REDUCING THE NUMBER OF PAGE FAULTS BY

SEPERATING INSTRUCTIONS AND DATA

By
PAVAN KUMAR ATHOTA
Bachelor of Technology
Kakatiya University
Andhra Pradesh, INDIA

1997

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
May 2004

REDUCING THE NUMBER OF PAGE FAULTS BY

SEPERATING INSTRUCTIONS AND DATA

Thesis Approved:

./\/l M*“‘\(M\W(‘/b- wr_‘_,f\:f
Adviser

Tj of the Graduate Col]ege

11

PREFACE

In a typical paged memory management system. a high number of page faults
generally decreases the performance of a computer system by increasing the average
memory access time. The objective of this study was to increase the performance of a
computer system by reducing the number of page faults through separation of instructions
and data. In the adopted scheme, data and instructions are stored separately in the
secondary memory. The page frames allocated to particular process in memory are
divided between the data pages and the instruction pages. Each portion is managed in a
different way to get optimum results in terms of a lower overall page fault rate.

A trace-driven simulation was implemented to evaluate the performance of the
new design. Four standard page replacement algorithms, i.e., FIFO, LRU, LFU. and
Second Chance, were used to evaluate the performance of the new design. The design
was tested with both pre-generated input traces and random traces. In both cases, a
significant improvement in the performance of the system, in terms of the number of
page faults generated, was observed. It was observed that the number of page faults
generated for the partitioned address space scheme, i.e., with data and instructions
separated, was high if the allocation to the instruction pages and data pages in memory is
uneven. But if the allocation is even, it was observed that the minimum number of page
faults generated was less by an average of 3.5 percent than the minimum number of page

faults generated by the standard algorithms, when applied to the same input.

i

ACKNOWLEDGEMENTS

My sincere gratitude is due to my adviser Dr. Mansur H. Samadzadeh for his
inspiration, guidance, and continuous encouragement throughout my thesis work. The

presented work is the result of his support, motivation, and valuable time.

I also thank Dr. Blayne Mayfield and Dr. Nohpill Park for serving on my graduate

committee. Their comments and suggestions are greatly appreciated.
My heartfelt thanks go to my family members for their extreme love and
continuing support. Finally, I would like to thank my friends for their encouragement and

moral support.

iv

TABLE OF CONTENTS

Chapter Page
[INTRODUCTION. e, 1
1.1 Problem Statement.........ocoeiueinnine it e et })
1.2 Thesis OULHNE.ot e e e 2
I LITERATURE REVIEW. ...ttt e 3
2.1 MemOry Management.oueeeuene et et e eaeens 3
2.0 PagING. ..o e 2
2.1.2 SegMENtAtiON. .. .ouvereeeee et e .
2.1.3 Paged Segmentation.ouuinueeenne e :
2.2 PagINg. e,
2.2.1 Simple AlGOTIthIMS. .. uvne ettt S
2.2.2 Enhanced Algorithms..........ooooiiiiiiii e
2.2.2.1 Second Chance Algorithm..................ccoiiiiiiiiiannnn. 7
2.2.2.2 Page Fault Frequency Algorithm................coiiiiniinne. 8
2.2.2.3 SFIFO Algorithm i iiiiiiiiiiiiiieeanns g
2.2.2.4 MLF Algorithm............ oo, .
2.2.2.5 EELRU Algorithm........... . i
III DESIGN AND IMPLEMENTATION ISSUES.....otiitiiiiiiieiiiieaeenn 11
3.1 Implementation Platform and Environment.............cccvviiniiiinnnn... } }
3.2 OB OCtIVE. ..t .
3.3 INDUL ParamMEtErS. ... ueeeee e e ettt e e e e e e 15
33,1 INPUE TEACES. . v eneent et et et e e e e e e eeeeeaaaaes 2
3.3.2 Pa@E Frames. . ..o cueeneeeat et e ettt e et e e 15
3.3.3 Page Size.................... ... >
3.3.4 Page Replacement Algorithmoociiiiiiiiiiieanna. 3
3.3.5 Separate Consideration of Instruction Pages and Data Pages %4
3.4 Design of the Simulation....... R PR RERREE o
3.4.1 Random Trace Generation................cevviiiiiiiiienninneeneeeenns e
3.4.2 Page Table....coouoiiii i o
K T @ oY) S 10
3.5 Implementation Detail............oooiiiiiii it e e

IV EVALUATION OF THE SIMULATION......ccoiiiiiiiiiiiiiiiieiiiee 19

A1 Graphs. .o s 19

4.2 ObSEIVALIONS. .. ouetiniiiteeet et et et e et eat et et et e aeeanea e et eaaeaannans 20

V. SUMMARY AND FUTURE WORK ..ottt eieeeeeeaas 24
ST SUMMAIY ...t 24

5.2 Future WorK......oinis et et et ettt 25
REFERENCES.t 27
APPENDICES. ... e e 29
APPENDIX A - GLOSSARY . .vtnttttttieeeitiitiietiaeeaeeeeeaeeaaaneaneanans 30
APPENDIX B - TRADEMARK INFORMATION.......ccovieiiiiiiiiiininennn.. 32
APPENDIX C - EXPERIMENTAL RESULTS.......cciiiiiiiiiiiiieee 33
APPENDIX D - PROGRAM LISTING.....couiiiiiiiiieiieieeeeeaeeeeeeee 36

vi

LIST OF FIGURES

Figure Page
I Structure of a page table entry..........cvvuveiueernrinii e iee e ee e, 15
2

Structure of each entry of the array holding additional information for memory-
ESTACIL PAGES ..ottt et e 16

Performance Graph 1 (Results produced for pre-generated traces with 30
memory page frames, 1024 Words Per PAZE). . vvuenninninieiinienieeeireeneaeanenn. 21

Performance Graph 2 (Results produced for random trace with 30 memory page)
frames. 1024 WOrds Per PAGE)........cooveeeeerruneriueieneiieeeieeeanaeeanaaeenaennnens 23

vil

LIST OF TABLES

Table Page
I' Results produced using pre-generated traces with 30 memory page frames
and 1024 words per page with input #4coooiiiiiiiiiiiii e 33
IT' Results produced using random traces with 30 memory page frames and 1024
WOTAS PEI PAZE....oiueiitiiii et e e et et e et eaes 34
lII' The inputs taken from the public site at New Mexico State University............... 35

Viii

CHAPTER 1
INTRODUCTION

The memory of a computer system is made up of different levels. The memory at
the highest level of the hierarchy consists of the registers in the CPU. Next comes the
cache memory. Just below the cache memory there is the random access memory which
is also referred to as main memory. Excluding external memory, at the bottom of the
hierarchy there is the secondary memory or disk storage [Burger 96].

Typically, the CPU can only perform operations on the program instruction words
and data words in the registers that have been loaded from main memory. So any word of
instruction or data that is not in the registers will have to be fetched from the memory for
the CPU to do its job. Since the number of program instruction words or data words that
can be stored in the registers is very small, words of instruction and data keep moving in
and out of the registers. When a required word of instruction or data cannot be found in
the registers, the system fetches the instruction or data word from the next lower level of
the memory hierarchy. And, if the word of instruction or data cannot be found in that

level of the memory system, it is fetched from a lower level.

1.1 Problem Statement

Instruction word or data word transfers in the memory hierarchy can consume a

significant amount of time, thereby decreasing the processing speed. Instruction or data

word transfers can take different amounts of time depending on the levels of memory
hicrarchy between which a transfer is occurring. Typically, it takes about 100 ns
(nanoseconds) for a transfer between main memory and registers, and about 10 ms
(milliseconds) for a transfer between secondary memory and main memory [Morris 99].
Typical memory clock cycle times are between 2.5 to 5.0 ns [Morris 99]. So accesses to
main memory are fast enough and do not generally hamper the performance of the CPU.
But. accesses to secondary memory take a lot more comparatively so that the CPU has to
wait for a transfer before it can proceed with execution. A significant improvement in the
performance of a system can be achieved if the number of accesses from secondary

memory can be minimized.

1.2 Thesis Outline

In this thesis work, a new design was implemented to reduce the number of
accesses o secondary memory and thus improving the performance of a system. In
Chapter 11, an introduction to various memory management schemes is given and the
paging memory management system is discussed in detail. In Chapter III, the
implementation issues of the new design are discussed. In Chapter IV, the performance of
the simulation is evaluated and, finally, the summary and future work are discussed in

Chapter V.

CHAPTER II
LITERATURE REVIEW

This chapter gives a brief description of various memory management schemes

and then discusses the paging memory management system in detail.

2.1 Memory Management

Generally, every time data cannot be found in main memory, they have to be
fetched from secondary memory (unless the system has an intervening layer of cache). It
is common in such cases to transfer a block of data instead of just the requested piece of
data.

Since the higher levels of the memory hierarchy can typically hold smaller
amounts of data than the lower levels, one must make sure that, as much as possible, only
the temporally and spacially relevant data reside in the higher levels of the memory
hierarchy. For this purpose, a memory management system is needed to decide where

each data item, or at least each block of data, is to be stored.

2.1.1 Paging

Paging is the memory management scheme that stores the instruction and data

words of a process in fixed size blocks in the physical memory. In this scheme, the

physical memory is divided into blocks of fixed size called page frames. The logical
memory is also broken into blocks of the same size called pages. In this scheme, all
addresses generated by the CPU consist of two parts: a page number and an offset. A
page table (a mapping mechanism between a process’ pages and frames) converts each
page number to the starting address of the corresponding page frame in the physical
memory. A disadvantage of paging is that the physical memory could have internal

fragmentation. which is the unused space in a page frame for all processes in the system.

2.1.2 Segmentation

Segmentation is the memory management scheme in which the program
instruction words and data words as viewed by the user are stored in the physical
memory, i.e., in terms of functions, subroutines, tables, etc. [Silberschatz et al. 03]. In this
scheme, the physical memory consists of variable size blocks called segments. The
addresses generated by the CPU consist of a segment name and an offset. A segment
table (a mapping between a process’ logical segments and physical segments) helps
convert the addresses generated by the CPU into physical addresses. The main problem
with segmentation is that it can cause external fragmentation where none of the empty
slots in memory may be sufficient to accommodate an incoming process’ segments due to

inefficient handling of the lists of free memory segments or holes.

2.1.3 Paged Segmentation

Both paging and segmentation have some disadvantages. In order to overcome
them. the features of both schemes are combined to obtain a memory management system
called paged segmentation. In paged segmentation, each segment is divided into pages
and has its own page map table. Paged segmentation incurs less external fragmentation
than segmentation because the segments no longer need to be stored whole. But this
scheme causes a significant overhead, i.e., maintaining more tables. In addition, two
memory accesses are required for logical-to-physical address translation: one for the
segment table and the other for the page table of that particular segment [Silberschatz et

al. 03].

2.2 Paging

This section describes the memory management scheme of paging and then
briefly discusses a number of popular page replacement algorithms.

In a typical computer system with a paged memory, a block of data (consisting of
program instruction and/or program data words) is called a page, and a request for a page
made to the disk by main memory is called a page fault. Whenever main memory is full
at the time of a page fault, a memory resident page is removed from it and the requested
page is loaded in its place from the secondary memory. This is called page replacement.
The algorithm that selects the page to be removed is called a page replacement algorithm.

Handling page faults consumes a significant amount of time because of the time it

takes to search the secondary memory for the desired page of instructions or data, and

also the time it takes to transfer the information between the levels of the memory
hierarchy.

Since it takes time to transfer information between main memory and secondary
memory, a computer system should use a page replacement algorithm that leads to a
minimum number of page faults. A number of page replacement algorithms are discussed

in the following subsections.

2.2.1 Simple Algorithms

In this section, three simple page replacement algorithms are discussed that
require some hardware and software support for their implementation [Silberschatz et al.
03].

The First In First Out (FIFO) algorithm is the simplest of all page replacement
algorithms conceptually. This algorithm states that when there is a page fault and
memory is full, the page to be removed first is the page that has been in main memory for
the longest period of time.

The Least Recently Used (LRU) algorithm generally yields the best results,
among the page replacement algorithms of the early days, in terms of the fewest number
of page faults generated. According to this algorithm, whenever there is a page fault and
memory is full, the page to be replaced is the one that has not been used for the longest
period of time. LRU-based algorithms are predominant in virtual memory management

systems because of their efficiency and simplicity [Smaragdakis et al. 99].

According to the Least Frequently Used (LFU) algorithm, whenever there is a
page fault and memory is full, the page that has to be replaced is the page that has the

minimum number of hits in the time period it has resided in memory.

2.2.2 Enhanced Algorithms

The page replacement algorithms mentioned in Subsection 2.2.1 above are
relatively simple in the sense that they require little hardware support and no dynamic
calculations. In this section, a number of page replacement algorithms are discussed that

require relatively more hardware support and/or dynamic calculations.

2.2.2.1 Second Chance Algorithm

This is an extension of the FIFO algorithm. In this algorithm, when a page fault
occurs and memory is full, instead of replacing the selected page, the reference bit of that
particular page is checked to see if it has been used recently. In such a case, that page is
given a second chance and another page is selected to be removed from main memory.
When a page gets a second chance, its reference bit is cleared [Silberschatz et al. 03].
This algorithm needs some hardware to store the bits. This algorithm generally reduces
the number of page faults by preventing the removal of the recently used pages, which

arguably are more likely to be used in the near future.

The Page Fault Frequency (PFF) replacement algorithm attempts to dynamically
control the rate of page faults produced by a program running in a paged virtual
environment by varying the amount of memory allocated to the program [Sadeh 99].
According to this algorithm, when the page fault frequency rises above a critical level,
some of the referenced pages that are not in main memory are brought into main memory.
Similarly. when a number of pages in memory are not being used, some of the unused
pages are removed from main memory [Chu and Opderbeck 76]. The PFF algorithm
measures the inter page fault intervals during execution. At page fault times, the
algorithm compares those intervals with a selected threshold T. If the interval exceeds T,
all the pages that are not referenced during the interval are removed from memory.
Otherwise, no page is dumped and the referenced page is brought into memory, thereby

increasing the allocation of the respective process [Sadeh 75].

2.2.2.3 SFIFO Algorithm

The Segmented First In First Out (SFIFO) page replacement algorithm tries to
decrease the number of page faults by dividing the memory into two segments, of which
one is the primary buffer and the other is the secondary buffer. When a page is removed
from the primary buffer, it is placed in the secondary buffer and remains in it until some
other page replaces it [Turner and Levy 81]. This algorithm can be viewed as a

combination of FIFO and LRU. As the percentage of the primary buffer increases, the

algorithm behaves more like FIFO; and if the percentage of the secondary buffer

increases. the algorithm behaves like an LRU algorithm.

2.2.2.4 MLF Algorithm

The Marginal Loss Functions (MLF) page replacement algorithm is a three-level
replacement policy. in which. the kernel captures the distribution among many competing
processes [Ujaldon et al. 97]. It uses compile time information about an application’s
access patterns to the kernel. In the first step, the kernel chooses a process that must give
up a page by determining the process with least MLF. In the second step, the kernel
chooses a segment of the process from which a page has to be removed by determining
the MLF of each segment. And in the third step, a page is chosen to be replaced. Compile
time analysis is used to insert system calls that determine the MLF of each segment. MLF
estimates the number of page faults that a segment would incur if a page is removed from
the system. The MLFs of all active segments of a process are added to calculate the total
MLF of the process. Then the segment with the least MLF is selected as the victim
segment. A number of system calls are inserted to determine the active segments of a

process. Finally a page is removed from the victim segment.

2.2.2.5 EELRU Algorithm

Early Eviction LRU (EELRU) is a page replacement algorithm which addresses
the situation in which the repeating page fault sequences contain more pages than

allocated main memory can hold. So, each page has to be removed from memory before

it is used again if the LRU algorithm is used, because main memory cannot hold that
page long cnough. But. the removed page has to be loaded into memory again possibly
because of a loop or a data structure in the program. Thus all pages have to be loaded into
memory each time they are used. When a repeating page fault sequence is detected,
EELRU reduces the number of page faults by removing some pages shortly after they are
used so as to allow other pages to stay in memory for a longer period of time

[Smaragdakis et al. 99].

10

CHAPTER Il

DESIGN AND IMPLEMENTATION ISSUES

3.1 Implementation Platform and Environment

The simulation was implemented on the OSU Computer Science Department’s
Sun Blade 150, which is a workstation-class computer. The system has 256 mega bytes of
RAM. It also has 7.5 giga bytes of hard disk. It runs the Sun OS 5.9 operating system,

which is a UNIX-based operating system.

3.2 Objective

The objective of this thesis was to reduce the number of the page faults generated
in a paged memory system by separating how instruction pages and data pages are
managed. Actual traces and a random trace consisting of virtual address references were
used to evaluate the new implementation. The performance of the proposed scheme was
evaluated by comparing it with standard algorithms such as FIFO, LRU, LFU, and
Second Chance (see Chapter II for details). The performance of the implementation was

evaluated on the basis of the number of the page faults generated.

11

3.3 Input Parameters

3.3.1 Input Traces

The input traces used to evaluate the algorithms in the simulation were obtained
from pre-generated traces of virtual memory addresses from the public ftp site of New
Mexico State University generated on a SPEC3000 benchmark [Tracebase 94].
Randomly generated traces using a synthetic trace generator [Thiebaut et al. 92] were

also used to evaluate the algorithms in the simulation.

3.3.2 Page Frames

In a paged memory management system, a process is assigned a number of page
frames in memory based on fixed or variable allocation. Too few page frames will result
in a high number of page faults, which may result in thrashing or excessive page traffic
with a process making no headway. On the other hand, allocating a large number of page
frames to a process will probably result in a very small number of page faults generated,
but it will cause low utilization of the memory system.

In the simulation environment used to evaluate the algorithm proposed in this
thesis, the user is given an option to choose among 20, 30, and 40 page frames for a
process. The total size of the memory can be ignored here because the focus of this
research was static, fixed allocation of memory page frames to a program, and the

evaluation was done by considering one program (i.e., one trace tape) at a time.

12

3.3.3 Page Size

The size of a page is the number of words that can be stored in each memory page
frame. The typical range of a page size is from 512 words to 8192 words [Hennessy and
Patterson 00]. In the simulation environment used to evaluate the design proposed in the
thesis. the user is given an option to choose from among three different page sizes: 512,

1024, and 2048.

3.3.4 Page Replacement Algorithm

A page replacement algorithm has to be applied to select a victim page whenever
a page fault is caused by the execution of the program and the memory page frames
allocated to the program are already used up. In the simulation implemented for this
thesis, a page replacement algorithm has to be chosen in three situations: one for data
pages. one for instruction pages, and one for both instruction and data pages, when the
simulation is run without considering the distinction between instructions and data.

In the simulation environment used to evaluate the design proposed in this thesis,

the user is given a choice to choose from among four page replacement algorithms: FIFO,

LRU, LFU, and second chance.

3.3.5 Separate Consideration of Instruction Pages and Data Pages

In the design proposed in the thesis, memory page frames allocated to a process
are divided into data pages and instruction pages. This is because instructions and data

might behave differently. So treating the instructions and the data differently might

13

produce better results in terms of the number of page faults generated, thus potentially
improving the performance of the system. The results (see Chapter IV) show that when
the percentage of page frames allocated to data is low, a high number of page faults are
generated for data pages. Similarly, when the percentage of pages allocated to data pages
is high, a high number of page faults are generated for instruction pages. So the
percentage of data frames must be neither too high nor too low for optimum results.

In the simulation environment used to evaluate the design proposed in this thesis,
the user can allocate a fixed percentage from the total page frames allotted to a process to

data pages. The rest of memory page frames are allocated to instruction pages.

3.4 Design of the Simulation

The simulation was implemented in the C++ language on a Sun Microsystems
machine running Sun OS 5.9 operating system. The application runs with traces of
references to virtual memory addresses. The traces used were from two sources: 1) input
files containing pre-generated traces of virtual memory addresses (generated on a
SPEC3000 benchmark obtained from the public ftp site of New Mexico State University
[Tracebase 94]), and 2) random traces produced by a synthetic trace generator (explained

below).

3.4.1 Random Trace Generation

The random traces were generated by simulating a random walk in a finite

address space with references governed by a hyperbolic probability law [Thiebaut et al.

14

92]. This algorithm works on the basis of locality of the reference and working set size. A
random number generator was also used to determine the “type” of each reference, i.e.,
data or instruction. To produce the type of each reference randomly, a Mersenne twister
random number generator was used [Ladd 01]. This algorithm is capable of producing
long sequences of order 2'°**’ [Nishimura and Matsumoto 88]. The instruction references
were generated with a probability of 0.3. This was determined by calculating the
percentage of instruction references among all memory references in each of the five
sample input trace files. The average of these values was observed to be approximately
30%. As for the randomly generated traces, different traces can be generated by using

different seed values.

3.4.2 Page Table

The Page Table was implemented as a hash table to decrease the search time for a
referenced page. The hash key is calculated based on the page number of a referenced

page. The structure of each page table entry is shown in Figure 1.

struct pageEntry {
long SAdr; //starting address on disk (32 bits)
int InsData; //indicates whether a page is instruction or data
page (1bit)
int resBit; // residency bit of the page (1 bit)
int FrameNum; //memory page frame number (8 bits)

b

Figure 1. Structure of a page table entry

15

The memory references in the input traces are 32 bits. So, with each page
consisting of at least 512 (the options are: 512, 1024, and 2048) words, a maximum of 23
bits would be sufficient to identify each page uniquely. 32-bit time stamps were used to
represent instances of time [Cleary et al. 97].

The entries of the page table implemented in this thesis consist of the following
information about each page: time of entry, number of uses, most recent use, etc. This
information is required only for the pages residing in main memory. So, a small 2-
dimensional array was used to store this information for each page residing in main

memory. The structure of an entry in this array is shown in Figure 2.

PMT(i][0]-----virtual page number of page 'i' (23 bits)
PMT]i][1]-----insruction/data of page '1I' (1 bit)
PMT([1][2]-----reference bit of page 'i' (1 bit)
PMT][i][3]-----entry time of page 'i' (32 bits)
PMT([i][4]-----number of uses of page 'i' (4 bits)
PMT(i][5]-----recent use of page 'i' (32 bits)

Figure 2. Structure of each entry of the array holding additional information
for memory-resident pages

3.4.3 Clock

In the simulation, the clock is incremented after each reference is read from an
input trace file or is generated by the random number generator. The clock values are

recorded in the PMT (Page Map Table) at the corresponding times when necessary.

16

3.5 Implementation Detail

The simulation of the page replacement algorithms was done in C++ on the
Oklahoma State University Computer Science Department’s Sun Blade 150 machine
running Sun OS 5.9 operating system. The input traces were taken from the public
dircctory of the ftp site http://tracebase.nmsu.edu/ or randomly generated using random
number generators.

The simulation was designed as a menu-based application. First, the user is asked
to choose between a random trace and a pre-generated trace. If the user chooses a random
trace, random number generators are used and a random trace is generated. In this case,
both the referenced addresses and the type of the references (data or instruction) are
generated randomly. If the user chooses a pre-generated trace, the user is asked to select a
file name from the displayed list of input trace files which contain the reference strings.
The lengths of the reference strings in the traces obtained from the public ftp site at New
Mexico State University (http://tracebase.nmsu.edw/) are 1 million. So, in order to
maintain consistency, the lengths of the reference strings generated randomly were also
set to 1 million.

In the next step, the user is asked to choose between running the simulation with a
standard algorithm or with separation between instructions and data. If the user chooses
to run the simulation using a standard algorithm, the user is asked to choose from among
four page replacement algorithms in the menu: FIFO, LRU, LFU, and Second Chance.
Then the simulation is run using the selected algorithm. If the user chooses to run the

simulation with data and instructions separated, the user is asked to enter a percentage for

17

the data pages in memory. And then the user is asked to choose between the four
available page replacement algorithms for the data pages and for the instruction pages.

In the case of running the simulation with a standard algorithm, each time the
page containing referenced address is not found in memory, a page fault is generated and
the required page is loaded into memory. Each time a page is loaded into memory, the
page table entry for that page is updated. If a page fault occurs and memory is full, a page
is chosen to be removed from memory using the selected page replacement algorithm.

In the case of running the simulation with the new design, memory is allocated
scparately to data pages and instruction pages based on the percentage entered by the
user. When a page fault occurs and there are unused page frames allocated to the
corresponding segment (i.e., data or instructions), the requested page is loaded into
memory into one of the available page frames. If there are no empty page frames
allocated to the corresponding segment, a page allocated to that segment is removed from
memory using the page replacement algorithm selected for that segment, and the
requested page is loaded into memory.

Finally, the number of page faults generated is printed at the console and the user
is given a choice to run the simulation again or to exit the system.

The results produced by the simulation were used to produce comparative

performance display graphs. These graphs are discussed in Chapter IV.

18

CHAPTER IV

EVALUATION OF THE SIMULATION

This chapter discusses the performance of the new page replacement algorithm in

terms of the number of page faults generated.

4.1 Graphs

A number of graphs were produced depicting the number of page faults generated
for various input parameters (Figures 3 and 4). The performance of the new
implementation can be evaluated by the graphs produced. The graphs were produced
using Microsoft Excel by inserting the averages of the results obtained from the
simulation into a spreadsheet. The x-axis of the graphs indicate the percentage of the
program’s main memory frames allocated to data pages. The y-axis of the graphs indicate
the number of page faults generated. The number of page faults generated were measured
for the increments of five percent of page frames allocated to data pages in main memory.
The values used for the graphs are the averages of the outputs (number of page faults)
generated by different input traces while keeping other parameters, i.e., the number of
page frames allocated and the number of words per page, constant. The graphs contain
the results obtained by the standard page replacement algorithms, i.e., FIFO, LRU, LFU.
Second Chance, and also the results obtained by managing instruction pages and data
pages separately, using each of the FIFO, LRU, LFU, and Second Chance page

19

replacement algorithms for the instruction and data parts. Based on the graphs, we can
investigate the optimum partition of memory allocated to a program between instructions

and data.

4.2 Observations

From the graphs (Figures 3 and 4), it can be observed that better results are
produced by the new design in terms of number of page faults generated, both with the
random traces and the pre-generated traces by the benchmark programs. The new design
generated the smallest number of page faults for a particular allocation of a program’s
memory frames to instruction pages and data pages. This number is on the average 3.5%
less than the minimum value produced by the standard algorithms.

Figure 3 shows the results when the simulation was run with 30 memory page
frames with each page containing 1024 words. The inputs used for this simulation are
input#l, input#4, and input#7 (see Table IIl in Appendix C). Among the standard
algorithms, the LRU algorithm produced the best results. But when the instructions and
the data were managed separately, a decrease in the number of page faults generated was
observed for a particular allocation to instruction pages and data pages. A high number of
page faults was observed when the data pages were allocated less than ten percent of the
total available memory page frames for the program. A decrease in the number of page
faults generated was observed with the increase of the allocation until the minimum was
reached. which was observed to occur when the data pages are allocated between forty
percent and sixty percent of the program’s memory page frames, depending on the

algorithms and the input traces used. Then the number of page faults generated increased

20

1¢C

number of page faults generated by the program

Results generated by pre-generated traces with 30 memory page frames allocated to the program with

20000 -

18000 4§ -

16000 -

-

H

o

o

o
L

12000

%

1024 words per page.

10000

8000 -

6000 § - -

—e—Data FIFOQ, Instruction FIFO

4000 |

2000

—a— Data FIFO, Instruction LRU
) Data LRU, Instruction FIFO
—+—Data LRU, Instruction LRU

10

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

percentage of the program's memory page frames allocated to data pages

(100-x gives the percentage of the program's memory page frames allocated to instruction pages)

The number of page faults generated by standard algorithms for the same memory allocation and page size
are: FIFO=2782,LRU=2816, LFU=85210, Second Chance=2782,

Figure 3. Program performance Graph 1

with the increase in allocation of the program’s memory frames to data pages. The results
are shown in figures 3 and 4 with FIFO and LRU applied to data parts and instruction
parts. Not much difference was observed by changing algorithms for data pages and
instruction pages. as all curves in the graphs exhibit identical behavior.

Figure 4 shows the results produced when the simulation was run with 30
memory page frames with each page containing 1024 words. Random traces were used as
inputs for the simulation. Among the standard algorithms, the LRU algorithm generated
the minimum number of page faults. The behavior was observed to be identical to the
behavior depicted in figure 3. The minimum number of page faults generated by the new
design was observed to be on the average 3.5% less than the minimum value produced by
the standard algorithms.

It was observed that the new design generates fewer page faults both for random
traces and pre-generated traces. The new design can improve the performance of a
computer system in terms of the number of page faults generated if different page

replacement algorithms are used for instruction pages and data pages.

22

134

Results generated by random traces with 30 memory page frames allocated to the program with 1024

words per page.
70000 v - - o T - - -

60000 48 e e e ; : : -
50000 1 -

40000 - - -

30000 -

20000 4 — . L e e L

100004 - = o e -

Number of page faults generated by the program

—e— Data FIFO, Instruction FIFO

—a— Data FIFO, Instruction LRU
Data LRU, Instruction FIFO

- Data LRU, Instruction LRU

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
percentage of the program's memory page frames allocated to data pages

(100-x gives the percentage of the program'smemory page frames allocated to instruction pages)

The number of page faults generated by standard algorithms for the same memory allocation and page

size are: FIFO=26106, LRU=24803, LFU=38750, second chance=26106.

Figure 4. Program performance Graph 2

CHAPTER V

SUMMARY AND FUTURE WORK

This chapter gives a summary of this thesis report and also discusses the future

work that can be done in this area.

5.1 Summary

In Chapter I, the memory scheme of a computer system was discussed. In Chapter
11, various memory management schemes such as paging, segmentation, and paged
segmentation were discussed. The scheme of paging, which is the main focus of this
thesis, was discussed in detail. Chapter III discussed the design and implementation
issues. It gave a detailed description of the design of the algorithm with its
implementation details. Chapter IV evaluated the performance of the new page
replacement algorithm in terms of page faults generated.

This thesis concerned the design and development of algorithms to reduce the
number of the page faults generated by separating a program’s memory space into
instruction pages and data pages. The input parameters provided are the percentage of
main memory page frames allocated to data pages, and the algorithms used to handle
page replacement for instruction pages and for data pages. The simulation helps in

determining the optimal allocation of memory pages to instruction pages and data pages.

24

The simulation was exercised by using pre-generated inputs (trace tapes) taken
from the public ftp site at New Mexico State University (http://tracebase.nmsu.edw/) and
by randomly generated traces. It was observed that the new design generated the smallest
number of page faults for a particular partition of a program’s memory frames to
instruction pages and data pages. This minimum value was observed to be on the average
3.5% less than the minimum value produced by the standard algorithms. The new
algorithm generates too many page faults when the data or instruction segments were

allocated too few page frames, because of the possibility of excessive page traffic or even

thrashing.

5.2 Future work

In the design implemented in this thesis, memory page frames are statically
allocated to instruction pages and data pages of a program at the beginning of the
execution of the program. The design can be modified to allocate memory page frames to
data pages and instruction pages based on history data, i.e., the number of page faults
generated for instruction pages and data pages in the recent past. It is conceivable that the
performance of the system can be further improved if a program’s memory resident pages
are allocated dynamically based upon the page faults generated in the recent past, by
increasing the number of page frames allocated to data pages if data pages cause more
page faults than the instruction pages, and vice versa.

In this thesis work, it was assumed that no cache was present. So the performance

of the algorithm can be analyzed in the presence of a cache.

25

The performance of the algorithm can also be analyzed for other memory
management systems like paged segmentation, where the data is transferred in pages for
cach segment. In this case, different algorithms can be used to handle page faults in
different segments.

Another area of future work is to investigate the overhead incurred in the process

of handling instructions and data separately.

26

REFERENCES

[Burger 96] Doug Burger. “Memory Systems”, ACM Computing Surveys , pp. 63-65,
Vol. 28. No. 1. March 1996.

[Chu and Opderbeck 76] Wesley W. Chu and Holger Opderbeck, “Analysis of the PPF
Replacement Algorithm via a Semi-Markov Model”, Communications of the
ACM. Vol. 19, No. 5, pp. 298-304, May 1976.

[Cleary et al. 97] John G. Cleary, J. A. David McWha, and Murray Pearson, “Timestamp
Representations for Virtual Sequences”, Proceedings of the Eleventh Workshop
on Parallel and Distributed Simulation, pp. 98-105, Lockenhaus, Austria, June
1997.

[Hennessy and Patterson 00] John L. Hennessy and David A. Patterson, Computer
Architecture - A Quantitative Approach, Second Edition, Morgan Kaufmann
Publishers, Inc., San Francisco, CA, 2000.

[[.add 01] Scott Robert Ladd, “libcoyote - A Library of C++ Tools”,
htip.:/Hwww.covotegulch.com/docs/libcoyote/a00033. html,
Creation date = 10/18/2001, Access date = 09/27/2003.

[Morris 99] John Morris, “The Memory Hierarchy in Modern Processors”,
http.//ciips.ee.uwa.edu.aw/~morris/Year2/PLDS210/mem_hierarchy.html,
Creation date = 7?7/7?/1999, Access date = 10/03/2003.

[Nishimura and Matsumoto 88] Takuji Nishimura and Makoto Matsumoto, “Mersenne
Twister: a 623-Dimensionally Equidistributed Uniform Pseudo-Random Number
Generator”, ACM Transactions on Modeling and Computer Simulation
(TOMACS), Vol. 8, No. 1, pp. 3-30, January 1998.

[Sadeh 75] E. Sadeh, “An Analysis of the Performance of the Page Fault Frequency
(PFF) Replacement Algorithm”, Proceedings of the Fifth Symposium on
Operating Systems Principles, pp. 6-13, Austin, TX, November 1975.

[Silberschatz et al. 03] Abraham Silbershatz, Peter Baer Galvin, and Greg Gagne,
Operating System Concepts, Sixth Edition, John Wiley & Sons, Inc., New York,
NY, 2003.

[Smaragdakis et al. 99] Yannis Smaragdakis, Scott Kaplan, and Paul Wilson, “EELRU:
Simple and Effective Adaptive Page Replacement”, Proceedings of the 1999

27

ACM SIGMETRICS International Conference on Measurement and Modeling of
Computer Systems, pp. 122-133, Atlanta, GA, May 1999.

[Thicbaut et al. 92] D. Thiebaut, J. L. Wolf, and H. S. Stone, “Synthetic Traces for
Trace-Driven Simulation of Cache Memories”, IEEE Transactions on Computers,
Vol. 41. No. 4. pp. 388-410, April 1992.

[Tracebase 94] An International Trace Archive, NMSU Tracebase, New Mexico State
University. Las Cruces. NM, 1994,

[Turner and Levy 81] Rollins Tumer and Henry Levy, “Segmented FIFO Page
Replacement™, Proceedings of the 1981 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, pp. 48-51, Las Vegas, NV,
September 1981.

[Ujaldon et al. 97] Manuel Ujaldon, Shamik Das Sharma, and Joel Saltz, “Page
Replacement Using Marginal Loss Functions”, Proceedings of the 1997
ACM/IEEE Conference on Supercomputing, pp. 1-12, San Jose, CA, November
1997.

28

APPENDICES

29

Demand Paging:

EELRU:

FIIFO:

LLRU:

MLF:

Page:

Segment:

Page Fault:

Page Map Table:

PFF:

APPENDIX A

GLOSSARY

A method of paging in which a page is brought into main memory
only when that page has been referenced.

The Early Eviction LRU page replacement algorithm removes the
pages early from memory if memory is not large enough to hold
the entire sequence of recurring patterns. This can reduce the
number of page faults by optimally removing some pages.

When a page has to be removed from memory because of a page
fault, First In First Out removes the page that has been in the
memory for the longest time.

According to the Least Recently Used algorithm, a page that has
not been used for the longest time will be removed from the
memory when there is a page fault (when the set of frames
allocated to the program under consideration have all been used

up).

Marginal Loss Function calculates the number of page faults that a
process could incur if a page is removed from memory.

A block of logical memory that is of the same size as a frame in
the physical memory.

A block of logical memory as viewed by a user, e.g., functions or
subroutines.

A Page Fault occurs when a page, which a program is trying to
access, is not present in memory.

The data structure that stores the details about all the pages of a
program residing in main memory. There are as many page tables

as the number of active programs in a computer system.

Page Fault Frequency is the number of page faults occurring per
unit time.

30

PRAD: Page Replacement Algorithm for Data.

PRAL: Page Replacement Algorithm for Instructions.

Trace: The sequence of memory references generated by a program.

Victim Page: The page that is selected to be removed from memory as a result of
a page fault when the set of page frames allocated to a job are all
used up.

31

Excel:

Sun Blade 150:

Sun OS 5.9:

APPENDIX B

TRADEMARK INFORMATION

A registered trademark of Microsoft Corporation.
A registered trademark of Sun Microsystems Inc.

A registered trademark of Sun Microsystems Inc.

32

APPENDIX C

EXPERIMENTAL RESULTS

This appendix contains the results generated by separating instructions and data.

The number of page faults generated with increments of 5% in the allocation of the data

pages is listed. The results produced by applying the FIFO and LRU algorithms to the

instruction and data partitions are listed.

Percentage of
memory page
frames
allocated to
data pages

Number of page faults generated

Data=FIFO
Instruction=FIFQ

Data=LRU
Instruction=FIFO

Data=FIFO
Instruction=LRU

Data=LRU
Instruction=LRU

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

36005
23942
14846
12119
6035
5904
5289
5125
5232
5315
5452
5575
6526
8603
14490
21259
27543

36005
23942
14846
12119
6035
5908
5289
5125
5232
5315
5452
5575
6522
8603
13490
19678
27550

35960
23886
14770
12050
5956
5827
5210
5145
5168
5226
5395
6207
7975
11573
14439
20232
31172

36040
24145
14986
12134
6034
5955
5288
5239
5374
5403
5603
6472
8938
12833
21271
24641
33406

TABLE I: RESULTS PRODUCED USING PRE-GENERATED TRACES
WITH 30 MEMORY PAGE FRAMES AND 1024 WORDS
PER PAGE WITH INPUT #4 (SEE TABLE 3)

33

Percentage of
memory page
frames
allocated to
data pages

Number of page faults generated

Data=FIFO
Instruction=FIFO

Data=LRU
Instruction=FIFO

Data=FIFO
Instruction=LRU

Data=LRU
Instruction=LRU

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

60234
55102
40784
38136
36707
33205
30526
28744
26856
26532
26244
26145
26147
26457
26718
27129
30450

60261
54642
45627
39736
36344
33114
30103
28213
26277
25831
25694
25632
25628
25842
26243
27225
29909

61342
55710
45305
41361
35531
36549
29200
27482
25484
25229
24703
24660
24655
24506
25374
25817
29589

62143
55722
44933
38192
34712
32319
28335
26931
24645
24258
23938
23926
23919
23959
24681
25505
29315

TABLE II: RESULTS PRODUCED USING RANDOM TRACES WITH 30
MEMORY PAGE FRAMES AND 1024 WORDS PER PAGE

34

Input # Corresponding file in the
ftp site
008.espresso.din.Z
013.spice2g6.din.Z
023.eqntott.din.Z
026.compress.din.Z
047.tomcatv.din.Z
052.alvinn.din.Z
072.sc.din.Z
078.swm256.din.Z
090.hydro2d.din.Z
094.fpppp.din.Z

SV IAU R W —

TABLE III: THE INPUTS TAKEN FROM THE PUBLIC FTP
SITE AT NEW MEXICO STATE UNIVERSITY

35

APPENDIX D

PROGRAM LISTING

This program demonstrates the behavior of the memory system when memory is
divided into two parts: a data part and an instruction part. The standard algorithms, i.e.,
FIFO. LLRU. LFU. and Second Chance are also implemented to compare the performance

to the new design. The basis of comparison is the number of page faults generated.

LRI

LR R R R R
R R R R R R R R AR R A R S A R R R R R)

Sotcterns N FAVAN RUMAR ATHOTA

Plois Troiog KEDUCING THE NUMBER OF PAGE FAULTS BY SEPARATING
INSTRUCTIONS AND DATA

Adv e MANSUR H.SAMADZADEH

Estimeted Pimes: DESIGNING: 40-50 hrs
IMPLEMENTATION: 75-80 hrs
e ~. V=20 rs
Ceeen \..‘....‘..«f?%ii??:‘}?E‘%SQQ?««««««*««**«*«*«***«******************/
#include <iostream>
finclude <fstream>
#include <string>
#include "randomc.h"”
using namespace std;

> >
FEFFFF IR I IR R IR I F IR R I AP
S e R A I A A A RS B

FFFF IR F R
R T R S S L R AL E L R R R i S G ey /

/////////X//f//;//Cﬂ
V¥ THE LIST OF ALL STUCTURES USED IS DESCRIBED HERE /7
/////f///L//////////>///

A I I R A IR T T T S N T LR R At 2 2 e O
4 s
: s 3 st - r ntries.
Reproesents (he structure of age table e: ,
««E...«;««.‘iq««««««:‘«‘*‘<<g\««4«f«&«««**t«t**«*«tt«*t*t***««~~e+**««~ﬁ
struct pageEntry({

long SAdr;

int InsData;

int resBit;

int FrameNum;
)z

>k ok
A A T R e R R R R R I I R Y

This 1s used in the random trace generation, where allathe differen?thm
pessible memary locations are to be stored in a stack for the algori

s

13oprsduace the random traces., .
R I IR RS
~~~l;~ A I I A R R N e R R A A R AR AR R R /

36



Strnct LRI O ey
lona Address;
LRUNode* Next;

b
‘‘‘‘‘‘ CEAS LSS RSP IIIIII NI 077
v IHX 13T OF ALL SLOBAL VARIABLES USED IS DESCRIBED HERE /7
' ‘ R R S S NNy SN NN NNy YNNI VIV NI EIY

int ActualbatafFrames; /*the toctal memory page frames
allccated to data pages*/

Nt ActuallinstructionFrames: /*the total memory page frames
allocated to instruction pages*/

nt AllocbataFrames; /*the total memory page frames
occupied by data pages*/

int AlloclnstructionFrames; /*the tctal memorv page frames
occupied by instruction pages*/

1int NumberOfFrames=768; /*the total number of page frames
allocated to a process.*/

int NoOfPageFaults=0; /*the total number of page faults
generated in a particular methed*/

int Clock=0; /*the clock variable of the system*/

PRI

M T I N T 222 A2 AR A A RS R A S A R R R E TR TR R R R XS

Thao ue the C-dimensional array representing the additional information

SO T Re paae table entries residing in the memory.
FRTL11 0] -~~~ -V IPTUAL PAGE NUMRER OF PAGE 'i'
EMI( 1] -~ -~ -~ INSRUCT1ON/DATA OF PAGE 'i'

EMT (0 )i -mm DIRTY BIT OF PAGE 'i'

PMT 1) 3 - ENTRY TIME OF PAGE 'i'

FMTIi ) (d)-=--- NUMEER UF USES OF PAGE 'i'
R A RiiTENT USE OF PAGE 'i!

EE I B B R

"’*‘i*4{,4~)~l’#i9"9**"Q’i”)i”i"*‘)”**’i”i’i’,,*#i’ﬁ****”’i/

int PMT([768)(8];

int blockSize=8; /*This represents the size of each
page frame in the memcry*/

int seedType=36; /*This is the seed used to produce
the type of the reference, which
is used in the random trace
generation*/

int mainSeed=45; /*this is the seed used to p;oduce
the referenced address, which
is used in the random trace
generation*/

LRUNode* LRUStack; /*the stack which contains the list
of all the unique addresses that can
be generated in the randem trace*/

VR I T S I R R R S S S T

These are the parameters to the random trace generator.

AR AR B A R R G ey ....‘.**~t~’*A~*.*‘*g**-&i*»ﬁi***#***‘!*:ﬁ‘('Q-*:ﬁ*****i-k**i—*-i******-ﬁ/

double Theta=2.5;

double A=3;

int memorySize=20000; /*the size of the program space to be

- /

used by the random trace generator™/

R R R R ey
v ALL FUNCTIONMS USED ARE DESCRIBED HERE ii
TELTTLL TGP 2707070000070 707700 000800700 700707070700770272/7727177¢072077777

37



A e R AR AR NN R R R N I IR I R I I IR R IR R N S
upddates tre LRU Stack atter a reference is made. It puts
et ardre s at o cae top of the stack and meves all the addresses

S ot s e, e locar1on down.

e e a.o-oo04o041v0Q‘ﬂ'Q'00""”'*”‘1*’*"‘??9***’*”9”’**”*’/’

LEUN 40 s UpdateLRUStack (double INDEX, LRUNode* LRUStack);

v e s

R R R R R R R R N R A R R A

oo tes e next address randomly using a hyperbelic
. TRy e 1 tt1on uses the methed menticned in the thesis report

e Lt e I P TIIIIIFILRRIIIS RIS IR RIS SIS IS S

LEUHOde* getNextAddress (LRUNode* LRUStack):

L R I R e N R R R A AR R A A R A R AR R R R R R E R R R

s.vert the hexa-decimal reference addresses to

L

R I I I R I B e S I B A S E R R R R SRR R ]

Int getInt (const char* al);

R N R R R AR L E R EE R RS AR AR A R R R R N TR TR R R R R R R

ST ety convert the hexa-decimal character teo g decimal value.

& . .
1A B e Ot
L N R N P A

. .¢:‘¢¢¢boy,a’”"ﬁﬁﬁ'ﬁ”i’*‘*’*”*’i*t‘)’i"’»,,ﬁ,t*i**ﬁ’**/
Int convert (char);

/! R R R N N R N N I R A R R A I R I B A B R T T S R Y
urns 3 page frame, inte which the page entering the
can ke loaded, depending on the type of the reference and

trivn beang used.

.oy

L Y

o.‘40'¢¢-av-qo¢§¢t~00~00’9%'*!”*"0&**\""4*"*#*&****’*?**'***9'k/’
Int getPage (char Type, int Algorithm);

Sb e e e

, R R I R R R R R R R R R R B R R S e R 3
s e First o In First out page replacement algorithm to determine the
VITUID paae, when the memory is full.

R T R R R LR R e L

int FIFO(char type):

F T T L T L B T G §
e ho Loast Recently Used page replacement algorithm to determine the
V1T am o page, when the memory is full.

cql«q«0~nAqqQ«lQqAq4‘{.‘,,‘§{Q**Q‘(*(**t&******ﬂ'**i’***(**t***t*\'{ii‘****i*/

int LRU({(char type):

‘/q AR R T BN SR e e A AR A R E R R R R R R R R R R Ry R R R R R ]

PHes o tne feast Frequently Used page replacement algorithm to determine the
VAU padr, when the memory is full.
» »ﬁ*ﬂHo».¢¢.¢.,,,,,,,,,,,,,,,,,,,..,;,g*t*i*a*ﬁi*-ﬁ*ii***9************»**/

int LFU(char type):

','4AAAnA«uc«\44q\QQ‘(«Q*‘-Q*QQ(««q»(—(-(-***t*ﬁ‘******"QQ****Q***f*i—*(—(—****Q*t?&

Uscs the Secend chance page replacement algorithm to determine the victim page,
when the memory is full
xa«u«.«««§~~&««w«*««««*«\'*~*«*******.«**t*******w*w:&***«**0*+§*******«***/

int SecondChance (char type):

,’**4»¢*o*o;»;,ﬁav,,,,,,,*,,,*,,,,,,a*»iv,-ﬁ*ii*!i***v*i*,*i’**’9*$$*tayy’y
Finds the roforenced page in the memory. If the page is not found, this
GGherates o page fault and brings the requested page into the memory.
.«‘.4‘..4o4....<‘«4‘“*.1..‘*,4~+<***1A<**ﬂ**1w**«*********t*t*w*a»«*a*+*/

int findPage(long PNo, char al, int algorithm);

pPageEntry PageTable[100](10];
int bucketLen{[100]};

F A L R R R L L S R R R R

» main function of the simulation. It gives the user wvarious
run the simulation and then displays the resulting number of

'y
cprtacr

page falts

DR Y

R R R R R R R R R R R R R R R

38



11:°

(

data

Matnaz*

ot - .
ot s
cCout -
ot
Ut s
coute .

Vot

Vot e .
ot e .
ot e -
cout e
cout ..

11t

chatr

for

char *

hat

chian
g

arac,chart argv(])

v wostarting screen ¢f the simulation*****/
L I I I I I IR IR R IR 0QQtii'ﬁiQi‘t'tiQi**ii**************t****"<<endl'
" REDUCING PAGE FAULTS "<<endl;

- BY SEPARATING INSTRUCTIONS AND DATA "<<endl;

- "<<endl;
" "<<endl;
" By "<<endl;
" Pavan Kumar Athota "<<endl;
" "<<endl;
" "<<endl;
" UNDER THE GUIDANCE OF "<<endl;
" Dr. MANSUR H. SAMADZADEH "<<endl:
M R R R R 00QQQQQQQQ'tﬁ’i*******ﬁ**************g***"<<endl;

ream ing /*The input file of the simulation*;

.

al new char{2%): /*hexa-decimal reference string */
1nt BuckIndex=0;BuckIndex<100;BuckIndex++)

bucketLen[BuckIndex]}=0; . Y,
al snew char(25}); /*hexa-decimal refernce string

IS PO

tempch;
bl23=0;

It runSim;
int standard;

“ e

e Pre

e e

cout -

A R R R R R R R R N ST R R R B R R R R R R R I g G e L E R A E A X

ment which allows the user to run the simulation either with
generated traces or with the random traces.
cac‘qaa.cqvA"QQQ(QQtQ(QQ—QQQQ*Q‘*Q‘*ttk*t***'f****1‘*****1(**1’*****/

<"Choose from the following menu:"<<endl;

cout<<"]., Run the simulation with pre-generated trace."<<endl;
Cout«<<"2, Run the simulation with random trace."<<endl;

coutag

'3. EXit the simulation."<<endl;

cin>>runSim;

SW1lt e
{

vase

ch{runSim)

1 /*case in which the user chooses
to run the simulation with
pre-generated input traces*/ ..
;.,«,..,,,’,,,*,,,,,’;’*’ii*’**#*9’********9’*****’****1t*’*’f***i**
. . . .
hoe menu which allows the user to run the simulation either with
tandard algorithm or the new design. s
T 4444 €4 4440444224 ttererraradrtratrrditrrrairrrrarirdtarreetrveatrrtots /
cout<<"Choose from the following menu:"<<endl;
cout<<"1. Run the simulation standard algorithm."<<endl:; )
cout<<"2. Run the simulation with separation between instruction and

T
s

"<<endl;

cin>>standard;
switch (standard)
é'dSe 1: /*case in which the user chocses
to run the simulaticn with
standard algerithm*/ ,
FARAAAAL AR ] The user chooses the algozithm here LEE R R R
in.open("inp.txt",ios::in);
in.get (a2);
cout<<"Choose one of the standard algorithms"<<endl;
cout<<"l. FIFO"<<endl;
cout<<"2. LRU"<<endl;
cout<<"3. LFU"<<endl;
cout<<"4. Second Chance"<<endl;
cin>>alg;

39



in.get(a2);
tor (int j=0;j<NumberOfFrames;j++) /*Peset the PMT*/
t
PMT{]j]) [4])=0;
PMT{Jj] [2]=0;
}
while(!'in.eof())
{
in.get (tempch);
in.getline(al,30,' '); /*get an address from the file*/
int addr=getlInt(al):
int PNo=addr/blockSize;
int memPage=findPage (PNo, '3',alg);
1 f (PMT [memPage] (4] >0)
{ /?1f the generated address is
found in the PMT*/
PMT (memPage] (4] =PMT [memPage]) [4]+1;
PMT [memPage] [5)=Clock;

else

{ /*if a page fault is generated*/
PMT [memPage] (0}=PNo; /*update the PMT*/
PMT [memPage] [4]=1;
PMT [memPage]) [2]=1;
PMT [memPage] [3]=Clock;
PMT [memPage] [5)=Clock;
NoOfPageFaults++;

)

in.getline(al,30);

in.get(a2):

Clock++;

}

Clock=0;

cout<<Clock<<endl;
.o COut<<"TOTAL PAGE FAULTS**** "<<g)lg<qg" ****x "< bl
<<NoOdegeFault$<<endl;

break;

case 2: /*case in which the user chocses

to run the simulation with
the new design®*/

{

int ReferencedAddr, i, PMTEntryNumber, victim;

int percent, noOfPF;

char type;

in.open("inp.txt",ios::in);

in.get (type):;

/*#*%3%» The user chooses the algorithm for instruction part
cout<<"Choose one of the algorithms for instruction part"<<endl;
cout<<"1l. FIFO"<<endl;

cout<<"2. LRU"<<endl;

cout<<"3., LFU"<<endl;

cout<<"4. Second Chance"<<endl;

cons all,al2;

cin>>InsAlg;

Frwr [/

IASAA A AN The user chooses the algorithm for data part *?*?****7**/

cout<<"Choose one of the standard algorithms"<<endl;
cout<<"1. FIFO"<<endl;

cout<<"2. LRU"<<endl;

cout<<"3. LFU"<<endl;

cout<<"4. Second Chance"<<endl;

cin>>Datadlg:

all.val=InsAlg;

al2.val=Datadlg;

A R N L R e R E R R R R R R R R R R R o R e A
user enters the percentage of the main memory page frames t> be
allcecated te data pages

40



............ SNSRI NI IR NFIIFIINIII I FI AN IRFIF I I I AN

cout<<"Enter the percentage of the page frames allocated to data

for (int BuckIndex=0;BuckIndex<100;BuckIndex++)
bucketLen[BuckIndex])=0;
Clock=0;

BRI R R R R R R 4

Taluculate the number of page frames allocated to data and
instructien pages respectively.
qQC‘1qtQQQ‘QQQ(“QQQ"Q(’“QQQQ({Qiii**Q(******i******“**0**‘*f*i**'l
AllocDataFrames=NumberOfFrames*percent/100;
AllocInstructionFrames=NumberOfFrames-AllocDataFrames;
ActualbataFrames=0;

ActuallnstructionFrames=0; //make it so just to know the ne

noOfPF=0;

for (i=0; i<NumberOfFrames;i++) /*reset the PMT*/
{

PMT (i) [4)=0:
}

while(!in.eof ()}
{ /*gets the referenced addresses

=

one by one and keeps track of
the page faults*/

in.get {tempch):

in.getline(al,30,' ");

ReferencedAddr=getInt (al);

long PNo=ReferencedAddr/blockSize:

if (type=='2")
PMTEntryNumber=findPage (PNo, type,all.val);

else
PMTEntryNumber=findPage (PNo, type,al2.val);

if (PMT [PMTEntryNumber] [4}>0) //if the

desired address is in the main memory
{ /*if the generated address is
found in the PMT*/

PMT [PMTEntryNumber] [4)=PMT [ PMTEntryNumber]} (4] +1;
PMT [ PMTEntryNumber] [5)=Clock;

}

else

{ /*if a page fault is generated®/

PMT [PMTEntryNumber) [0] =PNo;

PMT [PMTEntryNumber) {2]=1;

PMT [PMTEntryNumber) {3]=Clock;

PMT [PMTEntryNumber) [4]=1;

PMT [PMTEntryNumber] [5}=Clock:

noOfPF=noOfPF+1; /*increment the number of the
page faults*/

}
in.getline(al,30);
Clock++;
in.get(type);
} //END FOR THE WHILE LOOP.
cout<<"Percent "<<percent<<"---> "<<noOfPF<<endl;

break;}

default : {cout<<"Error input"<<endl;
exit(0);}

}

in.close();

break:

case 2: /*case in which the user chooses
to run the simulatien random

41



input traces*/

b123=0;

L.LRUNode* TEMPNode;
LRUNode* CreateNode;
bool endOfFile=false;

trrreee the random generator used to produce the type of the

TRandomMersenne trType=TRandomMersenne (seedType):

int tempT;

tong addr;

*ecperildd the LRU stack s/

LRUStack=new LRUNode():

LRUStack->Next=NULL;

LRUStack->Address=1;

TEMPNode=LRUStack;

tor(int i=2;i<=memorySize;i++)

{ /*initializing the LRU stack*/
CreateNode=new LRUNode();
CreateNode->Next=NULL;
CreateNode->Address=i;
TEMPNode->Next=CreateNode;
TEMPNode=TEMPNode->Next;

}

srand (mainSeed);

b123=0;

endOfFile=false;

A I R R R e S N N N S S SR T T A AR R R E A R A A R AR AR B R R e PR T R TR L X S 3

The menu which allows the user to run the simulation either with
standard algorithm or the new design.

......... SRR R R R R R R A R A R R R Y TR R L

cout<<"Choose from the following menu:"<<endl;
cout<<"l. Run the simulation standard algorithm."<<endl;
cout<<"2. Run the simulation with separation between instruction
and data."<<endl;
cin>>standard;
switch (standard)
{
case 1: /*case in which the user chooses
to run the simulaticn with
standard algorithm*/
{
int alg:

. JrrrrariARd The user chooses the algorithm here
cout<<"Choose one of the standard algorithms"<<endl:
cout<<"1l. FIFO"<<endl;
cout<<"2. LRU"<<endl;
cout<<"3. LFU"<<endl;
cout<<"4. Second Chance"<<endl;
cin>>alg:
for (int j=0;j<NumberOfFrames;j++)

/*reset the PMT*/
PMT(j] [4]=0;
PMT[j]1(2]=0;

}

if(b123>100000)
endOfFile=true;

TEMPNode=LRUStack;

for (int i=1l;i<=memorySize;i++)

{ /*reset the LRU stack?*/
TEMPNode->Address=i;
TEMPNode=TEMPNode->Next;

}

srand (mainSeed) ;

while('!endOfFile)

42



( /tgets the referenced addresses
one by one and keeps track of
the page faults*/

bl23++;

LRUStack=getNextAddress (LRUStack)

addr=LRUStack->Address;

int PNo=addr/blockSize;

int memPage=findPage (PNo, '3',alg);

if(PMT [memPage]) [4]1>0)

{ /*if the generated address is

found in the PBMT*/

PMT [memPage) (4} =PMT [memPage] (4] +1;
PMT {memPage]} [5)=Clock;

else
{ /*if a page fault is generated?*/
PMT [memPage] [0])=PNo;
PMT [memPage) [4]=1;
PMT [memPage]) [2]=1;
PMT [memPage] [3]=Clock;
PMT [memPage] [1]=1;
PMT [memPage] [5]=Clock;
NoOfPageFaults++;
}
1£f(b123>100000)
endOfFile=true;
Clock++;
}
Clock=0:
i COUt<<"TOTAL PAGE FAULTS**** "<<alg<<" EX X R 2 negn * * %
"o NoOfPageFaul ts<<endl;
break:}
case 2: /*case in which the user choocses
to run the simulation with
the new design*/

e e

R R R R R R R R R R Rk T O S Gy

Make the data pages list and the instructicn pages list from the
available list of references.
R N U SR \\«Qil‘i‘\ﬂ*\‘i{(iQ&t*‘*‘**"**f\'*****Q‘“*tf*f*****f**ﬁ/
int DataAlg,InsAlg;
int ReferencedAddr, i, PMTEntryNumber,victim;
int percent,noOfPF;
char type:
b123=0;
endOfFile=false;
cons all,al2;
R The user chooses the algorithm for instruction part *********/
cout<<"Choose one of the algorithms for instruction
part"<<endl;
cout<<"l. FIFO"<<endl:;
cout<<"2. LRU"<<endl;
cout<<"3. LFU"<<endl;
cout<<"4. Second Chance"<<endl;
cin>>InsAlg;

FrEr e The user chooses the algorithm for data part *********/
cout<<"Choose one of the standard algorithms”<<endl;
cout<<"1l. FIFO"<<endl;
cout<<"2. LRU"<<endl;
cout<<"3. LFU"<<endl;
cout<<"4. Second Chance"<<endl;
cin>>DataAlg;
all.val=InsAlg;
al2.val=DataAlg;

T T S S R R S A A E A R L L R

@

user enters the percentage ©of the main memery page frames to b

43



dat

Vs

Coatod o data pages

..... L I R D I I I I I I I R R e R

cout<<"Enter the percentage of the page frames allocated
P res™s s endl;
cin>>percent;
Clock=0;
b123=0;
R I T T T e e I R e N N O A I N N A I I I N I B O A N I I SR R B SR SR SR S S e O A R R 2 2 2 IR
v the number of page frames allccated to data and instruction

respecnIvely.,

DTN ERY ~..cyqqqq«««*«0*?***#«**0«««(****(«*(—«««*****w**‘/
AllocDataFrames=NumberOfFrames*percent/100;
AllocInstructionFrames=NumberOfFrames-AllocDataFrames;
ActualDataFrames=0;

ActuallnstructionFrames=0;

noQfPF=0;

for(int i=0;i<NumberOfFrames;i++) /*reset the PMT*/
{
PMT[1) [4)=0;
}
if(b123>100000)
endOfFile=true;
TEMPNode=LRUStack:
for (int i=l;i<=memorySize;i++)
{
TEMPNode->Address=i;
TEMPNode=TEMPNode~>Next;
}
srand (mainSeed) ;
while (!endOfFile)
{ /*gets the referenced addresses
one by one and keeps track of

5 the page faults*/
bl23++;

1f (noOfPF==49)

b123=b123;
LRUStack=getNextAddress (LRUStack);
ReferencedAddr=LRUStack->Address;
long PNo=ReferencedAddr/blockSize;
tempT=trType.IRandom(1, 10);

if (tempT<8) /*the data references are generated
with a probabililty of 0.7%/
type='1"';
else
type='2‘;

if(type=='2")
PMTEntryNumber=findPage (PNo, type,all.val);
else
PMTEntryNumber=findPage (PNo, type,al2.val);
if (PMT[PMTEntryNumber] (4]>0)
{ /*if the generated address 1is
found in the PMT*/

PMT [ PMTEntryNumber] [4]=PMT[PMTEntryNumber] [4]+1;

PMT [PMTEntryNumber) [S)=Clock;
}

else

{ /*if a page fault is generated*/
PMT [PMTEntryNumber) [0] =PNo;
PMT [PMTEntryNumber) [2])=0;
PMT [ PMTEntryNumber] [3]=Clock:
PMT [PMTEntryNumber] [4]=1;
PMT [PMTEntryNumber] [5]=Clock;
noOfPF=noOfPF+1; /*increment the number of

the page faults*/
}
Clock++;

44

to



}

if(b123>100000)
endOfFile=true;
if(b123%1000==0)
- cout<<bl23<<endl;

} S/END FOR THE WHILE LOOP.
cout<<noOfPF<<endl;
int abcdef;
cin>>abcdef;
delete []LRUStack;
break;

}
detault: {cout<<"Invalid input. Exiting the Simulation...."<<endl;

exit (0);:)
)

/?case in which the user chocses
exit the simulation®/

o1t ()
fetault:

/*case when the user enters an
invalid input*/

cout~~"Invalid input. Exiting the Simulation...."<<endl;

exit(0);

Case 3 /*case in which the user chooses
exit the simulation?*/
exit (0);
detault: /*case when the user enters an
invalid input+/
cout~«<"Invalid input. Exiting the Simulation...."<<endl;
exit (0);
}
}
"/ L I L I R BT S LI IR .QiiA(QQQQQ*(f-\-Qﬁ#4*******’*********QQQQ*************

Fivds the rertercnced page in the memory. If the page is not found, this
denerates g page tault and brings the requested page into the memory.
L T S S O h&ﬂ014&9*#;#*’*"*%*&*9’**"9***&99%**”*9****9/

int findPage(long PNo, char type, int algorithm)

{

@nL keyVal=PNo%100;
Nt pos=bucketLen[keyVal]:
tor (int i=0;i<bucketLen[keyVal];i++)

(

}

if (((PageTable[keyval] [i].SAdr) /blockSize)==PNo)
{
if(type!='3")
{
if (PageTable{keyVall [i].InsData==1)
type='1"';
else
type='2"';
}
if (PageTable[keyVall) [i].resBit==1)
return PageTable[keyVal)[i).FrameNum;
else
break;

int FNo=getPage (type, algorithm-1);
i1f{i==bucketLen(keyvall))

{

PageTable [keyVal] [pos] .SAdr=PNo*blockSize;

if(type=="'2")
PageTable[keyVal] [pos].InsData=2;

else

45



FageTable[keyVal) [pos].InsData=1;
bucketLen[keyVal]=bucketLen[keyVal]}+1;
PageTable[keyVal]) (pos) . FrameNum=FNo;

PageTable[keyVal) [i]).FrameNum=FNo;
PageTable (keyVall (i) .resBit=1;
1t (PMT[FNo) [1]!'=0)
{
int al=PMT(FNo] [(0);
keyVal~alsl00;
tor (1nt 1=0; i<bucketLen[keyVal];i++)
{
if(((PageTable[keyVal] [i]).SAdr)/blockSize)==al)
{
pageTable[keyVal] [i]).resBit=0;
break;

}
}
PMT [ FNo) (0] =PNo:
1t (type=-:'2")
PMT[(FNo) [1])=1;
else
PMT[(FNo) [1]=0;
PMT (FNo) (1) =0;
return FNo;

Je 4t e e 4
/

This runction generates the next address randomly using a hyperbolic

Mistribution. This function uses the method mentioned in the thesis report
{Thichaur ot g1 .90,

R I I T I R R R R R N R R R R R R R PR R R AR AR Al

M AT I I R L I I T R R R R R N L L 4
/

LRUNode* getNextAddress (LRUNode* LRUStack)
{

double u;

int TEMP;

double INDEX;

u=((doublej)rand() / (double) (RAND_MAX+1l));

i1f(u<(1/Theta)) /*the case whent he next reference
is produced within the spatial
locality of the reference*/

{
double a=pow(A,Theta):
double b=(u*Theta/a):
double c=(1/(1-Theta)):
INDEX=pow (b, c):
}
else /*the case when the reference
can be produced anywhere in
the program space*/
{
u=( (double)rand() / (double) (RAND MAX+l) );
INDEX=u*memorySize;
}
i f (INDEX>=memorySize) /*make index to be in the limits

of the memory size */
INDEX=memorySize-1;
TEMP=INDEX;
L f (INDEX-TEMP<0.5) /*round the index to the nearest
integer*/
INDEX=TEMP;
else
INDEX=TEMP+1;
if (INDEX<1)
INDEX=1; ‘
/*update the stack by bringing
the referenced memory location
te the top of the stack®/

46



I <k UpdateLRUStack (INDEX, LRUStack)
vt LEUStacks

............... R R R R R R R R R R R R R R A R R R S R R R R E RS E R R R R R E R R RN
: .o L il 0 thme 1RU 3tack after a reference is made. It puts
e b wddreon v rne top of the stack and meves all the addresses

S teiae s, e Doacatien down.

s s e s e »‘t'-‘oo0oooo'o0o.'o0000)04C00,‘.‘”*,".‘**ﬁ"%””**,”’*,***’*,ﬁ/
LRI e Updat e LRUStack (double INDEX, LRUNode* LRUStack)
{

LEtNode s TEMP-LRUStack:

LRUNode* TEMPHolder:

e OINDENSDY

{

for(int i=1;i<INDEX-1;i++) /*get the address at the required
index‘/
TEMP=TEMP->Next;

P L R R R L R R R D D T L S N R

Moo T aldress oat rthe required index to the top of the stack

s e e s

DERARY -oo-a'a0.‘av"000Q,«iﬁ&ﬁﬁ”i’i’i’i””*"’”,99**?”*”*“/

TEMPHolder=TEMP->Next;
TEMP~>Next=TEMPHolder->Next;
TEMPHolder->Next=LRUStack:
LRUStack=TEMPHolder:

}

return LRUStack;

R B R R R R R R AR A A AL A R A R A A R R R R R R R R R R R

“idas returns a page trame, into which the page entering the
vooan be loaded, depending on the type of the reference and

: being uscd.
L B B Y c«q1\111‘QQ\(QQﬁ‘i‘*i**iiﬁ‘*(*\t****it\‘—?********/

1nt. getbPage (char Type, int Algorithm)

{
int VictimPage,i;
P f (Type=='3") /*this is the case in which there is
no difference between instructions
and data*/

for (i=0;i<NumberOfFrames;i++)
{ /*if a page frame is unused then
return the index of that page*/
if (PMT{1)[4])==0 )

return i;
}
}
else /*case when there is a partition
between instructions and data*/
{
if(Type!='2" &§& ActualDataFrames<AllocDataFrames)
{ /*if there are free data frames*/
for (i=0; i<NumberOfFrames;i++)
{ /*find a free data frame and return it*/
if (PMT[i] [4)==0)
{

ActualDataFrames=ActualDataFrames+1;
return i;

}
}
}
if (Type=='2' && ActualInstructionFrames<AllocInstructionFrames)
( /*if there are free instruction frames*/
for (i=0; i<NumberOfFrames;i++)
{ /*find a free instruction frame and

return it*/
if (PMT([i] [4]1==0)

47



ActuallnstructionFrames=ActuallnstructionFrames+1;
return i;

}
1}
)
\
‘e e e e e 4 ¢ s 4 a4 e e s e e 4 0 8 s 4 e e s s eI PIPIIIISSIIIII I RIS SR RIS SRS
rooe ovailable in the memory, remove a page from

e dlacrichm, and return the free frame.

......... D ....‘.........q¢<¢«‘a«‘«a««aaw<«q«n<a*f*#t**t*¢*’/

L AL ot hme

e U VrctamPage FIFO(Type)
Yol

v 1 UaictimPage LRU(Type) s

Cane O Vaictimtage-LEU (Type)
bk
cane 3 VictimbPage=SecondChance (Type) ;

breas;

)
return VictaimbPage:;
}
T P R R R R R R R R R R Y A e R R s
ot et o nien o page roplacement algerithm to determine the victim page when
eorLoe s

..o.-noo-.-.....,....~‘_..,,.....44q-'iﬁﬂiiﬂﬂiliﬂiittiiQ\**Q*Qi*******/

int SecondChance (char type)
{
Rt mn-Clock, victim=NumberOfFrames;
Pocl found-=talse;
1t Checkedbages [ 768]);
1t chekNum—Q;
ool Checked;
while (' found)

{ /*lcop until a victim page is found*/
tor (int i=0;i<NumberOfFrames;i++)
{ /*find the page that entered the
menory first*/
Checked=false:
for(int j=0;j<chekNum;j++)
{ /*check if the page is already given

a second chance*/

i f (i==CheckedPages(j])

t /+if the page is feound in the checked
list array then it is not considered
in determined the next suitable victim
page*/

Checked=true;
break;

}
if (PMT(1)([4]!=0 && IChecked)
{
if(PMT(i) [3)<min)
{ /*find the page which entered the memory
the first+y/
victim=i;
min=PMT [i] [3];

}

}
if (PMT(victim] [2)==0)/*if the reference bit is not set, the

victim page is found*/
found=true;

else
{ /*if the reference bit is set clear the

reference bit and add the page to the

48



}

¥

{

CTheckedPages list*/
CheckedPages [chekNum]=victim;
PMT[victim] [2]=0;
chekNum++;

t {(chekNum==NumberOfFrames)

/*if all the pages in the memory had
their bit cleared, get the first page
in the CheckedPages list®*/

found=true;
return CheckedPages(0]:

Teeturn o victimg

T T T T I T I T I B R R R R R Y

L I I R R R R R R R AR R R R R,

int
{

r-U Dt pace replacement algerithm to determine the

e oTull,
;

FIFO (char type)

it min-=Clock:
nt victim=NumberOfFrames;

int iy

1t tempChar;

1t (type

else

==13) /*this is the case in which there is

ne difference between instructions
and data*/

for(i=0;i<NumberOfFrames;i++)

{
1E£(PMT (1] [4]!=0)
{
if (PMT (i} [3]<min)
{ /*find the page which entered first
into the memory*/
victim=i;
min=PMT{i] [3):
}
)
}
/*case when there is a partirtion
between instructicns and data*/
if(type!='2")
{ /*find and return a data page*/
if (ActualDataFrames<AllocDataFrames)
( /*if there are unassigned data page

frames, return an empty page frame*/
for (i=0; i<NumberOfFrames; i++)
if(PMT(i] [4]==0)

{ /*return the first available empty
page*/
victim=i;
return victim;
}
}
}
else /*find and return an instruction frame

and return it*/
if (ActuallInstructionFrames<AllocInstructionFrames)
{ /*if there are unassigned instruction paye
frames, return an empty page frame/
for (1i=0;i<NumberOfFrames;i++)
if(PMT[1) [4])==0)
{ /*return the first available empty
page*/
victim=i;
return victim;

49



}
1{ (type=="'2")
tempChar=1;
else
tempChar=0;
for(i=0;i<NumberOfFrames;i++)

{ /*in case a page has to be removed*/
if (tempChar==PMT({i] (1] && PMT[i] [4)!=0)
{ /+find the page that entered the

memory befere all other pages*/
if (PMT(i] {3)<min)
{
victim=1i;
min=PMT (i) [3];

}
teturn victim; /*return the victim paget/

R I I R R R R PR R R R L R R R A R A R R R R RN R R R R PR R R

becent iy Used page replacement algorithm to determine the
VLo o whien memcry s fulll
B T R R R T R T LV

1t LRU(char type)
{

It min=Clock;
Int victim=NumberOfFrames;

int i;
int tempChar:
if(type=='3") /*this is the case in which there is
no difference between instructiocns
and data+‘/
{
for (i=0;i<NumberOfFrames;i++)
{
1£(PMT([1i) [4]) !=0)
{
if (PMT(i] [5]<min)
{ /*find the page which was used least
recently*/
victim=i;
min=PMT[1i][5);
}
}
}
}
else /*case when there is a partition
between instructions and data*/
{
if(type!='2")
{ /*find and return a data page*/
i f (ActualDataFrames<AllocDataFrames)
{ /*if there are unassigned data page

frames, return an empty page frame?/
for (i=0; i<NumberOfFrames;i++)
if (PMT([1] (4)==0)
{/*return the first available empty
page*/
victim=3i;
return victim;

else /*find and return an instruction frame
and return it*/

if(ActualInstructionFrames<AllocInstructionFrames)

50



1nt

{

}

return victim;g

A M A AT

R I N I W WP Y

int
int
int
int
int

if (type=="3")

else

LFU (char type)

S*if there are unassigned instruction page
frames, return an empty page frame*/
tor (1=0; i<NumberOfFrames;i++)

if(PMT(1]) [4]1==0)

{ J*return the first available empty
page’ /s
victim=i;
return victim;

}
}

ttitype- -2
tempChar=1;
(.l:;,‘
tempChar=0;
tor (1 -0 i<NumberOfFrames; i++)
{

it (tempChar==PMT[i]) (1] && PMT[i]) [4] !=0)

{ /*in case a page has to be removed‘/
if (PMT[i][5])<min)
{
victim=i;
min=PMT [i] [5]);
}
}

S*return the victim page~*/

R R R R R R R R B e L L L
o Rrogqaently Usod page replacement algorithm to determine the
whaorn aemoery 16 rull.

L e R I 1«qﬂ\\q(q\i‘\\'(’\\’f*\'*"*\'\’**‘\'\'\ﬂt**tk*(‘\'**t(‘/

min=Clock;

min2=Clock;

victim=NumberOfFrames;

tempChar;

iz

/*this is the case in which there is
no difference between instructions
and data‘/

for (1i=0;i<NumberOfFrames;it++)

{
1f(PMT (i) [4)!=0)
{

if (PMT[i] [4)<=min && PMT[i] [5]<min2)

{ /*find the page which is used least
frequently. use LRU to resolve any
conflictY/

victim=i;
min=PMT (i) [4};
min2=PMT (i) [5];
}
}
}
/*case when there is a partition
between instructions and data*/
if(type!='2") .
{ /*find and return a data page‘/
if (ActualDataFrames<AllocDataFrames)
( /*if there are unassigned data page

frames, return an empty page frame*/
for (i=0;i<NumberOfFrames;i++)
if(PMT{i] [4]==0)
/*return the first available empty

51



page*/
victim=i;
return victim;

)
}
} . =
o lse /*find and return an instruction irame
and return ivY/
{
if (ActuallnstructionFrames<AllocInstructionFrames)
{ /*if there are unassigned instruction page
frames, return an empty page frame*/
for (i=0;i<NumberOfFrames;i++)
if(PMT([1][4)==0)
{ /*return the first available empty
page~/
victim=i;
return victim;
}
}
}

1f (type=='2")
tempChar=1;
else
tempChar=0;
for (i=0; i<NumberQOfFrames;i++)

{
if (tempChar==PMT[i][1) && PMT({i] (4] !=0)
{ /*in case a page has to be removed*/
if (PMT[i) [4)<=min && PMT(i] [5)}<min2) ]
{ /*LRU is used to resclve the conflict*/
min2=PMT[i]} (5],
victim=i;
min=PMT (1) (4}
}
}
}
}
return victim; /*return the victim page*/

P R R e R A R R R T T S R R R R A AR
This is a function to convert the hexa-decimal reference addresses to &
decimal address.

L T ta et etdtdattaattatsssattad i atrasdterarasrsartracteavvte)/

int getInt(const char* al)

{
char c;
int length=(int)strlen(al);
int retval=0;
for(int i=0;i<length;i++)
retvVal=retvVal*1l6+convert(al[i]);
return retval:;
}

/. L R R R E R R R T T e T TR R R EE R RS S R R 2 S E R T T &
This 15 a function to convert the hexa-decimal character to a decimal
value.
D T S S R R S T 4
int convert (char c)
{

int retval;

switch(c)

{

case '0' : retval=0;break;

case 'l' : retVal=1l;break:

case '2' : retVal=2;break:



Sanee 3 : retVal--3rbreak;
cane "4 retVal=4q:break;
e 5' : retval=5;break;
case e @ oretVal=osbreak;
tiee ) roretvVal-Trbreak;

3 retyval=-8;break;

priee Tt retVal=9%;break;
e Tt retVal=10;break;
case b retVal=11l;break;

case '¢Y o retval-=12;break;

ase 'd' o retvVal=13;break;
:1etVal=14;breaks

Cane "t' o retvVal=15;break;

fefault : retval=0;break;

}

return retvVal;g

}
L T T Y SENNE.CPP *#¥##%32333353333333 pgF 2001-10-18 *
. . *
Paniom Hoamber generator 'Mersenne Twister!
*
o Tnhrs randsm o naator gonerator is described in the article by N
.~ *
. Vat samet e W T Mishiaimura, 1n: .
* Fransactrons oo Modeling and Computer Simulatioen,
*
Vol oo, pre. 31-30, 193938,
. e *
*
* Fapert e conspdor chis oan oscellent random number generator.
*
N , *
b Al Foep. M Zoneral FPublic License www.gnu.org/copyleft/gpl.html

L O S ..<+a¢‘§aw.w*:*:b**w#**+:¢~k.*.***w.ﬁ*******&**********/

finclude "randomec.h"

void TRandomMersenne::RandomlInit(long int seed) {
/7 ro-send gonorator
unsigned long s = (unsigned long)seed;
for (mti = 0; mti < MERS N; mti++) ({
s = s * 29943829 - 1; _
mt[mti) = s;}
/7 Jdetecr compurer architecture
union {double f; unsigned long i(2]:} convert;
convert.f = 1.0;
if (convert.i(l]) == Ox3FF00000) Architecture = LITTLE_ENDIAN;
else if (convert.i[0] == Ox3FF00000) Architecture = BIG_ENDIAN;
else Architecture = NON_IEEE;}

unsigned long TRandomMersenne::BRandom() {
/7 generare 32 random bits
unsigned long y;

if (mti >= MERS N) {
A/ aenorate MERS N words at one time
const unsigned long LOWER MASK = (1LU << MERS_R) - 1; // lower MERS_R'blts .
const unsigned long UPPER_MASK = -1L << MERS_R; /7 upper (3% - MERS_P
int kk, km;
for (kk=0, km=MERS_ M; kk < MERS_N-1; kk++) {
Yy = (mt{kk) & UPPER_MASK) | (mt[kk+l] & LOWER_MASK);
mt (kk] = mt(km) ~ (y >> 1) ~ (-(signed long)(y & 1) & MERS_A);
if (++km >= MERS_N) km = 0;)

y = (mt[MERS_N-1] & UPPER_MASK) | (mt[0] & LOWER_MASK);

mt [MERS_N-1) = mt [MERS M-1] ~ (y >> 1) ~ (-(signed long)(y & 1) & MERS_A);
mti = 0;) -

y = mtimti++);

S0 Temporing (May ke omitted):

53

bits



Y Voo MERS Uy
Y vy MERS S s MERS By
¥ Cy e MERS TS W MERS O
Y , COMERS L

mMer senne s rRandom() |

oL ot mha o o tne dnterval 0 o= w0}
uni. oo .& ot e ot me i long 1215} convert::}
Llisbagi,e H Ao v got 30 random bits
“““T‘,t‘ P b f‘" c0orandom bits to floating point is as follows:
! . : dicating peint nuirber to l+bias and set
oot AL Tois o will ogive 2 randem number in the
N 1.0 o got o random number in the interval
s Co :@:s Lhat we Xnow how flecating point numbers
B L S : tnod is tested in functien RandomInit and saved
x:‘; ;E‘ \ et ‘ . A PO rnunning Windeows or Linux uses
[ R} M "‘: t oy "A‘ o

switch (Architecture) ({
ase LI’I"l'l.E_ENDIi\N:
convert.1{0] = ¢ << 20;
convert.i(l] = (r ~~ 12) | 0Ox3FF00000;
return convert.t - 1.0;
Case BIG FENDIAN:
convert.i[1l] = r -~ 20;
convert . [0] - (r >~ 12) | Ox3FF00000;
return convert.r - 1.0;
Case NON_TEEE: derault:
. Lhodo comewhat = iomer aethod works for all architectures, including
col R IERRED S Lo v ing poin representation:
return (deuble)r ¢ (1./( (double) (unsigned long) (-1L)+1.));}

long ’I‘RandomMersenne::IRandom(lonq min, long~max) {
S4 s Ent randem integer in the interval min <= x <= max

long r; s
r = long((max - min + 1) * Random(})) + min; // multiply interval with random and
tra Seitr

if (r > max) r = max;

if (max < min) return 0x80000000;
return r;}

-2 *
A T T SV RANDOMC.H ?**# 4 %4 xsasassasassa9s 2001-10-24 AF
Clhirs Drle oy

Ntarns cle

; £ors.
tovlarations Mersenne Twister random number generato

.
CoMember Donet g Une

. - FO— - <3 Eoua Tl mn - =
.

s e )
seed can be oany anteger. Usually the time is used as seed.

Constructor(long int s
¢ Th

3 . ce of
CoRBReCuting A program twice with the same seed will give the same sequence
Corandom nonbers, A Jpfrerent seed will give a different seguence.
R

Cdeable Randomiy;

Cilves o tlogting point randem number in the interval ¢ <= x < 1. 4
COPhe revsopage g P hits in TRanrotBGenerator, TRandomMotherOfall an

¢OTRAande SN2 ¢1r a1l bhits in TRanrcotWGenerator. #23 bits in
TP anyor

vl min, 1Nt max); ; . < MAXINTS
H 1Nt omn . ) N -min < \ .
GIVEes an o integer random pumber in the interval min <= z <= max. (max-m

? The resclurion is the same as for Randemid.

Vit 1< BRandemy
C v randem bits.,

' T WG ‘at omMersenne.
T Only available in the classes TRanrotW@Generator and TRand

CCoRartter -

54



D A Y

o lurther documentation on these random number

Ci.o SN semeral Fublic License www.gnu.erg/copyleft/gpl.himl

. AR R R AR R e T EY
D I R R R R R P R S A S S A AR LR * A '/
.« .

#11ndet }’..-\NI)OMC_}(
#det 1n.e RANDOMC H

#include <math.h>
finclude ©assert  h>
grinclude waxtdio.h

class TRandomMersenne | 7/ encapsulate random number generator

1t |
S L R T

T11213A:
1o 1o

#detine MERS N 351
#det1ne MERS M 175
fdefine MERS_ R 19
fidet ine MERS_U 11
#define MERS S 7
fidet ine MERS T 15
#det ine MERS_L 17
fderine MERS_A OxXE4BD75F5
#define MERS B 0x655E5280
fidef ine MERS_C OXFFD58000
ffelse
JSer onetants sop Mp1oa3e
ftdefine MERS N 624
#define MERS M 397
fidefine MERS R 31
ftdefine MERS U 11
#define MERS S 7
#define MERS T 15
#define MERS_L 18
#define MERS_A 0x9908BODF
#define MERS_B 0x9D2C5680

fidefine MERS_C OXEFC60000

cannot be defined as enum in 16-bit compilers)

fendif

public:

TRandomMersenne (long int seed) { // conmstructor

RandomInit(seed);)

void RandomInit (long int seed); // re-seed .

long IRandom(long min, long max); // output random integer

double Random(); // output random fleat

unsigned long BRandom({); // output random bits

private:

unsigned long mt(MERS NJ; // state vector

int mti; - // inder into mt

! DIAN, NON_IEEE}; .

TAxch Aroniteciarer L/ e vereton to flost depends on conpuier
arahitectare

)
ffendif

55



VITA @

Pavan Kumar Athota
Candidate for the Degree of
Master of Science

Thesis: REDUCING THE NUMBER OF PAGE FAULTS BY SEPARATING
INSTRUCTIONS AND DATA

Major Ficld: Computer Science

Biographical:

Personal Data: Born in Seetharampuram, INDIA, August 27, 1980, the son of
Mr. Ramakrishna Athota and Mrs. Prabhavati Athota.

Education: Received the degree of Bachelor of Technology in Computer Science
and Engineering from Kakatiya University, Warangal, India, in May 2001;
completed the requirements for the Master of Science degree at the
Computer Science Department at Oklahoma State University, Stillwater,

Oklahoma, in May 2004.

Experience: Web Designer for Star Schools Project under the Earth Science team
at Oklahoma State University, from October 2001 to August 2003.





