
INVESTIGATING THE RELATIONSHIP BETWEEN

ASPECTS AND PROGRAM SLICES

By

YEE PING LU

Bachelor of Science in Computer Science

Oklahoma State University

2001

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May2004

INVESTIGATING THE RELATIONSHIP BETWEEN

ASPECTS AND PROGRAM SLICES

Thesis Approved:

;:;_Adviso~

11

PREFACE

Aspects are defined as system properties that crosscut components in a system's

implementation. Aspect-oriented programming (AOP) is an approach based on aspects

which is designed to handle complexities arising from crosscutting issues and aims at

supporting the separation of concerns using aspects. Development of a software system

comprises the design and implementation of the basic functionality as well as the system

aspects such as synchronization, distribution, error handling, memory optimization,

security management, exception handling, multi-object protocols, and resource sharing.

Program slicing is a debugging and decomposition technique that extracts statements

from a program relevant to a subset of its variables. The deleted part of the program does

not affect the selected variables. Slicing reduces a program but still produces the

behavior that the original program intended to produce with respect to a pre-specified

subset of the variables.

This study was an investigation to better understand the relationship between

aspects and program slices. Aspects crosscut a system based on the nature of each

specific aspect under consideration. Program slices decompose a program according to a

slicing criterion. Aspects deal with crosscutting issues in a program, while program

slicing focuses on extracting the statements in a program that are relevant to a subset of

the variables. Aspects and program slices have differences with respect to the

identification criteria, application, decomposition, composition, tools support, targeted

l1l

languages, and theoretical basis. On the other hand, aspects and program slices seem to

have similarity in testing, reusability, maintenance, and debugging. Testing as applied to

aspects is slightly different from program slices because the programmer has to take care

of special features in aspects such as joinpoints, pointcuts, and advices. Both aspects and

program slices can be used to reduce the effort of debugging. For reuse, the concept of

aspectual collaborations has been introduced, and slices have been used for identifying

and isolating the reusable parts of programs.

IV

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my thesis advisor, Dr. Mansur H.

Samadzadeh, for his supervision, guidance, assistance, and patience in completing my

thesis work. I am especially appreciative of him for suggesting the topic for my research

and his keen interest in my progress along the way. I am deeply impressed by his orderly

and efficient way of working.

My sincere appreciation goes to my committee members, Drs. G. E. Hedrick and

N. Park for their supervision and guidance.

Special thanks go to my parents in Malaysia for their sacrifices not to give up

their enthusiasm to educate their children. I really appreciate all the support,

encouragement, and love in the duration of my studies in the US.

Moreover, hearty thanks go to my best friend, Ken, for his love, patience,

encouragement, and understanding during my up and down times.

Finally, I would like to thank the Computer Science Department of Oklahoma

State University for its quality advanced education.

V

TABLE OF CONTENTS

Chapter Page

I INTRODUCTION .. 1

II ASPECTS ... 3

2.1 Separation of Concerns .. 3
2.1.1 Crosscutting Concerns .. 4
2.1.2 Examples of Crosscutting Issues .. 5

2.2 Aspect Oriented Programming .. 8
2.2.1 Structure of AOP ... 11

2.3 Tools and Languages ... 12
2.3.1 Languages ... 12
2.3.2 Tool Support .. 13
2.3.3 Aspectl ... 13
2.3.4 Aspect Weaver .. 17

2.4 Sample Work and Metric ... ··············· 20

III PROGRAM SLICES ... 22

3 .1 Static Slices .. 23
3.2 Dyttamic Slices .. 24
3.3 Application of Program Slices ... 26
3.4 Tools Based on Slicing .. 27

IV JUXTAPOSITION .. 29

V SlJMMARY AND FUTURE WORK .. 36

5.1 Summary .. 36
5.2 Future Work .. 37

REFERENCES .. 38

APPENDICES ... 43

APPENDIX A- GLOSSARY .. 43

APPENDIX B - TRADEMARK INFORMATION .. .45

Vl

LIST OF FIGURES

Figure Page

1. Visualizing Crosscutting Concems ... 4

2. Aspects Crosscut Classes in a Simple Figure Editor System 6

3. An Example of Crosscutting Concerns in a Distributed Digital Library 7

4. Examples of Crosscutting Concerns in a Record Store .. 8

5. Key Events in Program Execution at Joinpoints ... 15

6. A Pointcut Construct that Cut Across Multiple Classes ... 16

7. Construction of an Advice Takes Place After a Pointcut ... 16

8. A Simple Aspect Example with Pointcut and Advice · · · · · · · 1 7

9. Programming Paradigms Based on Functional Decomposition vs. Aspect-Oriented

Programming ... 18

1 O. Weaving Aspects and Components Together to Produce Overall Behavior 19

11. Sample Program with Stat1·c S11·ce .. 23

12. Sample Program with Static Slices ... 24

13. Sample Program with Dynamic Slice ... 25

Vll

LIST OF TABLES

Table Page

I. Examples of Components and Aspects in Sample Domains 1 O

II. Dynamic Joinpoints of AspectJ ... 14

III. Juxtaposition of Aspects and Program Slices ... 34

viii

CHAPTER I

INTRODUCTION

Object-oriented programming (OOP) can be considered a dominant programming

practice. OOP is based on the idea of decomposing a system into objects and writing

code for those objects. OOP attempts to achieve a clear separation of concerns at the

source code level for constructing software systems. However, complex software

systems have certain characteristics that hamper them from being cleanly and simply

represented using the object-oriented approach. Such characteristic include different

aspects of concern that typically crosscut the executable code such as synchronization,

data storage, user interface, security, and error handling.

Aspects are defined as system properties that crosscut components in a system's

implementation. Crosscutting occurs when two properties that are composed differently

have to coordinate with each other. Aspect-oriented programming (AOP) makes it

possible to clearly express the programs that OOP fails to support [Kiczales et al. 97].

Program slicing is a debugging and decomposition technique that focuses on a

subset of the variables in a program and extracts those statements from the program that

can impact the values of the selected subset of the variables at a certain point in the

program. The deleted part of the program will not affect the selected variables. Slicing

I

reduces a program's size in general and produces the behavior that the original program

intended to produce with respect to a pre-specified subset of the variables.

This thesis work explored the relationship between aspects and program slices.

Aspects and program slices were investigated to find the similarities and the differences

between them.

The rest of the thesis is organized as follows. Chapter II discusses the concept of

aspects. It contains a discussion of separation of concerns, aspect-oriented programming,

and tools and languages. Chapter III presents a brief overview of program slices

including static slicing, dynamic slicing, applications of slices, and tools based on slicing

techniques. Aspects and program slices are juxtaposed comparatively in Chapter IV.

Chapter V presents the summary and future work on aspects and program slices.

2

CHAPTER II

ASPECTS

2.1 Separation of Concerns

Separation of concerns is an important software engineering principle. Separation

of concerns refers to the ability to identify, encapsulate, and manipulate only the parts of

software that are relevant to a particular concept, goal, or purpose [Ossher and Tarr 01].

The existing programming languages deal with the issue of separation of concerns

by creating and explicitly calling subprograms. However, most of the time, a call to a

subroutine is not enough to neatly or fully express separation of concerns. In order for

the subprograms to function properly, both knowledge and cooperation is required on the

part of the programmers of the calling components. The object-oriented model offers

some capabilities for handling separation of concerns, yet it still has difficulty localizing

concerns that do not fit naturally into a single program module or several closely related

program modules. Due to the limitations of OOP, some design decisions that deal with

separation of concerns cannot be illustrated with the object-oriented model [Kiczales et

al. 97].

3

2.1.1 Crosscutting Concerns

An aspect is an area of concern that crosscuts the structure of a program (Figure

1). Some of the examples are data storage, user interface, platform-specific code,

security, distribution, logging procedure, class structure, and threading. Most

programming languages require programmers to make decisions about the

implementation at the design stage. If programmers think that the design decisions might

tangle the code, they might choose to, say, break the abstract classes in order to make the

resulting parts reusable for other environments. Such a decision will cause a lot of

overhead in the design and implementation process because redundancy will be the

eventual outcome.

SOFTWARE
PROJECT

Crosscut

Units of functionality
or procedures
(components)

Figure 1. Visualizing crosscutting concerns

4

Current solution to overcome the crosscutting concerns is that the core concerns

must be transformed to fit the solution for the problem. Therefore, the crosscutting

phenomena are typically directly responsible for the tangling or unexpected complexity

of the code. Code tangling results in harder code reuse, lower productivity, lower code

quality, and limited evolution of the system.

2.1.2 Examples of Crosscutting Issues

Using a number of examples, this section explains how crosscutting issues occur

in current programming paradigms. The first example is a simple figure editor system

[AspectJ 02] [Elrad et al. Olb]. Consider two classes with clear and well-defined

interfaces: Point and Line. A Figure consists of a number of FigureElements which can

be Points or Lines. Whenever a FigureElement moves, it should notify the screen

manager. This requires every method that moves a FigureElement to do the notification.

Figure 2 shows that DisplayUpdating does not fit in either the Point box or the Line box,

instead it cuts across both boxes. Using OOP, the implementation of the crosscutting

concerns tends to be scattered across a system. However, by using AOP, the

implementation can modularize the DisplayUpdating behavior into a single aspect [Elrad

et al. Olb].

What follows is another example of crosscutting concerns in a distributed digital

library. The graph shown in (Figure 3) is the ER (entity relationship) diagram of the

database of a distributed digital library. The dotted line is where the crosscutting concern

is. Whenever an activity occurs in one of the entities, the other entities have to be

5

notified. Each entity is referred to as a table. As depicted in the diagram, a user access

cuts across the object structure [AspectJ 02].

....
Figure *

~

makePoint (...)
makeLine (...)

I
Point

2
-..

getX()
getY()
setX(int)
setY(int)
moveBy (int, int)

FigureElement

moveBy (int, int)

~ ~

Line

getPl()
getP20
setPl(Point)
setP2(Point)
moveBy (int, int)

Each Figure consists of a
number ofFigureElements .

A line consists of 2 po
P 1 and P2. Each point
coordinates X and Y.

DisplayUpdating

mts:
has

Figure 2. Aspects crosscut classes in a simple figure editor system [AspectJ 02]

The Library table holds many Documents and many Users. The Users access the

Terminal by logging onto the computer at each terminal. Each logon on the Terminal's

logon () will affect the quota of quota (user) in the Library's table because Library is

accessed by many Terminals. Each search on the Terminal's search (key) will be

recorded in Library's table too via search (key). Every printing job requested by the

Terminal's print (doc) will be recorded in Library's table as print (doc), and the request

will be send to the Printer's table via print (ps).

6

._ _____ _. . Library
Document

search (key)
• hol~ print (doc)

----U-se_r __ _. i. • ••••••• 9.~91.~ .. (P.~.<?r.L .••••..•..•..•
··· .•.. ···• ···· .•. ········~

Terminal

gui <) E r-······ ··r,;goii-Cr·········
i search (key)
~ print (doc) . . •........ ···························

•

Printer

..... ······:····;..~············· ··-:
........... P.~!.!-K.~l1

getStatus ()
getQueue ()

* represent the "many'' side of a
relationship in an ER diagram
corresponding to I-to-many or
many-to-many

Figure 3. An example of crosscutting concerns in a distributed digital library [AspectJ 02]

For another example of crosscutting concerns, let's consider a record store selling

CDs and magazines (Figure 4). Each CDs has its own title, artist, and label, while each

magazines has title, author, and publication. The notion of "packaged item" cuts across

both CDs and magazines because each item can be stored and retrieved, keeping track of

where the CDs and magazines are located. The concern of "commodity" cuts across both

CDs and magazines to keep track of the amount of CDs or magazines left before

reordering their respective stocks. The company can get the sales amount from the

"payment" concern which cuts across both of CDs and magazines. Whenever a CD and

magazine is sold, it will affect retrieve(), sell(), and charge() for both CDs and

magazines, and hence it will change the "packaged item", "commodity", and "payment"

concerns.

7

CD Magazines

Title Title
Artist Author
Label Publication

··
packaged item

··

··siore·c1···· .. ······
retrieve ()

···siore··c"Y···········
retrieve ()

··························· ······························ I •••••aaaaaaaaa•a•••••••••••t a ···
....

buy()
... ~.~JI.{.)

commodity

······························ ··
buy()

..§~U.(l. ······························ ····························
charge () charge () payment

.... ···························· ······························ ••••••••••••••••••••••••••• 4

Figure 4. Examples of crosscutting concerns in a record store: packaged item,
commodity, payment

2.2 Aspect Oriented Programming

Aspect-oriented programming (AOP) is in its early stages of existence. AOP is an

approach designed to handle the complexities arising from crosscutting issues and aims at

supporting the notion of separation of concerns using aspects. A major problem with the

existing programming methods is that they are not generally sufficient to clearly capture

some of the important design decisions. K.iczales and his colleagues used the term aspect

to refer to the design decisions that are difficult to capture clearly in the actual code

[Kiczales et al. 97]. Aspects are different from objects. Aspects can observe objects and

react to their behavior. AOP allows a programmer to deal with design decisions

separately by creating an aspect (or a set of aspects) for each area of concern.

Development of a software system comprises the design and implementation of

the basic functionality required as well as capturing system aspects such as

8

synchronization, distribution, error handling, memory optimization, security

management, exception handling, multi-object protocols, and resource sharing [Mehner

and Wagner 99] [Kiczales and Hilsdale 01]. Existing conventional decomposition

approaches target only the design and implementation modules, with aspects spread over

the system and tangled with the code that captures the basic functionality of the system,

thus making the system generally hard to develop, understand, and maintain.

Kiczales compares aspects to components using the following definitions

[Kiczales et al. 97]. The term generalized procedure (GP) language is used to refer to the

existing programming languages including object-oriented languages, procedural

languages, and functional languages. A component is something that can be cleanly

encapsulated in generalized procedure language, e.g., an object, a method, or a procedure.

Cleanly mean well-localized or easily accessed, and composed as necessary.

Components tend to be the units of a system's functional decomposition such as image

filters, bank accounts, or GUI widgets.

An aspect is something that cannot be cleanly encapsulated in generalized

procedure language. Aspects tend not to be the units of a system's functional

decomposition, but rather properties that affect the performance or semantics of the

components in systemic ways. Examples of aspects include memory access patterns and

synchronization of concurrent objects.

A member of examples are given below in Table I to differentiate between

components and aspects [Kiczales et al. 97]. Error and failure handling are the most

common aspects in almost all domains. The different failures that may occur and how a

9

failure should be handled crosscut the functionality of systems. Most of the performance

related issues are aspects too [Kiczales et al. 97].

Application
Area

image
processmg

digital library

matrix
algorithms

Generalized
Procedure
Language
procedural

Components

filters

object-oriented repositories

procedural

printers

services
linear algebra
operations

Aspects

loop fusion

result sharing

compile-time memory allocation
minimizing network traffic

synchronization constraints

failure handling
matrix representation

permutation

floating point error

Table I. Examples of components and aspects in sample domains [Kiczales et al. 97]

The goal of AOP, based on the definitions provided by K.iczales and his

colleagues [Kiczales et al. 97], is to separate components and aspects from each other

cleanly by providing mechanisms that make it possible to abstract and compose them to

produce the overall system.

Elrad and his colleagues [Elrad et al. 01] offered the following justification for

aspect-oriented programming.

AOP is based on the idea that computer systems are better programmed by
separately specifying the various concerns (properties or areas of interest)
of a system and some description of their relationships, and then relying
on mechanisms in the underlying AOP environment to weave or compose
them together into a coherent program.

10

2.2.1 Structure of AOP

AOP uses aspectual decomposition to break large problems down [K.iczales et al.

97]. In aspectual decomposition, the crosscutting and common concern are identified and

then they are used to compose a problem into aspects. Aspectual decomposition enable

developers to reason and to program using the natural aspects of concern of a system,

even when those aspects crosscut both one another and the resulting executable code

[K.iczales et al. 97]. In AOP, then each concern is implemented separately. In the last

step of AOP, each concern or aspect is recomposed through a weaving process in which

the source program is spread out and mixed in with other aspects in the output of the

weaver.

AOP languages use five main elements to modularize the crosscutting concerns

[Kiczales et al. 01 b]:

• J oinpoints

• A means ofidentifyingjoinpoints (pointcuts)

• A means of specifying the behavior atjoinpoints (advice)

• Encapsulated units combining joinpoints specifications (pointcuts) and behavior

enhancements (advice)

• A method of attachment of units to a program (weaving)

See Section 2.3.3 for detailed explanations of these items.

11

2.3 Tools and Languages

Software design processes and programming languages work together to produce

an overall system. Design processes break a system into smaller pieces and use

programming languages to combine them together. To design an AOP system, the

designer must cleanly differentiate between the content of the component language, the

content of the aspect language, and what must be shared between the two languages

[Kiczales et al. 97]. A component language must allow a programmer to write

component programs that implement a system's functionality and cannot preempt

anything that the aspect programs may need to control. An aspect language must support

the implementation of the desired aspects. Component and aspect languages are different

most of the time, but they must have something in common to make it possible for the

weaver (see Section 2.3.4) to co-compose the different kinds of programs.

2.3.1 Languages

Aspect languages belong to the language paradigm used in AOP. These

languages which must support the separation of concerns for aspects [Mehner and

Wagner 99]. Aspect languages work together with a base language for the basic

functionality of a system. The base languages are such general languages as C++ or Java.

AOP is a concept, so it is not bound to a specific programming language. AOP has been

implemented in many languages using different base languages such as C, C++, C#, Perl,

and Squeak/Smalltalk.

12

2.3.2 Tool Support

The most documented and used tool for AOP is AspectJ, an AOP implementation

m Java (refer Section 2.3.3 for detailed information). Beside AspectJ, Hyper/J,

AspectWerkz and JMangler are tools that support AOP in Java.

Hyper/J is a tool that supports flexible "multi-dimensional" separation, and the

integration of concerns in standard Java software [Ossher and Tarr 00]. It is available

free of charge on IBM's alpha Works [HyperJ 03].

AspectWerkz is a dynamic lightweight and high-performance AOP/AOSD

framework for Java. It offers both power and simplicity for integration of AOP in both

new and existing projects. It is free software available at http://aspectwerkz.codehaus.org

[AspectWerkz 99].

JMangler is a framework for generic interception and transformation of Java

programs at load-time [Kniesel et al. 01]. It allows one to change third-party Java classes

without the source code. It is freely available under the terms of the GNU General Public

License and partially under the terms of Sun Community Source License [JMangler O 1].

2.3.3 AspectJ

AspectJ is a general-purpose and freely available aspect-oriented extension to

Java [AspectJ 02]. AspectJ, which was developed by Xerox Palo Alto Research Center,

enables the plug-and-play implementation of crosscutting concerns in Java. AspectJ was

first prototyped in 1997 and released for public use in 1998. Version 1.0 of AspectJ was

released in 2001. The latest version of AspectJ, Version 1.1, came out in June 2003. The

13

AspectJ project is sponsored by Palo Alto Research Center, NIST Advance Technology

Program, and Defense Advanced Research Projects Agency. IBM and Eclipse are

vendors that are supporting AspectJ too [Kiczales 03] [AspectJ 02].

AspectJ's language construction extends the Java language so that every Java

program is also a valid AspectJ program. In AspectJ, an aspect is declared by the

keyword "aspect" and is defined in terms of joinpoints, pointcuts, and advices.

J oinpoints are well defined points in a program's execution that can be found in the

source code by the AspectJ compiler. There are eleven types of joinpoints that AspectJ

can possibly detect [Kiczales et al. Olb]. These eleven joinpoints are listed in Table II

below.

type ofjoinpoint points in proxram execution at which ...
method call a method (or constructor of a class) is called (call
constructor call joinpoints are in the calling object, or in no object if the

call is from a static method)
method call reception an object receives a method or constructor call
constructor call reception (reception joinpoints are before method or constructor

dispatch, i.e., they happen inside a called object at a
point in the control flow after control has been
transferred to the called object, but before any particular
method/constructor has been called)

method execution an individual method or constructor is invoked
constructor execution
field get a field of an object, class, or interface is read
field set a field of an object or class is set
exception handler execution an exception handler is invoked
class initialization the static initializers for a class, if any, are run
object initialization the dynamic initializers for a class, if any, are run

during object creation

Table II. Dynamicjoinpoints of AspectJ [Kiczales et al. Olb]

Pointcuts are collections of joinpoints and certain values at those joinpoints.

Advices are special method-like mechanisms that are used to declare that certain piece of

14

code should execute at each of the joinpoints in a pointcut. An advice is a piece of code

that is triggered when the run-time context at a joinpoint meets specific conditions and

can manipulate the surrounding local state or cause global effects [Walker et al. 03].

There are three types of advices: before advice, after advice, and around advice.

Additionally, there are two special cases for after advice: after returning and after

throwing.

There is a special kind of interface that consists of joinpoints existing between

aspects and modules. These joinpoints are places in the base code that can be augmented

by additional behavior and thus specified in an aspect [Mehner and Wagner 99].

Figure 5 shows the key events in program execution at joinpoints. The types of

joinpoints in the example below are: method call and method execution. The cases for

advice are: after returning and after throwing.

a method exe ution
returning or throwing

a method execution
returning or throwing

Figure 5. Key events in program execution atjoinpoints [AspectJ 02]

15

Crosscutting issues can cut across multiple classes. For example in references to

Figure 2 in Section 2.1.2, whenever a "point" receives void setX(int) or void setY(int)

messages, or a "line" receives void setPI(Point) or void setP2(Point) messages, a

crosscutting moves takes place. In Figure 6, move is the name of the pointcut and void

Line.setPI(Point) is the method call.

pointcut move ():
call (void Line.setPl(Point)) II
call (void Line.setP2(Point)) II
call (void Point.setX(int)) II
call (void Point.setY(int));

Figure 6. A pointcut construct that cut across multiple classes [AspectJ 02]

Advices are additional actions taken at crosscut. For example, in Figure 7, which

is an extension from the previous example, additional action runs after the crosscut

"move".

pointcut move ():
call (void Line.setPl(Point)) II
call (void Line.setP2(Point));

after () returning: move () {
<code here runs after each move>

}

Figure 7. Construction of an advice takes place after a pointcut [AspectJ 02]

What follows is an example of a simple aspect with pointcut and advice [AspectJ

02]. The aspect here is DisplayUpdating. The pointcut is move and the type ofjoinpoint

16

is method call. The advice, which is the code that will run after a joinpoint is reached, is

Display.update().

aspect DisplayUpdating {
pointcut move ():

call (void Line.setPl(Point)) II
call (void Line.setP2(Point));

}

after () returning: move () {
Display.update();

}

Figure 8. A simple aspect example with pointcut ''move'' and after returning as an advice
[AspectJ 02]

AspectJ enables clean modularization of crosscutting concerns such as error

checking and handling, synchronization, context-sensitive behavior, performance

optimizations, monitoring and logging, debugging support, and multi-object protocols

[AspectJ 02].

The weaver in AspectJ is a compiler that is apart from the regular compiler.

AspectJ also introduces tools for debugging and documenting the code. The AspectJ

compiler produces standard class files that follow the Java bytecode specification. The

bytecode can then be interpreted on any compliant Java Virtual Machine (JVM).

2.3 .4 Aspect Weaver

Aspect weaver is an important tool in aspect-oriented programmmg (AOP).

Aspect weaver is used to combine or 'weave' an aspect code together with a program

code before it is complied into an executable module [Kiczales et al. 97] [Elrad et al. 01].

17

Aspect weaver processes both component and aspect languages and composes them

properly to produce the desire total system operation. The concept of joinpoints (see

Section 2.3.3 for a definition) is a must for aspect weaver because they are those elements

of the component language semantics with which the aspect programs coordinate.

Figure 9 below shows the use of aspect weaver in aspect oriented programming

and how it is different from functional decomposition programming. In programming

paradigms based on functional decomposition (left), the code that is part of a functional

unit in the source program remains relatively contiguous in the executable program. In

aspect-oriented programming (right), the code that is part of the separate aspect

descriptions in the source program is woven together and spread about in the executable

program [K.iczales et al. 97].

program

executable

compiler Aspect
Weaver™

Figure 9. In programming paradigms based on functional decomposition (left), the
code that is part of a functional unit in the source program remains
relatively contiguous in the executable program. In Aspect-Oriented
Programming (right), the code that is part of the separate aspect
descriptions in the source program is woven together and spread about in
the executable program [Kiczales et al. 97]

18

Figure 10 is the extended picture based on Figure 9 on aspect-oriented

programming. In AOP, aspects and components are weaved together to produce the

overall behavior. In the overall behavior, aspects and components are mixed together and

they are not independent as before going through the Weaver [Constantini des et al. 00].

This is different from functional decomposition programming where the code that is part

of a functional unit in the source program remains relatively contiguous in the executable

program.

aspect
....................
....................
....................

component 1

::::::::: L ._____,I
component2

overall behavior

--············· ------------------------
----·········

.a. - - - -

Figure 10. Aspects and components are weaved together and mixed around in the
overall behavior and they are no longer independent source programs
[Constantinides et al. 00]

19

2.4 Sample Work and Metric

Xerox Palo Alto Research Center created an example implementation of 768 lines

of code and re-implemented it using tangled implementation, which does fusion

optimization as well as memoization of intermediate results, compile-time memory

allocation, and specialized intermediate data structures [Kiczales et al. 97]. As a result,

they ended up with 35213 lines of code. This is extremely difficult to maintain since

small changes to the functionality would require mentally untangling and then re-tangling

the code.

AOP based re-implementation in the same sample work come out with:

• 1039 lines of code including the component program and three aspect programs,

• 3520 lines of aspect weaver code including a reusable code generation

component, and

• 1959 lines for the true kernel of the weaver.

The general equation used for measurement suggested by K.iczales and his

colleagues is given below [K.iczales et al. 97].

reduction in
bloat due to
tangling

=
tangled code size - component program size

sum of aspect program sizes

In the example mentioned at the beginning of this section, the measure compares

the GP-based implementation of an application to an AOP-based implementation of the

same application.

reduction in
bloat due to
tangling

_ tangled code size - component program size
- sum of aspect program sizes

20

= 35213-756 = 98
352

In this metric, any number greater than one indicates a positive outcome of

applying AOP [K.iczales et al. 97]. This example indicates that by using AOP the

programs can be easier to reason about, develop, and maintain at least for certain types of

applications.

In addition to the example above, a lot of work has been done to explore AOP

empirically. An experiment case study carried out by Murphy and his colleagues

[Murphy et al. 01] showed that when locating faults within a single class or aspect, by

using AspectJ, the programmers were able to correct a program fault faster than when

using Java alone.

A study by Lippert and Lopes [Lippert and Lopes 00] found that implementations

supported by AspectJ drastically reduced the portion of code related to exception

detection and handling. The best case scenario in the study was when the code was

reduced by a factor of four. The study showed that AspectJ also provided better support

for different configurations of exceptional behaviors, more tolerance for changes in the

specifications of exceptional behaviors, better support for incremental development,

better reuse, automatic enforcement of contracts in applications that use the framework,

and cleaner program texts.

Walker and his colleagues [Walker et al. 98] showed that AspectJ was able to

complete the debugging tasks with fewer instances of semantic analyses. This seemed to

lead directly to fewer instances of switching between files, indirectly to fewer builds, and

ultimately to quicker completion times in the experiment.

21

CHAPTER ill

PROGRAM SLICES

Program slicing is a decomposition technique that works by focusing on a subset

of the variables of a program and extracting the relevant statements. It can be considered

as a technique for simplifying programs by focusing on selected aspects of their

semantics. The process of slicing deletes the parts of a program that can be determined to

have no effect upon the semantics of interest. Slicing reduces a program to a minimal

form while still producing its original behavior with respect to a subset of its variables.

The reduced program, called a "slice", is an independent program guaranteed to represent

the original program within the domain of the specified subset of its behavior [Weiser

81].

A program slice consists of the parts of a program that potentially affect the

values computed at some point of interest, referred to as a slicing criterion. Weiser

defined a program slice Sas a reduced, executable program obtained from a program P

by removing statements, such that S replicates part of the behavior of P [Weiser]. A slice

is also defined as a subset of the statements and control predicates of a program which

directly or indirectly affect the values computed at a slicing criterion, but which do not

necessarily constitute an executable program.

There are two types of slicing: static and dynamic, as explained in the following

two sections.

22

3 .1 Static Slicing

Static slicing refers to the slicing methods that preserve the behavior of a program

for all possible executions without making any assumptions regarding the inputs [Weiser

81]. A static slice consists of a subset of program statements that affect a set of variables

at a particular location in the program for all input combinations.

A slice is taken with respect to a slicing criterion C = <s, v>, which specifies a

location statement s in program P and v is a subset of variables in P [Binkley and

Gallagher 96]. For statements and variable set v, the slice of program P with respect to

the slicing criterion <s, v> consists of all statements in the program that possibly affect the

values of the variable set v at s. A static slice includes all statements that affect variable

set v for all possible inputs at the point of interest. Two examples of static slicing appear

below in Figures 11 and 12.

(1) input (n); (1) input (n);
(2) i := 1; (2) i := 1;
(3) sum:= O; (3)
(4) product := 1; (4) product := 1;
(5) while i <= n do (5) while i <= n do

begin begin
(6) sum := sum + i; (6)
(7) product := product * i; (7) product := product * i;
(8) i := i + 1; (8) i := i + 1;

end; end;
(9) output (sum); (9)
(10) output (product) (10) output (product)

(a) (b)

Figure 11. (a) An example program. (b) A static slice with respect to the slicing
criterion <s, v> wheres= 10 and v = {product} [Tip 94]

23

There are two directions for computing slices: backward slices and forward slices.

A backward slice traverse a program back to its beginning starting at the slicing criterion,

while a forward slice traverse dependences in the forward direction [Tip 94].

(1) begin (1) begin
(2) read (X, Y) (2) read (X, Y)
(3) total:= 0.0 (5) ifX< 1
(4) sum:= 0.0 (6) then
(5) ifX < = 1 (7) else
(6) then sum :=Y (8) read(Z)
(7) else begin (12) end
(8) read (Z)
(9) total:= X*Y
(10) end (1) begin
(11) write (total, sum) (2) read (X, Y)
(12) end (12) end

(1) begin
(2) read (X, Y)
(3) total:= 0.0
(5) ifX <= 1
(6) then
(7) else
(9) total :=X*Y
(12) end

(a) (b)

Figure 12. (a) Sample program. (b) Static slices with respect to the slicing criteria (12,
{Z}), (9, {X}) and (12, {total}) [Weiser 81]

3 .2 Dynamic Slicing

Korel and Laski first introduced dynamic program slicing in 1988 [Tip 94]

[Binkley and Gallagher 96]. A dynamic program slice is the part of a program that

affects the computation of a variable or variables of interest during program execution on

24

a specific program input [Agrawal and Horgan 90]. A dynamic slice is taken with respect

to a slicing criterion <i, v, s> which consists of a set of variables v, input i, and from the

beginning to statement s in the program. Dynamic program slicing refers to a collection

of program slicing methods that are based on program execution and may significantly

reduce the size of a static program slice because run-time information collected during

program execution is used to compute dynamic program slices.

(1) input (n) (1) input (n)
(2) i := 1; (2) i := 1;
(3) while (i <= n) do (3) while (i <= n) do

begin begin
(4) if (i mod 2= 0) then (4) if (i mod 2= 0) then
(5) X := 17 (5) X := 17

else else
(6) x:= 18; (6)
(7) i := i +1; (7) i := i + 1;

end; end;
(8) output (x); (8) output (x);

(a) (b)

Figure 13. (a) An example program. (b) A dynamic slice with respect to criterion
< i, v, s> which is (n=2, {x}, 81

) in this case [Tip 94].

In Figure 13 above, the input value is n=2 and therefore the program loops twice.

The variable set is { x}. The value of x can be 1 7 or 18, but since s = 81
, only the first

occurrence of the program is needed. Thus, x := 18 is not needed in the dynamic slice. If

this program is sliced using static slicing, it will consists of the entire program. This

example shows that dynamic slicing is more sensitive to certain inputs compared to static

slicing with respect to the size of the resulting slice.

25

3.3 Application of Program Slicing

Slices are used by programmers during debugging because they potentially allow

a programmer to ignore a large number of statements in the process of localizing a bug,

especially when a programmer is confronted with a large program. Slicing and slices can

be used for program verification, program integration, program comprehension, software

maintenance, testing, debugging, software quality assurance, and reengineering [Tip 94]

[Binkley and Gallagher 96] [Agrawal and Horgan 90].

An example of the use of slicing for debugging follows. If a program computes

an incorrect value for variable x, only the statements included in the slice with respect to

x could have possibly contributed to the error, therefore all statements which are not in

the slice can safely be ignored. Static slicing methods can help isolate the code

containing the erroneous statement(s). Static slicing can be used to locate the error in a

program caused by uninitialized variables that are used in expressions. In dynamic

slicing, a "slice" consists only of the statements that influence the value of a variable for

specific program inputs. Therefore, dynamic slicing is better suited to assist the

programmer in locating a bug for a particular execution of a program.

Program slicing can be used by software maintainers to make changes to software

without having a negative impact on the unchanged part. A relatively new kind of slice,

called a decomposition slice, has proven useful in making a change to a piece of software

without unwanted side effects [Binkley and Gallagher 96]. For example, when a variable

v is determined to have a value to be changed, the program is partitioned into three parts,

independent, dependent, and compliment. The statement in the independent slice with

respect to v are not in any other decomposition slice. On the other hand, the statement in

26

the dependent slice with respect to v do exist in other decomposition slices. Compliment

slices contain statements that may exist in some other decomposition slices, but not in the

slices for v.

In reuse engineering, program slicing can be used to isolate code fragments thus

implementing reusable functional abstractions. Program slicing has been used both for

structural and specification driven method. A relatively new slicing process called

Specification Driven Program Slicing has been recently introduced [Chung et al. 01].

The thesis report will not go into the details of Specification Driven Program Slicing, as

the purpose here is to compare and contrast slices with aspects.

3.4 Tools Based on Slicing

There are several tools based on slicing that have been introduced either as

research prototypes or as commercial products. Oberon Slicing Tool (OST) is published

under the Oberon Slicing Tool License. Copyright of OST belongs to Christoph Steindl

[Steindl 99]. Some of the features of OST are listed below.

•

•

•

It computes programs slices of Oberon-2 programs with no restrictions .

It appears to be very efficient and computes slices within a few seconds .

It uses static slicing techniques which produce potentially larger slices than

dynamic slicing, but the calculation of the static slices are more efficient.

• It can handle both procedural and object-oriented programs in an expression-

oriented way.

• It uses user-feedback to restrict the effects of aliases and dynamic binding.

27

• It uses a repository to store the computed slicing information which can be re

used later when importing already sliced modules.

Unravel is a prototype static program slicing tool from National Institute of

Standards and Technology (NIST) funded by both the United States Nuclear Regulatory

Commission (NRC) and the National Communications System (NCS) [Unravel 99].

Unravel can be used to evaluate ANSI C source code statically. It can identify code that

is executed in more than one computation by combining program slices with logical set

operations. It is commonly used when dealing with safety system and security.

CodeSwfer is a commercial program slicing tool [GrammaTech 03]. Copyright

of CodeSurfer belongs to GrammaTech. CodeSurfer supports programs written in C the

language and can be used to look for programming errors because the user can select any

statement in the program.

Samadzadeh and Wichaipanitch [Samadzadeh and Wichaipanitch 93] developed a

debugging tool for C programs, called C-debug, based on dynamic slicing and dicing

techniques. Wichaipanitch [Wichaipanitch 03] developed an interactive debugging tool

for C++ programs based on dynamic slicing and dicing.

28

CHAPTBRN

JUXTAPOSITION

In Chapters II and m, aspects and program slices were described in detail. In this

chapter, the notions of aspects and slices are compared and contrasted. A member of

selected observations about aspects and program slices are explained in this chapter.

There are some commonalities as well as some differences between aspect and program

slices that are juxtaposed in this chapter. The goal is to achieve a clear understanding of

the relationship between aspect and program slices.

Program slicing is a relatively mature area of research compared to research in

aspects which is in its beginning stages. Program slicing has been studied primarily in

the context of procedural programming languages [Zhao 02c]. With the presence of

aspect-oriented programming, a new area of research has been opened in program slicing,

which is the slicing of aspect-oriented software. Slicing reduces a program to a minimal

form while still producing its original behavior with respect to a subset of its variables.

The existing slicing algorithms for conventional procedural languages or object-oriented

languages cannot be applied straightforwardly to aspect-oriented programming. The

reason is specific features such as aspects, joinpoints, pointcuts, and advices in aspect

oriented programming. Therefore, the slicing of aspect-oriented programs must be

handled in a different way. Aspect-oriented system dependence graph has been

29

introduced as an extension to dependence graph that is used in program slicing. Zhao

presented a detailed study of the slicing of aspect-oriented software [Zhao 02c].

Applications of program slicing in software engineering activities include testing,

debugging, maintenance, reverse engineering, and complexity measurement. In program

slicing, a program satisfies a conventional data flow testing criterion if all def-use pairs

occur in a successful test case [Binkley and Gallagher 96]. Data flow testing is defined

as testing values which associate with the variables that can effect the execution of a

program [Zhao 02d]. Data flow testing in aspects and several support tools for unit

testing of aspect-oriented software is proposed by Zhao [Zhao 02a] [Zhao 02d]. The

types of testing introduced by Zhao for aspects are intra-module testing, inter-module

testing, and intra-aspect testing. Intra-module testing is the testing of an individual

module in the aspect such as a piece of advice, an introduction, or a method. Inter

module testing is performed on a public module along with some other modules that it

calls directly or indirectly in an aspect, but it doesn't involve any other module outside

the aspect. Intra-aspect testing is performed on the interactions of multiple public

modules in an aspect when they are called in a random sequence from the outside of the

aspect [Zhao 02a] [Zhao 02d].

The basic testing unit in AOP is an aspect. An aspect is designed to work as

independently as possible from its environment. This allows a programmer to write small

test programs to exercise a particular aspect in a program [Zhao 02d]. The small testing

program written by the programmer can be weaved to the program base code to test the

program, and it can be discarded after testing is done.

30

A program composed of aspects consists of two parts: non-aspect code, which

includes some classes, interfaces, and other language constructs as in Java, and aspect

code, which includes aspects for modeling the crosscutting concerns in the program. On

the other hand, program slices are subsets of the original program, which means the

program slices are parts of the original program's source code.

Program slicing research was originally motivated by debugging. Program slices

ease the debugging process because they slice out the irrelevant parts of the code and let

the programmer to continue from a particular slice of code. On the other hand, a study by

Walker and his colleagues [Walker et al. 98] shows that by applying AOP to the

debugging task, one can achieve better results in shorter time. By applying program

slicing to aspect-oriented programming, there is greater chance to reduce the effort of the

debugging process because it allows the users to ignore many program statements that are

not relevant to the erroneous code in an aspect-oriented program [Zhao 01]. AOP is used

to modularize a program's ability for collecting dynamic information for program

analysis. Therefore, reducing the effort of the debugging process is an important step

towards efficient software evolution.

Program slices are used mostly for maintenance purposes. Software maintainers

generally would like to try to make changes to software without having a negative or

unexpected impact on the unchanged parts of the software. A new kind of slice, called a

decomposition slice, is useful in making a change to a piece of software without

unwanted side effects [Binkley and Gallagher 96]. An aspect can be used for

maintenance by applying change impact analysis which is explained in next paragraph.

Due to the "crosscutting" feature of aspects, an aspect can easily cut across a certain part

31

of the code in the program. An aspect code can be written separately and weaved into the

program for maintenance without making changes throughout the whole program.

Change impact analysis allows one to capture the change effect information of the

software so that one can perform software evolution actions on aspect-oriented software

[Zhao 02b]. It provides the necessary techniques to address the problems by identifying

the changes of the software and uses the information gathered to re-engineer the software

system design. Zhao proposed an approach to support change impact analysis of aspect

oriented software based on program slicing techniques [Zhao 02b]. The main feature of

the approach is to estimate the effect of making the changes in an aspect-oriented

program by analyzing its source code and automatically completing the process of change

impact analysis [Zhao 02b]. Applying program slicing to support change impact analysis

in aspect-oriented software is beneficial for software evolution in aspect-oriented

programming. For example, when a programmer tries to make some changes in an

aspect-oriented program, the programmer must first investigate which statements will

affect or will be affected by the modified statement. A slicing tool can assist a

programmer in change impact information by extracting the parts containing the

statements that might affect, or be affected by, the modified statements. Thus, the

programmer needs to examine only the statements included in the slices in order to

investigate the impact of modification.

Both aspects and program slices can be used in software development with reuse.

The concept of aspectual collaborations was introduced to enhance aspect reuse [AspectJ

02]. The AOP modularity technology should result in better, cleaner, and more reusable

32

code quickly and easily. As for slicing, it has long been used for identifying the reusable

functions.

Aspects and program slices have differences with respect to the basic program

unit, identification criteria, application, decomposition, composition, tools support,

targeted languages, and theoretical basis. On the other hand, aspects and program slices

has the similarity in program testing, debugging, maintenance, and reverse engineering.

Selected observations about aspects and program slices have been placed side-by-side in

Table III.

33

Table ill. Juxtaposition of aspects and program slices

JUXTAPOSITION ASPECTS PROGRAM SLICES
POINT

Identification Criteria Identify aspects based on crosscutting issues. Identify slices according to the given slicing criteria.
Application Aspect-oriented programming is used to deal with Program slices are used to focus on a subset of the

the crosscutting issues and supports the statements in a given program.
separation of concerns.

Usage Primarily useful in the design stage to help Useful in debugging, testing, and maintenance of
developers in writing better modularized code programs.
based on separation of concerns.

Decomposition In AOP, a given design problem is decomposed Using various slicing criteria, portions of a code that
into concerns that can be localized into separate correspond to certain behaviors of the program can be
modules and concerns that tend to crosscut over a isolated.
set of modules.

Composition Various aspects (properties or areas of interest) of Program slices can be grouped into a library for future
a system can be separately specified along with composition. Slices stored in the library can be reused
some description of their relationships, and then, to compose new programs.
relying on mechanisms in the AOP environment,
we can weave or compose them together into a
coherent program.

Executable/Non- An aspect is not an executable program. An A dynamic slice is an executable program whose
executable aspect has to be weaved into a base program to behavior must be identical to the specified subset of the

become executable. original program's behavior with respect to variables of
interest at some execution position. A static slice is a
subset of the statements and control predicates in a
program which directly or indirectly affect the values
computed at the criterion, but which do not necessarily
constitute an executable program.

Maintenance Aspects help modularize the implementation in Program slicing is used in maintenance by changing the
that the code dealing with each particular area of source code without unwanted side effects.
concern is grouped together as a unit resulting in
a more easily maintainable system.

Reus ability The concept of aspectual collaboration has been Program slicing has been used for identifying reuse
introduced to enhance aspect reuse. AOP candidates in code and constructing repositories of
modularity generally results in better, cleaner, potentially reusable components.
and more reusable code.

Debugging Aspects ease the debugging process by designing Program slicing allows a programmer to focus on those
a good set of trace points (the tracing is disabled statements in a given program that may have contributed
when it is not being used) without making to a fault.
changes throughout the whole program.

Tool Support Some examples of tool support are AspectJ, Some examples of tool support are Oberon Slicing Tool,
Hyper/J, AspectWerkz, and JMangler. Unravel, and Codesurfer.

Targeted Languages Aspect-oriented programming mostly targets Program slicing targets conventional procedural
Java. languages and object-oriented languages.

Theoretical Basis Flow graphs and formal definitions for Turing- Program dependence graphs, control flow graphs,
complete crosscut languages. spanning trees, and graph decomposition.

Run-Time Information AOP languages and weavers can be designed so Dynamic slicing uses run-time information for
that weaving work is delayed until run-time. computing slices.

Compile-Time Aspect of a system can be changed, inserted, and Static program slices is a compile-time program
Information removed at compile time. analysis.
Modularization This is the main idea of AOP which solves the Modularization based on slices, especially when

problems caused by crosscutting concerns. constructing a system from slices, achieves the goals of
error isolation and containment.

Object-Orientation AOP complements OOP, where object-oriented Program slicing has been applied to object-oriented
languages are used to write base program and programs. Oberon Slicing Tools has been developed for
aspects offer the powerful addition of the ability slicing object-oriented programs.
to crosscut to OOP.

CHAPTERV

SUMMARY AND FUTURE WORK

5.1 Summary

Aspect-oriented programming (AOP) solves some of the problems that current

programming paradigms are not able to solve. Although AOP does not solve all of the

existing problems, it definitely improves the current status of handling the crosscutting

concerns. AOP does not replace object-oriented programming (OOP), rather it builds on

OOP by supporting the separation of concerns that OOP handles poorly. The ability to

modularize the implementations of crosscutting concerns is the distinctive feature of

AOP.

Program slicing research is quite a mature area. It is mainly used for debugging,

testing, reuse, and maintenance. Application of AOP to program slices can lead program

slicing research to a new direction.

The findings in this study are based on examining the concepts of aspects and

slices, and the theory behind them. No actual implementation was done in this study.

From the juxtaposition, criteria such as identification, decomposition, composition,

application area, usage, tool support, targeted languages, theoretical basis, run-time

information, and compile-time information show the differences between aspects and

slices. On the other hand, both aspects and slices are applicable for maintenance, reuse,

36

testing and debugging. For testing and debugging, aspects and slices can probably be

applied together.

5.2 Future Work

AOP seems to have a promising future. In all probability, aspects will not be the

last word for handling separation of concerns in software development. There is room for

future research and development in the area of aspects.

The current popular aspect language, AspectJ, is a noteworthy start. But AspectJ

is only used on top of the Java programming language. What about other languages such

as C, C++, Perl, and Fortran? Aspect language should be more generalized. By

achieving this, the usage of aspect will not be restricted to just one language. Will aspect

languages become independent languages instead of just being applicable to other

languages?

From the reuse point of view, will aspects-based software development overcome

component-based software development? Perhaps aspects can be reused like program

slices, or even be placed in an aspect library.

Programmers spend around 70% of the time maintaining programs. Aspects and

slices are both beneficial for maintenance. Qualification of the contribution of aspects to

improve maintenance is a desirable goal.

37

REFERENCES

[Agrawal and Horgan 90] Hiralal Agrawal and Joseph R. Horgan, "Dynamic Program
Slicing", Proceedings of the ACM SIGPLAN'90 Conference on Programming
Language Design and Implementation, pp. 246-256, White Plains, New York,
June 1990.

[AspectJ 02] AspectJ Offical Website, AspectJ Crosscutting Objects for Better
Modularity, http://eclipse.org/aspectj/, last modified: December 18, 2002, access
date: October 18, 2003.

[AspectWerkz 99] AspectWerkz Official Website, http://aspectwerkz.codehaus.org/,
creation date: February 1999, access date: March 9, 2004.

[Binkley and Gallager 96] David W. Binkley and Keith B. Gallager, "Program Slicing",
In Advances in Computers, Vol. 43, Edited by: Marvin Zelkowitz, pp. 1-50,
Academic Press, San Diego, California, 1996.

[Chung et al. 01] I. S. Chung, W. K. Lee, G. S. Yoon, and Y. R. Kwon, "Program Slicing
Based on Specification", Proceedings of the 2001 ACM Symposium on Applied
Computing, pp. 605-609, Las Vegas, Nevada, March 2001.

[Constantinides et al. 00] Constantinos A. Constantinides, AtefBader, Tzilla H. Elrad,
Mohamed E. Fayad, and P. Netinant, "Designing an Aspect-Oriented Framework
in an Object-Oriented Environment", ACM Computing Surveys, Vol. 32, No. 41,
pp. 1-12, March 2000.

[Elrad et al. Ola] Tzilla Elrad, Robert E. Filman, and AtefBader, "Aspect-Oriented
Programming", Communication of the ACM, Vol. 44, No.IO, pp. 28-32, October
2001.

[Elrad et al. Olb] Tzilla Elrad, Mehmet Aksits, Gregor Kiczales, Karl Liebeherr, and
Harold Ossher, "Discussing Aspects of AOP", Communications of the ACM, Vol.
44, No.IO, pp. 33-38, October 2001.

[GrammaTech 01] GrammaTech CodeSurfer Software Analysis and Understanding Tool,
http://www.grammatech.com/products/codesurfer/overview .html, last modified:
September 21, 2001, access date: September 25, 2003.

[HyperJ 03] HyperJ Official Website, http://www.alphaworks.ibm.com/tech/hyperj, last
modified: July 8, 2003, access date: March 9, 2004.

38

[JMangler 01] JMangler (Aspects Tool) Website, available online at
http://javalab.cs.uni-bonn.de/research/jmangler/, Copyrights of ROOTS group,
Computer Science Dept. III, University of Bonn, 2001.

[Kiczales 03] Interview with Gregor Kiczales, "Aspect-Oriented Programming",
TheServerSide.com J2EE Community Events Interview posted online at
http://www.theserverside.com/ events/videos/GregorKiczalesText/interview .j sp,
interview date: July 2003, access date: September 11, 2003.

[Kiczales et al. 97] Gregor K.iczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin, "Aspect-Oriented
Programming", Proceedings of ECOOP'97- J 1th European Conference on
Object-Oriented Programming, pp. 220-242, Jyvaskyla, Finland, June 1997.

[K.iczales and Hilsdale 01] Gregor Kiczales and Erik Hilsdale, "Aspect-Oriented
Programming", Proceedings of the B'h European Software Engi.neering
Conference heldjointly with 9'h ACM SIGSOFT International Symposium on
Foundation of Software Engineering, Vol. 26, No. 5, pp. 313, Vienna, Austria,
September 2001.

[K.iczales et al. 01 a] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mil Kersten, Jeffrey
Palm, and William G. Griswold, "Getting Started with AspectJ", Communications
of the ACM, Vol. 44, No. 10, pp. 59-95, October 2001.

[K.iczales et al. 01 b] Gregor K.iczales, Erik Hisdale, Jim Hugunin, Mik Kersten, Jeffery
Palm, and William G. Griswold, "An Overview of AspectJ", Proceedings of the
European Conference on Object-Oriented Programming (ECOOP'OJ), pp. 327-
353, Budapest, Hungary, June 2001.

[Kniesel et al. 01] Gunter Kniesel, Pascal Costanza, and Michael Austermann, "JMangler
-A Framework for Load-Time Transformation of Java Class Files", Proceedings
of IEEE Workshop on Source Code Analysis and Manipulation, pp. 100-110,
Florence, Italy, November 2001.

[Lesiecki 02] Nicholas Lesiecki, "Improve Modularity with Aspect-Oriented
Programming", Technical Team Lead, eBlox, Inc., Published online at
http://www-106.ibm.com/developerworks/java/library/j-aspectj, January 2002.

[Lippert and Lopes 00] Martin Lippert and Cristina Videira Lopes, "A Study on
Exception Detection and Handling Using Aspect-Oriented Programming",
Proceedings of the 22nd International Conference on Software Engineering, pp.
418-427, Limerick, Ireland, June 2000.

[Lopes 97] Cristina V. Lopes, "D: A Language Framework for Distributed
Programming", Ph.D. Thesis, Graduate School of the College of Computer
Science, Northeastern University, Boston, Massachusetts, 1997.

39

[Lopes and K.iczales 98] Cristina V. Lopes and Gregor K.iczales, "Recent Developments
in AspectJ", Proceedings of the European Conference on Object-Oriented
Programming (ECOOP'98), pp. 398-401, Brussel, Belgium, July 1998.

[Mehner and Wagner 99] K. Mehner and A. Wagner, "An Assessment of Aspect
Language Design", a position paper published online at http://www.uni
paderbom.de/cs/ag-engels/Papers/l999/MehnerYRW99 .htm, Young Researchers
Workshop, Generative and Component-Based Software Engineering (GCSE) '99,
Messe Erfurt, Germany, September 1999.

[Mendhekar et al. 97] Anurag Mendhekar, Gregor Kiczales, and John Lamping, "RG: A
Case-Study for Aspect-Oriented Programming", Technical report SPL97-009
P9710044, Xerox PARC, Palo Alto, California, February 1997.

[Murphy et al. 01] Gail C. Murphy, Robert J. Walker, Elisa L.A. Baniassad, Martin P.
Robillard, Albert Lai, and Mil A. Kersten, ''Does Aspect-Oriented Programming
Work?", Communications of the ACM, Vol. 44, No. 10, pp. 75-77, October 2001.

[Ossher and Tarr 00] Harold Ossher and Peri Tarr, "Hyper/J: Multi-Dimensional
Separation of Concerns for Java," 22"d International Conference on Software
Engineering, pp. 734-747, Limerick, Ireland, June 2000.

[Ossher and Tarr 01] Harold Ossher and Peri Tarr, ''Using Multidimensional Separation
of Concerns to (Re)shape Evolving Software", Communications of the A CM, Vol.
44, No. 10, pp. 43-50, October 2001.

[Pace and Campo 01] J. Andres Diaz Pace and Marcelo R. Campo, "Analyzing the Role
of Aspects in Software Design", Communications of the ACM, Vol. 44, No. 10,
pp. 43-50, October 2001.

[Samadzadeh ~d Wichaipanitch 93] M. H. Samadzadeh and W. Wichaipanitch, "An
Interactive Debugging Tool for c Based on Dynamic Slicing and Dicing",
Proceedings of the Twenty-First Annual ACM Computer Science Conference
(CSC '93), pp. 30-37, Edited by Stan c. Kwasny and John F. Buck, Indianapolis,
Indiana, February 1993.

[Samadzadeh et al. 00] M. H. Samadzadeh, A. Usman, and M. K. Zand, "Investigating
the Relationship Between Threads and Program Slices as Reusable Software
Units", Proceedings of the Eighth International Conference on Information
Processing and Management of Uncertainty in Knowledge-Based Systems
(IPMU2000), pp. 1881-1888, Madrid, Spain, July 2000.

[Steindl 99] Christoph Steindl, "The Oberon Slicing Tool", a demonstration paper
published online at http://ecoop99.di.fc.u1.pt/techprogramme/demonstrations
.html, Proceedings of the European Conference on Object-Oriented
Programming (ECOOP '99), Lisbon, Portugal, June 1999.

40

[Tip 94] F. Tip, "A Survey of Program Slicing Techniques", Report CS-R9438, Centrum
voor Wiskunde en Informatica (CWI), Amsterdam, Netherlands, 1994.

[Unravel 99] The Unravel Program Slicing Tool, http://www.nist.gov/it1/div897/sqg/
unravel/unravel.html, last modified: September 2, 1999, access date: September
25, 2003.

[Voas and Viega 00] Jeffrey Voas and John Viega, "Can Aspect-Oriented Programming
Lead to More Reliable Software?", IEEE Software, Vol. 17, No. 6, pp. 19-21,
November/December 2000.

[Wand 03] Mitchell Wand, "Invited Talk- Understanding Aspects (Extended Abstract)",
B'h ACM SIGPLAN International Conference on Functional Programming, pp.
299-300, Uppsala, Sweden, August 2003.

[Walker et al. 98] Robert J. Walker, Elisa L.A. Baniassad, and Gail C. Murphy,
"Assessing Aspect-Oriented Programming: Preliminary Results", Proceedings of
the European Conference on Object-Oriented Programming (ECOOP '98), pp.
433-434, Brussels, Belgium, August 1998.

[Walker et al. 99] Robert J. Walker, Elisa L.A. Baniassad, and Gail C. Murphy, "An
Initial Assessment of Aspect-oriented Programming", Proceedings of the 2 J51

International Conference on Software Engineering, pp.120-130, Los Angeles,
California, May 1999.

[Walker et al. 03] David Walker, Steve Zdancewic, and Jay Ligatti, "A Theory of
Aspects", 8h A CM SIGP LAN International Conference on Functional
Programming, pp. 127-139, Uppsala, Sweden, August 2003.

[Weiser 81] Mark Weiser, "Program Slicing", Proceedings of the Fifth International
Conference on Software Engineering, pp. 439-449, San Diego, California, March
1981.

[Weiser 82] Mark Weiser, "Programmers Use Slices When Debugging",
Communications of the ACM, Vol. 25, No. 7, pp. 446-452, July 1982.

[Wichaipanitch 03] Winai Wichaipanitch, "An Interactive Debugging Tool for C++
Based on Dynamic Slicing and Dicing", Ph.D. Dissertation, Computer Science
Department, Oklahoma State University, Stillwater, Oklahoma, May 2003.

[Zhao 01] J. Zhao, "Dependence Analysis of Aspect-Oriented Software and Its
Applications to Slicing, Testing, and Debugging", Technical-Report SE-2001-
134-17, Information Processing Society of Japan (IPSJ), October 2001.

[Zhao 02a] J. Zhao, "Data Flow Testing of Aspects", Technical Report SE-136-26,
Information Processing Society Japan (IPSJ), March 2002.

41

[Zhao 02b] J. Zhao, "Change hnpact Analysis for Aspect-Oriented Software Evolution",
Proceedings of the Fifth International Workshop on Principles of Software
Evolution, pp. 108-112, Orlando, Florida, May 2002.

[Zhao 02c] J. Zhao, "Slicing Aspect-Oriented Software", Proceedings of the Tenth IEEE
International Workshop on Program Comprehension, pp. 251-260, Paris, France,
June 2002.

[Zhao 02d] J. Zhao, "Tool Support for Unit Testing of Aspect-Oriented Software", a
position paper presented at OOPSLA'02, Object-Oriented Programming Systems,
Languages, and Application, Seattle, Washington, November 2002, Workshop on
Tools for Aspect-Oriented Software Development posted online at
http://www.cs.ubc.ca/-murphy/00PSLA02-Tools-for-AOSD/.

42

Advice

AOP

Aspect

AspectJ

Aspect Language

Aspect Weaver

Component

Component Language

Core Concern

Crosscutting Concerns

APPENDIX A

GLOSSARY

A piece of code that is triggered when the run-time context
at a joinpoint meets specific conditions.

Aspect-Oriented Programming, a way of building
information systems in which common domain-crossing
design decisions are modularized in separate layers of code.

A programming module that contains the implementation
of a crosscutting concern.

A general-purpose and free aspect-oriented extension of
Java which enables plug-and-play implementation of
crosscutting concern in Java.

A language that supports the implementation of desired
aspects.

The compiler in AspectJ that is used to weave the aspect
code together with the program code before it is compiled
into an executable program.

A constituent part of a system.

A language that allows a programmer to write component
programs to implement a system's functionality using
components.

The center of behavior of interest in an aspect.

Design problems that exhibit themselves globally across
functional modules and/or objects such as synchronization,
distribution, error handling, memory optimization, security
management, exception handling, multi-object protocols,
and resource sharing.

43

Dynamic Slicing

GUI

Joinpoints

OOP

Pointcuts

Program Slice

Program Slicing

Separation of
Concerns

Slicing Criterion

Static Slicing

Slicing performed by specifying values for input variables.
A dynamic slicing criterion specifies an input together with
a static slicing criterion.

Graphical User Interface.

Well-defined execution points of a program that can be
found in a source code by the AspectJ compiler, e.g,
method calls, method executions, constructor calls,
constructor executions, field references, and field
assignments.

Object-Oriented Programming, a method of program
implementation in which programs are organized as
cooperative collections of objects, each of which represents
an instance of some class, where the classes are all
members of a hierarchy of classes united via an inheritance
relationship.

Collections of joinpoints and certain values at those
joinpoints.

A subset of program statements obtained by program
slicing based on a particular slicing criterion.

A family of techniques involving operations on source code
that isolate a part of the behavior of a program when
viewed from a point of interest within the program.

The ability to identify, encapsulate, and manipulate only
the parts of a specification or a program that is relevant to a
particular concept, goal, or purpose.

Specification for a particular behavior of interest in a
program. For static slicing, the slice of a program P with
respect to the slicing criterion <s, v> includes those
statements of P needed to capture the behavior of the
program from its beginning to statement s for variable v.
For dynamic slicing, the dynamic slice of a program P with
respect to the dynamic slicing criterion <i, v, s> is the
statements of P from its beginning to statement s for
variable v when the input to the program is i.

Slicing performed without considering the input values.

44

AspectJ

CodeSurfer

Java

APPENDIXB

TRADEMARK. INFORMATION

Trademark of Palo Alto Research Center, Inc.

Trademark of GrammaTech, Inc.

Trademark of Sun Microsystems, Inc.

45

VITAf 'y
Yee Ping Lu

Candidate for the Degree of

Master of Science

Thesis: INVESTIGATING THE RELATIONSHIP BETWEEN ASPECTS AND
PROGRAM SLICES

Major Field: Computer Science

Biographical:
Personal Data: Born in Sarikei, Sarawak, Malaysia, February 6, 1981, daughter of

Choon Woo Lu and Sui Nguk Ling.

Education: Graduated from Sarikei City Government High School, Sarawak,
Malaysia, in December 1997; received Bachelor of Science degree in
Computer Science from the Computer Science Department at Oklahoma
State University, Stillwater, Oklahoma, US, in December 2001; completed
the requirements for Master of Science degree in Computer Science at the
Computer Science Department of Oklahoma State University in May
2004.

Experience: Employed by Computing and Information Services (CIS), currently
known as Information Technology Department (ITO), Oklahoma State
University, as a Computer Lab Assistant from October 2000 to December
2003.

