
DIMENSION UPDATES IN DATA WAREHOUSES

By

HAIHONGMA

Bachelor of Science

Dalian University of Technology

Dalian, P. R. China

1992

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
In partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December 2004

DIMENSION UPDATES IN DATA WAREHOUSES

Thesis Approved:

~ - £ ~ - ~
Thesis Advisor

11

ACKNOWLEDGEMENTS

I would like to express my appreciation to my advisor, Dr. G. E. Hedrick for his

guidance and understanding. Without his help, I would not have finished my thesis smoothly

and timely. Great thanks are also to my other committee members: Dr. J. P. Chandler and Dr.

B. Mayfield, whose guidance, assistance, encouragement, and friendship were invaluable.

Thanks to Computer Science Department, which gave me a chance to study and earn

my master's degree. Also thanks to all the faculty members both in Tulsa and Stillwater

campus who have helped me in this period.

Special thanks to my parents and my sisters for their love and support. And I would

like to devote this piece of work to my daughter Grace Xu and my husband Dapeng Xu, the

two persons I love deeply.

lll

TABLE OF CONTENTS

Chapter Page

1

2

3

4

Introduction 1

1.1 Data Warehouse Concepts . 1
1.2 Data Warehouse Refreshment · . · · . · · .. · 2

Dimensional Data Model 5

2.1 Entity Relationship Model vs. Dimensional Model · · · · · · · · · · · 5
2.2 Star Schema . 7

Related Work

Dimension Update Model .

10

12

4.1 Dataflow in Data Warehouse · · · · · · · · · · · · · 12
4.2 Dimension Maintenance . 14
4.3 Dimension Schema & Instance ·. · · · ·.... 16
4.4 Dimension Storage . 18
4.5 Dimension Operations · · · · · · .. · . 19
4.6 Dimension Consistency · · · · · · . · . . 20

5 Dimension Update Strategy . 22

5 .1 Motivation . 22
5 .2 Dimension Update Algorithm · . · · · · 24

6 Dimension Update Implementation · · · · · · · · · · · · · · · · · 29

6.1 Dimension Update Model Simulation · · · · · · · · · · · · · · · · 29
6.2 Experiments and Performance · . · · · · · · · · · · · · · · · · · 30

7 Conclusions and Future Work · · · · · · 36

Bibliography

Appendix

iv

38

40

Figure

1.1

2.1

2.2

4.1

4.2

4.3

4.4

LIST OF FIGURES

A Data Warehouse Structure ...

A Simplified ER Schema for a Sales Fact · · · · · · · · · · · · · · · · · ·

A Typical Star Schema for a Sales Fact · · · · · · · · · · · · · · · · · · ·

Dataflow Topology in a Data Warehouse ·

Workflow of Dimension Updates · · · · · · · · · · · · · · · · ·

Abstract Dimension Schema & Instance

Abstract Dimension Instance Updates · · · · · · · · · · · · · · · · · · ·

Page

4

9

9

14

15

17

20

4.5 Dimension Inconsistency · 21

6.1 Creation of a Data Warehouse Dimension Table · · · · · · · · · · · · · · · · · 32

6.2 Source Databases Installed in SQL Server 7.0 · · · · · · · · · · · · · · · · 32

6.3 Star Schema of a Sample Data Warehouse ·. · · · · · · · · · · · · · · · 33

6.4 Data Cubes in SQL Server 7.0 OLAP Services · · · · · · · · · · · · · · · · · 34

6.5 Dimension Hierarchies of a Data Cube · · · · · · · · · · · · · · · · · · 34

6.6 Performance of Delta Updates Algorithm · · · · · · · · · · · · · · · · · 35

6.7 Performance of Optimized Insertion Operation · · · · · · · · · · · · · · · · · · 35

V

CHAPTER I

INTRODUCTION

1.1 Data Warehouse Concepts

Relational databases are used widely to maintain data that document everyday operations.

Recently, the importance of decision support applications has increased significantly as

organizations found it necessary to use the data they collected through their operational

systems for future planning and decision making. Traditional databases and spreadsheets

do not fully support the requirements for advanced data analysis. In the early 1990s, data

warehouses emerged as systems providing information for strategic decision making. Mr.

W. Inmon, the father of data warehousing, provided the formal definition in 1992: the

data warehouse is an integrated, subject-oriented, time-variant, non-volatile database that

provides support for decision making. The data in a data warehouse are pulled together

from various data sources, and classified around meaningful entities (subjects). Data

warehouses contain both historical (5 to IO years old) and nearly current data. Once data

enter the data warehouse, they are relatively static. The data warehouse is always

growing [1].

Figure 1.1 shows a typical data warehouse structure [2]. A data warehouse needs to

support data access (extraction process) from many sources such as database systems (e.g.

a relational database), external data sources (e.g. information from other company), files

of standard applications (e.g. Excel) and other document (e.g. WWW). They are usually

I

heterogeneous, so they need to be cleaned (finding and resolving inconsistencies) and

transformed among different data formats before being loaded into the data warehouse.

Possible applications on data warehouses include [3]:

• multidimensional analysis (OLAP , On-Line Analytic Processing)

• report and query tools

• geographic information systems (GIS)

• data mining (finding knowledge from dataset with unknown patterns)

• decision support systems (DSS)

• executive information systems (EIS)

• statistics

The data warehouse provides the best opportunity for data analysis. OLAP is the

vehicle to carry out the analysis. In today's data warehousing environment, OLAP

becomes an integral part.

1.2 Data Warehouse Refreshment

The refreshment of a data warehouse is an important process which determines the

usability of the data collected and aggregated from various sources. After the initial

loading process, we can maintain the data warehouse and keep it up-to-date by using two

methods [4]:

• UPDATE - incremental maintenance, the process of identifying differential

changes in the source tables and propagating the changed data to the data

warehouse

2

• RELOAD - full refreshment, the process of completely erasing the contents of

tables and reloading with fresh data

RELOAD is a much simpler option than UPDATE, but the jobs can take a long time

to run. Compared to sizes of data warehouses (usually from several GegaBype to

TeraBype), the changes are generally very small in scale. Reprocessing tens or hundreds

of millions of rows to accommodate a small volume of changed data is extremely

expensive. UPDATE is a cheaper option.

There are two methods to identify the changes [5]:

• Source-driven refreshment is triggered by the changed source systems.

• Client-driven refreshment is triggered on demand by users.

The refreshment processes can be carried out in the following two ways

• Immediate refresh: refreshment once the source changes are committed.

• Delayed refresh: batch refreshment at regular intervals, for example, every day,

every week etc

3

Visualization
OLAP

Aggregation
Customization

i
Data Warehouse

Transform
Clean

Extract

Data source

Data Mining

Figure I.I: A Data Warehouse Structure

4

CHAPTER2

DIMENSIONAL DATA MODEL

2.1 Entity Relationship Model vs. Dimensional Model

Online Transaction Processing (OLTP) is profoundly different from data warehousing. [6]

listed all differences from various aspects, such as users, data content, data structure and

administration etc. Table 2.1 shows some of important different characteristics.

Table 2.1 Differences between Data Warehouse Data and Operational Data

Data Warehouse Data Operational Data

Long time frame Short time frame

Static Rapid changes

Data is usually summarized Record -level access

Ad hoc query access Standard transactions

Updated periodically Updated in real time

Entity Relationship Model (ER Model) removes data redundancy, ensures data

consistency and expresses microscopic relationships. It should be used in all legacy

OLTP applications based on relational technology. This is the best way to achieve the

best transaction performance and the highest ongoing data integrity. Any transaction that

5

changes data only needs to touch the database in one place. This is the secret behind the

phenomenal improvement in transaction processing speed since the early 1980s [7].

Figure 2.1 shows a simple ER model [8].

ER models designed to provide efficient data access for large numbers of transactions

with very few records failed in the decision support systems which involve complex

queries over very large numbers of records. There are some problems with ER model [9]:

•

•

•

An ER model cannot be easily understood or remembered

Software often cannot effectively query a general ER model

Poor performance on retrieval of data .

A dimensional data model contains the same information as an ER model but

packages the data in a symmetric format in order to achieve user friendliness, query

performance and resilience to change. The main components of a dimensional data model

are fact tables and dimension tables. Dimensional modeling is the only viable technique

of delivering data to end users in a data warehouse [9]. Figure 2.2 shows a typical

dimensional data model. There is a single fact table and four dimension tables. Each

dimension table interacts with the fact table in a one-to-many relationship.

There are three physical architectures in the dimensional model according to the

representations of the fact table and the dimensional tables [10]: Star Schema, Snowflake

Schema and Galaxy Schema. Among them, Star Schema is the most popular one. I will

introduce Star Schema in detail in the following section.

6

2.2 Star Schema

Star Schema typically has one large central table (called the fact table) and a set of

smaller tables (called dimension tables) in a radial pattern around the fact table. Figure

2.2 is a simple star schema for supermarket sales data. The sales fact table is in the center.

Around this fact table are four dimension tables of product, time, store and promotion.

2.2.1 Fact Table

A fact table stores measures and a composite key, and contains the lowest level of

transaction information that is of interest to the end users.

A fact is a subject that needs to be analyzed to understand its behavior. Measures (also

called fact attributes, or just facts) represent the properties of the fact that the user wants

to optimize. Measures are usually numeric and additive data, and can be summarized (or

aggregated) in various ways in order to extract further information. There are three types

of measures according to additivity [11]:

• Full-additive: can summarize it by adding values together across any dimensions.

• Semi-additive: can be summarized across some dimension.

• Non-additive: cannot be added together across any dimensions.

A full-additive measure is desired because there are no limitations on how to use it.,

Semi-additive measures can be stored in the fact tables, but we must pay special attention

on how to use them. A non-additive measure is unacceptable. The solution is to break it

down into its full additive components, or we can use serial numbers to summarize the

records.

7

A fact table has a composite key made up of two or more foreign keys, always

indicating a many - to - many relationship.

2.2.2 Dimension Table

A dimension table stores hierarchical attributes, non-hierarchical attributes and a primary

key.

The dimension tables are strongly denormalized and are used to select measures of

interest based on user queries. The best attributes are textual, discrete, and used as the

source of constraints and row headers in the user's answer set [7]. A dimension may be

partitioned into a hierarchy of levels. Those attributes that organize a hierarchy of its

dimension table are hierarchical attributes, which define the aggregation granularity. On

the other hand, the attributes that do not organize a hierarchy are non-hierarchical

attributes, which contain additional information about the hierarchical attributes. They

cannot be used for aggregation. For instance, aggregating sales according to the address

of the store would not make sense.

Each dimension table has a primary key that corresponds exactly to one of the

component of the composite key in the fact table.

8

Brand District

Product

Size Time Region

Quarter Year

Figure 2.1: A Simplified ER Schema for a Sales Fact

Store
Dimension

Time Sales Product
Dimension Fact Dimension

Customer
Dimension

Figure 2.2: A Typical Star Schema for a Sales Fact

9

CHAPTER3

RELATED WORK

After the initial process of loading data into a data warehouse, we can use reload or

incremental update method to maintain the data warehouse. The fact table is changed

frequently with the increase in the number of rows. The dimension tables are relatively

static compared to the fact tables. A dimension table may change with the increase in the

number of rows or with changes to the attributes. Most research on data warehouses

focuses on fact tables and incremental view maintenance. However, the changes in

dimension instances should also be taken into consideration.

In [7], Ralph Kimball identifies three types of slowly changing dimensions according

to the maintenance technique: Type 1: overwriting the old value; Type 2: creating an

additional record; Type 3: creating a new field within the old record to record the new

value. Microsoft presents alternative definitions of Kimball's dimension types based on

the most important and distinguishing characteristics: reflection of historical events.

• Type 1: rewriting history;

• Type2: keeping tracking of history;

• Type 3: keeping track of versions of parallel.

[12, 13] introduced a multidimensional model that includes a framework for

dimension updates and a set of dimension update operators. Algorithm implementations

10

focus on the comparison of the normalized and the denormalized structures. However,

they did not mention the base data warehouse updates.

[14] introduced the consistency of insertion and reclassification operations, defined

the conflict level in each operation and explained the properties of the operation conflicts

and applications in traditional and temporal data warehouses. Nonetheless, there is no

formal algorithm and practical implementation associated with the insertion and

reclassification operations.

[15] proposed summary delta method for incremental maintenance of aggregation

views defined over the same base table. How ever, the work mostly focuses on the

updates of the fact table. It has only a short discussion of the updates of the dimension

tables.

In this thesis, I propose a dimension update model for maintaining a data warehouse, and

a general dimension update strategy with the goal of reducing the system unavailable

time and simplifying update processes. The remainder of this thesis is organized as

follows: In chapter 4, I introduce the dimension update model, divide the update jobs into

two phases Base Warehouse Updates and Cubes Updates, and formally define the

dimension concepts and its properties. Chapter 4 introduces the dimension update

strategy with algorithms and examples. A simulation study of the update strategy, based

on an experimental implementation, is presented in Chapter 6. Conclusions and future

work appear in Chapter 7.

11

CHAPTER4

DIMENSION UPDATE MODEL

4.1 Dataflow in Data Warehouse

A simple data warehouse structure is presented in Figure 1.1. In the following paragraph,

I propose a dimension update model in data warehouses. The overall dataflow is shown

in Figure 4.1. A data warehouse is a combination of three different components as

follows:

• Data staging area

• Data warehouse

• Datamarts

The data staging area is a set of database tables that will be used to prepare the source

data from the operational systems for use in a data warehouse. It provides a simple

environment from which we can create data transformation and load the data into the

warehouse. There is no query and presentation services in the data staging area. Both

normalized and denormalized structures are acceptable.

The data warehouse is a set of data tables that will contain the same information as an

0 L TP system, the lowest transaction level of source data in a star schema format. We call

this stage the base warehouse to reduce terminology confusion in the remaining part of

the thesis.

12

A data mart is a logical subset of a data warehouse that has a hierarchical structure

typically referred to as a cube. It can be used only in specific department and contains

only the data which are relevant for the said department. A data mart enables faster

response to queries. Cubes contain measures and dimensions. Measures are typically

derived from the fact table, whereas dimensions are derived from the dimension tables.

The advantages of building a dependent data mart [23] rather than simply letting users

launch queries against a base data warehouse is as follows

• The performance is better. The limited scope of the data mart tends to make end

users navigation easier. Or a business unit may have additional requirement for

data or functionality that the corporate data warehouse does not address.

• Flexibility to change or add additional data structures while minimizing the

impact on end users.

There are two possible exceptions: 1) If the cost and the time of creating an enterprise

base data warehouse are considered, data marts provide solutions for smaller businesses

as well as focused segments of a company's decision maker. 2) Data analysis is

performed directly on the base warehouse. These kinds of data flows are shown in Figure

4.1 using the dotted lines. I do not consider these exceptions in this thesis.

13

Data Source Data Warehouse

Data Analysis

t
....................................... • ... 1 .

Figure 4.1 Dataflow Topology in a Data Warehouse

4.2 Dimension Maintenance

A data warehouse uses a star schema to contain information. The main components of a

star schema are fact tables and dimension tables. A fact table is changed frequently with

the increase in the number of rows. A dimension table is relatively static. In this thesis, I

focus on the dimension update strategy.

According to the dataflow model we proposed, the dimension maintenance process

can be divided into two phases:

• Phase I: Base dimension updates - maintaining the base data warehouse

dimensions.

• Phase II: Cube dimension updates - maintaining the data mart dimensions.

Updating the base dimensions is somewhat different from updating cube dimensions.

The base dimension contains the same information as the operating data in a

denormalized structure, and it does not have to be a hierarchy. Cube dimension must be

14

defined as part of a hierarchy. A non-hierarchical dimension attribute such as color is

stored in an atomic dimension table which contains only one level. In the following

sections, I will give formal definitions of a cube dimension and its properties,

We use Figure 4.2 to demonstrate the process of updates. The monitors are responsible

for identifying changes in the source data, and notifying the base warehouse. The

integrator receives the source data, performs any necessary operations, and tells the base

warehouse to store the data. After updating the base dimension, the next step is to update

all cube dimensions.

integrator integrator

Source Data Base Warehouse Cube
Update Update u- Monitor

Preparation Preparation

Update Update

Figure 4.2: Workflow of Dimension Updates

We review the fundamental notions used in the following sections [1 7, 18]:

• Functional dependency: Let A and B be attributes in a database. B is said to be

functionally dependent on A or A functionally determines B, denoted by A -> B,

if and only if for each specific value a E A, there exits exactly one value b E B.

• Partial order: A relation Ron a set L is reflexive, asymmetric and transitive, we

call L partial order. The symbol "::=5" denotes the direct relation, and "·::=5*" denotes

the indirect relation.

15

4.3 Dimension Schema & Instance

Dimension is a structural attribute acting as an index for identifying measures. A

dimension is organized into a hierarchy of levels. The below definitions are based on the

multidimensional model [12, 14, 19, 20].

Definition 4.1 (Dimension Schema (DS))

Dimension Schema is a directed acyclic graph Ds = (Ls, Rs), Where:

Ds: schema name

Ls: a set of levels (nodes)

Rs: a set of roll-up functions (directed edges)

With the following properties:

1) a unique bottom level It , indegree(lt) = O;

a unique implicit top level Ian, outdegree(la11) = 0

2) 3 Ii , lj E L, Ii -> lj, then there is no other path from Ii to lj

3) Every level has a value domain, denoted dom (I). For example, dom (la11) = { all }

Definition 4.2 (Dimension Instance (DI))

Dimension Instance over a dimension schema Ds = (Ls, Rs) is a directed acyclic graph D1

= (Li, R1), Where:

D1: instance name

L1: a set of disjoint level sets (nodes)

R1: a set of roll-up functions (directed edges)

With the following properties:

16

1) L1 = Mu U M12 U ... U Min , where Mli is the member set of Ii E Ls

2) 3 Ii , lj E L, Ii -> lj, then every member of Ii is connected one member of lj

Example 4.1:

Figure 4.3 (a) shows an abstract dimension schema. There are 4 levels, L = {T, A, B, C}

the bottom level is T. The roll-up functions are R = {T->A, T->B, A->C, B->C, C->all}.

Figure 4.3 (b) shows an abstract dimension instance based on Figure 4.3 (a). L1 = { {tl,

t2}, {al, a2}, {bl}, {cl, c2} }, R1 = { tl->al, t2->a2, tl->bl, t2->bl, al->cl, a2->c2, bl

>c I, b 1->c2, c I ->all, c2->all}

all

l
C

/~
A B

"' / T

(a)

all

I\

(b)

Figure 4.3: Abstract Dimension Schema & Instance

4.4 Dimension Storage

We use the relational model to store dimensions. A single flat table represents a

dimension instance.

Definition 4.3 (Dimension Representation (DR))

17

A dimension over a dimension schema Ds = (Ls, Rs) is represented by a single flat table,

Row = (LR, RR), where:

LR is a set of levels, LR c Ls

RR is a set of relations. The relation is denoted by "->", meaning functional

dependency, RR c Rs

Column = (LC, RC), where:

LC is a member set of a level

RC is a set of relations between members of a level. The relation is denoted by

"II" (meaning independency) or ".H'" (meaning dependency).

Example 4.2:

The abstract dimension instance showed in Figure 4.3 (b) can be stored in table 4.1 as

follows:

Table 4.1 : Dimension Representation Example

T A B C

t1 al bl cl

t2 a2 bl c2

4.5 Dimension Operations

In this thesis, we study dimension instance update. The terms, dimension instance update

and dimension update, will be used interchangeably. Because any dimension change can

be interpreted as a series of insertions and deletions, I present a formal structure of

dimension updates based on the two primary operations.

18

The insertion operation inserts a new member into a level and connects the member to

one member of every level immediately above this level. The deletion operation deletes a

member of a level and moves all outgoing edges.

Definition 4.4 (Instance Insertion)

Given a dimension D1 = (L1, R1), 3 Lk c L1, the set of level functionally determined by Lk

is represented as follows: Successor(Lk) = { Lx I Lk ~ Lx } . After inserting a member la

to the level Lk, la E Lk, la ~ Ix where Ix E Successor (Lk)

Definition 4.5 (Instance Deletion)

Given a dimension D1 = (L1, R1), 3 Lk c L 1, la E L k· the set of level functionally

determined by Lk is represented as follows: Successor(Lk) = { Lx I Lk ~ Lx } . The set of

level functionally determining Lk is represented as follows: Predecessor(Lk) = { Ly I Ly

~ Lk } . After deleting the member Ia of the level Lk, la ft. Lk, ly ~ Ix where Ix E Successor

(Lk), ly E Predecessor (Lk)

Example4.3

Figure 4.4 (a) shows an insertion operation. t3 is inserted to level T of the dimension,

adding the edges: t3 -> a1, t3 -> b1. Figure 4.4 (b) shows a deletion operation. t2 is deleted

from level T of the dimension, the edges t2 -> a2, ti -> b 1 are also been deleted.

19

all all

/\ /\
CJ

/~ /~
a1 a2 b1

' ····-.. ~" "'~·-........ ············-

(a) Insertion (b) Deletion

Figure 4.4: Abstract Dimension Instance Updates

4.6 Dimension Consistency

In data warehouse, data consistency is a big concern. The current load should be a full

and consistent set of data. When updating the dimension, we need to make sure that the

dimension is consistent after any change.

Definition 4.6 (Dimension Consistency)

A dimension over a dimension schema Ds = (Ls, Rs) is consistent if 3 Ii, lj E L, Ii ~ + lj,

and from one member of Ii it can lead to the same member of lj no mater how many paths

exits between them.

Example 4.4:

20

Figure 4.3 (b) shows a consistent dimension instance. If b 1->c I is deleted, then the

dimension is not consistent because ti -<+cl and ti -< + c2 at the same time. Figure 4.5

shows the result.

all

I\

II\

Figure 4.5: Dimension Inconsistency

21

5.1 Motivation

CHAPTERS

DIMENSION UPDATE STRATEGY

A data warehouse can be formally understood as layers of materialized views (A view is

a derived relation defined in terms of base relation. A view can be materialized by storing

its extent in the database [16]). Efficient view maintenance is a big challenge. There are

much research effort in this area [12, 15, 16, 21].

The data warehouse is unavailable to user queries when it is updated. The important

factor as the performance measure is the system unavailable time. For efficient updates,

we use "managed load updates" [9] compared to "transactional updates" of operational

systems. The update process triggered by users is deferred and applied to the data

warehouse in large batches at regular interval. For example, source changes received

during the day are applied to the data warehouse in a nightly batch window. Nowadays

the cycle of the updates is getting shorter and the time window available for making the

data warehouse update is required to be shrunken more and more [21]. Moreover, many

businesses have international operations in multiple time zones, so there is no convenient

down time, a "night" or "weekend" when all of updates can be batched and processed

together. Hence, it is critical to select an efficient update strategy.

We have made the following assumptions or restrictions in the dimension update

model we proposed in previous chapter.

22

• The source data in the staging area have been cleaned and transformed m a

normalized structure before being applied to the update process.

• There is only one base data warehouse in a star schema, which contains the lowest

level data as the operating data. The dimension tables are strongly denormalized.

A dimension may not be partitioned into a hierarchy of levels.

• Data cubes are subsets of the base data warehouse. A dimension is organized into

a hierarchy of levels. An atomic dimension (a dimension with just one level)

contains a non-hierarchical attribute.

• For purpose of simplicity, I assume that both the data warehouse and the sources

use the relational model.

The goal is to minimize the time needed for updates, i.e. minimize the unavailable

time of the data warehouse, and to simplify the process of updates. The general strategy

is:

• Phase I - Base Dimension updates

Split the update work into two functions: propagate and refresh. The propagation

function is to prepare for the changes and does not affect the base warehouse; the

refresh function applies the changes to the data warehouse.

• Phase II - Cube Dimension updates

Recompute the dimension from the scratch, i.e. from the parent dimension table in the

base dimension.

5.2 Dimension Update Algorithm

5.2.1 Base Dimension Updates

23

The size of a base warehouse is commonly much bigger in scale than that of its changes

Moreover, the most important difference between the OL TP data source and the data

warehousing is the data structure. Recomputation from the scratch every time is too

expensive. We usually incrementally update the base warehouse instead of full

refreshment.

The update procedure is divided into propagate and refresh functions. The propagate

function computes a delta table, which can take place without locking the data warehouse

so that the data warehouse can continue to be made available for querying. The refresh

function locks and updates the data warehouse from the delta table. The goal of the

propagation function is to do as much work as possible so that the time required by the

refresh function is minimized.

Definition 5.1 (Base Relation)

Let a relation P = {R1, R2, ... , Rn}, If P1 and P2 are two relations, P1 is used to define P2,

we call P 1 a Base Relation.

Definition 5.2 (Delta Relation)

For every relation P, relation ~p contains the changes made to P. we call LlP Delta

Relation.

Propagate Function:

Let Ri (1 :S i :Sn) is a base relation;

Ri' is the relation Ri to which the change of Ri;

~Ri is the delta relation;

24

Delta Table

8 T = (Lill. I lXI R2 l><l • • • l><l Rn) U

(R1' lXI 8R2 1><1 • • • l><l Rn) U

Proof by induction:

1) The basis step

Let n = 1, then the delta algorithm is correct
8T1 = 8R1

Let n = 2, then the delta algorithm is correct

8T2 = (8R1 1><1 R2) U

2) The inductive step

Suppose n = k, the delta algorithm holds

Then for n > k,

25

~Tk+t = (~Rt M R2 M ... M Rk M Rk+t) U

(R1' M ~R2 M ... M Rk [><] Rk+t) U

(R1' M R2' M ... M ~Rk M Rk+t) U

(R1' M R2' M ... M Rk' M ~Rk+t)

=(~Tk M Rk+t) U

(R1' M R2' M ... M Rk' M ~+1)

We can conclude that the delta algorithm is correct.

Refresh Function:

Input: delta table 8 T

Output: revised dimension table D

For each tuple tin ~T
If (t.flag = INSERT)

Insert tuple t into D
Else

(Select*
FromDd
Where d.id = t.id)

if (t.flag = UPDATE)
update tuple d using tuple t

else if (t.flag = DELETE)
delete tuple d from D

Notes about source data:

• Using date and time information to find what records have changed since the last

update. If the OL TP database does not have a field that includes data/time

26

information, and one cannot be added, another table can be added with this

information.

• Having a flag field to indicate the type of changes is very meaningful since in the

data warehousing application, most changes are to insert new records. If the flag

indicate INSERT operation, the new record is directly appended to the base

warehouse dimension table without searching the whole table to check the

existence of the record.

5 .2 .2 Cube Dimension Updates

In a data warehousing system, there may be many cubes with shared or non-shared

dimensions. Updating all dimension tables is very complicated. According to our model,

cube dimensions are subsets of the base warehouse dimension. No matter how big the

cube dimension table is, it is simple and efficient to recompute the cube dimension table

from the unique updated parent base dimension table since we need not cross-join

between tables.

Update Function:

CREAT VIEW cube_dimension_name (field list) AS

SELECT field lists

FROM base_dimension_name

For example:

A base data warehouse dimension table:

Time(time key, date, day _of_ week, month, quarter, fiscal_period, year, holiday _flag)

27

A data cube dimension table:

Time(time key, year, quarter, month)

CREAT VIEW Time (time_key, year, quarter, month) AS

SELECT T .time_ key, T .year, T .quarter, T.month

FROMTimeT

28

CHAPTER6

DIMENSION UPDATE IMPLEMENTATION

The implementation was run on an IBM computer with Intel Pentium II processor

298MHz, 128M RAM. SQL server 7.0 database management system, running on top of a

Windows NT Operating System, is used as the data warehouse environment. [22, 23, 24,

25]

6.1 Dimension Update Model Simulation

We use a sample application to simulate the proposed dimension update model. The

sample data were transferred from an order entry online transaction processing system

(OLTP) to a base data warehouse. Then the base warehouse is used as a base relation to

create data cubes for online analytical processing (OLAP).

As the intermediate database between the operating system and the data warehousing

on the staging area, an OL TP database from [22] is employed, which is an order entry by

multiple salespersons, simply called OLTP. Suppose OLTP has been installed as a SQL

Server 7.0 database in a normalized structure. Then we use Data Transformation Services

(DTS) to transform the OLTP data to the base data warehouse, called DataWarehouse.

For example: we create the dimension table "store" from two tables "store" and "region"

of OL TP database using SQL statement. Figure 6.1 shows the transformation. Similarly~

29

we can create other dimension tables. Two SQL Server 7.0 databases OLTP and

Data Warehouse were shown in Figure 6.2.

The DataWarehouse database included one fact table called "sales_fact" and five

dimension tables, called "customer", "product", ''time", "store", and "promotion". The

star schema for the base databases is presented in Figure 6.3.

Based on the Data Warehouse database, we created three cubes using SQL Server

OLAP Services, called "Departmentl ", "Deparment2", "Department3", shown in Figure

6.4. The cubes are created according to the user's requirements. For example: The

"Departmentl" users want to analyze the consumption behavior of customers. There are

two dimension tables, one is "customer" and the other is ''time", shown in Figure 6.5.

Both dimensions have the characteristics and properties introduced in the previous

chapter.

6.2 Experiments and Performance

Experiments were carried out to test the performance improvement obtained by

optimized update method. First, I used delta algorithms to get the delta table from the

changed test database, and record the propagation time; then I applied the net changed

data represented in the delta table to the dimension tables in the data warehouse, and

record the refresh time. The implementation was done using Visual Basic.NET, the

completely object-oriented programming environment.

The test database is the same as the one used in the example described in section 6.1.

Suppose there are three operations on the test database: insertion, deletion and update.

Since most changes are to insert new records to the data warehouse in common business

30

practices, I arbitrarily assume that the ratio of operation number is 94% insertions, 4%

updates and 4% deletions of total changed records respectively. For example, the delta

table has 100 rows. Then 94 rows will be inserted to the dimension table, 4 rows will be

deleted from the dimension table and 4 rows will be updated in the dimension table,

I assume each tuple in the delta table causes a single update to the dimension table and

each tuple in the dimension table is updated at most once.

Figure 6. 7 plots the variation in elapsed time as the size of the set changes for a fixed

size of the data warehouse. I varied the size of the changes from 100 tuples to 800 tuples.

We can see that the system downtime of both methods increases with the increase in the

size of the changes. The graph illustrates the performance advantage of using the delta

updates method.

I optimized the refresh function by adding a flag field in the source table to indicate

the new rows. When the cursor in the delta table finds one record is new, it can be

directly appended to the dimension table in the data warehouse, without searching the

whole dimension table to check if there exits a matching tuple in the dimension table. The

performance improvement is shown in Figure 6.8. I varied the size of insertion changes

from 100 tuples to 800 tuples. We can see that the system downtime increases with the

increase in the size of insertion changes. The optimized method oµtperformed the original

meth0d. Moreover, the improved margin appears to be higher when the size of the

insertion changes increases.

31

Ill!) :S C ~ Cl ~ l I ~
Jl)tl PJ,...,ll_l
IOLIPJ(dx)""""""I
(OllF'JfcboJ (prcd_;.."'f_cl,s11)
IOLIPJldxll,,.,,..._,,
IOLIPJl<bol(""°"'
fOLTPUlllcH l.ctJ
(OllPlfd>cH.JbeJ
IOLIPJ(d>o)(...,(

l;t.tCT :1 c.orc.=torc id, s t orc . .,tcrc type. =torc.:,c.orc no..c,
:,torc . :,cot:c n~cs:, :,corc.:H.oce' :,t.1;cc1.. \\dd.cell'.,, -
:,tore . :rtor c::c 1ty, store .:,tor•_.,~11.cc , .,"e.,re .:, torc_';lo::,t. :1 J_code,
:11::orc. :, torc country, :,torc,=t.ore m::i.ru19cr, i:n:o::e,:,c.ore phone,
:,tnrr: .=t nrr-tax, !l t.('jr,e.t:1r:n:: ope~ Mr.c, -
!l t0CC, l a.3t cell!IOdcl dot.c , s tcCc .qroc; r7 s~t. :,corc. !ro zcn =cz-:c,
:ic.orc,:,cor ; :,q!t, ;tore.Beat s (ftt., s c.o="c .cott:cc ~9.% , -

.,to re .video - :, tor.:, :itorc . !u1l;c1 b :!L::, ::,tore .prc pllcd ! o::,d,
~torc. !lort;t , c co , on.:u~lc:, c~;y , r,:01on .:Ht.! c:, :,c.a;c pccv!nce,
rcoion,.,olce d1:rtr 1ct:, t c Q10n. :u1 l c ~ rcg1on, - -
rco1o n.oolc3 -countr y -

!Po !'I n ore nnrt'P.-JOUI
rcQ1011 CN :, core . c1:01on_1 c1 • r eo1::m. r e o1:in_1d

Figure 6.1 Creation of a Data Warehouse Dimension Table

.>

7<> SQl So,,..,, I nlo r prl,o Man"&"• · [Con<0lo Root\Mlcrosofl SQ! Servcrs\SQt Scrvcr GroupV> II VfC10/SSYS1 (Win .•. r;J~~
~ Fk Acloon, r ooi. -.iow -

¢o .,. ~ ·IE, X ci'@ ®, ci' .;ls- -:::-- ~ 0 Ill ca
<:on:sokR~
"lll-=SQ<s..-,
. \J SQl s..v .. G, ouP

• {r;j 0-7t"1'C20ZSSYSE (W- NT)
• ,:3 Oo<ob.>SM

tj Obt4WYehoue
• [!j

w model
(.jm,d,
Uj OlTP

l!l•-
.. ,_j 0 .Xa 1 , ¢t"CSIOfm.:i,tJon ~es
~ ,_)_
6 CJ Se(uity

· D s..._, S«vlc••

MfPS
@

OI.T?

-- . - -- -· -- --- -----------

Figure 6.2 Source Databases Installed in SQL Server 7.0

32

7a SQ!. Server Cntcrpritc M.inclllJ:r · I [dit Di4gr<llTI 'DataWarchousc'J [}~r;[

Figure 6.3 Star Schema of a Sample Data Warehouse

33

":'.i msolap • [Console Rool\OLAP scrwrsl0-7LVFC20ZSSVSEIOataW4tchousc) ~ f'QJ~
1EJ Fie Action 1/\eW F.wontM HetJ Wroo,,, Heb

.:,, G;JiEX@lrj>
....] Con:;olo R-
- C]OlAPsetver<

Done

- ~!:) D·7lYfG?OZSSYSE

- 8i j iiteffimmt
0 Clbco
• 0 Dcp«t,ncnt 1 . u Oepo,tment2
• LJ 0ep.,,,t,ncnt3

D Wtuol Clbes
• D 1.ba,y

6) FocxkYt

Gettln11 Starte d

D lll<iWJr f: hou se

J D escr ipt ion :

r.l Disk space:

Cub es

Cube

Department I

Ocp ot""lmcnt 2

~ Dcpilrtrnc nt:J

0 Q<:MB

P<9rtittons Size Processed Status

0 .01MB 7/l '.l/2004 J:" r.o ct."~~ed

3 :30:03 PM

0.01MB]/13/200.J ::irocessed

3:,6:00 PM

0.0:116 7/l"J/2004 Proce~~cd
"'l:27::'8 PM

Figure 6.4 Data Cubes in SQL Server 7.0 OLAP Services

a: Cube r dftor ~@]~
File Ed< V.,W lnse,t Tools ~

.Ji tiill !'.!!ll~i -::· i"sYllii!II .!llJ
1-J•

- cl Dime05lons
- Jc.c~orne,-

• • Ccx.intry

.. - Stote PrOVTlCc

• - O:y
• - Account~

- Jc.
• • The Vcdil

• - Qubfter
• - TheMonth

- E:<JMeMUe,:
" sV St0f'e Sales
#,.,V Store Cost
"•YI.Jri<5<>ies

1::51 C,,Jcui<>ted members

customer _id

~-DJm

f""""'
ml
oddress l
~ess2
odocss3
~en "

~
___ Pr_ope_ ,-___ ... _,I ~ Bl 0 Foct T<>ble

l S<liesf<>ct
p,odxt_ld
time Id
cust0ffiC1" kJ
p,omotion_Jd
store_id
st0te_sales
store_cost
unt:_~e-s _ _,

the_:--date
tr,e_day
the_month
the_yea,
d.,y _of _month
week_ol_veN
mor,th_ol _yeor
~ rter

Figure 6.5 Dimension Hierarchies of a Data Cube

34

40

35

~ optimized update method
--11- original update method

'en'
30

"tj
s:: 25 0
(.)
G.) 20 Cl)
~

G.)

.§
r-4

15 -

10

5

0 '
100 200 300 400 500 600 700 800

Changed Tuples

Figure 6.6 Performance of Delta Update Algorithm

I -·-· ------· ··---···----- ------·-------·-------·---··· ----
! o optimized insertion • original insertion
L---~~-~-~---~ -~--~----

80 -r-------------------,

70 -+-------,-,------,---------1

'en' 60 -t--------------
] 0 50 ~-..:...;.._....;...._......;..._..,;.__..;;__;__.....;......;......;.._..;.__..:...;..__
(.)

~ 40 4-----------
~

.§ 30 --------
r-4 20 _._ __

10 -

0

I 00 200 300 400 500 600 700 800

Changed Tuples

Figure 6. 7 Performance of Optimized Insertion Operation

35

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

A data warehouse is a user-centered environment for data analysis and decision support.

Dimensional modeling is the only viable technique to deliver data to end users in a data

warehouse. Star schema is the most popular form of dimensional modeling. The main

components of a star schema are fact tables and dimension tables. The fact table is

changed frequently with the increase in the number of rows. The dimension tables are

relatively static compared to the fact tables. Nonetheless, the changes should also be

taken into considerations.

After the initial process of loading data into a data warehouse, we can use the fully

refresh or the incremental update method to maintain the data warehouse. The dimension

update model divides the update process into three phases: the staging area, the data

warehouse and the data marts. In the staging area, we prepare the data of changes using

the delta algorithm so as to reduce the data warehouse downtime. The data warehouse is

an intermediate repository for efficiently updating all cubes. The data cube is a subset of

the data warehouse. We take advantage of the relationship between the base warehouse

and the data mart to update cube dimensions by using the simple yet efficient full refresh

method without imposing a significant overhead.

We divide dimension update procedure into propagate and refresh functions. The

propagate function computes a delta table; an activity that can take place without locking

36

the data warehouse so that the data warehouse can continue to be made available for

querying. The experiment results show that the delta updates algorithm is efficient to

reduce the data warehouse downtime. The experiments also show that the optimization

for insertion operation in the refresh function is significant.

The following issues will be focused on in the future work:

• Type II of slowly changing dimensions [7,9]: keep a record of the old dimension

data. For example, when an employee is moved from branch to branch, all of the

old transactions should be in the old branch, and only the new transactions should

be related to the new branch.

• In general, there are many materialized views based on one or some data cubes, or

even the base data warehouse. If we can reuse the results of the delta tables to

update the materialized views, we can considerably improve the overall

performance.

37

BIBLIOGRAPHY

[I] Jeffrey A. Hoffer, Mary B. Prescott and Fred R. McFadden, Modern Database
Management, 6th edition, Prentice Hall 2002.

[2] Harry Singh. Data Warehousing Concepts, Technologies, Implementations, and
Management. Prentice-Hall 1998.

[3] Matthias J arke, Maurizio Lenzerini, Y annis V assiliou and Panos V assiliadis
Fundamentals of Data Warehouses, Springer 1998.

[4] Paulraj Ponniah. Data Warehousing Fundamentals. John Wiley & Sons 2001.

[5] Donald J. Berndt and John W. Fisher, Understanding Dimension Volatility in Data
Warehouses, the Sixth INFORMS Conference on Information Systems and Technology
(CIST-2001). November 3-8, 2001.

[6] Thomas M. Connolly and Carolyn E. Begg, Database Systems: A Practical Approach
to Design, Implementation, and Management, second edition, Addison-Wesley 1998.

[7] Ralph Kimball, The Data Warehouse Toolkit. John Wiley & Sons 1996.

[8] Michael Drippendorf and 11-Yeol Song, The Translation of Star Schema into Entity
Relationship Diagrams. Proceedings of the 8th International Workshop on Database and
Expert Systems Applications. September 1 -2, 1997. Pages 390-395.

[9] Ralph Kimball, Laura Reeves, Margy Ross and Warren Thomthwaite. The Data
Warehouse Lifecycle Toolkit. John Wiley & Sons 1998.

[IO] Sung Ho Ha and Sang Chan Park, Data Modeling for Improving Performance of
Data Mart, IEMC'98. Pages 436-441.

[11] Matteo Golfarelli, Dario Maio and Stdefano Rizzi. Conceptual Design of Data
Warehouses from EIR Schemes. Proceedings of the 31 st Annual Hawaii International
conference on System Sciences - Volume 7, 1998. Pages 334.

[12] Carlos A. Hertado, Alberto O. Mendelzon and Alejandro A.Vaisman. Maintaining
Data Cubes under Dimension Updates. In Proceedings of the IEEE-ICDE Conference
1999. Pages 346-355.

[13] Carlos A. Hertado, Alberto 0. Mendelzon and Alejandro A.Vaisman. Updating
OLAP Dimensions. Proceedings of the 2nd ACM International Workshop on Data
Warehousing and OLAP (DOLAP) 1999. Pages 60-66.

38

[14] Carolin Letz, Eric Tobias Henn and Gottfried V?sse~. Consistency i': £?ata
Warehouse Dimensions. International Database Engmeenng and Apphcat1ons
Symposium. July 17 -19, 2002. Pages 224 - 232.

[15] Inderpal S. Mumick, Dalian Quass and Barinderpal S. Mumick Maintenance of
Data Cubes and Summary Tables in a Warehouse. ACM SIGMOD Volume 26, Issue 2.
June, 1997. Pages 100-111.

[16] Ashish Gupta, Inderpal S. Mumick and V.S. Subrahmanian. Maintaining Views
Incrementally. Proceeding of ACM SIGMOD Conference on Management of Data, 1993.
Pages 157-166.

[17] W. Lehner, J. Albrecht and H. Wedekend. Normal Forms for Multidimensional
Databases. Proceedings of the 10th international Conference on Scientific and Statistical
Database Management. Pages 63 - 72.

[18] Raghu Ramakrishnan. Database Management Systems. McGraw-Hill 1998.

[19] Luca Cabibbo and Riccardo Torlone. Querying Multidimensional Databases.
Proceedings of the 6th International Workshop on Database Programming Languages
(DBPL'97), 1997. Pages 319 - 335.

[20] Luca Cabibbo and Riccardo Torlone. A Logical Approach to Multidimensional
Databases. Proceedings of the 6th International Conference on Extending Database
Technology: Advances in Database Technology. Pages 183 -187.

[21] Ki Yong Lee, Jin Hyun Son and Myoung Ho Kim. Efficient Incremental View
Maintenance in Data Warehouses. CIKM'Ol, November 5-10, 2001. Pages 349 - 356.

[22] Jake Sturm. Data Warehousing with SQL Server 7.0: Technical Reference.
Microsoft Press 2000.

[23] Robert S. Craig, Joseph A. Vivona and David Bercovitch. Microsoft Data
Warehousing: Building Distributed Decision Support Systems. John Wiley & Sons, Inc.
1999.

[24] _Michael Corey, Ian Abramson, Larry Barnes, Benjamin Taub and Rajan
Venkitachalam. SQL Server 7 Data Warehousing. Osborne/McGraw-Hill 1999.

[25] Sakhr Youness, Professional Data Warehousing with SQL Server 7.0 and OLAP
Services. Wrox Press Ltd. 2000.

39

APPENDIX A

Source Codes

The program is to record the system elapsed time for dimension update process. It 1s

implemented in Visual Basic .NET

The source tables are changed OLTP tables. The target tables are dimension tables

which need to be updated. The program carried out two major tasks: propagate and

refresh functions. The sample window is as follows. After pushing the "Refresh" button,

we can get the time of updating the target table. Similarly, we can get the propagate time.

E.-'·~

eceou'W_n..n'I ~a:,1 .>dicten:2

791'58661961 7370M a11on (.-.ul)

7916192"Y..i27 n!"£ Au10 01 fnul}
7SZ1978!)505 5134 Stw'ey 1"-"l
792277&1030 5274 H61've,, '""'' ~932 3606 O°'on tnull
7923Jl56100 G<;S6Gll,,l• (n..,I)

OCC°'-"'Ll'"!UTI adctc::s.1 adaen2

87462024E:88 2'3'.l o...,. (null
07-470586299 2Z190C-'O 1,....,
874]"j7S7600 76.-'0 f'"111 Av !null

I
~ 875()).(82201 337 To,coW (null

8751405•4119 8668 V i,o N~ lrJI
87'517782-449 1619SlAnon lrd l

• . ~~~~~ ~~M~H (""1

.:,dc:;c:U odoe.:..:.t b,lhd.,to

(n,,AJ (,J) 6/2211960
l"-"l (11ul) 9/2011978

t"AJ ("-"l 11/511968
r,,JJ (,ut 7/10/1962
[n,,AJ l""'I JJ6/1950
(rJ) [,J) 319119'7

ad<ieit.3 oddie u <4 bithd.,tc,

lnul) t""') 8/2Wl961
!null (,J) 7/J/ 1915 , , lrJI Gr.?111910
l""'l , , 6/20/1969
l<<Al (111.AJ 5/ 10/1951
lnull l""'l 10/8/19-42
l,,JJ (""'1 '.3/27n9'9

~
Refresh t.n,e (se<.ord,:)7. 9013616

<X

S~aM~ USA
Metc.t1U1.-. C!w~

SMAroei M~
,.,.._,., C,nad.,

.,.,
,..,.,.,.
Sooko
111~

e ... """'
l'lov#o l-'""°""°

40

USA
USA

c.......,.
M"""°
WNdo
USA
~

USA
USA

M"'"'°

o.ntorner_d .:::..

9'B:!
948)

948'
9'85
9'86
9•87

GL'1!c)ff"lef_td ..:.
1

2

•
5
6
7

~

Import system.data
Import system.data.oledb
Import system.windows.forms

is the major body of the program
is called to facilitate the program
and instantiated in this class.
are set up.
the data connections, data adapters,

run. 'The public class DataForml
'In this class, main method
'All the object are defined
'Database access operations
'ADO.NET is employed to get
'datasets, up and running.
'For i;=:ach data corrunand object, some parameters
'fill the"?" in the SQL commands embedded.

are established to

Public Class DataForml
Inherits System.Windows.Forms.Form

Public Sub New (}
MyBase. New (}
InitializeComponent()

End Sub

'Form overrides dispose to clean up the component list.

Protected Overloads Overrides Sub Dispose(ByVal disposing as
Boolean}

If Not {components Is Nothing) Then
components.Dispose(}

End If
MyBase.Dispose(disposing)

End Sub

'declare object variables

Private components As System.ComponentModel.IContainer
Friend WithEvents OleDbSelectCommandl As OleDbCommand
Friend WithEvents OleDbConnectionl As OleDbConnection
Friend WithEvents OleDbDataAdapterl As OleDbDataAdapter
'FinalTest.customerl is pre-defined dataset
Friend WithEvents objcustomerl As FinalTest.customerl
Friend WithEvents btnLoad As Button
Friend WithEvents btnUpdate As Button
Friend WithEvents grdcustomer As DataGrid
Friend WithEvents OleDbDataAdapter2 As OleDbDataAdapter
Friend WithEvents OleDbSelectCommand2 As OleDbCommand
Friend WithEvents OleDbinsertCommand2 As OleDbCommand
Friend WithEvents OleDbUpdateCommand2 As OleDbCommand
Friend WithEvents OleDbDeleteCommand2 As OleDbCommand
Friend WithEvents OleDbConnection2 As OleDbConnection
'Fina1Test.customer2 is pre-defined dataset
Friend WithEvents Customer21 As Fina1Test.customer2
Friend WithEvents DataGridl As DataGrid

41

'initialize objects

<System.Diagnostics.DebuggerStepThrough{)> Private sub
InitializeComponent()

Me.OleDbSelectCommandl = New OleDbCommand
Me.OleDbConnectionl = New OleDbConnection
Me.OleDbDataAdapterl = New OleDbDataAdapter
Me.objcustomerl = New FinalTest.customerl
Me.btnLoad = New Button
Me.btnUpdate = New Button
Me.grdcustomer = New DataGrid
Me.OleDbDataAdapter2 = New OleDbDataAdapter
Me.OleDbSelectCommand2 New OleDbCommand
Me.OleDb!nsertCommand2 = New OleDbCommand
Me.OleDbUpdateCommand2 New OleDbCommand
Me.OleDbDeleteCommand2 New OleDbCommand
Me.OleDbConnection2 = New OleDbConnection
Me.Customer21 = New Fina1Test.customer2
Me.DataGridl = New DataGrid
CType{Me.objcustomerl,

System.ComponentModel.ISupport!nitialize) .Begin!nit()
CType{Me.grdcustomer,

System.ComponentModel.ISupportinitialize) .Begininit()
CType{Me.Customer21,

System.ComponentModel.ISupportinitialize) .Begininit()
CType{Me.DataGridl,_

System.ComponentModel.ISupportinitialize) .Begininit()
Me.SuspendLayout()

Me.OleDbSelectCommandl.CommandText ="SELECT* FROM customer
where flag=l or flag=2 or flag=3"

Me.OleDbSelectCommandl.Connection = Me.OleDbConnectionl

Me.OleDbConnectionl.ConnectionString = "Data
Source=""localhost\OLTPl.mdb"";"

Me.OleDbDataAdapterl.SelectCommand = Me.OleDbSelectCommandl
Me.OleDbDataAdapterl.TableMappings.AddRange(New
System.Data.Common.DataTableMapping(} {'itemi=e-data table and
dataset relationship field by field})

Me.objcustomerl.DataSetName = "customer!"
Me.objcustomerl.Locale = New

System.Globalization.Cultureinfo("en-US")

Me.btnLoad.Location = New System.Drawing.Point(80, 24)
Me.btnLoad.Name = "btnLoad"
Me.btnLoad.Tabindex = 0
Me.btnLoad.Text = "&Propagate"

Me.btnUpdate.Location = New System.Drawing.Point(544, 24)
Me.btnUpdate.Name = "btnUpdate"
Me.btnUpdate.Tabindex = 1
Me.btnUpdate.Text = "&Refresh"

Me.grdcustomer.DataMember
Me.grdcustomer.DataSource

"customer"
Me.objcustornerl

42

Me.grdcustomer.HeaderForeColor =_
System.Drawing.SystemColors.ControlText

Me.grdcustomer.Location = New System.Drawing.Point(lO, 76)
Me.grdcustomer.Name = "grdcustomer"
Me.grdcustomer.Size = New System.Drawing.Size(734, 164)
Me.grdcustomer.Tabindex = 3

Me.OleDbDataAdapter2.DeleteCommand Me.OleDbDeleteCommand2
Me.OleDbDataAdapter2.InsertCommand Me.OleDbinsertCommand2
Me.OleDbDataAdapter2.SelectCommand Me.OleDbSelectCommand2
Me.OleDbDataAdapter2.TableMappings.AddRange{New_

System.Data.Common.DataTableMapping{) {'itemize data table and
dataset reflection relationship field by field})

Me.OleDbDataAdapter2.UpdateCommand Me.OleDbUpdateCommand2

Me.OleDbSelectCommand2.CommandText "SELECT* FROM customer"
Me.OleDbSelectCommand2.Connection = Me.OleDbConnection2

Me.OleDbinsertCommand2.CommandText = "INSERT INTO
customer('list all the field names) VALUES ('list"?")"
Me.OleDbinsertCommand2.Connection = Me.OleDbConnection2
Me.OleDbinsertCommand2.Parameters.Add{New
System.Data.OleDb.OleDbParameter("account_num",
System.Data.OleDb.OleDbType.Double, O, "account_num"))
'Add parameters like the above statement for every field.
'Here not every field is listed for brevity purpose since thev
'are pretty similar and can be easily derived

Me.OleDbUpdateCommand2.CommandText = "UPDATE customer SET
account_num = ?, 'add assignment like the preceding one for every
field WHERE (customer_id =?)AND (account num =?OR? IS NULL
AND account_num IS NULL) AND 'conditional statements like
preceding ones for each field"
Me.OleDbUpdateCommand2.Connection = Me.OleDbConnection2
Me.OleDbUpdateCommand2.Parameters.Add{New
System.Data.OleDb.OleDbParameter("account-num",
System.Data.OleDb.OleDbType.Double, 0, "account num"})
'Add parameters like the above statement for ev;ry fiel,:i.
'Here not every field is listed for brevity purpo~e since they
'a ..,.e p t t- · · 1 ·

L re -Y simi ar and can be easily derived

Me.OleDbDeleteCommand2.CommandText = "DELETE FROM customer WHERE
(customer_id =?)AND (account num =?OR? IS NULL AND
account_num IS NULL) 'c1.)nditional statements like precedirv;
ones for each field"

Me.OleDbDeleteCommand2.Connection = Me.OleDbConnection2
Me.OleDbDeleteCommand2.Parameters.Add(New
System.Data.OleDb.OleDbParameter("Original-customer id",
System.Data.OleDb.OleDbType.Integer, 0, - -
System.Data.PararneterDirection.Input, False, CType(O, Byte),
CType(O, Byte}, "customer id",
System.Data.DataRowVersion.Original, Nothing))
'i'\dd parameters like the abc,ve stati::ment f,:n evf:cy f:e>:i.
'Here not every field is listed for brevity purpose since ~~ey
'are pretty similar and can be easily de~ived

43

Me.OleDbConnection2.ConnectionString
Source=""localhost\OLTP2.rndb"";"

"Data

Me.Custorner21.DataSetName = "custorner2"
Me.Customer21.Locale = New Systern.Globalization.Cultureinfo("en-

US")

Me.DataGridl.DataMernber = ""
Me.DataGridl.DataSource = Me.Custorner21
Me.DataGridl.HeaderForeColor =
System.Drawing.SysternColors.ControlText
Me.DataGridl.Location = New Systern.Drawing.Point(l6, 272)
Me.DataGridl.Name = "DataGridl"
Me.DataGridl.Size = New System.Drawing.Size(728, 184)
Me.DataGridl.Tabindex = 4

Me.AutoScaleBaseSize = New Systern.Drawing.Size(S, 13)
Me.ClientSize = New Systern.Drawing.Size(776, 478)
Me.Controls.Add(Me.DataGridl)
Me.Controls.Add(Me.btnLoad)
Me.Controls.Add(Me.btnUpdate)
Me.Controls.Add(Me.grdcustorner)
Me.Name= "DataForrnl"
Me.Text= "DataForrnl"
CType(Me.objcustomerl,Systern.CornponentModel.ISupportinitialize) ·
Endinit ()

CType(Me.grdcustorner,Systern.CornponentModel.ISupportinitialize) .En
dinit ()
CType(Me.Custorner21,System.CornponentModel.ISupportinitialize) .End
Ini t ()
CType(Me.DataGridl,Systern.CornponentModel.ISupportinitialize) .EndI
nit ()
Me.ResurneLayout(False)

End Sub

'This subroutine handles the button click event.
'In this case, when "Refresh" button is clicked, this will b~ ~nvaked.
'It calls dataset update procedure and calculate time r~quired for the
'refresh process. Finally, it displays time using m8ssage b0x.

Private Sub btnUpdate_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnUpdate.Click

Dim cc As DateTime
Dim dd As DateTime
Dim ff As decimal
Try

cc= DateTime.Now
Me.UpdateDataSet()
dd = DateTime.Now
ff= (dd.Ticks - cc.Ticks)/10000000.00
MsgBox(cc.ToString())
MsgBox(dd.ToString())
MsgBox("Refresh time (seconds) "&ff.ToString{))

Catch eUpdate As System.Exception
System.Windows.Forms.MessageBox.Show(eUpdate.Message}

End Try

44

End Sub

'This subroutine handles the button click event.
'When "Propagate'' button is clicked, this will b~ invoke~· .
'It calls data loading procedure and calculate time required for the
'propagate process. Finally, it displays time using message boz.

Private Sub btnLoad Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnLoad.Click

Dim aa As DateTime
Dim bb As DateTime
Dim ee As Decimal
Try

'Attempt to load the dataset.
aa = DateTime.Now
Me.LoadDataSet()
bb = DateTime.Now
ee = (bb.Ticks - aa.Ticks)/1000000.0
MsgBox(aa.ToString())
MsgBox(bb.ToString())
MsgBox("Propagate time (seconds) "&ee.ToString())

Catch eLoad As System.Exception
System.Windows.Forms.MessageBox.Show(eLoad.Message)

End Try
End Sub

' This procedure implement operations on the dataset of target table.
' Several data tables are created in order to carry out the task
' Data rows are used and their collection objects are also employed
' The index is the flag field of the source table. Osing the index,
' the procedure finds relevant records in target to work on er, if
' the record is new, it appends the record behind the target dazaset.

Public Sub UpdateDataSet()
Dim i As Integer
Dim j As Integer
Dim y As Integer O
Dim a As DataTable = New System.Data.DataTable
Dim b As DataTable = New System.Data.DataTable
Dim c As DataTable = New System.Data.DataTable
Dim m As DataRow
Dim n(lOO) As DataRow
a= objcustomerl.Tables.Item("customer")
b = Customer21.Tables.Item("customer")
For i = 0 To a.Rows.Count - 1

m = a.Rows.Item(i)
If m("flag") = 1 Then

Dim x As DataRow = b.NewRow()
x("customer id") = m("customer_id")
x("account ~um") = m("account num")
x("lname")-= m("lname")
x ("fname") = m ("fname")
x ("mi") = m ("mi")
x ("address!") = m ("address!")
x("address2") m("address2")
x("address3") m("address3")
x ("address4") m ("address4")

45

x("city") = rn("city")
x("state province") = m("state_province"}
x("postaI code") = m("postal_code")
x ("country") = m ("country")
x("custorner region id"} = m("customer_region_id")
x ("phonel") -= rn ("phonel")
x ("phone2") = rn ("phone2")
x("birthdate") = rn("birthdate")
x("rnarital status"} = m("marital_status")
x("yearly_income") = rn("yearly_income")
x("gender") = rn("gender")
x("total children") = m("total children")
x("num_children_at_home") = m("nurn_children_at_horne")
x("education") = m("education")
x("date_accnt_opened") = m("date_accnt_opened")
b.Rows.Add(x)

Elseif rn("flag") = 2 Then
Dim r As DataRow
For Each r In b.Rows

'For j = 0 To b.Rows.Count - 1
If r("custorner_id")

y = y + 1
m("customer_id") Then

n(y - 1) = r
Exit For

End IF
Next r

Elseif m("flag") = 3 Then
For j = 0 To b.Rows.Count - 1

If b.Rows.Itern(j) ("customer id") = rn("customer id") Then
b. Rows. Item (j) ("account nurn") = rn ("account nurn")
b.Rows.Itern(j) ("lname")-= m("lnarne") -
b.Rows.Itern(j) ("fnarne") = rn("fnarne"}
b.Rows.Itern(j) ("mi") = rn("mi"}
b.Rows.Itern(j) ("addressl") rn("addressl")
b.Rows.Itern(j) ("address2") rn("address2")
b.Rows.Itern(j) ("address3") rn("address3")
b. Rows. Item (j) ("address4") m ("address4")
b.Rows.Item(j) ("city") = rn("city")
b.Rows.Item(j) {"state province") =
rn("state province") -
b.Rows.Item{j) {"postal code") = m("postal code")
b.Rows.Itern(j) ("countr~") = m("country") -
b.Rows.Item(j) {"customer region id") =
m{"customer region id") - -
b. Rows. Item (j) ("phonel") = m ("phonel")
b.Rows.Item{j) {"phone2") = rn("phone2")
b. Rows. I tern (j) ("birthdate") = rn ("birthda te")
b.Rows.Item(j) ("marital status")
m ("marital status") -
b.Rows.Ite;{j) {"yearly income") m("yearly_income")
b.Rows.Itern(j) ("gender"} = rn("gender"}
b.Rows.Item(j) ("total_children") =_
m("total children")
b.Rows.IIem(j) {"nurn_children_at_horne")
rn("num children at home"}
b.Rows-:-rtem(j} ("ed~cation") = m("education")

46

Next

Next
End If

b. Rows. Item (j) ("date_accnt_opened")
m ("date_accnt_opened")
Exit For

End If

Dim k As Integer
Fork= 0 Toy - 1

n (k) . Delete()
Next k
Customer21.GetChanges()
DataGridl.SetDataBinding(Customer21, "customer")
Me.UpdateDataSource(Customer21)

Customer21.AcceptChanges()
End Sub

'This subroutine is used to load the source table into
'a dataset and populate the dataset with the query results
'called in the first data adapter.

Public Sub LoadDataSet()
Dim objDataSetTemp As FinalTest.customerl
Dim objDataSetTemp2 As Fina1Test.customer2
objDataSetTemp = New FinalTest.customerl
objDataSetTemp2 = New Fina1Test.customer2
Try

Me.FillDataSet(objDataSetTemp)
Me.FillDataSet2(objDataSetTemp2)

Catch eFillDataSet As System.Exception
Throw eFillDataSet

End Try
Try

objcustomerl.Clear()
Customer21.Clear()
objcustomerl.Merge(objDataSetTemp)
Customer21.Merge(objDataSetTemp2)

Catch eLoadMerge As System.Exception
Throw eLoadMerge

End Try
End Sub

' This subroutine update the taraet data table using
' the dataset produced after dat~set update procedure.
' This on1:: involves tr1e ir1teractic1n b•::tween the mi::mory-resj.ainq
' data sec and the physical-drive-residing target data table.

Public Sub UpdateDataSource(ByVal NewObject As Fina1Test.customer2)
Try

Me.OleDbConnection2.0pen(}
OleDbDataAdapter2.Update(NewObject, "customer")

Catch updateException As System.Exception
Throw updateException

Finally

47

Me.OleDbConnection2.Close()
End Try

End Sub

'This is intermediate process happened during the process ofsource
'table populating data set.

Public Sub FillDataSet(ByVal dataset As FinalTest.customerl)
dataSet.EnforceConstraints = False
Try

Me.OleDbConnectionl.Open()
Me.OleDbDataAdapterl.Fill(dataSet)

Catch fillException As System.Exception
Throw fillException

Finally
dataSet.EnforceConstraints True
Me.OleDbConnectionl.Close()

End Try
End Sub

'The below process happens when the program populate
'the data set relating to the target table.

Public Sub FillDataSet2(ByVal dataset As Fina1Test.custorner2
dataSet.EnforceConstraints = False
Try

Me.OleDbConnection2.0pen()
Me.OleDbDataAdapter2.Fill(dataSet)

Catch fillException As System.Exception
Throw fillException

Finally
dataSet.EnforceConstraints True
Me.OleDbConnection2.Close()

End Try
End Sub

End Class

48

VITA

HaihongMa

Candidate for the Degree of

Master of Science

Thesis: DIMENSION UPDATES IN DAT A WAREHOUSES

Major Field: Computer Science

Biographical:

Personal Data: Born in Shandong, China

Education: Received Bachelor of Science degree in Chemical Engineering from
Dalian University of Technology, Dalian, China in July 1992.Completed
the requirements for the Master of Science degree with a major in
Computer Science at Oklahoma State University in December, 2004.

Experience: Jinan Oil Refinery Company, as an engineer, 1992 - 1994. Hewlett
Packard Medical Products (Qingdao) Co. Ltd, as an office clerk, 1995 -
1999.

