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1. INTRODUCTION 

1.1 Simulation Modeling and Output Analysis 

Simulation is a widely used tool by many organizations such as manufacturing 

and service to understand the behavior of a given system. It is also used to analyze the 

effects of applying different strategies to a system. Various strategies include applying 

different input distributions or changing system parameters like number of resources. It 

can either be used to analyze a current system by building a model and running it with 

actual input values (Example: arrival rate, number of servers), or it can be used to 

evaluate certain performance measures even before a system is built. Simulation can be 

used as a tool for finding bottlenecks, over-utilized resources, estimated waiting times 

and many more performance measures related to systems in the manufacturing and 

service industries. 

Simulation models can be broadly categorized into two classes; deterministic and 

stochastic. Deterministic models use fixed, non-random values to specify the model and 

particular variant of the system. The output is fixed since randomness is not present. 

Stochastic models incorporate randomness as well as some elements of time elapsing 

[38]. This class of models is further classified into terminating and non-terminating 

(steady state) simulations. In the case of terminating simulations, the model runs for a 

finite horizon of time until some event occurs [8]. An example is the simulation of a bank 

which starts and stops at a fixed time. The output process is not expected to attain steady 



state behavior and the value of any parameter estimated from the output data will depend 

upon the initial conditions of the system. In the case of steady state simulations, the 

model runs for an extended amount of simulation time. The objective is to study the long­

run behavior of the system. Generally, the objective of steady state simulation modeling 

is to obtain a steady state mean of the desired performance measure like, average number 

of parts per hour or average delay in queue, with a certain confidence interval having a 

pre-defined coverage probability. 

A performance measure of a system is called a steady-state parameter if it is a 

characteristic of the equilibrium distribution of an output stochastic process [8]. An 

example is a continuously operating manufacturing system where the objective is to 

compute the average number of output produced per hour. This research will concentrate 

on the steady state simulation. 

The primary purpose of most simulation studies is to obtain estimates of 

prescribed performance measures. Suppose that Y1, Y2 , Y3 , ••• is the output process from 

a simulation nm. Y is the steady state random variable of interest. Y may denote the 

average number in the system or delay in queue. If Y; is the value of Y at i time unit(s), 

then 

P { Y ~ y} = F;(y) tends to F(y) = P { Y ~ y} as i tends to oo • 

The purpose of steady state simulation is to estimate the mean of Y, denoted byµ , 

with a confidence level of ( 1-a) [24]. 

The process of simulation modeling involves a considerable amount of time and 

money. Important strategies and decisions are based on the results obtained. An obvious 

question one may ask is whether the output produced by simulation is reliable enough to 
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make vital decisions? In other words, is the simulation output a true representative of 

what is going to be the actual? 

1.2 Problems in Simulation Output 

The following two problems may lead to erroneous results: 

l. The input processes like the arrival rates and service times, driving the simulation 

are usually random variables. The resulting output is therefore random. 

Simulation results yield only estimates of measures of system performance. They 

are subject to sampling errors. Moreover the output Y., Y2 , ••• , Ym in most of the 

cases 

• are not independent. The output is stochastic and autocorrelated. Positive 

autocorrelation results in overestimating the confidence interval where as 

negative autocorrelation results in underestimating the same 

• are not identically distributed 

• are not normally distributed 

The above-mentioned facts make it difficult to apply classical 

statistical techniques to the analysis of simulation output [ 1 O]. There is a vast 

amount of research done in this field, which gives practical methods to perform 

statistical analysis of output from discrete-event computer simulation. 

2. It is generally not possible to choose the initial conditions for simulation to be 

representative of steady state. Most of the time, the system starts empty and idle. 

That is, the queues are empty and the servers are idle. These conditions do not 

necessarily represent steady state. Reconsider the output process Yi, Y~, ... , Y,,, . 
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Any estimate, µ., based on observations Yi, Y2 , ••• , Ym obtained from simulation 

output will be biased [24]. This problem is called the initialization bias problem 

or the start-up problem in the simulation literature. 

This thesis will concentrate on the initialization bias problem in steady state 

simulation. The following example illustrates the effect of initial transient on simulation 

output. 

1.3 Example Model 

In this example model, parts arrive according to an exponential distribution with a 

mean of 6 minutes. The arriving parts are divided into three types. 50% of the parts are 

type A, 30% are type B and remaining are type C. It is assumed that the initial condition 

of the system is empty and idle. The service times are exponentially distributed. There are 

5 cells (machines), which process the parts in a sequence as shown in Figure 1.1. The 

measure of performance for this example is the average number of parts produced 

(throughput) per hour. The model is run for 5000 hours. Let Y; (i = 1, 2, ... , m) represent 

the average number of parts produced per hour. Let m denote the run length in hours. The 

objective is to obtain an estimate of the steady state mean of the process Y;. Letµ denote 

the actual steady state mean of this process. It is observed that the estimate of the mean of 

the process Y; = Y 
111 * µ. 

This is due to the effect of biased initial values. The graph in Figure 1.2 shows a 

plot of the performance measure "average parts produced'' against "time". At the end of 

every hour, the value of average number of parts produced is recorded. It is observed that 

after an initial steepness the curve becomes steady and remains in that state until the end. 

The portion of the graph for which the curve appears to be approximately horizontal is 
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said to be in steady state. The negative initialization bias can be easily observed from the 

graph. 
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1.4 Overcoming the Initialization Bias Problem 

There are two methods for removing/reducing initialization bias: 

I. To run the simulation model with the initial conditions set to the steady state 

conditions. However, it is hard to predict the steady state conditions. Also, one 

needs to know the answer before running the simulation. 

2. To run the simulation model for a period L called as warm up length, reset all 

statistics after time Land start recording observations for a period of m-L. 

The mean of the process is calculated as: 

Y(m,L) = 
I m --LY; 

(m-L) i=L+i 

:=:;: µ. 

There are many methods and heuristic rules in literature for determining the value 

of L. Some statistical tests are used to determine whether or not initialization bias is 

present in the data. These tests are called as Initialization Bias Tests. 

It should be noted that the value of L should not be too high or too low. If L is too 

large, it will result in losing important data values and a high variance of mean. If L is too 

small, some bias will still remain and the estimate of mean will be erroneous. 

1.5 Outline of Thesis 

The goal of this thesis is to evaluate the performance of some of the methods and 

heuristic rules in literature, which are used to determine the warm-up length L. The tests 

for initialization bias will not be evaluated. However, the literature review will involve 

the study of various methods, heuristic rules and tests for initialization bias. 

This thesis will attempt to answer following questions: Which methods work 

under which conditions and which methods fail? If some methods work well for a 
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particular condition, which one of them is the most effective? Are there any 

modifications, which when applied to the methods will improve their performance? 

In order to evaluate their performance, the selected methods will be implemented 

on a simulation model for three different levels of utilization. The first level will have 

high traffic intensity, the second level will have moderate intensity and the third level 

will have low traffic intensity. Implementing a method on an experimental model for a 

given level of utilization will constitute one experiment. For each experiment the 

performance of the method will be evaluated based on some evaluation criterion. These 

criteria are discussed in Chapter 3. 

The rest of the thesis is organized in four chapters. Chapter 2 will cover literature 

review. The detailed methodology, evaluation criteria, and experimental details will be 

explained in Chapter 3. Results will be documented in Chapter 4. Conclusion and 

suggestions will be presented in Chapter 5. 
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2. LITERATURE REVIEW 

2.1 A Brief History of the Initialization Bias Problem 

The problem of initialization bias has been addressed in the literature since the 

early days of simulation. There has always been a debate on whether to delete data or 

adjust the starting conditions in order to account for the bias. Early researchers had a 

mixed feeling on which approach to use. To assess the quality of performance measures 

(point estimators) obtained from simulation output, two characteristics were used, 

namely, "bias" and "variance". Bias measures systematic deviation from the true mean, 

whereas variance measures variation around the bias plus the mean [ 12]. Some authors 

have stated that data deletion is inappropriate because it results in an inflated variance of 

the estimator. Fishman ( 1972) [ 12] stated that truncation resulted in an inflated variance 

and a loss in statistical reliability for a model that he studied. According to Fishman 

( 1972), bias and variance measure two separate characteristics of an estimator. So he 

suggested a single figure, the mean-square error (MSE) as the sum of variance and square 

of bias as a measure of point estimator quality. This is the most commonly used measure 

to judge the quality of point estimator. Snell and Schruben ( 1979) [36] and Kelton ( 1980) 

[20] showed that for a first order autoregressive process deletion increased or decreased 

the MSE depending on the simulation run length m and the warm-up length L. Blomqvist 

( 1970) [5] has shown for MIM/1 queue (and certain other queuing systems) with m 

sufficiently large, that zero is that value of L which minimizes the mean squared error. If 
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Yi, Y2 , ••• , Y,,, is an output process for M/M/1 queue with utilization p <1, the MSE of 

Y (m, L) is given by: 

MSE[ Y(m.L)] = E{ [f (m, L) - µ] 2
} = { Bias[ Y(m,L)]} 2 + Var[ Y(m,L)]. 

Law [24] considers the properties of a point estimator for some characteristic of the 

steady state random variable Y to evaluate the value of deletion. For example, while 

estimatingµ = E[Y] from Y.
1
, Y.,, ... ,Y , it is expected that 

- Ill 

I E[ ( Y ( m, L) - µ] I < I E[ Y ( m) - µ] I for L > 0 . 

Fishman ( 1972) showed that this is true for an autoregressive process of order one. It 

would also be true for the MIM/1 queuing process mentioned above. There are, however, 

situations where deletion could increase the bias. For an example, see the discussion of 

the simple inventory system and Figure 8.2 in Law and Kelton ( 1982) p.283 [26]. 

Deletion may also increase the variance of the point estimator. Fishman showed that for a 

first order autoregressive process, it does. However, if the observations at the beginning 

of a simulation run have particularly large variances, deletion could decrease the variance 

of the estimator [24]. 

Another approach to evaluate the effect of deletion is to assess the impact on the 

quality of confidence interval over the estimator. Deletion could result in degradation of 

the coverage of the confidence interval, if Lis large relative tom. However, deletion has 

very small impact on the coverage of a confidence interval for MIM/1 queue according to 

results from Law ( 1975) [22], Law ( 1977) [23], Law and Kelton ( 1979) [25] and Law 

[24]. 

Law [24] suggests that deletion is generally advisable for replication and may 

give some improvement in point and interval estimator quality for methods based on a 
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single long simulation run. The main problem here is how to estimate the value of L. 

Over the years, many authors have suggested various approaches to estimate L and to 

detect the initialization bias. Conway ( 1963) [9] suggested a heuristic rule to account for 

the bias by deleting a certain amount of data. Many heuristic rules were later developed 

which emphasized mainly on data deletion or re-starting the collection of statistics after a 

certain point in time. Each rule returned a value of time, say L, after which the 

expectation of the performance measures were very close to their limiting values. Such 

examples include the Conway Rule, Modified Conway Rule, Crossing-of-the-Mean Rule, 

Marginal Standard Error Rules (MSER) by White et al., [41], MSER-5 by Spratt [37] and 

others. Gafarian, Ancker and Morisaku ( 1978) [ 15] evaluated a number of heuristic 

approaches. They concluded that some of the rules over estimate L whereas some of them 

underestimated the same. Some of them worked well for a very busy system, while they 

did not work well for the same system with a low utilization. Another study by Wilson 

and Pritsker ( I 978) [42] analyzed the effects of various combinations of initial condition 

rules and truncation rules. They concluded that a judicious selection of an initial 

condition was more effective than applying the truncation rules. Welch (1983) [39] 

suggested a graphical method based on ensemble averages. This method is very popular 

and easy to apply. It is a graphical method and the user determines the warm-up length by 

viewing a plotted graph. Kelton and Law (1983) [21] came up with a statistical method 

based on GLS regression. This method emphasizes data deletion and the determination of 

the warm-up length. Schruben ( 1982) [34] proposed a test for detecting initialization bias 

in the output. Goldsman, Schruben and Swain [ 16] developed many other methods in the 

mid-nineties. In the I 990s, many methods like the Randomization Test (Yucesan [44]), 
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and new heuristics were proposed. Some of the methods included heuristic rule by White 

( 1997) [ 40] based on the Marginal Confidence Rule (MCR). White states that the 

objective of truncation method should be to remove observations that are rare and 

atypical of individual observation sequences of a given fixed length. A comparison of 

five heuristic rules was carried out by White, Cobb and Spratt [3 7] in 2000. They 

concluded that the MSER-5 method works best for mitigating the bias where as the batch 

means method by Goldsman, Schruben and Swain [ 16] was least effective. 

To date, research has not provided a single method which can accurately 

determine the warm-up period. This emphasizes the difficulty of the initialization bias 

problem. This difficulty arises because there is no definite way of defining steady state. 

Conway [9] states that equilibrium is a limiting condition that may be approached but 

actually never attained. For some systems, steady state may be approached at a geometric 

rate, where as for others, even after a generous run, the system may not be close to 

equilibrium. This makes the problem even more difficult to tackle. 

The methods used to determine warm-up length can be classified into the 

following three groups: 

1. Graphical 

2. Statistical 

3. Heuristic 

Tests for initialization bias are used to indicate whether or not bias is present in 

the data. These methods can be used to detect the warm-up length with the help of a 

deletion strategy. This thesis is restricted to the above three groups of methods. However, 

a detailed study of some of the initialization bias tests is carried out and algorithms for 
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implementing the tests are presented. These methods are presented m Table 2.2. 

Statistical methods can be subdivided into two sub-groups, namely, basic 

statistical and advanced statistical tests. The advanced statistical tests involve time series 

analysis. 

This research focuses on developing well-defined codes for six methods from the 

three groups and analyzing their performance. Advanced statistical tests will not be 

considered. The methods are listed in Table 2.1. A brief description of these methods is 

given in Section 2.2 
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Welch's Method [39] 

Graphical Statistical Process Control Method (SPC) [32] 

Modified Statistical Process Control Method [33] 

Banks Carson and Nelson method [2] 

Method of Cumulative Sums [29] 

Randomization Tests [ 44] 

Method based of Generalized Least Squares Regression [20] 
Statistical 

Sequential Method [31] 

Scale Invariant Truncation Point Method [ 19] 

Simulation Run Control Method [ 18] 

Conway Rule [9] 
Heuristic 

Crossing of the Mean Rules [ 13] 

Marginal Standard Error Rule (MSER) [40], [37] 

Table 2.1: List of Methods for Determining Warm-Up Period 

Initialization Bias Test by Schruben [34], [35] 

Initialization Goldsman, Schruben and Swain (GSS) family of Tests [16] 

Bias Test Other version of Schruben's Tests [29] 

Table 2.2: List of Initialization Bias Tests 
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2.2 Review of Methods for Detecting Warm Up Length 

The methods are classified into three types: 

I. Graphical 

a) Welch's Method 

b) SPC Method (Robinson) 

c) Modified SPC Method (Robinson) 

d) BCN (Banks, Carson and Nelson) Method 

e) Cumulative Sum Method (Schruben) 

2. Statistical 

a) Randomization Tests (Yucesan) 

b) Generalized Least Squares Regression Method (Kelton and Law) 

c) Sequential Method (Pawlikowski) 

d) Scale Invariant Truncation Point Method (Jackway and DeSilva) 

e) Simulation Run Control Method (Heidelberger and Welch) 

3. Heuristic 

a) Marginal Confidence Rule (White) 

b) Conway Rule (Conway) 

c) Crossing the Means Rule (Fishman) 

2.2.1 Graphical Methods 

These methods include Welch's Method, Statistical Process Control Method 

(SPC), Modified SPC Method, Banks, Carson and Nelson Method of Batch Means 

deletion and Schruben's Cumulative Sums Plot. These methods involve plotting a graph 

and deciding the warm up length. The point on the graph beyond which remaining data 
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points appear to be evenly distributed around an approximately horizontal line is noted. 

The warm up length is the simulation time corresponding to this point. 

2.2.1.1 Welch's Method 

This is the simplest and most general technique used for determining the warm-up 

length. It is a graphical technique that requires multiple replications. The Welch's method 

is explained in the following steps: 

I. Make n replications of the simulation each with run length m. Let Y;.j be the th 

observation from the / 11 replication. Thus i takes values from 1 to m and j from 1 

ton. 

2. Calculate the ensemble averages over the replications. These will be Y; 's where 

- II yij • 
Y; = L- for 1 = 1, 2, ... , m. 

j=t n 

3. Define a moving average f;w to smooth out the high frequency oscillations in 

Y,, ¥;, ... , Y,,, . w is the window and is a positive integer. w is less than or equal to 

m/4. Y;w is as follows: 

w 

Lf+.f 
Y - s=-w i ' J 2 

iw - 2w + l , or z = w + , w + , ... , m - w 

i-1 

Lf+s 
s=-(i-1) -'-" • 1 2 3 Y. = --- 1or l = ' ' ' ... , w. 

I\\' 2i -1 

4. Plot Y;w, for i = 1,2, ... , m - w and choose L to be that value of i beyond which Y;w 

appears to be converged. See Welch (1983) p. 292 [39] for an aid in determining 
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convergence. A FORTRAN code for this method is presented in Section 1 of 

Appendix A. Law and Kelton 2000 [27] suggest that n ~ 5 and w S m/4. 

2.2.1.2 The Statistical Process Control (SPC) Method [32] 

This approach uses the concepts from statistical process control to determine 

whether steady state has been reached or not and thus determine the warm-up length. In 

the case of SPC, the process is either "in-contror' or "out-of-control". Applying the same 

analogy to simulation, it can be said that the process is either in transient state or steady 

state. When the process is in transience, it can be considered "out-of-control". Robinson 

[32] presents the following stages that describe the SPC Method. 

Stage I: Pe,form Replications and Collect Output Data 

The method needs the simulation to be run for n replications. The observation 

interval can be one hour. The main assumption of SPC is that data are independent and 

normally distributed. Approximately normal and independent data are obtained by 

replicating the simulation run several times and taking means across the replications. The 

means across these replications, which are called as the ensemble averages are assumed 

to be normally distributed by the central limit theorem. Generally 5 - 10 replications are 

desirable for better results. The output is in the form: 

II 

"f. L..J I,) 

- j=I Y; = ..:...--- for i = 1, 2, ... , m 
1l 

where n is the number of replications performed. m is the total number of observations 

made in each replication. 
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Stage 2: Test that the output Data Meet the Assumptions of SPC 

As stated earlier, SPC is based on two assumptions. The data must be normally 

distributed and uncorrelated. The solution for this is to batch the ensemble averages Y; 

into b batches of size k. To determine the batch size k, start with k =l. The size is 

increased until the autocorrelation goes below 0.1. The data should also be tested for 

normality. The K-S test given in Charles Ebeling [7] can be used to test the data for 

normality. This method is given in Section 1 of Appendix B. The batches are formed as 

follows: 

k 2k bk 

Lr; LY; LY; 
y(k) = 1=!..- i=k+l i=(b-l)k+I 

k ' k 
' ... ' 

k 

The batch means are represented as: y (k) = (y (1), y (2), ... , y (b)) 

Stage 3: Construct a Control Chart for the Batch Means Data 

Robinson (2002) recommends that the run length be at least four times the 

estimated length of the initial transient so the mean and standard deviation are calculated 

on steady-state data. The population mean and standard deviation are to be estimated 

from the last half of the data. The standard deviation is estimated as follows: 

1 

(b) 
2 

b Ls,2 
/=h-[b/2]+1 

where s,2 is the standard deviation about the individual means in y(k) and is calculated 

from the individual observations obtained from each replication. 

There are two-control limits 

I) Warning limits: WL = /1 ± 1.96/tl ,J;;, 
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2) Action limits: AL= /1 ± 3.09 a 1,f;;, 

Stage 4: Identify the Initial Transient 

In this stage, the initial transient is determined. The initial transient occurs until 

the control chart is out-of-control. Bissell (1994) [4] identifies rules to determine whether 

or not the process is out of control. Following are the rules [32] 

• The time-series data violates an action limit 

• Two consecutive values violate either the upper or the lower warning limit. 

• Frequent values in relatively close succession that violate a warning limit. 

• Persistent trend in the time-series data. 

• A run of seven or more values on either side of the mean /1 . 

• Excessive zigzagging, with few points near to the mean and many near to the 

control limits. 

• The warm-up period for the model can be selected by identifying the point at 

which the time-series data is in-control and remains in-control. 

2.2.1.3 The Modified SPC Method (Robinson [33]) 

This is a new method by Robinson [33]. This is a slight modification of previous 

SPC method [32]. Like the previous method this method requires all four stages. 

However, the batch size is selected by carrying out a test for autocorrelation using the 

Von Neumann's test statistic and the test for normality is done using the Anderson­

Darling Test. The method for testing for insignificant autocorrelation is similar to the 

method stated in Fishman 1996 [14]. Refer to Section 2 of Appendix B for a complete 

description of the Anderson-Darling used for this test. The Von Neumann's test for 

autocorrelation is described in Section 3 of Appendix B. 
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Another change in this method is in the number of control limits. Three sets of control 

limits are calculated 

CL = µ ± z a 1,J";;, for z = 1, 2, 3 

Using these limits a control chart is constructed showing the mean and three sets 

of control limits. 

The following rules are used to identify the transient [33]: 

I. A point plots outside a 3-sigma control limit. 

2. Two out of three consecutive points plot outside a 2-sigma control limit 

3. Four out of five consecutive points plot outside a I-sigma control limit 

4. Eight consecutive points plot on one side of the mean 

5. Initial points all plot to one side of the mean 

The warm up length is that value of time at which the process is in control and 

remains in control. The process is considered in control when none of the conditions 

above exist. 

2.2.1.4 BCN (Banks, Carson and Nelson Method of Cumulative Mean Deletion) [2] 

This is a graphical method. It is based on plotting a graph of cumulative batch 

means and deleting batches till the process appears to be in steady state. 

The procedure is described below: 

1. Run the simulation for a length of m and make n replications. 

2. Batch the data for each replication into b batches per replication of length k. 

3. For each batch in a replication, calculate the batch mean 

Y. . for i = 1, 2, ... , b j= L 2, ... , 11 
I.) 
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11 

LYij 
Calculate the mean Y; = .E__ for each i = 1, ... , b. 

1l 

4. Calculate the cumulative means. Plot the cumulative mean data over time and 

observe the graph. 

5. If initialization bias is present, then delete the first batch mean and then go to step 

4. Otherwise there is no bias, go to step 6. 

6. The warm-up length is the number of batch means deleted times the batch size. 

2.2.1.5 Schruben's Cumulative Sum Plot 

The algorithm for this method is given in The Handbook of Industrial Engineers 

[29]. 

Schruben suggested a plot called cumsum plot. This plot is sensitive to bias in the output 

and needs the simulation run to be one long replication. 

Define So= 0 

j 

Si = L (Y -Y,) for j = 1, 2, ... , m. 
t=I 

For no initialization bias, E[Sj] = O. In this case, the plot will tend to cross zero at several 

time periods. But if initialization bias is present then the plot will be on one side of zero 

for a long time. Batching can be used to smooth the plot. 

The algorithm given below appeared in Nelson [29] 

I. Initialization: Length of simulation m; batch size k; number of batches b. a+-0; 

Array sLJ] +-0 for j +- 0, 1, ... , b. 

2. Data: y[t], the tth observation from a single replication. 

3. Batching: Divide the data into b batches of size k. 
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4. 

5. 

6. 

Compute overall averages: 

DO j~l to b; 

a~a+yU] 

End do 

a~a/b 

Generate cumsum plot 

DOj ~1 to b: 

sLJ] ~su-1 ]+a - yLJ] 

End do 

Output: Plot sLJ] versus j. 

If additional data is obtained new batch averages are calculated and following 

modifications are made 

sLJ] ~sU]+j*(y[b+ 1] -a)l(b+ 1) for j ~ 1, 2, ... , b 

s[b+l] ~o 

a~ (b*a + y [b+l])/ (b+l) 

2.2.2 Statistical Methods 

In statistical methods, the null hypothesis is that no initialization bias is present. A 

value of test statistic is calculated and compared to a critical value to decide whether or 

not to accept the null hypothesis. 

2.2.2.1 Randomization Test 

Yucesan (1993) [44] presented a method to detect the initialization bias. It is 

based on randomization tests. He formulated the problem of initialization bias m a 

hypothesis testing framework concerning the mean of the process. Randomization test is 
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applied to test the null hypothesis that mean of the process is unchanged throughout the 

run. However the article does not consider the higher order effects of initialization bias 

such as change in process variance. The advantage of using this method is that, no 

assumptions, like that of normality are required. The steps needed to perform this test are 

summarized below: 

I. Run the simulation for a length of time m hours. 

2. Obtain an output time seriesYi,Yi, ... , Y,,,. 

3. Batch the data into b batches of length k. 

4. Obtain b batch means fi,Yi ,¥;, ... ,~. 

5. Partition the batch means into two groups. For the first iteration the first group 

must include the first batch mean and the second group should contain remaining 

b-1 batch means. 

6. For each iteration, the grand means of the two groups are compared. If the 

difference between the two grand means is significantly* different from zero, the 

null hypothesis of no initialization bias is rejected. 

*To access the significance a distribution of difference is required. Since it is not 

known, randomization is used as explained in the next paragraph. 

7. By using randomization, an empirical distribution is obtained and the original 

observed difference is seen far in the tail. 

8. If the hypothesis is rejected, the groups are rearranged; second batch is added to 

the first group and the second group will contain (b-2) batch means and step 6 is 

repeated. 
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9. If hypothesis is accepted then the group 2 data is the steady state simulation 

output. 

Randomization Test 

Eric V Noreen [30] states that 

Randomization is used to test the generic null hypothesis that one 

variable (or a group of variables) is unrelated to another variable (or 

group of variables). Significance is assessed by shuffling one 

variable ( or a set) with respect to another variable ( or a set). If the 

variables are related, then the value of the test statistic for the 

original unshuffled data should be unusual relative to the values of 

the test statistic that are obtained after shuffling. 

Randomization can conveniently be used to test the null hypothesis that a given data 

has same distribution. The following steps are used: 

• Place the first data point in group 1 and the remaining n-1 in group 2. 

• Calculate the mean for group 1 and group 2 and find the absolute difference 

between the means d. d is the test statistic. 

• Shuffle the data. The number of permutations will be W= 11! /n1 ! * n2! , where n1 is 

the number of points in group 1 and n2 is the number of points in group 2. After 

each shuffle, calculate d. The number of times d is greater than or equal to the 

original values of d, is w. The probability value for a one-tailed test of the 

difference between the groups is given by p = w/W. If this value is ~ the 

predefined significance value then the null hypothesis is rejected. The number of 
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permutations for a test can be less that W. This is called approximate 

randomization tests. 

Randomization Test for Initialization Bias Detection 

The algorithm for this test is given on the next page. The objective is to detect any 

significant change in the mean of the process. 

The null hypothesis for this test is that there is no initialization bias in the output 

mean. Let the expected value of the process be E[Y;] = T/; = TJ{l - a;) for i = 1, 2, ... , m. 

Schruben et al., 1983 [35]. The function T/; is called the transient mean fanction. a;'s 

reflect the arbitrary behavior in the mean of simulated process. When the process is 

asymptotically stationary, then Iim;->aa; = 0 and a;'s represent the changes in output due 

to initialization effects. a; =0 if no initialization bias is present. The null hypothesis Ho is 

defined as: 

Ho: a; =0 for all i. 

Yucesan suggests batching the output data to reduce serial autocorrelation. Batching also 

smoothes high frequency fluctuations. It is difficult, however, to decide the size of the 

batch k. Law and Kelton [27] discuss difficulties in choosing k and b (Page 555). For this 

method, a batch size of k is used such that the autocorrelation among the batch means 

becomes< 0.5. Let the batch means be b,,,1, b,,,2, ... , bmb· The number of shuffles needs to 

be decided before beginning randomization procedure. Let the number of shuffles be 

denoted by W. If the amount of data is very large, value of W will be large. However the 

test can also be conducted by predefining NS = l 000 or any other value less that W. This 

is called approximate randomization tests. Before starting the randomization, NS has to 

be set to some value. After NS is set groups I and 2 are set as discussed above. The test 
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statistic d is calculated, which is absolute difference between means of group 1 and group 

2. Every time the data is shuffled, the absolute difference between the means is calculated 

and is called the pseudo statistic d .... Every time ds ~ d, a counter nge is incremented by 

one. Initially nge is set to 0. After each shuffle, the value of NS is incremented by 1. 

After NS reaches its predefined value, the ratio (nge+ 1) I (NS + 1) is calculated, 

which is the observed significance level (or the p value) of the test. The null hypothesis is 

rejected if p ~ specified rejection level for the test (p ... ). If Ho is rejected, the second batch 

mean is added to group I and new value of d is calculated. The procedure is repeated and 

p is calculated again. In this way the whole process is repeated until null hypothesis is not 

rejected. This is the truncation point. 

The algorithm is as given below: 

I. Batch the process into b batches of size k. 

2. Calculate the batch meansFiJ;,~, ... , Y,). 

3. Check for autocorrelation with batches. If autocorrelation is > 0.5 increase batch 

size and go to step 2. Otherwise go to step 4. 

4. Set the value of NS = Wand Ps to 0.05. Set i = 0. 

5. Let G1= { ¥;} and G2 = { Y2,~, ••• , ~ }. 

6. Set k= 1. If k >b go to step 16. 

7. Set the counter nge to 0, shuffle counter= 0. 

8. Increment shuffle counter by I. 

9. Compute the actual test statistic d= I mean (G1)- mean (G2) 1-

10. If shuffie counter > NS go to step 14. Otherwise go to step 11. 

11. Shuffle the data and calculate the pseudo statistic d .... 
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12. If d,.. ~ d then nge = nge+l. 

13. shuffle counter = shuffle counter+ 1. Go to step 10. 

14. Compute the significance level p= (nge+ I INS+ 1 ). 

15. k=k+l. 

If p ~ Ps reject the null hypothesis and G1: G1 u { ~ } G2 = G2 \ { Yk-I } go to 

step7. 

If p ~ Ps accept the null hypothesis, set i = 1 and go to step 16. 

16. If i = 0, then the bias is still present, increase the data size and restart the test. 

If i = 1, then the initialization bias is over and its length is k-1 batch means 

The code for this method is given in Section 2 of Appendix A. 

2.2.2.2 Kelton and Law GLS Method 

Kelton, ( 1980) [20] proposed a regression based procedure to reduce or remove 

bias owing to artificial starting conditions. This method is also explained in Kelton and 

Law ( I 983) [2 I]. Method of deletion can be used to remove the initialization bias [20]. It 

can markedly improve statistical validity with only minor loss in efficiency if any criteria 

(in particular the confidence interval coverage probability) other than mean square error 

are considered. Kelton ( 1980) [20], gave a detailed examination of the effect of several 

tactical alternatives (including deletion) on several statistical performance criteria, when 

a process is generated by a non-stationary first order autoregressive model. The results 

convey that the technique of deletion can be an effective and efficient way of dealing 

with the initialization bias problem. As per Kelton (1980) [20], the true coverage 

probabilities of nominal 90% confidence intervals can often be brought close to the 

desired level by initial deletion without unduly widening them. Moreover, the quality of 
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point estimator is only slightly impaired and in some cases it is enhanced. Despite the fact 

that Kelton showed these results for AR(l) only, he found those results encouraging 

enough to use deletion. 

Consider M/M/1 queuing process. Let Y;, i = 1, 2, ... , m be the j1h delay in queue. 

Let µ be the steady state mean of this process. If E[Y;] is plotted against i then this 

function will approach µ as i is increased. The function E[Y;] against i, is called as 

transient expectation function (TEF) of process Y;. The goal, as stated by Law and 

Kelton, for removing the bias is to obtain averages of points which have expectations 

nearµ . If n replications of the process Y; are made and averages across replications 

(ensemble averages) are computed, then Y; are defined as: 

Y; 'scan be used as a proxy TEF. If E (Y;) =µfor id? L then in econometric parlance [21] 

Y;=µ+l]; 

where 17; 's are random variables with E[ 17;] =0. 

If a line is fitted through¥,: 's then such a line should be flat for i > L. Thus if a 

line is fitted, depending on the flatness it can be said whether Y; is close toµ or not. It is 

thus a test for the flatness of TEF. A difficulty with this idea of fitting a line is that Y; 's 

correlated which is contrary to the assumption of classical regression. Thus ordinary least 

squares regression cannot be used to test the data for zero slope. Instead, Kelton suggests 

using the generalized least squares (GLS) regression. Kelton and Law use the method by 

Amemiya [ 1 ]. 
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It has been shown by Kelton and Law using a model and an experiment that GLS 

is definitely better and more essential than OLS. The idea is to start at the end of Y; series 

for the initial fit, and then move the segment backwards towards the beginning of the data 

until it appears that the TEF is no longer flat, as evidenced by the rejection of the null 

hypothesis of zero slope (21 ]. If the line fitted initially to the end segment of the data has 

a slope significantly different than zero then the length m of the simulation run has to be 

increased. Kelton and Law also suggest batching of data into b batches of length k and 

calculating b batch means. These batch means then form the points on which regression 

is performed. 

The following notations are used for describing the procedure as given in Kelton and 

Law [21 ]: 

n= the number of replications. 

mo= the initial length of each of then replication. 

L1m= the number of points added to each of the n replications, if necessary. 

m * = the maximum replication length. 

b= the number of batches. 

p *= the maximum initial deletion proportion. 

/Jo= the minimum initial deletion proportion. 

/3= the size of the test for zero slope. 

f = the maximum number of segments over which a fit is made, including the initial 

fit. 

The procedure is as follows [20]: 

30 



The initial line is fitted to the last I 00*( 1-p*) % of the batch means data. If the 

initial zero slope test does not result in rejection, the interval is moved 

backwards towards the beginning of the time series. This is done by reducing 

the deleted proportion by an amount LJp = (p *-po) I (J-1 ). So, the next line is 

fitted through (p*-LJp )b to (l-L1p )b batch means. In other words the right end 

point is not kept fixed, rather it is moving along with the left end point. If the 

zero slope test for this segment fails then the next line is fitted through points 

(p*-2L1p)b to (l-2L1p)b. As long as the zero slope test fails, the deletion 

proportion is diminished by L1p until rejection occurs or the deletion proportion 

reaches /Jo. At most/fits will be done and the interval moves back by constant 

amount (LJp)b. It is important that m be exactly divisible by b. 

The following steps are given in Kelton and Law [21] 

Step I: Make n independent replications, each of length mo points. 

Step 2: Average over the replication to obtain a time series Yi, Y2 , ••• , Y 111o • Let m=mo 

Step 3: Group them points into b batches of length k each. Compute b batch means. 

Step 4: Fit a straight line through batch means p*b + 1, ... , b (by Amemiya's GLS 

procedure), and perform a test for zero slope at level /3 . 

a) If the test fails to reject the null hypothesis of zero slope, go to step 5. 

b) If the step indicates rejection, then: 

i. If m+8m Sm*, then m+- m+8m, and go to step 3. In this case, 

each of the n replications must be continued for an additional 8m 

points. 
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ii. If m.+Lim > m *, display a message that m * is too small, set p=p *, 

and go to step 7. 

Step 5: Let Lip = (p*-po)I (f-1 ), and let p= p*-Lip. 

Step 6: Fit a straight line through batch means pb+ 1, ... , (p+ 1-p*)b, and perform a 

test for zero slope at level p. 

a) If the test fails to reject: 

I. If p-Lip ~ po, then p~ p-Lip, and go to step 6. 

2. If p-Lip < p0, then go to step 7. 

b) If the test indicates rejection, then p~ p+Lip, and go to step 7. 

Step 7: Let L = pm (to the nearest integer), and return with Land m. 

Note: The manner in which the replication length is extended is by arithmetic rather 

than geometric. Step 6 indicates that the initial as well as the final points are moved 

back. This makes the length of the segment constant. 

2.2.2.3 Sequential Procedure for Steady State Simulation 

Pawlikowski ( 1990) [31] presented sequential tests based on method of spectral 

analysis and non-overlapping batch means to stop the simulation experiment when the 

required relative precision of confidence intervals is achieved. The procedure is preceded 

by testing for initialization bias. Thus, the experiment consists of two stages: 

Stage I: Detect length of initial transient period. 

Stage 2: Steady state behavior is simulated and analyzed. 

Pawlikowski [31] presents a sequential procedure based on a stationarity test 

proposed by Schruben, et al., ( 1983) [35]. It is used to test the hypothesis that a sufficient 

number of initial transient data has been (or has not been) discarded. This test is carried 
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out in a fashion similar to any classical statistical test. The value of a chosen test statistic 

is calculated and compared to a standard statistic. The hypothesis that a sufficient data 

has been discarded is rejected or accepted at an assumed significance level a.. The 

procedure is as follows: 

1. Apply any one of the heuristic rules as described in Pawlikowski [31] to get an 

initial approximation for the truncation point n~. 

2. The steady state estimator for variance cr2 [Y (n)] and the number of degrees of 

freedom for its chi-square distribution K is obtained using the last nv observations 

from the remaining n, values. Nv is usually ;?! 200. Obtain: 6"2 [Y (n)] and K. This 

can be obtained using various methods presented in Fishman ( 1973 p.289) [ 13], 

Fishman (1971) [11], Heidelberger and Welch [17] and Schruben (1982) [34]. 

3. Test the first n, observations for stationarity. The procedure is given m 

Pawlikowski [3 I]. 

4. If the test accepts the hypothesis of no initialization bias then the procedure is 

stopped. 

5. If the test rejects the hypothesis more observations are discarded from the 

beginning and the same amount of observations are added at the end. 

Steps 2-5 are repeated iteratively. 

2.2.2.4 Time Scale Invariance Method 

Paul Jackway and Basil DeSilva [19] present a methodology for detecting the 

steady state of a discrete-time stochastic process. This method is optimized for an 

exponential transient. According to the authors, 
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For many queuing systems, the rate at which a queue converges to its steady 

state characteristics, independently of the system's initial state, eventually 

becomes (for large values of time t) dominated by an exponential term of the 

form exp(-t/ rr) where rr is a characteristic of the queuing system. 

rr is called as the relaxation time. It is a characteristic time constant in the 

equation x = µ - (µ - x0 ) exp(-! I TY). This equation is a convergence form of a first order 

differential equation, which describes a system approaching a steady stateµ with a rate 

proportional to its present distance from that steady state. According to the authors the 

value 4r is the time at which the system is close (within 2%) to its steady state value. 

A bias function is obtained as shown below. By scaling in time by r_,. and 

considering the simulation output as a realization of a process with a standardized 

exponentially decaying bias function 

E[X;] = µ- B(ilry) = µ-B(t;) 

f; =i I Ty. 

The bias function is given by 

B (t) =µexp (-t). 

The quantity r_,. is seen as time scale parameter, which relates sampling rate to the 

relaxation rate [ 19]. 

The data is partitioned into batches of length b * = 4 T_,.. This way the initial 

transient is fit inside the batch (Yi: i=O, 1, 2, ... , b *-1 ). 

The bias in batch} is given by 

B/t;) = e-
41 

µexp(-t;)for i = 0, 1, 2, ... ,b* -1 and j = 0, 1, 2, ... 
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The batch size is increased from a very low value to the point where the above­

mentioned conditions are satisfied. This is the truncation point. 

Making modifications to Schruben' s test, 1983 Schruben et al., [35], the authors 

derive a test statistic and its variance estimate. 

Sk is the cumulative sum process. 

Var (7) :::: b3a2! 247. 

Under the null hypothesis r· =15.7T (b3 cr2) 112 has a standard normal distribution. 

Another test statistic can be formed if estimate of a2 with associated degrees of freedom v 

are known. This statistic is: 

It has a student's t distribution with v degrees of freedom. The value of v and the 

estimate 6'2 can be found out using Fishman 1973 page 289 [ 13]. The hypothesis of no 

initialization bias is rejected if f' > t(v,a). 

2.2.2.5 Simulation Run Control Method 

Heidelberger and Welch [18] develop a method of run length control based on the 

sequential comparison of the relative half-width of a confidence interval at a pre-defined 

accuracy. 

They present following parameters for the method: 

I. ]max - maximum run length. 

2. j 1 - an initial checkpoint. 
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3. I - Multiplicative checkpoint increment parameter. 

4. Relative half width requirement e. 

A stationary portion testing procedure is applied to { Yen>, (n = I, 2, ... , ji)}. This 

is described in detail in Heidelberger and Welch [18]. It is used to find no (if any) such 

that the sequence { Y <n>, (n = no+ 1, ... , j 1)} is from a covariance stationary process. 

If the sequence fails this testing procedure then the next checkpoint is considered and the 

test for stationary portion detection is carried out again. The next checkpoint is h = 

minimum {/*j,, i11uu}. If the sequence passes the test, a confidence interval is generated. 

This method is also described in detail in Heidelberger and Welch [18]. If the test passes 

and confidence interval is generated then the estimated half width of the confidence 

interval ERWH = confidence interval width / 2 f where 

ERWH is then compared withe. If ERWH :5 e, the test is over and the simulation 

will stop; otherwise the simulation will proceed to next checkpoint and the procedure will 

be repeated again. For details on this test, refer to Heidelberger and Welch [ 18]. 

2.2.3 Heuristic Methods to Detect Initialization Bias 

Many authors have developed rules of thumb to detect initialization bias (See 

Gafarian, et al., [ 15], K. Preston White [ 40], Conway [9] and Pawlikowski [31 ]). Some 

rules like Conway and modified Conway are very conservative [ 15]. Gafarian, et al., [ 15] 

studied five rules with respect to mean values on MIM/1 queuing system and found that 

none of them worked satisfactorily and should not be recommended for practitioners. 

Wilson and Pritsker have carried out a similar study. Few rules are explained here, some 

of which will be tested. 
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2.2.3.1 Marginal Standard Error Rules (MSER and MSER-5) 

The MSER by White (1997) [40] and MSER-5 by Spratt 1998 [37] determine the 

warm-up length that optimally balances the tradeoff between loss of precision due to 

reduction in sample size and gain in accuracy due to elimination of bias. These rules 

select the value of d that minimizes the marginal confidence interval. White [ 40] presents 

this marginal confidence rule (MCR) for resolving the initialization bias problem. In his 

paper, White compares four different rules by applying them to output sequences 

generated by ten runs each of four representative queuing simulations. Results show that 

simple heuristics can reduce initialization bias. Many previous rules were based on mean 

square error to select a truncation point. White proposes to select a truncation point based 

on minimum width of the confidence interval about the truncated sample mean. He gives 

the following rationale: 

If the observations later in the output sequence as a whole provide a good 

estimate of the central tendency of the output at steady state, then initial 

observations should be truncated to the extent that these diminish our 

confidence in that estimate. Thus we will seek to mitigate bias by 

removing initial observations that are far from the sample mean, but only 

to the extent this distance is sufficient to compensate for the resulting 

reduction in the calculation of the confidence interval half width. 

For a finite stochastic process { Y;(j): i= 1, 2, ... , n} the optimal truncation point is 

given by 

d(j) * . [ ZaP s(d(j)) ] = argmm ---;::::=-=== 
n>d(j)'2:0 .Jn(j) -d(j) 
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where za, 2 is the value of the unit normal distribution associated with a I 00( I - a) 

percent confidence. 

For a fixed confidence level, za, 2 is a constant. The expression then, can be 

written as 

* [ I 
11 

_ 2] dj = argmin . . 2 L(Y;u>-Y(n,d)rn) · 
11>d/~O (n(j)-d(j)) i=d+I 

For a given output sequence d(j) * is determined by solving the unconstrained 

minimization problem defined by the above equation. The MSER heuristic is applied to 

the raw data where as the MSER-m rule is applied to b batch means where b = run 

length/batch size (m ). 

2.2.3.2 Conway Rule [9] 

Conway 1963 suggests the following rule to truncate the initial data in order to 

reduce bias. "Truncate a series of measurements until the first of the series is neither the 

maximum nor the minimum of the remaining set." 

This is done for a few pilot runs to decide upon a stabilization period. After this 

is done, the period is deleted from the result of each run. 

Following algorithm is constructed using the steps given in Gafarian et al., [ 15]. 

l. Decide n and m the number of exploratory replications and the length of the 

exploratory replications. 

2. Compute y; = max(y;k'Yi.k+I' ···,Y;,,,) and y; = min(y;k,Yi.k+I' ... , Y;,,,) 

3. Fork= I, 2, ... , m determine t; such that Y~. < Y;,, < .<, occurs for the first time. 

4. Estimate of the truncation point 1* is given by max { t1, t2, h, ... , t,,} 

The code for this method is given in Section 3 of Appendix A. 
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2.2.3.3 Crossing the Means Rule 

This rule is stated in Fishman ( 1973) p. 285 [ 13]. This rules states that 

Compute the running cumulative mean as data are generated. 

Count the number of crossings of the mean, looking backwards 

to the beginning. If the number of crossings reaches a pre­

specified value, which means you have reached the truncation 

point. 

Following algorithm is based on steps given in [ 15]: 

l. Generate the simulation output { Yi, Yi, ... , Y,,,} 

D f. {I, if yj > Y,,,, Yj+l < Y,,, or yj < Y,,,, yj+I > ym 
2. e me Wj = 

0, otherwise 

j = I, 2, ... , m- I 

m-1 

3. The number of times the series crosses the mean is given by 0
111 

= L wi . 
j=I 

4. Calculate n,, Q 2 , ... , Qd such that at d the number of crossings is equal to the 

pre-specified number. 

The code for this method is given in Section 4 of Appendix A. 

Other Rules 

Many other rules are given in Wilson and Pritsker [43], Gafarian, et al., [ 15] and 

Pawlikowski [31 ]. 
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2.3 Review of Initialization Bias Tests 

Initialization bias tests are statistical tests used to determine whether the data 

contains bias or not. The null hypothesis is that there is no initialization bias. The test is 

performed and a test statistic is calculated. This test statistic is compared to the critical 

value and the null hypotheses is either accepted or rejected. In this thesis the following 

tests for initialization bias are reviewed: 

a) Initialization bias test by Schruben as it appears in The Handbook of Industrial 

Engineers [29] 

b) Goldsman, Schruben and Swain (GSS) family of tests 

c) Other version of Schruben's tests 

These methods are used to detect the presence of initialization bias. They do not tell how 

much data to delete. A deletion strategy that specifies the amount of data to delete is 

required in order to use these tests for determining the warm-up length. 

2.3.1 Initialization Bias Tests by Schruben 

Schruben (1982) [34] developed a test based on the concept of standardizing the 

stochastic simulation output process to represent "noise" in which "a signal" due to 

initialization bias may be detected. According to Schruben the simulation output may be 

conceptualized as a continuous time stochastic process, { Zr; 0 < t < 00 } • Zr represents the 

"state" of the simulation at time t. 

The stochastic simulation output can be considered in the form 

Y; = µ; + X;; for i = 1, 2, ... , n 

where t; is the time at which Y; is observed. The run is started at to. 
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As mentioned in Schruben (1982) [34], the stochastic process X; is a real valued function 

of the process 

! tjz_,d.,;i = I, 2, ···) 
t,-1 

whereµ; is the unknown deterministic function. It represents a potential shift in the mean 

of the output process. E[X;] = 0 and thus µ; = E[Y;]. 

Schruben assumes that {X;} is stationary and </J- mixing with finite variance. The 

property of </J- mixing is defined as follows in Schruben 1982 [34]: 

Let E be an event (with a positive probability of occurring) that depends 

only on the behavior of the process up to time tk. Let F be an event that 

depends only on the behavior of the process after time fk+n. That is, n time 

units pass between possible occurrences of event E and event F. The 

process is </J- mixing if the supremum ( over k, E and F) of IProb(FIE) -

Prob(F)I is bounded by a real valued function of n, </Jn. with limn~oo <Pn =0. 

Intuitively, the distant future behavior of the process (event F) is almost 

independent of the present or past behavior of the process (i.e. event E). 

Refer to Chapters 20 and 21 of Billingsley 1968 [3] for an explanation on the 

theory for dependent stochastic processes. No assumptions about the function µ; are 

made. The procedure involves standardizing the output series and analyzing it as a 

"signal" due to a changing mean function µ; in the presence of "noise" due to X;. A 

limiting stochastic process called as a standard Brownian bridge process is used for 
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standardization. tlJ, is a process similar to the standard normal random variable. Brownian 

bridge process has continuous sample paths. It has the following four properties: 

2. E[ t11, ] = 0, 0 S t S 1, 

3. Cov(t11,, tlJ,2) = min(t1,ti) (l-max(t1, t2)), and, 

4. Sets of ul, have a jointly normal distribution. 

Schruben presents a sequence of partial sums on which the tests can be based. The 

sequence is given by 

S,
1
(k) = Y,1 -~ k = 1, 2, ... , n 

S,1 (0) = 0. 

The sequence S,, (k) contains the differences between the average of the entire output 

series ¥,; , and the average of the first k observations Yk . 

Substituting the equation "f; = µ; + X;'' in the equation "S,, (k) = Y,, -Yk ", 

S,, (k) can be expressed as a combination of two components. The first is a deterministic 

unknown signal and the other is a stochastic "noise" component. 

Consider the equation 

S,
1 
(k) = M,

1 
(k) + X,

1 
(k). 

The signal component is M 
11 
(k) = µ

11 
- µk and the noise component is 

X (k)=n-•~11 X.-k-i~k X .. 
II L...J;:J I L.J;:J I 

The noise process is scaled and its convergence to tlJ, is shown. 

B, is defined such that: 

B, = tnX,, (tn)I (/;a); t= 1/n, 2/n, ... , I. 
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It can be argued that lim B, = flJ,. 
n~oo 

B, has the same properties as £iJ,. The presence of signal M,, (k) = µ,, - µk must be 

detected. As per Schruben ( 1982) [34] 

Scaling the magnitude of M,lk) and the run duration to the unit interval in 

the same manner as done to standardize the noise process results is a 

standard deterministic signal D, given by 

D 1 = tnM 11 (tn) I ..r,;;;.; for t = 1 I n, 2 / n, ... , 1 . 

If A is constant for the whole run, D, becomes zero for all values oft. 

Initialization bias tests can be based on the peak and location of signals. The signals are 

not zero. The peaks are usually at the beginning of the run. 

As quoted in Schruben ( 1982): "the initialization bias test involves the analysis of 

the standardized test sequence T,
1 
(t) = [tn]S

11 
([tn]) I .J;'a; t e (0,1) with Tn(O)=ff' 

Let t denote the observed location of the (first) maximum in { Tn(t) }and 

s =aT,1 (t). The observed value of i = s2 
/ a 2 (t(l - i)) is analyzed. If this value is unusual 

then the output series contained no initialization bias. Large values of i are regarded as 

unusual. 

Test Procedure 

As stated above, if no negative initialization bias is present, the large, positive 

maximum value of the scaled test sequence T,,(n) is unusual. The probability is denoted 

by a . A large value of a indicates no significant negative initialization bias. a is the 

observed level of significance for this test. The null hypothesis is given by: 

Ho= the output process has a constant mean. 
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The hypothesis is rejected if a is less than the specified probability, a, of 

rejecting a true hypothesis ( a is the type I error level) 

" Define h such that 

,; =s2 t(3ar(l-i')) 

where ii will approximately have an F distribution with 3 and v degrees of freedom. The 

following steps are found in Schruben (1982) [34]: 

I. Finds, the global maximum of { kS,1 (k) I ,J;;, for k = I, 2, ... , n} and its 

location k. In case of ties use the first value. 

2. Estimate 0"2 and v using the following equations 

,, 
V=(na£) I (2a(p- L<p-2i) ¢;). 

i=I 

The latter portion of the simulation output is fit to a p-order autoregressive model 

and the above constants and error terms are estimated. (Refer to program in 

Appendix B of Fishman [ 13]). 

3. Set t =k In and compute h using the above equation. 

4. Compute ii= F3.v (/~) where F3.v (.) is the upper tail of the distribution function for 

an F variate with 3 and v degrees of freedom. 

5. Reject the hypothesis of no negative bias if a< a. 
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2.3.2 Goldsman, Schruben and Swain (GSS) Initialization Bias Tests 

Goldsman, Schruben and Swain [ 16] propose a family of tests to detect the 

initialization bias. These tests are a generalization and extension of earlier tests proposed 

by Schruben (1982) [34] and Schruben, Singh and Tierney (1983) [35]. 

Let Y., Y2, Y3 , ••• , Y,,, be the output of the simulation. It is assumed that this process 

has a transient mean function µ; = E[Y;] = µ(I - a;) for i = 1, 2, ... , n where a;'s are 

constants. If bias is not present, then µ; = µ. For the tests described here, divide the 

above process into two contiguous, non-overlapping portions. For each half, calculate the 

estimate of variance of sample mean. A large difference between these two estimates is 

unlikely if Y; ,s are stationary. The null hypothesis is rejected if the difference in the 

estimates is significant. [ 16]. 

Cash, et al., [6], explain the family of tests suggested by Goldsman, Schruben and 

Swain. The test statistic is a F statistic that compares the variability in the first portion of 

the output process to that in the other portion. The null hypothesis is rejected if F > F 1_a. c. 

c1 the ( 1- a) quantile of the F distribution with c and d degrees of freedom. 

Batch Means Test [6] 

The algorithm for this test is as given below: 

• Divide the process into b non-overlapping batches of length k each. 

• Define 

0 

0 

- 1 k 

Y; = -k I Y(i-l)k+ j. 
j=I 
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0 
QBM 

V BM= b-1 · 

• Divide the total number of batches into two groups. Let VBMJ be the variance 

estimator of the first group and V8M2 be the variance estimator of the second 

group. 

• Compute the ratio F BM= Vm.11/ VBM2· 

• Fcrirical for this test is F1-a..b'-J.b-b'-J. 

Area Test [6] 

The algorithm for the test is in Cash, et al., [6]: 

• Transform the data into b standardized time series and compute a variance 

estimator based on the area under the standardized time series as given below. 

• 

• 

• 

• 

• 

• 

- 1 j 

Y;. 1 =-: L~H>k+, for i = I, 2, ... ,b; j = 1, 2, ... , k . 
} t=I 

T . . (t) = [kt](Yi.k - Fi,[ktJ) I 2 b 
,.k a..J'k for i = , , ... , . 

(j' k 

i\.; = k ~ .Ju T;.t(j I k) for i = I, 2, ... ,b . 

b 

QAREA= LA;2 . 
i=I 

V QAREA 
AREA=--. 

b 

Fcrirical for this test is F1-a..b',b-b'· 

The test statistic is given by: 
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Maximum Test [6] 

•P 

This test is based on the basis of location and magnitude of the maximum 

deviation. The test is presented for the presence of negative bias. 

" " • S.= , K;S.K . 
I, ; 

b ks~ 
• Q,,UL'I: = L " , " 

i=I K;(k -K;) 

• ½HAX =QMAX/ 3b 

• Fc:riric:al for this test is F1-a.3b'.3b-3b' 

FMAX = V MAXI IVMAX2 

Combined Tests [ 6] 

Two more F-tests can be created by combining the statistics of the batch means, 

area and maximum tests. 

Area+ Batch Means Test 

VnM+AREA = (VnM + VAREA) I 2b-1. 

The test statistic for this test is 

FnM+AREA = V <BM+AREA>t IV (BM+AREA)2· 

The critical test statistic is 

F2b· -t.2b-2b· -t • 

Max + Batch means Test 

QBl~1+MAX = QBM + QMAX 
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VBM+Mr1X'= (VBM + V,ttAX) / {4b-}). 

The test statistic for this is 

F BM+MAX = V (BM+MAX)l IV (BM+MAX)2• 

The critical test statistic is F4b'-t.4b-4b'-1 • 

2.3.3 Initialization Bias Test by Schruben 

Nelson [29] explains another version of initialization bias test by Schruben. This 

test is to be applied after some amount of data has been deleted initially by applying any 

of the heuristic rules mentioned in the next section. In this test the simulation is run for a 

long time. The output obtained is split into two halves. The cumulative sum values from 

each half are compared in terms of the location and magnitude of their maximum 

deviation from zero. The null hypothesis is rejected if the behavior of the data in the first 

half is significantly different from the second half. The algorithm as given in Nelson [29] 

is: 

I. Initialization: length of he replication m; batch size b; number of batches 

k~[m/b]; arrays aLJ] ~O,s U] ~O, smax[Jl ~o and lU] ~ 0 for j= 1, 2, ... 

2. Data: y[t], the t'" observation from a single replication. 

3. Batching: Divide the data into b batches of size k. y[ 1 ], y[2], ... , y[b] will contain 

the batch means. 

4. n~b/2 The last batch is ignored if b is odd. 

5. Calculate sample mean of each half 

a,=O, a2=0 

DO i=l,n: 

a,= a,+ y(i) 
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end do 

a1=a1/n 

DO j=n+1,2n: 

a2= a2+ y(j) 

end do 

6. Locate the maximum for each half. 

If positive bias is suspected then replace all >'s by <'sin this step. 

DO i=l,n-1 

s[ I] f-s[ I ]+a[ 1 ]-y[i] 

If (s[ 1 ]>smax[ 1]) then 

End do 

/[1] f- i and smax[I] f-s[ 1] 

End if 

7. Calculate the test statistic: 

(if l[ 1] = 0 test the bias for opposite sign. If smax[2] is zero the m is too small.) 

jf-l[2]*(n-l[2])*smax[ 1 ]/(l[ 1 ]*(n-l[l])*smax[2]* smax[2]) 

8. If f> Fa.3,3 then reject the hypothesis of no initial condition bias. ( a is the 

significance level). 
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3. RESEARCH STATEMENT AND METHODOLOGY 

As explained in the first chapter, the need for removing initialization bias is very 

important for obtaining true estimates of performance measures within the specified 

confidence interval. After a thorough review of literature, it can be said that data deletion 

is the fastest and the best method to remove initialization bias from the output as long as 

variance inflation is controlled and excess data is not deleted. Chapter 2 explains in detail 

a few of the many methods and heuristic rules suggested by various authors to detect bias 

or predict the warm-up length (truncation point). It has been observed that methods 

behave differently for different models. One method may work well for some models 

while it may not work so well for others. Also, it is seen that the same method gives 

different results for different performance measures. All of these issues contribute to the 

complexity of the initialization bias problem. There is a need to study the performance of 

these methods by varying the following: 

I. System performance measures to be estimated. 

2. Traffic intensity of the model. 

3. Complexity of the model. 

Such a study will form a guide for academicians as well as practitioners to 

conduct simulation runs using the method that best fits the model they will use. In the 

past, some authors have tried to design methods that decide not only the warm-up length 

but also the stopping point in a simulation run based on the quality of the point estimators 
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(Heidelberger and Welch [18]). Such an approach will be helpful only if the method used 

is the best one for the model as far as the complexity and the traffic intensity is 

concerned. 

3.1 Research Objectives 

The purpose of this thesis is to analyze the performance of six methods at varying 

levels of utilization. For this thesis the complexity of the model and the system 

performance measure to be estimated are held constant. The levels of utilizations are 

varied. The objectives of this thesis are: 

1. To study and understand the working of different methods for determining the 

warm-up length in discrete event steady state simulation. 

2. To prepare algorithms and/or codes for six methods so that they can be 

implemented. 

3. To use these methods in determining the warm-up length for a simulation model. 

4. Compare the performance of these methods based on following goodness criterion 

i. Mean square error (MSE) 

MSE = (0- 0) 2 + variance ( 0) 

where f) = Actual mean or the theoretical mean of simulation output data. 

Section 3.3.2 shows the procedure used to estimate the value of 0. 0 1s 

the mean of the data left after deletion. If L is the warm up length and m is 

the run length, then 

m 

~Y; 
0= i=L+I 

m-L 
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" 1 111 2 variance ( 0) = ---., L (Yj - 0) . 
(m- L)- i=L+I 

m is the run length, L is the warm up length and Y;, for i = 1 to m is the 

value of the performance measure at i time units. 

A good method will yield a low value of MSE. 

11. Variance 

By deleting data, the variance of the point estimator is might increase. 

Thus it is necessary to assess the quality of deleted data based on the 

variance of fJ. This is calculated as 

" 1 ,,, 
variance ( 0) = 2 L (Y; -0)2 . 

(m - L) i==L+1 

iii. Percentage change in mean square error 

This calculates the percentage change in the initial mean square error 

(with no data deleted) after data deletion has been applied. The simulation 

output will have a MSE before data deletion has been applied. Let this be 

denoted by MSE;11;. After applying the warm up length and deleting L data 

points, MSE is calculated again. Let this be denoted by MSEfin· 

Percentage change in MSE is given by 

% change in MSE = I 00 * (MSEfin - MSE;11;) I (MSE;n;). 

A good method will always give a negative value of percentage change in 

MSE. 

iv. Percentage change in variance 

It is the percentage change in the initial variance after data deletion has 

been applied. Initial variance is the variance of the simulation output data 
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with no warm-up. Let this be denoted by Vini· Final variance 1s the 

variance of the data left after applying the warm-up length. This is 

calculated as given below 

Vfi,, = 
1 

2 f CY; -0)2 

(m - L) i==L+J 

Percentage change in variance = I 00* (Vfin - Vin;)/ Vini· 

v. Cost 

Cost is calculated in terms of average computer time. This is the sum of 

computer time required to collect data and computer time required to 

pe1f orm the method. This is measured in seconds. 

5. Draw conclusions based on observations of experimental results, revealing which 

method works well under the given traffic intensity and which does not. 

6. Identify potential extensions to this thesis that will benefit simulation practitioners 

and academicians. 

3.2 Scope of the Research 

Most of the methods available in literature have been studied and understood. 

However this thesis will focus on the following six methods 

I. Welch's Method 

2. Modified SPC Method 

3. Randomization Test 

4. Conway Rule 

5. Crossing the Means Rule 
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6. MSER-5 Rule. 

Gafarian, et al., ( 1978) [ 15] proposed the following measures of goodness to access the 

performance of a method for determining the warm-up length. 

I. Accuracy: It is the ratio of value of warm-up length estimated by using a method 

( E[L]) to the theoretical value L,, the point at which the system reaches steady 

state. 

2. Precision: It is a measure of variation. It is given by the ratio 

~Var(i) 

E[L] 

3. Cost: Measured in terms of computer time required for using a particular 

method/rule. This consists of following: 

1. Computer time for the executing the code. 

2. Computer time for collecting output data only for a preliminary estimate 

of L, and subsequently discarding this data. [ 15] 

4. Simplicity: It is the measure of easiness with which an average practitioner will 

be able to apply to a system simulation. 

The measures I, 2 and 4 above will not be used in this thesis because it is impossible to 

calculate E[L] and L,. Also, since the measure of goodness "simplicityn is very 

subjective, it is not used. The four measures of goodness discussed in Section 3. I will be 

used. 

3.3 Experimental Setup 

3.3.1 Experimental Models 
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The methods are tested on a simple job shop models. The basic model used in this 

thesis is shown in Figure 3.1. There are five cells, C 1, C2, C3, C4 and Cs. Each cell has 

different number of machines (resources). There are three customer classes (three 

different types of parts). The overall arrival rate is Poisson (A) hours and the service 

times for servers are exponential with means µ . . hours (i (customer class) = 1, 2, 3 and j 
I,) 

(cells)= 1, 2, 3, 4, 5). The model is built and run in Arena 5 [45] simulation software. 

The arriving parts are split into three types (customer classes), namely, type A, 

type B and type C with probabilities 0.5, 0.3 and 0.2 respectively. After splitting, their 

new arrival rates are the probability times the overall arrival rate. The parts get processed 

in the cells in the sequence shown in Figure 3.1. After being processed the parts exit the 

system. 

The methods are applied for the same model with different utilizations. Three 

models with varying levels of traffic intensity are built by modifying the arrival rates. 

Type I Model: 

This model has a high level of utilization. The average utilization of all resources 

is close to 90%. The individual utilizations may vary from 80% - 95%. 

Type II Model: 

This model has a moderate level of utilization. The average utilization of all 

resources is close to 70%. The individual utilizations may vary from 65% to 80%. 

Type III Model: 

This model has a low level of utilization. The average utilization of all resources 

is close to 50%. The individual utilizations may vary from 45% to 65%. 

Tables 3.1, 3.2 and 3.3 give the data for these three models. 
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TYPE A CELL3 CELL2 CELL 1 CELLS 

ST= µA3 ST= µA2 ST= µA) ST= µAS 

Parts 30% Parts 
Anive TYPEB CELL4 CELL 1 CELL3 Depart 

ST= µ 84 ST= µBJ ST= µB3 

20% 
TYPEC CELL2 CELL 1 CELL4 CELLS CELL3 

ST=Jlc2 ST= JJci ST=Jlc4 ST= JJcs ST= JJc3 

ST - service time 

Figure 3 .1: Model for the Experiment 



Type I Model 

I Arrival 
Rate 

Parts 
TvoeA 

Type B 

TypeC 

Resources 
Cell C1 
CellC2 
CellC3 
CellC4 
CellC5 

Expo{ 4.5) minutes 

Processing Times 
Sequence (hours) 
Cell C3 µA3 = Expo(0.4) 
CellC2 µA2 = Expo(0.5) 
CellC1 µA1 = Expo(0.6) 
CellC5 µAs= Expo(1.2) 

CellC4 µ94 = Expo(1.2) 
CellC1 µs1 = Expo(0.8) 
CellC3 µ83 = Expo(1) 
CellC2 µc2 = Expo(0.9) 
Cell C1 Ur:1 = Expo(0.5) 
CellC4 J.1c4= Expo(0.7) 
Cell CS Ur.s = Exoo(0.1) 
CellC3 J.1c3= Expo(1.4) 

Capacity 
9 
6 

11 
7 
10 

Average utilization = 92.56% 

Table 3.1: Data for Type I Model 
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Type II Model 

Arrival 
Rate 

Parts 
Type A 

Tvoe B 

Type C 

Resources 
Cell C1 
Cell C2 
CellC3 
Cell C4 
Cell C5 

Expo(5.8) minutes 

Processing Times 
Sequence (hours) 
Cell C3 µA3 = Expo(0.4) 
CellC2 µA2 = Expo(Q.5) 
Cell C1 µA1 = Expo(0.6) 
CellC5 µAs= Expo(1.2) 
CellC4 µ84 = Expo(1.2) 
Cell C1 µ81 = Expo(0.8) 
CellC3 µ83= Expo(1) 
CellC2 llc2 = Expo(0.9) 
CellC1 ur.1 = Expo(0.5) 
Cell C4 llc4 = Expo(O. 7) 
CellC5 Ur.s = Expo(0.1) 
Cell C3 µc3 = Expo( 1 .4) 

Capacitv 
9 
6 

11 
7 
10 

Average utilization = 71.6% 

Table 3.2: Data for Type II Model 
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Type III Model 

Arrival 
Rate 

Parts 
Type A 

Type B 

Type C 

Resources 
Cell C1 
CellC2 
CellC3 
Cell C4 
Cell CS 

Sequence 
Cell C3 
CellC2 
Cell C1 
Cell CS 
CellC4 
Cell C1 
CellC3 
CellC2 
CellC1 
CellC4 
Cell CS 
Cell C3 

Average utilization = 51.68% 

Expo(B) minutes 

Processing Times 
(hours) 
µA3 = Expo(0.4) 
µA2 = Expo(0.5) 
µA1 = Expo(0.6} 
µAs= Expo(1.2) 
µ94 = Expo(1.2) 
µ01 = Expo(0.8) 
µ93 = Expo( 1 ) 
µc2 = Expo(0.9) 
ur.1 = Exoo(0.5) 
µc4 = Expo(0.7) 
Ur.s. = Expo(0.1) 

µc3 = Expo( 1 .4) 

Capacity 
9 
6 

11 
7 

10 

Table 3.3: Data for Type III Model 
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3.3.2 Estimating the actual value of performance measure 0: 

The models are run for a very long time in the range of 106 
- I 09 hours. Values of 

the performance measure, say 0; for these long runs are observed. The values of 0; for 

each long run are within I% of each other for all models. The average of 0; 's for all long 

runs is considered as a true estimate of 0 for the given model. 

For all models, the value of 0 is also calculated theoretically using a queuing 

software RAQS [46]. 

For model type II and type III, the results obtained from RAQS [46] and from the 

averages of long runs are within 1 %. For type I model, the results are within 3.5%. This 

verifies the results for all the models. 

Values of 0 for model types I, II and III calculated from the method described 

above are summarized in Table 3.4 below. 

Model Type Average Number in System (WIP) 
Type I 119.41 
Type II 35.16 
Type III 22.71 

Table 3.4: Actual Values of Performance Measures for all Models 

3.3.3 Run Conditions 

System is started empty and idle. Run length is 1000 hours. Considering that the 

model is a replication of a job shop, we propose to run the model for a quarter of a year. 

Assuming two eight-hour shifts per day and 5-day week, the run length is approximately 

1000 hours. 
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3.3.3 Performance measure 

Average hourly Number in system. Number in system (Inventory) is measured at 

the end of each hour and recorded. The average of all the recorded values is the average 

hourly number in system. This performance measure is chosen arbitrarily. Results may 

vary for different performance measures. 

3.3.4 Levels of Utilization 

Level l: High traffic intensity (92.56%) 

Level 2: Moderate traffic intensity (71.6%) 

Level 3: Low traffic intensity (51.68%) 

3.4 Methodology 

'The above objectives are converted into following stages: 

Stage 1: Study various methods and rules mentioned in the literature for 

determining the warm-up length. 

Stage 2: Thoroughly define the methods mentioned in Section 3.2 and 

wherever possible prepare programming codes to execute the algorithms. 

Stage 3: Apply the methods and rules to each of the three simulation models. 

Estimate the value of warm-up length L for each method and rule. 

Stage 4: Determine the measures of goodness mentioned in Section 3. 1 for 

each method and rule at each of the three levels of utilization. 

Stage 5: Draw conclusions based on the results of stage 4. 

3.5 Procedure 

The procedure for implementing the warm up length detection methods and 

calculating the goodness of measures is presented in form of a pseudo code. 

61 



The pseudo code to find measures of goodness for all six methods 

Definition of variables 
m --? run length in hours 
n --? number of independent replications 
L --? warm-up length in hours 
Y; --? Inventory in the system at time i; for i = 1 to m 

~' --? Actual value of average hourly inventory 

0;,,; --? Average hourly inventory calculated from simulation output before deleting 
any data 

0--? Average hourly inventory calculated after deleting L hours of data. This is an 
estimate of 0 

Cl 

initialB --? Bias in Bini calculated against Ba 

fina/B ~ Bias in 0 calculated against Ba 

initialVar ~ Average of variance of Bini for n replications 

finalVar ~ Average of variance of 0 for n replications 
initialMSE ~ Average of mean square errors on Bini calculated against the theoretical 

value for n replications 

fina/MSE ~ MSE of 0 calculated against the theoretical value 
Max ~ represents the maximum run length required amongst all methods 

Initialize variables 
iteration = 0 
1l = 5 

start 

run: 

IF (iteration= 0) THEN 
m = 1000 

end if 
DO i = 1 to 6 

Select method i 
IF (the method requires single run) THEN 

GOTO run 
ELSE 

GOTO multiple run 
ENDJF 

Run the model for m hours with n replications 
finalMSEm = 0 
initialMSE(i) = 0 
finalVarco = 0 
initialVar<;> =0 

DO j =Ito n 
Consider m points from l" replication 
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m -
Calculate initial mean 0;n;(iJ = L YP 

p=l 

1 m 2 
Calculate initial variance Var(0;n;(j)) = -

2 
L(Yp -00 ) 

m p=I 

apply metl,od: 

multiple run: 

Apply method i to m data points 
IF (method requires more data) THEN 

m=m+200 

end if 
m (i,j) = m 

GOTO apply method 

Find the warm up length 
Warm up length = L OJ hours 
Calculate mean and the variance of the remaining data 
named as 

- I m 

Var(0(j))= 2 L<YP-00 )
2 

(m - L(J)) p=L<1>+1 

Calculate the final bias finalB(i) = Bu> - 00 

Calculate final MSE as 
2 -jinalMSEo; = jinalB(j) + Var (0(1)) 

Calculate the initial bias initialBo; = 0;ni(iJ - Ba 
Calculate initial MSE as 
initialMSEu) = initialBo; 2 + Var(0;n;o;) 

finalVarCi> = jinalVar(i) + Var (Bu>) 

initialVar(i) = initialVar(i) + Var ( 0;n;u>) 
finalMSEu> = jinalMSEu> + finalMSEu> 
initialMSE<o = initialMSECi> + initialMSEv> 

ENDDOLoopj 
initialMSEv> = MSE;n;<;> = initialMSE(i) I n 
finalMSE(i> = MSEfinfiJ = finalMSEo> I n 
initialVar(i> = Vini(i) = initialVarv> In 
finalVaru>= Vfin(i)= finalVar(i) In 
Percentage Change in MSEfor method i = 

100 * (MSEfin r;J - MSE;n; m) I (MSE;n; (i)) 
Percentage Change in Var for method i = 

100 * (Vfin (i) - Vin; (i))/ Vini (i) 

GOTO finish 

Run the model for n replications 
jinalMSE (i) = 0 
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initialMSE <i> = 0 
finalVar (i) = 0 
initialVar (i) = 0 

apply method II: Apply the method i 
IF (method requires more data) THEN 

increase run length by 200 

ELSE 

new run length m1= m + 200 
GOTO apply method II 

Return wamz up length L hours 
m1=m 

ENDIF 
m (i, j) = m1 

DO j = 1 ton 
Consider m points from/'' replication 

,n_ 

Calculate initial mean 0;,,; <JJ = L yp 
p=l 

I m 2 
Calculate initial variance Var( 0;,,; <JJ) = - 2 L (YP - 0a) 

m p=I 

111, 

Calculate Bu> = L YP 
p=L +1 

- 1 "'1 
2 

Calculate Var( e(j)) = 2 L CY; - ea) 
(m1 - L) i=L+t 

Calculate the final bias finalBU> = B(j) - 00 

Calculate final MSE as 
2 -finalMSEw = finalBw + Var ( 0(j)) 

Calculate the initial bias initialBw = 0;,,;w - Ba 
Calculate initial MSE as 

initialMSEw = initialBw 2 + Var( 0;,,;uJ) 

finalVar(i) = finalVarm + Var ( 0(j)) 

initialVar(i) = initialVarm + Var ( 0;,,;w) 
finalMSEm = finalMSEm + finalMSEw 
initialMS<iJ = initialMSE(i) + initialMSEu, 

ENDDOLoopj 
initialMSEco = MSE;,,;u> = initialMSE(i) I n 
finalMSE(i) = MSEf;,,<;J = finalMSE(i) In 
initialVar(i) = V;,,;<;J = initialVaru> In 
finalVar(i) = Vfin<n = finalVarw In 

Percentage Change in MSE for method i = 
100 * (MSE_1;11 <i> - MSE;,,; (i)) I (MSE;11; m) 

64 



finish: 

Percentage Change in Var for method i = 
100* (VJ;n <iJ - Vin; m)I Vin; <iJ 

GOTO.finish 

END DO Loop i 

if (iteration = 0) then 
Max=O 

DO p = 1 to i 
DO q = 1 ton 

IF (m (p, q) > max) THEN max= m (p, q) 
ENDDO 

ENDDO 
m=max 

end if 
iteration = iteration + I 

end: 

If (iteration = 2) THEN 
GOTO end 

ELSE 

GOTO start 
ENDIF 

For this thesis, the value of n is chosen to be 5. It is advisable to have number of 

replications between 5 and 10. We chose to run the models for 5 replications. However, 

results may vary for different number of replications. 

65 



4. EXPERIMENTAL RESULTS 

The methods mentioned in Section 3.2 can be broadly classified into two classes. 

The first class of methods requires multiple replications where as the second class only 

requires one run. The Modified SPC Method, Conway Rule and Welch's Method are 

classified as class one methods. Randomization Test, MSER-5 Rule, and the Crossing the 

Means Rule fall under class two methods. Run length for all experiments is fixed to 1000 

hours initially. Some algorithms might require more data if the initial run length is not 

enough. In that case the run length is incremented by 200 hours. Within each of these two 

classes, some methods require the data to be batched. These are the Randomization Test, 

Modified SPC Method and the MSER-5 Rule. The MSER-5 Rule uses a fixed batch size 

of 5 observations. The Modified Statistical Process Control Method uses the Von 

Neumann's Test and Anderson-Darling Test to determine batch size. This method 

demands an increase in run length if the number of batches becomes less than 20 after 

either of the two tests has failed. Yucesan [44] requires increasing the batch size until the 

absolute serial autocorrelation falls below 0.5 for the Randomization Test. 

After applying all of the methods on all of the models, the maximum run length 

amongst all the experiments is noted. This is denoted by mmax· All the models are then run 

for mmax hours and new output is obtained. All six methods are applied again to this data 

and new results are obtained. 
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4.1 Implementation Specifications 

4.1.1 Welch's Method 

Welch's Method requires three parameters to be specified. The run length m, the 

number of replications n and the window size w. The run length is fixed to I 000 initially. 

Law and Kelton [27] suggest taking the minimum value of w that so that graph appears 

smooth. For all the models value of w = 10 was enough to obtain a smooth graph. 

Welch's procedure is a graphical procedure. The user decides the warm-up length by 

observing a graph of averaged values against time. Thus there is subjectivity involved in 

this procedure. To minimize this subjectivity, twenty five users were asked to observe the 

graphical output and give their values for the warm-up length. Finally, the warm-up 

length was calculated as the average of 25 values. 

4.1.2 Conway Rule 

This rule also requires multiple replications. The number of replications is set to 5 

and the run length is set to 1000 hours. This rule does not require any batching or tests for 

autocorrelation or normality. 

4.1.3 Modified Statistical Process Control Method 

This method requires the data to be batched with a batch size such that the data is 

approximately normally distributed and has negligible serial autocorrelation. Initial batch 

size is kept I. The batch size is doubled if either the test for autocorrelation or normality 

fails. The number of batches is at least 20. If the number of batches falls below 20, then 

the test demands more data. For this thesis, if the test demands more data, the run length 

is incremented by 200 and the test is re-started. A graph of batch means is plotted with 

the control limits as defined in Section 2.2. 1 .3. The rules to determine whether the 
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process is in control or not, are applied to the plotted data. The simulation time associated 

with the point beyond which the process is in control is the warm-up length. 

4.1.4 Crossing the Means Rule 

This rule requires the user to decide the value of number of crossings. Gafarian, et 

al., ( I 978) [ 15] used a value of three. The same value is used here. The run length is set 

to 1000 hours. This rule does not require any batching or tests for autocorrelation or 

normality. The test is stopped when the number of times the process crosses the 

cumulative mean equals 3. 

4.1. 5 Marginal Standard Error Rule-5 

This rule requires a batch size of 5. Tests for autocorrelation or normality are not 

required. 

4.1.6 Randomization Tests 

This method requires the data to be batched. The initial batch size is taken to be 

one. The data is tested for autocorrelation. If the autocorrelation is > 0.5, then the batch 

size is doubled. The value of p is taken to be 0.05. If the test statistic d is > 0.05, then the 

system is in steady state. For each iteration, NS is set ton! /n 1 ! * n2 !, where 

n= total number of batch means 

n 1 = number of batch means in first group 

n2 = number of batch means in second group. 

4.2 Summary of Results with Run Length = 1000 Hours 

Results for all the three types of models are presented in Tables 4.1, 4.2 and 4.3. 

The initial values row is based on the models with no warm-up length. This is the base­

line for calculating the percentage increase in variance and percentage increase in MSE. 
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4.2.1 Type I Model 

For the system with high utilization the Modified SPC Method and the 

Randomization Test reduce the MSE and the variance. The Modified SPC Method gives 

the lowest MSE and the variance. For the methods that do not require multiple 

replications, the Randomization Test reduces the MSE by approximately 19% and the 

variance by 29%. It gives a comparatively higher MSE than the Modified SPC Method 

and a very low variance. These two methods require slightly more time to run than the 

other methods. However, both of these methods do not work with a run length of 1000 

hours. They demand more data in order to give results. 

Given that the run length is only I 000 hours, the Crossing the Means Rule and 

Welch's Method reduce the MSE by approximately 17% and 33% respectively. However 

they slightly increase the variance. Crossing the Means Rules takes slightly more time 

than the Welch's Method. 

The Conway Rule and MSER-5 Rule take less time to perform, but increase the 

MSE. MSER-5 Rule increases the variance where as Conway Rule reduces the variance 

slightly. 

MSER-5 Rule is computationally the most efficient. 

4.2.2 Type II Model 

This model is moderately utilized. In case of methods which do not require 

multiple replications, the MSER-5 Rule reduces both, the MSE and variance. It reduces 

the MSE by about 28% and variance by 3% approximately. The values for MSE and 

variance are very low. The MSER-5 Rule is the fastest to execute 
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The Crossing the Means Rule is also efficient but it increases the variance 

slightly. It reduces the MSE considerably (by 23% approximately). The randomization 

test increases both the MSE and the variance. 

For methods that require multiple replications, the Conway Rule reduces the 

variance and increases the MSE. It requires less time to perform. The Conway Rule gives 

the minimum warm up length of 3 hours. The Modified SPC Method returns a warm up 

length of 25 hours. It also requires the longest time to execute. The Modified SPC 

Method increases both the MSE and the variance by approximately 3 and 2 percent. It 

gives a higher value of MSE compared to the initial value. The Welch's Method requires 

less time to perform; it reduces the MSE and increases the variance. 

4. 2.3 Type III Model 

This model is a low utilization system. There is negligible bias present in the 

simulation output data itself. 

For methods that require multiple replications, the Modified SPC Method reduces 

the MSE and variance considerably. The Conway Rule reduces the variance but slightly 

increases the MSE. It requires less time to perform. The Welch's Method reduces the 

MSE but increases the variance. It takes less time to run 

For methods that do not need multiple replications, the Randomization Test and 

MSER-5 Rule are effective in reducing MSE and the variance. However due to a large 

number of batch means, the Randomization Test requires extremely long time to perform. 

This method is computationally inefficient. On the other hand the MSER-5 Rule is most 

efficient. The Crossing the Means Rule increases both the MSE and variance. 
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Type I model (average utilization= 92%) 
Average Average 
Warm up Average Final Computing % 

length Run length Mean Final Final Time Change %Change in 
Method (hours) (hours) MSE Variance (seconds) inMSE 

Welch (1) 292 1000 129.0853 213.3846 1.8777 8 -33.42 

SPC (1) (3) 0 5200 118.7974 72.3188 0.2984 127 -77.44 

Conway (1) 5 1000 129.7395 332.6243 1.6383 11 3.78 

MSER-5 (2) 221.8 1000 135.6506 395.7777 1.9550 5 23.49 
Randomization (2) 
(3) 192 1480 127.0272 259.8652 1.1773 21 -18.92 
Crossing the 
means (2) 153.8 1000 128.7625 266.0326 1.7685 22 -16.99 
Initial (before 
truncation) 0 1000 129.2340 320.4976 1.6569 5 0.00 

Table 4.1: Results Summary for Type I Model with Run Length= 1000 Hours 

( 1) These methods need 5 replications, hence the warm-up lengths are same for all 5 runs 

variance 

13.33 

-81.99 

-1.12 

17.99 

-28.95 

6.74 

0.00 

(2) These methods need 1 replication. They are applied 5 times to 5 runs. The values of warm-up length are average of 

5 runs. 

(3) The Modified SPC Method does not work for run length of 1000. It demands an increase in run length. 

(4) The Randomization Test does work for run length of 1000. It demands an increase in run length. 



Type II model (average utilization = 71 %) 
Average Average Average 
Warm up Run Computing 

length length Final Mean Final Final Time % Change 
Method (hours) (hours) MSE Variance (seconds) inMSE 

Welch (1) 107 1000 35.5384 1.27 0.067 8.5 -34.67 
SPC (1) 25 1000 35.6997 2.01 0.065 13.2 3.33 
Conway (1) 3 1000 35.6606 2.02 0.063 12.1 3.70 
MSER-5 (2) 33 1000 35.4387 1.41 0.062 5 -27.80 
Randomization (2) 9.6 1000 35.6719 2.01 0.064 10.6 3.15 
Crossing the means 43.2 1000 35.5586 1.48 0.065 7 -23.78 (2) 
Initial (before 

0 1000 35.6096 1.95 0.064 5 0.00 truncation) 

Table 4.2: Results Summary for Type II Model with Run Length= 1000 Hours 

( 1) These methods need 5 replications, hence the warm-up lengths are same for all 5 runs 

%Change 
in 
variance 

5.51 
2.00 
-0.75 
-2.99 
0.41 

1.93 

0.00 

(2) These methods need 1 replication. They are applied 5 times to 5 runs. The values of warm-up length are average of 

5 runs. 



Type Ill model (average utilization = 51 %) 
Average Average 
Warm up Run Final Average 

length length Mean Final Final Computing % Change 
Method (hours) (hours) MSE Variance Time (seconds) in MSE 

Welch (1) 74 1000 22.5866 0.070 0.021 11 -7.59 
SPC (1) 432 1000 22.5859 0.062 0.026 31 -36.25 
Conway (1) 2 1000 22.6198 0.060 0.019 15 0.64 
MSER-5 (2) 6 1000 22.6182 0.061 0.019 9 -0.02 
Randomization 4.4 1000 22.6201 0.060 0.019 750 -0.24 (2) 
Crossing the 25.8 1000 22.5971 0.069 0.020 25 2.18 means (2) 
Initial (before 

0 1000 22.6002 0.065 0.019 8 0.00 truncation) 

Table 4.3: Results Summary for Type III Model with Run Length= 1000 Hours 

(I) These methods need 5 replications, hence the warm-up lengths are same for all 5 runs 

%Change in 
variance 

8.52 
-4.88 
-7.78 
-5.64 

-7.21 

6.04 

0.00 

(2) These methods need 1 replication. They are applied 5 times to 5 runs. The values of warm-up length are average of 

5 runs 



Modified SPC Method, when applied to replication three, requires a run length of 

5200 hours. All models are run for 5200 hours and new output data is obtained. The six 

methods are applied to the new data. The results are summarized in Section 4.3. 

4.3 Summary of Results with Run Length = 5200 Hours 

Results for all the three types of models are presented in Tables 4.4, 4.5 and 4.6. 

The initial values row is based on the models with no warm-up length. This is the base­

line for calculating the percentage increase in variance and percentage increase in MSE. 

4.3.1 Type I Models 

For models that require multiple replications the Modified SPC Method gives a 

long warm up length and it reduces both the MSE and variance considerably. It requires a 

fair amount of time to run (33 seconds). The Conway Rule requires the longest time to 

execute. It gives almost the same MSE and a slightly lower variance than the 

corresponding values for the base model. The Welch's Method reduces both the MSE and 

the variance by a very small amount. It also takes slightly longer time to perform (33 

seconds). 

For the methods which do not need multiple replications, MSER-5 Rule reduces 

both the MSE and the variance. It is computationally most efficient. Randomization Test 

also successfully reduces the MSE but increases variance negligibly. The Crossing the 

Means Rule needs long time to perform. It reduces the MSE by approximately 7% and 

increases the variance negligibly. 
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4.3.2 Type II Models 

Type II model is a moderately utilized system. For the methods that require 

multiple replications none of the methods reduce MSE. The Conway Rule reduces the 

variance by 0.17%. It also requires less time to perform. The Modified SPC Method gives 

a warm up length of 256 hours. It increases both the MSE and variance. The Welch's 

Method also increases the MSE and variance but it takes very less time to run. 

Randomization Test requires the longest time to run. It increases the MSE slightly 

and gives almost the same variance. The Crossing the Means Rule reduces MSE by and 

variance by very small amount. MSER-5 Rule reduces the MSE and the variance. MSER-

5 Rule is the most efficient to execute. 

4.3.3 Type III Models 

The Welch's Method and the Modified SPC Method increase both the MSE and 

the variance. For the Modified SPC Method the increase is considerably large. This 

method requires slightly more time to perform. However the Conway Rule reduces both 

MSE and variance and requires lesser time to run than most of the methods. 

The Randomization Test reduces both MSE and variance. The Randomization 

Test requires significant amount of time to run. This is because for this low utilized 

system the autocorrelation is less and the algorithm produces more batch means resulting 

in an incredibly large number of iterations for calculating the test statistic. The MSER-5 

Rule and the Crossing the Means Rule do not change MSE and variance much. 

This model has very low initial MSE and variance. Randomization Test requires 

the longest time to perform. This is because of a large number of batch means leading to 
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more number of iterations. The MSER-5 Rule and the Crossing the Means Rule require 

the minimum amount of time to perform (approximately< 20 seconds). 
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Type I model (average utilization = 92%) 
Average Average Average 
warm up Run Computing % 

length length Final Final Final Time Change 
Method (hours) (hours) Mean MSE Variance (seconds) inMSE 

Welch (1) 50 5200 119.2607 70.6416 0.2982 33 -2.32 

SPC (1) 768 5200 116.3985 53.7927 0.3349 33 -83.22 

Conway (1) 5 5200 118.8842 72.3384 0.2977 54 0.03 

MSER-5 (2) 195 5200 117.2861 51.6606 0.2907 16 -28.57 

Randomization (2) 256 5200 118.1012 44.0937 0.2997 31 -39.03 

Crossing the means (2) 154 5200 118.3857 67.1267 0.2993 39 -7.18 

Initial (before truncation) 0 5200 118.7974 72.3188 0.2984 15 0.00 

Table 4.4: Results Summary for Type I Model with Run Length= 5200 Hours 

( 1) These methods need 5 replications, hence the warm-up lengths are same for all 5 runs 

%Change 
in 
variance 

-0.05 

-79.79 

-0.24 

-2.59 

0.44 

0.31 

0.00 

(2) These methods need 1 replication. They are applied 5 times to 5 runs. The values of warm-up length are average of 

5 runs. 



Type II model (average utilization = 71 %) 
Average Average Average 
Warm up Run Computing 

length length Final Final Final Time % Change 
Method (hours) (hours) Mean MSE Variance (Seconds) in MSE 

Welch (1) 65 5200 35.3248 0.0954 0.0112 18 4.83 
SPC (1) 256 5200 35.3161 0.1115 0.0116 39 22.52 
Conway (1) 3 5200 35.3485 0.0942 0.0111 21 3.48 
MSER-5 (2) 73 5200 35.2621 0.0798 0.0111 15 -12.35 
Randomization (2) 9.6 5200 35.3496 0.0957 0.0111 145 5.19 
Crossing the 

43.2 5200 35.3210 0.0906 0.0111 29 -0.43 means (2) 
Initial (before 

0 5200 35.3388 0.0910 0.0111 15 0.00 truncation) 

Table 4.5: Results Summary for Type II Model with Run Length= 5200 Hours 

( 1) These methods need 5 replications, hence the warm-up lengths are same for all 5 runs 

%Change in 
variance 

0.26 
3.72 
-0.17 
-0.74 
0.01 

-0.07 

0.00 

(2) These methods need 1 replication. They are applied 5 times to 5 runs. The values of warm-up length are average of 

5 runs. 



Type Ill model (average utilization = 51 %) 
Average Average 

Average Run Computing % 
Warm up length Final Mean Final Final Time Change 

Method length (hours) (hours) MSE variance (seconds) in MSE 
Welch (1) 66 5200 22.711 0.0175 0.00394 19 6.01 
SPC (1) 3184 5200 22.688 0.0250 0.00979 32 51.45 
Conway (1) 2 5200 22.713 0.0165 0.00389 16 -0.31 
MSER-5 (2) 6.25 5200 22.713 0.0167 0.00390 15 0.78 
Randomization 

3 5200 22.714 0.0165 0.00389 1795 -0.05 (2) 
Crossing the 28.5 5200 22.709 0.0166 0.00391 27 0.60 means (2) 
Initial (before 

0 5200 22.709 0.0165 0.00389 14 0.00 truncation) 

Table 4.6: Results Summary for Type III Model with Run Length= 5200 Hour 

(1) These methods need 5 replications, hence the warm-up lengths are same for all 5 runs 

%Change in 
variance 

1.25 
151.47 
-0.13 
0.01 

-0.09 

0.48 

0.00 

(2) These methods need 1 replication. They are applied 5 times to 5 runs. The values of warm-up length are average of 

5 runs 



5. ANALYSIS OF RESULTS AND CONCLUSION 

The evaluation procedure presented in this thesis is easy to implement on various 

methods and can be efficiently used to test the performance of the same. The measures of 

goodness used clearly indicate the quality of the methods/ heuristic rules. 

In Section 5.1, an attempt is made to answer the questions that were posed in 

Section 1.5: Which methods work under which conditions and which methods fail? If 

some methods work well for a particular condition, which one of them is/are the most 

effective? Are there any modifications, which when applied to the methods will improve 

their performance? Initially, the methods are compared on the basis of model types used. 

In the latter paragraphs the overall performance of each method is presented based on 

when it fails and when it does not. The possible causes for failure of some of the methods 

are also documented. Finally modifications which may result in better performance of 

some of the methods are presented. 

5.1 Discussion 

A method is said to perform well if it reduces the MSE and variance and is 

computationally efficient. The results presented in Chapter 4 show that performance of 

methods varies with the type of model and the simulation run length ( crossing the means 

rule being an exception for run length). 

The Type I model is highly utilized. For a run length of 1000 hours, the MSE 

without data deletion is 320.49 and the variance is 1.6569. This shows that there is high 
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initialization bias. None of the methods when applied to this model reduce both the 

variance and MSE with a run length of 1000 hours. The Modified SPC and the 

Randomization Test do not give any results for 1000-hour run length. They demand an 

increase in run length because the test for autocorrelation and/or normality fails. But, 

given more data, both of these methods reduce MSE and variance. The Modified SPC 

Method requires 5200 hours run length and the Randomization Test requires 1480 hours 

of average run length to perform. This makes the two methods computationally 

inefficient and also need availability of more data. The MSER-5 Rule performs poorly for 

Type I model with 1000 hours run length. However, this rule is highly efficient. It gives 

results in fraction of a second. Conway Rule is aggressive and performs poorly. It reduces 

variance but slightly increases the MSE without demanding more data. No method 

performs well for this type of model given that the run length is 1000 hours. If 

computational cost is not a concern and more data is readily available, the Modified SPC 

Method and Randomization Test are recommended. 

When this model is run for 5200 hours, the MSE without data deletion is 72.31 

and the variance is 0.298. Modified SPC Method and MSER-5 Rule performs the best for 

these conditions. None of the other methods perform well. MSER-5 Rule is more 

efficient than Modified SPC Method. For highly utilized systems, it is recommended to 

use the MSER-5 Rule and keep the run length long or use Modified SPC Method. 

Randomization Test reduces MSE by approximately 39% and does not change variance 

significantly. The Crossing the Means rule also reduces the MSE and does not 

significantly change the variance. 
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The Type II model is moderately utilized. The initial MSE and variance are very 

low; equal to 1.95 and 0.064 respectively. For a run length of I 000, only MSER-5 Rule 

works well. Conway Rule, Randomization Test, Modified SPC Method, Welch's Method 

and Crossing the Means Rule perform poorly for this model with a run length I 000 hours. 

When the run length is increased to 5200 hours, the MSER-5 Rule and the 

Crossing the Means Rule perform well. All other methods perform poorly. 

Type III model has a very low utilization. There is negligible initialization bias 

and low variability. For this type of a system a method that either reduces MSE and the 

variance or maintains the change in MSE and variance within I% of the base model, is 

considered to perform well. For a run length of 1000 hours the MSER-5 Rule, 

Randomization Test and Modified SPC Method and the Conway Rule work well. For a 

run length of 5200 hours, the Conway Rule, Randomization Test and MSER-5 Rule and 

Crossing the Means Rule give good results. However, the Randomization Test is 

computationally very expensive. Modified SPC Method and Welch's Method perform 

very poorly. 

To conclude the above discussion it can be said that the Welch's Method does not 

work well for most of the models The Welch's Method is highly subjective, hence 

different results may be observed for different group of users. 

The Crossing the Means Rule appears to work well for low and moderate I y 

utilized systems with longer run lengths. However it gives the same warm up length as 

that for a run length of I 000 hours for both the models. The improved results are due to 

better values obtained from simulation data and not because of better perf 01mance of the 

method. 
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The MSER-5 Rule works well for longer run lengths, regardless of the model 

used. For smaller run lengths, it works well for models with moderate and low utilization. 

The Conway Rule seems to work well for low utilized models where the 

initialization bias is negligible. This rule is very aggressive. It gives the minimum warm­

up length for all models and run lengths. 

The Modified SPC Method performs poorly for moderate utilization systems. For 

the moderate and low utilized models with long run length, the variance in the data is 

very low. So the control limits on the process are very close. Because of this, more points 

lie outside the I-sigma limit. For a run length of 5200 it gives a very high warm up length 

on the Type III model. The data violates the rules on two occasions. For the Type ill 

model, on the first occasion, the warm up length is 160 hours and on the second it is 3184 

hours. This is because at the end of the batch means plot 1 additional point falls outside 

the 2cr limit. Taking the first warm-up length gives better results. If some rule can be 

added to neglect such outliers or re-start the test taking more data when the warm up 

length exceeds 25% of the run length, then the performance of this method can be even 

better. For the high utilized model, it does not work well with a long run length; but for 

smaller run lengths there is a high possibility that this method will demand more data due 

to high variability and autocorrelation. Given more data it is the most effective for such 

models. 

The Randomization Test works well for Type I and Type III models under certain 

conditions. For high utilization systems, if the run length is small there is a considerable 

possibility that this method will demand for more data. This is because due to the 

presence of autocorrelation in the data. Given more data, it works well for Type I models. 
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Also, for Type III models which generate data with negligible autocorrelation and having 

long run lengths, the Randomization Test takes an incredibly long time to run. The 

following modifications are suggested to reduce the run time for low utilized systems: 

• Minimum number of batches should be 20. 

• Approximate randomization tests are recommended for low utilization models 

where the expected run time is very high. 

Results achieved using above modifications are presented in Table C. l of 

Appendix C. It can be observed that the computational time is reduced drastically 

and better results on MSE and variance are obtained. 

Tables 5.1, 5.2 and 5.3 list the methods/ rules applicable for the three model types 

used in this research. 

Highly utilized system 
Name of the method Recommendation 
Modified SPC Method Use long run length 
MSER-5 Rule Use long run length 
Randomization Test Start with small run length and use only if 

additional data can be generated 

Table 5.1: Recommended Methods for Highly Utilized Systems 

Moderately utilized system 
Name of the method Recommendation 
MSER-5 Rule 

Table 5.2: Recommended Methods for Moderately Utilized Systems 
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Low utilized system 

Name of the method Recommendation 
Randomization Test Use the modifications presented in Appendix C 
Conway Rule -
MSER-5 Rule Use long run length 

Table 5.3: Recommended Methods for Low Utilized Systems 

5.2 Future Research 

The testing of methods needs to be implemented on different range of models 

using different performance measures. However, it is hard to compute MSE by the 

method used in this research since the theoretical mean of the point estimator is generally 

not known. The current research focused on performance of the methods on systems with 

varying utilization levels. A more thorough study needs to be done, varying the 

complexity of the model and changing the performance measures. 

Tests for initialization bias were not analyzed and compared because no deletion 

strategies were suggested by the authors. Performance of these methods needs to be 

assessed by developing various deletion strategies. Methods using time series are not 

tested in this research. Future research can include these methods for evaluation. 

85 



APPENDIX A 

Section 1 Fortran Code for Welch's Method 

program welch 
implicit none 

! Purpose: Welch's procedure for warm-up length determination 

Input files 
Filel: Parts.txt Store on C: drive of computer. This file contains the 
number of parts produced per hour. Number of rows in this file equal the 
run length m 

Output files 
File2: Output Excel file. Use the data in this file to plot the graph 
and decide the warm-up length using judgment. 

!Input variables 
!m - run length in unit time 
!n - number of replications 
!w - window size 

!Output variables 

!Variable Definition 
INTEGER:: m !run length 
INTEGER:: n !-number of replications 
INTEGER:: w!window size 
INTEGER:: i !loop index 
INTEGER:: j!loop index 
INTEGER:: s ! temporary variable 
REAL, DIMENSION(S000,5000) ::!value-stores the raw data in rows and 

!columns 
REAL, DIMENSION(5000) :: num !-stores the value of time associated with 

!the raw data 
REAL, DIMENSION(5000) :: yibar !-stores the ensemble averages 
REAL, DIMENSION(SOOO) :: yiw !- stores the cumulative averages 

!Prompt user to enter input values 
WRITE(UNIT=*,FMT=*)" Enter the number of replications" 
READ(UNIT=*,FMT=*)n 
WRITE(UNIT=*,FMT=*)" Enter the run length" 
READ(UNIT=*,FMT=*}m 

!open file 

OPEN(UNIT=l,FILE="C:\parts.txt",STATUS="old",ACTION="read") 
OPEN(UNIT=2,FILE=="C:\writeparts.xls",STATUS="replace",ACTION="write") 

!read the values from file 
do i=l,n 
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do j = l,m 
READ(UNIT=l,FMT=*)num(j),value(j,i) 

end do 
end do 

!to calculate yibar (over replications) 

do i =l,m 
yibar(i)=O 

do j=l,n 
yibar(i)=yibar(i)+value(i,j) 

end do 
yibar(i)=yibar(i)/n 

end do 

WRITE(*,*)" yibars are calculated, now enter the value of w" 
READ(*,*)w 

!for 1 -> w 
do i=l,w 

yiw(i)=O 
do S=l-i,i-1,l 

yiw(i)= yiw(i)+yibar(i+s) 
end do 

yiw(i)=yiw(i)/(2*i - 1) 
end do 

do i=w+l,m-w,l 
yiw(i)=O 

dos= -w,w,l 
yiw(i)=yiw(i)+ yibar(i+s) 

end do 
yiw(i)=yiw(i)/(2*w + 1) 

end do 

do i = 1, m 
WRITE(2,*)yiw(i) 

end do 

end program welch 

Section 2 Visual Basic for Application Code for Randomization Test used with 

Microsoft Excel 

'Author: Prasad Mahajan 
'Title: Randomization tests by Dr. Enver Yucesan 
' Date Started: 23rd December 2003 
1 Date Finished: 25th December 2003 

'Purpose: To implement the randomization test and determine the warm up length 

'List of subroutines 
'Batchmean()calculates the batch means 
'clear()deletes previous data 
'private Sub CommandButtonl Click() initiates the code to find batch means 
'randomization() begins the-randomization code 
'sort() used to arrange the data in groups 

'Input variables 
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'm run length; enter run length in column "runlen" 
'k batch size; enter batch size in column "batchlen" 
'num unit time; enter time in column "num" 
'valuel raw data; enter raw data associated with corresponding in 
'column "Yi" next to "num" 
'NS - read from column "NSfacto" 
'Range("autocorr") should have the Excel correlation function to find the lag 1 
'autocorrelation between the batch means 

'Output variables 
'yibar(p) ensemble averages; displayed in column "ensemble" 
'mean temporarily stores the batch mean; displayed in column "yibar" 
'count stores the batch means number; displayed in column "numl" 
'count2 stores the iteration number for randomization test 
'pvalue stores the pvalue; displayed in column "pvalue" 
'NS - displays value of NS; displayed in column "NS" 
'ind4 - displays warm-up length; displayed in column "WLENl" 

'Subroutine to calculate batch means 

Sub Batchmean () 

•variable definitions 

Dim k As Integer 
Dim i As Integer 
Dim j As Integer 
Dim y As Integer 
Dim SV As Integer 
Dim count As Integer 
Dim ev As Integer 
Dim x As Integer 
Dim 1 As Integer 
Dim p As Integer 
Dim q As Integer 
Dim m As Integer 
Dim num(lOOOO) As Integer 
Dim yibar(BOOO) As Double 
Dim mean As Double 

Dim value(lOOOO) 
Dim valuel(lOOOO, 10) As Double 
Dim suml As Double 
Dim data As Integer 
Dim stval As Integer 

'batch size 
'loop index 
'loop index 
'temperory variable 
'starting value of for loop 
'counts the number of iterations 
'ending value of for loop 
'counter variable 
'loop index 
'loop index 
'loop index 
'run length 
'stores the time associated with the raw data 
'stores the batch means 
'temperory variable used to calculate batch 
'means 
'stores the batch means 
'stores raw data 
'used to accumulate the sum of raw data 
'number of batches 
'temperory variable 

•read batch length, run length and rep length 
y 0 
m = Range("runlen") .Offset(O, O) 
k = Range("batchlen") .Offset(O, O) 
data= m / k 

'Clear initial data 
clear 

• read data in 2 -d array 
For p === 1 To 1 

For q = 1 Tom 

num(q) = Range("num") .Offset(q, 0) 
valuel(q, p) :::: Range("Yi") .Offset(y + q, 0) 
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Next q 
Y = Y + m 

Next p 

1 to calculate yibars (ensemble averages) 
•yibar - array of ensemble averages 

For p = 1 Tom 
yibar(p) = O 

For q = 1 To 1 
yibar(p) = yibar(p) + valuel(p, q) 

Next q 
yibar(p) = yibar(p) / 1 
value(p) = yibar(p) 

Range( 11 ensemble 11
) .Offset(p, 0) yibar(p) 

Next p 

i 0 
j 0 

• start batching 
count= 1 
1 = 0 

For count= 1 Tom/ k 
1 = 1 + k 
ev = 1 
sv = 1 - k + 1 
suml = O 

For x = sv To ev 
suml = suml + value(x) 
Next x 

• calculate batch means 
mean= suml / k 

• display results 
Range("numl") .Offset(count, O) = count 
Range("yibar") .Offset(count, O) = mean 

Next count 

End Sub 

private Sub CommandButtonl_Click() 

Dim i As Integer 'loop index 
Dim m As Integer 'run length 
Dim b As Integer 'number of batches 
Dim k As Integer \ batchsize 
Dim data As Integer \ number of batches 

m = Range ( 11 runlen 11
) 

Range ( 11 Batchlen 11
) = 1 

k = Range( 11 batchlen 11
) 

For i = 1 To 100 

If (i <> 1) Then 
Range( 11 Batchlen 11 ) 

k = k * 2 
End If 

Range( 11 Batchlen 11
) * 2 

data= Range( 11 runlen 11 ) / Range( 11 batchlen 11 ) 

b = m / k 
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'batchmean check'•• 1 , 11 

Batchmean 

• Check for autocorrelation 
If Abs(Range( 11 autocorr 11 )) < 0.5 And data< 2 Then 

MsgBox ( 11 Autocorrelation not present batch size too long") 
GOTO finish: 

Else 

If Abs(Range( 11 autocorr 11
)) < 0.5 And (data >= 2) Then 

MsgBox ( 11 Autocorrelation not present ") 

Next i 
finish: 
End Sub 

GOTO finish: 

End If 
End If 

Private Sub CommandButton2 Click() 
clear -

End Sub 

Sub clear () 
ActiveSheet.Range("C18:E7118") = 1111 

ActiveSheet.Range("Fl3") = 1111 

ActiveSheet.Range( 11 I13:J13") = 1111 

ActiveSheet .Range ( 11 F38 :N7444") 1111 

ActiveSheet.Range( 11 I35") "" 
End Sub 

Subroutine to calculate randomization tests 

Sub randomization () 

Dim i As Integer 
Dim j As Integer 
Dim NGl As Integer 
Dim NG2 As Integer 
Dim m As Integer 
Dim b As Integer 
Dim ix As Integer 
Dim 1(1000) As Integer 
Dim ind3 As Integer 
Dim ind4 As Integer 
Dim A ( 1000) As Integer 

Dim Ml(lOOO) As Double 

Dim W(lOOO) As Double 

Dim count3 As Double 
Dim count2 As Double 
Dim sumngl As Double 
Dim sumng2 As Double 
Dim yibar(lOOO) As Double 
Dim fas Double 
Dim nge As Double 
Dim pvalue As Double 
Dim NS As Double 
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'loop index 
'loop index 
'number of elements in group 1 
'number of elements in group 2 
'run length 
'number of batches 
'loop index 
'stores the limit for sorting 
'temperory variable 
'temperory variable 
'stores the numbers for sorting 
'data in groups 
'Array to find the mean of group 
\ 1 

'Array to find the mean of group 
'2 
•counter variable 
'counter variable 
'stores sum for group 1 
'stores sum for group 2 
'stores batch means 
'stores the f-statistic 
'stores the nge value 
'stores the p-value 
'stores the value of NS 



'Read input data 

b = Range ("Batches") 
m = Range ( 11 Runlen 11

) 

count3 = O 
For i = 1 To b 

yibar(i) = Range("Yibar") .Offset Ci, 0) 
Next i 

loops through one batch at a time 

For ix= 1 To b / 2 

sumngl o 
sumng2 = O 

'initialize the NGs to zero 
NGl = 0 
NG2 = 0 

'Assign sizes to groups 1 and 2 
NGl NGl + ix 
NG2 = b - ix 

NS = Range ( 11 NSfacto 11 ) 

Range("NS") .Offset(ix, 0) = NS 

'Calculate initial mean of groupl 

For j = 1 To NGl 
W(j) = yibar(j) 
sumngl = sumngl + W(j) 

Next j 
sumngl = sumngl / NGl 

'Calculate initial mean of group2 

For j = NGl + 1 To b 
Ml(j) = yibar(j) 
sumng2 = sumng2 + Ml(j) 

Next j 
sumng2 = sumng2 / (b - NGl) 

'Calculate the critical test statistic for the test 
f = Abs(sumn92 - sumngl) 

'Prepare the initial array A ready to go for shuffling 
For j = 1 To NGl 

A(j) = j 
Next j 

'Send array Array for shuffling 
nge = O 

Call sort(NGl, NG2, b, yibar, f, nge, A, count2, countl) 
nge = nge - 1 

'Calculate p -value for the test 
pvalue = (nge + 1) / (NS+ 1) 
Range( 11 pvalue 11

) .Offset(ix, O) = pvalue 
MsgBox" P value is 11 & pvalue 

If (pvalue > 0.05) Then 
ind3 = 1 
ind4 = ix 
GoTo finish: 
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Else 
ind3 2 

End If 

count3 = count3 + count2 
Next ix 

finish: 

'Determine if warm -up length has been found or you need more data 
If (ind3 = 1) Then 

MsgBox ( 11 Warm-up length found 11
) 

Range( 11 WLENl 11
) = ind4 

End If 

If (ind3 = 2) Then 
MsgBox (" Warm up length not found ") 
MsgBox ( 11 Increase the run length and run me again") 

End If 

I END OF THE TEST 

End Sub 

Sub sort(NGl, NG2, b, yibar, f, nge, A, count2, countl) 

Dim sumnglnew As Double 
Dim sumng2new As Double 
Dim fpseudo As Double 
Dim j As Integer 
Dim inl As Integer 
Dim Ar(lOOOO) As Integer 

Dim N As Integer 
Dim Il As Integer 
Dim indl As Integer 
Dim i2 As Integer 
Dim l(lOOOO)As integer 
Dim cali As Integer 

cali = 2 
For j = 1 To NGl 
l(j) b - NGl + j 
Next j 

For Il 
Ar ( Il) 
Next Il 

1 To b 
A(Il) 

• Initialize variables 
countl = O 
N = NGl 
nge = o 
sumnglnew O 
sumng2new O 

'stores the mean for arranged group 1 
'stores the mean for arranged group 2 
'stores the pseudo statistic 
'loop index 
'indicator variable 
'stores the array of numbers used for 
'arranging data in groups 
'stores the limit of iteration 
'loop index 
'temporary variable 
'indicator variable 
'stores the limit for iteration 
'temporary variable 

!Loop will terminate when all shuffling is over 
Do ' loop O 

1: 

• loop to shuffle the numbers and calculate means 
Do • WHILE loop 1 

countl countl + 1 
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2: 

out: 

count2 = count2 + 1 
Range ( 11 count2 11 ) countl 

'To calculate mean of group 1 
sumnglnew = O 

For Il = 1 To NGl 
sumnglnew = sumnglnew + yibar(Ar(Il)) 

Next Il 
sumnglnew 
sumng2new 

= sumnglnew / NGl 
0 

For i2 = 1 To b 

indl = O 
For j = 1 To NGl 

If (i2 = Ar(j)) Then 
indl = 1 

End If 
Next j 

GoTo out: 

If (indl = 1) Then 
i2 = i2 + 1 

GoTo 2: 
End If 

sumng2new = sumng2new + yibar(i2) 
Next i2 

sumng2new = sumng2new / NG2 

'Calculate the pseudo statistic 
fpseudo = Abs(sumnglnew - sumng2new) 
'Range( 11 pseudo 11 ).0ffset(count2, O) = fpseudo 
'increment nge 

If (fpseudo >= f) Then 
nge = nge + 1 

End If 
'!if last element in shuffle array is less than its limit the 
'! increment it by 1 

If ( (Ar {N) ) < 1 (N) ) Then 
Ar(N) = Ar(N) + 1 
GoTo 1: 

End If 
'if limit has been reached go back one element 
'you have to exit this loop first 

If (Ar(N) = l{N)) Then 
GoTo outofl: I Exit WHILE LOOPl AND ARRIVE AT** 

End If 

Loop Until countl > 20000000 'loop 1 

outofl: 
'if the limit of first element has reached that means you are done 
' come out of this loop too. Remember we are starting with the last 

element 
If (Ar(l) = 1(1)) Then 

GoTo outofO: 
End If 

•decrement N by 1 if limit has reached (go back 1 step) 
N = N - 1 
I1 = N 
' increment proceeding elements if they are within limit 
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cali = 2 

'! WHILE loop 2(To increment all proceeding elements if within 
'limit) 

outofW2: 

Do 
If (Ar(Il) < l(Il)) Then 

Ar(Il) = Ar(Il) + 1 
inl = O 

Else 

For j = Il + 1 To NGl 
inl = inl + 1 

If ((Ar(Il) + inl) < l(j)) Then 
Ar(j) = Ar(Il) + inl 

Else 

End If 
Next j 

cali = 1 

N j 

N j - 1 
cali = 1 
GOTO outofW2: 

GoTo outofW2: ' Exit this loop 

Il = N - 1 
'if the preceding element has reached limit go 
'back by 1 element 
cali = 1 
GoTo outofW2: 
•check for their preceding elements 

End If 

Loop Until cali 2 'WHILE 2 

Loop Until countl > 20000000 'loop o 

outofO: 
fini: 
End Sub 

Private Sub CommandButton3 Click() 
randomization -
End Sub 

Section 3 Visual Basic for Application Code for Conway Rule used with Microsoft 

Excel 

Note: Paste this part of code in sheet 1 module 
Private Sub CommandButtonl Click() 

'Name: Prasad Mahajan -
'Date: 12/15/2003 

'Input Variables: 
'm run length 
'n number of replications 
'value raw data 

'Output Variables 

94 



'purpose: To program conway rule 
'Here: To arrange data in rows and columns 

Dim i As Integer 'loop index 
Dim j As Integer 'loop index 
Dim k As Integer 'position specifier 
Dim m As Integer 'run length 
Dim n As Integer 'number of replications 
Dim value(l0000,10) 

'read data 
k = 5 

As Double 'raw data 

n = Worksheets("sheetl") .Cells(3, 1) 
m Worksheets("sheetl") .Cells(3, 2) 

'loops across the replications 
For j = 3 Ton+ 2 

'loops thru the run length 
For i = 6 Tom+ 5 

k = k + 1 
Worksheets("sheetl") .Cells(i, j) = Worksheets("sheetl") .Cells(k, 2) 
'store data in array value 
value(i - 5, j - 2) = Worksheets("sheetl") .Cells(i, j) 

Next i 
Next j 

End Sub 

Note: Paste this part of code in sheet 2 module 
Private Sub CommandButtonl Click() 

'Name: Prasad Mahajan -
'Date: 12/15/2003 
•purpose: To program conway rule 

HERE: To find the min and max of remaining data for each point in 
'each replication 

, variable declaration 

Dim i As Integer 'loop index 
Dim j As Integer 'loop index 
Dim k As Integer 'position specifier 
Dim m As Integer 'run length 
Dim n As Integer 'number of replications 

1 As Dim Integer 'temperory variable 
Dim value(l0000,10) As Double 'raw data 
Dim maxi As Double 'stores 
Dim mini As Double 'stores 

n Worksheets("sheetl") .Cells(3, 1) 
m Worksheets("sheetl") .Cells(3, 

• read data from sheet 1 
For j = 3 Ton+ 2 

For i = 6 Tom+ s 
k = k + 1 

2) 

the 
the 

maximum 
minimum 

value 
value 

value(i - 5, j - 2) 
Next i 

Worksheets("sheetl") .Cells(i, j) 

Next j 

' initialize variables 
1 ;:: 0 

For j 1 Ton 
1 = 1 + 2 
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•calculate max and mins for all replications 
For i = 1 Tom 

'set maxi and mini to very low and very high values 
maxi= -10 
mini= 10000 

Fork= i Tom 
If {value{k, j) > maxi) Then 

maxi= value{k, j) 
End If 
If {value{k, j) < mini) Then 

mini= value{k, j) 
End If 

Next k 
'display maxi and mini of remaining data for each data point in 
'each replication 
Worksheets("sheet2") .Cells{i + 4, 1) maxi 
Worksheets{"sheet2") .Cells{i + 4, 1 + 1) = mini 

Next i 
Next j 

End Sub 

Note: Paste this part of code in sheet 3 module 
'Name: Prasad Mahajan 
'Purpose To program Conway rule 

Here: To find the warm up length for each replication 

Private Sub CommandButtonl_Click{) 

'Variable declaration 
Dim i As Integer 'loop index 
Dim j As Integer 'loop index 
Dim n As Integer 'number of replications 
Dim m As Integer 'run length 
Dim k As Integer 'batch size 
Dim inl As Integer 'indicator variable 

n = Worksheets{"sheetl") .Cells{3, 1) 
m Worksheets("sheetl") .Cells{3, 2) 
k = 0 

'loop to go across replications 
For j = 1 Ton 

k = k + 2 
inl = O 

'loop through the run length 
For i = 1 Tom 

' if the number is neither the max nor the min in the remaining 
'series, then that is the truncation point 

If {(Worksheets{"sheetl") .Cells(i + 5, j + 2) < 
Worksheets("sheet2") .Cells(i + 4, k)) And 
(Worksheets("sheetl") .Cells(i + s, j + 2) > 

Worksheets("sheet2") .Cells{i + 4, k + 1))) Then 
inl = 1 
Worksheets("sheet3") .Cells(8, j + 3) = i 
Exit For 

End If 
Next i 

Next j 

End Sub 
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Section 4: Visual Basic for Application code for Crossing the means rule used with 

Microsoft Excel 

Private Sub CommandButtonl_Click() 

'Purpose: To model the crossing of means rule 
'Name: Prasad Mahajan 

'Input Variables 
'm run length 
'nO number of crossings desired 
'column "data" should contain raw data 

'Output Variables 
'sumzz number of times the mean is crossed; displayed in column "wj2" 
'warmuplen displays the warm up length; displayed in column warmup 
'Column "cumulative" displays the cumulative mean 

'Declare variables 

Dim i As Integer 
Dim m As Integer 
Dim inlAs Integer 
Dim il As Integer 
Dim wj(20000)As Integer 
Dim warmuplen As Integer 
Dim no As Integer 
Dim j As Integer 
Dim xx As Integer 
Dim Xl As Single 
Dim X2 As Single 
Dim mean As Single 
Dim sum As Single 
Dim sumzz As Single 

inl = O 
'Initialize variables 

, Read input values 

'loop index 
'run length 
'indicator variable 
'loop index 
'counts the number of times mean is crossed 
'stores the warm-up length 
'number of crossings 
'loop index 
'loop index 
'consecutive data point with X2 
'consecutive data point with Xl 
'cumulative mean of raw data 
'stores the cumulative sum 
'sums up the number of times mean crosses 

m = Range("runlen") .Offset(!, O) 
no= Range("crosses") .Offset(!, O) 
sum= O 
mean= O 

•calculate original mean 
sum= O 

For i = 1 Tom 
sum= sum+ Range("Data") .Offset(i, O) 

Next i 
sum= sum/ m 
Range("actual") = sum 
•calculate cumulative means 

For i = 1 Tom 
sum= o 

For j = 1 Toi 
sum= sum+ Range("data") .Offset(j, O) 

Next j 
Range("cumulative") .Offset(i, O) = sum / i 
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sum = sum I i 
For xx = 1 To m 

wj(xx) = o 
Next xx 

' loop for finding the number of times mean is crossed 

For il = 1 Toi 
Xl = Range( 11 cumulative 11 ) .Offset(il, O) 

X2 = Range( 11 cumulative 11 ) .Offset(il + 1, O) 
' check if mean is crossed or not 

If ((Xl > sum And X2 < sum) Or (Xl < sum And X2 > sum)) Then 
' increment wj if yes 
wj ( i ) = wj ( i ) + 1 
' if wj equals the prespecified number of crossings then steady 
'state has reached 

Else 
End If 

Next il 
finishl: 

sumzz = O 

If (wj(i) = no) Then 
warmuplen = i 
Range ( 11 warmup 11 ) • Off set ( 1, O) 
inl = 11 
GoTo finishl 

End If 

For xx= 1 Tom 
sumzz = sumzz + wj(xx) 

Next xx 

Range("wj2") .Offset(i, o) = sumzz 

If (inl = 11) Then GOTO finish: 
Next i 

finish: 

End Sub 
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APPENDIXB 

Section 1 K-S Test for Normal Distribution 

This version of the test is developed by H.W. Lilliefors (1967) [28]. The test is based 
on a comparison between the cumulative distributions of the empirical and normal 
distribution. 
The hypotheses are: 

H0: The failure times are normal 
H 1: The failure times are not normal 

The test statistic is D11 = max { D 1,D2) where-

D,= max <l>(--)--{ 
Y;-Y i-1} 

1s;s,,, s m 

D2 = max{-i -<I>(-Y_i -_Y_)} 
ISiS,i 11l S 

- ,,, Y· 
Y=L-' 

i=I m 

Ill 

L<Y;-Y)2 
s2 = ..:..i=-=-1 __ _ 

m-1 
If D,,, < Dcric, then accept H0; otherwise accept H1• The value of Der;, can be found in the 
table in Appendix D. 

Section 2 Anderson Darling Test for Testing Normality 

This test is explained in context of the modified SPC method as given by Stewart 
Robinson. The test is applied to last half of the batch means data. 
Let 
b = number of batches 
sl = int (( b/2) + 0.5 ) + I 
n = (b - sl) 
Initially there will be b batch means. Retain only the batch means from batches sl to b. 
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Y,,,; = batch means for i = sl to b 

Y,,,;.~ = Y;' s s sorted in ascending order 

{ 

II - - } [ 4 25 J AD= -11 - ~ (((2 x i)-1)/ n) x [1og(¢(.Y;,) + log(l-¢(.Y;,)] x (I+;) - <-;;i-) 

Significance level Critical Value 
10 % 0.632 
5% 0.75 
2.5% 0.82 
1% 1.029 

Null hypothesis that the data is normal is rejected if AD < critical value for a given level 
of significance. 

Section 3 Von Neumann's Test for Autocorrelation 

This test is modified and is given in context with the modified SPC method. 
m = run length 
k = batch size 
b = number of batches 
sf = int( b/2+0.5) + I 

"' L Y; 
i=((s/-1 ):rk )+I mean=-----

11 

n = m - ( ((sl - I) x k ) + 1) 

b 

~Y,,,; -M)(Y,,,;+i -M) (Y -M)2 + (Y -M)2 
Von Neumann's test statistic = ,=s1 + msl mb 

b b 

LYmi -M 2Lfmi -M 
i=sl i=sl 

The hypothesis of no autocorrelation is rejected if the value of test statistic is > 1.9 
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APPENDIXC 

Results for Approximate Randomization Test 

Following are the results for Randomization Test when the changes suggested in section 5.1 are incorporated. 

Run length = 1000 hours, NS =1999 

Average 
Average Run Computing Time % Change %Change in 

Model Final Mean length (hours) Final MSE Final Var (seconds) in MSE variance 
Original 22.747 1000 0.060 0.0212 1220 -7.73 -0.14 

Modified 22.747 1000 0.060 0.0212 14.4 -7.78 -0.28 
Run length = 6200 hours, NS =1999 

Average 
Average Run Computing Time % Change %Change in 

Model Final Mean length (hours) Final MSE Final Var (seconds) in MSE variance 
Original 22.6201 1000 0.060 0.019 750 -0.24 -7.21 

Modified 22.622 1000 0.0663 0.0188 17 -9.54 -0.42 

Table C. l: Results for Randomization Test on Type III Model for Run Lengths 1000 Hours and 5200 Hours 



APPENDIXD 

Siman Code for Experimental Model 

Model statements for module: Create 1 

17$ CREATE, 1,MinutesToBaseTime(O.O),Entity 
1:MinutesToBaseTime(EXPO( 4.5 )) :NEXT(18$); 

18$ 
1:NEXT(O$); 

ASSIGN: Create 1.NumberOut=Create l.NumberOut + 

0$ 

9$ 

26$ 
25$ 

24$ 
23$ 
71$ 

10$ 

77$ 
76$ 

Model statements for module: Decide 1 

BRANCH, 1: 
With,50/100,1$,Yes: 
With,30/100,5$,Yes: 
Else,9$,Yes; 

Model statements for module: Process 15 

ASSIGN: T3 to C2.Numberin=T3 to C2.Numberin + 1: 
T3 to C2.WIP=T3 to C2.WIP+l; 

QUEUE, T3 to C2.Queue; 
SEIZE, 2,VA: 

Cell C2,l:NEXT(24$); 

DELAY: EXPO( 0.9 ) , , VA; 
RELEASE: Cell C2,1; 
ASSIGN: T3 to C2.NumberOut=T3 to C2.Number0ut + 

T3 to C2.WIP=T3 to C2.WIP-1:NEXT(10$); 

Model statements for module: Process 16 

ASSIGN: T3 to Cl.Numberin=T3 to Cl.Numberin + 1: 

QUEUE, 
SEIZE, 

T3 to Cl.WIP=T3 to Cl.WIP+l; 
T3 to Cl.Queue; 
2,VA: 
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75$ 
74$ 
122$ 

11$ 

128$ 
127$ 

126$ 
125$ 
173$ 

12$ 

179$ 
178$ 

177$ 
176$ 
224$ 

13$ 

230$ 
229$ 

228$ 
227$ 
275$ 

DELAY: 
RELEASE: 
ASSIGN: 

Cell Cl,l:NEXT(75$); 

EXPO ( 0. 5 ) , , VA; 
Cell Cl,l; 
T3 to Cl.Number0ut=T3 to Cl.NumberOut + 1: 
T3 to Cl.WIP=T3 to Cl.WIP-1:NEXT(11$); 

Model statements for module: Process 17 

ASSIGN: 

QUEUE, 
SEIZE, 

DELAY: 
RELEASE: 
ASSIGN: 

T3 to C4.Numberin=T3 to C4.Numberin + 1: 
T3 to C4.WIP=T3 to C4.WIP+l; 
T3 to C4.Queue; 
2,VA: 
Cell C4,l:NEXT(l26$); 

EXP0(0.7 ),,VA; 
Cell C4,l; 
T3 to C4.Number0ut=T3 to C4.Number0ut + 1: 
T3 to C4.WIP=T3 to C4.WIP-l:NEXT(12$); 

Model statements for module: Process 18 

ASSIGN: 

QUEUE, 
SEIZE, 

DELAY: 
RELEASE: 
ASSIGN: 

T3 to C5.Numberin=T3 to C5.Numberin + 1: 
T3 to CS.WIP=T3 to C5.WIP+l; 
T3 to cs.Queue; 
2, VA: 
Cell CS,l:NEXT(l77$); 

EXPO ( 0 . 1 ) , , VA; 
Cell CS,1; 
T3 to C5.NumberOut=T3 to CS.NumberOut + 1: 
T3 to CS.WIP=T3 to C5.WIP-l:NEXT(l3$); 

Model statements for module: Process 19 

ASSIGN: 

QUEUE, 
SEIZE, 

DELAY: 
RELEASE: 
ASSIGN: 

T3 to C3.Numberin=T3 to C3.Numberin + 1: 
T3 to C3.WIP=T3 to C3.WIP+l; 
T3 to CJ.Queue; 
2,VA: 
Cell C3,l:NEXT(228$); 

EXPO ( 1. 4 ) , , VA; 
Cell C3,1; 
T3 to C3.Number0ut=T3 to C3.Number0ut + 1: 
T3 to C3.WIP=T3 to C3.WIP-1:NEXT(6$); 
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6$ 
l; 
278$ 

1$ 

282$ 
281$ 

280$ 
279$ 
327$ 

2$ 

333$ 
332$ 

331$ 
330$ 
378$ 

3$ 

384$ 
383$ 

382$ 
381$ 
429$ 

Model statements for module: Dispose 1 

ASSIGN: Dispose l.NumberOut=Dispose 1.NumberOut + 

DISPOSE: Yes; 

Model statements for module: Process 1 

ASSIGN: 

QUEUE, 
SEIZE, 

DELAY: 
RELEASE: 
ASSIGN: 

C3.Numberin=C3.Numberin + 1: 
C3.WIP=C3.WIP+l; 
C3.Queue; 
2,VA: 
Cell C3,l:NEXT(280$}; 

EXPO ( 0 . 4 } , , VA; 
Cell C3,l; 
C3.NumberOut=C3.NumberOut + 1: 
C3.WIP=C3.WIP-1:NEXT(2$}; 

Model statements for module: Process 2 

ASSIGN: 

QUEUE, 
SEIZE, 

DELAY: 
RELEASE: 
ASSIGN: 

C2.Numberin=C2.Numberin + 1: 
C2.WIP=C2.WIP+l; 
C2.Queue; 
2,VA: 
Cell C2,l:NEXT(331$}; 

EXPO( 0.5 } , ,VA; 
Cell C2,l; 
C2.NumberOut=C2.NumberOut + 1: 
C2.WIP=C2.WIP-l:NEXT(3$); 

Model statements for module: Process 3 

ASSIGN: 

QUEUE, 
SEIZE, 

DELAY: 
RELEASE: 
ASSIGN: 

Cl.Numberin=Cl.Numberin + 1: 
Cl.WIP=Cl.WIP+l; 
Cl.Queue; 
2,VA: 
Cell Cl,1:NEXT(382$}; 

EXPO ( 0 . 6 ) , , VA; 
Cell Cl,1; 
Cl.NumberOut=Cl.NumberOut + 1: 
Cl.WIP=Cl.WIP-l:NEXT(4$); 
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i 

4$ 

435$ 
434$ 

433$ 
432$ 
480$ 

5$ 

486$ 
485$ 

484$ 
483$ 
531$ 

7$ 

537$ 
536$ 

535$ 
534$ 
582$ 

8$ 

588$ 
587$ 

Model statements for module: Process 4 

ASSIGN: CS.Numberin=CS.Numberin + 1: 
CS.WIP=CS.WIP+l; 

QUEUE, CS.Queue; 
SEIZE, 2,VA: 

Cell CS,l:NEXT(433$); 

DELAY: EXPO( 1.2 > I I VA; 
RELEASE: Cell CS,1; 
ASSIGN: CS.NumberOut=CS.NumberOut + 1: 

C5.WIP=C5.WIP-1:NEXT(6$); 

Model statements for module: Process s 

ASSIGN: 

QUEUE, 
SEIZE, 

DELAY: 
RELEASE: 
ASSIGN: 

C4.Numberin=C4.Numberin + 1: 
C4.WIP=C4.WIP+l; 
C4.Queue; 
2,VA: 
Cell C4,l:NEXT(484$); 

EXPO(l.2 ),,VA; 
Cell C4, 1; 
C4.NumberOut=C4.NumberOut + 1: 
C4.WIP=C4.WIP-l:NEXT(7$); 

Model statements for module: Process 13 

ASSIGN: 

QUEUE, 
SEIZE, 

DELAY: 
RELEASE: 
ASSIGN: 

T2 to Cl.Numberin=T2 to Cl.Numberin + 1: 
T2 to Cl.WIP=T2 to Cl.WIP+l; 
T2 to Cl.Queue; 
2,VA: 
Cell Cl,l:NEXT(535$); 

EXPO ( 0 . 8 ) , , VA; 
Cell Cl,l; 
T2 to Cl.Number0ut=T2 to Cl.NumberOut + 1: 
T2 to Cl.WIP=T2 to Cl.WIP-1:NEXT(8$); 

Model statements for module: Process 14 

ASSIGN: 

QUEUE, 
SEIZE, 

T2 to C3.Numberin=T2 to C3.Numberin + 1: 
T2 to C3.WIP=T2 to C3.WIP+l; 
T2 to C3.Queue; 
2,VA: 
Cell C3,1:NEXT(S86$); 
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586$ 
585$ 
633$ 

DELAY: 
RELEASE: 
ASSIGN: 

EXPO ( 1 ) , , VA; 
Cell C3,1; 
T2 to C3.Number0ut=T2 to C3.Number0ut + 1: 
T2 to C3.WIP=T2 to C3.WIP-1:NEXT(6$); 

Model statements for module: Create 2 

636$ CREATE, 
l,MinutesToBaseTime(O.O),new:MinutesToBaseTime(O) ,l:NEXT(637$); 

637$ ASSIGN: 
l:NEXT{14$); 

Flagman.NumberOut=Flagman.NumberOut + 

Model statements for module: Delay 1 

14$ DELAY: 1,,0ther:NEXT(15$); 

Model statements for module: ReadWrite 1 

15$ WRITE, File l, 11 {IS,3X,F6.3)": 
BaTCH, 
EntitiesWIP{Entity 1) :NEXT(l6$); 

Model statements for module: Assign 1 

16$ ASSIGN: BaTCH=bAtch+l:NEXT(14$); 

Model statements for module: Variable 2 
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