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PREFACE 

In a typical paged memory management system .. a high number of page faults 

generally decreases the performance of a computer system by increasing the average 

memory access time. The objective of this study was to increase the performance of a 

computer system by reducing the number of page faults through separation of instructions 

and data. In the adopted scheme., data and instructions are stored separately in the 

secondary memory. The page frames allocated to particular process in memory are 

divided between the data pages and the instruction pages. Each portion is managed in a 

different way to get optimum results in terms of a lower overall page fault rate. 

A trace-driven simulation was implemented to evaluate the performance of the 

new design. Four standard page replacement algorithms., i.e . ., FIFO., LRU., LFU., and 

Second Chance, were used to evaluate the performance of the new design. The design 

was tested with both pre-generated input traces and random traces. In both cases .. a 

significant improvement in the performance of the system., in terms of the number of 

page faults generated, was observed. It was observed that the number of page faults 

generated for the partitioned address space scheme., i.e ... with data and instructions 

separated., was high if the allocation to the instruction pages and data pages in memory is 

uneven. But if the allocation is even, it was observed that the minimum number of page 

faults generated was less by an average of 3.5 percent than the minimum number of page 

faults generated by the standard algorithms., when applied to the same input. 
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CHAPTER I 

INTRODUCTION 

The memory of a computer system is made up of different levels. The memory at 

the highest level of the hierarchy consists of the registers in the CPU. Next comes the 

cache memory. Just below the cache memory there is the random access memory which 

is also referred to as main memory. Excluding external memory, at the bottom of the 

hierarchy there is the secondary memory or disk storage [Burger 96]. 

Typically, the CPU can only perform operations on the program instruction words 

and data words in the registers that have been loaded from main memory. So any word of 

instruction or data that is not in the registers will have to be fetched from the memory for 

the CPU to do its job. Since the number of program instruction words or data words that 

can be stored in the registers is very small, words of instruction and data keep moving in 

and out of the registers. When a required word of instruction or data cannot be found in 

the registers, the system fetches the instruction or data word from the next lower level of 

the memory hierarchy. And, if the word of instruction or data cannot be found in that 

level of the memory system, it is fetched from a lower level. 

I. I Problem Statement 

Instruction word or data word transfers in the memory hierarchy can consume a 

significant amount of time, thereby decreasing the processing speed. Instruction or data 



\vord transfers can take different amounts of time depending on the levels of memory 

hierarchy between which a transfer is occurring. Typically, it takes about I 00 ns 

(nanoseconds) for a transfer between main memory and registers, and about IO ms 

(milliseconds) for a transfer between secondary memory and main memory [Morris 99]. 

Typical memory clock cycle times are between 2.5 to 5.0 ns [Morris 99]. So accesses to 

main memory are fast enough and do not generally hamper the performance of the CPU. 

But. accesses to secondary memory take a lot more comparatively so that the CPU has to 

\vait for a transfer before it can proceed with execution. A significant improvement in the 

performance of a system can be achieved if the number of accesses from secondary 

memory can be minimized. 

1.2 Thesis Outline 

In this thesis work, a new design was implemented to reduce the number of 

accesses to secondary memory and thus improving the performance of a system. In 

Chapter II, an introduction to various memory management schemes is given and the 

paging memory management system is discussed in detail. In Chapter III, the 

implementation issues of the new design are discussed. In Chapter IV, the performance of 

the simulation is evaluated and, finally, the summary and future work are discussed in 

Chapter V. 
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CHAPTER II 

LITERATURE REVIEW 

This chapter gives a brief description of various memory management schemes 

and then discusses the paging memory management system in detail. 

2.1 Memory Management 

Generally. every time data cannot be found in main memory, they have to be 

fetched from secondary memory (unless the system has an intervening layer of cache). It 

is common in such cases to transfer a block of data instead of just the requested piece of 

data. 

Since the higher levels of the memory hierarchy can typically hold smaller 

amounts of data than the lower levels, one must make sure that, as much as possible, only 

the temporally and spacially relevant data reside in the higher levels of the memory 

hierarchy. For this purpose, a memory management system is needed to decide where 

each data item, or at least each block of data, is to be stored. 

2.1.1 Paging 

Paging is the memory management scheme that stores the instruction and data 

words of a process in fixed size blocks in the physical memory. In this scheme. the 
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physical memory is divided into blocks of fixed size called page frames. The logical 

memory is also broken into blocks of the same size called pages. In this scheme., all 

addresses generated by the CPU consist of two parts: a page number and an offset. A 

page table (a mapping mechanism between a process' pages and frames) converts each 

page number to the starting address of the corresponding page frame in the physical 

memory. A disadvantage of paging is that the physical memory could have internal 

fragmentation. which is the unused space in a page frame for all processes in the system. 

2.1 .2 Segmentation 

Segmentation is the memory management scheme in which the program 

instruction words and data words as viewed by the user are stored in the physical 

memory. i.e .• in terms of functions, subroutines, tables, etc. [Silberschatz et al. 03]. In this 

scheme. the physical memory consists of variable size blocks called segments. The 

addresses generated by the CPU consist of a segment name and an offset. A segment 

table (a mapping between a process' logical segments and physical segments) helps 

convert the addresses generated by the CPU into physical addresses. The main problem 

with segmentation is that it can cause external fragmentation where none of the empty 

slots in memory may be sufficient to accommodate an incoming process' segments due to 

inetlicient handling of the lists of free memory segments or holes. 
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2. 1 .3 Paged Segmentation 

Both paging and segmentation have some disadvantages. In order to overcome 

them. the features of both schemes are combined to obtain a memory management system 

cal led paged segmentation. In paged segmentation, each segment is divided into pages 

and has its O\Vn page map table. Paged segmentation incurs less external fragmentation 

than segmentation because the segments no longer need to be stored whole. But this 

scheme causes a significant overhead, i.e., maintaining more tables. In addition, two 

memory accesses are required for logical-to-physical address translation: one for the 

segment table and the other for the page table of that particular segment [Silberschatz et 

al. 03]. 

2.2 Paging 

This section describes the memory management scheme of paging and then 

briefly discusses a number of popular page replacement algorithms. 

In a typical computer system with a paged memory, a block of data ( consisting of 

program instruction and/or program data words) is called a page, and a request for a page 

made to the disk by main memory is called a page fault. Whenever main memory is full 

at the time of a page fault, a memory resident page is removed from it and the requested 

page is loaded in its place from the secondary memory. This is called page replacement. 

The algorithm that selects the page to be removed is called a page replacement algorithm. 

Handling page faults consumes a significant amount of time because of the time it 

takes to search the secondary memory for the desired page of instructions or data., and 
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also the time it takes to transfer the information between the levels of the memory 

hierarchy. 

Since it takes time to transfer information between main memory and secondary 

memory, a computer system should use a page replacement algorithm that leads to a 

minimum number of page faults. A number of page replacement algorithms are discussed 

in the following subsections. 

2.2. 1 Simple Algorithms 

In this section, three simple page replacement algorithms are discussed that 

require some hardware and software support for their implementation [Silberschatz et al. 

03]. 

The First In First Out (FIFO) algorithm is the simplest of all page replacement 

algorithms conceptually. This algorithm states that when there is a page fault and 

memory is full, the page to be removed first is the page that has been in main memory for 

the longest period of time. 

The Least Recently Used (LRU) algorithm generally yields the best results, 

among the page replacement algorithms of the early days, in terms of the fewest number 

of page faults generated. According to this algorithm, whenever there is a page fault and 

memory is full, the page to be replaced is the one that has not been used for the longest 

period of time. LRU-based algorithms are predominant in virtual memory management 

systems because of their efficiency and simplicity [Smaragdakis et al. 99]. 
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According to the Least Frequently Used (LFU) algorithm, whenever there is a 

page fault and memory is full, the page that has to be replaced is the page that has the 

minimum number of hits in the time period it has resided in memory. 

2.2.2 Enhanced Algorithms 

The page replacement algorithms mentioned in Subsection 2.2.1 above are 

relatively simple in the sense that they require little hardware support and no dynamic 

calculations. In this section, a number of page replacement algorithms are discussed that 

require relatively more hardware support and/or dynamic calculations. 

2.2.2.1 Second Chance Algorithm 

This is an extension of the FIFO algorithm. In this algorithm, when a page fault 

occurs and memory is full, instead of replacing the selected page, the reference bit of that 

particular page is checked to see if it has been used recently. In such a case, that page is 

given a second chance and another page is selected to be removed from main memory. 

When a page gets a second chance, its reference bit is cleared [Silberschatz et al. 03]. 

This algorithm needs some hardware to store the bits. This algorithm generally reduces 

the number of page faults by preventing the removal of the recently used pages, which 

arguably are more likely to be used in the near future. 
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2.2.2.2 Page Fault Frequency Algorithm 

The Page Fault Frequency (PFF) replacement algorithm attempts to dynamically 

control the rate of page faults produced by a program running in a paged virtual 

environment by varying the amount of memory allocated to the program [Sadeh 99]. 

/\ccor<ling to this algorithm. when the page fault frequency rises above a critical level, 

some of the referenced pages that are not in main memory are brought into main memory. 

Similarly. when a number of pages in memory are not being used, some of the unused 

pages are removed from main memory [Chu and Opderbeck 76]. The PFF algorithm 

measures the inter page fault intervals during execution. At page fault times, the 

algorithm compares those intervals with a selected threshold T. If the interval exceeds T, 

all the pages that are not referenced during the interval are removed from memory. 

Otherwise. no page is dumped and the referenced page is brought into memory, thereby 

increasing the allocation of the respective process [Sadeh 75]. 

2.2.2.3 SFIFO Algorithm 

The Segmented First In First Out (SFIFO) page replacement algorithm tries to 

decrease the number of page faults by dividing the memory into two segments, of which 

one is the primary buffer and the other is the secondary buffer. When a page is removed 

from the primary buffer, it is placed in the secondary buffer and remains in it until some 

other page replaces it [Turner and Levy 81 ]. This algorithm can be viewed as a 

combination of FIFO and LRU. As the percentage of the primary buffer increases. the 
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algorithm behaves more like FIFO; and if the percentage of the secondary buffer 

increases. the algorithm behaves like an LRU algorithm. 

2.2.2.4 MLF Algorithm 

The Marginal Loss Functions (MLF) page replacement algorithm is a three-level 

replacement policy. in which. the kernel captures the distribution among many competing 

processes [Ujaldon et al. 97]. It uses compile time information about an application's 

access patterns to the kernel. In the first step, the kernel chooses a process that must give 

up a page by detennining the process with least MLF. In the second step, the kernel 

chooses a segment of the process from which a page has to be removed by determining 

the MLF of each segment. And in the third step, a page is chosen to be replaced. Compile 

time analysis is used to insert system calls that determine the MLF of each segment. MLF 

estimates the number of page faults that a segment would incur if a page is removed from 

the system. The MLFs of all active segments of a process are added to calculate the total 

MLF of the process. Then the segment with the least MLF is selected as the victim 

segment. A number of system calls are inserted to determine the active segments of a 

process. Finally a page is removed from the victim segment. 

2.2.2.5 EELRU Algorithm 

Early Eviction LRU (EELRU) is a page replacement algorithm which addresses 

the situation in which the repeating page fault sequences contain more pages than 

allocated main memory can hold. So, each page has to be removed from memory before 
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it is used again if the LRU algorithm is used, because main memory cannot hold that 

page long enough. But the removed page has to be loaded into memory again possibly 

because of a loop or a data structure in the program. Thus all pages have to be loaded into 

memory each time they are used. When a repeating page fault sequence is detected, 

EELRlJ reduces the number of page faults by removing some pages shortly after they are 

used so as to allow other pages to stay in memory for a longer period of time 

I Smaragdakis et al. 99]. 
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CHAPTER III 

DESIGN AND IMPLEMENTATION ISSUES 

3. I Implementation Platform and Environment 

The simulation was implemented on the OSU Computer Science Department's 

Sun Blade l 50~ which is a workstation-class computer. The system has 256 mega bytes of 

RAM. It also has 7.5 gigabytes of hard disk. It runs the Sun OS 5.9 operating system, 

which is a UNIX-based operating system. 

3.2 Objective 

The objective of this thesis was to reduce the number of the page faults generated 

m a paged memory system by separating how instruction pages and data pages are 

managed. Actual traces and a random trace consisting of virtual address references were 

used to evaluate the new implementation. The performance of the proposed scheme was 

evaluated by comparing it with standard algorithms such as FIFO, LRU, LFU, and 

Second Chance (see Chapter II for details). The performance of the implementation was 

evaluated on the basis of the number of the page faults generated. 
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3 .3 Input Parameters 

3.3.1 Input Traces 

The input traces used to evaluate the algorithms in the simulation were obtained 

from pre-generated traces of virtual memory addresses from the public ftp site of New 

Mexico State University generated on a SPEC3000 benchmark [Tracebase 94]. 

Randomly generated traces using a synthetic trace generator [Thiebaut et al. 92] were 

also used to evaluate the algorithms in the simulation. 

3.3.2 Page Frames 

In a paged memory management system, a process is assigned a number of page 

frames in memory based on fixed or variable allocation. Too few page frames will result 

in a high number of page faults, which may result in thrashing or excessive page traffic 

with a process making no headway. On the other hand, allocating a large number of page 

frames to a process will probably result in a very small number of page faults generated, 

but it will cause low utilization of the memory system. 

In the simulation environment used to evaluate the algorithm proposed in this 

thesis, the user is given an option to choose among 20, 30, and 40 page frames for a 

process. The total size of the memory can be ignored here because the focus of this 

research was static, fixed allocation of memory page frames to a program, and the 

evaluation was done by considering one program (i.e., one trace tape) at a time. 
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3.3.3 Page Size 

The size of a page is the number of words that can be stored in each memory page 

frame. The typical range of a page size is from 512 words to 8192 words [Hennessy and 

Patterson 00 ). In the simulation environment used to evaluate the design proposed in the 

thesis. the user is given an option to choose from among three different page sizes: 512., 

1024. and 2048. 

3 .3 .4 Page Replacement Algorithm 

A page replacement algorithm has to be applied to select a victim page whenever 

a page fault is caused by the execution of the program and the memory page frames 

allocated to the program are already used up. In the simulation implemented for this 

thesis., a page replacement algorithm has to be chosen in three situations: one for data 

pages., one for instruction pages, and one for both instruction and data pages, when the 

simulation is run without considering the distinction between instructions and data. 

In the simulation environment used to evaluate the design proposed in this thesis., 

the user is given a choice to choose from among four page replacement algorithms: FIFO., 

LRU., LFU., and second chance. 

3.3.5 Separate Consideration of Instruction Pages and Data Pages 

In the design proposed in the thesis, memory page frames allocated to a process 

are divided into data pages and instruction pages. This is because instructions and data 

might behave differently. So treating the instructions and the data differently might 
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produce better results in terms of the number of page faults generated, thus potentially 

improving the performance of the system. The results (see Chapter IV) show that when 

the percentage of page frames allocated to data is low, a high number of page faults are 

generated for data pages. Similarly, when the percentage of pages allocated to data pages 

is high~ a high number of page faults are generated for instruction pages. So the 

percentage of data frames must be neither too high nor too low for optimum results. 

In the simulation environment used to evaluate the design proposed in this thesis, 

the user can allocate a fixed percentage from the total page frames allotted to a process to 

data pages. The rest of memory page frames are allocated to instruction pages. 

3.4 Design of the Simulation 

The simulation was implemented in the C++ language on a Sun Microsystems 

machine running Sun OS 5.9 operating system. The application runs with traces of 

references to virtual memory addresses. The traces used were from two sources: 1) input 

files containing pre-generated traces of virtual memory addresses (generated on a 

SPEC3000 benchmark obtained from the public ftp site of New Mexico State University 

[Tracebase 94]), and 2) random traces produced by a synthetic trace generator (explained 

below). 

3.4.1 Random Trace Generation 

The random traces were generated by simulating a random walk in a finite 

address space with references governed by a hyperbolic probability law [Thiebaut et al. 
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92 ). This algorithm works on the basis of locality of the reference and working set size. A 

random number generator was also used to determine the "type" of each reference~ i.e., 

data or instruction. To produce the type of each reference randomly, a Mersenne twister 

random number generator was used [Ladd 01]. This algorithm is capable of producing 

long sequences of order 219937 [Nishimura and Matsumoto 88]. The instruction references 

were generated with a probability of 0.3. This was determined by calculating the 

percentage of instruction references among all memory references in each of the five 

sample input trace files. The average of these values was observed to be approximately 

30%. As for the randomly generated traces, different traces can be generated by using 

different seed values. 

3 .4.2 Page Table 

The Page Table was implemented as a hash table to decrease the search time for a 

referenced page. The hash key is calculated based on the page number of a referenced 

page. The structure of each page table entry is shown in Figure 1. 

struct pageEntry { 
long SAdr; //starting address on disk (32 bits) 
int InsData; //indicates whether a page is instruction or data 

page (1 bit) 
int resBit; II residency bit of the page (1 bit) 
int FrameNum; //memory page frame number (8 bits) 

}; 

Figure 1. Structure of a page table entry 
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The memory references in the input traces are 32 bits. So, with each page 

consisting of at least 512 (the options are: 512, 1024, and 2048) words, a maximum of 23 

bits would be sufficient to identify each page uniquely. 32-bit time stamps were used to 

represent instances of time [Cleary et al. 97]. 

The entries of the page table implemented in this thesis consist of the following 

information about each page: time of entry, number of uses, most recent use, etc. This 

information is required only for the pages residing in main memory. So, a small 2-

dimcnsional array was used to store this information for each page residing in main 

memory. The structure of an entry in this array is shown in Figure 2. 

PMT[i][O]-----virtual page number of page 'i' (23 bits) 
PMT[i][ 1 ]-----insruction/data of page 'i' ( I bit) 
PMT[i][2]-----reference bit of page 'i' ( I bit) 
PMT[i][3]-----entry time of page 'i' (32 bits) 
PMT[i][4]-----number of uses of page 'i' (4 bits) 
PMT[i][5]-----recent use of page 'i' (32 bits) 

Figure 2. Structure of each entry of the array holding additional information 
for memory-resident pages 

3.4.3 Clock 

In the simulation, the clock is incremented after each reference is read from an 

input trace file or is generated by the random number generator. The clock values are 

recorded in the PMT (Page Map Table) at the corresponding times when necessary. 
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3 .5 Implementation Detail 

The simulation of the page replacement algorithms was done in C++ on the 

Oklahoma State University Computer Science Department's Sun Blade 150 machine 

running Sun OS 5.9 operating system. The input traces were taken from the public 

directory of the ftp site http://tracebase.nmsu.edu/ or randomly generated using random 

number generators. 

The simulation was designed as a menu-based application. First, the user is asked 

to choose between a random trace and a pre-generated trace. If the user chooses a random 

trace, random number generators are used and a random trace is generated. In this case, 

both the referenced addresses and the type of the references ( data or instruction) are 

generated randomly. If the user chooses a pre-generated trace, the user is asked to select a 

file name from the displayed list of input trace files which contain the reference strings. 

The lengths of the reference strings in the traces obtained from the public ftp site at New 

Mexico State University (http://tracebase.nmsu.edu/) are I million. So, in order to 

maintain consistency, the lengths of the reference strings generated randomly were also 

set to I million. 

In the next step, the user is asked to choose between running the simulation with a 

standard algorithm or with separation between instructions and data. If the user chooses 

to run the simulation using a standard algorithm, the user is asked to choose from among 

four page replacement algorithms in the menu: FIFO, LRU, LFU, and Second Chance. 

Then the simulation is run using the selected algorithm. If the user chooses to run the 

simulation with data and instructions separated, the user is asked to enter a percentage for 

17 



the data pages in memory. And then the user is asked to choose between the four 

available page replacement algorithms for the data pages and for the instruction pages. 

In the case of running the simulation with a standard algorithm, each time the 

page containing referenced address is not found in memory, a page fault is generated and 

the required page is loaded into memory. Each time a page is loaded into memory, the 

page table entry for that page is updated. If a page fault occurs and memory is full, a page 

is chosen to be removed from memory using the selected page replacement algorithm. 

In the case of running the simulation with the new design, memory is allocated 

separately to data pages and instruction pages based on the percentage entered by the 

user. When a page fault occurs and there are unused page frames allocated to the 

conesponding segment (i.e., data or instructions), the requested page is loaded into 

memory into one of the available page frames. If there are no empty page frames 

al located to the corresponding segment, a page allocated to that segment is removed from 

memory using the page replacement algorithm selected for that segment, and the 

requested page is loaded into memory. 

Finally, the number of page faults generated is printed at the console and the user 

is given a choice to run the simulation again or to exit the system. 

The results produced by the simulation were used to produce comparative 

performance display graphs. These graphs are discussed in Chapter IV. 
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CHAPTER IV 

EVALUATION OF THE SIMULATION 

This chapter discusses the performance of the new page replacement algorithm in 

terms of the number of page faults generated. 

4.1 Graphs 

A number of graphs were produced depicting the number of page faults generated 

for various input parameters (Figures 3 and 4). The performance of the new 

implementation can be evaluated by the graphs produced. The graphs were produced 

using Microsoft Excel by inserting the averages of the results obtained from the 

simulation into a spreadsheet. The x-axis of the graphs indicate the percentage of the 

program's main memory frames allocated to data pages. The y-axis of the graphs indicate 

the number of page faults generated. The number of page faults generated were measured 

for the increments of five percent of page frames allocated to data pages in main memory. 

The values used for the graphs are the averages of the outputs (number of page faults) 

generated by different input traces while keeping other parameters, i.e., the number of 

page frames allocated and the number of words per page, constant. The graphs contain 

the results obtained by the standard page replacement algorithms, i.e., FIFO, LRU, LFU~ 

Second Chance, and also the results obtained by managing instruction pages and data 

pages separately, using each of the FIFO, LRU, LFU, and Second Chance page 
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replacement algorithms for the instruction and data parts. Based on the graphs, we can 

investigate the optimum partition of memory allocated to a program between instructions 

and data. 

4.2 Observations 

From the graphs (Figures 3 and 4), it can be observed that better results are 

produced by the new design in terms of number of page faults generated, both with the 

random traces and the pre-generated traces by the benchmark programs. The new design 

generated the smallest number of page faults for a particular allocation of a program's 

memory frames to instruction pages and data pages. This number is on the average 3 .5% 

less than the minimum value produced by the standard algorithms. 

Figure 3 shows the results when the simulation was run with 30 memory page 

frames with each page containing 1024 words. The inputs used for this simulation are 

input# I. input#4, and input#? (see Table III in Appendix C). Among the standard 

algorithms, the LRU algorithm produced the best results. But when the instructions and 

the data were managed separately, a decrease in the number of page faults generated was 

observed for a particular allocation to instruction pages and data pages. A high number of 

page faults was observed when the data pages were allocated less than ten percent of the 

total available memory page frames for the program. A decrease in the number of page 

faults generated was observed with the increase of the allocation until the minimum was 

reached. which was observed to occur when the data pages are allocated between forty 

percent and sixty percent of the program's memory page frames, depending on the 

algorithms and the input traces used. Then the number of page faults generated increased 
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Results generated by pre-generated traces with 30 memory page frames allocated to the program with 
1024 words per page. 
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Figure 3. Program performance Graph 1 



\Vith the increase in allocation of the program's memory frames to data pages. The results 

are shown in figures 3 and 4 with FIFO and LRU applied to data parts and instruction 

parts. Not much difference was observed by changing algorithms for data pages and 

instruction pages. as all curves in the graphs exhibit identical behavior. 

Figure 4 shows the results produced when the simulation was run with 30 

memory page frames with each page containing 1024 words. Random traces were used as 

inputs for the simulation. Among the standard algorithms, the LRU algorithm generated 

the minimum number of page faults. The behavior was observed to be identical to the 

behavior depicted in figure 3. The minimum number of page faults generated by the new 

design was observed to be on the average 3.5% less than the minimum value produced by 

the standard algorithms. 

It was observed that the new design generates fewer page faults both for random 

traces and pre-generated traces. The new design can improve the performance of a 

computer system in terms of the number of page faults generated if different page 

replacement algorithms are used for instruction pages and data pages. 
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Results generated by random traces with 30 memory page frames allocated to the program with 1024 
words per page. 
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CHAPTER V 

SUMMARY AND FUTURE WORK 

This chapter gives a summary of this thesis report and also discusses the future 

work that can be done in this area. 

5.1 Summary 

In Chapter I, the memory scheme of a computer system was discussed. In Chapter 

I I. various memory management schemes such as paging, segmentation, and paged 

segmentation were discussed. The scheme of paging, which is the main focus of this 

thesis. was discussed in detail. Chapter III discussed the design and implementation 

issues. It gave a detailed description of the design of the algorithm with its 

implementation details. Chapter IV evaluated the performance of the new page 

replacement algorithm in terms of page faults generated. 

This thesis concerned the design and development of algorithms to reduce the 

number of the page faults generated by separating a program's memory space into 

instruction pages and data pages. The input parameters provided are the percentage of 

main memory page frames allocated to data pages, and the algorithms used to handle 

page replacement for instruction pages and for data pages. The simulation helps in 

determining the optimal allocation of memory pages to instruction pages and data pages. 

24 



The simulation was exercised by using pre-generated inputs (trace tapes) taken 

from the public ftp site at New Mexico State University (http://tracebase.nmsu.edu/) and 

by randomly generated traces. It was observed that the new design generated the smallest 

number of page faults for a particular partition of a program's memory frames to 

instruction pages and data pages. This minimum value was observed to be on the average 

3.5% less than the minimum value produced by the standard algorithms. The new 

algorithm generates too many page faults when the data or instruction segments were 

al located too few page frames, because of the possibility of excessive page traffic or even 

thrashing. 

5 .2 Future work 

In the design implemented in this thesis, memory page frames are statically 

allocated to instruction pages and data pages of a program at the beginning of the 

execution of the program. The design can be modified to allocate memory page frames to 

data pages and instruction pages based on history data, i.e., the number of page faults 

generated for instruction pages and data pages in the recent past. It is conceivable that the 

performance of the system can be further improved if a program's memory resident pages 

are allocated dynamically based upon the page faults generated in the recent past, by 

increasing the number of page frames allocated to data pages if data pages cause more 

page faults than the instruction pages, and vice versa. 

In this thesis work, it was assumed that no cache was present. So the performance 

of the algorithm can be analyzed in the presence of a cache. 
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The perfommnce of the algorithm can also be analyzed for other memory 

management systems like paged segmentation, where the data is transferred in pages for 

each segment. In this case, different algorithms can be used to handle page faults m 

di ffcrcnt segments. 

Another area of future work is to investigate the overhead incurred in the process 

of handling instructions and data separately. 
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Demand Paging: 

EELRU: 

FIFO: 

LRU: 

MLF: 

Page: 

Segment: 

Page Fault: 

Page Map Table: 

PFF: 

APPENDIX A 

GLOSSARY 

A method of paging in which a page is brought into main memory 
only when that page has been referenced. 

The Early Eviction LRU page replacement algorithm removes the 
pages early from memory if memory is not large enough to hold 
the entire sequence of recurring patterns. This can reduce the 
number of page faults by optimally removing some pages. 

When a page has to be removed from memory because of a page 
fault, First In First Out removes the page that has been in the 
memory for the longest time. 

According to the Least Recently Used algorithm, a page that has 
not been used for the longest time will be removed from the 
memory when there is a page fault (when the set of frames 
allocated to the program under consideration have all been used 
up). 

Marginal Loss Function calculates the number of page faults that a 
process could incur if a page is removed from memory. 

A block of logical memory that is of the same size as a frame in 
the physical memory. 

A block of logical memory as viewed by a user, e.g., functions or 
subroutines. 

A Page Fault occurs when a page, which a program is trying to 
access, is not present in memory. 

The data structure that stores the details about all the pages of a 
program residing in main memory. There are as many page tables 
as the number of active programs in a computer system. 

Page Fault Frequency is the number of page faults occurring per 
unit time. 
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PR.AD: 

PR.Al: 

Trace: 

Victim Page: 

Page Replacement Algorithm for Data. 

Page Replacement Algorithm for Instructions. 

The sequence of memory references generated by a program. 

The page that is selected to be removed from memory as a result of 
a page fault when the set of page frames allocated to a job are all 
used up. 
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Excel: 

Sun Blade 150: 

Sun OS 5.9: 

APPENDIXB 

TRADEMARK INFORMATION 

A registered trademark of Microsoft Corporation. 

A registered trademark of Sun Microsystems Inc. 

A registered trademark of Sun Microsystems Inc. 
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APPENDIXC 

EXPERIMENT AL RESULTS 

This appendix contains the results generated by separating instructions and data. 

The number of page faults generated with increments of 5% in the allocation of the data 

pages is listed. The results produced by applying the FIFO and LRU algorithms to the 

instruction and data partitions are listed. 

Percentage of Number of page faults generated 
memory page 

Data=FIFO Data=LRU Data=FIFO Data=LRU frames 
allocated to I nstruction=FIFO lnstruction=FIFO Instruction=LRU Instruction= LRU 

data pages 
10 36005 36005 35960 36040 
15 23942 23942 23886 24145 
20 14846 14846 14770 14986 
25 12119 12119 12050 12134 
30 6035 6035 5956 6034 
35 5904 5908 5827 5955 
40 5289 5289 5210 5288 
45 5125 5125 5145 5239 
50 5232 5232 5168 5374 
55 5315 5315 5226 5403 
60 5452 5452 5395 5603 
65 5575 5575 6207 6472 
70 6526 6522 7975 8938 
75 8603 8603 11573 12833 
80 14490 13490 14439 21271 
85 21259 19678 20232 24641 
90 27543 27550 31172 33406 

TABLE I: RESULTS PRODUCED USING PRE-GENERA TED TRACES 
WITH 30 MEMORY PAGE FRAMES AND 1024 WORDS 
PER PAGE WITH INPUT #4 (SEE TABLE 3) 
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Percentage of Number of page faults generated 
memory page 

Data=FIFO Data=LRU Data=FIFO Data=LRU frames 
allocated to lnstruction=FIFO Instruction=FIFO Instruction=LRU Instruction=LRU 

data pages 
10 60234 60261 61342 62143 
15 55102 54642 55710 55722 
20 40784 45627 45305 44933 
25 38136 39736 41361 38192 
30 36707 36344 35531 34712 
35 33205 33114 36549 32319 
40 30526 30103 29200 28335 
45 28744 28213 27482 26931 
50 26856 26277 25484 24645 
55 26532 25831 25229 24258 
60 26244 25694 24703 23938 
65 26145 25632 24660 23926 
70 26147 25628 24655 23919 
75 26457 25842 24506 23959 
80 26718 26243 25374 24681 
85 27129 27225 25817 25505 
90 30450 29909 29589 29315 

TABLE II: RESULTS PRODUCED USING RANDOM TRACES WITH 30 
MEMORY PAGE FRAMES AND 1024 WORDS PER PAGE 
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Input# 

I 
2 
3 
4 
5 
6 
7 
8 
9 
IO 

Corresponding file in the 
site 

008.espresso.din.Z 
0 l 3.spice2g6.din.Z 
023 .eqntott.din.Z 
026.compress.din.Z 
04 7. tomcatv .din.Z 
052.alvinn.din.Z 
072.sc.din.Z 
078.swm256.din.Z 
090.hydro2d.din.Z 
094. .din.Z 

TABLE III: THE INPUTS TAKEN FROM THE PUBLIC FTP 
SITE AT NEW MEXICO ST ATE UNIVERSITY 
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APPENDIXD 

PROGRAM LISTING 

This program demonstrates the behavior of the memory system when memory is 

divided into two parts: a data part and an instruction part. The standard algorithms, i.e., 

FIFO. I , R l J. I~ FU. and Second Chance are also implemented to compare the performance 

to the ne\v design. The basis of comparison is the number of page faults generated. 

!':'\\'i\tJ EUMAR l\THOT.Z\ 

rt.(·:, , ,, r i · :,!T>llClNG THE NUMBER OF PAGE FAULTS BY SEPARZ\TING 
l tJSTRIJCTIONS Atrn DATA 

M:'\NSUR H.SAMADZADEH 

E,,,. i:n 1· ( d l'1:t1<,s: :)!-:SIGNING: 40-50 hrs 

IMl'LEMENTATION: 75-80 hrs 
TEST ING: 150-200 hrs 

............. ····························································! 
llincludc <iostream> 
# j nc l url.-:• , f st ream> 
#include <string> 
#include "randomc.h" 
usinq nc1mespace std; 
;• •••.•••• ·······················•••************************************* 

l!!/!!!/!!/!!!!!!lll!l!/II/III/II/I/I////I/I/I//II//IIIIII//II//I/IIII/III 
/ I T!!F: '., I ST OF ALL STUCTURES USED IS DESCRIBED HERE / / 
l!l!!!!!!!!/!!/!lll//!l/l!//!l//!!l!/ll!lll/l/l/!///////!//////II/III/III! 

1,c.,pL<:.·-;,_·Lt:-; tnr, ~,tructure of page table entries . 

.. .. . . . ·································································! struct pageEntry{ 

) ; 

long SAdr; 
int InsData; 
int resBit; 
int FrameNum; 

/ ................. " ... * ............ * .. •. ,, .... ~':I'********"**********"'***'*****"**********.,.'*"' ... '* 
Th 1 .-; 1 :-; ci:-;,,j 1 :1 t ht:> rc1ndom trc1ce generation, where all the different 
['C::-:,1bh, memcry lccati.ons dre to be stored in a stack for the algorithm 
t ,; P r-;i,i.: ~ th~ random traces . 

.. . .. ... .... ·························••**************'****'****•········! 
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s• 

I ; 

!.F 1-1!L 1 j,, ( 

l,·nq i\ddrt'SS; 

LRlJ!Jod,~ • Ne:,t; 

::1:1 1 !!!!!!!!!!!!///lll//!!!//l!!/I/I/////////I///I/// 
I :l:·· 1.: l L'F i\Li, .:;LOBAL VARIABLES USED IS DESCRIBED HERE / / 

i!!!!!!l!!l//l/!lllllll!ll!lllllll/ll//l//l/!!I 

int i\ct u,1lP.1t,1Frc1mes; 

1 nt i\r·t 11,11 Inst n1rt i0nFrames; 

1 nt .l\l l0c[)i1taFram('s; 

1n1 .l\l loclnstructionFrames; 

int NumberOtFrames=768; 

int NoOtPageFaults=O; 

/'*the total memory page frames 
allocated to data pages*/ 

/'*the total memory page frames 
allocated to instruction pages*/ 

/*the total memory page frames 
occupied by data pages*/ 

/*the t0tal memory page frames 
occupied by instruction pages*/ 

/* the total munber of page frames 
allocated to a process.*/ 

/~the total number of page faults 
generated in a particular method*/ 

/*the clock variable of the system*/ 

'Ji::, 1:· 1.i1t• .'-,l1n,(':lStL't:,1l c1rray- representing the additional information 
· ::,- l i.:t · 1ldl c::t:·ics residing in the memory. 

l!·'.T [ l J ( i)) - - - - \' J PTIJ,"\L FAl~E NTJMgER OF PAGE I i 1 

Fl'-il' ! l l [ I j - . - ·- - ! N~~f..llCT !ON/DATA OF PAGE Ii I 
fMT[ 1 I I. )-----!JIP.TY BIT Ol-~ PAGE 'i' 
PMT[1 I [ ,J-----PMTRY TTMF. OF PAGF. 'i' 
1'MT [ .i I I ·l J - - - - -tJUMB!::R vF usss (1F PAGE 'i' 
l'M'l ! 1 ! [ '1 l - - - - -· Ri-:·:~!·:rn tr~~E cw PAGE 'i' 

int PMT I 7 6 8 } [ 8 J ; 

int blockSize=8; 

int seedType=36; 

int mainSeed=45; 

LRUNode* LRUStack; 

/*This represents the size of each 
page frame in the memory*/ 

/*This is the seed used to produce 
the type of the reference, which 
is used in the random trace 
generation*/ 

/*this is the seed used to produce 
the referenced address, which 
is used in the random trace 
generation*/ 

/*the stack which contains the list 
of all the unique addresses that can 
be generated in the random trace*/ 

ThPs0 ~r~ rh0 parameters to the random trace generator. 
····························****•****************•**********************/ 
doublP. Theta=2.5; 
double A==3; 
int memorySize=20000; /*the si=e of the program space to be 

used by the random trace generator*/ 

lll/!l!!l!!l!!!!l/!ll/l!!l/l/!/l/l/l//////ll/lll!!l//lll!!ll!II//!/!!!!/ 
I I l\LL F"lll·l,:TIOl'lS llSED ARE DESCRIBED HERE 
!!//i!/l!//!//l//!l!!!lll!!l!!l!!/l!!!llll!/l!/!/l!/l!/!!l//l!!II!/!/!!! 
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I: 1 ,:r~i ,· t:·:- ~: c- !,RU Stack after a reference is made. It puts 
.. : : ·· · ; • ·:·' : -~p ,::f the stack and m,::ves 31 l the addresses 

.. ,. 1::,,·,1~ :.c.,:1 dcwn. 

LP Un ,;j,' • llpd,1 t P LRUS t c1ck ( double INDEX, LRUNode* LRUStack); 

address randomly using a hyperbolic 
! : . l ,. 'lS('S the method mentioned in the thesis report 

................................•...........•.•...... , 
LFlltI,,,1,,• ql'tNt>:-:t,,ddress(LRUNode• LRUStack); 

,·c·:.vc,~·t the hc:-:a-decirnal reference addresses to 
: !! 

•.•.••• ····························~···············***/ 
1 n t ( 1 •' t I 11 t ( , · , ., n s t ,·· h c1 r • a 1 ) ; 

! ~ . 1 · :::,·· , ,·:: : .' .._-1._':~VL'rt the he:-:a-decimal character to a decimal value . 
.. . . . .. ·········~~·~·~··;~~·········~·~··~·;•+••+++•++++++?++~; 

lrlt C(l[1VPit(ch.ir); 

. , . 1, • ur :.~ 1 r-:hJE> frame, into which the rage entering the 
: 1 -<1:,l'y ,·,u~ l'••:- 1,,.!:i•"i, j,~pending on the type of the reference and 

•; :.·~ l T !':'.Tl l't'l r1<'; :::,,,,!. 
• • • • • •• •••••••••••••••••••++++++++++++++++++++++•+++++++++9P+++•++++/ 

tnt (JPL Paqe (d1ar Type, int Algorithm); 

.............. ························································ 1 
::" =· · : ·' · 1-' • ? ~ t In Fi 1st Out page replacement algorithm to determine the 

·: 1,-i 1m p.-1•1•', \vh•~n the memory is full . 
• • . . . • • • • • . . •• •• ····~···~············***********************************/ 
int FIFO(char type); 

r r :·· ·\ • :>' Lt',1~~ t H.c'Lt~ntl y Us~d page replace1nent algorithm to determine the 
·,, 1 :·

1 1:n P·1CJ(,, wt.en the· mcmorv is full . 
. .. . . . . . . . . ............•..• ; ......................................... , .. ; 
int LRU(char type); 

IJ:,,··:; t 11 " L".1:-n l·'r•'quo.~nt 1 y Used page replacement algorithm to determine the 
'.: 1 ,·· 1 :1. r·.i,1,~, \vh,:-n th<':' HK•morv is full . 
• •••• ••• •••••• ••••••••••••• ~ •••••••• ++**********************************/ 
int LFU(char type); 

/' 0 IO I IO o o O < ·················••••**************************************** 
ll~c-~ 1 r-ic0 :;f·cC'nd chance page replacement algorithm to determine the victim page, 
wh•:n th..-• m•."mory is full. 
\~~, +\\. \\~\\~\~~~~~~·~~~~~~~~~~~~~~~~~~~~~~~~~~*~~*~~~~~~+*~*~*+++~~+*+/ 

int SecondChance(char type); 

;•····· .• ······~······••*********•******'*******'************************ 
F.i n:l:-; '. :,., r·'~•:'r"~nc"'d pd<Je in the memory. If the page is not found, this 
qr,:,(, 1 -i 'J s -i P·:tge taul t and brings the requested page into the memory . 
• •••• •••••• ···············•••••********************************·****"***/ 
int findPage(long PNo, char al, int algorithm); 

pageEntry PageTable[lOOJ [10); 
int bucketLen[lOOJ; 

nu:·: 1 :·: t b• mc1 in tu net ion of the simulation. It gives tht> user various 
q·.! 1 ( r .s t :' run tr·1p ~imulation and then displays the resulting number cf 
pclt1P ".-1',]t.--,. 
~ .... ( " " " \ " ..... "' \ * ~ -\ * fr \ ~ -t -t .... -\ t- -t- -t---\' ~ 'T ~ -\ .. -\"" .. -, -t"""" ;- ~-\""-\-\"'" ~-\"' .... ""'"-+"' -t -t-\ --t ~ --t '\'-\ -t,"""'-\ -\ "'--t -\ / 
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· , .. ;:.1r::ing screen of the simulation*****/ 
·., 11 t • • • • • • • • • • • • • • • * • • • * • * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * "<<endl; 

'llt 

, \I I 

'lit· 

,11(. 

'\I I . 

,·, ,ut · 

. "\It . 

,·,,11t • 

REDUCING PAGE FAULTS 
BY SEPARATING INSTRUCTIONS AND DATA 

By 
Pavan Kumar Athota 

UNDER THE GUIDANCE OF 
Dr. MANSUR H. SAMADZADEH 

"<<endl; 
"<<endl; 

"<<endl; 
"<<endl; 
"<<endl; 
"<<endl; 
"<<endl; 
"<<endl; 
"<<endl; 

"<<endl; 
· • • • •••••••••••••*********************************"<<endl; 

l ! ~ I I t',l?tl l n; /*The input file of the simulation·~/ 

/*hexa-decimal reference string*/ 

1 'I ( 1 n t Bul.·k I ndex=O; Bucklndex<lOO; Buckindex++) 
bucb. .. ~ t Lt:~n [ Buckindex) =0; 

,·li.11 • ,ll ·n,•w ,·h,1r(25); /*hexa-decimal refernce string*/ 

,·h,11 tt:•mpch; 
l,:1111 bl:3=0; 
1 n t runs im; 
i II t St ,HllL11-ct; 

; '>' :1 .: , :: :r,'::·.: h'hi,::-t1 allows the user to run the simulation either with 
'!ic· I" 1c·--,-:t·r:t'rat:ed traces or with the random traces . 
. . . . . . . •• . . .• ··········~·······••********************•***************/ 
( ·ou l · .. <"Choose f rorn the following menu: "<<endl; 
cout<<"l. Run the simulation with pre-generated trace."<<endl; 
co11t<<"~. Run the simulation with random trace."<<endl; 
cout<,"3. Exit the simulation."<<endl; 
cin>"'runSim; 

switch(runSim) 
{ 

data."<<endl; 

/*case in which the user chooses 
to run the simulation with 
pre-generated input traces*/ 

;• ·············******************************************************* 
Th,~ m,•m1 which allows the user to run the simulation either with 
~-t.:1r.d,:nd algorithm or the new design . 
• ··········~•••••********************••······························; 
cout<<"Choose from the following menu:"<<endl; 
cout<<"l. Run the simulation standard algorithrn."<<endl; 
cout<<"2. Run the simulation with separation between instruction and 

cin>>standard; 
sw.i tch (standard) 
{ 

case 1: /*case in which the user chooses 
to nu1 the simulation with 
standard algorithm*/ 

/********** The user chooses the algorithm here *********/ 
in.open("inp.txt",ios::in); 
in.get(a2); 
cout<<"Choose one of the standard algorithrns"<<endl; 
cout<<"l. FIFO"<<endl; 
cout<<"2. LRU"<<endl; 
cout<<"3. LFU"<<endl; 
cout<<"4. Second Chance"<<endl; 
cin>>alg; 
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in.get(a2); 
t ,,r ( int j=O; j<NurnberOfFrames; j++) 

PMT[j) [4)=0; 
PMT[j) [2)=0; 

while(!in.eof()) 
{ 

in. get (tempch); 

/•Reset the PMT•/ 

in. get line (al, 30, ' '); /•get an address from the file"'/ 
int addr=getint(al); 
int PNo=addr/blockSize; 
int memPage=findPage(PNo, '3',alg); 
if(PMT[memPage) [4)>0) 
{ i*if the generated address is 

else 
{ 

found in the PMT•/ 
PMT[memPage) [4)=PMT[memPage) [4)+1; 
PMT[rnernPage) [5)=Clock; 

/•if a page fault is generated•/ 
PMT[mernPageJ [O)=PNo; /*update the PMT* / 
PMT[memPage) [4)=1; 
PMT[memPage) [2)=1; 
PMT[rnernPageJ [3)=Clock; 
PMT[rnemPage] [5J=Clock; 
NoOfPageFaults++; 

} 
in.getline(al,30); 
in.get(a2); 
Clock++; 

Clock=O; 
cout<<Clock<<endl; 
cout<<"TOTAL PAGE FAULTS**** "<<alg<<" ***** "<<" *** 

"<<NoOfP<lgeFault.s<,endl; 

case 2: 
break; 

/*case in which the user chooses 
to run the simulation with 
the new design*/ 

int ReferencedAddr,i,PMTEntryNumber,victirn; 
int percent,noOfPF; 
char type; 
in.open("inp.txt",ios::in); 
in.get(type); 
/ ...... * * * The user chooses the algorith.rn for instruction part * * ~ * * / 
cout<<"Choose one of the algorithms for instruction part"<<endl; 
cout<<"l. FIFO"<<endl; 
cout<<"2. LRU"<<endl; 
cout<<"3. LFU"<<endl; 
cout<<"4. Second Chance"<<endl; 
cons all,al2; 
cin>>InsAlg; 

/............... The user chooses the algorith..rn for data part .................. / 
cout<<"Choose one of the standard algorithrns"<<endl; 
cout<<"l. FIFO"<<endl; 
cout<<"2. LRU"<<endl; 
cout<<"3. LFU"<<endl; 
cout<<"4. Second Chance"<<endl; 
cin>>DataAlg; 
all.val=InsAlg; 
al2.val=DataAlg; 

user enters rhe percentage of the main memory page frames t0 be 
~ll0cated to data pages 

40 



t ;, 

...................................... :t, ............. .,, •• .,,-Jt ...... ~.,,.,,'* .. .,,.,,.,,.,,.,,.,,.,,.,,.,,.,,.,,.,, .. '*/ 

cout<<"Enter the percentage of the page frames allocated to data 

for(int Buckindex=O;Buckindex<lOO;Buck!ndex++) 
bucketLen[Buckindex]=O; 

Clock=O; 

::c1luculate the number of page frames allocated to data and 
1ns:ructi0n pages respectively. 

·······································•***************···········; 
AllocDataFrames=NumberOfFrarnes*percent/100; 
AllocinstructionFrames=NumberOfFrames-AllocDataFrames; 
ActualDataFrames=O; 
ActualinstructionFrarnes=O; //make it so just to know the no 

noOfPF=O; 

for(i=O;i<NumberOfFrames;i++) /-.reset the PMT*/ 
{ 

PMT[i] [4];:Q; 

while(!in.eof()) 
{ /*gets the referenced addresses 

one by one and keeps track of 
the page faults*/ 

in.get (tempch); 
in.getline(al,30,' '); 
ReferencedAddr=getint(al); 
long PNo=ReferencedAddr/blockSize; 
if ( type::::::: 1 2 I) 

PMTEntryNumber=findPage(PNo,type,all.val}; 
else 

//if the 
PMTEntryNumber=findPage(PNo,type,al2.val); 

if(PMT[PMTEntryNumber] [4)>0) 
,lf'~,1 Tf•;J ,iJ:lrtc•~:, :i~ 1n the main memory 

case 2: 

{ 

else 
{ 

/*if the generated address is 
found in the PMT*/ 

PMT[PMTEntryNumber] [4)=PMT[PMTEntryNumber) [4)+1; 
PMT[PMTEntryNumber] [5]=Clock; 

/*if a page fault is generated*/ 

PMT[PMTEntryNumber] [OJ=PNo; 
PMT[Pt-lTEntryNumber] [2]=1; 
PMT[PMTEntryNumber] [3]=Clock; 
PMT[PMTEntryNumber] [4]=1; 
PMT[PMTEntryNumber] [5J=Clock; 
noOfPF=noOfPF+l; /*increment the number of the 

page faults*/ 
) 
in.getline(al,30); 
Clock++; 
in.get(type); 

//END FOR THE WHILE LOOP. 
cout<<"Percent "<<percent<<"---> "<<noOfPF<<endl; 

break;} 
default : {cout<<"Error input"<<endl; 

exit(O);} 

in.close(); 
break; 
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tc, run the simulation ra;:ri,)m 



bl:.:3-=0; 
LRUNocte• TEMPNode; 
LRUNocte• CreateNode; 
h'c'l endOfFile=false; 

input traces*/ 

the random generator used to produce the type of the 

TRandomMersenne trType=TRandomMersenne(seedType); 
lnt tempT; 
l ,'lh1 dddr; 

• • 'i··.:: ;;i the LRU st.ad:***/ 
LRUStack=new LRUNode(); 
LRUStack->Next=NULL; 
LRUStack->Address=l; 
T~MPNode=LRUStack; 
rur(int i=2;i<=memorySize;i++) 
{ /*initiali=ing the LRU stack*/ 

CreateNode=new LRUNode(); 
CreateNode->Next=NULL; 
CreateNode->Address=i; 
TEMPNode->Next=CreateNode; 
TEMPNode=TEMPNode->Next; 

srand(mainSeed); 
bl.23=0; 
endOfFile=false; 

r: .r n:r:nu which allows the user to run the simulation either with 
~tdr1-ic1r,1 al,;10rithm or the new design . 

. . . . . . • • •••• ·········································•*******/ 
cout<<"Choose from the following rnenu:"<<endl; 
cout<<"l. Run the simulation standard algorithm."<<endl; 
cout<<"2. Run the simulation with separation between instruction 

cin>>standard; 
switch (standard) 
{ 

case 1: 

int alg; 

/*case in which the user chooses 
to run the simulation with 
standard algorithm*/ 

The user chooses the algorithm here 

cout<<"Choose one of the standard algorithms"<<endl; 
cout<<"l. FIFO"<<endl; 
cout<<"2. LRU"<<endl; 
cout<<"3. LFU"<<endl; 
cout<<"4. Second Chance"<<endl; 
cin>>alg; 
for(int j=O;j<NurnberOfFrames;j++) 
{ /*reset the PMT*/ 

PMT [ j) [ 4 J =O; 
PMT [ j) [ 2) =0; 

} 
if(b123>100000) 

endOfFile=true; 
TEMPNode=LRUStack; 
for(int i=l;i<=memorySize;i++) 
{ /* reset the LRU stack* I 

} 

TEMPNode->Address=i; 
TEMPNode=TEMPNode->Next; 

srand(mainSeed); 
while(!endOfFile) 
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part"<<endl; 

bl23++; 

;•gets the referenced addresses 
one by one and keeps track of 
the page faults•/ 

LRUStack=getNextAddress(LRUStack); 
addr=LRUStack->Address; 
int PNo=addr/blockSize; 
int memPage=findPage(PNo, '3',alg); 
if(PMT[memPage] [4]>0) 
{ /*if the generated address is 

found in the PMT*/ 
PMT[memPage] [4]=PMT[memPage] [4)+1; 
PMT[memPage] [S]=Clock; 

else 
{ /~if a page fault is generated*/ 

PMT[memPage] [O]=PNo; 
PMT[memPage] [4]=1; 
PMT[memPage] [2]=1; 
PMT[memPage] [3]=Clock; 
PMT[memPage] [1]=1; 
PMT[memPage] [5]=Clock; 
NoOfPageFaults++; 

} 

if(b123>100000) 
endOfFile=true; 

Clock++; 
} 

Clock=O; 
cout<<"TOTAL PAGE FAULTS**** "<<alg<<" 

break;} 

***** "<<" *** 

CdSt' :: /•case in which the user chooses 
to run the simulation with 
tht> new design•/ 

~~kP ~lie d~t~ p~ges list and the instruction pages list from the 
<1v<1i l<1blc.' list of references . 

. ·················································•••*****/ 

/-• ..... ... 

/ ... > .......... ·.• * .. 

int DataAlg,InsAlg; 
int ReferencedAddr,i,PMTEntryNumber,victim; 
int percent,noOfPF; 
char type; 
bl23=0; 
endOfFile=false; 
cons all,al2; 

The user chooses the algorithm for instruction part *********/ 
cout<<"Choose one of the algorithms for instruction 

cout<<"l. FIFO"<<endl; 
cout<<"2. LRU"<<endl; 
cout<<"3. LFU"<<endl; 
cout<<"4. Second Chance"<<endl; 
cin>>InsAlg; 

The user chooses the algorithm for data part *********/ 
cout<<"Choose one of the standard algorithms"<<endl; 
cout<<"l. FIFO"<<endl; 
cout<<"2. LRU"<<endl; 
cout<<"3. LFU"<<endl; 
cout<<"4. Second Chance"<<endl; 
cin>>DataAlg; 
all.val=InsAlg; 
al2.val=DataAlg; 

/' I l • l Ol •• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

u:,f'r t->ntt"T:S t:he percentage of the main memcry paqe frames to be 
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, •• : . 1 • , ,i · ~ · j ·~: a r -3 g es 
...••.•••••••••••• ................. --.~ ........... .,,.* .... * .... **--'**~**~'liJ,*':'"tt?*****-1'-ir/ 

cout<<"Enter the percentage of the page frames allocated to 

cin>>percent; 
Clock=O; 
bl23=0; 

·.11: :'.,1:,, :i:,? :1~:mber of page fra.11les allocated to data and instruction 
? : ;, > :, 0 :~rc<":t:1".'t·ly. 

AllocDataFrames=NumberOfFrames*percent/100; 
AlloclnstructionFrames=NumberOfFrames-AllocDataFrames; 
ActualDataFrames=O; 
ActuallnstructionFrames=O; 
noOf PF=O; 

for(int i=O;i<NumberOfFrames;i++) 
{ 

PMT [ i J [ 4] =O; 
} 

if (bl23>100000) 
endOfFile:::true; 

TEMPNode=LRUStack; 
for(int i=l;i<=memorySize;i++) 
{ 

TEMPNode->Address=i; 
TEMPNode=TEMPNode->Next; 

} 

srand(mainSeed); 
while(!endOfFile) 
( /*gets the referenced addresses 

one by one and keeps track of 
the page faults*/ 

b123++; 
if(noOfPF==49) 

b123:::b123; 
LRUStack=getNextAddress(LRUStack); 
ReferencedAddr=LRUStack->Address; 
long PNo=ReferencedAddr/blockSize; 
tempT=trType.IRandom(l,10); 
if(tempT<B) /'"the data references are gener.:tted 

with a pr0babililty of 0.7*/ 
type='!'; 

else 
type='2'; 

if (type:::::: I 2 I) 

PMTEntryNumber=findPage(PNo,type,all.val); 
else 

PMTEntryNumber=findPage(PNo,type,al2.val); 
if(PMT[PMTEntryNumber] (4]>0) 
{ /*if the generated address is 

found in the PMT*/ 

PMT [ PMTEntryNumber] ( 4] =PMT [PMTEntryNumber] [4] +l; 
PMT[PMTEntryNumber] [S)=Clock; 

else 
{ /*if a page fault is generated*/ 

PMT[PMTEntryNumber) [O)=PNo; 
PMT[PMTEntryNumber] [2]=0; 
PMT[PMTEntryNumber] [3J=Clock; 
PMT[PMTEntryNumber] [4)=1; 
PMT[PMTEntryNumber] [SJ=Clock; 
noOfPF=noOfPF+l; /*increment the number cf 

the page faults 4
/ 

Clock++; 
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if(bl23>100000) 
endOfFile=true; 

if (bl23%1000==0) 
cout<<b123<<endl; 

//~ND FOR THE WHILE LOOP. 
cout<<noOfPF<<endl; 
int abcdef; 
cin>>abcdef; 
delete [)LRUStack; 
break; 

) 

,l~fdult: {cout<<"Invalid input. Exiting the Simulation .... "<<endl; 
exit(O);) 

/•case in which the user chooses 
exit the simulation~; 

•' :•: l t ( L)) ; 

j,. LI\I It : ;~case when the user enters an 

,11· t dtl 1 t 

invalid input-+/ 
cout,,"Invalid input. Exiting the Simulation .... "<<endl; 
exit(O); 

P:-: it ( Q) ; 

/~case in which the user chooses 
~xit th~ simulation•/ 

/~case when the user enters an 
invalid input~/ 

cout,,"Invalid input. Exiting the Simulation .... "<<endl; 
exit(O); 

F:·:·I:, · ::c: 11..:rc,1cilced ~,H!e in the memory. If the page is not found, this 
t1·•:1•'rd'•'::· d p.i,Jc' 1<1ult an,j brings the requested page into the memory . 
• .. • • • • • • • • • • • • • .. ' ••••• ·• .......................... :1-.,,~ .. ,.,..*'*****'**.,,'**********.,,*******/ 
jnt findPc1ge(lonq PNo, char type, int algorithm) 

int keyVal~PNoilOO; 
int pos=bucketLen[keyVal); 
for (int i=O;i<bucketLen[keyVal);i++) 
( 

it( ( (PageTable[keyVal} [i) .SAdr)/blockSize)==PNo) 
l 

if(type!='3') 
{ 

if(PageTable(keyVal] [i) .InsData==l) 
type='!'; 

else 
type='2'; 

) 

if(PageTable[keyVal} [iJ.resBit==l) 
return PageTable[keyValJ [i) .FrameNwn; 

else 
break; 

int FNo=getPage(type, algorithm-1); 
if(i==bucketLen[keyVal)) 
{ 

PageTable[keyVal) [pos] .SAdr=PNo*blockSize; 
if (type== I 2 I ) 

PageTable[keyVal) [pos] .InsData=2; 
else 
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PageTable[keyVal) [pos).InsData=l; 
bucket Len [ keyVal J =bucket Len [ keyVal) +l; 
r.h1•'T.1ble[key\'al] [pos] .FrameNum=FNo; 

raoeTahle[keyVal) [i).FrameNum=FNo; 
P.iqt~Tc1blt~(key\",1l] (i] .resBit=l; 
1 t (PMT[FNo) [·l) !==O) 

1 n t a l __, PMT [ FNo J [ 0) ; 
keyVal-al!,100; 
t,•: ( int 1~0;i,bucketLen[keyValJ;i++) 

if(((PageTable[keyVal) [i).SAdr)/blockSize)==al) 
I 

PageTable[keyVal) [i) .resBit=O; 
break; 

PMT ( FNo J [ 0 J = PNo; 
l t (type= ' I .: I ) 

PMT [ FN o J [ l J = 1 ; 
,-• 1 St• 

PMT[FNo] (1]=0; 
PMT [ FN o I ( 4 J "'0; 
r e t u r 11 FN o ; 

Tr, 1 s : \:r;c· 1: r, :-:.--ri,·r,i' f':--:: t hf• nei-:t address randomly using a hyperbolic 
·i1:-~,11b 11t 1,~:1. l'h1s ~-u1~,~:10n. uses the method mentioned in the thesis report 
I ·1 h 1 ,·r'-n11 ,il. ,:,:· 1 • 

LRUNode* getNextAddress(LRUNode* LRUStack) 
{ 

double u; 
int TEMP; 
double INDEX; 
u= ( (double) rand () 
it (u< ( 1/Theta)) 

/ (double) (RAND MAX+l)); 

else 

double a=pow(A,Theta); 
double b=(u*Theta/a); 
double c=(l/(1-Theta)); 
INDEX=pow(b,c); 

- /*the case whent he next reference 
is produced within the spatial 
locality of the reference*/ 

/*the case when the reference 
can be produced anywhere in 
the program space•/ 

u=( (double)rand() / (double)(RAND_MAX+l) ); 
INDEX=u*memorySize; 

if(INDEX>=memorySize) 

INDEX=memorySize-1; 
TEMP=INDEX; 
if(INDEX-TEMP<0.5) 

I NDEX=TEMP; 
else 

INDEX=TEMP+l; 
if ( INDEX<l) 

INDEX= 1; 

/*make index to be in the limits 
of the memory size,../ 

/*round the index to the nearest 
integer"/ 

/•update the stack by bringing 
the referenced memory location 
to the top of the stack•/ 
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!.;.11.:~ .i,·k llp,LH~·LRUStack(INDEX,LRUStack) i 

: .. • ·: : : , r. F.11 :, t .1, • ~:: 

. ! . ! !: • 
• :· .. , ,.:-'.L1 3tdci: after a reference is made. It puts 
· ·:P ~~P of the stack and moves all the addresses 

• • • • • • • • • • • • • • • • • • ••• .......... ..,, ...... ~ ................................ .,,**** .. ****/ 
I.Fl 1:1 ,-1, • • iii' L1 t •' I.RP:~ t ,lC k (double INDEX, LRUNode* LRUStack) 
{ 

:,Fll!L•,i,• • T~:M1' 0 LRUStack; 
!.HIIN<d•·. TEMFHolder; 
,. ,1m·r::->1, 

·r. 

t,,r(i111 i=l;i<INDEX-l;i++) 

TEMP=TEMP->Next; 

/*get the address at the required 
inde:,' / 

1-!.l:, :, :' d ~ , he re qui red inde:~ to the top of the stack 

TEMPHolder=TEMP->Next; 
TEMF-'Next=TEMPHolder->Next; 
TEMPHol de r->Next=LRUStack; 
I,RUStack=TEMPHolder; 

tf'turn LRUStack; 

! : . , . .. , (.:. 1 ,. t ,: r1.s .1 page t rame, into which the page entering the 
:r.,, ·. :1,•:1,·1 \: ,·.1:, h ... 1,,.::1.i•"d, deptc'nding on the type of the reference and 

:., 1 ! :, r It :.:11 Le· i :·,q used . 
• • • • • • .. • • • • • • ... .. ... ... • • • • ... • .. ... • .. • .. .. .. "''*"'"***'*· ..... *"t,l,.*'l\'"t*st"""•** ....................... * ...... ****'t*/ 

1n 1 qetPagc(char Type, int Algorithm) 

tnt VictimPage,i; 
if (Type'-''"', 3,) /*this is the case in which there is 

no difference between instructions 
and data*/ 

else 

for(i=O;i<NumberOfFrames;i++) 
{ 

if (PMT{i) {4)==0 ) 
return i; 

/*if a page frame is unused then 
return the index of that page*/ 

/*case when there is a partition 
between instructions and data*/ 

if(Type!='2' && ActualDataFrarnes<AllocDataFrarnes) 
{ /*if there are free data frames*/ 

for(i=O;i<NumberOfFrarnes;i++) 
( /*find a free data frame and return it*/ 

i f ( PMT [ i ) [ 4 ) == 0 ) 
{ 

Actua1DataFrarnes=Actua1DataFrames+l; 
return i; 

if(Type=='2' && ActualinstructionFrarnes<AllocinstructionFrames) 
{ /*if there are free instructi0n frames•/ 

for(i=O;i<NumberOfFrames;i++) 
{ /*find a free instruction frame anrt 

return it*/ 
if ( PMT [ i) [ 4] ==O) 
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'1.• ·:. 

ActualinstructionFrames=ActualinstructionFrames+l; 
return i; 

........................... , • .,,.~ • .,~ .. ., .. .,,,..,, .... ._, ............ .,,**'* 

: ' 1•.; 

: ' : f. \ ~: ; 

.:: ., ,:·:,:: L,l~h' in tht> memory, remove a page from 
· , .i , l ~:~: "· :::1:, :rnd return the free frame. 

\" 1,·t 1 mi',1qe-LFU (Type); 
t' I ••.I ~: ; 

\" 1, ·t 1 mP,1qe= SecondChance (Type); 
i' l t', I~: ; 

l •' 1 \: I l l \: l ,: t 1 rt\ I', l cJ t' ; 

..................... ~ .......... .,, ................................. *'*'*"''*"'* 
:: ! , ! ., :·' : ·Tl .:,-,':r.•'nt ,1l90rithm to determine the victim page when 

1 :1 t 1111 n ·· c 1,--i, · k, v 11..·t im=Numbe rOfFrames; 
l', ', ' l I , , ll lh I~ I .t l s ~ ; 
1 : j \ I : h ,. ' . ~: • ' d l' ,I q I:' s ( 7 6 8 I ; 
111t ,·lJ,,kNurw·L); 
i•,·(, l Ch1c,,·~:t.'d; 
wh i 1,, ( ! found) 
i 

} 

/•!cop until a victim page is found•/ 
i~O;i<NumberOfFrames;i++) 

/•find the page that entered the 
memory first*/ 

Checked=false; 
t0r(int j=O;j<chekNurn;j++) 
t /•check if the page is already given 

} 

a second chance*/ 
if(i==CheckedPages[j)) 
( /

4 if the page is found in the checked 
list array then it is not considered 
in determined the next suitable victim 
page"/ 

Checked=true; 
break; 

if(PMT[i) (4) !=0 && !Checked) 
{ 

if(PMT[i) [3)<min) 
{ /*find the page which entered the memory 

the first*/ 
victim=i; 
min=PMT[i) [3); 

if (PMT[victim) (2)==0)/ 4 if the reference bit is not set, the 
victim page is found 4 / 

found=true; 
else 

;~if the reference bit is set clear the 
reference bit and add the page to the 
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~heckcjrag~s list•/ 
CheckedPages[chekNum]=victim; 
PMT[victim) [2)=0; 
chekNum++; 

: I (dwkNum==NumberOfFrames) 

~ , · t : 11 t1 ,..,. t l' t i tn; 

/~it all the pages in the memory had 
their bit cl~ared, get the first page 
in the CheckedPages list•/ 

found=true; 
rt~turn CheckedPages(OJ; 

••••••.•..••••••..•••••••••••• •••••• .............................. ,. .. * .. '** ... ~-.-..~-:t>'*+ 

1 n t Fl r(l ( c'tLlI type) 

int min~Clock; 
1 nl viL·tim=NumberOfFrames; 
int i; 
int tempChc1t-; 
l_ f. (type== I 3 1 ) /•this is the case in which there is 

nc difference between instructions 
and data•i 

f•l se 

f,,r (i=O; i...::NumberOfFrames;i++) 
{ 

i f ( PMT I i I I 4 I ! = 0 ) 
{ 

if(PMT[i) [3]<min) 
{ /•find the page which entered first 

into the memory•/ 
victim=i; 
min=PMT[i] (3); 

/*case when there is a partition 
between instructions and data•/ 

i f ( type ! = I 2 I ) 

{ ;•find and return a data page•/ 

else 

if(ActualDataFrames<AllocDataFrames) 
{ /•if there are unassigned data page 

frames, return an empty page frame*i 
for(i=O;i<NumberOfFrames;i++) 

if(PMT[i] [4]==0) 
{ /*return the first available empty 

page*/ 
victim=i; 
return victim; 

/*find and return an instruction frame 
and return it'*/ 

if(ActualinstructionFrames<AllocrnstructionFrames) 
{ /•if there are unassigned instruction page 

frames, return an empty page frame•/ 
for(i=O;i<NumberOfFrames;i++) 

if(PMT[i) [4]==0) 
{ /*return the first available empty 

page*/ 
victim=i; 
return victim; 
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lf (type=='2') 
tempChar=l; 

~, l se 
tempChar=O; 

fnr(i=O;i<NumberOfFrames;i++) 
{ /•in case a page has to be removed•/ 

if (tempChar==PMT[i] [1] && PMT[i] [4) !=0) 
{ /•find the page that entered the 

memory bef0re all other pages*/ 
if(PMT[i) [3)<min) 
( 

victim=i; 
min=PMT[i) [3]; 

/•r~turn the victim page~/ 

r ':,' ·, · : ., : • · i :, • ;, ,., 1 :, • ; ':' ti scd p:.ige replacement algorithm to determine the 
: ~ ·• : :t. !'',.:' ·--.1 t:,,,:: H'.t':r.~"r i' ! ~ f 1~;ll . 
. • • . . . • . • • . • • • • • • • • • • • • • ..... • • •••• -• ... ,. * .,. .... ·• * + .. -:6- .,, * * + .,,. ~ * * * * .. ·• '* .. '* .. .,, ~ '1t * .. .,. ., .. I 
1nt LRll(L"i1.ir type) 

int min~clock; 
int vic-tim=cNumberOfFrames; 
int i.; 
inL tempChar; 
j f (type== 1 3 I ) /•this is the case in wn1cn there is 

no difference between instructions 
and data•/ 

else 

t:or(i=O;i<NurnberOfFrames;i++) 
{ 

i f ( PMT [ i I [ 4 I ! = 0 ) 
{ 

if(PMT[i] [5]<min) 
{ /•find the page which was used least 

recently*/ 
victim=i; 
min=PMT[i] [5); 

/+ case when there is a partition 
between instructions and data•/ 

i f ( type ! = I 2 I ) 

( /*find and return a data page*/ 

else 

if(ActualOataFrames<AllocOataFrames) 
{ /*if there are unassigned data page 

frames, return an empty page frame+/ 
for(i=O;i<NumberOfFrarnes;i++) 

if ( PMT [ i J [ 4 I ==O) 
(/•return the first available empty 

page·k / 
victim::;:i; 
return victim; 

/*find and return an instru,:tion frame 
and return it*/ 

if(ActualinstructionFrarnes<AllocinstructionFrames) 
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:'·if ~hE:rE: arE: unassigne:d instruction page: 
:: 1. -=1mE:s, re:turn an e:mpty page frame:"/ 

for(i=O;i<NumberOfFrames;i++) 
if (PMT [i] [ 4] ==O) 
{ /•return the first available empty 

page•/ 
victim::::i; 
return victim; 

l l \ t YP"' - - I : • ) 

tempChar=l; 
•. l :~ t. 

t empCh,u=O; 
1,,r ( 1 ·L); i,NumberOfFrames;i++) 

it (tempChar==PMT[i) (1) && PMT[i] (4) !::::0) 
I /•in case a page has to be removed•/ 

if(PMT[i) [S)<min) 
l 

victim=i; 
min=PMT(i] [5]; 

r,' t u n1 vi ct i m; /•return the victim page•/ 

/ ............................................. .,. ..... '!t ... *'*"'*'*'*Y'*'******** .. *******'*****'** 
11

:··· • '.:·· ; ·•,::0
• :··: ,, p·.':,~ ! .. u~~,__,J p<lqe repldcemcnt algorithm to determine the 

·.:i: !:r. ! 1,:(· ·.·:t., t. :i:< :1:,·1-.· ,~; full . 
• • • • • • • • • • .. • • • .. .. • • • : ' ••• " •• " ' .. "' "' " " " " ,. "- "- ..... '\' ............. •\; ~ ...... '" .......... ' ..... ~ .. "' ....,_ ..... ,. -.;, 't' ..... ,. "' ........ ,t- ..... "'"/ 

11it LFU(,·l1c11· type) 

int min==Clock; 
int min.2=Clock; 
int victim=NumberOfFrames; 
int tempChar; 
i I) t. i; 
if(type=::'3') /•this is the case in which there is 

no difference between instructions 
and data*/ 

else 

for(i=O;i<NumberOfFrames;i++) 
{ 

if ( PMT [ i ] [ 4 ] ! ===0) 
{ 

i f ( type ! :: I 2 I ) 

if(PMT[i] [4)<=min && PMT[i] [5J<min2) 
{ /*find the page which is used least 

frequently. use LRU to resolve any 
conflict*/ 

victim=i; 
min=PMT(i] (4]; 
min2=PMT(i] [5]; 

/*case when there is a partition 
between instructions and data•/ 

{ /•find and return a data page•/ 
if(ActualDataFrames<AllocDataFrarnes) 
{ /iif there are unassigned data page 

frames, return an E:mpty page frame•/ 
for(i=O;i<NurnberOfFrames;i++) 

if ( PMT [ i J [ 4 I ==O) 
(/•return th':'- first available empty 
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pa.9~·/ 
victim=i; 
return victim; 

/• find :ind retur:: an instruction frame 
c1nd return it•/ 

1f(ActualinstructionFrames<AllocinstructionFrarnes) 
{ ;•i! there are ~nassiqned instruction page 

f r,-1.mes, return 2.n e-mpt y page frame•/ 
for(i=O;i<NumberOfFrames;i++) 

i f ( PMT [ i I [ 4 ] = = 0 ) 
{ /•return the first available empty 

page•/ 
victim=i; 
return victim; 

l f (type== I~ I) 

t empCha r= 1 ; 
else 

tempChar=O; 
for(i=O;i<NumberOfFrames;i++) 
l 

return victim; 

if(tempChar==PMT(i] (1) && PMT[i) (4) !=0) 
{ /•in case a page has to be removed*/ 

if(PMT[i) [4)<=min && PMT(i] [5]<min2) 
{ /*LRU is used to resolve the conflict* I 

min2=PMT[i) [5]; 
victim=i; 
min=PMT[i} [4]; 

/•return the victim page*/ 

Thi:·; is a funct:.ic.m to c(,nvert the he:xa-decimal reference addresses to a 
dr~c i ma l :-vid r,,~ss. 

······································································! 
int getint(const char• al) 

char c; 
int length=(int)strlen(al); 

int retVal=O; 
for(int i=O;i<length;i++) 

retVal=retVal*l6+convert(al[i)); 
return retVal; 

;•• •••• ····················••****************************•************* 
Thi :c, 1 s ~1 funct i ,)n to convert the hexa-decimal character to a decimal 
'..!rJ I Ut·. 

int convert(char c) 
{ 

int retVal; 
switch(c) 
{ 

case '0' 
case '1' 
case '2' 

retVal=O;break; 
retVal=l;break; 
retVal=2;break; 
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t'·•· 

t ~ .•. 

•. 1 • 

I •1' 
'':,' 

• 6. 

. •'\. 

...... 
• .... 1. 

'b' 
,\.. ... 
'd' 

It I 

I.' : . I ii l t 

l 

r· ,:· l ... ,i l -· 3 ; b r,: cl J.:; 
r t • t v a l = ,J ; break ; 
r,·t\"al=5;break; 
1PtVc1l~6;break; 
n·L'.'.11-·.:;break; 
r ,, t \'. 1 1 °- 8 ; hr ea}:; 
: ,·t\'a l 2 ~•;break; 
r ,. t \' ,1 1 ~ l O; b re a}:; 
r· e t Va l = l l ; break ; 
tPtVal~l2;break; 
tt.'l Vc11=13;break; 
1 ,, t V c1 l = 1 4 ; b r ca k; 
tr•tVal=l5;break; 
t t' t V cl l ~ 0 ; break ; 

!t·tU?ll ?t'lV.il; 

••• "".'.''' '' '' •••••••••• MERSENNE.CPP ""***••••••••••••••• AgF 2001-10-18 * 

.... i-.1:, !.::11 :,·::r.l·,•r .1,•::,~r.1:,"">r 1s described in the article by 
·-:. ··-: ,· ..... ;·11~ ',· :, T. N1~h1:nura, 1n: 

;\.'::-: r1-.t::.Lt 1 t 1,-.t~.~ :: >!-.,~ii~li11g ;\11.d Computer Simt1lation., 
. ·.' l . , i., l , !'!'. , - .,,), 1 '-1 ::it,. 

:• .'.f'•'!. :· random number generator. 

'· •' ·. i" !··. ,, i. -!J! 1 ·:.,:>· :· ..-11 FuL'l ic License www. gnu. orgi copyleft/gpl.html • 

.......... ··········································**************/ 
!11nclt1dP "randomc.h" 

void TRandomMe rsenne: : Randomini t ( long int seed) 
// r·.- -::··t_'•,.'.i \.ft'I1·~~r,:tL""°'r 

unsi.qned longs= (unsigned long)seed; 
for (mti - 0; mti < MERS N; mti++) { 

s = s • 2q943929 - l; -
mt [mti J = s;} 

.1 / .lt':>te1· 1 c1'mp,H·.er archi.tecture 
union {double f; unsigned long i[2);} convert; 
convert. f = 1.0; 
if (convert.ill] == Ox3FFOOOOO) Architecture= LITTLE ENDIAN; 
else if (convert.i[O] == Ox3FF00000) Architecture= BIG_ENDIAN; 
else Architecture= NON IEEE;} 

unsigned long TRandomMersenne: :BRandom() 
// qentc!rat-t:' 3~~ rdndom bits 
unsigned long y; 

if . ~mti >= MERS_N) 
// ·r•'!l•'r.i~,, ;-iEP.S N w,)rjs at one time 
const unsigned long LOWER MASK (lLU << MERS_R) - 1; // lower MERS R bits 
const unsigned long UPPER-MASK= -lL << MERS_R; // upper (3'.:: -: MERS_R) bits 
int kk, km; -
for (kk=O, km=MERS M· kk < MERS N-1; kk++) { 

Y (mt ( kk] & UPPE~ MASK) I (mt [kk+l] & LOWER_MASK); 
mt ( kk) mt ( km] (y >> 1) " (-(signed long) (y & 1) & MERS_A); 
if (++km>= MERS_N) km= O;} 

Y (mt[MERS N-1) & UPPER MASK) I (mt[O] & LOWER MASK); 
mt[MERS N-1) mt[MERS_M-1) " (y >> 1) " (-(signed long) (y & 1) & MERS_A); 
mti = 0;) 

y = mt[mti++); 

// I'r,rnpr I t1,q (M,;1y be omi t.tect): 
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y 
y 

" J ,. 
1 

I,·,• 

: ••''II', 

u:: l • :1 

t ~ I ~ ~, l l ; : • , l, 

M!-:F-:~ tl; 

M!·:1·:~; ;, ' ~ :•!ERS B; 

! ; 

l l 

.. 
'. 

.. : ' : ·. : . (" i ; : :~ ('. l ._. ,) l Ci 
: ::·:·' i : ,':hl i [ 2 I;} convert; 

:'·F,1n L'm1'; 

<= V 

.,::i,::ii bits t,.; :L.,ating point is as follows: 
.. : 1:,c1:.inq pc1nt:. number to l+bias and set 

r:,i~; \.;ill give .1 random number in the 
.::'· ! ,,.·: l. ,) :.,, G1..'t d rd.r:J.:.~:n nuwbt>r in the interval 

.: ,, : , ,; .. : ! ..._,!- :.!1e1t we: k:ww :·,ow flcati:-ig point numbers 
·:: ··.: :: -·: :: , ! is tt:.'St1..'J ir: functi0n P.andominit and saved 

-,: .·: : ·, ... ·.:: t. \:\ p,~ n:n:11nq Windcws or Linu;.: uses 
:. i ~. i ::-. ~ ~ 

: ; · •. , l l (.' h ( l\ I Ch l t .. C t ll r e ) 
,· IS!' !.lTTLE_!::NDli\N: 

converl.l(OJ r :.:o; 
co11v,•1L.i[l) (t 12) 
r <-' t u r n , · on v e 1· l . t - 1 • O ; 

t ·,is t:~ 13 I G _ 1-:N D lt'\N : 
COil V(! 1 t . 1 [ 1 I r ·., 20; 
C<.)IIVt'l t. l [0] \!' ,·, l.:;) 

r·i>t•nn ,·onverl.t - 1.0; 
,·.is,! NUN lEEE: ,:l,•l,1ult: 

Ox3FFOOOOO; 

Ox3FF00000; 

!:.: .. ·:1,,,·.,::.,'._ ,·;,,, ... ,: :1.-.,:::L,,I -...,<,ri:::: for dll architectures, including 
... i:: :. : !. 1·. 1::q F;,1;.: ll:prPSCllLlticn: 

r,•Lu111 (d,'ubl,c>lt: (1./((.Jouble)(unsigned long)(-lL)+l.));} 

lonq TRundomMersenne:: IRandom(lona min, long max) 
// ,·.: F- 1 :'. 1 .1:1.k::11 i '~t'•~'-Jt'!r in tlH'! J interval min <= x <= max 
long r; 

r '-= l vtHJ ( ( ma:-: - min + 1) .. Random {)) + min; / / multiply interval with random and 

it ( r > ma:~) r = max; 
return it {ma:-: < min) 

return r;} 
Ox80000000; 

;•• .• •• ••• ••••••••••••••• RANDOMC.H ... *•*•***************** 2001-10-24 AF* 
lht::· :.1 J., ,·,,:1'.,;i:1:; .,·le::~:; J,.•1·Lnations Mersenne Twister random nUIPber generators. 

C0n::;t 1·ti,:t ,_)r ( 1,)n,; i.nt :,,,.,,i): 
• Th(~ ::,c:t-,d l··1n l:c, - ;H'V 1 nt t=-l'H'"r. llsuall v the time is used as seed. 

E::.:.,-',_l!t i:1,~ ., pr,,q1·;-1;., twi,."f; with the ~ame seed will give the same sequence of 
r.dndc'•rc n.:nJ',0 r:,. 1\ ,!1 !"tt':'tt>:1t see.-:l will give a different sequence. 

: l: ,1'. i nq p(·i 1tt I H1d(,m number in the interval O <= x < 1. 

• TF--.tr:cl( :r.i"'1c- t ~(-lt,·,c·. 
l'P.1,,•i .. n,M-:' D,:;t. 

):· hit:-- 1n TRanr,)t~Generator, TRandomMotherOfAll and 
r,,: ct .;3 bits in TRanrotWGenerator. 63 bits in 

lil! l!;.!,·,,J,:1,(1nt !11ln, 1:H. nu:,.;); 

,,;1•.:e:- ,,:1 1~:· .,.q,er r,;:,J,,.m numb,..-,r in the interval min<"" z <= max. 
~ TIJ· rc·:·,c,l:1• i(;ll ic, 1.hr· s,tme ,:ls fc,r Bandom(). 

"1~ris1q::, .. ~-1 1~!,q HR·~iidC·~n~); 
•J',l,':·· 's:. Ll:1.!,)m bit:-;. 

{max-min < MAXINT) . 

• C1L I'/ ,,._.,, i 1-~t: l f". 1 n t- h(· classes TRanrctWGeneratc-r and TRandomMersenne · 
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7 :·:··: :·· · :. -!; 1
.' :,,::,,:·,ll Public License www.gnu.org/copyleft/gpl.html 

........ ···········-·········· .. """' .. -."~"~ . ..---- ......... ;-;-t,st~"".._.""'"\~;'\'-\'"'.'t'+'t""'~"'"~¼""'--t'-t~~~~-t/ 

# 1 ! 11ck ! R.:\NDOMC H 
#def 1 n, • Ri\NDOMC H 

ii 1 nc l ud" 
ii lfH'l:tdt· 

ii 1n,·l ud•· 

·m.:1th. h"' 
,l~St't't .h" 

• :;t d l c1. h', 

cl .i:,:; TR,1tHlomMet·sennc 
if 1 ! I 

// encapsulate random number generator 

. ·: ;: .,·::, .. ,::::.·: l),:, d,:-fined .;1s ·~nurn in 16-bit compilers) 
!hit· I 111P MF:RS N 
ii c!P I 1 11P MERS M 
#define MERS R 
#de! ine MERS U 
#define MERS S 
!lcle 1. i ne MERS T 
llcle f i1H.• ME:RS L 
#ldetine MERS A 
ilcic• fine MERS B 
Och• fine MERS C 

!lelse 

tide f i.ne MERS N 
ttch~f:i.ne MERS M 
lldefine MERS-R 
l!clc tine 
Ocie fine 

lldef'ine 
!lclefine 
#de(ine 
#!define 
fidefine 

!lendif 
public: 

ME:RS U 
MERS-S 
MERS-'l' 
MERS=L 
ME:RS A 

MERS=B 
MERS_C 

351 
175 
19 
11 
7 
15 
17 
O:-:E•IBD75F5 
Ox655E5280 
OxFFD58000 

624 
397 
31 
11 
7 

15 
18 
Ox9908B0DF 
Ox902C5680 
OxEFC60000 

TRandomr-.lersenne ( long int seed) 
Randominit(seed);) 

void Randominit(long int seed); 
long IRanctom(long min, long max); 
double Random(); 
unsigned long BRandom(); 
private: 

il constructor 

// re-seed 
// output random integer 
// output random float 
// output random bits 

unsigned long mt(MERS_N]; 
int mti; 
enum TArch {LITTLE ENDIAN 
TArch Architecture; ' 

II state vector 
// index into mt 

BIG ENDIAN, NON_IEEE}; 
- I I conversion to float depends on computer 

} ; 

!lendif 
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