCRIBED HERE
!!//i!/l!//!//l//!l!!!lll!!l!!l!!/l!!!llll!/l!/!/l!/l!/!!l//l!!II!/!/!!!

37

I: 1 ,:r~i ,· t:·:- ~: c- !,RU Stack after a reference is made. It puts
.. : : ·· · ; • ·:·' : -~p ,::f the stack and m,::ves 31 l the addresses

.. ,. 1::,,·,1~ :.c.,:1 dcwn.

LP Un ,;j,' • llpd,1 t P LRUS t c1ck (double INDEX, LRUNode* LRUStack);

address randomly using a hyperbolic
! : . l ,. 'lS('S the method mentioned in the thesis report

................................•...........•.•...... ,
LFlltI,,,1,,• ql'tNt>:-:t,,ddress(LRUNode• LRUStack);

,·c·:.vc,~·t the hc:-:a-decirnal reference addresses to
: !!

•.•.••• ····························~···············***/
1 n t (1 •' t I 11 t (, · , ., n s t ,·· h c1 r • a 1) ;

! ~ . 1 · :::,·· , ,·:: : .' .._-1._':~VL'rt the he:-:a-decimal character to a decimal value .
.. ·········~~·~·~··;~~·········~·~··~·;•+••+++•++++++?++~;

lrlt C(l[1VPit(ch.ir);

. , . 1, • ur :.~ 1 r-:hJE> frame, into which the rage entering the
: 1 -<1:,l'y ,·,u~ l'••:- 1,,.!:i•"i, j,~pending on the type of the reference and

•; :.·~ l T !':'.Tl l't'l r1<'; :::,,,,!.
• • • • • •• •••••••••••••••••••++++++++++++++++++++++•+++++++++9P+++•++++/

tnt (JPL Paqe (d1ar Type, int Algorithm);

.............. ·· 1
::" =· · : ·' · 1-' • ? ~ t In Fi 1st Out page replacement algorithm to determine the

·: 1,-i 1m p.-1•1•', \vh•~n the memory is full .
• • . . . • • • • • . . •• •• ····~···~············***********************************/
int FIFO(char type);

r r :·· ·\ • :>' Lt',1~~ t H.c'Lt~ntl y Us~d page replace1nent algorithm to determine the
·,, 1 :·

1 1:n P·1CJ(,, wt.en the· mcmorv is full .
.•..• ; ... , .. ;
int LRU(char type);

IJ:,,··:; t 11 " L".1:-n l·'r•'quo.~nt 1 y Used page replacement algorithm to determine the
'.: 1 ,·· 1 :1. r·.i,1,~, \vh,:-n th<':' HK•morv is full .
• •••• ••• •••••• ••••••••••••• ~ •••••••• ++**********************************/
int LFU(char type);

/' 0 IO I IO o o O < ·················••••**
ll~c-~ 1 r-ic0 :;f·cC'nd chance page replacement algorithm to determine the victim page,
wh•:n th..-• m•."mory is full.
\~~, +\\. \\~\\~\~~~~~~·~~~~~~~~~~~~~~~~~~~~~~~~~~*~~*~~~~~~+*~*~*+++~~+*+/

int SecondChance(char type);

;•····· .• ······~······••*********•******'*******'************************
F.i n:l:-; '. :,., r·'~•:'r"~nc"'d pd<Je in the memory. If the page is not found, this
qr,:,(, 1 -i 'J s -i P·:tge taul t and brings the requested page into the memory .
• •••• •••••• ···············•••••********************************·****"***/
int findPage(long PNo, char al, int algorithm);

pageEntry PageTable[lOOJ [10);
int bucketLen[lOOJ;

nu:·: 1 :·: t b• mc1 in tu net ion of the simulation. It gives tht> user various
q·.! 1 (r .s t :' run tr·1p ~imulation and then displays the resulting number cf
pclt1P ".-1',]t.--,.
~ (" " " \ " "' \ * ~ -\ * fr \ ~ -t -t -\ t- -t- -t---\' ~ 'T ~ -\ .. -\"" .. -, -t"""" ;- ~-\""-\-\"'" ~-\"' ""'"-+"' -t -t-\ --t ~ --t '\'-\ -t,"""'-\ -\ "'--t -\ /

38

· , .. ;:.1r::ing screen of the simulation*****/
·., 11 t • • • • • • • • • • • • • • • * • • • * • * "<<endl;

'llt

, \I I

'lit·

,11(.

'\I I .

,·, ,ut ·

. "\It .

,·,,11t •

REDUCING PAGE FAULTS
BY SEPARATING INSTRUCTIONS AND DATA

By
Pavan Kumar Athota

UNDER THE GUIDANCE OF
Dr. MANSUR H. SAMADZADEH

"<<endl;
"<<endl;

"<<endl;
"<<endl;
"<<endl;
"<<endl;
"<<endl;
"<<endl;
"<<endl;

"<<endl;
· • • • •••••••••••••*********************************"<<endl;

l ! ~ I I t',l?tl l n; /*The input file of the simulation·~/

/*hexa-decimal reference string*/

1 'I (1 n t Bul.·k I ndex=O; Bucklndex<lOO; Buckindex++)
bucb. .. ~ t Lt:~n [Buckindex) =0;

,·li.11 • ,ll ·n,•w ,·h,1r(25); /*hexa-decimal refernce string*/

,·h,11 tt:•mpch;
l,:1111 bl:3=0;
1 n t runs im;
i II t St ,HllL11-ct;

; '>' :1 .: , :: :r,'::·.: h'hi,::-t1 allows the user to run the simulation either with
'!ic· I" 1c·--,-:t·r:t'rat:ed traces or with the random traces .
. •• . . .• ··········~·······••********************•***************/
(·ou l · .. <"Choose f rorn the following menu: "<<endl;
cout<<"l. Run the simulation with pre-generated trace."<<endl;
co11t<<"~. Run the simulation with random trace."<<endl;
cout<,"3. Exit the simulation."<<endl;
cin>"'runSim;

switch(runSim)
{

data."<<endl;

/*case in which the user chooses
to run the simulation with
pre-generated input traces*/

;• ·············***
Th,~ m,•m1 which allows the user to run the simulation either with
~-t.:1r.d,:nd algorithm or the new design .
• ··········~•••••********************••······························;
cout<<"Choose from the following menu:"<<endl;
cout<<"l. Run the simulation standard algorithrn."<<endl;
cout<<"2. Run the simulation with separation between instruction and

cin>>standard;
sw.i tch (standard)
{

case 1: /*case in which the user chooses
to nu1 the simulation with
standard algorithm*/

/********** The user chooses the algorithm here *********/
in.open("inp.txt",ios::in);
in.get(a2);
cout<<"Choose one of the standard algorithrns"<<endl;
cout<<"l. FIFO"<<endl;
cout<<"2. LRU"<<endl;
cout<<"3. LFU"<<endl;
cout<<"4. Second Chance"<<endl;
cin>>alg;

39

in.get(a2);
t ,,r (int j=O; j<NurnberOfFrames; j++)

PMT[j) [4)=0;
PMT[j) [2)=0;

while(!in.eof())
{

in. get (tempch);

/•Reset the PMT•/

in. get line (al, 30, ' '); /•get an address from the file"'/
int addr=getint(al);
int PNo=addr/blockSize;
int memPage=findPage(PNo, '3',alg);
if(PMT[memPage) [4)>0)
{ i*if the generated address is

else
{

found in the PMT•/
PMT[memPage) [4)=PMT[memPage) [4)+1;
PMT[rnernPage) [5)=Clock;

/•if a page fault is generated•/
PMT[mernPageJ [O)=PNo; /*update the PMT* /
PMT[memPage) [4)=1;
PMT[memPage) [2)=1;
PMT[rnernPageJ [3)=Clock;
PMT[rnemPage] [5J=Clock;
NoOfPageFaults++;

}
in.getline(al,30);
in.get(a2);
Clock++;

Clock=O;
cout<<Clock<<endl;
cout<<"TOTAL PAGE FAULTS**** "<<alg<<" ***** "<<" ***

"<<NoOfP<lgeFault.s<,endl;

case 2:
break;

/*case in which the user chooses
to run the simulation with
the new design*/

int ReferencedAddr,i,PMTEntryNumber,victirn;
int percent,noOfPF;
char type;
in.open("inp.txt",ios::in);
in.get(type);
/ * * * The user chooses the algorith.rn for instruction part * * ~ * * /
cout<<"Choose one of the algorithms for instruction part"<<endl;
cout<<"l. FIFO"<<endl;
cout<<"2. LRU"<<endl;
cout<<"3. LFU"<<endl;
cout<<"4. Second Chance"<<endl;
cons all,al2;
cin>>InsAlg;

/............... The user chooses the algorith..rn for data part /
cout<<"Choose one of the standard algorithrns"<<endl;
cout<<"l. FIFO"<<endl;
cout<<"2. LRU"<<endl;
cout<<"3. LFU"<<endl;
cout<<"4. Second Chance"<<endl;
cin>>DataAlg;
all.val=InsAlg;
al2.val=DataAlg;

user enters rhe percentage of the main memory page frames t0 be
~ll0cated to data pages

40

t ;,

...................................... :t,,, •• .,,-Jt ~.,,.,,'* .. .,,.,,.,,.,,.,,.,,.,,.,,.,,.,,.,,.,, .. '*/

cout<<"Enter the percentage of the page frames allocated to data

for(int Buckindex=O;Buckindex<lOO;Buck!ndex++)
bucketLen[Buckindex]=O;

Clock=O;

::c1luculate the number of page frames allocated to data and
1ns:ructi0n pages respectively.

·······································•***************···········;
AllocDataFrames=NumberOfFrarnes*percent/100;
AllocinstructionFrames=NumberOfFrames-AllocDataFrames;
ActualDataFrames=O;
ActualinstructionFrarnes=O; //make it so just to know the no

noOfPF=O;

for(i=O;i<NumberOfFrames;i++) /-.reset the PMT*/
{

PMT[i] [4];:Q;

while(!in.eof())
{ /*gets the referenced addresses

one by one and keeps track of
the page faults*/

in.get (tempch);
in.getline(al,30,' ');
ReferencedAddr=getint(al);
long PNo=ReferencedAddr/blockSize;
if (type::::::: 1 2 I)

PMTEntryNumber=findPage(PNo,type,all.val};
else

//if the
PMTEntryNumber=findPage(PNo,type,al2.val);

if(PMT[PMTEntryNumber] [4)>0)
,lf'~,1 Tf•;J ,iJ:lrtc•~:, :i~ 1n the main memory

case 2:

{

else
{

/*if the generated address is
found in the PMT*/

PMT[PMTEntryNumber] [4)=PMT[PMTEntryNumber) [4)+1;
PMT[PMTEntryNumber] [5]=Clock;

/*if a page fault is generated*/

PMT[PMTEntryNumber] [OJ=PNo;
PMT[Pt-lTEntryNumber] [2]=1;
PMT[PMTEntryNumber] [3]=Clock;
PMT[PMTEntryNumber] [4]=1;
PMT[PMTEntryNumber] [5J=Clock;
noOfPF=noOfPF+l; /*increment the number of the

page faults*/
)
in.getline(al,30);
Clock++;
in.get(type);

//END FOR THE WHILE LOOP.
cout<<"Percent "<<percent<<"---> "<<noOfPF<<endl;

break;}
default : {cout<<"Error input"<<endl;

exit(O);}

in.close();
break;

41

/-tease in which the user chovs~s
tc, run the simulation ra;:ri,)m

bl:.:3-=0;
LRUNocte• TEMPNode;
LRUNocte• CreateNode;
h'c'l endOfFile=false;

input traces*/

the random generator used to produce the type of the

TRandomMersenne trType=TRandomMersenne(seedType);
lnt tempT;
l ,'lh1 dddr;

• • 'i··.:: ;;i the LRU st.ad:***/
LRUStack=new LRUNode();
LRUStack->Next=NULL;
LRUStack->Address=l;
T~MPNode=LRUStack;
rur(int i=2;i<=memorySize;i++)
{ /*initiali=ing the LRU stack*/

CreateNode=new LRUNode();
CreateNode->Next=NULL;
CreateNode->Address=i;
TEMPNode->Next=CreateNode;
TEMPNode=TEMPNode->Next;

srand(mainSeed);
bl.23=0;
endOfFile=false;

r: .r n:r:nu which allows the user to run the simulation either with
~tdr1-ic1r,1 al,;10rithm or the new design .

. • • •••• ···•*******/
cout<<"Choose from the following rnenu:"<<endl;
cout<<"l. Run the simulation standard algorithm."<<endl;
cout<<"2. Run the simulation with separation between instruction

cin>>standard;
switch (standard)
{

case 1:

int alg;

/*case in which the user chooses
to run the simulation with
standard algorithm*/

The user chooses the algorithm here

cout<<"Choose one of the standard algorithms"<<endl;
cout<<"l. FIFO"<<endl;
cout<<"2. LRU"<<endl;
cout<<"3. LFU"<<endl;
cout<<"4. Second Chance"<<endl;
cin>>alg;
for(int j=O;j<NurnberOfFrames;j++)
{ /*reset the PMT*/

PMT [j) [4 J =O;
PMT [j) [2) =0;

}
if(b123>100000)

endOfFile=true;
TEMPNode=LRUStack;
for(int i=l;i<=memorySize;i++)
{ /* reset the LRU stack* I

}

TEMPNode->Address=i;
TEMPNode=TEMPNode->Next;

srand(mainSeed);
while(!endOfFile)

42

part"<<endl;

bl23++;

;•gets the referenced addresses
one by one and keeps track of
the page faults•/

LRUStack=getNextAddress(LRUStack);
addr=LRUStack->Address;
int PNo=addr/blockSize;
int memPage=findPage(PNo, '3',alg);
if(PMT[memPage] [4]>0)
{ /*if the generated address is

found in the PMT*/
PMT[memPage] [4]=PMT[memPage] [4)+1;
PMT[memPage] [S]=Clock;

else
{ /~if a page fault is generated*/

PMT[memPage] [O]=PNo;
PMT[memPage] [4]=1;
PMT[memPage] [2]=1;
PMT[memPage] [3]=Clock;
PMT[memPage] [1]=1;
PMT[memPage] [5]=Clock;
NoOfPageFaults++;

}

if(b123>100000)
endOfFile=true;

Clock++;
}

Clock=O;
cout<<"TOTAL PAGE FAULTS**** "<<alg<<"

break;}

***** "<<" ***

CdSt' :: /•case in which the user chooses
to run the simulation with
tht> new design•/

~~kP ~lie d~t~ p~ges list and the instruction pages list from the
<1v<1i l<1blc.' list of references .

. ···•••*****/

/-•

/ ... > ·.• * ..

int DataAlg,InsAlg;
int ReferencedAddr,i,PMTEntryNumber,victim;
int percent,noOfPF;
char type;
bl23=0;
endOfFile=false;
cons all,al2;

The user chooses the algorithm for instruction part *********/
cout<<"Choose one of the algorithms for instruction

cout<<"l. FIFO"<<endl;
cout<<"2. LRU"<<endl;
cout<<"3. LFU"<<endl;
cout<<"4. Second Chance"<<endl;
cin>>InsAlg;

The user chooses the algorithm for data part *********/
cout<<"Choose one of the standard algorithms"<<endl;
cout<<"l. FIFO"<<endl;
cout<<"2. LRU"<<endl;
cout<<"3. LFU"<<endl;
cout<<"4. Second Chance"<<endl;
cin>>DataAlg;
all.val=InsAlg;
al2.val=DataAlg;

/' I l • l Ol •• •••

u:,f'r t->ntt"T:S t:he percentage of the main memcry paqe frames to be

43

, •• : . 1 • , ,i · ~ · j ·~: a r -3 g es
...••.•••••••••••• --.~,,.* * **--'**~**~'liJ,*':'"tt?*****-1'-ir/

cout<<"Enter the percentage of the page frames allocated to

cin>>percent;
Clock=O;
bl23=0;

·.11: :'.,1:,, :i:,? :1~:mber of page fra.11les allocated to data and instruction
? : ;, > :, 0 :~rc<":t:1".'t·ly.

AllocDataFrames=NumberOfFrames*percent/100;
AlloclnstructionFrames=NumberOfFrames-AllocDataFrames;
ActualDataFrames=O;
ActuallnstructionFrames=O;
noOf PF=O;

for(int i=O;i<NumberOfFrames;i++)
{

PMT [i J [4] =O;
}

if (bl23>100000)
endOfFile:::true;

TEMPNode=LRUStack;
for(int i=l;i<=memorySize;i++)
{

TEMPNode->Address=i;
TEMPNode=TEMPNode->Next;

}

srand(mainSeed);
while(!endOfFile)
(/*gets the referenced addresses

one by one and keeps track of
the page faults*/

b123++;
if(noOfPF==49)

b123:::b123;
LRUStack=getNextAddress(LRUStack);
ReferencedAddr=LRUStack->Address;
long PNo=ReferencedAddr/blockSize;
tempT=trType.IRandom(l,10);
if(tempT<B) /'"the data references are gener.:tted

with a pr0babililty of 0.7*/
type='!';

else
type='2';

if (type:::::: I 2 I)

PMTEntryNumber=findPage(PNo,type,all.val);
else

PMTEntryNumber=findPage(PNo,type,al2.val);
if(PMT[PMTEntryNumber] (4]>0)
{ /*if the generated address is

found in the PMT*/

PMT [PMTEntryNumber] (4] =PMT [PMTEntryNumber] [4] +l;
PMT[PMTEntryNumber] [S)=Clock;

else
{ /*if a page fault is generated*/

PMT[PMTEntryNumber) [O)=PNo;
PMT[PMTEntryNumber] [2]=0;
PMT[PMTEntryNumber] [3J=Clock;
PMT[PMTEntryNumber] [4)=1;
PMT[PMTEntryNumber] [SJ=Clock;
noOfPF=noOfPF+l; /*increment the number cf

the page faults 4
/

Clock++;

44

if(bl23>100000)
endOfFile=true;

if (bl23%1000==0)
cout<<b123<<endl;

//~ND FOR THE WHILE LOOP.
cout<<noOfPF<<endl;
int abcdef;
cin>>abcdef;
delete [)LRUStack;
break;

)

,l~fdult: {cout<<"Invalid input. Exiting the Simulation "<<endl;
exit(O);)

/•case in which the user chooses
exit the simulation~;

•' :•: l t (L)) ;

j,. LI\I It : ;~case when the user enters an

,11· t dtl 1 t

invalid input-+/
cout,,"Invalid input. Exiting the Simulation "<<endl;
exit(O);

P:-: it (Q) ;

/~case in which the user chooses
~xit th~ simulation•/

/~case when the user enters an
invalid input~/

cout,,"Invalid input. Exiting the Simulation "<<endl;
exit(O);

F:·:·I:, · ::c: 11..:rc,1cilced ~,H!e in the memory. If the page is not found, this
t1·•:1•'rd'•'::· d p.i,Jc' 1<1ult an,j brings the requested page into the memory .
• .. • • • • • • • • • • • • • .. ' ••••• ·• :1-.,,~ .. ,.,..*'*****'**.,,'**********.,,*******/
jnt findPc1ge(lonq PNo, char type, int algorithm)

int keyVal~PNoilOO;
int pos=bucketLen[keyVal);
for (int i=O;i<bucketLen[keyVal);i++)
(

it(((PageTable[keyVal} [i) .SAdr)/blockSize)==PNo)
l

if(type!='3')
{

if(PageTable(keyVal] [i) .InsData==l)
type='!';

else
type='2';

)

if(PageTable[keyVal} [iJ.resBit==l)
return PageTable[keyValJ [i) .FrameNwn;

else
break;

int FNo=getPage(type, algorithm-1);
if(i==bucketLen[keyVal))
{

PageTable[keyVal) [pos] .SAdr=PNo*blockSize;
if (type== I 2 I)

PageTable[keyVal) [pos] .InsData=2;
else

45

PageTable[keyVal) [pos).InsData=l;
bucket Len [keyVal J =bucket Len [keyVal) +l;
r.h1•'T.1ble[key\'al] [pos] .FrameNum=FNo;

raoeTahle[keyVal) [i).FrameNum=FNo;
P.iqt~Tc1blt~(key\",1l] (i] .resBit=l;
1 t (PMT[FNo) [·l) !==O)

1 n t a l __, PMT [FNo J [0) ;
keyVal-al!,100;
t,•: (int 1~0;i,bucketLen[keyValJ;i++)

if(((PageTable[keyVal) [i).SAdr)/blockSize)==al)
I

PageTable[keyVal) [i) .resBit=O;
break;

PMT (FNo J [0 J = PNo;
l t (type= ' I .: I)

PMT [FN o J [l J = 1 ;
,-• 1 St•

PMT[FNo] (1]=0;
PMT [FN o I (4 J "'0;
r e t u r 11 FN o ;

Tr, 1 s : \:r;c· 1: r, :-:.--ri,·r,i' f':--:: t hf• nei-:t address randomly using a hyperbolic
·i1:-~,11b 11t 1,~:1. l'h1s ~-u1~,~:10n. uses the method mentioned in the thesis report
I ·1 h 1 ,·r'-n11 ,il. ,:,:· 1 •

LRUNode* getNextAddress(LRUNode* LRUStack)
{

double u;
int TEMP;
double INDEX;
u= ((double) rand ()
it (u< (1/Theta))

/ (double) (RAND MAX+l));

else

double a=pow(A,Theta);
double b=(u*Theta/a);
double c=(l/(1-Theta));
INDEX=pow(b,c);

- /*the case whent he next reference
is produced within the spatial
locality of the reference*/

/*the case when the reference
can be produced anywhere in
the program space•/

u=((double)rand() / (double)(RAND_MAX+l));
INDEX=u*memorySize;

if(INDEX>=memorySize)

INDEX=memorySize-1;
TEMP=INDEX;
if(INDEX-TEMP<0.5)

I NDEX=TEMP;
else

INDEX=TEMP+l;
if (INDEX<l)

INDEX= 1;

/*make index to be in the limits
of the memory size,../

/*round the index to the nearest
integer"/

/•update the stack by bringing
the referenced memory location
to the top of the stack•/

46

!.;.11.:~ .i,·k llp,LH~·LRUStack(INDEX,LRUStack) i

: .. • ·: : : , r. F.11 :, t .1, • ~::

. ! . ! !: •
• :· .. , ,.:-'.L1 3tdci: after a reference is made. It puts
· ·:P ~~P of the stack and moves all the addresses

• • • • • • • • • • • • • • • • • • •••,, ~,,**** .. ****/
I.Fl 1:1 ,-1, • • iii' L1 t •' I.RP:~ t ,lC k (double INDEX, LRUNode* LRUStack)
{

:,Fll!L•,i,• • T~:M1' 0 LRUStack;
!.HIIN<d•·. TEMFHolder;
,. ,1m·r::->1,

·r.

t,,r(i111 i=l;i<INDEX-l;i++)

TEMP=TEMP->Next;

/*get the address at the required
inde:,' /

1-!.l:, :, :' d ~ , he re qui red inde:~ to the top of the stack

TEMPHolder=TEMP->Next;
TEMF-'Next=TEMPHolder->Next;
TEMPHol de r->Next=LRUStack;
I,RUStack=TEMPHolder;

tf'turn LRUStack;

! : . , . .. , (.:. 1 ,. t ,: r1.s .1 page t rame, into which the page entering the
:r.,, ·. :1,•:1,·1 \: ,·.1:, h ... 1,,.::1.i•"d, deptc'nding on the type of the reference and

:., 1 ! :, r It :.:11 Le· i :·,q used .
• • • • • • .. • • • • • • • • • • ... • • .. • "''*"'"***'*· *"t,l,.*'l\'"t*st"""•** * ****'t*/

1n 1 qetPagc(char Type, int Algorithm)

tnt VictimPage,i;
if (Type'-''"', 3,) /*this is the case in which there is

no difference between instructions
and data*/

else

for(i=O;i<NumberOfFrames;i++)
{

if (PMT{i) {4)==0)
return i;

/*if a page frame is unused then
return the index of that page*/

/*case when there is a partition
between instructions and data*/

if(Type!='2' && ActualDataFrarnes<AllocDataFrarnes)
{ /*if there are free data frames*/

for(i=O;i<NumberOfFrarnes;i++)
(/*find a free data frame and return it*/

i f (PMT [i) [4) == 0)
{

Actua1DataFrarnes=Actua1DataFrames+l;
return i;

if(Type=='2' && ActualinstructionFrarnes<AllocinstructionFrames)
{ /*if there are free instructi0n frames•/

for(i=O;i<NumberOfFrames;i++)
{ /*find a free instruction frame anrt

return it*/
if (PMT [i) [4] ==O)

47

'1.• ·:.

ActualinstructionFrames=ActualinstructionFrames+l;
return i;

........................... , • .,,.~ • .,~ .. ., .. .,,,..,,_,,,**'*

: ' 1•.;

: ' : f. \ ~: ;

.:: ., ,:·:,:: L,l~h' in tht> memory, remove a page from
· , .i , l ~:~: "· :::1:, :rnd return the free frame.

\" 1,·t 1 mi',1qe-LFU (Type);
t' I ••.I ~: ;

\" 1, ·t 1 mP,1qe= SecondChance (Type);
i' l t', I~: ;

l •' 1 \: I l l \: l ,: t 1 rt\ I', l cJ t' ;

..................... ~,, *'*'*"''*"'*
:: ! , ! ., :·' : ·Tl .:,-,':r.•'nt ,1l90rithm to determine the victim page when

1 :1 t 1111 n ·· c 1,--i, · k, v 11..·t im=Numbe rOfFrames;
l', ', ' l I , , ll lh I~ I .t l s ~ ;
1 : j \ I : h ,. ' . ~: • ' d l' ,I q I:' s (7 6 8 I ;
111t ,·lJ,,kNurw·L);
i•,·(, l Ch1c,,·~:t.'d;
wh i 1,, (! found)
i

}

/•!cop until a victim page is found•/
i~O;i<NumberOfFrames;i++)

/•find the page that entered the
memory first*/

Checked=false;
t0r(int j=O;j<chekNurn;j++)
t /•check if the page is already given

}

a second chance*/
if(i==CheckedPages[j))
(/

4 if the page is found in the checked
list array then it is not considered
in determined the next suitable victim
page"/

Checked=true;
break;

if(PMT[i) (4) !=0 && !Checked)
{

if(PMT[i) [3)<min)
{ /*find the page which entered the memory

the first*/
victim=i;
min=PMT[i) [3);

if (PMT[victim) (2)==0)/ 4 if the reference bit is not set, the
victim page is found 4 /

found=true;
else

;~if the reference bit is set clear the
reference bit and add the page to the

48

~heckcjrag~s list•/
CheckedPages[chekNum]=victim;
PMT[victim) [2)=0;
chekNum++;

: I (dwkNum==NumberOfFrames)

~ , · t : 11 t1 ,..,. t l' t i tn;

/~it all the pages in the memory had
their bit cl~ared, get the first page
in the CheckedPages list•/

found=true;
rt~turn CheckedPages(OJ;

••••••.•..••••••..•••••••••••• •••••• ,. .. * .. '** ... ~-.-..~-:t>'*+

1 n t Fl r(l (c'tLlI type)

int min~Clock;
1 nl viL·tim=NumberOfFrames;
int i;
int tempChc1t-;
l_ f. (type== I 3 1) /•this is the case in which there is

nc difference between instructions
and data•i

f•l se

f,,r (i=O; i...::NumberOfFrames;i++)
{

i f (PMT I i I I 4 I ! = 0)
{

if(PMT[i) [3]<min)
{ /•find the page which entered first

into the memory•/
victim=i;
min=PMT[i] (3);

/*case when there is a partition
between instructions and data•/

i f (type ! = I 2 I)

{ ;•find and return a data page•/

else

if(ActualDataFrames<AllocDataFrames)
{ /•if there are unassigned data page

frames, return an empty page frame*i
for(i=O;i<NumberOfFrames;i++)

if(PMT[i] [4]==0)
{ /*return the first available empty

page*/
victim=i;
return victim;

/*find and return an instruction frame
and return it'*/

if(ActualinstructionFrames<AllocrnstructionFrames)
{ /•if there are unassigned instruction page

frames, return an empty page frame•/
for(i=O;i<NumberOfFrames;i++)

if(PMT[i) [4]==0)
{ /*return the first available empty

page*/
victim=i;
return victim;

49

lf (type=='2')
tempChar=l;

~, l se
tempChar=O;

fnr(i=O;i<NumberOfFrames;i++)
{ /•in case a page has to be removed•/

if (tempChar==PMT[i] [1] && PMT[i] [4) !=0)
{ /•find the page that entered the

memory bef0re all other pages*/
if(PMT[i) [3)<min)
(

victim=i;
min=PMT[i) [3];

/•r~turn the victim page~/

r ':,' ·, · : ., : • · i :, • ;, ,., 1 :, • ; ':' ti scd p:.ige replacement algorithm to determine the
: ~ ·• : :t. !'',.:' ·--.1 t:,,,:: H'.t':r.~"r i' ! ~ f 1~;ll .
. • • . . . • . • • . • • • • • • • • • • • • • • • •••• -• ... ,. * .,. ·• * + .. -:6- .,, * * + .,,. ~ * * * * .. ·• '* .. '* .. .,, ~ '1t * .. .,. ., .. I
1nt LRll(L"i1.ir type)

int min~clock;
int vic-tim=cNumberOfFrames;
int i.;
inL tempChar;
j f (type== 1 3 I) /•this is the case in wn1cn there is

no difference between instructions
and data•/

else

t:or(i=O;i<NurnberOfFrames;i++)
{

i f (PMT [i I [4 I ! = 0)
{

if(PMT[i] [5]<min)
{ /•find the page which was used least

recently*/
victim=i;
min=PMT[i] [5);

/+ case when there is a partition
between instructions and data•/

i f (type ! = I 2 I)

(/*find and return a data page*/

else

if(ActualOataFrames<AllocOataFrames)
{ /*if there are unassigned data page

frames, return an empty page frame+/
for(i=O;i<NumberOfFrarnes;i++)

if (PMT [i J [4 I ==O)
(/•return the first available empty

page·k /
victim::;:i;
return victim;

/*find and return an instru,:tion frame
and return it*/

if(ActualinstructionFrarnes<AllocinstructionFrames)

50

:'·if ~hE:rE: arE: unassigne:d instruction page:
:: 1. -=1mE:s, re:turn an e:mpty page frame:"/

for(i=O;i<NumberOfFrames;i++)
if (PMT [i] [4] ==O)
{ /•return the first available empty

page•/
victim::::i;
return victim;

l l \ t YP"' - - I : •)

tempChar=l;
•. l :~ t.

t empCh,u=O;
1,,r (1 ·L); i,NumberOfFrames;i++)

it (tempChar==PMT[i) (1) && PMT[i] (4) !::::0)
I /•in case a page has to be removed•/

if(PMT[i) [S)<min)
l

victim=i;
min=PMT(i] [5];

r,' t u n1 vi ct i m; /•return the victim page•/

/,. '!t ... *'*"'*'*'*Y'*'******** .. *******'*****'**
11

:··· • '.:·· ; ·•,::0
• :··: ,, p·.':,~ ! .. u~~,__,J p<lqe repldcemcnt algorithm to determine the

·.:i: !:r. ! 1,:(· ·.·:t., t. :i:< :1:,·1-.· ,~; full .
• • • • • • • • • • .. • • • • • • : ' ••• " •• " ' .. "' "' " " " " ,. "- "- '\' •\; ~ '" ' ~ .. "',_ ,. -.;, 't' ,. "' ,t- "'"/

11it LFU(,·l1c11· type)

int min==Clock;
int min.2=Clock;
int victim=NumberOfFrames;
int tempChar;
i I) t. i;
if(type=::'3') /•this is the case in which there is

no difference between instructions
and data*/

else

for(i=O;i<NumberOfFrames;i++)
{

if (PMT [i] [4] ! ===0)
{

i f (type ! :: I 2 I)

if(PMT[i] [4)<=min && PMT[i] [5J<min2)
{ /*find the page which is used least

frequently. use LRU to resolve any
conflict*/

victim=i;
min=PMT(i] (4];
min2=PMT(i] [5];

/*case when there is a partition
between instructions and data•/

{ /•find and return a data page•/
if(ActualDataFrames<AllocDataFrarnes)
{ /iif there are unassigned data page

frames, return an E:mpty page frame•/
for(i=O;i<NurnberOfFrames;i++)

if (PMT [i J [4 I ==O)
(/•return th':'- first available empty

51

pa.9~·/
victim=i;
return victim;

/• find :ind retur:: an instruction frame
c1nd return it•/

1f(ActualinstructionFrames<AllocinstructionFrarnes)
{ ;•i! there are ~nassiqned instruction page

f r,-1.mes, return 2.n e-mpt y page frame•/
for(i=O;i<NumberOfFrames;i++)

i f (PMT [i I [4] = = 0)
{ /•return the first available empty

page•/
victim=i;
return victim;

l f (type== I~ I)

t empCha r= 1 ;
else

tempChar=O;
for(i=O;i<NumberOfFrames;i++)
l

return victim;

if(tempChar==PMT(i] (1) && PMT[i) (4) !=0)
{ /•in case a page has to be removed*/

if(PMT[i) [4)<=min && PMT(i] [5]<min2)
{ /*LRU is used to resolve the conflict* I

min2=PMT[i) [5];
victim=i;
min=PMT[i} [4];

/•return the victim page*/

Thi:·; is a funct:.ic.m to c(,nvert the he:xa-decimal reference addresses to a
dr~c i ma l :-vid r,,~ss.

··!
int getint(const char• al)

char c;
int length=(int)strlen(al);

int retVal=O;
for(int i=O;i<length;i++)

retVal=retVal*l6+convert(al[i));
return retVal;

;•• •••• ····················••****************************•*************
Thi :c, 1 s ~1 funct i ,)n to convert the hexa-decimal character to a decimal
'..!rJ I Ut·.

int convert(char c)
{

int retVal;
switch(c)
{

case '0'
case '1'
case '2'

retVal=O;break;
retVal=l;break;
retVal=2;break;

52

., ..
t'·•·

t ~ .•.

•. 1 •

I •1'
'':,'

• 6.

. •'\.

......
• 1.

'b'
,\.. ...
'd'

It I

I.' : . I ii l t

l

r· ,:· l ... ,i l -· 3 ; b r,: cl J.:;
r t • t v a l = ,J ; break ;
r,·t\"al=5;break;
1PtVc1l~6;break;
n·L'.'.11-·.:;break;
r ,, t \'. 1 1 °- 8 ; hr ea}:;
: ,·t\'a l 2 ~•;break;
r ,. t \' ,1 1 ~ l O; b re a}:;
r· e t Va l = l l ; break ;
tPtVal~l2;break;
tt.'l Vc11=13;break;
1 ,, t V c1 l = 1 4 ; b r ca k;
tr•tVal=l5;break;
t t' t V cl l ~ 0 ; break ;

!t·tU?ll ?t'lV.il;

••• "".'.''' '' '' •••••••••• MERSENNE.CPP ""***••••••••••••••• AgF 2001-10-18 *

.... i-.1:, !.::11 :,·::r.l·,•r .1,•::,~r.1:,"">r 1s described in the article by
·-:. ··-: ,· ;·11~ ',· :, T. N1~h1:nura, 1n:

;\.'::-: r1-.t::.Lt 1 t 1,-.t~.~ :: >!-.,~ii~li11g ;\11.d Computer Simt1lation.,
. ·.' l . , i., l , !'!'. , - .,,), 1 '-1 ::it,.

:• .'.f'•'!. :· random number generator.

'· •' ·. i" !··. ,, i. -!J! 1 ·:.,:>· :· ..-11 FuL'l ic License www. gnu. orgi copyleft/gpl.html •

.......... ··**************/
!11nclt1dP "randomc.h"

void TRandomMe rsenne: : Randomini t (long int seed)
// r·.- -::··t_'•,.'.i \.ft'I1·~~r,:tL""°'r

unsi.qned longs= (unsigned long)seed;
for (mti - 0; mti < MERS N; mti++) {

s = s • 2q943929 - l; -
mt [mti J = s;}

.1 / .lt':>te1· 1 c1'mp,H·.er archi.tecture
union {double f; unsigned long i[2);} convert;
convert. f = 1.0;
if (convert.ill] == Ox3FFOOOOO) Architecture= LITTLE ENDIAN;
else if (convert.i[O] == Ox3FF00000) Architecture= BIG_ENDIAN;
else Architecture= NON IEEE;}

unsigned long TRandomMersenne: :BRandom()
// qentc!rat-t:' 3~~ rdndom bits
unsigned long y;

if . ~mti >= MERS_N)
// ·r•'!l•'r.i~,, ;-iEP.S N w,)rjs at one time
const unsigned long LOWER MASK (lLU << MERS_R) - 1; // lower MERS R bits
const unsigned long UPPER-MASK= -lL << MERS_R; // upper (3'.:: -: MERS_R) bits
int kk, km; -
for (kk=O, km=MERS M· kk < MERS N-1; kk++) {

Y (mt (kk] & UPPE~ MASK) I (mt [kk+l] & LOWER_MASK);
mt (kk) mt (km] (y >> 1) " (-(signed long) (y & 1) & MERS_A);
if (++km>= MERS_N) km= O;}

Y (mt[MERS N-1) & UPPER MASK) I (mt[O] & LOWER MASK);
mt[MERS N-1) mt[MERS_M-1) " (y >> 1) " (-(signed long) (y & 1) & MERS_A);
mti = 0;)

y = mt[mti++);

// I'r,rnpr I t1,q (M,;1y be omi t.tect):

53

y
y

" J ,.
1

I,·,•

: ••''II',

u:: l • :1

t ~ I ~ ~, l l ; : • , l,

M!-:F-:~ tl;

M!·:1·:~; ;, ' ~ :•!ERS B;

! ;

l l

..
'.

.. : ' : ·. : . (" i ; : :~ ('. l ._. ,) l Ci
: ::·:·' i : ,':hl i [2 I;} convert;

:'·F,1n L'm1';

<= V

.,::i,::ii bits t,.; :L.,ating point is as follows:
.. : 1:,c1:.inq pc1nt:. number to l+bias and set

r:,i~; \.;ill give .1 random number in the
.::'· ! ,,.·: l. ,) :.,, G1..'t d rd.r:J.:.~:n nuwbt>r in the interval

.: ,, : , ,; .. : ! ..._,!- :.!1e1t we: k:ww :·,ow flcati:-ig point numbers
·:: ··.: :: -·: :: , ! is tt:.'St1..'J ir: functi0n P.andominit and saved

-,: .·: : ·, ... ·.:: t. \:\ p,~ n:n:11nq Windcws or Linu;.: uses
:. i ~. i ::-. ~ ~

: ; · •. , l l (.' h (l\ I Ch l t .. C t ll r e)
,· IS!' !.lTTLE_!::NDli\N:

converl.l(OJ r :.:o;
co11v,•1L.i[l) (t 12)
r <-' t u r n , · on v e 1· l . t - 1 • O ;

t ·,is t:~ 13 I G _ 1-:N D lt'\N :
COil V(! 1 t . 1 [1 I r ·., 20;
C<.)IIVt'l t. l [0] \!' ,·, l.:;)

r·i>t•nn ,·onverl.t - 1.0;
,·.is,! NUN lEEE: ,:l,•l,1ult:

Ox3FFOOOOO;

Ox3FF00000;

!:.: .. ·:1,,,·.,::.,'._ ,·;,,, ... ,: :1.-.,:::L,,I -...,<,ri:::: for dll architectures, including
... i:: :. : !. 1·. 1::q F;,1;.: ll:prPSCllLlticn:

r,•Lu111 (d,'ubl,c>lt: (1./((.Jouble)(unsigned long)(-lL)+l.));}

lonq TRundomMersenne:: IRandom(lona min, long max)
// ,·.: F- 1 :'. 1 .1:1.k::11 i '~t'•~'-Jt'!r in tlH'! J interval min <= x <= max
long r;

r '-= l vtHJ ((ma:-: - min + 1) .. Random {)) + min; / / multiply interval with random and

it (r > ma:~) r = max;
return it {ma:-: < min)

return r;}
Ox80000000;

;•• .• •• ••• ••••••••••••••• RANDOMC.H ... *•*•***************** 2001-10-24 AF*
lht::· :.1 J., ,·,,:1'.,;i:1:; .,·le::~:; J,.•1·Lnations Mersenne Twister random nUIPber generators.

C0n::;t 1·ti,:t ,_)r (1,)n,; i.nt :,,,.,,i):
• Th(~ ::,c:t-,d l··1n l:c, - ;H'V 1 nt t=-l'H'"r. llsuall v the time is used as seed.

E::.:.,-',_l!t i:1,~ ., pr,,q1·;-1;., twi,."f; with the ~ame seed will give the same sequence of
r.dndc'•rc n.:nJ',0 r:,. 1\ ,!1 !"tt':'tt>:1t see.-:l will give a different sequence.

: l: ,1'. i nq p(·i 1tt I H1d(,m number in the interval O <= x < 1.

• TF--.tr:cl(:r.i"'1c- t ~(-lt,·,c·.
l'P.1,,•i .. n,M-:' D,:;t.

):· hit:-- 1n TRanr,)t~Generator, TRandomMotherOfAll and
r,,: ct .;3 bits in TRanrotWGenerator. 63 bits in

lil! l!;.!,·,,J,:1,(1nt !11ln, 1:H. nu:,.;);

,,;1•.:e:- ,,:1 1~:· .,.q,er r,;:,J,,.m numb,..-,r in the interval min<"" z <= max.
~ TIJ· rc·:·,c,l:1• i(;ll ic, 1.hr· s,tme ,:ls fc,r Bandom().

"1~ris1q::, .. ~-1 1~!,q HR·~iidC·~n~);
•J',l,':·· 's:. Ll:1.!,)m bit:-;.

{max-min < MAXINT) .

• C1L I'/ ,,._.,, i 1-~t: l f". 1 n t- h(· classes TRanrctWGeneratc-r and TRandomMersenne ·

54

7 :·:··: :·· · :. -!; 1
.' :,,::,,:·,ll Public License www.gnu.org/copyleft/gpl.html

........ ···········-·········· .. """' .. -."~"~ . ..---- ;-;-t,st~"".._.""'"\~;'\'-\'"'.'t'+'t""'~"'"~¼""'--t'-t~~~~-t/

1 ! 11ck ! R.:\NDOMC H
#def 1 n, • Ri\NDOMC H

ii 1 nc l ud"
ii lfH'l:tdt·

ii 1n,·l ud•·

·m.:1th. h"'
,l~St't't .h"

• :;t d l c1. h',

cl .i:,:; TR,1tHlomMet·sennc
if 1 ! I

// encapsulate random number generator

. ·: ;: .,·::, .. ,::::.·: l),:, d,:-fined .;1s ·~nurn in 16-bit compilers)
!hit· I 111P MF:RS N
ii c!P I 1 11P MERS M
#define MERS R
#de! ine MERS U
#define MERS S
!lcle 1. i ne MERS T
llcle f i1H.• ME:RS L
#ldetine MERS A
ilcic• fine MERS B
Och• fine MERS C

!lelse

tide f i.ne MERS N
ttch~f:i.ne MERS M
lldefine MERS-R
l!clc tine
Ocie fine

lldef'ine
!lclefine
#de(ine
#!define
fidefine

!lendif
public:

ME:RS U
MERS-S
MERS-'l'
MERS=L
ME:RS A

MERS=B
MERS_C

351
175
19
11
7
15
17
O:-:E•IBD75F5
Ox655E5280
OxFFD58000

624
397
31
11
7

15
18
Ox9908B0DF
Ox902C5680
OxEFC60000

TRandomr-.lersenne (long int seed)
Randominit(seed);)

void Randominit(long int seed);
long IRanctom(long min, long max);
double Random();
unsigned long BRandom();
private:

il constructor

// re-seed
// output random integer
// output random float
// output random bits

unsigned long mt(MERS_N];
int mti;
enum TArch {LITTLE ENDIAN
TArch Architecture; '

II state vector
// index into mt

BIG ENDIAN, NON_IEEE};
- I I conversion to float depends on computer

} ;

!lendif

55

VITA (D
Pavan Kumar Athota

Candidate for the Degree of

Master of Science

Thesis: Rl·J)lJCING THE NUMBER OF PAGE FAULTS BY SEPARATING
INSTRUCTIONS AND DATA

Major Field: Computer Science

Biographical:

Personal Data: Born in Seetharampuram, INDIA, August 27, 1980, the son of
Mr. Ramakrishna Athota and Mrs. Prabhavati Athota.

Education: Received the degree of Bachelor of Technology in Computer Science
and Engineering from Kakatiya University, Warangal, India, in May 2001;
completed the requirements for the Master of Science degree at the
Computer Science Department at Oklahoma State University, Stillwater,
Oklahoma. in May 2004.

Experience: Web Designer for Star Schools Project under the Earth Science team
at Oklahoma State University, from October 2001 to August 2003.

