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CHAPTER I 

INTRODUCTION 

A very interesting area in mathematics is the study of conver

gence of sequences and series. When a sequence converges it is 

possible to associate a number with this sequence by using the concept 

of the limit of a sequence. The theory of matrix transformations has 

been developed in an attempt to have some meaningful way of assigning 

a number to sequences which do not converge. The theory of matrix 

transformations in the case of real sequences has been studied exten

sively. The books by Hardy [7] and Cooke [5] are classics in this 

area. 

Very little has been written for the student interested in the study 

of matrix transformations in a non-Archimedean setting. What work 

there is in this area has been published since 1950. Dorleijn [6], in 

1955 published a paper based on his doctoral dissertation at the Univer

sity of Amsterdam. In this article he introduces various sequence 

spaces and related matrix transformations. Andree and Petersen [2] 

in 1956, published a short article concerning regularity conditions for 

matrices in the p-adic field. Monna [9], who has written quite exten

sively in non-Archimedean analysis, published a paper in 1963 con

cerning matrix transformations on the space of GOnvergent sequences. 

In addition to these, a few other articles written on matrix transforma

tions in a non-Archimedean setting are listed in the bibliography. 
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Most of the articles mentioned above are collections of results 

with at best quite sketchy proofs and would be difficult reading for the 

beginning graduate or advanced undergraduate student. It is the purpose 

of the auth0r in writing this paper to make matrix transformations in a 

non-.Archimedean field accessible to these individuals. To read this 

paper the student should have a good kn0wledge of sequences, such as 

would be obtained in an adva.nced calculus course where a strong treat

ment of sequences and series was given. Furthermore, he should have 

at least a basic understanding of linear algebra. 

A discussion concerning matrix transformations should begin with 

a discussion of the sequence spaces to which the transformations are to 

be applied. In Chapter II, the definition of a sequence space is given. 

The usual norm convergence of a sequence of points in a sequence space 

is introduced. Associated with each sequence space is another 

sequence space known as the dual space. Another type of convergence 

in a sequence space is defined in terms of the dual space. This form 

of convergence is useful in the study of matrix transformations. 

Relationships between the two types of convergence are investigated. 

Chapter III is a study of matrix transformations which have the 

property that convergent sequences are transformed into convergent 

sequences. Necessary and sufficient conditions for a matrix to have 

this property are determined. Later in the chapter these conditions 

are used in investigating matrix transformations on a power series. 

The set of matrices, ~(a), that transform a particular sequence 

space a into itself is introduced in Chapter IV. Necessary and suffi.,. 

cient conditions, when they exist, for a matrix A to belong to ~ (a) 



are determined. These conditions are used to determine for what 

sequence spaces a, the set ~(a) will be a ring. 

3 

The concluding chapter is used to investigate two types of con

vergence of a sequence of matrices belonging to ~(a). The two 

convergence criteria introduced are the usual norm convergence, and 

the convergence defined in terms of the sequence space a and its dual 

space. Relationships between these two types of convergences are 

obtained. 

Preliminary Definitions and Results 

It is important that the reader have a clear idea of a non

Archimedean valuation and a non-Archimedean field. For this reason 

the definitions are repeated here. 

Definition 1. 1: A non-Archimedean valuation on a field K is a 

real-valued function, I I , on K such that 

( 1) I a I > 0 and I a I = 0 if and only if a = 0, 

(2) I ab I = I a I I b I , 
(3) j a + b j .:::_ Max ( I a j , I b I ) , 

A field K with a non-Archimedean valuation, j I , is called a non ... 

Archimedean field, 

Theorem 1. 2: If j I is a non-Archimedean valuation on K and 

if I a l > I b I then I a + b I = I a I . 

The definitions of a sequence and the limit of a sequence are very 

important in the work that will follow. 
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Definition 1. 3: A sequence is a function whose domain is the set 

P of positive integers. 

The sequence x will be denoted by {xn}, (x 1, x 2 , •.. , xn' ... ), 

or {x :n=l,2,3, ... } 
n 

where x = x(n). 
n 

The sequence {x} 
n 

said to be a sequence in K if x 
n 

is an element in K for all n, 

is 

Definition 1. 4: A sequence {x} 
n 

is said to converge to a if 

for every e > 0 there corresponds an integer N such that 

Ix ... a I < e for all n > N . 
n 

A familiar definition to the student is that of a Cauchy sequence. 

Definition 1. 5: A sequence {x} 
n 

is a Cauchy sequence· if for 

every e > 0 the re exists an integer N such that I xn - xm I < e for 

all n and m > N . 

The following theorem gives a useful characterization of a Cauchy 

sequenc;e in a non-Archimedean field. 

Theorem 1. 6: A sequence {x } in a non-Archimedean field K 
n 

is a Cauchy sequence if and only if for each e: > 0 the re exists an 

integer N > 0 such that jxn - xn+l I < £ when n > N. 

The non-Archimedean field to be used in this work is a complete 

non .. Archimedean field. 

Definition 1. 7: A field K is said to be complete with respect to 

the valuation I I if every Cauchy sequence in K has a limit in K. 

Definition 1. 8: Let K be a non-Archimedean field which is 

complete with respect to the valuation I I . A vector space V over 



K h called a non-Archimedean normed vector space if there exists a 

real valued function II II on V, such that 

( l) II v II ~ 0 and II v II = 0 if and only if v = 0 , 

(2) llv+wll ~ Max(llvll, llwll), for all v and w in V I 

(3) llavll = lal llvll where lal denotes the valuation in K. 

All of the examples in this thesis are taken from the field of 

p-adic numbers, Q . 
p 

Some of the· properties of Q 
p 

needed in this 

paper are listed below. 

( l) Each a in Qp can be exp res seci uniquely in the form 

k co n 
a=p ~ap 

n=O n 

where O < an~ p - l for each n, a 0 -:f. 0, and k is 

an integer. This form is referred to as the <:anonical 

representation of a. 

(2) If a is given in canonical forr,n, the valuation I I on 

Q is defined by 
p 

(3) The function I I 

1 k 
lal = (-) • p 

is a non-Archimedean valuation on Q • 
p 

(4) Q is complete with respect to the valuation I I . 
p 

5 

Any additional understanding of p-adic numbers needed can be obtained 

by reading Chapter 8 of Agnew's book, Exel orations .!E_. Number Theory, 

[1] or the first three chapters of Snook's thesis [14]. Some of the 
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basic ideas needed concerning the nature of the non-Archimedean field 

can be obtained by reading Chapter II of Palmer's dissertation, [10]. 

Series and the convergence of series play an important role in 

this paper. The usual definition of a series is given here. 

Definition 1. 9: Let { a } be a sequence in the non .. Archimedean 
n 

field K. Form a new sequence { s } as follows: 
n 

n 
~ a. 

i= 1 1 
(n = 1, 2, 3, ... ) , 

A sequence { s } formed in this way is called a series or an infinite 
n 

series. The number s is called the nth partial sum of the series 
n 

and a is called the nth term of the series. The series is said to 
n 

converge or to diverge according as {s} 
n 

The series is usually denoted by 
co 
~ a 

n=l n 

is convergent or divergent. 

The next theorem gives a characterization of a convergent series 

in a non-Archimedean field that is not valid in an Archimedean field, 

co 

Theorem 1. 10: The series ~ a 
n=l n 

K converges if and only if lim a = 0 n-co n 

in a non-Archimedean field 

For other properties of convergent series the reader is referred 

to Chapter III in Palmer's thesis [10]. 

Using the non-Archimedean property it can be shown that for any 
n 

integer n, I i~l ai I ~ Max (Ia 1 1, I a 2 j, ... , I an I). The non-

Archimedean property can now be e:,ctended to infinite series by using 

the concept of the supremum of a set of real numbers. 



Theorem 1. 11: If 
OJ 

I ~ a I ~ Sup I a I • 
n=l n n n 

OJ 

~ a 
n=l n 

7 

is a convergent series in K then 

Proof: Let a = Sup I a I 
n n 

By the non-Archimedean property it follows 

that 

n 
I~ a.I< Max(!a 1 1, ia2 !, .•. , Ian!)< a 
i= 1 1 

for all n. Since 

OJ n 

I~ a. I 
i= 1 1 

= lim I ~ a. I 
n-+-co i= 1 l 

co 
it follows that I ~ a I < Sup I a I • 

n= 1 n n n 

Double Sequences 

Since matrix transformations are naturally associated with 

double sequences, in this section some elementary concepts of double 

sequences and series are developed, 

Definition 1. 12: A double sequence is a function whose domain is 

the set P x P, where P is the set of positive integers. A double 

sequence a is denoted by {amn} or {amn: m, n = 1, 2, 3, ... } . 

Another way of writing the double sequence a is as an array. 

That is, a is the array 



a m2 a 
mn 

Note: For a fixed m the sequence {a : n = l,2,3, ••• } is called 
mn 

the mth row of the seql,lence, while for a fixed n the sequence 

{a : m = l,2,3, ••. } is called the nth column. 
mn 

The double seque.nces to be considered in the remainder of this 

thesis are those whose range is a subset of a non .. Archimedean. field 

K. With the valuation in K, the limit of a dol,lble sequence can be 

defined in the usual way. 

Definition 1. 13: A double sequence {amn} is said to converge 

to the element a in K, if for every £ > 0 there corresponds an 

integer N such that I a .. a I < £ for m > N and n ~ N • If mn -

{a } converges to a then this is indicated by lim a =a. 
mn m,n-a:i mn 

A natural question is the following. "If fQr each m, 

lim a = a , and if 
n-a:, mn m 

lim a 
m-a:, m 

exists, does a mn exist?" 

8 

The next example indicates that the answer to this question may be no. 

Q, 
p 

Example 1. 14: Let {amn} be th~ following double sequence in 



1 2 3 p p p 

0 1 
2 

p p 

0 0 1 p 

0 0 0 1 

Tha,t is, 

O if n < m 

a == mn 
n-m 

p if n>m. 

Now, 
n-m 

lim a = limp = 0 
n-co mn 

for each fixed m. Thus 

. lim ( lim a ) = 0. However, 
m-co n-co mn 

a mn does not exist since 

a == 1 while a 1 == 0 • mm m,m-

If lim a exists for each m then the limit, lim ( lim a ) 
n-co mn · m-co n-oo mn 

9 

is called an iterated Hmit. By interchanging the order of taking limits 

another iterated limit is obtained; that is, lim ( lim a ) • The 
n-oo m-oo r;nn 

following theorem relating the limit of a double sequence and an 

iterated limit can be proved in the non-Archimedean case. The proof 

is completely analogous to the case for real sequences and the reader 

is referred to Apostol for its proof, [4, p. 371]. 

Theorem 1. 15: If lim a 
m,n-oo mn 

= a and if for each fixed m, 

lim a 
n-co mn 

e.xists then lim ( lim a ) 
m-+o:> n-oo mn 

exists and is eq1,1al to a. 
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The definition of a double series in a non-Archimedean field is 

the same as in the case of a double series of real numbers. 

Definition 1. 16: Let { amn} be a double sequence. The double 

sequen<;e S defined by the equation 

m n 
s = :2::: :2::: a mn p=l q=l pq 

is called a double seriei;; and is denoted by :2::: a 
mn m,n 

series is said to converge ~ !'!_ if lim S = a. 
m,n-CX> mn 

{ S } is called the sequence of partial sums. 
mn 

The double 

The sequence 

Let :2::: a 
m n mn 

lo 
be a double series. For each fixed m, consider 

the series :2::: a • If this series converges for each m, form the 
n=l mn 

CX) ( CX) ) :2::: :2::: a • 
m=l n=l mn 

This series is called a re:eeated series or an series 

ite ra,.ted series . In a similar way the iterated series CX) ( CX) ) :2::: :2::: a 
n=l m=l mn 

can be formed. 

Before the main theorem in this section is stated and proved it is 

necessary to define what is meant by the rearrangement of a double 

sequence { a } • 
mn 

Definition 1. 17: Let { amn} be a double sequence and let g be 

a one ·to-one function defined on P with a range of P x P. Let b be 

the function defined by bi = ag(i) for all i in P. Then g is said to 

be a rearrangement of the double sequence { amn} into the sequence 

{ b.}. 
). 

This next theorem is quite important in some of the work to be 

done in this paper. It gives a sufficient conditions for the convergence 
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of the double series ~ a , the iterated series, and any simple 
m,n mn 

series formed by a rearrangement of the sequence {a } . This 
mn 

theorem is stated in a slightly different form in Borevich and 

Shafarevich, [4]. 

Theorem 1. 18: If for any e > 0, there exist only a finite number 

of elements a with the property that mn I a I > e , then the double 
mn -

series ~ a converges and its sum equals the sum of each of the 
m,n mn 

iterated series which also converge. Furthermore, if g is any 

rearrangement of the sequence { a } , then the simple series 
mn 

determined by this rearrangement converges to the same sum as 

~ a 
m,n mn 

Proof: Let e > 0. Let N 1 = Max{n: lamnl ~ e} and 

N2 = Max {m: I amn I =::, e} . N 1 and N2 exist since only a finite 

number of elements a are such that I a I > £ , Let 
mn mn -

N 3 = Max(N 1 +l,N2 +1). Then, 

(1. 18. 1) 

and 

(1.18.2) 

By (1.18.2), 

la I< e mn 

(X) 

for m>N 
- 3 

and all n, 

for n > N 3 and a 11 m • 

~ a 
n=l mn 

exists for each m. 
(X) 

Let A = ~ a 
m n=l ·mn 

CXl 

IA I m = I ~ a I < Sup I a I . 
n=l mn n mn 

co 

Thus by ( 1. 18. 1) , IA I < £ m 
if m ~ N3 • Therefore, ~ A 

m=l m 

Now 
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(X) (X) 

exists, Bence, E E a exists. Let 
m=l n=l mn 

(X) 

(X) ( (X) ) s = E A = E Ea 
m=l m m=l n=l mn 

m m n 
and let S = E A .• 

.m . 1 ],. 
1= 

Form the partial sum S = · E E a.. . Now, 
mn . _ 1 . _ 1 . lJ 

IS .. SI < e for m m 

1- J-
> N3 • Also, 

S - S = ~ ( ; a.·) -~ (. ~ a .. ) 
m mn i=l j=l lJ i=l j=l lJ 

= ~( ; a .. - ~ a .. ) 
i = 1 j = 1 lJ j = 1 iJ 

= ~ ( ; a .. ) . 
i=l j=n+l lJ 

Thus, IS ... S I< Sup{ la .. I: 1 < i < m, j > n+ l}. Hence, by 
m mn - 1J - - .... 

(1. 18. Z), IS - S I < t, whenever n -~ N3 . Therefore, by the 
m mn 

non-Archimedean property 

(1.18.3) Is -Sl<Max(IS ... s l,ls -Sl)<t mn - mn m m 

whenever m, n > N3 • Hence, lim S = S, and I: a 
m,n-m mn m, n mn 

converges to S. In a similar way it can be showJl that 

E a = ; ( ; a )• 
m, n mn n=l m=l mn 

To prove the ·last statement of the theorem let b. = a ('), and 
l g l 

let e > 0 be given. By the proof of the first half of the theorem there 

is an integer N3 such that 



( l) Is -sl<e: for m, n ~ N3' mn 

(2) lamnl < e: for m > N3 and c1,ll n, 

(3) lamnl < e: for n > N3 and all m' 

Let N = N3 . Since g is a one-to-one function of P onto P x P 

there is an integer M such that 

{a : l < m :SN, l < n < N} C {g(l),g(2), ... ,g(M)}. mn ....-

13 

Note by (2) and (3), if am•n• is not i11 {amn: l :Sm ~N, l ~ n < N}, 

then I a 1 1 I < e:. Now for all ~ > M, I a (") I = I b. j < e: since m n g 1 1 

ag(i) does not belong to {g(l), g(2), ••• , g(M)}. By the choice of N it 
i 

follows from ( l) that I SNN -. SI < e:. Thus, if T. :;: !: b. , it follows 
1 j::: l J 

from the non-Archimedean property that 

CD 

if .i > M . Thus, lim T. ::: S and !: b. ::: S • 
i-ai l i:::l l 

The last example of this chapter presents an interesting use of 

CD n-1 
the preceding theorem to find the value of the series !: n p in 

n:::l 
Q. 

p 

Example L 19: Let K ::: Q and let {a } be given by the 
p mn 

following array. 

l 

0 

0 

p 

p 

0 

2 
p 

2 
p 

2 
p 

3 
p 

4 
p 

4 
p 

4 
p 



It is clear that the do-uble series ~ a converges. Thus 
m,n mn 

have the ~ame sum. 

<Xl 

~ a = p 
n=l 

mn 

for each m. Thus, 

<Xl 

Now, ~ 

'm=l 

and ~ ~ a CX) ( CX) ) 

a 
mn 

n=l m=l mn 

n-1 = np for each n , and 

m-1 m+l m-1 (_J_) m + ..• +p +p = p l - p ' 

co 
n-1 

<Xl 

m-1(_1 ) 1 
~ np = ~ p 1 - :p - 2 

n=l m=l ( 1 - p) 

14 



CHAPTER II 

SEQUENCE SPACES IN A NON .,.ARCHIMEDEAN 

FIELD 

A sequence is a function whose domain is the set of positive 

integers. A sequence x will be denoted by x = { x } or by 
n 

x = x(n) . 
n 

The sequences ce>nsidered in this paper will be sequences, the range of 

which is a subset of a complete non .. Archimedean valued field K; that 

is, x is a funcUon from the set P of positive integers into K, a 

Gomplete non.Archimedean field. 

Ex~mple 2. l: Let K = Q , where Q is the field of p-adic 
p p 

numbers. Let x be the function defined by x(n) = pn ... l, Then the 

sequence x is 

2 3 n-1 
X =: (1, p, p Ip I••' Ip J ' '') ' 

Sequence Spaces 

There are times when it is necessary to consider a set of sequen-

ces that possess a particular property. In this case the property may 

be that all the sequences are convergent sequences or that all the 

sequences are sequences which converge to zero. Sets of sequences 

are called sequence spaces if they are closed under addition and scalar 

multiplication. 

15 



Definition 2. 2: A sequence space a is a set of sequences 

x = {x } , x in K, that satisfy the following two properties: n n 

(1) If x = {xn} and y = {yn} belong to a then the 

seqq.ence x+y={x +y} 
n n 

belongs to a . 

(2) If x = {x } belongs to a and a is any element in 
n 

K then the sequence ax = { ax } belongs to a. n 

16 

Note that condition (2) implies that if a is a sequence space then 

the sequence consisting of zeros, (O, 0, 0, .•. ), belongs to a and that 

if x = (x 1, x 2 , x 3 , , •. ) belongs to a then the sequence -x, 

-x = (-x 1, -x2 , -x3 , ... ), belongs to a, 

The following definitions and theorems identify particular types 

of seq'l,lences i:1,nd related sequence spaces. The first type of sequence 

to be considered is a finite sequence. A sequence x = {x } 
n 

is a finite 

sequence if there exists an integer N sµch that xn = 0 for all 

n > N. For example, the sequence x = (1, 2, 3, 0, 0, 0, ... ) is a finite 

sequence with N = 4. The set of finite sequences will be denoted by cp. 

Theorem 2. 3: cp is a sequenGe space. 

Proof: Let x = {x } and y = {yn} be finite sequences, Then there . n 

exists an integer N such that for all n ~ N, both ;x = 0 
n 

and 

y = 0. Hence, x + y = 0 for all n > N. Thus, the sequence 
n n n 

x + y = {x + y } belongs to cp • Furthermore, if a is any element of 
n n 

K then ax = 0 for all n > N. Thel;'efore, ax belongs to cp. 
n 

Consequently, cp is a sequence space. 



17 

Using the concept of the limit of a sequence one can obtain 

another sequence space. That is, consider the set of all sequences 

x = {x } such that lim x exists. Let this set be denoted by (c). 
n n-co n 

Theorem 2. 4: The set (c) is a sequence space. 

Proof: This is immediate from the properties of limits; that is, 

lim (x + y ) = lim x + lim y 
n-co n n n-+a:, n n-+co n 

and 

lim (ax ) :: a lim x 
n-co n n-co n 

Thus, x+ y and ax belong to (c). 

Other sets of sequences of interest in this study are the following: 

The set (c 0 ) of null sequences, that is convergent sequences whose 

limit is O ; the set (m) of bounded sequences; the set e of all 

sequences { xn} such that xn+ 1 = xn for all n ~ N(x); the set w of 

all sequep.ces. The following theorems can be proved by simple argu-

men ts. 

Theorem 2. 5: The set (c 0) is a sequence :space. 

Theorem 2. 6: The set (m) is a sequence space. 

Theorem 2. 7: The set e is a sequence space. 

Norm Convergence 

In any space it is natural to quest ion whether some concept of 

convergence can be defined for a sequence of points, If the space has 
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a topology associated with it, then the topology can be used to decide 

whether a sequence of points in a will be convergent. It should be 

noted at this time that a point in a sequence space is actually a sequence 

from a non-Archimedean field K. Thus, a sequence in a will be 

(n) (n) (n) 
denoted by {x · } where for each n, x is in a ; that is, x is 

the sequence x(n) = (xt),xin), •.. ,x~n), ... ) where 

to K for each m. 

(n) 
x 

m 
belongs 

Just as in the case of a sequence of real numbers a norm can be 

defined on a sequence in a non-Archimedean field. With this norm a 

convergence criterion can be defined for a sequence in a sequence space 

a. This convergence will be referred to as norm convergence. 

In Chapter I a non-Archimedean norm is defined as a real valued 

function on a vector space V over a non-Archimedean field K. By 

the definition of a sequence space a, it is apparent that a is a vector 

space over the non-Archimedean field K. If for any x in a the value 

II x II is defined by II x II = Sup Ix j, then the function 
n n 

on a, and a is a non-Archimedean vector space. 

II II is a norm 

Theorem 2. 8: II II is a non-Archimedean norm on the sequence 

space a • 

This proof is straightforward and is left to the reader. The norm 

of this theorem is called the supremum norm or the Sup norm. This 

supremum norm will be referred to as the "norm" since it is the only 

norm of a sequence to be considered in this study. With this norm it is 

possible to define a convergence criterion for a sequence space a. 

Definition 2. 9: Let {x(n)} be a sequence in a. The sequence, 

{x(n)} is said to be norm convergent to ~ if for every e: > 0 there 
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is an integer N such that 

Sup Ix (n) - x I < £ 
m m m 

if n > N • ..... 

The sequence {x(n)} is E1aid to be norm convergent if for each e > 0 

there h an integer N such that 

S I (n) (n+ 1) I < .,.. up x - x e: 
m m m 

if n·>N • 

The next example is a sequence in (c 0 ) that is norm convergent. 

Example 2. 10: Let K = Q and let {x(n)} be given as follows. 
p 

(1) 2 3 m-1 
x - (1, p, p , p , .•. 'p , ••• ) 

(3) 2 3 4 5 m+l 
x = (p , p , p , p , ••• ' p , •.• ) 

( n-1 n n+l n+2 . (k.:in)+(m..-1) ) p ,p ,p ,p , ... ,p , ..• 

It is clear that x(n) is in (c 0 ) for each n. Furthermore, 

(n) (n+l) _ ( n-1 n n n+l n+m-2 n+m-1 ) 
X -. X - P - P f P • P I • • • I P •P I • • • • 

Thus, llx(n) -x(n+l) II = --1:-1 . Therefore, if e > 0 choose N large 
n .. 

enough so that J .. 1 < t. Then if n > N, llx(n) - x(n+l) II < e • 

H~nce, {x(n)} is norm convergent. In fact, it can be shown that 

{x(n)} . th 1s nor:,;n convergent to e zero sequence. 
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The next example gives a sequence of null sequences that is not 

norm convergent. 

Example 2. 11: Let K = Q and let p 
{x(n)} be given as follows. 

x(2 ) = (2, 2p, 2p2 , •.. , 2pm- l, .•. ) 

x(n) = (n, np, np2 , •.. , npm- l, ... ) 

For each n, it is clear that x(n) is in (c 0 ). However, {x(n)} is 

not norm convergent. This follows from the fact that 

X (n) .. x(n+l) = 2 m-1 (l,p,p ,i··,P , .•. ) 

·11x(n) - x(n+l) II --Thus, 1, for all n. is not norm 

c onve r gent. 

Since K is a complete space it can be shown that if {x(n)} is a 

norm convergent sequence in a then {x(n\ is coordinate convergent; 

that is, . lim x (n) ~xists for each m • 
n-ai m 

Theorem 2. 12: If {x(n)} is ·a norm convergent sequence in the 

sequence space a then {x(n)} is coordinate convergent. 

Proof: Let £ > 0 be given. Since {x(n)} is norm convergent there 

is an integer N such that 
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Sup Ix (n) - x (n+ 1) I < e 
m m m 

if n > N. 

Thus for all m it is true that 

/x (n) - x (n+ 1) I < e 
m m 

for n > N . 

Since K is complete, lim x (n) = x 
il-+co m m 

in K, · for each m . 

With the concept of norm convergence it is now possible to prove 

that the sequence spaces (c), (c 0 ), and (m) are complete spaces with 

respect to norm convergence. That is, if {x(n)} is a Cauchy sequence, 

with respect to the norm, in (c), (c 0), or (m) then there is a 

sequence x in (c), (c 0), or (m), respectively, such that {x(n)} is 

norm convergent to x. These proofs are the same as in the real case 

and will not be given here. 

Theorem 2. 13: The sequence spaces (c), (c 0 ) and (m) are 

compl~te spaces with respect to norm convergence. 

Dual Spaces 

Associated with each sequence space a is another sequence 

space known as the dual of a, * This space is denoted by a , and is 

defined in terms of convergence of a series. Recall, in a non
co 

A.rchimedean space, a series ~ a converges if and only if 
n=l n 

lim a = 0. The dual space will be used to define another type of con
n-+co n 

vergence that will be more useful than norm convergence in working 

with matrix transformations. 
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Definition 2. 14: Let a be a sequence space. The space * Cl ' 

called the dual of et or the dual space of et, is the set of all sequences 

u = {u} such that for every x = {x} in et the series 
n n 

converges. 

* 

Cl) 

ux = E u x 
n=l n n 

The following theorem demonstrates that et is a sequence space, 

It should be noted that the proof does not depend on the fact that the 

sequences are contained in a non-Archimedean field. 

:.::: 
Theorem 2. 15: If a is a sequence space then et is a sequence 

space. 

Proof: Let 

the series 

u = {u } 
n 

and v = {v } 
n 

belong to * Cl! • Then by definition 
Cl) 

ux = E u x and 
n=l n n 

Cl) 

vx = E v x , converge for every 
n=l n n 

x = { x } in et • Hence, 
n 

CX) 

(u+v)x = E (u + v ) x 
n=l n n n 

CX) Cl) 

converges and equals E u x + E v x for every x in a. There .. 
n= 1 n n n= 1 n n 

* fore, the sequence u + v belongs to et • Similarly, for any a in K, 

the series, 

converges. So 

CX) CX) 

= a 
n=l 

E (au ) x 
n n 

(au) x = E u x 
n n 

n=l 

au belongs to * Cl! • * Hence, et is a sequence space, 

Since sequence spaces are sets of sequences it is possible to 

order sequence spaces by set inclusion. 
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Definition 2. 16: Let a and 13 be sequence spaces. If for every 

x = {x } in a, x is also in 13 then a is contained in 13 and this is 
n 

denoted by a C 13 • 

An immediate result of this definition is the fact that 11 a = 13 if 

and only if a C 13 and 13 C a • 11 Other facts that c;1.re easy to check 

are 

(1) cp (, (c 0 ) 

(2) (c 0 ) ~ (c) 

(3) (c) C (m) 

(4) (m) C w 

(5) cp( e C (c). 

It is also possible to prove the fact, 11if a C 13 then the dual space of 

13 will be contained in the dual space of a. 11 

*c * Theorem2.17: If a(l3 then 13 a . 

Proof: Suppose u is in * r, • Then for every x belonging to f3 and 

hence, for every x belonging to a the series ux = ~ u x 
n n n=l 

converges. Thus, * u is in a • *c * Hence, 13 a • 

Since * a is a sequence space it is possible to consider the 

* ** space dual to a ; that is, the space a 

:,}:* 
exists between the spaces a and a 

The following relationship 

Theorem 2, 18, For any sequence space a, a C ** a 

Proof: Let x belong to a. Then for every x in a and every u in 

the series 
co 

ux = ~ u x 
n=l n n 

converges. Therefore, x is in 



** H~nce, a C a • 

It is possible that 

this case. 

The following definition refers to 

Definition 2. 19: A sequence space a is said to be :eerfect if 

** a = a . 
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The dual spaces associated with the spaces <P, (c 0 ), (c), and 

(m) will now be de rived. Although the definitions and existence of the 

dual space is the same for any field K, the identification of the dual 

space for the spaces discussed above depends on the fact that they are 

defined over a non-Archimedean field K. 

Theorem 2. 20: * w = <() 

Proof: If x = {x } 
n 

is in w 

ux = 

* and <P 

and u = 

(JJ 

~ x u 
n=l 

n n 

= w • 

{u } 
n 

m 
= ~ 

n=l 

is in <() then 

x u 
n n 

* for some m = m(u). Thus, ux converges and <P C w • To prove 

* that w C <(), assume by way of contradiction that u = { u } is not in 
- n 

<() • Then there exists an increasing sequence, {M.} 
l 

of positive 

integers such that uM. # 0. 
l 

x = n 

Define the sequence x = {x } by 
n 

0 if n # M. 
l 

1 
if M. n = 

UM. l 

l 

Since w is the space of all sequences, x = {x } is in w. 
n 



Furthermore, 

ux = I; u x 
n n 

n=l 
= 

co 
I: u x = 

i=l Mi Mi 

(XI 

I: 1 
i=l 
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which diverges. 

* 
Thus, u does not belong to * w , and it follows that 

w = q,. 

To prove the second part of the theorem, note that it has been 
CD 

shown for any u in 

* 

q, and any x in w that ux = I: u.x. converges. 
. l 1 1 
1= 

'Thus w C q, • The reverse inclusion follows from the fact that w is 

the space of all sequences. Hence, w = q, * 

Corollary 2. 21: w and q, are perfect. 

The following corollary gives a relationship between the space of 

finite sequences and any perfect sequence space. 

Corollary 2. 22: If a is perfect then q, Ca. 

* * Proof: Since w is the spa~e of all sequences a C w = q, • Thus, -
**c ** Theorem 2, 17 implies that cp a ; that is, 

* Theorem 2. 23: (m) = (c 0 ) and 

(m) are perfect. 

Proof: If must first be shown that if x is in (m) and u is in (c 0 ) 

then 
CD 

ux = I: u x 
1 n n 

n= 
converges. This fact is immediate if one shows 

that lim x u = 0. Now, since x = {x } is in (m) there exists a 
n-oo n n n 

number M > 0 such that lxn I < M for all n. Therefore, 

0 < Ix u I = I u I Ix I < M I un I , n n n n 
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Now, since u = {u } 
n 

belongs to 

0 < lim Ix u I < M lim I u I = 0 • n-+co n n n-+o:, n 

0:, 

Thus, limxu =O 
n-+o:, n n 

and the se ;rie s ux = ~ u x 
n n 

converges. There-

(co) ( (m)* r 
n=l 

fore, Next suppose that u is n0t in (c 0). Now either 

lim u 
n-co n 

exists and is non-zero or lim u 
n-o:, n 

does not exist. In either 
co 

case the series ux = ~ u x 
n n 

n=l * 
n. Hence, u is not in (m) 

does not converge when x = 1 
n 

and it follows that * (m) 

for all 

To prove the second half of the theorem first note that it has been 
co 

shown that for any u in (m) and any x in that ux = ~ u x 
n n 

n=l 
converges. Thus, To show the reverse includion, 

suppose u is not in (m). For the sequence {2 i} there exists an 

increasing sequen<;:e of integers {M.} 
l 

such that, 

where {uM) is a subsequence of u. Using this subsequence define 
l 

a sequence y = {y } by 
n 

Yn 
:;: 

Now y = {yn} is in (co) 

0 < lim IY / n-+o:, n 

0 

1 

UM. 
l 

since 

= Um 
1-0:, 

if n /:- M. 
l 

if n = M. 
l 

1 < 1· 1 0 • 1m-. :;: 

/uM_/ 
i-co 21 

l 



Furthermore, unyn does not approach zero and so the series 
co 

uy = I: u y does not converge. 
1 n n 

*n= * 
(c 0 ) • Consequently, (c 0 ) C::. (m). 

Therefore, u = {u } 
n 

is not in 

= (m). 

'l'he spaces considered in the previous theorems have been 

perfect. The next theorem gives a space that is not perfect. 

* Theorem 2. 24: (c) = (a 0). 

Proof: Let u be in (c) such that u is not in (c 0 ). Then, 
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* lim u x = O 
n-+-cx, n n 

if and only if lim x = 0. 
n-+a:i n 

Therefore, if x is in ( c) • 

x is also in (c 0). Thus, (c)* C (c 0 ). The reverse inclu15ion follows 

from the fact that if u = { u } is in 
n 

a) 

then the series 

ux = I: u x converges where x = 
n n 

is in (c)( (m). Hence, 
n=l 

(c)* = (co). 

Corollary 2. 25: (c) is not perfect. 

* Proof: By the preceding theorem (c) = (c 0). But by Theorem 2. 23 

** ):{ ** (c) = (c0 ) = (m). Thus (c) f. (c) and (c) is not perfect. b. 

Another example of a sequence space that is not perfect is the 

* *>:~ 
space e . The following theorem shows that e = (c 0), so e = (m). 

* Theorem 2, 26: 0 = (c 0 ), 

Proof: Since e C (c) by Theorem 2. 24 and Theorem 

2, 17. Now let x = (1, 1, 1, 1, .•. ). Then x belongs to e. For 

u = {u } 
n 

u is in 

* a) 
in e , I: u converges. Therefore, 

n=l n 

* * (co). So e I <:". (co). Hence, e = (co). 

lim u = 0. 
n-+-a:i n 

Thus 



28 

There is one other concept to be discussed in this section. This 

concept is that of a normal sequence space. The definition of a normal 

sequence space fqllows. 

Definition 2. 27? A sequence space a is normal if whenever x 

is in a and y = { y n} is a sequence such that I y n I ~ I xn I for every 

n, then the sequence y is in a. 

It is clear that <p, w, (c 0 ), (c), and (m) are all normal 

sequence spaces. ,An example of a sequence space that is not normal 

is the space e . 

Theorem 2. 28: The sequence space a is not a normal space. 

Proof: Let x = {x } be the sequence with x = l for all n. Let n n 

y = { y } be the sequence such that y = l if n is even and y = 0 
n n n 

if n is odd, Now x belongs to e , but y does not belong to e . 

However, I yn I < lxn I for all n. Hence, e is not normal. 

(a, 13)-Convergence 

If a is a sequence space and j3 is q. sequence space so that 

then another type of convergence can be defined for a sequence 

of points in a. This convergence, in some instances, is weaker than 

norrn convergence. However, as will become evident in Chapters III 

and IV this convergence will be useful in discussing matrix transforma-

tions on sequence spaces. 

Definition 2. 29: The sequence of points {x(n)} of a is said to 

* be (a,13)-convergent, <p C, j3 ( a , if to every u = {um} of j3 and 



to every e > 0, there corresponds a number N = N(e:, u) > 0, such 

that 

for n > N. * = a then 

00 
~ ( (n) (n+l)) 
~ u x - x 

m=l m m m 
< £ 

is said to be a -convergent. 

The followtng is an example of a sequence {x(n)} that is 

((c 0), (m))-convergent. 
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Example 2. 30: Let K = Q and let {x(n)} be given ai;; follows. 
p 

( 1) 2 3 
x = (l,p,p ,P , .•. ) 

(2) 2 3 4 
x = (p, p ' p ' p ' •.• ) 

(3) 2 3 4 5 
x = (p ' p ' p ' p ' •.. ) 

X (n) = n-1 n n+l n+2 
(p ' p ' p ' p ' •.• ) 

It is clear that {x(n)} is a sequence from (c 0). Now let u = { u } 
m 

be a bounded sequence. Then there exists a positive number M = M(u) 

suc;h that lu I< M for all m. Thus, 
m 

M 
n+m-2 

p 

and Hence, 1. ( n+m-2 n+m-1) 0 1.m u p - p = 
m-oo m 

00 
~ ( n+m-2 n+m-1) 

ump - p 
m=l 
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converges. It can now be shown that {x(n)} is ((c 0 ), (m))-convergent. 

To do this it must be shown that 

o:) 

.._., ( .n+m-2 n+m-.1) 
LI um p - p 

m=l 
< £ for n > N 

But 

co 
E ( p.+m-2 n+m-1) 

ump - p 
m=l 

I n-1 m ( m-1 m) = p !; u p - p 
m=l m 

m-1 m 
E u (p - p ) converges, since u belongs 

lim p:: ~ -:m = 0 . Thus I ; u (pm - 1 - pm) = M' 
m-,,.co m= 1 m 

co 
Now to (m) and 

for some 

number M'. Hence, 

! ( n +m -2 n +m -1 ) 
LI U P - P 

m=l m 

M' 
= -n:-r . 

p 

Thu,s, since lim ~l = 0, {x(n)} is ((c 0 ), (m))-convergent. 
n-,,.co n-

the s:quence {x(n)} is (c 0 ) .. convergent. 

Since 

The following theorem gives an interesting result about an 

(a,13)-convergent sequence. 

Theorem 2. 31; Every (a, 13)-convergent sequence {x(n)} of a , 

* (cp C 13 C a ) , is coordinate convergent; that is, lim x (n) 
n-co m 

exists for 

every m. 

Pro.of: Let {,/n)} be an (a,13)-convergent sequence and let e: > 0 be 

given. Then for a fixed m, since cp C 13 , there is a sequence 

u = {u } such that u = 1 while u. = 0 for all i ,/:. m. Since m m 1 



{x(n)} is (a,13)-convergent there exists a positive number 

N = N(e:, u) > 0, such that 

co 
!: u. (x.(n) - x.(n+ 1)) < e: 

i= l 1 1 1 

for n > N. Therefore, for n > N 

jx (n) - x (n+l)) I < e: 
m m 

Hence, fol;' each fixed m, {x (n\ is a Cauchy sequence in K and 
m 
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since K is complete it follows that lim x (n) exists for each m, ~ 
n-<Xl m 

Example 2. 32: Let {x(n)} be the sequence defined in Example 

2. 30. Then for a fixed m, 

(n) m-1 m m+ 1 m+2 m+(n-2) 
x = (1 ,p ,p ,p •.•. ,p ••.. ). m 

Thus, lim x (n) 
n-m m 

0 . 

The following lemma will be useful in determining necessary and 

sufficient conditions for a sequence { x(n)} in a to be (a, 13)-

convergent. This lemma will also be used again in Chapter IV in 

connection with determining necessary and suffic;ient conditions for a 

set of matrices to be a ring. 

Lemma 2. 33: Let {amn} be a double sequence with the proper-

ties: 

( 1) For each fixed n, lim a = 0. 
m-co mn 

(2) For each fixed m, lim a = 0 • 
n-co mn 
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(3) There exists an e > 0 such that for every N there 

such that for some 

Then there exists strictly increasing sequences (n0 , n 1, n 2 , ... ), 

(N I N I N' ) ( ) and ( ' · ' ' ) uch that O' l' 2···· I mo,m1,m2···· mo,m1,m2, ... s . 

m. < m! < m.+l and n. > N! for every i, and la I > e for 
1 1 1 1 - 1 mk nk -

k=0,1,2, .•. Furthermore, the sets 

Rk = {a : 1 < m < m 1 n > N' } mn - k-1' k 

have the property that for every a 
mn 

in 

Proof: The sequences will be constructed by induction, By condition 

(2), for each m there exists an integer N 
m 

(2.33.1) la I < e mn 
for n > N 

m 

such that 

To begin the construction let N' = 1. 0 
Then by (3), there exists an 

integer n0 > N0 such that lam n I 
. Q O 

c;:ondition ( 1), the re exists an integer 

> e for some Using 

m' 
0 

such that if 

m ~ m 0. It is clear that m 0 < m 0, [See Figure 1, For p~rposes 

of illustration suppose mo = 2, no = 4, and mo = 3]. Now determine 

the integers N 1, N~, ... , Nm0 of (2.33.1) so that 

lalnl < e for n > Nl 

la2nl < e for n > N 2 
(2. 33. 2) 

Jamin I < e for n > N 
m' 

. 
0 0 



33 

Let Ni = Max (N 0, N 1, •.. , Nm0). Then define R 1 to be 

Rl ::i {amn: 1 < m ~ mo, n ~ Ni}. Now by (2. 33. 2), I amn I < e: 

for all a in R 1 • Apply condition (3) again to obtain an integer mn 

so that for some since 

n 1 > N 11 and because a belongs to R 1 • Using condition (1) 
mOnl 

there exists an integer m 1 su~h that I a I < e: for m :::_ m 1 . mn 1 
Clearly m 1 > m 1 • Now determine the integers 

N '+l'N '+2 q •• ,N , of (2.33.1) so that 
mo mo ml 

(2.33.3) 

jam'+l nl < e: 0 , 

la , +2 I < £ mo , n 

< e: 

for n > N 
- mo+l 

for n :::_ Nm 1 +2 
0 

for n > N 1 , 

ml 

Let N2::;: Max(Nm0+l'Nm0+2, ... ,Nm1). Define R 2 by 

R 2 = {amn: 1 < m ~mi, n > N2}. [See Figure 1]. Then by .(2, 33. 3) 

I a I < e for all a in R 2 . Suppose now that the sets of integers mn mn 

{Nb,Ni••••,Nk-1}, {nO,nl'''''nk-1}' {mO,ml'''''mk-1} and 

{m0, m 1, ... , mk-l} have been determined c:1-nd that Rk- l hi:1,s been 

defined so that Rk-l = { amn:: 1 ~ m < mk- l , n :::_ Nk-l}. iuppose 

further that n. > N! and m. 1 < m~ 1 < m. for 1 _< j < k-1. Now 
J - J J- J"" J 

determine the integers Nj, mk~Z ~ j ~ mk-l' of (2, 33. 1), Let 

Nk = Max {Nj: mk._ 2 < j ~ mk._ 1}. Define 

Rk = { amn : 1 < m ,'.'.:, mk- l, n > NP . Apply condition (3) to obtain 

an integer nk ~ Nk such that 



lam n I < e: 
k k 
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for some mk . 

Clearly mk > mk-l. Now 

terms in Rk are such that 

a does not belong to Rk since all 
mknk 

I a I < e By condition ( 1) there exists 
mn • 

an integer mk such that I a I < e for all m ~ mk. By the choice 
mnk 

of mk it follows that mk < mk. Hence, the kth terms in the 

seq1,1enc:;e have been determined given that the k.,. 1 st term were 

given. Thus, by induction the sequences have been constructed so that 

Furthermore for all terms a in 
mn 

la 1-<e. mn 

Nl 

a 11 I al2 al3 

a21 a22 a23 

a31 a;32 a33 

N ' g ml 
a m 1 l 

a 
m 12 a m 13 a 4 ..• a .. I m 1 m 1n 

N t 

" ml 
a m 1 1 a m 1 2 a mi..3 a I 4 • • • a I ... I 

1 1 1 ml mlnl 

Figure 1. Subsequence; Lemma 2. 33 
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The following.theorem gives necessary and sufficient conditions 

for a sequence {x(n\ in the sequence space a to be ( a, 13) ..-convergent 

* where cp ( 13 C a· , and 13 is a normal space . 
...... 

Theorem 2. 34: A necessary and sufficient condition for the 

* ( a., 13)..-conve rgence, (cp C 13 C a , 13 normal), of a sequence of points 

{:,c;(n)} of a is that to every u = { u } of 13 and to every £ > 0, the-re 
m 

corresponds a number N = N(£, u) > 0, such that for every m 

lu (x (n) ... x (n+l))I < e 
rn m m 

fo:,; n > N. 

Proof: Suppose first that the condition is satisfied. Since K is non ... 

.A,rchimedean it follows that 

CXl 

!: u (x (n) ... x (n+l)) 
1 m m m 

m= 
< Sup u (x (n) ... x (n+l)) I . 
- m mm m 

Thus, for e > 0 and for every u of 13 there exists a positive number 

N = N (~ , u) such that for n > N 

I U (x ( n) ... X ( n + 1 ) ) , · < .£ 
mm m 2 

for every m • 

Therefore, for n > N 

I 
u(x(n) .. )n+l))I = I .; u (x (n),. x (n+l)) I 

m=l m m m 

< Su.p lu (x (n) .. x (n+l))1. 
- m mm m 

Thus, 
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for n > N 

Therefore, {x(n)} is (a,13)-convergent. 

To prove the converse an indirect proof will be used. That is, 

suppose that there exists an e > 0, an x = {x } in a, and u = { u } 
n m 

in 13 such for all N there is an integer n 0 > N such that 

[For notational purposes let y = x (n) - x (n+l)]. Since {x(n)} is 
· mn m m 

an (a, 13) ... convergent sequence, {x(n)} is coordinate convergent. That 

is, for each fixed m limy = 0. 
n-oo mn 

Hence, lim u y = 0 for each 
n-oo m mn 

nxed m, Furthermore, since u = {u } 
m 

series ; u x (n) and ; u x (n+l) 
m=l mm m=l mm 

* belongs to 13 C a , the 

converge for each n. 

Thus lim u y = 0 for each fixed n. Therefore {u y } is a 
m-a:, m mn m mn 

double sequence that satisfies the three properties of Lemma 2. 33. 

[The contradiction will be obtained by defining a sequence 

terms of the sequence u = { u } so that v is in 13 and 
m 

v = {v.} 
J 

in 

lv(x(n) _ x(n+l))j > e for n = nk ~ Nk' This will then contradict the 

fact that {x(n)} is (a,13)-convergent.] 

From Lemma 2. 33 there exist sequences (n0 , n 1, ... , nk, •.• ), 

(N0, N1, ... , Nk' ... ) , (ni0 , m 1, ••. , mk' ... ), and 

( I I I ) mo· ml, .•.• mk' .•. 

I u y I > e: for all k. 
m m n k k k 

follows: 

The sequence v = {v.} 
J 

id defined as 



0 if j f: mk (k = 0, 1,2, .•. ) 

v. :;: 

J 
u if j = mk (k = 0, 1, 2, ... ) . 

mk 

Now v, = {v.} has the properties 
J 

(2. 34. 1) lvm Ym n I > £ for all k 
k k k 

and 

(2.34.2) 
lvmk Ymknj I < £ if j f: k . 

The property in (2. 34. 1) follows since v ::: u 
mk mk 

and 

I u. y I > £ by construction. The property in (2. 34. 2) is true 
mk mknk -

sin.Ge for any j > k v y belongs to Rk, and for any j < k, 
mk mknj 

mk > mJ 
v = {v.}, 

J 

and Iv y n. I < £ for m > m!. Now by definition of 
mm J - J 

jv. j < ju. I for all j. Thus, since j3 is a normal space 
J - J 

v belongs to j3. Furthermore, 

jv(x(n) - x(n+l)) I > £ for n = nk, k::: 0, 1, 2, ...• 

For consider n = nk. Then, 

. . . + 

Now by (2.34.1), Iv y I>£, But by (2.34.2), 
mk mknk -

if j :I k. Thus by the non-Archimedean property 
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(nk). (nk+l) 
lv(x - x ) I = Iv y I > e m m n 

k k k 
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Hence for any integer N, there exists an integer nk > N suc;:h that 

Thus, {x(n)} is not (a,f3) ... convergent. This contradiction proves the 

conditiori is necessary. 

This section concludes with a theorem which is an ea.sy conse-

q\,lence of the preceding theorem ancl which is quite useful in the work 

to be done in £inding necessary and sufficient conditions for a matrix to 

belong to a particular set of matrices. It states that an (m)-convergent 

sequence is uniformly bounded. 

Theorem 2. 35: If {x(n)} is an (m)-convergent sequence then 

there exists a positive number M such that 

and n; that is, llx(n) II < M for all n. 

Ix (n) I < M for all m 
m 

Proof: Let u = { um} belong to (c 0 ) so that II u II < 1. Pick e: = 1. 

Since {x(n)} is (m)-convergent there exists aq integer n' such that 

for n > n I 

lu (x (n) _ x (n+l))I < 1 
mm m for all m • 

Now by the non-Archimedean property it follows that for all k > 0 

lu (x (n') - x (n'+k)) I < 1 
mm m for all m • 

Therefore for all k > 0 and for all m 



!11 x (n'+k)I < 1 + ju x (n')I. 
mm mm 

Since is a bounded seqµence !Ix (n,) II = M , . 
m n 

Thus, since 

I u x (n '+k) I < 1 + M 
mm n 1 

for all k > 0 and all m. Therefore, 

(n'+k) 
Sup I u x I < 1 t M I m mm - n 

for all k > 0 . 

Thus, llullMn'+k ::_ 1 + Mn, for all k > 0, where Mn'tk is 

II X (n '+k) II . Therefore, 

llx(n'+k) II < M , + 1 
n 

for k > 0 , 
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Now, let M=Max(M1,M2 , •.• ,Mn 1+1). Then for all n, llx(n)II < M. 

Thus, the theorem is proved. 

Comparisons of Norm Convergence 

and a-Convergence 

The remaining part of this chapter is devoted to the investigation 

of the relationship between norm convergence and a-convergence. Two 

types of convergence are equivalent if the same sequences converge for 

each method of convergence. 

The next theorem demonstrates that (c 0 )-convergence and norm 

convergenc;e are equivalent. 



• 

Theorem 2. 36: Let x(n) belong to (c 0 ), for every n; the 

sequence {x(n)} 1s (c 0) ... convergent if and only if {x(n)} is norm 

coµvergent. 

Proof: Let {x(n)} be a (c:; 0 )-convergent sequence in (c 0). By 

Theorep1. 2, 34 for every u in {m) and every e: > 0 there is an 

integer N such that for every m 

(2. 36. 1) ju (x (p.)_x (n+l))j < e: for n > N. 
mm m 
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Let u = (1, 1, 1, ••• ). Then u is in (m) and it follows from (2. S6. 1) 

that for every m 

(2.36.2) I (n) (n+l) < x - x e: m m 
for n > N . 

Thus 

(2.36.3) llx{n) - x(n+l) II == Sup Ix (n) - x (n+l) I < e: 
m m m 

for n ?_ N. Hence, {x(n)} i~ norm convergent, Conversely, 

suppose {x(n)} is a norm convergent sequence in (c 0 ). To show that 

{x(n)} is (c 0 )-convergent let e: > 0 and let u = {um} belong to (m). 

Since u is in (m) the re is an1,1mbe r M > 0 such that I u I < M 
m 

for all m. Furthermore, since {x(n)} is norm convergent there 

exists an integer N such that 

< ...£. 
M 

for n > N 

Thus, 
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S I (n) (n+l)I < E up x - x -
m m m M 

for n > N • 

Therefore for every m it follows that 

I ( (n) (n+ 1) I < u x ... x € 
mm m for n > N • 

In the next theorem it is shown that a norm convergent sequence 

from (c) is also (c)-convergent. 

Theorem 2. 3 7: Let {x(n)} be a sequence of convergent 

s~quences, If {x(n)} is norm convergent then {x(n)} is (c)-

convergent. 

Proof; Let 

then clearly 

u = {u } belong to 
m 

I ( (n) (n+ 1) I < u x - x € 

If u is identically zero 

for all n. Thus, suppose there is 

an entry um of u that is non-zero. Then !lull> juml > 0. Now, 

since {x(n)} is a norm convergent sequence, for each e > 0, there 

is an integer N such that 

llx(n) - x(n+l) II = S I (n) (n+l)I < up x - x 
m m m !lull 

e 

for n > N. Thus, for every m 

ju (x (n) - x (n+l) I < !lull Sup Ix {n) - x (n+l) I < e:, 
mm m - mm m 

if n > N. Therefore, by Theorem 2. 34, {x(n)} is (c)-convergent,.ti. 



The converse of the preceding theorem is not true, That is, 

there exi~ts a sequence {x(n)} of convergent sequences that is 

(c)-convergent but is not norm convergent. 
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Example 2. 38: Let K = Q and let {x(n)} be given as follows, 
p 

( 1) 
(1,0,p,p 2 3 

' ... ) x = ,p 

(2) 
(0, 1, o, p, p 

2 
' ... ) x = 

x 
(3) = (0, O, 1, 0, p, ... ) 

In gen~ral x(n) is given by x(n) = {x (n): m = 1,2,3, ••. } 
m 

where 

0 if m < n or m = n+l 

(2. 38. 1) x 
(n) = 1 if m = n 

m m-n-1 
p if m > n +2 • -

To show that {x(n)} is (c)-convergent let £ > 0 be given and 

u::;, {u } 
m 

belong to Then there exists an such that 

lu I < e m 
if m ~ m 0 • Now by (2. 38. 1) the sequence { (n) (n+ 1 )} 

x - x 

is given by 

0 if m < n 

1 if m = n 

(2. 38. 2) x 
(n) 

-x 
(n+ l) = -1 if m = n+l 

m m 
p if m = n+2 
m-n-1 m-n-2 

if > n + 2 • p - p m 

Thus, jx~n) - x~n+l) I < i for all n and m. Therefore, if n > m 0 

ju (x (n) _ x (n+l))j < £ 
mm m 

for all m . 



Hence, {x(n)} is (c)-convergent. However, by (2, 38. 2) 

llx(n) - x(n+l) II = Sup Ix (n) - x (n+l) I = 1 
m m m 

for aH n. Therefore, {x(n)} is not norm convergent. 

Notice in the proof of The0rem 2. 37 that no use is macle of the 

fact that the sequences x(n) are convergent i;;equences. The fact 

crucial to the proof is that u = {um} belong to (c 0). Therefore, 

* sine~ (m) = (c 0 ), it follows that a norm convergent sequence of 
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bounded sequenc;:es is also (m)-convergent. Furthermore, the sequence 

in Examplf;l 2. 38 furnishes an instance where (m)-,convergence does 

not imply norm convergence. This observation concludes Chapter II. 



CHAPTER III 

MATRIX TRANSFORMATIONS IN A 

NON -ARCIIIMEDEAN FIELD 

Basic Definitions and Examples 

Let K be a non-Archimedean field and let {x } be a sequence 
n 

of elements from K. If x = {x } i1;1 a convergent sequence then a 
n 

number can be associated with the sequence x by using the concept of 

the 1:1,mit of a sequence. However, if the sequence is not convergent 

there iE;I no immediate method of assigning a number to the sequence. 

The methods that have been developed to assign numbers to divergent 

sequences are known c:1.s summability methods or matrix transforma-

tions. 

The student of linear algebra encounters matrix transformations 

when he considers the product of an m x n matrix A and a column 

vector x; with n-components. In this instance, the product is the 

m-tuple Ax, and the m X n matrix A is a transformation from the 

vectot space K(n) into the vector space K(m) where A = (a ) , 
mn 

a belongs to K, and x = {x. : 1 < J. < n} is in K(n). Summa-
mn J - -

bility methods can be viewed as involving a generalization of this idea. 

In summability methods the matrix A is an infinite matrix and 

the vector x is a sequence of elements from K. The product Ax 

is a sequence of terms of the form 

44 

(X) 

~ a x 
mn n 

n=l 
Thus to consider the 
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co 
product Ax convergence of the series ~ a x must be assured. 

n=l mn n 
Recall that in the q.on-Archimedean field the series converges if and 

only if lim a x = 0. 
n-co ·mn n 

So:r;ne of the basic definitions in summability methods do not 

depend on whether K is an Archimedean field or a non-Archimedean 

field. Two of these definitions with illustrative examples will now be 

given. 

Definition 3, 1: The matrix A = (a ) , m, n = 1, Z, 3, •.. , 
mn 

transforms any given sequence x = {x } 
n 

defined by the equations 

= A (x) = 
m 

~ a x 
mn n 

n= 1 

into a sequence 

(m = 1, Z, 3, ... ) . 

The sequence y = { ym} is called the A-transform of the sequence x. 

The sequence y = { ym} is sometimes written as y = Ax. 

Notice that in this definition it is assumed that 
co 

CX) 

y = ~ 
m n=l 

a x 
mn n 

exists for each m; i.e., the series ~ a x 
mn n 

converges for each 
n=l 

m. 

Since y = {ym} is a sequence in K it is possible to decide 

whether lim y exists. If lim y = t then the number t can be 
m-co m m-co m 

ai;;1;3ociated with the sequence y and therefore with the sequence x. 

The following definition is made in the light of these ideas. 

Deftnition 3. 2; If A is an infinite matrix and y = { Ym} is the 

A-transform of x = { x } and if lim y = t exists, then x i1;3 said 
n m-<Xl m 

to be A-summable to t or equivalently, A is said to sum x to t. 
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In the first example a matrix A is g~ven and Hs transform of a 

sequence is determined. The second example illustrates a sequence 

that is not A-summable even though its A-transform exists. Also in 

the second example a sequence is given that is not convergent but it 

does have a convergent A-transform. 

Example 3. ? : L!:lt K = Q and let A be the matrix 
p 

l 0 0 0 . . . 
l p 0 0 

l 2 
0 A = p p 

1 2 3 p p p 

Consider the sequence x = (p-1, p-1, p-1, p-1, ••• ). The sequence x 
m 

isA-summableto -1 since y = ~ (p-l)pn-l, and 
oo m n= 1 

limy = ~ (p.,. l)pn-l, which is the canonical representation of ... 1. 
m-oo m n=l 

Example 3. 4: Let A be the matrix of Example 3. 3. Let x 1 be 

' 1 1 1 
the ~equence ( l, ...,. , 2 , 3 , .. , ) and x 11 be the sequence 

p p p 
(1,0,l,O,l,O, .•. ). The A-transform of x 1 is the sequence 

YI :::i ( l, 2, 3 J , • • , m, • • • ) • Now lim y 1 does not exist. 
m-oo m 

'rhus x' is 

not A-summable. The sequence x" is not a convergent sequen.ce but 

the A-transform of .x: 11 is the sequence 

2 2 2 4 2 4 
YI I : ( 1, 1, 1 +p , 1 +p , 1 +p +p . , 1 +p +p , • • • ) 



or in general, 
2m 2 

Y 2m - l = Y 2m = ( 1 - p ) I ( 1 - P ) · 

l . 1 
1my = 2. m-a> m 1 ~p 

So A sums x" to the number 

Therefore, 

1 
2 . 

1 - p 
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In the preceding examples since A is a lower triangular matrix 

(all entries were zero above the diagonal), there is no concern over 

the existence of y . • In each instance the series 
m 
m 

OJ 

~ a x 
mn n 

n=l 
reduces 

to the finite sum ~ a x mn n 
since a = 0 for n > m . In the next 

n=l m.n 

example a matrix B and a sequence x are given for which the 

B ... transform is not defined. 

ExamEle ~.,S: Let K=Q and let B be given by 
I p 

1 
2 3 4 

p p p p • . . 
0 1 

2 3· 
p p p 

0 0 1 2 
B = p p . • . 

0 0 0 1 p 

2 3 
Let x = (1, 1/p, 1/p , 1/p , ... ) . The B-transform of x does not 

CXl 

exist since 
1 

y = ~ , which does not converge for any m. 
m n=l pm-1 

Conservative Matrix Transformations 

In the preceding section the matrix transformations were applied 

to convergent sequences as well as divergent sequences. In some 

instances the sequence was transformed to a convergent sequence and 

in others it was transformed to a d,ivergent sequence. The work to be 
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clone in this section will be c;oncerned with finding nec;e s sary and 

sufficient ~onditions on a matrix A so that the A-transform of any 

convergent seq\lence will be a convergent sequence 1 The following 

example illustrates that such matrices exist. 

· Exam:ple 3. 6: Let K ;:: Q and let A be the matrix of Example 
p 

3. 3. Let x = {x } be any convergent sequence. Then there is a 
n 

positive number M such that Ix I < M for all n • Now the n 
m 

{ } n-1 
Y = ym where y = ~ x p 

m n=l n 
A-transform of x is the sequence 

To see that y ;:: {y } is a convergent sequence, notice that y 
m m 

is 

co n,... l . 
~ x p , which cop.verges. 

n=l n 
the mth partial sum of the series 

Hence, { y } is a convergent sequence. 
m 

The next example illustrates that there exist matrices that will 

transform ~ convergent sequence to a sequence that is divergent. 

Example 3. 7: Let K=Q and let c be the matrix 
p 

1 0 0 0 0 

1 
1 

0 0 0 
p 

1 
1 1 

0 0 c - 2 = p p 

1 
1 1 1 

0 
p 2 3 

p p 

Let x = {x } 
11 

be a convergent sequence such that limx -4 0. 
n-a:i n 

Then 

there e.x:ists an integer N such that for n > N Ix I = b for some n 



49 

constant b. Now the C-transform of x is the sequence 

where 
m 1-n 

y = I: x p , which does not converge. 
m n=l n 

The next definition is the same as the one given for summability 

mefh.ods over the real numbers. 

Definition 3. 8: A matrix A that transforms every convergent 

sequence into a convergent sequence is called a conservative matrix 

or convergence preserving matrix. 

The proof of Example 3. 6 indicates that the matrix of Example 

3. 3 is a conservative matrix. The ~allowing theorem characterizes a 

convergence preserving matrix. This theorem is very important and 

will be used quite extensively in the work that follows. Manna [9J 

proved this theorem in a more general setting in 1963. 

Theorem 3. 9: In order that A= (a ) be a convergence 
mn 

preserving matrix it is necessary and sufficient that the following con-

ditions are satisfied: 

(1) There exists a number M > 0 such that 

Sup la I < M, 
m,n mn 

(2) lim a = 6 
m--ai mn n 

(n = 1, 2, 3, , .. ) , and 

CX) 

(3) lim I:a -6. mn m-+ain::: 1 

CXl 

In this case if lim x = t then lim y = t + I: 6 (x - t) • 
n-+ai n m-ai m n= 1 n n 

Proof: To prove the cond ltions are sufficient let z =x -t. 
n n 

Then 

lim z = lim (x - t) = 0. So for e: > 0 there is a positive integer 
n-ai n n-+oo n 

no such that 



(3. 9. 1) 

Furthermore, there is a positive number Q such that 

(3. 9. 2) I a I < Q for all n. n 

Now by cond~ti,ons ( 1) and (2) it follows that 

(3. 9. 3) lim a . = 6 < M for each n. 
~-m mn n -

so 

Also since lim a = 6 , there exists a positive integer N_n such 
m-+aJ mn n 

that 

(3. 9. 4) 

for m > N . n 

la - 6 I < oe: • mn n 

no (lJ 

Let s1 :;: 4 (a .. 6 )z and s2 = 4 (a - 6 )z • Then 
n= 1 mn n n + 1 mn n n 

n=no 

I n 0 

= . ~ (a ... 6 )z 
n=l mn n . n 

< Max ( .j a ... 6 I I z I ) . 
l mn n n 

~n~no 

Thus, by (3. 9. 2) and (3. 9. 4) 

(3. 9. 5) 

Now considering I s2 I one obtains 
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= I ; (a - 6 )z I < Sup (/a - 6 / / z /) 
+ 1 mn n n - + 1 < mn n n n;::no no _n 

< Su P ( / a I / z / , / 6 / / z / ) • 
+l < mn n n n no _n 

Thus by con¢lition (1), (3. 9. 1), and (3. 9. 3) it follows that 

(3,9.6) /s2 / < M ~ ;:: e. 

Because K is a non-Archimedean field, 

In~! (amn - 6n)znl = I n?i (amn - 6n)zn + n=~o+l (amn - 6n)znl 

:C. Max (In! (amn - 6n)znl • L=t+l (amn - 6n)zn) 

Thus using (3. 9. 5) and (3. 9. 6) it follows that 

(3.9.7) I ; (a - 6 )z I < e: if m > N • 
n;::l mn n n 

The required conclusion, that is A is a conservative matrix, would 

follow {rom the statement 

co 
2: (a - 6 )z = 2: a z - 2: 6 z 

n= 1 mn n n n= 1 mn n n= 1 n p 

This statement is true if the two series on the right converge. But 

because z = {zn} belongs to (c 0 ) and for a fixed m, 



* (a 1, clr 2 , a 3 , ••• ) belongs to (m) = (c0 ) , the definition of 
m m rn 

co 
implies that E a z converges. Similarly, the sequence 

1 mn n 
n;::: co 

belongs to (m) and so !: 6 z converses. Hence, 
. n=l n n 

co 
E (a . - 6 )z = E 

n=l mn n n n=~ 

Thus, (3. 9. 7) implies that 

a z 
mn n 

co 
!: 6 z 

n=l n n 
for each m. 

co 
E a z 

mn n 
n=l 

; 6 z. I < e 
1 n .n 

n= 
for m > N. ,.,... 

That is, 

(3. 9. 8) lim 

Bu~, 

Y :;: I: a x 
m mn n 

n=l 
= 

co 
I: a z 

mn n 

Cl) 

= 
co 
I: 6 z 

n=l n n 

Cl) 

I: a (z + t) = 
n=l rnn n 

I: (amnzn + amnt) • 
n=l 
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Thus, y :::: I: a t + I: a z 
mn n' 

since these series conver15e. So 
m n=l mn n=il 

li:m y exists and 
m-+-c:o m 

limy 
m-co m 

Cl) 

= t lim I: a. + lim I: a z 
m-+-oon=l mn m-c:o n=l mn n 

ex, 

Therefore, by (3. 9. 8) lirn y = Bt + I: 6 z • 
m-+-co m n=l n n 

Substituting x - t n 

for z one obtains 
n 

co 
lim y = 6t + !: 6 (x - t) . 

m-co m n=l n n 



53 

Thus, y::; {y } belongs to (c) and A is a convergence preserving 
m 

matrix if (1), (2), and (3) are true. 

To prove the necessity of the conditions, it is convenient to prove 

(2) and (3) first, and then prove (1) using (2) and (3) along with the 

fact that A is a convergence preservin,g matrix. 

To prove (2), for a fixed n consider the sequence x = {~} 

where x - 0 k- if k f:. n and x = 1. 
n 

Then the A-transform of x is 

y = {ym} where ym = amn. Therefore, since A is conservative, 

1:1.m y = Um a exists for each n. 
m-+m m m-+m mn 

To prove (3) consider the sequence x = {x } 
n 

where x = 1 for 
n 

all n. Then the A-transform of x is y = { y m} , where 
IX) 

y = :l: a 
m n=l mn 

Hence, 

In the proof of the 

limy = lim 
m-+co m m-co 

necessity of (3) 

IX) 

:l: a 
n=l mn 

exists. 
co 

since y = :l: a 
m n=l mn 

for each m, lim a = 0 for each m. The re fore for each 
m-oo mn 

exists 

m, 

there is a number M 
m 

such that I a I < M for all n. mn m 
Thus, 

the sequence a ={a :n=l,2,3, ... } m mn is a bounded sequence. 

[Note: The sequence a is the mth row of A]. 
m 

This means that 

the sequence {a : m;:: 1, 2, 3, .•. } is a sequence in the sequence m . 

spac;e (m). It will be shown that the sequence {a } 
m 

~s an 

(m)-convergent sequence. 

Let x = {x } be a null sequence and hence a convergent 
n 

sequence. Let y = {ym} be the A-transform of x. Then y = {ym} 

is a convergent sequence since A is conservative. For each e: > 0 

ancl the sequen,ce x there corresponds a number N > 0 such that 

lvm~ym+ll < e: for m > N. Thus, 

co 
< e: for m > N. 

n=l 
:l: a x 

m+l, n n 
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Since each of the series in the last inequality converges, it follows that 

for m > N 

00 

~ (amn - am+l, n)xn < e • 
n=l 

Therefore, by the definition of (a)-convergence in Chapter II, the 

sequence {a } 
m 

is (m)-convergent. By Theorem 2. 35, there is a 

number M :;> 0 such that II a II < M for all m and n; that is, 
m 

Supja. I< M. Hence, condition (1) is necessary. 
m,n mn 

The final statement in Theorem 3. 9 is ''If lim x = t then 
nr>-oo n 

limy = lim (. ; a x ) = ot + ;. 6 (x - t)." From thts, state-
m ...... 00 m m-oo n=l mn n n=l n n 

ment it is apparent that a conservative matrix A might sum a 

sequence x = {x } 
n 

to a convergent sequence y = {y } and these two 
m 

sequences might have limits that are not equal. However, it is also 

possible for the sequence x = {xn} and the transformed sequence 

y = {ym} to have the same limit. With these ideas in mind the 

foHowing definition is given. • 
Definition 3. 10: A matrix A is said to be regular if it sums 

any convergent sequence 

lim x z limy • 
n-oo n m-+-oo m 

x = {x } 
n 

to a sequence such that 

The following theorem characterizes a regular matrix. Andree 

and Petersen [2, p. 250] proved this theorem when K is the field of 

p-adic numbers in 1956. 

Theorem 3. 11: In order that A = (a ) mn 
be a regular matrix it 

is nE;!ce s sary and sufficient that the following conditions are satisfied: 



( 1) There exists a number M > 0 such that Sup la I < M, mn 

(2) lim a = 0 (n = 1,2,3, ... ), and 
m-+m mn 

co 
(3) lim ~ a = 1 • 

m-co n=l 
mn 

Proof: In Theorem 3. 9, if 6 = 0 for all n and 
n 

6 = 1 

CX) 

. lim y = t + ~ O(xn - t) = t = lim x 
m-+a:, m n= 1 n-+cxi n 

then 
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Thus, A is regular. Conversely, if A is regular then for any fixed 

n let x = {xk} where x = 1 
n 

and xk = 0 if k # n. Now the 

A-transform of this sequence is the nth column of A and so 

lim a = lim x 
m-+cxi mn n-+cxi n 

= 0. Likewise, the sequence x = {x } , 
n 

x = 1 n 
for all n, has the A-transform y = {ym} where 

CX) 

where 

Y = ~ a Since A is regular and lim x = 1 
n-+a:, n 

it follows that 
m, n=l mn CX) 

lim y = 1 ; that is, lim ~ 
m-+a:i m m-+cxi n= 1 

a = 1 , mn 

Matrix Transformations in Qp 

Using Theorem 3. 9 it is now possible to determine whether or 

not a matrix is a conve,;gence pre serving matrix. Furthermore, using 

Theorem 3. 11 one can decide if a conservative matrix is a regular 

matrix. In each of these instances the sequences involved are conver-

gent sequences and the idea is to determine conditions on a matrix so 

that the transform of a convergent sequence exists and is a convergent 

sequence, A somewhat different problem is the following: "For a fixed 

matrix, can one find conditions on a sequence x = {x } 
n 

so that the 

transform of that sequence is a convergent sequence? 11 Two specific 



matrices will be introduced in this section and the letter used to 

designate each matrix will refer only to that matrix throughout the 

section. The first matrix to be considered is 

1 0 0 0 0 . . . 
1 p 0 0 0 

1 2 
0 0 A = p p 

1 
2 3 

0 p p p 

That is, A = (a ) where 
mn 

O if n > m 

a = mn 
n-1 

p if n < m . 

This matrix transforms all bounded sequences into convergent 

sequences. 

Theorem 3. 12: The sequence 

/xn/ 
only if lim -- = 0 . 

n-co n-1 p 

x = {x } is A-summable if and 
n 

Proof: Since A is a lower triangular matrix, the A-transform 

y = { y } of x exists and is the sequence 
m 
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m 
h n-1 Note t at y = E x p 

m n=l n 
a, n-1 
E x p . Thus, y = { y } 

is the mth partial sum of the pMseries 

is a c:onvergent sE;iquence if and only if 
n==l n m 
the · ~ n"' l Th. . 'f d l ser1.es ~ x p converges. is series conv, er~es 1 an on y 

n==l n I 
if lim Ix pn-l I = 0. That is, if and only if lim lxnl = 0. Thus, 

n-co n n-a, n-
p 

the theorem. is proved. .t:. 

Corollary 3. 13: If x = {x } is a bounded sequence then the . n 

A.-tran.sform of x exists. 

Proof: Since x = { x } . n 

that Ix I < M for all n 

is bounded there is a number M > 0 such 

n. Thus, lim l.:!J__ = 0. Hence, the 
n-+a, n-1 

p 
A-transform of x exists. 

The next example indicates that one can have an unbounded 

sequence with an A-transform that is a convergent sequence. 

Example 3. 14: Let 

111 1 1 1 1 1 
x = {p'p'p'2'2'2'2'2'···· 

p p p p p 
p[/n] ' ... ) 

1 

where [{n] denotes the greatest integer less than or equal to {n. 

The A~transform of x = {xn} is the sequence 
m n-1 

Y m = E ...B,,........,[ r::: • To show that 
n::: 1 p[fnJ 

is a convergent 

observe that y 
m 

is the mth partial sum of the series 

and that 

I n-1 
0 < lim 

- n-m :[fn] 

[{n] 
< lim ,...P_.,,........_ 
- n-a, n ... l 

p 
< lim 

1 
- n-a, 

where 

sequence 
a, n-1 
E .... E~

n=l pLfnJ 

= 0 . 



Thus, limy = 
m-co m 

unbounded. 

(X) 

!: 
n= 1 

n-1 
p However, Ix I 

n 
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So x 1s 

To complete the discussion of the matrix A it is necessary to 

discuss the A-transform of a series 
(X) 

!: a . 
n=O n 

Since the series 
n 

(X) 

!: a 
n;::;0 n 

is the sequence {s } of partial sums, where s = !: a., the series 
n n i=O 1 

!: a is R-summable if the sequence of partic;Ll sums { s } is 
n=O n n 
R~summable, where R is any infinite matrix. The following theorem 

gives a condition on the terms of the series so that the sequence of 

partial sums is A-summable. 

(X) 

Theorem 3.15: !: a is A-summable if there is a number 
n=O n 

M > 0 such that I a I < M for all n. 
n 

Proof: Suppose there is a number M such that 

Then I s I < Max ( I a 0 I , I a 1 I , ... , I a I ) < M . n ~ n 

I a I < M for all n ~ n 

Thus, { s } 
n 

is a 
(X) 

bounded sequence. Therefore, by Corollary 3, 13, !: a 
n n=O 

is 

A-summable. 

The next theorem offers a slightly weaker converse result in that 
co 

it shows that if !: a is A-summable, then 
n=O n 

number M > 0, 

Cl'.) 

la I < Mpn for some 
n 

Theorem 3. 16: If !: a is A-summable then there is a 
n=O n 

number M > 0 such that la I< Mpn. 
n 

Proof: Let { s } be the sequenc;e of partial sums of ~he series 
n 

(X) 

!: a . 
n=O n 

Since the series is A-summable the A-transform of { s } is 

a convergent sequence. That is, the sequence 

where 

n 

{y } is convergent 
m 



2 
- so + ps 1 + p s2 + .•. + m 

p s 
m 

Therefore, there exists a number M > 0 such tha,.t I y m I < M for 

all m. Now by the non-Archimedean property, 

Thus, 

all m. Hence, Is I < M pm. Therefore, 
m 

I am I ~ Ma~ ( I sm I , I s m- l I ) ~ M pm . 

The next matrix to be considered is one that has the effect of 

averaging consecutive terms of a sequence. This matrix is 

1 
0 0 0 0 2 

1 1 
0 0 0 2 2 

B 0 
1 1 

0 0 = 2 2 

0 0 
1 1 

0 2 2 . . . 
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It is easy to show that B is a regular matrix, The following theorem 

gives necessary and sufficient conditions on a sequence 

the B -.transform will be a convergent sequence. 

{;x: } so that 
n 

Theorem 3. 17: The B-transform of x = {x } is convergent if n 

and only if limx -x 2 =0. 
m-ai m m-

Proof: Suppose the B~transform of x is a convergent sequenqe and 

let y = { y } 
m 

be the B-transform of x. Then {y } 
m 

is a Cauchy 
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sequence. That is, for e: > 0 · there is an integer N such that 

IY -y 1l<e: m m-
for m > N. 

Therefore, 

x + x 
m m-·1 

2 
x +x I m-1 m-2 

- ' 2 < £ for m > N. 

Thus, 

x - x m m-2 
2 < e for m > N. 

Therefore, lim x - x 2 = 0. Conversely, suppose 
m-co m m-

lim x - x 2 = 0. Then for e > 0 there is an integer N such that 
m-co m m-

l x - x 2 1 < e for m > N. Hence, 
m m-

x 
m 

-y- -

Adding and ,subtracting 

Thus, 

Ix + x l m m-
2 

~ m .. 2 
2 < e for m > N. 

x m-1 
2 one obtains, 

x +x 
m-1 m-2 

2 < £ for m > N. 

Therefore, { y } 
m 

is a Cauchy 

sequence and since Qp is a complete space the B .. transform of x is 

a convergent sequence. 

Using the result of the preceding theorem it is possible to obtain 

a divergent sequence that B will transform to a convergent sequence. 

To accomplish this all one needs to do is to make alternate terms of 

the sequence equal. That is, let x = (1, 0, 1, 0, ••. ). This example is 



one that is rather trivial. To obtain an example that is not so trivial 

consider two sequences x = {x } 
n 

and that converge to 

different limits, Then define another sequence z = {z } 
m 

by letting 

z 2 = x 
m m 

and With this definition for z I it follows 

that lim. z - z = 0, since 
m-+co m m-2 

x ;;, {x } and 
n 

Cauchy sequences and z - z m m-2 
is either the difference of two 

consecutive terms in the sequence x or in the sequence y. 

Using the re$ult of.Theorem 3.17 it is possible to prove a 
co 

necessary and suffident condition on the terms of the series 2: a 
n 

so that the series will be B-summable. 

lim a + a 1 = 0. 
n-+co n n-

co 

n=O 
This condition is that 
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Theorem 3. 18: The series 2: a 
n 

is B-summable if and only 
n=O 

if lim a + a 1 = 0 . 
n-+co n n-

co 
Proof: The series 2: a 

n 
is B ... summable if and only if the 

n=O 
B-transform of the sequence of partial sums { s } 

n 
is a convergent 

sequence. But by Theorem 3. 17 the B -transform of { s } is a 
n 

<;:onvergent sequence if and only if lim s - s = 0. 
n-+co n n-2 

Thus the 

B-transform of { s } is a convergent sequence if and only if 
n 

lim a + a 1 = 0. 
n-+co n n~ 

In contrast to the result of Theorem 3. 16 (If 
co 
2: a 

n=O n 

A-summable then there is a number M > 0 such that 
co 

is 

it is possible to show that if 2: ah is B-summable then the terms of 
co n=l 
2: a are bounded. 

n=O n 
00 

Theorem 3. 19: If ~ a is B-summable then there is a 
n 

nu.mber M > 0 such that°=! an I < M for all n. 
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co 
Proof: Suppose !: a is B-summable. Then by Theorem 3, 18 1 n 

n=O 
lim a + a 1 = 0. , That is, the sequence {b } , where b0 = a 0 and 

n--1-a!J n n- n 

b = a + a 1 if n > 1, is a null sequence. Thus {b } is a 
n n n- n 

bounded sequence. So there is a number M > 0 such that /b I< M n 

for all n. But, 

That is, 

Thus, 

The following example illustrates that the converse of Theorem 
co 

3. 19 is not true. That is, if !: a is a series with the sequence 
n=O n 

{a } bounded then it does not follow that the series i:s B-summable. 
n 

co 
Example3,20: The series !: a., where a =l forall n is 

n=O n n 
not B-summable. To show this consider the sequence 

(1, 2, 3, 4, •• ,, n,, .. ) of partial sums. The B ... transform of this 

sequence is 
l 3 2n- l ( 2 , 2 ,,, ·, z-,,,.), Now from this sequence one can 

choose a subsequence with terms of p-value one (p -:/ 2), and another 

subsequence that is a null sequence, If p I 2 choose the subsequence 
2 n (f,7,,,.,7, ... ). This subsequence is a null sequence, Also 

2 n 
choose the subsequence ( !' , T , , , . , 9z- , , .. ) where q is a prime 

n 
and q I p. Then I q2 I = 1 for all n, Therefore, the B ,.transform 



of I: a 
n 

n=O 
does not exist when p -I 2. 

n 
If 
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p = 2 then choose the 

sequences ( 1.3 7 2 .. 1 
2, 2' 2···,·-r····) and 

1 5 9 2n+l 
(2, 2· Z'"" -z-, ... ). 

The first of these sequences converges to 
1 - 2 while the second 

1 
converges to 2 . 1 3 2n-l 

Thus, the sequence ( 2 , 2 , , ~., z-, ... ) does not 
CXl 

converge. In e i the r case , p = 2 or p -/:, 2, the series I: a 
n 

is not 
n=O 

B .. summable. 

This section will be concluded by considering matrix transforma-

tions on a power series. Although from calculus the student is familiar 

with a power i,eries, the definition is repeated here. 

Definition 3. 21: If {a} 
n 

is. a sequence the series 

called a power series in x. 

CXl 

n 
I: a x 

n 
n=O 

is 

For particular values of x the series I: a xn may converge 
n=l n 

or may diverge. However, those values of x for which the series 

converge can be identified, Pal~er [10, p. 62] proves the following 

theorem which gives a means of determining the values of x for which 

the series 
co 
I: a xn 

n=O n 
converges. 

Theorem 3. 22: Let I: a xn . n 
n=O 

field K and let a = lim sup r/ I an I 
a = +co let p = 0; and if a = 0 let 

CXl 

I: n a x 
n=O 

n 

be a power series in a complete 

If a -I O let 1 'f P = - ; l . a 

p = +cxi • Then the series 

(a) converges for lxl < p , 

(b) diverges for lxl > p , 

(c) may converge or diverge for !xi = p • 
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The value p is called the radius g!_ c;onvergence of 

and the set of all x such that Ix I < p is called the domain g!_ conver-

gence of 
co 

n 
E a x , 

n 
n=O 

The set of all x such that 

n the circle of convergence of E a x • 
n=O n 

lxl = P is called 

The circle of convergence of a power series in a non-Archimedean 

field presents an interesting contrast with the circle of convergence in 

an Archimedean fie~d. In the Archimedean case a power series may 

converge for all values of x on the circle of convergence, may con-

verge for no values of x on the circle of convergence, or may 

converge for some l:;mt not all values of x on the circle. In the non-

Archimedean case only two possibilities exist; either a power series 

converges for no values of x on the circle of convergence or it 

converges for all x on the circle of con.vergence. That is, if 
co 
E a xn converges for one value of x such that Ix I = p then the 

n=O n 
series converges for all x such that Ix I = p. This interesting 

behavior is due to the fact that a series 

Archimedean field if and only if limb 
n-+co n 

E b 
n=O n 
= 0. 

converges in a non-

Theorem 3. 23: Let have a radius of convergence of 
co 

p ' Then either 
n 

E a x converges for all x such that 
n 

n=O 
lxl = P 

diverges for all x such that Ix I = p. 

Proof: Let 

Then lim 
n-+co 

x 0 be such that lx0 I = p 

I a x 0n I = lim I a I p n = 0 • 
n n-+co n 

co 
n 

and E an x 0 converges. 
n=O 

Then for any x such that 

or 

Ix I = P it is true that lim la xn I = 0. 
n-+co n 

Thus, converges 

for all x such that Ix I = p. 

The familiar geometric s,eries 
a:i n 
E x offers an example of a 

n=O 
series that diverges at every point on its; circ;le of convergence. The 
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following example is of a series that converges at every point on the 

circle of convergence. 

Example 3. 24: Consider the power series : [{n] n 
"-'P x. Since 

n=O 

1 - < 1 

p{n p{n-1 

i.t follows th,at 

1 

pvn In 
< 1 

p({n -1)/n • 

Hence, 

lim sup ~· = 1 • 

Thus ; 1 p[fii]xn has radius of convergence equal to 1. Since 
n=O 

= 0 • 

; p[frilxn converges for all x on its circle of convergence. 
n=O 

00 CXl 
n Let ~ a x 

n=O n 
convergence Da and 

and ~ b xn be power series with domains of 
n=O n 

Db, respectively. Then in a non-.Archimedean 

field the intersection of Da and Db is either empty or one of the 

domains is contained in the other. [See Snook, p. 80]. This property 

makes the continuation of a power series beyond the circle of conver-

gence by usual methods of calculus impossible. Thus it becomes 

necessary to resort to other techniques. Continuation of a power 

series by matrix methods is one of these other techniques. This topic 
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· will not be pursued in detail in this study although it is related to one 

under consideration in this paper in that it relies on having a matrix 

that will sum a power series outside its circle of convergence. 

The remainder of thi~ section will be devoted to investigating the 

matrices A and B to determine if either of these matrices will sum 

a power series outside the domain of convergence. The next theorem 

shows that A may sum a power series outside its domain of conver-

gence. 

Theorem 3. 25: A may sum a power series outside its domain of 

convergence. 

CX) 

Proof: Suppose ~ an x; is A-summable. Then by Theorem 3. 16 
n=O 

there is a number M>O such that ianx;I < Mpn, Thus, by taking 

nth roots of both sides of this inequality it follows that 

Thus, 

i i· I 11 In < p = 1m sup an 

M l/n 
p 

lim 
n-+CXl 

M l/n 
p 

Therefore, jx0 I ~pp. Now since pp > p, it follows that A may 

sum outside its domain of convergence. 

It can be shown that the matrix B will not sum a power series 

outside its domain of convergence. Comparing this to the matrix A 

it is noted that A will sum outside the domain of convergence of a 

power series while B will not. 
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co 
Theorem 3. 26: A power series }:; a xn is not B ... summable 

n 
n=O 

outside its domain of convergence. 

co 
Proof: Let }:; a xn 

n 
n=O 

be B-summable at x = x 0 • Then by Theorem 

3.19, thereisanumber M>O suchthat lanx;l<M. Hence, 

la 11/n < 
n 

Thus, 

1 = lim sup I a 1 1 /n < lim 
p n 

Hence lx0 1<p. 

The next example indicates that there is a power series that B 

will sum at one point on the circle of convergence but not at another 

point. 

Example 3. 27: Consider the geometric series lxl < 1. 

For x = -1 the series becomes 
co n=O 
}:; (-1 )n, The sequence of partial 

n=O 
sums of this series is (1,0,1,0, ... ). The B-transformofthis 

sequence is 
1 1 1 

(z·z·z····)· Hence 
co 
}:; xn 

n=O 

1 
is B~summable to 2 

when x= -1. However, for x= 1 the seriesisnot B-summable. 

[See Example 3. 20]. 



CHAPTER IV 

ALGEBRAIC STRUCTURE OF SETS OF 

MATRIX TRANSFORMATIONS 

In Chapter III matrix transformations on the space of conve:rgent 

sequences are considered. Necessary and sufficient conditions on a 

matrix A are obtained so that A transforms a convergent sequence 

into a convergent sequence. In Chapter II the concept of (a, 139-

convergence of a sequence {x(n)} is introduced. Necessary and 

sufficient conditions are obtained so that the sequence {x(n)} is 

( a-{3)-convergent. The purpose of the first sec;:tion of this chapter is to 

show a relationship between matrix transformations on a sequence 

space and the (a,[3)-convergence of a sequence of points. The remain-

der of the chapter is devoted to the algebraic structure of certain setS' 

of infinite matrices. 

Matrix Transformations and (a, [))-Convergence 

Let a and 13 be sequence spaces. Further suppose that 

A = (amn) is an infinite matrix such that for any sequence x in a the 

sequence Ax. belongs to the sequence space 13 • Then the matrix A 

is said to transform sequences of a into sequences of 13 • That is, A 

maps the sequence space a into the sequence space 13 • Theorem 3, 12 

of Chapter III gives an instance where a is the space of bounded 

sequences and 13 is the space of convergent sequences in 
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Q. 
p 
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A connection between (a,13)-convergence and matrix transforma-

tions can be demonstrated by using the definitions of (a, 13)-convergence 

and the dual space of a • To keep the matrix notation A = (a ) , 
mn 

where m represents the row and n represents the column to which 

a belongs, it will be necessary to switch the roles of m and n in mn 

the definition of (a, 13)-convergence. This definition is re stated using · 

this change. 

A sequence of points {)m)} of a is said to be (a,13)-convergent, 

)~ 

(<P C 13 C a ) , if for every e: > 0 and every u of 13 there is a number 

N = N(e:, u) > 0 such that 

(4. o. 1) = I . ; u (x (m) - x (m+ l)) I < e: 
n=l n n n 

u = {u } 
m 

belongs for m > N. Further, remember that a sequence 
CXl 

* to a if and only if the series :E u x 
n::;l n n 

converges for all x = {x } 
n 

in a • Thus, if * is a sequence in a and <P C 13 C a 
CXl -

then 

for every u in 13 and for each m the series :E u x (m) converges, 
co n= l n n . 

since u is also in a*. Therefore if y = :E u x (m) then the 
m n=l n n 

sequence y = { y m} is defined for each m. 

Let X be the matrix whose rows are the sequences x(n). That 

is, 
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( 1 ) ( 1) ( 1) ( 1) 
xl x2 X3 .x: 

n 

(2) (2) (2) (2) 
xl X2 X3 x n 

(3) (3) (3) . (3) 
xl x2 X3 x 

n 

(4.0.2) x = 

. .x: (m) (m) (rn) (m) 
X2 X3 x 1 n 

The following theorem relates the matrix X and the sequence spaces 

f3 and (c). 

Theorem 4. 1: Let X be a matrix whose rows belong to a. 

Then X maps f3 into (c) if and only if the rows of X form an (a,f3)~ 

convergent sequence. 

Proof: Let x(m) be an (a,f3)-convergent sequence and let X be the 

matrix of (4. 0. 2). Also, let u = {u } belong to f3 and let y = {yrn} n . 
co 

be the X-transform of u; i.e., y = ~ u x (m). Now let e: > 0 be 
m n=l n n 

given. Since x(m) is (a,[3)-convergent, by (4. 0. 1) there is a number 

N such that 

(4. 1. 1) 

for m > N. 

; u (x(m) .. x(m+l))l<e: 
n=l n n n 

Thus by definition of { y } it follows that 
m 



(4. 1. 2) 
n= 1 

a:, 

~ u (x (m)_x (m+l)) 
n n n < e: 

if m > N. Hence, {ym} is a Cauchy sequence and since K is 

complete, {y } is a convergent sequence. 
m 

Conversely, let u belong to 13 and let z = {z } 
m 

be the 
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x.:.transform of u. Then Xu = z is a convergent sequence since X 

maps 13 into (c). Thus, for e: > 0, there exists an integer 

N = N(e:, u) such that 

Since z = 
m 

a:, 

~ x (m)u 
n n' 

n=l 

for m > N. 

it follows that 

; u (x (m)_x (m+l))I < e: 
n=l n n n 

for m > N. Therefore, {x(m)} is an (a,13)-convergent sequence. ~ 

Sets of Matrix Transformations 

Definition 4, 2: The matrix A is said to belong to the sequence 

space a if for every x of a the sequence Ax is also in a. The set 

of all matrices that belong to a sequence space a is denoted by ~ (a). 

Theorem 3. 9 gives necessary and sufficient conditions for a 

matrix . A to belong to ~ (c). Similar results can be proved for the 

sequence spaces cp, (c 0), (m), and w. A theorem that will be useful 

in deriving these results will now be proved, This theorem gives 

necessary conditions for a matrix A to belong to ~(a). These 
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conditions ave that the columns of A belong to a and the rows of A 

belong to a/ . Notice the relationship between the sequence space a , 

* its dual space a , and the matrix A belonging to ~ (a). 

Theorem 4. 3: If a is a sequence space (cp C a) and the matrix 

A belongs to ~ (a) then 

( 1) for each n , the sequence (al , a2 , ... , a , ... ) n . n mn 

belongs to a , that is, the columns of A belong to a ; 

(2) for each m, the sequence (a 1,a 2 , .•. ,a , ... ) 
m m mn 

* * belongs to a , that is, the rows of A belong to a • 

Proof: Let n be a positive integer and let x = {x.} be the sequence 
J 

where x = 1 and x. = 0 if j # n. Then x belongs to a 1,ince 
n J 

cp C a and x is in cp. The A-transform of x must be in a since 

A is in ~ (a). But the A-transform of x = {x.} 
J 

is the sequence 

(a 1 , a 2 , a 3 , .•. , a , ... ) . Thus ( l) has be·en established. To prove n .n . n mn co 
(2) note that the series ~ a x must converge for each x = {x } 

n=l mn n n 

in a. By definition of a* the sequence (a 1, a 2 , ... , a , ... ) 
m m mn 

i.< 
must belong to a . 

Corollary 4. 4: If the infinite matrix A belongs to ~ (m) then 

( 1 ) lim a = 0 
n-+co n~n 

for m = 1 , 2 , 3 , . . . , and 

(2) for each n there exists a positive number 

that Sup I a I < M . m mn n 

M 
n 

such 

Corollary 4. 5: If the infinite matrix A belongs to ~ (c 0 ) then 

( 1) lim a = 0 m-co. mn for n = 1,2,3, ... , and 



(2) for each m there exists a positive number 

such that Sup la I < M , 
n mn m 

M 
m 
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The two previous corollaries indicate necessary conditions on a 

matrix for the matrix to belong to E (m) or E (c0 ). The conditions 

are not sufficient conditions however, as the following two examples 

indicate. 

Example 4. 6: Let the matrix B be 

1 0 0 0 

1 
1 

0 0 - . . 
p ~ 

B 1 
1 

0 - p 2 
p 

1 
2 1 

p p 3: . . • 
p 

Now, limb = 0 
n-+oo mn 

for each m and Sup jb I = pn-l 
m mn 

for 

n = 1, 2,,.. • Thus, B satisfies both conditions of Corollary 4. 4. To 

show that B is not an element of E (m), consider the sequence 

x = ( 1, 1, 1, .. , ) . The B-transform of x is the sequence 

y = ( 1, 
1 1 m-l n-1 1 ) 

1 + p, 1 + p + 2, ... , E p + m-1 '... . 
p n=l p 

Now y does not belong to (m) since for any positive number M 
m -1 

there is an integer m 0 such that IYm j = p O > M. 
0 



Example 4. 7: Let the matrix C be 

1 1 1 1 1 

0 
1 
p 

p p p 

c 0 0 
1 2 2 = 2 p p 

p 

0 0 0 1 3 
3 p . . • 
p 

Now, lim c - 0 
m-+<XJ mn 

for each n and Sup I c I = m- 1 
n mn p for 

m = 1, 2, 3,... • Thus, C satisfies the conditions of Corollary 4. 5, 

However, C does not belong to ~ (c 0). To show this, let x be the 

2 3 
null sequence ( 1, p, p , p , ••• ) • The C-transform of x is the 

sequence 

( 

(XJ 

y = l + .n~=·. 1 pn ' 1 + ~ pn ' 1 + ~ 
n;::3 n=S 

co co 

pn, ••• , 1 + ~ pn, •• ·) . 
n=2m-l 

Tht1s, limy = 1 
m-+-co m 

and y is not in 
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The question that now arises is, "Do conditions exist on a matrix 

similar to the conditions of Corollaries 4. 4 and 4. 5 that will guarantee 

that the matrix belongs to either ~ (c 0 ) or ~ (tn)? 11 An answer to 

this question can be found by requiring that the set of numbers 

{M1, M2 , ... } is bounded above by some real number. This require

ment is equivalent to requiring that the entries of the matrix be 

uniformly bounded. In Examples 4. 6 and 4. 7, notice that the 
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numbers M or M we re not themselves bounded sequences but 
n m 

increased with n o:r m. 

Theoretl). 4. 8: The infinite matrix A = (a ) belongs to ~ (c 0 ) 
mn 

if and only if' 

( 1 ) lim a = 0 
m-co mn 

for n:;::l,2,3, ... tha~ is, the columns 

of A belong to (c 0 ), and 

(2) there is areal number M > 0 such that Sup la / < M. 
m,n mn 

Proof: Suppose {l) and (2) are satisfied and that x = {xn} belongs to 

Let y = { y } be the A-transform of x. 
m 

To prove that y 

belongs to {c 0 ) it must be shown that lim y = 0. 
m-co m 

Let e: > 0 be 

given. Then since x is in (c 0 ) there is an integer n 0 such that 

(4. 8. 1) 

Furthermore there is a number Q > 0 such that 

(4.8.2) Ix I< o n 
for all n. 

By condition ( 1), for each n there is an integer N such that 
n 

la I< -0€ mn 

such that 

(4.8.3) 

for m > N • 
n 

Thus there are integers 

< .£. 
Q 

< .£. 
Q 

/a I< oe: mno 
if m > N 

no 
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(4.8.4) < ..£. 
Q if m > N and 1 < n < no. 

no IX) 

Now let S = ~ a x and 
1, n=l mn n 

s2 = ~ a x . 
n=n +l mn n 

0 

Then by (4. 8. 2) 

and ( 4. 8. 4) , if m > N , 

(4.8.5) I S 1 I ~ Max ( I a 1x 1 I , I a 2x 2 I , ... , I a x I ) 
m m mno- no 

Also by (4. 8. 1) and condition (2) 

(4. 8. 6) I s2 I ~ Sup ( I a I Ix . I ) < M Me = e • 
no+l ,:Sn mn n 

Thus, by (4. 8. 5), (4. 8. 6), and the non-Archimedean property 

n0 
1 <I~ a x + ; a x 

- n = 1 m n n n- n + 1 mn n 
- 0 

~ Max (Isl,. I s2 I) < £ i,f m > N. 

Therefore, lim y = 0 and y is in 
m~,..co m 

To prove the converse, suppose that A= (a ) belongs to 
mn 

~ (c 0 ). By Corollary 4. 5 

(a) lim a = 0 for 
m-+co mn 

n = 1, 2, 3 , • . . , and 

(b) for each m there exists a positive number M m 

such that Sup I a I < M 
n mn m 

76 
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Statement (a) is the same as statement (1) in the theorem so (1) is a 

necessary condition •. Statement (b) means that the rows of A 

considered as sequences are bounded. That is, if 

a = {a : n = 1,2,3 1 ••• } then {a } is a sequence in (m). It m mn m 

will be shown that the sequence { am} is an (m)-convergent sequence, 

Let x = {xn} be in (c 0 ), let e: > 0 be given, and let y = {ym} 

be the A-transform of x. Then since A belongs to ~ (c 0 ), y is in 

(c 0 ). Thus, there exists an integer N such that 

for m > N • 

Hence, 

< e: for m>N 

Since each of the series converge it follows for m > N that 

; (a - a +l ) x I < e: • 
n=l mn m , n n 

Therefore by definition of (m)-convergence it follows that {a } 
m 

is an 

(m)-convergent sequence. Thus, by Theorem 2. 35, there is a positive 

number M such that I amn I < M for all m and n. Hence, 

.condition (2) is necessary. 

Necessary and suffici~:mt conditions for a matri~ A to belong to 

~ (m) exist. These. conditions are given in the next theorem. The 

proof of this theorem is omitted because is quite involved and tedious. 



78 

Theorem 4. 9: The infinite matrix A = (a ) belongs to ~ (m) 
mn 

if and only if 

(1) lim a = 0 
n-ro mn 

for m = 1, 2, 3, •.. that is, the rows of 

A belong to ( c 0 ) , and 

(2) there is a number M > 0 such that Sup la I < M. 
m,n mn 

Turning attention now to the sequence space 0 , Theorem 4. 3 

leads easily to necessary conditions for a matrix to belong to ~ (0). 

Theorem 4. 10: If the infinite matrix A = (a ) belongs to · mn 

~ (0) then 

( 1) lim a = 0 
n-co mn 

m = 1, 2, 3, . . . , and 

(2) for each n the:t;'e exists an integer N 
n 

such that 

a = a for m > N . 
m+l,n mn n 

* Proof: Since 0 = (c 0 ) by Theorem 2. 26 statement (1) follows from 

Theorem 4. 3. Statement (2) also follows from Theorem 4. 3 since 

the columns of any matrix in ~ (()) must belong to 0. 

The following example will illustrate that conditions (1) and (2) 

of Theorem 4. 10 are not sufficient ccmditions for a mat:rix to belong to 

~ (8). 

Example 4. 11: Let K = Q and let the matrix A be 
p 
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1 0 0 0 

1 p 0 0 

A 1 2 
0 = p p 

1 2 3 p p p 

It is clear that A satisfies the two ~onditions in Theorem 4. 10 .. How-

ever, the sequence x = (1, 1, 1, 1, •.. ) belongs to a but the 

A-transform of x is the seque.nce 

( . m ) 2 n-1 . 
y = 1, l+p, l+p+p , .•• , ~ p , .•.• 

n=l 

Thus for any integer m, 

2 
y =l+p+p+ 

m 
... + m-1 2 m 

p f,. 1 + p + p + • .. + p = Ym+l. 

So y is not in e . 

Note in the preceding example that the integers of condition (2) 

are N 1 =1,N2 = 

such that for all 

2, ., •• , N = n,... . 
n 

n, a = a 
m+l,n m,n 

Therefore there is no integer N 

when m > N. One might 

suspect that replacing condition (2) with the condition, "there is an 

integer N such that for all n, a = a +l for m > N 11 would 
mn m ,n -

make A belong to ·~ (0). This is the case as is indicated in the next 

theorem~ 

Theorem 4. 12: If A = {a ) is an infinite matrix such that mn 



( 1) lima =O 
n-oo mn 

m = 1, 2 , 3 , • . . , and 

(2) there is an integer N such that for all n 

a = a +l for m > N mn m ,n 

then A belongs to ~ 1 (0) • 

Proof: Let x = {x } belong to e and let y = '{y } be the 
n m 

A-transform of x. Then 

CX) CX) 

n=l 
~ a x 

mn n = 
n=l 
~ a x 

m+l, n n 

if m > N. Thus A belongs to ~ (0). 

The converse of Theorem 4. 12 is not true. The next example 

gives a matrix A that belongs to ~ (0) but there is no N such that 

for all n, a = a +l for mn m ,n m > N. 

Example 4. 13: Let A be the matrix 

1 -1 0 0 0 0 

1 -1 0 0 0 0 

1 -1 1 .,.1 0 0 
A = 

1 -1 1 -1 0 0 

1 -1 1 -1 1 -1 . . 

Now for each m, lima =O. 
n--+-cx:i mn 

Also the integers 

(2) in Theorem 4. 10 are 

• 

N 
n 

of condition 

80 
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N 1=N2= 1, N3 =N4'=3, •• , ,N2n-l =N2n=2n-l, ...• Thus there does not 

exist an integer N that satisfies condition (2) of Theorem 4. 12. To 

show that A belongs to ~ (0) let x = {x } 
n 

belong to 0 . Then there 

is an integer k such that xk = xk+i 

the A-transform of x. Then 

for i > 1. ..... Let be 

Now if k = 2j for some j then ym = x 1 - x 2 +x2 + ..• + xk-l - xk 

k 
for m > 2 . If k = 2j - 1 for some j then 

ym = xl - x2 + . • • + xk-1 - xk for m> 

y belongs to 0. So A belongs to E (0). 

{k-1) 
2 Thus in either case 

If nee es sary and sufficient conditions exist for a matrix A to 

belong to E (0) they are not known to the author. 

The situation is much simpler in the case of the sequence space 

<P. Here a necessary and sufficient condition that a matrix A belongs 

to E (<P) is simply that the columns of A belong to <P. 

Theorem 4. 14: A= {a ) belongs to E (<P) if and only if for mn 

each n there is an integer 

Proof: Suppose A = (a ) • 
mn 

N 
n 

such that a = O mn for m > N . 
n 

Then the condition is a result of state -

ment (1) of Theorem 4. 3. Conversely, suppose that A is a mat:rix 
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with the given condition. Let x = {x } belong to cp and let y = { ym} 
n 

be the A-transform of x. Then there is an integer n 0 such that 

xn = 0 for all n ::::_ n 0 . For n = 1, 2, 3,, .. , n 0 determine the integers 

N 1, N 2 , ••• , N n O so that a mn = 0 

N = Max {Nn: 1 < n ::. n 0} . Then 
co 

for m ::::_ Nn, 1 ::. n ::. n 0 • Let 

a = 0 for m > N and 
mn 

Since Y =~a x y =O 
m n=l mn n' m 

for m > N since 

either a - 0 
mn 

or x = 0 • So A belongs to 
n 

:E (cp). 

This section is concluded by determining a characterization of a 

matrix A that belongs to :E (w). As in the ease for :E (cp), this is a 

rather simple case. The necessary and sufficient condition is that the 

rows of A be long to cp • 

Theorem 4. 15: A = (a ) belongs to :E (w) if and only if the 
mn 

rows of A belong to cp. 

Proof: Let A belong to :E (w). * Since w = cp , the rows of A belong 

to cp by statement (2) of Theorem 4. 3. Now suppose the rows of A 

belong to cp and let x = { x } be any sequence. To prove that A 
n 

belongs to :E (w) one need only show that the A-transform of x exists 

for each m. * But since cp = w 

Hence, A belongs to :E (w). 

co 

n=l 
:E a x 

mn n 
exists for each m. 

Rings of Matrix Transformations 

It is natural to ask whether the sets of matrices :E (a) possess 

an interesting algebraic structure, For this investigation the binary 

operations of addition and multiplication of infinite matrices are 

defined. The definitions are completely analogous to these for finite 

matrices. 
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Definition 4. 16: Let A ::: (a ) and B ::: (b ) be two. infinite 
mn mn 

matrices. if and only if a ::: b 
mn mn 

for all m and n. The 

sum of A and B is the matrix, A+ B ::: (a + b ) and the product 
mn mn 

of A and B (if it is defined) is the matrix AB ::: (c ) where 
mn 

c = mn 

<Xl 

The main theme of this section is the identification of the sequence 

spaces a for which the set of matrices ~ (a) will be a ring with the 

operations of addition and multiplication. The next theorem discusses 

the ope ration of addition in the set of matrices ~ (a), for any sequence 

space a • The proof of this theorem is straightforward and is left to 

the reader. 

Theorem4.17: (a) If A and B belong to ~(a) then A+B 

belongs to ~(a) and A+B::: B+A. 

(b) The matrix, C9, all of whose entries are O, belongs to a and 

A+C9:::A. 

(c) If A belongs to ~ (a) then -A::: (-a ) belongs to ~(a) 
mn 

and A+ ( -A) ::: ( -A) + A = C9 • 

(d) If A, B, and C belong to ~(a) then A+(B+C) = (A+B)+C. 

Theorem 4. 17 indicates that ~ (a) is an Abelian group under the 

operation of addition. 

The situation with regard to multiplication of matrices is compli-

cated by the fact that in the definition each entry of the matrix AB is 

a series. Thus it is necessary to insure the existence of the product. 

The following example inqicate s two matrices for which the product 

does not exist. 
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Example 4. 18: Let the matrix A be 

1 1 1 1 . . . 
0 1 1 1 

A= 0 0 1 1 

0 0 0 1 

and let B be the matrix 

1 0 0 0 . . . 
1 1 0 0 .. 

B ~ 1 1 0 . . . 
1 1 1 1 

CX) 

Note now that the term c 11 of the product AB is ~ 1 and there-
k= l 

fore does not exist. Thus · AB .is not defined. 

Using the result of Theorem 4. 3 and the definition of a dual epace 

it can be shown that when A and B belong to ~ (a) then AB and 

BA are defined. 

Theorem 4. 19: If A and B belong to ~ (a) then AB and 

BA exist. 

Proof: Since the rows of A considered as sequences belong to 

and the columne of B considered as sequences belong to a then 

* a 
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mn = 
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co 

~ amk bk 
k=l · n 

exists for each m and n. Thus the product AB exists. Similarly, 

BA exists. 

Matrix multiplication distributes over addition when the products 

are defined. This is an easy exercise and is left to the reader. 

Theorem4.20: If A,B,and C belongto ~(a) then 

A(B + C) and (B + C)A are defined. Furthermore, A(B + C) = AB +AC 

and (B + C )A == BA + CA • 

Theorems 4. 17, 4. 19, and 4. 20 give properties needed when the 

attempt is made to determine if ~'(a) is a ring under the operations 

of addition or multiplication. The only two properties that remain to 

be sh0wn a re : 

(1) If A and B are in ~(a) then AB is in ~(a). 

(2) If A, B, and C are in ~ (a) then A(BC) = (AB)C. 

Note that Theorem 4. 21 states only that AB exists when A and B 

belong to ~ (a) and not that AB belongs to ~ (a) when A and B 

belong to ~ (a). Thus, to decide if ~ ( a) is a ring it is stHl 

necessary to show that ~ (a) is closed with respect to multiplication. 

The foliowing theorem gives a sufficient condition for ~ ( a) to be a 

ring. That is, a sufficient condition for AB to belong to ~ (a) when 

A and B belong to ~(a). 

Theorem 4. 21: Let a be a sequence space such that q, C a . 

* If for every x of a, every A of ~(a), every u of a , and every 
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E > 0, there corresponds a positive integer · N such that for n > N 

/u a x I < E m mn n (m = 1, 2, 3, ..• ) 

then, AB belongs to 2: (a) for any. A and B in 2: (a) and 

(AB)C = A(BC) for any A, B, and C in 2: (a). 

Proof: Let A and B belong to 2: (a) and let x belong to a. Since 

Bx is a sequence in a then A(Bx) is a sequence in a. Thus, if it 

can be shown that the AB-transform of x is the same as the 

A~transform of Bx then it can be concluded that AB belongs to 

2:(a). Nowlet y={ym} be the B-transformof x, let z={zk} 

be the A-transform of y, and let 
(Xl 

w = { wk} be the AB .,.transform of 
co 

x • Then y = 2: b x , m 1 mn n 

wk = ; (. ; akn= b )x • 

zk = 2: ak . y , and 
rt1.=l m m 

I 1 m mn n 
n= m= 
Let E; > 0 be given, Since the rows of A belong to a and B 

belongs to 2: (a) the condition of the theorem shows that for each row 

of A, that I ak b x I < E for n > N and m = 1, 2, 3, . . . , Thus m mn n · 

from Theorem I. 18. the double series 2: a b x converges 
' m n km mn n 

' 
and has the same sum as the series 

co (Xl co 

2: 2: akmb x 
m=l n=l mn n 

and 2: 2: ak b x • 
n=l m=l m mn n 

Furthermore, any rearrangement of the double series will have the 

same sum. Thus, 

;a (;bx)= 
m=l km n=l mn n 

; ( ; ak b )x , 
n=l m=l m mn n 
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N0w 1 ; ( ; ak b ) x = wk · is the k th ~erm of the AB-transform 
n=l m=l m mn n 

of x while 

; akm ( ; b x ) = 
m=l n=l mn n 

co 

~ ak· y = zk. m·m 
m=l 

Thus, wk= zk and (AB)x = A(Bx). Hence, AB belongs to ~(a). 

Now let A, B, C belong to ~ (a) and let x = {x } belong to 
n 

a. Since BC belongs to ~ (a) it follows from the previous part of 

the theorem that 

[A{BC)]x = A[(BC)x]. 

Thus, 

[A(BC)]x :f A[(BC) x] 

= A[B(Cx)] 

= (AB)(Cx) 

= [(AB )C ]x • 

Therefore, (AB)C - A(BC) • 

The following theorem is a summary of the results of Theorems 

4.17, 4.19, 4.20, and 4.21. 

Theorem 4. 22: Let a be a sequence space with <P C a. If for 

* every i:: > 0, every u of a , ~very A of ~(a), and every x in 

a there corresponds an integer N such that for n > N 

lu a x I < e m mn n 
for m = 1, 2, 3, ... 

then ~ (a) is a ring. 
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Using Lemma 2, 33, the converse of the preceding theorem can 

be proved, 

Theorem 4. 23: Let a be a sequence space with cp C a • If 

* E (a) is a ring then for every e > 0, every u of a , every A of 

E (a) , and every x in a there corresponds an integer N such that 

for n > N 

Ju a x I< e m mn n for m = 1, 2, 3, • . . • 

Before proving Theorem 4. 23 the following lemma will be proved. 

This lemma will create the double .sequence needed in Lemma 2. 33. 

Lemma 4. 24: Let u = {u } 
m 

be in * a , x = {x } 
n 

be in a, and 

A=(a ) belongto E(a). Formthedoublesequence {u a x}. 
mn m mn n 

Then for each fix;ed n, lim u a x = 0 ; and for each fixed m, 
m-oo m mn n 

lim u a .x = 0. 
n->-cxi m mn n 

Proof: By Theorem 4. 3, for each fixed n, the sequence 
<X) 

( a 1. , a 2 . , .•. ~ a , ... ) belongs to a . Thus the series E u. a n n mn 
m=l 

m mn 

exists for each fixed n. Therefore, lim u a = 0 
m-oo m mn 

and 

lim u a x = 0. 
m-oo m mn n 

To prove the other limit is zero, note that since 
<X) 

A belongs to E (a) the series E a x exists for each m. 
n=l 

mn n 

Therefore lim a x - 0 and lim u a x = 0. 
n-co mn n n-oo m .mn n 

Proof of Theorem 4. 23: Suppose that the condition is not satisfied. 

That is, suppose there exists an e > 0, an x = {x } in a, a 
n 

u = {u } 
m 

in a , and an A = (a ) 
mn 

in E (a) such that for every 

N there exists an n0 > N such that 



for some mo. 

Thus, by this supposition and Lemma 4. 24, {u a x } is a double 
m mn n 

sequence that satisfies the three conditions of Lemma 2. 33. Thus 

there exist strictly increasing sequences (n0 , n 1, n2 , ••. ), 
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(Nb, Nl I Nz, ••. ), (mo, ml, m2, ..• )' and (mb, ml, m2' ••• ) such that 

m. < m! < m.+l and n. > N! for every i. Furthermore, 
l l l 1- l 

(4. 23. 1) 

and 

(4. 23. Z) 

Now define the sequence 

c v. = 
J 

v = {v,} by 
J 

for k=0,1,2, ••• 

for j;lk. 

if j cf; mk (k= 0, 1,2, ••• ) 

if = 
mk 

j mk. 

Then v = {v.} satisfies the properties 
J 

if j -:I k ( k = 0, 1, 2, •.• ) 

(4.23.3) 

Now v belongs to a 
~:i: 

since u belongs to * (1' • The remainder of the 

proof is to define a matrix V that belongs to ~ (a) but such that the 

product of V and A does not belong to ~ (a) . 
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Define the matrix V by letting the entries in the first row of V 

be the entries in v and by letting the remaining entries of V be zero. 

Since * <() C QI and v is in a , V belongs to E (QI). The product of 

V and A is the matrix 

co Cl) co 
E v a E v a E v a 

k=O mk mk' 1 k=O mk mk' 2 k=O mk mk' n 

0 0 0 ' . . 
VA 0 0 0 

= 

Now VA does not belong to E (QI) since the VA-transform of x is 

undefined. To see this consider the VA-transform of x. It sho\lld be 

the sequence ( ; (. ;. v a )x , 0, 0, 0, .• ·) , if the series in the 
n=l k=O mk mkn n 

first position converges. Howeve:r, by (4.23.3), 

Cl) 

when n = nk. Thus lim E (v a ) x f:. 0. Therefore the series 
a, 00 . n-,..m k=O mk mkn n 

E ( E v a )x does not converge. Hence, the VA-transform 
n=l k=O mk mkn n 
of x does not exist and consequently, VA does not belong to E (a). 

Thus E (QI) is not closed with respect to multiplication and is there-

fore not a ring. This contradiction proves the theorem. 

Theorem 4. 22 and its converse, Theorem 4. 23, are useful in 

deciding for what sequence spaces QI, E (QI) will be a ring. Because 

of the importance of the necessary and sufficient condition for E (cd 
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to be a ring, this conditiort is given a name. That is, the matrix A 

belonging to E {a), (cp C a) is said to satisfy the "ring condition" if 

* to every e: > 0 and to every x of a and u of a , there corres~ 

ponds a number N, such that for n ~ N, lu a x I < e: for m mn n 

m = 1,2,3, , ••• 

The remainder of this section will be devoted to determining foir 

what sequence spaces a, E (a) will be a ring. 

* * Since (c) = (c 0 ) = (m) and (c) C (m) it can be ·shown simul-

taneously that E (c) and E (m) are rings. 

Theorem 4. 25: The sets of matrices E (m) and E (c) are 

rings. 

Proof: Let £ > 0, x = {x } belong to (m) or (c), u = {u } be in 
n. · m 

(c 0), and let A belong to E (m) or E (c). There is a number · M 1 

such that luml < M 1 for all m and a number M2 such that 

lxn I < M2 for all n. From Theorem 3. 9 if A is in !: (c), or 

Theorem 4. 9 if A is in E (m), there is a number M such that 

I a I < M for all m and n. Now becau:s:e { u } belongs to (c 0 ) 
mn m 

there is a number such that 

(4. 25. 1) lu I < e m M2 M for m > mo. 

But by (4, 25. 1) it follows that for all n 

(4. 25. 2) lu a x I< e: m mn n for m > mo. 

Since lim a = 0, for each m there is a number · N 
n-+m .mn m 

such that 



for n > N 
m 

Determine the integers N 1, N2 , ••. , Nm
0 

and let 

N=Max(N 1,N2, .•• ,Nm
0
). Then for n > N and l.<m.~m0 

la I < £ 
mn M 1M 2 

Therefore for 

(4. 25. 3) for 1 < m ~mo. 

The combination of (4. 25. 2) and (4. 25. 3) yields for n > N 

lu a x I < £ m mn n 
for m = 1, 2, 3, . . . . 

Therefo~e, E (m) and E (c) are rings. 

Theorem 4. 26: The set of matrices E (c 0 ) is a ring. 

Proof: Let £ > 0, x = {xn} be in (c 0), u = {um} be in (m) and, 
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A belong to E (c 0). Sinc.e u is in (m) there is a number M 1 such 

that I um I < M 1 for all m. From Theorem 4. 8, since A is in 

E (c0 ), there is a number M > 0 such that I a I < M for all m mn. 

and n. Now since x is in (c 0 ) the re is an integer N such that for 

n > N, Ix I < M e;M • Thus, for n > N 
n 1 

lu a x I < MM 1 Ix I < e m mn n n 
for c;1.ll m. 

Hence, E (c 0 ) is a ring. 
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It is a very easy task to show that ~ (cp) and ~ (w) are rings 

and these cases are left to the reader. 

Theorem 4. 27: The sets of matrices ~ (cp) and ~ (w) are 

rings. 

The remaining part of this section is devoted to showing that 

~ (0) is not a ring. This is accomplished in two examples, The first 

of these examples is a matrix A in ~ (8) that does not satisfy the 

ring condition. Since the ring condition is a necessary condition, this 

example shows that ~ (0) is not a ring. The second example is a 

matrix B in ~ (0) · such that BA is not in ~ (0). This shows that 

~ (0) is not even closed wit4 respect to multiplication. 

Example 4. 28: Let K=Q and let A be the matrix 
p 

l 
2 3 4 

p p p p 

l 
l 2 3 .. - p p p 

p 

1 1 
1 

2 
2 -z ,P p 

A = p p 

0 
1 1 

1 3 -3 p 
p p 

0 0 
l 1 

1 4 -4 . . • 
p p 

In general A - (a ) 
mn 

where 



n-1 if > p 

-1 
m-1 

a = p 
mn 

+l 
m-1 

p 

0 

To show that A belongs to E (0) 

n m 

if n = m -1 

if n = m-2 

if n < m-2 

consider, x = {x } 
n 

in 0 • 

there is an integer N such that for n ~ N, xn = xn+k, 
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Then 

k=0,1,2,., •• Now let Y - { y } be the A-transform of x. - m Then 

x x (X) 

n-2 n-1 j = ~l - --1 + E x +· p ' for m > 2 • 
pn- pn- j=O n J 

. 1 
So y = x E pJ-

m N. 0 J= 
m > N + 2 • Thus y 

when m > N+2. That is, y = 
m 

belongs to 0, and so A belongs to 

XN 
1 - p 

E (0). 

for 

To show that A does not satisfy the ring condition let 

2 3 
u = (l,p,p ,P , .•. ) and let x = (1, 1, 1, 1, •.• ). Now u belongs to 

(c 0 ) and x belongs to 0. However, for m = n+2, 

I I = I pm-1 1 
umamnx.n -m--~l = 1 " 

p 

Thus, lu a x / m mn n 
cannot be made arbitrarily small for all m when 

n is sufficiently large. Therefore A does not satisfy the ring condi-

tion. 

Example 4. 29: Define the matrix B as follows: the first row is 

the sequence 
2 3 ( 1, p, p , p , .•. ) and the remaining entries are zero. 

Then B is clearly in E (0), since the B-transform of any x in 0 



is (; xnpn-1,o,O,O, .•. ). 
n=O 

BA= 

To show that BA is not in E (O) first find the product BA. 

3 2p-2 

0 0 0 

0 0 0 

3 4p -2 

0 

0 

n n 
(n+ 1 )p + ( -1) 2 

0 

0 

Now let x = (1, 1, 1, .•• ). Then the BA-transform of x is 

( ; [(n+l)pn+ (-l)n2],o,o,o, ... ). 
n=O 

CX) 

But E [(n+ l)pn+ (-l)n2] does not converge since 
n=O 

lim /(n+l)pn+ (-l)n2/ = 1 # 0. 
n-lXl 

Therefore, the BA-transform of x does not exist and consequently 

BA does not belong to E (O). Therefore, E (0) is not a ring. 

Transpose of a Matrix 

95 

The last idea to be discussed in this chapter is the transpose of 

a matrix. From lLnear algebra, if A = (amn) then the transpose of 

A is the matrix A 1 = (a ) ; that is, A' is obtained from A by 
nm 

interchanging the rows and columns of A. It can be observed by 

Theorem 4. 3 that there is a possibility that if A belongs to E (a), 



>:<: 
for some sequence space a C <P, then A' belongs to E (a ) • The 

reason for this possibility is that the rows of AJ considered as 

* sequences are elements of a and the columns of A' belong to a • 
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Recall, however, that these conditions were necessary conditions and 

not sufficient conditions. 

may or may not belong to 

Example 4. 30: Let 

A = 

The next two examples will indicate that A' 

* E (a ) • 

a = (co) a:nd let A be the matrix 

• 
1 0 0 0 

p p 0 0 . • ' 

2 2 2 
0 p p p 

Theorem 4. 8 implies that A belongs to E (c 0 ). It is clear that the 

* matrix A' belongs to E (m). Recall that (c 0) = (m). 

Example 4. 31: Consider the sequence space a and let A be the 

matrix of Example 4. 28. It was shown in this example that A belongs 

to E (0). However, it is clear that A' does not belong to E (c 0 ) 

since the entries of A are unbounded. Thus A' does not belong to 

Definition 4. 32: The set of matrices E'(a) is the set of all 

transposes of matrices belonging to E (a) , That is 

E 1 ( a ) = {A' : A be 1 o ng s to E ( a )} • 
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Recall that in the proof of Example 4. 28 the matrix A did not 

satisfy the "ring condition". In view of this fact it might cause one to 

wonder if the "ring condition II is the characteristic of A needed to 

insure that A 1 belong to * ~ (a ) when A belongs to 

next theorem indicates that this is precisely the case. 

~ (a)• The 

Theorem 4. 33: A necessary and sufficient condition that the 

transpose A' of a matrix A of ~(a), a :icp, belongs to 

that A satisfy the ring condition. 

* ~ (a ) 

Proof: Suppose that A belongs to ~ (a) and that A satisfies the 

ring condition; i. e. , for every 
~c 

e > 0 , for every u of a , and for 

every x in a there corresponds an N such that for n > N 

(4, 33. 1) 

Thus, 

(4.33.2) 

Ju a x J < e m mn n 

Ju a x J < e m nm n 

co 

(m = 1, 2, 3, •.. ) 

for n > N • 

Now consider the sequence { ~ u a : n = 1, 2, 3, ... }. This 
m=l m nm 

sequence is defined since for each fixed n, { a : m = 1, 2, 3, .•. } mn 

belongs to a. Therefore by (4. 33. 2) the series 

is 

converges. Therefore, since x = {x } 
n 

is an arbitrary element of a , 

the sequence 
00 * { ~ a u : n = 1,2,3, ... } belongs to a , by 

m=l nm m 
* * a' • Thus A' belongs to ~ (a ) • definition of 
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The proof of the converse uses the method of contradiction. That 

is, suppose that A does npt satisfy the ring condition. Hence there 

exists an e > 0, * an x in a , and a u of a such that for every N 

there is an integer n 0 > N such that 

for some mo • 

Now by interchanging the roles of m and n, u and x in the proof of 

Theorem 4. 23 it is possible to construct a sequence x' (corresponds 

to v) in a so that x 1(A' u) does not converge. Hence, A 1 u does 

not belong to a* * and A 1 does not belong to :E (a ) • This contradic-

tion proves that the ring condition is necessary for A' to belong to 

* :E ( a ) when A be longs to :E (a) • 

Corollary 4. 34: If for every A in :E (a), A satisfies the ring 

condition then :E 1 (a) .... (,:~) is contained in ~ .... where 11 contained 11 is 

the usual subset relation between sets. 

Suppose now that :E (ex) is a ring. Then by Theorem 4. 23 for 

every A of :E (a) A satisfies the ring condition. Hence, by 

Corollary 4. 34 the following theorem is proved. 

where 

* Theorem 4. 35: If :E (a), a :) <P, is a ring then :E 1(a)C :E (a ) • 

The final theorem of this chapter indicates a particular instance 

:* 
:E'(a) = :E (a ) • 

Theorem 4. 36: :E 1 (c 0 ) = :E (m) and :E 1(m) = :E (c 0 ). 

Proof: By Theorem 4. 37, :E 1(c 0 ) ~ :E (m). The reverse inclusion is 

obtained by using Theorem 4. 8. Let A beiong to :E (m). Then by 



Theorem 4. 8, A 1 belongs to 2: (c 0 ). Hence, (A')' = A belongs to 

2: 1(c 0 ). The other equality is proved in a similar fashion using 

Theorem 4. 9. 

An example will now be given to shew that 2: 1(a) might be 
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* properly contained in 2: ( a ) • Because of the additional requirement 

for the matrix A to belong to 2: (c), the obvious place to look for 

such an example is in the set 2: (co). 

Example 4. 37: Let A be the matrix 

I 1 1 1 

0 1 1 1 

A = 0 0 1 1 

0 0 0 1 .. 

Now A belongs to 2: (c 0) by Theorem 4. 8. However, A' does not 
CXl 

belong to 2: (c) since lim 2: a = limn, does not exist. 
n-oo m= 1 nm n.-.cp 

There-

fore, A' does not satisfy condition (3) of Theorem 3. 9. 



CHAPTER V 

SEQUENCES OF MAT RICES 

In Chapter II norm convergence and (a,13)-convergence are 

defined for a sequence {x(n)} in a sequence space a. In Chapter IV 

a set of matrices, ~ (a), is introduced. This chapter is devoted to 

defining and investigating convergence criteria for a sequence of 

matrices {A (k)} belonging to ~ (a). Two types of convergence are 

introduced, one defined in terms of the norm, and the other defined in 

terms of the sequence space and its dual. 

Norm Convergence 

Since the concept of norm convergence is bci:sed on the definition 

of a norm it is first necessary to define the norm of a matrix. For the 

infinite matrix A = (a ) the func;tion /I II is given by mn 

IIAII = Sup Ja j. 
m,n mn 

The necessary and sufficient conditions for A to belong to either 

~ (c), ~ (c 0 ), or ~ (m) determined in Chapters III and IV indicate 

that jjAjj is finite for each A in ~(c), ~(c0 ), or ~(m). The 

next theorem states the function II II is a non-Archimedean norm for 

the set of infinite matrices. Its proof is straightforward and is left for 

the reader. 
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Theorem 5. 1: The function II II is a non ... Archimedean norm 

for the set of infinite matrices. 

Norm convergence of a sequence of matrices is defined. in the 

usual way, 

Definition 5, 2: The sequence of matrices A (k) = (a (k)) 
mn 

belonging to ~ (a) is said to be norm convergent to A = (a ) 
mn 

if for 

each e: > 0 there is an integer N such that for k > N 

Sup I a · (k) - a I < e: • 
m,n mn mn 

In the following series of lemmas and theorems [5. 3 - 5, 6] it is 

shown that ~ (c), ~ (c 0 ) and ~ (~) are complete with respect to 

norm convergence. 

Lemma 5. 3: If { A (.k)} is a Cauchy sequence in 

or ~ (m) then there is a matrix A = (a ) 
mn 

such that 

~(c), ~(c 0), 

{A (k\ is 

norm convergent to A and Sup la I = M for some number M > 0. m;n mn 

Proof: Since {A (k)} = { (a (k))} is a Cauchy sequence it follows that 
mn 

for e: > 0, there is an integer N' such that 

whenever j, k > N'. Thus, 

(5. 3. 1) Sup I a (k) - a (j) I < e: 
m,n mn mn 

if j , k > N'. Therefore, for each fixed m and n the sequence 



{a (k): k:::: 1, 2, 3,,,.} is a Cauchy sequence in· K, Hence, there 
mn 

exists a in K such that lim a (k) = a 
mn k-oo mn mn 

Let A ;:: (a ) . 
mn 

Now, by (5. 3. 1), for all m and n it is true that 

(5. 3. 2) I a (k) - a (j) I < E 
mn mn 

if j , k > N'. Thus, letting k approach m , it follows that for all 

m and n 

(5.3,3) la .. a (j)l<e 
mn mn 
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if j > N'. Therefore, {A(k)} is norm convergent to A. Further-

more, by (5.3.3), 

I a I < E + I a (N') I < E + M 
mn - mn - N' 

where MN' = Sup I a (N') I . 
m,n mn 

Thus, Sup I a I = M for some number 
m,n mn 

M > O. 

Lemma 5. 4: (a) If {A (k)} is a Cauchy sequence belonging to 

~ (c) or ~ (m) then the rows of the matrix A of Lemma 5. 3 are 

null sequences. 

(b) If {A(k)} is a Cauchy sequence belonging to ~ (c 0 ) then 

the columns of the matrix A of Lemma 5. 3 are null sequences. 

Proof: By Theorem 3. 9 or 4. 9, for each fixed m and k, the 

sequence 
(k) (k) (k) 

( a 1 , a 2 , ••. , a , ... ) is a null seq ue nc e. 
m m mn 

[Note, 

this sequence is the mth row of the kth matrix]. Therefore, 

(5.4.1) {(a 1(k),a 2(k), ... ,a (k), ... ):k=l,2,3, .. ~} 
m m mn 



103 

is a sequence of null sequences. For each fixed m, by (5. 3. 2) it 

follows that 

Sup I a (k) - a (j) I < e: 
n mn mn 

for j, k ~ N0 . Thus the sequence (5. 4. 1), is a Cauc;hy sequence in 

(c 0). Since (c0 ) is complete with respect to norm c;onvergence it 

follows that the sequence (a 1, a. 2 , ••• , a , . , . ) is a null sequence. m m mn 

This concludes the proof of statement (a). Statement (o) is proved in 

a similar manner. D.. 

Using Lemmas 5. 3 and 5, 4, it is now possible to show that 

~ (c ) and ~ (m) are complete with respect to norm convergence. 
0 

Theorem 5. 5: ~ (c 0 ) and ~ (m) are complete with respect to 

norm convergence. 

Proof: This theorem follows firectly from the two lemmas and 

Theorems 4.8 and 4.9. 

Because of the added conditions for a matrix A to belong to 

~ (c), the proof that ~ (c) is complete is a little more difficult. 

Theorem 5. 6: ~ (c) is complete with respect to norm conver-

gence. 

Proof: Let { A (k)} be a Cauchy sequence belonging to ~ (c). Then 

by Lemmas 5. 3 and 5. 4 there is a matrix A= {a } 
mn 

with the 

properties 

(1) there is a number M>O such that Sup ja I ::;: M, and 
m,n mn 
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(2) lim a = 0 , m = 1, 2, 3 , . . . . 
n-+oo mn 

Therefore, to show that A belongs to ~ (c) it remains to show 

(3) 

(4) 

lim a 
m-+ai mn 

exists for each n, and 

CXl 

lim ~ a 
m-+oo n=l mn 

exists. 

To prove (3) note that for each fixed k and n the sequence 

(k) (k) (k) 
(a 1 ,2 , ... ,a , .•. ) belongs to (c), byTheorem3,9, Thus, · n an mn 

the sequence 

(5.6.1) 
(k) (k) (k) 

{(a 1 ,a2 , ..• ,a , ... ): k= 1,2,3, ... } 
n n mn 

is a sequence in (c). Now for each fixed n, by (5, 3. 2) 

' 
Sup la (k) ..'..a (j) I < £ 
m mn mn 

if j, k > N'. Thus the sequence (5. 6. 1), is a Cauchy sequence in 

(c). Since (c) is complete with respect to norm convergence it follows 

that the sequence (a 1 , a 2 , •.• , a , •. , ) belongs to (c). Thus for n n mn 

each n, lim a exists. 
m-ai mn 

CXl 

To prove (4), note first that (2) implies ~ a 
mn 

each m. Let 

(J" 
m = ~ a 

mn n=l 
and 

By the non-Archimedean property 

(5.6,2) 

n=l 

(J" (k) = 
CXl 

~ a (k) 
m n=l mn 

exists for 
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But by (5.3.3) an~ the definition of err' 

(5.6.3) I er - er (k) I = 
r r 

00 

E (a - a (k)) 
n=l rn rn 

< Sup I a - a (k) I 
- n rn rn 

< e for all r , if k > N' . 

For each fixed n , since (N') 
lim a 

m-oo mn 
exists, there is an integer N 

such that for r, s: > N 

(5, 6. 4) I a (N') - a (N') I < e . 
rn sn 

Thus, by (5. 6. 4) it follows that 

(5.6.5) ler (N') - er (N~ I = 
r s 

CXl (N') (N') I 
E (arn - a sn ) 

n=l 

< S I (N ,, ) (NI )I ) up a .,. a ' 
n rn sn 

< e if r, s > N . 

,Therefore by (5. 6. 2), (5. 6. 3), and (5. 6. 5), and for k = N', 

ler - er I< e r s 
if r, s > N • 

Hence, {er } 
r 

00 

is a Cauchy sequence in K and lim CT exists. 
r-oo r 

fore, lim E a exists and (4) is proved. Hence, E (c) is 
t-.co n= l rn 

complete with respect to norm convergence. 

(a, [,)-Convergence 

There-

Let {A(k)} be a sequence of matrices belonging to E (a). 

Another type of convergence of this sequence can be defined in terms 
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of the1 sequence space o: and its dual space. To aid in defining this 

* convergence, for each x of o: and each u of f3 C o: consider the 

sequence y = { yk} defined as follows: 

00 ( 00 (1) ) 
Y1 = ~ u . ~ a x 

m=l m n=l mn n 

00 ( 00 a . (2 ) x ) Y2 = ~ u '~ 
m=l m n=l mn n 

. ' . 

For this definition to be meaningful yk must exist for each k; that 
00 00 k 

is, the series ~ um( ~ a ( ) xn) must converge for each k. 
m=l n=l mn 

Since A (k) belongs to ~ ( o:) for each k the sequence 

{ ; a (k) : m = 1, 2, 3, .•. } belongs to o: • Thus, since u belongs 

t::;J, ::d hence to a'~, the series ; u ( ; a (k) x ) converges 
m=l m n=l mn n 

for each k. 

The sequence y = { yk} is generally written as { uA (k)x}. It 

should be noted that for each k, yk = uA (k)x is an element in K. 

That is, the sequence {yk} is a sequence of elements in K. Since 

this is the case, the question of whether {yk} converges or diverges 

can be ans we red in terms of the usual metric in K. 

To eaGh sequence of matrices { A (k)} of ~ ( o:), each u of 

~:< 
f3 C o: , and each x of o:, there corresponds a sequence 

in K. The definition of (o:, [3)-convergence of the sequence 

given in terms of this sequence. 

{uA (k)x} 

{A(k)} is 
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Definition 5. 7: A sequence of matrices {A(k)}, belonging to 

* !:(a) is said to be (a,@)-convergent, (<pC~<;:_a ), if for every x 

of a and u of ~ the sequence { uA (k)x} is convergent. If ~ = a >:c, 

then A (k) is said to be a -convergent. The sequence {A (k)} is said 

to be (a,~)-convergent to A, where A belongs to !:(a), if the 

sequence {uA (k)x} converges to uAx for every u of ~ and x of a. 

The following example gives a sequence of matrices that is 

(c 0 )-convergent to the matrix A= (a ) where 
mn 

if m I, n 

if m· = n. 

Example 5. 8: Let K = Q . Define A (k) = (a (k)) by 
p mn 

a (k) = 
mn 

k(n-m) 
p 

0 

if n > m: 

if n < m. 

That is, the matrix A (k) is given by 

l' 

0 

0 

'k 
p 

l 

0 

2k 3k 
p p 

k 
p 

1 

2k 
p 

k 
p 

By Theorem 4. 9, the matrix A (k) belongs to !: (c 0 ) for every k. 



To show { A (k)} is (c 0 )-convergent, let u belong to (m) and 

x = {xn} belong to (c 0). The sequence {uA(k)x} is 

{ co ( co ) } k(n-m) . . _ 
~ um ~. p xn. k- 1,2,3, ... 

m=l n=m · 

co 
Also, 1,1Ax = ~ u x since 

m=l mm 
a = I and a = 0 if n # m . 
mm mn 

Thus, 

(5. 8. I) 

Since each of the series in (5. 8. 1) converges, 

(5. 8. 2) = I ; ( ; k(n-m) ) I 
m=l um n=m+l p xn . 

Thus, from (5. 8. 2) H follows that. 

Therefore, 

= SuplumllPk ~ l(n-m-l)xnl 
m n=m+l 

llull · ( ( k(n m 1) i)) < -k- Sup Sup jp - - xn -
p m n~m+l 

llull llxll 
Sup( Sup k(n!m-1)) < - k 

p m n>m+l p 

!lull llxll 
< k -

p 

lim uA (k)x = uAx, for every x of a and u of !3 • 
k-+co 
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After the definition of (a, 13)-convergence of a sequence of 

matrices it is natural to ask whether a necessary and sufficient condi

tion exists for a sequence {A(k)} to be (a,13)-convergent. The next 

theorem gives such a characterization. The proof uses the fact that if 
a> 

~ a and 
n=l n 
equal to 

a:) a:) 

~ b converge then 
n=l n 

~ (a + b ) 
n=l n n 

a:) a:) 

~ a + ~ b 
n n=l n n=l 

converges and is 

Theorem 5, 9: A necessary and sufficient condition for the 

(a,13)-convergence of a sequence of matrices {A (k)} belonging to 

( ) h h {A(k) _ A(k+ 1 )} 
~ a is t at t e sequence is (a,13)-convergent to the 

zero matrix. 

Proof: Suppose {A (k)} is (a, 13) -.convergent. Let { yk} be the 

sequence and {zk} be the sequence {u(A(k) - A(k+l))x}. 

By hypothesis {yk} is a convergent sequence in K. That is, 

:) {yk - Yk+l} is a null sequence. Thus, for every e > 0 ·there is an 

integer N such that 

I y k - y k+ 1 I < E if k > N • 

In terms of the original notation, 

(5. 9. 1) I ; u ( . ; a (k)x ) - ; u ( ; a (k+ 1 )x ) I < e: if k > N. 
m=l m n=l mn n m=l m n=l ·mn n 

Hence, since each of the outer series in (5. 9. 1) converge 

(5. 9. 2) I ; u ( .. ; a (k)x - ; a (k+ 1 )x ) I < e 
m= 1 m n= 1 mn n n= 1 mn n 

if k > N . 
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Now since the series involved converge, 

CXl 

E a (k)x 
n:;:l mn n n:;:l 

CXl CXl 

E a (k+l)x = E (a (k) - a (k+l))x . , 
mn n n= 1 mn mn n 

and 

(5. 9. 3) ; u [ · ; a (k)x - a (k+ 1 )x J < .£ 

m=l m n=l mn n mn n 
if k>N. 

Thus, jzkl < £ if k > N. That i~, {u(A(k) - A{k+l))x} converges 

to zero for every u of f3 and x of a. Thus {A(k) - A(k+l)} con-

verges to the zero matrix. 

To prove the converse, reverse the above argument to obtain 

I yk - Yk+l I < £ if k > N. 

Therefore, { yk} is a Cauchy sequence in K. Since K is complete, 

converges so is (a, [3)-convergent. 

Comparison of Norm Convergence and 

(a, [3)-Convergence 

The purpose of this section is to investigate the relationship 

between norm convergence and a -convergence where a is either (c 0 ), 

( c) , or (m) • 

Theorem 5. 10: (a) If {A(k)} is a norm convergent sequence in 

E (c) or E (m) then { A (k)} is (c)-convergent or (m)-convergent, 

respectively. 

(b) If {A(k)} is a norm convergent sequence in E (c0 ) then 

{A (k)} is (c 0 )-convergent. 
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Proof of (a): Let u = {um} belong to (c 0 ) and x = {xn} belong to 

(c) or to (m). Then, 

lu(A(k) - A(k+l))xl = ; u [ ; (a (k).,. a (k+l))xJ 
m= 1 m n= 1 mn mn n 

< Sup I u ; (a (k) - a (k+ 1)) x I 
- m m n= 1 mn mn n 

<llullSupl ;(a (k)_a (k+l))xl 
m n=l mn mn n 

< II u II Sup ( Sup I a (k) - a (k+ 1) I Ix I ) 
m n mn mn n 

< llull llxl!Sup{Supla (k)_a (k+l)I 
m n mn mn 

= II u II II x II Sup I a (k) - a (k+ 1) I • 
m,n mn mn 

Now, since {A(k)} is norm convergent, for e: > 0, there is an 

integer N such that for k > N 

S I (k) (k+ 1) I < up a - a ~------
m,n mn mn ( II u II + 1 )( II x II + 1) 

e: 

Thus, for k ::_ N 

I u(A (k) - A (k+ 1)) x I ~ II u II II x II Sup I a (k) - a (k+ 1) I < e: • 
m,n mn mn 

Hence, {A (k)} is (c)-convergent or (m)-convergent, depending 0n 

whether {A(k)} belongs to E(c) or E(m). 
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The only change needed to prove part (b) is to let { u } belong 
m 

to (m), {xn} belong to (c 0 ), and {A(k)} be a sequence in Z: (c 0 ). 

The rest of the argument follows as in the proof of (a). ~ 

Using Example 2. 35 it is possible to construct a sequence 

{A(k)} of matrices belonging to Z: (c;: 0 ) that are (c 0 ) .. convergent but 

are not norm convergent. Recall, Example 2. 35 illustrated a sequence 

of convergent sequences that was (c)-convergent but not norm conver

gent. The general term, x(n), of this sequence is 

x (n) = { x (n) : m = 1, 2, 3, .•• } where 
m 

0 if n < m or n = m+ l 

x 
(n) 

l if n = m -
m 

m-n-1 
if > n+2 p m 

Let the matrix A (k) be the matrix whose fir st row is x(k) and has 

the remaining entries O. It is clear that A (k) belongs to Z: (c 0 ) 

for every k. 

Example 5. 11: {A (k)} is (c 0)-convergent but not norm conver

gent. In fact { A (k)} is ( c 0 )-convergent to the zero matrix. That 

{ A (k)} is not norm convergent follows from Example 2. 3 5 . Since the 

fir st row of A (k) - A (k+ 1) is the seq~ence x(k) - x(k+ 1) and 

l!)k) - )k+l) II = 1, it follows that IIA(k) - A(k+l) II = 1 for all k. 

To show that {A(k)} is (c 0 )-convergent let u = {um} belong 

to (m) and x = {xn} belong to (c 0 ). Now the sequence { uA (k)x} 

is { yk} where 

Yk = ul (xk + pxk+2 + P2xk+3 + · · • + pj xk-j+l + • • ·) • 
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If u 1 = 0 then yk = 0 for all k. Suppose then that u 1 # 0. Since 

x = {xn} is in (c 0 ) there is an integer N such that for n > N, 

Ix I< n 

Hence I yk I < e if k ::::_ N . Thus yk is a null sequence for every 

x = {xn} in (c0 ). Therefore, {A(k)} is (c 0 )-convergent to the zero 

matrix. 

Con side ring the sequence of matrices { A {k)} of the preceding 

example it is possible to obtain a sequence {B (k)} of matrices, that 

belongs to ~ (m), which is (m)-convergent but not norm convergent. 

Likewise it is possible to obtain a sequence {C(k)} of matrices, that 

belongs to ~ (c), which is (c)-convergent but not norm convergent, 

To accomplish this let B(k) = C(k) ·= A(k)' where A(k)' is the 

transpose of A (k). 

An interesting application of the work on the norm convergence 

of a sequence of matrices belonging to ~ (c) is the proof of a p-adic 

analogue of Mercer 1s theorem [11]. For the student interested in 

further work in non-Archimedean sequence spaces, Dorleijn [6] has 

some additional work on choosing an (a,f3)-convergent subsequence 

from an (a, f3}-bounded sequence. This is analogous to the Balzano-

Weierstrass theorem for a bo'Unded sequence of real numbers, 

Since the Hahn-Banach theorem is available in a non-Archimedean 

field with a discrete valuation (See Snook [14, p. 106]), an individual 

interested in functional analysis can use this powerful theorem in 

further study of matrix transformations. The necessary and sufficient 

conditions obtained for a matrix to belong to ~ (c), ~ (c 0 ), or ~ (m) 
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can be used to show that if a matrix A belongs to one of these sets, 

it is a continuous Hnear functional. Rangachari and Srinivasan [11], 

state some results that can be obtained from the Hahn-Banach theorem, 

considering the matrix as a linear functional. 
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