
A MULTI-THREAD RETRIEVAL APPROACH TO A

RELATIONAL MULTI-DAT ABASE

SYSTEM

By

HUILIN

Bachelor of Science
Beijing Technology University

Beijing, P. R. China
1987

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May,2004

A MULTI-THREAD RETRIEVAL APPROACH TO A

RELATIONAL MULTI-DAT ABASE

SYSTEM

Thesis Approved:

11

ACKNOWLEDGEMENTS

I would like to thank Dr. G. Hedrick for his constant support and advice that made

this work possible. I am grateful for his willingness to discuss the work at any time and

his thoughtful criticism. I am grateful to other committee members, Dr. Nohpill Park and

Dr. Debao Chen for their helpful suggestions, advisement, and readiness to be my co­

referee.

I am especially grateful to Dr. Hong, the Vice Present of Bar Dyne., Inc., both for

supporting the design and implementation of the Multi-database thread access interface

kernel and for providing ideas for future directions of this work. In addition, I would like

to give special appreciation to my parents for their strong encouragement at times of

difficulty, love, support, and understanding throughout the whole process to implement

this thesis.

Finally, I would like to thank the Computer Science Department for supporting

me during my studies.

iii

TABLE OF CONTENTS

Chapter I Introduction .. 1

1.1 Motivation .. 2

1.2 Thesis Outline .. 3

Chapter II Literature Review ... 4

2.1 Information Retrieval in the Relational Database System 4

2.1.1 Relational Database Query Language ... 4

2.l.20DBC ... 6

2.2 Major Object-Oriented Programming Languages ... 9

2.2.1 C++ ... 9

2.2.2 Microsoft Foundation Class (MFC) .. 11

2.3 Multi-database System Introduction .. 12

2.4 Multi-thread and Operating System ... 14

Chapter III Implementation of Multi-database Thread Retrieval Approach

.. 20

3.1 Virtual Database Access Control Module .. 20

3.2 VC++ Implementation of multi-database thread retrieval approach 23

Chapter IV Performance Measurements ... 37

4.1 Schema and data conflicts in multi-database system ... 37

4.2 Performance Benchmark Application .. 47

4.3 Performance Measurements and Summary ... 48

4.3.1 Performance Measurements .. 48

4.3.2 Performance Test Summary .. 55

IV

Chapter V Conclusions and Future Work .. 56

5.1 The key features of the multi-thread database access strategy 56

5.2 Future Work ... 57

Appendix A
Class schema definition of multi-thread retrieval Approach to a

Relational multi-database system .. 58

References ... 73

Glossary .. 75

V

LIST OF TABLES

Table Page

2.1 Product Table .. 4

2.2 Supplier Table .. 4

2. 3 Dealer Table ... 4

4.1 Definitions of Database (I) Table Department .. 38

4. 2 Definitions of Database (I) Table Staff .. 38

4.3 Definitions of Database (I) Table Grade ... 39

4.4 Definitions of Database (I) Table Course ... 39

4.5 Definitions of Database (I) Table Student .. 39

4.6 Definitions of Database (I) Table Enroll .. 39

4. 7 Definitions of Database (II) Table Department .. 40

4.8 Definitions of Database (II) Table Enroll ... 40

4. 9 Definitions of Database (II) Table Advisor .. 41

4.10 Definitions of Database (II) Table Grade ... 41

4.11 Definitions of Database (II) Table Student ... 41

4.12 Definitions of Database (II) Table Course .. 42

4.13 Definitions of Database (Ill) Table Administrator ... 43

4.14 Definitions of Database (III) Table Student .. 43

vi

4.15 Definitions of Database (Ill) Table Department ... 43

4.16 Definitions of Database (Ill) Table Employee .. 44

4.17 Definitions of Database (Ill) Table Course .. 44

4.18 Definitions of Database (III) Table Enroll .. 45

4.19 Definitions of Database (III) Table Grade .. 45

4.20 Query Performance of Query I ... 49

4.21 Query Performance of Query 2 ... 49

4.22 Query Performance of Query 3 ... 49

4.23 Query Performance of Query 4 ... 50

4.24 Query Performance of Query 5 ... 50

4.25 Query Performance of Query 6 ... 50

4.26 Query Performance of Query 7 ... 51

4.27 Query Performance of Query 8 ... 51

4.28 Query Performance of Query 9 ... 51

4.29 Query Performance of Query 10 ... 52

4.30 Query Performance of Query 11 ... 52

4.31 Query Performance of Query 12 ... 52

vii

LIST OF FIGURES

Figure Page

2.1 Basic Architecture View of ODBC Schema ... 7

2.2 ODBC Driver Configuration 1 .. 8

2.3 ODBC Driver Configuration 2 .. 9

2.4 Applications accessing several existing databases ... 14

2.5 Basic Concepts of Single Thread and Multi Thread ... 16

2.6 Many-to-One Thread Mode .. 17

2. 7 One-to-One Thread Mode ... 18

2.8 Many-to-Many Thread Mode ... 19

3 .1 Architecture of Multi-database Thread Retrieval Approach 22

3.2 CMDBDatabase Class Schema Definition ... 58

3.3 CMDBRecordset Class Schema Definition .. 60

3 .4 CMDBSQL ThreadTmp Class Schema Definition .. 64

3 .5 CMDBException Class Schema Definition .. 66

3.6 CMDBGeneralMgr Class Schema Definition .. 67

3. 7 CMDBThreadMgr Class Schema Definition .. 70

3.8 CMDBThreadQryMgr Class Schema Definition .. 72

viii

3. 9 Multi-database Query Processing ... 36

4.1 Relationships of Database (I) Tables .. 40

4.2 Relationships of Database (II) Tables ... 42

4.3 Relationships of Database (Ill) Tables ... 45

4.4 Screen Shot of Benchmark Application .. 48

4.5 Non-join Query Analyses ... 53

4.6 Join Query Analyses ... 53

4. 7 Multi-Database Thread Query Analysis ... 54

4. 8 Multi-Database Thread Overall Query Compare ... 54

ix

CHAPTER I

INTRODUCTION

Modem databases have developed dramatically over the past twenty years in terms of the

ervices and functionality they provide as well as the business areas they cover. Relational

a ta bases are still the market leader because of their easy query functionality and clear table

tructure. In a relational database system, the data is bound to a table, and one record (row) does

tot necessarily stand for a particular object since multi-valued relations must be stored in several

latabase tables. Primary and foreign keys provide a rough approximation: insertion of a new key

,alue in a "primary" (entity) relation approximates the creation of a new object.

In recent years, the value-based network/web system became increasingly complex,

:lynamic and potentially huge. In order to access and combine information in a logical and

;oherent manner within easy reach, a single relational database system is imperfect in several

respects. The following characteristics of such a database structure are desirable, but unavailable; it

should:

• Support the process of wide-area information delivery and management from multi­

purpose data sources such as different kinds of databases from different vendors (IBM,

Informix, Microsoft, NCR, Oracle, and Sybase), different data files etc.;

• Provide a high level of security control and restricted access to the sensitive data for

Enterprise Resource Planning Project (ERP);

• Prevent from data being corrupted (i.e., backed up and organized in such a way as to

minimize the risk of accidental deletion/alteration);

• Minimize the size of the database to allow for future growth because of widely-distributed

information;

I. I Motivation

The heavy demands of sharing data across different database platforms have introduced the

1eed for relational multi-database systems (RMDBS). A RMDBS is "a system capable of

,perating over a network and encompassing a heterogeneous mix of different relational database

,ystems, providing the user with a unified view of distributed and heterogeneous data" [Hurson,

.994];

During the past few years, researchers ofRMDBS mainly focused on the following:

• How to define a good model of scalable, parallel RMDBS driven information retrieval

engine; [Sheth, 1998]

• How to properly extend relational database query language - Structured Query

Language (SQL) to allow both interactive users and application programs to access and

modify the data stored in the RMDBS; [Litwin, 1990]

This thesis presents the implementation of a new method to extend access to a large

MOBS. The method is called Multi-thread information retrieval approach using multi-thread

concepts and the C++ programming language. The power of this method comes from knowledge

and technology of the multi-thread concept together with §.Q1_ developed over several decades.

This method can be embodied seamlessly in traditional DBMS applications as an interface for

creating and managing large amounts of different kind of data efficiently. The advantages of this

approach include:

2

• It provides capabilities allowing safe and persistent storage of data over a network.

• It provides virtual database security control in the thread (the smallest executable unit

of a process) mode;

• It provides a way to both populate and to manage complex data structures such as audio

data., video data and graphic data without customizing the applications;

In this thesis~ we also assume the readers are familiar with the basic concepts of a multi­

tsking operating system, the C++ programming language and database query processing as

escribed in introductory literature, for instance the books by [Simon, 1996], [Zaratian, 1996] and

Silberschatz, 2000].

1.2 Thesis Outline

This thesis is organized as follows. Chapter 2 presents related work in the existing

iterature; Chapter 3 introduces the design and implementation of the multi-database thread

·etrieval approach; Chapter 4 presents performance measurements with an existing business multi­

iatabase system; Finally, Chapter 5 presents conclusions and future work.

3

CHAPTER II

LITERATURE REVIEW

2.1.1 Relational Database Query Language

In 1970, an IBM researcher, Dr. E. F. Codd, formally defined the core concept of a

elational model in his paper "A Relational Model of Data for Large Shared Data Banks" [Codd,

. 970]. This article generated many commercial applications. In the relational model presented by

)r. Codd, the interrelations among data are defined by a data structure called a relation. A relation

s viewed as a named table, its rows are called tuples, and its columns are called attributes. Each

1ttribute is associated with a name and a data type [Ullman, 1988]. The following tables (sets) can

be used to understand the relational data schema.

PRD NAME SUP SUP NAME LOCATION
ID ID ID
33 Pavlova 530 320 Exotic Liquids London
21 Alice Mutton 530
45 Genen Shouyu 637 530 Pavlova, Ltd. Boston
25 Ikura 530
287 Mishi Kobe Niku 320 637 Ma Maison Monterey
317 Chan 320

Table 2.1 Product Table Relations Table 2.2 Supplier Table

SUPPLIER PRODUCT
Alice Mutton

Chang
Ma Maison Genen Shou

Pavlova, Ltd. Alice Mutton
Pavlova, Ltd. Ikura
Pavlova, Ltd. Pavlova

4

Table 2.3 Dealer Table

Table 2.1 and 2.2 shows an example with a PRODUCT table and a SUPPLIER table. The

>WS in these two tables represent individual product and supplier information. The PRDID

nteger) attribute of the PRODUCT table and the SUPID (integer) attribute of the SUPPLIER

tble are the primary keys and their value is unique in each row. The SUPID attribute of the

RODUCT table is a foreign key that takes on values of the primary key SUPID of the SUPPLIER

1ble. Table 2.3 shows a relationship table, called DEALER, used to represent associations

,etween products and suppliers. Each row in the DEALER relationship table is a unique product­

upplier pair [Elmasri, 1989].

From 1974 tol 975, based on the relational schema from Dr. Codd, IBM implemented a

>roject named "System/R" to develop SEQUEL (Structured English Query Language). Then, it

Nas completely rewritten to include multi-table and multi-user features and re-named as "SQL"

:structured Query Language) after 1977. Since that time, various SQL standards have developed

::>Ver the years. SQL became a mature, powerful, and versatile relational database query language

to query, define, manipulate and control data in the relational database. A relational database is a

collection of related data stored in a computer, and a RDBMS (Relational Database Management

System) is a collection of programs to manipulate relational databases [Date, 1993].

Since SQL relies on concepts such as table, indexes, keys, rows, columns, and set theory,

the SQL statement returns information in the tabular format of the relational model. The most

important SQL keywords are INSERT, SELECT, DELETE, UPDATE, WHERE and ORDER

BY used to crate, search, delete and update data in the database based on a declarative query

condition. For example, the SUPPLIER table (Table 2.2) has a column NAME (string) that

contains the name of the supplier and a column SUPID that contains the code of the supplier. The

5

RO DUCT table (Table 2.1) also has a column NAME (string) that specifies the name of the

roduct and a column SUPID that specifies the code of the pr?duct's supplier. The typical queries

1at manipulate data in the Supplier table can be specified as following:

NSERT INTO SUPPLIER (NAME, SUPID, LOCATION) VALUES ("ABC", I, "NY")

;ELECT * FROM SUPPLIER ORDER BY NAME

>ELETE FROM SUPPLIER WHERE NAME= 'ABC'

JPDA TE SUPPLIER SET NAME= 'ABCD" WHERE SUPID = 1

n order to obtain the DEALER table (table 2.3), the SQL query (inter join) can be as follows:

iELECT SUPPLIER.NAME, PRODUCT.NAME FROM SUPPLIER, PRODUCT WHERE

~RODUCT.SUPID = SUPPLIER.SUPID ORDER BY SUPPLIER.NAME [Date, 1993].

2.1.2 ODBC

Open database Connectivity (ODBC) is a standard database access method developed by

Microsoft Corporation to enable any application to communicate with any database management

system (DBMS) [Simon, 1996]. ODBC uses a middle layer named "Database Driver Manager" to

translate the application's data queries into commands that the DBMS can understand. In other

words, both the application and the DBMS must be ODBC- compatible; the DBMS must be

capable of responding to ODBC query commands issued from application. Most major database

server vendors and the suppliers of many desktop products now provide an ODBC interface

through which the end-user has access to centrally stored data directly from the desktop products.

With the leverage Microsoft currently has on the market place, ODBC now dominates client/server

database connectivity. Figure 2.1 below shows a schematic view of the ODBC interface.

6

I
L

Desktop Application
, J,;,,L .,ela-,Le\.hiMtt.iWK¥M+h4:»htAa it-3;;.+!iiiiiirlw:l:iU:A-P , ,1 , lti,,,l .. >

I I
"'

ODBC Driver Manager

i

ODBC ODBC ODBC ODBC •
Driver Driver Driver Driver ·;

' ,

•. . ' "
.. .., , .. .

Data Data [\' Data Data
Source Source Source 1-. Source

,. - . .•. - ... - - ,_ ;-. .

+ + • + r ~ ~

Database I l- Database j l Database l Database

Figure 2.1 Basic Architecture View of ODBC Schema

The Driver Manager is composed of a set of standard Microsoft-supplied DLLs (Dynamic

Link Library); it loads the appropriate database driver to response calls from desktop applications.

The data is accessed in relational form by passing SQL command strings.

There are two main types of ODBC driver configurations. The first configuration

manipulates database using native vendor's networking software (e.g. Ingres, Oracle). ODBC

driver manager passes the SQL request to the database vendor network software that

communicates with the network database server. This configuration is illustrated in Figure 2.2

below.

7

I
l ,'

Desktop Application

) t n « + I bee/+, t :h;, g h, Ji., @iAi:n; llf+A4 flrftl:a t &n+,it'#: > :tt" I rff t1
~

I I
I,

ODBC Driver Manager I,

I,

Sybase ODBC Oracle ODBC I;
Driver Driver 11·

\.
]

. . . , . - ..

Sybase Network ..
Oracle Network ..

Software i,·
Software

• • C - ""
...,.

l Sybase DB Server l Oracle DB Server j

Figure 2.2 ODBC Driver Configuration 1

Oracle drivers in this configuration are from Microsoft and Oracle, the Sybase drivers are

distributed by Sybase.

The second configuration does not require the database vendors networking software.

These drivers have one or more components that run on the client machine and also a component

that runs on the database server. One particular advantage of this configuration is only one driver is

used on the client, regardless of the number of database servers connected to process SQL requests

generated by front-end applications. A typical configuration is illustrated in Figure 2.3 below.

8

I Desktop Application h
..... , __________ ---'"---.......... , , -.. ,_._...., , ,,.~, _......,, ,.,._~...,

I I
,,,

ODBC Driver Manager

••

Generic ODBC Driver

.,., "" "\ I ...

ODBC Host ·- ODBC Host 1-,

Component Component ' '
. ,. ., ... ·-.

', ',
~

,

1 l Sybase Database Oracle Database

Figure 2.3 ODBC Driver Configuration 2

2.2 Major Object-Oriented Programming Languages

2.2. 1 C++

During 1969-1973, Bell Labs developed the UNIX operating system, and at the same time,

Dennis Ritchie designed and developed C as a programming language originally for the

implementation of UNIX operating system on a PDP-11 computer [Zaratian, 1998]. Bjarne

Sroustrup at Bell Labs wrote C++ as an extension of C during 1983-1985. He added classes and

object-oriented features to C and formed so called "C with Classes". After its first release, C++

developed significantly with the power and efficiency of C, classes and object-oriented concepts.

9

++ has been standardized by ANSI (The American National Standards Institute), BSI (The

ritish Standards Institute), DIN (The German national standards organization), several other

ational standards bodies, and ISO (The International Standards Organization). "ARM C++" added

~ceptions and templates, and ISO C++, a~ded RTTI, namespaces, and a standard library. With

'.++, programmers could improve the quality of code they produced and reusable code was easier

> write.

The major concepts in C++ are encapsulation, inheritance, polymorphism .. class and object

Khoshafian, 1 993].

Encapsulation allows the programmer to control both the scope of names, and access to

unctions and/or values stored inside an object;

Inheritance is a mechanism by which new classes are defined from existing classes.

;ubclasses inherit operations of their parent class. Inheritance is the mechanism by which

·eusability is facilitated. It is a mechanism for sharing behavior and attributes between classes;

Polymorphism means that some code or operations or objects behave differently in

iifferent contexts.

For example, the + (plus) operator in C++:

23 + 431 integer addition

"cde" + "abcde" string concatenation

5.6 + 122.0 floating point addition

Typically, when the term polymorphism is used with C++, it refers to using virtual methods;

Class is an encapsulation of variable and function declarations, called data members and

function members respectively. Variables can have any type, but they must have unique names

10

v'ithin the scope of the class. Functions can have the same name, even within the scope, but must

tave different signatures. A class can also have default constructor and destructor that take no

lfguments and are used to initialize and terminate an object;

Object is an instance of a class. In more common terms, an object is a variable of a given

lata type. In C++, a class declaration also declares a new type. Objects have a lifetime, either

~ovemed by a local scope, or they can be created or destroyed dynamically;

2.2.2 Microsoft Foundation Class (MFC)

The Microsoft Foundation Class Library (MFC) was a C++ class library first released in

1992 (with Microsoft C++ 7.0) to support application development on Microsoft Windows.

Written in C++, MFC provides much of the code necessary for managing windows, menus, and

dialog boxes; performing basic input/output; storing collections of data objects; and so on. The

MFC Library consists of numerous classes that are thin wrappers for high level Application

Programming Interfaces (APis) such as WinSock and ODBC. All the Win32 Kernel, GDI, and

User Objects have associated MFC classes. The MFC library is called a vertical library, as it uses

class inheritance heavily with very little C++ templates.

The MFC library can either be linked statically or dynamically into the desktop

applications. If it is linked dynamically, then the application is very small. At runtime, the

application uses MFC classes through the MFC dynamic link libraries. These DLLs are usually

found in the Windows SYSTEM subdirectory. If many applications are MFC based and use MFC

dynamically, the tremendous amount of hard drive space will be saved. Also, if the library is

already loaded when one application is running, then the next application that uses MFC

11

mamically loads faster.

MFC is most often used in GUI (Graphic User Interface) applications; it can be used to

evelop any type of application. MFC shortens development time; makes code more portable

rithout reducing programming freedom and flexibility; provides easy access to the user-interface

lements and technologies, like Active, OLE, and Internet programming. Furthermore, MFC

implifies database programming through Data Access Objects (DAO) and Open Database

:onnectivity (ODBC), and network programming through Windows Sockets [Zaratian, 1998].

2.3 Multi-Database System Introduction

The computing environments have become increasingly distributed through the use of

ntemet and other computer communication networks. What we are experiencing is an ever­

ncreasing access to more or less structured information that is both very dynamic and changing

;ontinuously. In this environment it is becoming increasingly critical to develop methods for

building systems that combine relevant data from many sources, and then present them in a form

that is comprehensible for users. It is important to develop tools that facilitate the efficient

development and maintenance of information systems in a highly dynamic and distributed

environment. The area of distributed databases deals with design and management of uniform

databases whose contents are distributed transparently over several database nodes in a computer

network. Parallel databases deal with high performance databases whose data automatically is

distributed over many internal data servers. The area of multi-database systems deals with

managing and querying data from collections of heterogeneous databases.

A multi-database system (MDBS) integrates a set of autonomous and heterogeneous local

database. In such a system, each local database consists of a local DBMS and a database; global

12

ansactions are executed independently under the control of the MDBS; local transactions are

1bmitted directly to a local DBMS by local applications [Hurson, 1994]. An MDBS should

rovide a mechanism to manage transactions globally; users in a MDBS can access information

~om multiple sources through global transactions. However, global transactions are long-lived and

wolve operations on multiple and autonomous local databases. Moreover, MDBS do not have any

1formation about the existence and execution order of local transactions.

Figure 2.4 illustrates the situation that multi-database systems in use. Various database

ystems on the market are shared among application domains that differ in service support and

•rice. In general, a number of databases distributed over a computer network are managed by some

ocal DBMS and each of them is used by one or more applications. The multi-database system is

1eterogeneous and autonomous and applications can access data from any of these component

latabases. The solution for data integration in a MDBS is to construct a front-end system that

;upports a single common data model and a single global query language on top of different types

lf existing local databases. The front-end system plus the underlying database systems is the so­

:alled multi-database system.

Local database schema is the conceptual schema of a MDBS. For each local schema, there

is a corresponding component schema. The component schema represents the same information as

the local schema, but the common data model is used instead of the data model of the component

database system. A query against a component schema is translated to queries against the

underlying local schema. The results of these queries are then processed to form an answer to the

initial query [Hurson, 1994]. An integrated or global schema is an integration of multiple local

schemas. The global schema makes it possible to access data from multiple databases as though it

was stored in a single database.

13

Application I

Database Database Database
Management Management Management

System System System

8 ~ SQL 2000
DB B B

Database System I Database System 2 Database System 3

Figure 2.4 Applications accessing several existing databases

2.4 Multi-thread in Operating System

The concept of an application having multiple threads has been arormd for some time.

Various modern microprocessor-based operating systems such as Apple, Windows 2000, IBM

OS/2 and UNIX have supported threads or some form of add-on thread package for years. They

provide an extensive library and system call facility to support this feature. In these operating

systems, a thread, sometimes, referred to as lightweight task, can be considered as a separate flow

of execution, each thread operating in parallel with the other threads. Different threads may be

executing the same code sequence or different code sequences. Conceptually, a thread is a basic

14

1nit of resource utilization that comprises a thread ID, a program counter (PC), a register set, and a

;tack [Silberschatz, 2000]. Due to the minimal context state requirements, threads have a very fast

:ontext switch time. Since threads operate within the application's context, each thread has full

application global access and shares the same address space, file access paths, and other system

resources associated with the application. If a process has multiple threads of control, it can

perform more than one task at a time.

The two most important thread benefits are ease of logical program structure and

performance. Program structure is simplified because each application task can be coded as an

almost independent subsystem. If tasks interact and/or share resources, they must use

synchronization objects, which the API provides. Performance is enhanced since some threads can

make progress while one or more other threads may be in a wait state. For example, a keyboard

thread waiting for a keystroke does not have to block all other code executions.

Concurrent multi-thread execution means two or more threads are in process at the same

time. If one thread blocks for some reason, another thread from the same program executes in its

place. This feature is especially relevant to the 1/0 bound application. Parallelism occurs when two

or more threads execute simultaneously across multiple processors, utilizing the power of multi­

processor systems. The power of multi-threads not only resides in the ability to have multiple

flows of execution within an application, but also in the clever way these multiple threads may

interact and interrelate. Multi-threaded benefits, particularly performance, are directly related to

efficient thread management in the multithreaded application development.

15

SingOe and Multithreaded Processes

I code I I data I I files I I code I I data I I files I
I rogistors I I stack I I rogistors I I rogistors I I rogisters I

I stack I I stack I I stack I

thread_.~ ~ $ $~ thread

Single Threaded Process Multi-Threaded Process

Figure 2.5 Basic Concepts of Single Thread and Multi Thread

Many operating systems support both user and kernel threads. There are three types of

threading implementations [Silberschatz, 2000]:

I . Many-to-One (Figure 2.6)

Used on systems that do not support kernel threads, many user-level threads map to a

single kernel thread. The benefits are thread management is done in user space, and so it is

efficient; the drawback is multiple threads are unable to run in parallel on multiprocessors.

A typical system of this type is Solaris 2 (the current is Solaris 9);

16

user thread

Figure 2.6 Many-to-One Thread Mode

2. One-to-One (Figure 2. 7)

Each user-level thread maps to a kernel thread. The benefits are more concurrency and

multiple threads can be run in parallel on multi-processors. The drawback is overhead of

thread creation and management. The typical systems are Windows 95/98/NT/2000 and

IBM OS/2;

17

user thread

kernel thread

Figure 2. 7 One-to-One Thread Mode

3. Many-to-Many (Figure 2.8)

Many-to-Many thread systems multiplex many user level threads to a smaller or equal

number of kernel threads. The benefits are the model suffers from neither the shortcomings

of many-to-one nor one-to-to models. Concurrently, there are no expensive threads allow

the operating system to create a sufficient number of kernel threads. The typical systems

are Solaris 2 and Windows NT/2000;

18

$- user threa

Figure 2.8 Many-to-Many Thread Mode

19

CHAPTERIII

ARCHITECTURE AND IMPLEMENTATION OF

MULTI-DAT ABASE THREAD RETRIEVAL APPROACH

This chapter presents the major architectural principles and implementation designs

underlying the schema of the multi-database thread retrieval approach (Figure 3.1). Section 3.1

gives detailed descriptions of the architecture of three modules:

• Virtual Database Access Control Module

• Multi-database Thread Allocate /De-Allocate Module

• Multi-database Thread Query Module

Section 3 .2 provides all generic class data types and functionality definitions implemented

using Microsoft Visual C++ (MFC 6.0).

3.1 Architecture Descriptions of Three Multi-Databases

Thread Retrieval Approach Modules

• Virtual Database Access Control Module

Virtual Database Access Control Module is a general query controller in the architecture.

As soon as this module receives SQL queries submitted by front-end database application, it starts

to analyze the SQL syntax and determines table names and query criteria. Next, it invokes module

service (functions) to pass table names to Multi-database Thread Allocate /De-allocate Module to

obtain local (child) database connection information (thread mode). Based on the local (children)

database connection information and query criteria obtained, this module generates a series of

20

ocal SQL queries and sends them to the Multi-database Thread Query Module to obtain the query

esults (recordset) then returns query results to the application;

Multi-database Thread Allocate /De-Allocate Module

Multi-database Thread Allocate /De-Allocate Module are used for the following

unctionalities:

o Allocate local database connection threads;

o Release local database connection threads;

o Maintain a memory registry table of each local database name, all local database

table/field names and database connections threads;

o Respond to the requests from Virtual Database Access Control Module to provide local

(children) database connections (thread mode)

• Multi-database Thread Query Module

When the Virtual Database Access Control Module passes local SQL and database

connections to the module, it uses the Open Database Connectives (ODBC) Driver to contact to

the Local {Children) Database Pool for SQL query results (recordset). If query results (recordset)

come from different local databases and need inter-join query (a SQL statement is used to combine

the data contained in two relational database tables based upon a common attribute.), then this

module transfer these recordsets into a temporary database for the inter-join query. Finally, this

module returns all query results (recordset) to the Virtual Database Access Control Module.

21

Relational Database Ii -~
Aoolication I,·

.. ,, _,''

Return SQL Query Results
I I SQL Q uery I

Virtual Database Access Control Module
C"

;'

, r I·•

/ ' 'I

I. Analys is SQL to fi nd: 2. Generate child SQL for local databases

• Table Name (s) - based on database connection registry ' = • Query Criteria (s) - information and query criteria
'- i '- .I t t

I.I 1.2 2. 1 2 .2
)i

Invoke module service Obtain local Invoke module Get query

to submit table names database service to pass results from r

to [Multi-database connection registry local SQL and [Multi-

Thread Allocate I information from local database database

De-Allocate Module] [Multi-database connection to ask Thread Query

to ask for local Thread Allocate for query results Module]

database connection /De-Allocate
registry in formation. Module]

"' . ~
..•

,, , r

Multi-database Thread Allocate /De-Allocate ~ Multi-database Thread Query Module
Module • Using ODBC Driver, Send local

• Allocate local database connection threads SQL to sub database pool and get
• Release local database connection threads query result (recordset)

• Maintain a memory registry table of each • If query result (recordset) come from
local database name, all table/fie ld names different local databases and need to
in the local database and database do inter-join, then transfer these

.. ·-· recordset into a temporary database
I I I '\ for inter-join query

I DBI Thread II DB2 Thread I I DB3 Thread I I I • Return query result (recordset) to

" \ Virtual Database Access Contro l

' .la
Module

C --:, "' -,
:::, l DB2 J J ~ ~

:JsQLC l DB3 <.. r -...,
DB I l DBi J

Local SQL / ODBC Local (Children) Database Pool Temporary
Oata hase

Figure 3. 1 Architecture of Multi-database Thread Retrieval Approach

22

3.2 VC++ Implementation of multi-database thread retrieval approach

:lass Name: CMDBDatabase

vlember Functions: Figure 3.2 (Appendix A)

vtember Variables: Figure 3.2 (Appendix A)

:lass Description:

CMDBDatabase is a class derived from class CDatabase; CDatabase is a MFC class

?rovides the functionality required to access records stored in a database. In some ways, this class

also is analogous to the stream classes used to access standard data files, application can directly

create an instance of this class in order to connect to the database. CDatabase is composed of a set

of high-level API for accessing databases through driver presents a single interface to a wide

variety of database systems, APis is more complex than using the MFC classes. Any application

that can use ODBC can query and work with data in any database that has an ODBC driver, and

that is virtually every database system available. ODBC drivers are Examples include Microsoft

SQL Server, Microsoft Access, Borland® dBASE®, and xBASE. As well, ODBC drivers are

available to connect to databases ranging from Oracle™ to Microsoft Excel™.

The CDatabase wrapper class encapsulates the CMDBDatabase object, and all connection

information is contained within it. Template class CMDBSQLThreadTmp will declare and

instantiate the object of CMDBDatabase, then store this connection information for all processing

related to the database and assign it to Multi-database Thread Allocate /De-Allocate Module

registry table (memory table), therefore, it is an ODBC thread-safe connection to any number of

23

latabases. A CMDBDatabase object represents a database connection through which system can

)perate on the data source hosted by multi-database management system (MDBMS).

To use CMDBDatabase, CMDBSQLThreadTmp constructs a CMDBDatabase object and

;all its Open member function. This opens a database connection. Then construct CMDBRecordset

:>bjects for operating on the connected data source, pass the CMDBRecordset constructor a pointer

to CMDBDatabase object. When system finish using the connection, call the Close member

function and destroy the CMDBDatabase object. Close closes any CMDBRecordset object that has

not closed previously.

Using CMDBDatabase makes data access in Multi-database Thread Allocate /De-Allocate

Module easier. It provides a flexible multi-database access method for working with table

structure, saving queries for reuse, and so on, in many cases, for multiple users.

Class Name: CMDBRecordset

Member Functions: Figure 3.3 (Appendix A)

Member Variables: Figure 3.3 (Appendix A)

Class Description:

Like the ODBC MFC wrapper class, the CMDBRecordset is managed and maintained by

the class 'CRecordSet'. There are many similarities in nature to the ODBC wrapper, and it would

appear that applications programmatically perform the same functions. For each SQL statement

24

hat is executed on any database, a CMDBRecordset must exist to receive the data; therefore, a

:MDBRecordset object will be instantiated for each query or action.

CRecordset is a MFC class that provides the remaining functionality required to access

·ecords stored in a database. Typically, this class will not be used directly; instead,

:MDBRecordset~ the derived class from the CRecordset, will be used to describe specific data

from multi-database. In some ways, it is analogous to the read/write operations in a stream class.

The CMDBRecordset object is used to hold a set of records from a multi-database table. A

CMDBRecordset object is consist of records and columns (fields). In multi-database Thread Query

Module, this object is the most important and the most used object to manipulate data from a

database. The two basic member methods associated with CMDBRecordset object are Open and

Close used to retrieve and discard data from a database. When CMDBRecordset opens a recordset,

the current record pointer will point to the first record and the BOF and EOF properties are False.

If there are no records, the BOF and EOF property are TRUE. CMDBRecordset object can support

two types of updating:

Immediate updating - all changes are written immediately to the database once you call the

Update method.

Batch updating - the provider will cache multiple changes and then send them to the

database with the UpdateBatch method.

In CMDBRecordset, there are four different cursor types defined:

Dynamic cursor - Allows user to see additions, changes, and deletions by other users.

Keyset cursor - Like a dynamic cursor, except that one user cannot see additions by other

users, and it prevents access to records that other users have deleted. Data changes by other users

will still be visible.

25

Static cursor - Provides a static copy of a recordset for a user to use to find data or generate

·eports. Additions, changes, or deletions by other users will not be visible. This is the only type of

!ursor allowed when system opens a client-side CMDBRecordset object.

Forward-only cursor - Allows a user to only scroll forward through the recordset.

t\.dditions, changes, or deletions by other users will not be visible.

The cursor type can be set by the CursorType property or by the CursorType parameter in

the Open method.

Class Name: CMDBSQL ThreadTmp

Member Functions: Figure 3.4 (Appendix A)

Member Variables: Figure 3.4 (Appendix A)

Class Description:

CMDBSQLThreadTmp, the class template derived from MFC class CwinThread, is a user­

interface thread template commonly used to handle CMDBDatabase object connection and

respond to database events independently of threads executing other portions of the application.

This template class can make any member function of any class executed in different thread,

without requiring to define any static or global functions; the other class member methods require

inheritance in the same way that CWinThread under MFC work.

CMDBSQL ThreadTmp objects allow multiple threads within a given application usmg

the Win32 api CreateEvent() call, they typically exist for the duration of the thread. The member

26

variable 'm_bAutoDelete' can be set to FALSE to modify a CMDBSQLThreadTmp object's

behaviors. A CMDBSQL ThreadTmp object can be declared and implemented using the

DECLARE_DYNCREATE and IMPLEMENT_DYNCREATE macros from CWinThread. There

are two general types of threads that CMDBSQLThreadTmp supports: worker threads and user­

interface threads. Worker threads have no message pump: for example, a thread that performs

background calculations in a spreadsheet application. User-interface threads have a message pump

and process messages received from the system; both of these two types wrap a thread handle, ID

and most commonly used thread methods, like Pause(), Suspend() and Resume(), plus, it has value

semantics and full copy constructor and assignment operator.

CMDBSQL ThreadTmp has three advantages:

1. Allow user to start a thread on any member function of any object

by providing it a certain signature (type define):

T & thObject, void (T::*pfnOnFunRunning)(),

template can accomodate both _cdecl and _sdtcall funtions as well.

2. It is type safe.

3. It has pluggable thread creators.

The CMDBSQL ThreadTmp class is the major feature of class CMDBThreadMgr used to

create a CMDBDatabase thread-safe connection. Usually, class CMDBSQL ThreadTmp is passed

by CMDBThreadMgr with a CMDBDatabase dynamic object on its stand-alone global function

named 'allocate_MDBThread()', and, thread-local data of the CMDBThreadMgr to maintain

thread-specific information is managed by CMDBSQL ThreadTmp objects. It is the goal of

27

2MDBSQLThreadTmp that CMDBSQLThreadTmp impose as little overhead as possible in

:1ccessing those appropriate class features.

Class Name: CMDBException

Member Functions: Figure 3.5 (Appendix A)

Member Variables: Figure 3.5 (Appendix A)

Class Description:

During the time program is executing, function calls could bring the system three

outcomes:

1. Function executes normally and returns;

2. Function passed by some mistakes in arguments or inappropriate contextes causes a system

error;

3. When abnormal outside conditions such as low memory or 1/0 errors happened, the

function was influenced and handled by the exception.

Therefore, the using of exceptions can be summed up in one guideline: exception is especially for

handling errors rather than for predictable normal cases; when an abnormal condition happened,

system should throw an exception. Exception handling has several benefits as follows:

• It allows programmers to separate error-handling code from normal code.

programmers can surround the code that they expect to execute most of the time

with a try block;

28

• Programmers can place error-handling code in catch clauses -- code that they don't

expect to get executed often, if ever. This arrangement has the nice benefit of

making the "normal II codeless cluttered.

Class CMDBException is a derived child class based on MFC's class CException.

CException is the base class for all exceptions in the Microsoft Foundation Class Library that is

indicated by being thrown (THROW) and caught (CATCH). Because CException is an abstract

base class system cannot create CException objects directly; the CMDBException object (object of

CException-style derived class) can be created using IMPLEMENT_DYNAMIC macro.

Class CMDBException is centered around the three keywords: !!Y, catch, and throw, the

general purpose of which is to attempt to execute code and handle unexpected exceptional

conditions thrown from classes such as CMDBDatabase,CMDBRecordset,CMDBSQL Thread,

CMDBThreadMgr, CMDBThreadQryMgr and CMDBGeneralMgr. This consists of utilizing a try

block (with its attendant handlers). The basic exception control structure code is described below:

try

{

A series of statements;

}

catch(CMDBException e)

{

// catch all exceptions and cleanup

throw;

}

29

The code checks to see if a resource is available and if not, throws an exception. The

handler for the CMDBException presumably does something meaningful about the exceptional

state. From above sample control code, the typical use of exception is to prevent continued

operation if the program cannot obtain the required resource. Another example of this use of

exceptions is new(), which will throw the standard exception bad memory allocation if the required

amount of memory is not available.

Class Name: CMDBGeneralMgr

Member Functions: Figure 3.6 (Appendix A)

Member Variables: Figure 3 .6 (Appendix A)

Class Description:

Class CMDBGeneralMgr presents an implementation of Virtual Database Access Control

Module. Because each SQL stores the information about the database relationships along with

their (possible) associations with tables, columns, and joins, CMDBGeneralMgr passes SQL to its

member functions such as 'analysis_SQL' and performs following actions:

• Semantically evaluates and analyzes the SQL statement together with the lexical

interpretation;

• Find out relevant information about all table and column such as name, keyword

criteria (SELECT, FROM, WHERE, ORDER BY and so on) and other specific

matching criteria(<,>,=, NOT, NULL and so on);

30

• Syntactic checking of the SQL constraints; semantics analysis and lexical analysis

may record data type of a field; do constraint incompatibility check, i.e., check that

the different constraints of a same table or field that do not conflict with one

another.

• Constraint consistency check uses the error handler (CMDBException) to set a tag

to avoid repeating semantic or lexical errors;

• Invoke member functions related to Class CMDBThreadMgr (Multi-database

Thread Allocate /De-Allocate Module) to obtain all child database connection

information;

• Generate a set of local SQL statements based on information about child database

connection, keyword criteria and specific matching criteria requesting through an

SQL query; constraint refers to an invariant or to an operation;

• Invoke member functions to send all local SQL statements to Class

CMDBThreadQryMgr (Multi-database Thread Query Module) to obtain SQL query

results; pass back query results to the front-end application;

Class CMDBGeneralMgr is an interface between front-end database application and back­

end multi-database. It allows efficient multi-database access control and protects databases from

random and harmful attacks involving searches for network or system. Two classes accompany

with CMDBGeneralMgrare are: CMDBThreadMgr and CMDBThreadOryMgr. All of these three

classes together perform the role of an intermediary between the applications and relational data

sources and resolve heterogeneous multi-data source access from a single query.

31

With Class CMDBGeneralMgr, security access control policies and decisions can be set

based on who is making the request, where the they are making the request from and what data

they are. Every child database has an access control list (ACL) that specifies the level of access

that users and servers have to that database. Although access levels are the same for users and

servers, those assigned to users determine the tasks that they can perform in a database, while

those assigned to servers determine what information within the database the servers can replicate.

Class Name: CMDBThreadMgr

Member Functions: Figure 3. 7 (Appendix A)

Member Variables: Figure 3.7 (Appendix A)

Class Description:

Class CMDBThreadMgr presents an implementation of Multi-database Thread Allocate

/De-Allocate Module. Multi-database Thread Allocate /De-Allocate Module is a collection (pool)

of multi-database (CMDBDatabase) connection in multi-threaded mode (CMDBSQLThreadTmp).

The CMDBThreadMgr's member function 'allocate_MDBThread' is responsible to create

connection of all child databases that are running in thread mode. A database connection in thread

mode is a unit of multi-database that can be scheduled by the operating system.

Each database connection (thread mode) has one of six states associated with it at any

given time during its life. They are:

READY: indicates the connection is ready

32

STANDBY: indicates it will be the next connection to run on a multi-database

system.

RUNNING: indicates connection execution on a database. Execution will continue until the

connection (thread) is preempted by a higher priority connection, it terminates, its time

quantum ends, or it calls a blocking system call.

WAITING: indicates the connection is waiting for some request to be completed.

TRANSITION: indicates the connection is waiting for the resources necessary for

execution.

TERMINATED: indicates the connection has finished execution.

CMDBThreadMgr schedules each child database connection (thread) based on a multi­

level priority registry table checked by the CMDBGeneralMgr. It includes all child database name,

all table names in the child database and thread ID and starts at the highest and goes to the lowest

level depends on database connection activates. CMDBThreadMgr traverses the priority registry

table searching for all database connection (thread) information (such as a list of all valid SQL

table names) that is needed in the SQL statement, when one is found, CMDBThreadMgr must

determine whether there is a valid connection available, if no connection is currently available, but

the connection (thread) with a higher priority will preempt the one with lowest priority and begin

execution on that database. If it is unable to preempt a connection it will be skipped, and

CMDBThreadMgr will continue its traversal.

Based on CMDBSQL ThreadTmp, CMDBThreadMgr is able to automatically locate

database connection threading issues, such as race conditions, stalls, and deadlocks. Therefore,

33

CMDBThreadMgr made the multi-database system suitable for high transaction rates and large

volumes of data and possesses outstanding security and availability characteristics.

Class Name: CMDBThreadQryMgr

Member Functions: Figure 3.8 (Appendix A)

Member Variables: Figure 3.8 (Appendix A)

Class Description:

Class CMDBThreadQryMgr presents an implementation of Multi-database Thread Query

Module. The goal of CMDBThreadQryMgr is to provide Virtual Database Access Control Module

an interface to retrieve data, filter data, and manipulate result sets from multi-database by passing

transact local child SQL queries and child database connection in thread mode

(CMDBSQLThreadTmp). During the time of processing queries, if the final result sets is the inter­

join results of different child databases, CMDBThreadQryMgr will regroup and re-summarize data

by reloading all child-query results into a temporary database. Figure 3.1 describes how multi­

database queries are processed with inter-join among the multi-database tables.

CMDBThreadQryMgr provides Multi-database Thread Query Module three types for

executing SQL queries; "sqlquery", "sqltable" and 'sqloutput". All three connect to multi-database

and execute SQL query statements; the only difference between them is how the result from the

query is handled.

CMDBThreadQryMgr defines the multi-database SQL query interface. It consists of two

major functional parts:

34

First, CMDBThreadQryMgr call function 'Init ()' to detect connection to each child

database engine; if there is connection failed it raised a CMDBException warning else, upon

success, it sets global variables in the child SQL name space to valid function names from each

SQL statement. The global variable represent the multi-database handle, it make

CMDBThreadQryMgr possible to access the database handle to execute more specific requests of

the database. The parameter passed to connect specifies which database module to use (ODBC)

and the registered name of the child database to open. If multi-database was password protected

then CMDBThreadQryMgr need to supply those additional parameters as well;

Second, CMDBThreadQryMgr defines the child SQL statement query schema; processes

and manages all local SQL statements that are passed by Virtual Database Access Control Module.

CMDBThreadQryMgr executes the each SQL query statement and evaluates its results; generates

a list of summary names of the field extracted from the rows of the result of the query; reorganizes

summary data for the columns from different child recordsets by using aggregate functions for

inter-join if needed; generates control-break reports and returns final query results.

CMDBThreadQryMgr assumes all necessary multi-databases to be required.

35

DB I
Child
SQL

SOL Ouerv Return SQL Query Results

Virtual Database Access Control Module

Multi-database Thread Query Module

Querying Multi­
database Tables

(ODBC)

DB2
D83
Child
SQL

Combining
Record sets
from Multi­
database for

inter-join

~ D82

Local (Child) Database

Figure 3.9 Multi-database Query Processing

36

ODBC
Sub

Queries

Temporary
Database

CHAPTERIV

PERFORMANCE MEASUREMENTS

This chapter describes a methodology for evaluating the performance of thread retrieval

approach to a relational multi-database system in a multi-user environment. Two main factors that

affect multi-database transaction throughput in a multi-user environment are identified:

I . Access time in multi-database views;

2. Degree of data sharing among simultaneously executing transactions;

Several typical SQL queries will be employed to construct a benchmark program that will

evaluate the overall system performance under a wide variety of workloads. Finally, This chapter

will present the results of applying thread retrieval approach to the test database system.

4.1 Schema and data conflicts in multi-database system

The test multi-database system and hardware are provided by Quality PC Company, which

located at Tulsa, Oklahoma. This system is a general information management system in a medical

school, because of offices autonomy, the system consists of two MS SQL 2000 and one MS

Access 2000 that located in three campuses: South Campus, North Campus and Main Campus. For

the sake of reorganization, the school wishes to combine information across the different

campuses.

This chapter will discuss general classification of schematic conflicts that arise in the test

multi-database system, and how the thread retrieval approach is applied on this database system

using a benchmark application described in sub chapter 4.2.

37

The following schemas define the architectures of all component databases:

Database (I): Name: NorthCampus; Type: MS SQL 2000

Field Name
ID

Name Text De artment name
Table 4.1 Definitions of Database (I) Table Department

Table Name: Staff (Primary key: ID; Foreign key: Dept)
Field Name Data Type Description

ID Number ID number
Fname Text First name
Mname Text Mid name
Lname Text Last name
Addl Text Home Address I
Add2 Text Home Address 2
City Text City name
State Text State name (US)
Zip Text Zip code

Phonel Text Phone number (0)
Phone2 Text Phone number (H)

Fax Text Fax number
CellNumber Text Mobil

Pager Text Pager number
EMail Text Contact Email

WebSite Text Personal homepage
Login Text Login name
Pwd Text Login password
Dept Number Department ID

Active Boolean Retire Status
Table 4.2 Definitions of Database (I) Table Staff

38

Table Name: Grade (Primary key: NONE; Foreign key: CID, SID, STID)
Field Name Data Type Description

STID Number Student ID
SID Number Staff ID
CID Number Course ID

Grade Text A-E
Grade Date Date/Time Date and Time of Grade

Table 4.3 Definitions of Database (I) Table Grade

Table Name: Course (Primary key: ID; Foreign key: Dept, SID)
Field Name Data Type Description

ID Number Course ID
Name Text Course Name

Location Text Course Location
MON Text Monday
TUE Text Tuesday
WED Text Wednesday
THU Text Thursday
FRI Text Friday
SAT Text Saturday
SUN Text Sunday
Dept Number Department ID
SID Number Staff ID

Table 4.4 Definitions of Database (I) Table Course

Table Name: Student (Primary key: ID; Foreign key: Dept)
Field Name Data Type Description

ID Number ID number
FName Text First name
MName Double Middle name
LName Number Last name
EMail Text Student Email
Dept Number Department ID

Table 4.5 Definitions of Database (I) Table Student

Table Name: Enroll (Primarv key: NONE; Foreign key: CID, STID)
Field Name Data Type Description

STID Number Student ID
CID Number Course ID

Credits Number Credits
EnDate Date/time Enroll Date

EnMemo Text Enroll Memo
Table 4.6 Definitions of Database (I) Table Enroll

39

STIO
ID

.,_ ________________ ,_ SID

FName
MName
LName
Addl
Add2
City
State
Zip
Phone!
Phone2
Fax
CellNumber
Pager
EMall
WebSite
Login
Pwd
Dept
Active

~~~:' 

I~ 

STID 
ao 
Credits 
EnOate 
EnMemo 

ID 
FName 
MName 
LName 
Dept 

Email 

•u•n••nl•••~~•~I •• •••••~•~ ~•• H• • • 

ac, 
Name 
Location 
MON 

-TUE 
WED 

. THU 
FRI 
SAT 

. , SUN 

'. Dept 
SID 

Figure 4.1 Relationships of Database (I) Tables 

Database (II): Name: SouthCampus; Type: MS ACCESS 2000 

Field Name 
ID Number 

ao 
Grade 
GradeOate 

Name Text De artment name 
Table 4. 7 Definitions of Database (II) Table Department 

Table Name: Enroll (Primary key: NONE; Foreign key: CID, STID) 
Field Name Data Type Description 

STID Number Student ID 
CID Number Course ID 

Credits Number Credits 
EnDate Date/time Enroll Date 

EnMemo Text Enroll Memo 
Table 4.8 Definitions of Database (II) Table Enroll 

40 



Table Name: Advisor (Primary key: ID; Foreign key: Dept) 
Field Name Data Type Description 

ID Number ID number 
FName Text First name 
MName Text Mid name 
LName Text Last name 

Add Text Home address 
City Text City name 
State Text State name (US) 
Zip Text Zip code 

Phone Text Phone number (0/H) 
EMail Text Email address 
Login Text Login name 
Pword Text Login password 
Dept Number Department ID 

Active Boolean Retire Status 
Table 4.9 Definitions of Database (II) Table Advisor 

Table Name: Grade (Primary key: NONE; Foreign key: CID, AdvrlD, 
STID) 

Field Name Data Type Description 
STID Number Student ID 

AdvrID Number Advisor ID 
CID Number Course ID 

Grade Text 1-5 
GradeDate Date/fime Date and Time of Grade 
Description Memo Memo 

Table 4.10 Definitions of Database (II) Table Grade 

Table Name: Student (Primary key: ID; Foreign key: Dept) 
Field Name Data Type Description 

ID Number ID 
FName Text First name 
MName Double Middle name 
LName Number Last name 
EMail Text Email address 
Dept Number Department ID 

Description Memo Memo 
Table 4.11 Definitions of Database (II) Table Student 

41 



Table Name: Course (Primary key: ID; Foreign key: Dept, AdvrlD) 
Field Name Data Type Description 

ID Number Course ID 
Name Text Course Name 

Location Text Course Location 
MON Text Monday 
TUE Text Tuesday 
WED Text Wednesday 
THU Text Thursday 
FRI Text Friday 
SAT Text Saturday 
SUN Text Sunday 
Dept Number Department ID 

AdvrID Number Advisor ID 
Description Memo Memo 

Table 4.12 Definitions of Database (II) Table Course 

~2:.···,.· ....-........-r~EJL-1..l.---~~,.~~----. ~~;: 
~~ ·Gr~ 
MName ' GradeDate 
LName Description 
Add 
City 
State 
Zip 
Phone 
EMat1 
Login 
Pword 
Dept 
Active 

STID 
CID 
Credits 
EnDate 
EnMemo 

Location 
MON 
TUE 
WED 
THU 
FRI 
SAT 
SUN 
Dept 
Advrm 
Description 

ID 
FName 
MName 
LName 
Dept 
Email 
Desafption 

Figure 4.2 Relationships of Database (II) Tables 

42 



Database (Ill): Name: MainCampus; Type: MS SQL 2000 

Table Name: Administrator (Primary key: ID; Foreign key: NONE) 
Field Name Data Type Description 

ID Number Administrator ID 
FN Text First name 
MN Text Middle name 
LN Text Last name 

Phone Text Work phone 
Mobil Text Mobil Phone Number 
EMail Text Email address 
Login Text System Login Name 
Pwd Text System Login Password 

Table 4.13 Definitions of Database (III) Table Administrator 

Table Name: Student (Primary key: ID; Foreign key: Dept) 
Field Name Data Type Description 

ID Number ID 
FName Text First name 
MName Text Middle name 
LName Text Last name 
Address Text Home address 

City Text City 
State Text State Name 
Zip Text Zip code 

Phone Text Home Phone 
DOB Date Date of Birth 
Sex Text Male/Fmale 

Email Text Email address 
Dept Number Department ID 

Active Boolean Registry Status 
Description Text Memo 

Table 4.14 Definitions of Database (III) Table Student 

Table Name: Department (Primary key: ID; Foreign key: NONE) 
Field Name Data Type Description 

ID Number ID 
Name Text Department Name 

Table 4.15 Definitions of Database (III) Table Department 

43 



Table Name: Employee (Primary key: ID; Foreign key: Dept) 
Field Name Data Type Description 

ID Number Employee ID 
FN Text First name 
MN Text Middle name 
LN Text Last name 

Address I Text Home Address 
Address 2 Text Work Address 

City I Text City of Home 
City 2 Text City of Job 
State 1 Text State of Home 
State 2 Text State of job 
Zip 1 Text Zip code of Home 
Zip 2 Text Zip code of Job 

Phone I Text Home Phone 
Phone 2 Text Work Phone 
EMail Text Email address 
Dept Number Department ID 

Active Boolean Job Status 
Table 4.16 Definitions of Database (III) Table Employee 

Table Name: Course (Primary key: ID; Foreign key: Dept, EMPID) 
Field Name Data Type Description 

ID Number Course ID 
Name Text Course Name 

Location Text Course Location 
MON Text Monday 
TUE Text Tuesday 
WED Text Wednesday 
THU Text Thursday 
FRI Text Friday 
SAT Text Saturday 
SUN Text Sunday 
Dept Number Department ID 

EMPID Number Employee ID 
Comments Text Comments 

Table 4.17 Definitions of Database (III) Table Course 

44 



Table Name: Enroll (Primari, key: NONE; Foreign key: CID, STID) 
Field Name Data Type Description 

STID Number Student ID 
CID Number Course ID 

Credits Number Credits 
EnDate Date/time Enroll Date 

EnMemo Text Enroll Memo 
Comments Text Comments 

Table 4.18 Definitions of Database (Ill) Table Enroll 

Table Name: Grade (Primary key: NONE; Foreign key: CID, EMPID, 
STID) 

Field Name Data Type Description 
STID Number Student ID 

EMPID Number Advisor ID 
CID Number Course ID 

Grade Text 1-5 
GDate Date/Time Date and Time of Grade 

Comments Memo Memo 
Table 4.19 Definitions of Database (ID) Table Grade 

STIO 
EMPID 
CID 
Grade 
GDate 
Comments 

FN 
MN 
LN 
Address 1 
Address 2 
City 1 
City2 
State 1 
State 2 
Zip 1 
Zip 2 
Phone 1 
Phone2 
EMail 
Dept 
Active 

Name 
Location 
MON 
TUE 
WED 
THU 

ID FRI 
FN SAT 
MN SUN 
lN Dept 
Phone DOB EMPlD 
Mobd Sex Comments 
Email 
Login 

Active 

Pwd 
Descrfption 

Figure 4.3 Relationships of Database (Ill) Tables 

45 



All the data in table 4.1-4.19 are modeled in the relational data model. However, it is 

semantically heterogeneous. This is due to the databases (office) autonomy and because of the 

following properties: 

• The databases use separate codes to denote distinct grades. For example, the Database (I) 

takes the values A, B, C, D and E, but Database (II) takes the values 1,2,3,4 and 5; 

• Types or domains of semantically equivalent attributes may be different; 

• The table has similar structure is entitled with different name in different databases 

(Database (l).Staff, Database {11).Advisor and Database {IIl).Employee, etc); 

• Some employees may appear in Database (I).Staff, Database an.Advisor and Database 

(111).Employee, but not all employees are stored in all of the databases; 

• Despite the same names, primary key values modeling the same object in different 

databases are independent; 

• The databases may disagree on the values of vary attributes; 

• In contrast, the databases always agree on a employee name and the corresponding number; 

• The databases disagree upon the choice of attributes that should model the school of 

employees and the names modeling the same concepts; 

Similar properties will be typical of the general multi-database environment. Multi-databases 

relative to this school will usually resemble each other, but will also present numerous 

semantic differences like those mentioned above. 

46 



4.2 Performance Benchmark Application 

The benchmark application (Figure 4.4) was developed using Microsoft Visual C++ 6.0 

based on the class definitions described in Chapter 3. The benchmark application will build a 

multi-thread query interface to the test databases via ODBC, test SQL queries, display system 

information, query results and evaluate performance. Each database engine's query component 

is parallel in order to run various SQL queries and retrieve results. 

The performance benchmark application assumed that the tester has a basic working 

knowledge of running applications in a networked multi-user environment with Win32 

client(s) and drive sharing. Test was done with Windows 2000 Server as the Win32 operating 

system environment. It is further assumed that the tester understands the basic concepts of 

relational database, multi-thread and functions of caching, logging, etc. and only compares 

results run with identical settings under identical circumstances. Measurements are presented 

on the GUI interface, which will also be presented in diagrams in this chapter. Benchmark 

application was run in the following multi-database environments: 

• Simulates the deployments to sites where only a single-user and a single computer 

exist; 

• Simulates the most common application environment for non-client/server 

deployments; 

• Simulates the application environment where client/server are desired for best multi­

user security, stability, and performance; 

47 



' Data Source Name (Thread) Data Source System lnfomation 
MarthCarn us 
SouthCampus 
MainCampus 

,......-----------------------0 S Name Miaosoft Windows 2000 Se1ve1 
Version Service Pack 3 
OS Manufacturer Microsoft Corporation 
System Name DATASV-01 
System Manufacturer De0 Computer Corporation 
System Type X86-based PC 
Processor x86 Family 15 Model 2 Stepping 4 Genuinelntel -, 993 Mhz 

x86 Family 15 Model 2 Stepping 4 Genuinelntel -, 993 Mhz 
BIOS Version/Date Intel Corp. A03, 7/18/2002 
LocaJe United States 
Total Physical Memory a048.00 MB 
Available Physical Memory 1688.63 MB 
T otalVutual Memory 228 GB 
Available Vntual Memory 1 .68 GB 

SQL Query Statement 

)Select• From Student 

SQL Query Record Number "5000 row (s) 

SQL Query Time f?36_ sec (s) 

IL ~tad Quey J 

Figure 4.4 Screen Shot of Benchmark Application 

4.3 Performance Measurements and Summary 

4.3.1 Performance Measurements 

Exit 

The benchmark test has been focused on the execution time for 15 individual queries. The 

queries retrieve data using various SELECT, UPDATE, INSERT, DELETE, and ALTER TABLE 

statements in multi-database views with columns representative of typical data, such as address 

and student grade. In simple terms, each test performs the same operations against identical data 

but varies the type of databases and the size of the database. The tests were run using two Pentium 

III 500MHz servers with 512 MB of RAM on each, and a Pentium4 2.0 GHz server with 2 GB of 

48 



RAM across 100Mb Ethernet network. SELECT result sets were scanned for the row count, while 

the rows affected by a non-SELECT query was obtained through the application interface. All test 

results are listed as following: 

Query 1 - SELECT * FROM STUDENT 

Database 
Name Server I Server II Server III 

Time Time Time 
(ms) Rows (ms) Rows (ms) Rows 

North Campus 321 4698 
South Campus 858 7574 
Main Campus 342 13544 

Table 4.20 Query Performance of Query 1 

Query 2 - SELECT Grade FROM GRADE WHERE CID < 5000 

Database 
Name Server I Server II Server III 

Time Time Time 
(ms) Rows (ms) Rows (ms) Rows 

North Campus 345 121 
South Campus 247 574 
Main Campus 148 1544 

Table 4.21 Query Performance of Query 2 

Query 3 -SELECT FNAME, MNAME, LNAME, COURSE.NAME, CREDITS FROM 
STUDENT, ENROLL, COURSE WHERE ENROLL.STID=STUDENT.ID AND 
ENROLL.CID=COURSE.ID ENROLLDATE BETWEEN #01/01/1995# AND 
#01/01/2002# ORDER BY FNAME 

Database 
Name Server I Server II Server III 

Time Time Time 
(ms) Rows (ms) Rows (ms) Rows 

North Campus 385 1248 
South Campus 268 471 
Main Campus 145 8348 

Table 4.22 Query Performance of Query 3 

49 



Query 4 - SELECT * FROM STUDENT WHERE FNAME LIKE ' PAULA%' 

Database 
Name Server I Server II Server ill 

Time Time Time 
(ms) Rows (ms) Rows (ms) Rows 

NorthCampus 227 535 
South Campus 228 276 
Main Campus 136 451 

Table 4.23 Query Performance of Query 4 

Query 5 - SELECT* FROM STUDENT WHERE LNAME IN ('JOHANNESEN', 
'MORGAN', 'DA VIS', 'SMITH') 

Database 
Name Server I Server II Server III 

Time Time Time 
(ms) Rows (ms) Rows (ms) Rows 

North Campus 313 675 
South Campus 255 338 
Main Campus 281 959 

Table 4.24 Query Performance of Query 5 

Query 6 - SELECT A VG (GRADE), LNAME, MNAME, FNAME FROM STUDENT, 
GRADE WHERE STUDENT.ID= STID AND STID BETWEEN 100000000 AND 500000000 

Database 
Name Server I Server II Server III 

Time Time Time 
(ms) Rows (ms) Rows (ms) Rows 

North Campus 280 3471 
South Campus 761 5466 
Main Campus 159 11279 

Table 4.25 Query Performance of Query 6 

50 



Query 7 - SELECT STID, SUM(CREDITS) FROM ENROLL WHERE (ENDATE 
BETWEEN #09/01/1995# AND #09/01/2002#) GROUP BY CID 

Database 
Name Server I Server II Server III 

Time Time Time 
(ms) Rows (ms) Rows (ms) Rows 

North Campus 159 483 
South Campus 4681 1248 
Main Campus 277 12885 

Table 4.26 Query Performance of Query 7 

Query 8 - SELECT DEPARTMENT.NAME, COURSE.ID, COURSE.NAME, 
COURSE.LOCATION FROM COURSE, DEPTARTMENT WHERE COURSE.DEPT 
= DEPARTMENT.ID ORDER BY DEPARTMENT.NAME 

Database 
Name Server I Server II Server ill 

Time Time Time 
(ms) Rows (ms) Rows (ms) Rows 

North Campus 137 53 
South Campus 118 37 
Main Campus 32 88 

Table 4.27 Query Performance of Query 8 

Query 9 -SELECT STAFF.FNAME, STAFF.MNAME, STAFF.LNAME, 
ADVISOR.FNAME, ADVISOR.MNAME, ADVISOR.LNAME, EMPLOYEE.FN, 
EMPLOYEE.MN, EMPLOYEE.LN, DEPARTMENT.NAME FROM STAFF, ADVISOR, 
EMPLOYEE SELECT LEFT OUTER JOIN DEPARTMENT ON (STAFF.DEPT= 
DEPARTMENT.ID AND ADVISOR.DEPT= DEPARTMENT.ID AND EMPLOYEE.DEPT 
= DEPARTMENT.ID) WHERE (DEPARTMENT.ID BETWEEN 5 AND 15) 

Database 
Name Server I Server II Server III 

Time Time Time 
(ms) Rows (ms) Rows (ms) Rows 

North Campus 244 671 
South Campus 273 455 
Main Campus 145 793 

Table 4.28 Query Performance of Query 9 

51 



Query 10 - UPDATE STUDENT SET DEPT= 23 WHERE ID BTWEEN 100070000 AND 
350000000 

erver I erver III 
ime (ms) ime (ms) 

ows ows 
113 

339 

Table 4.29 Query Performance of Query 10 

Query 11 - DELETE FROM GRADE WHERE CID IN (37, 45, 68, 12) 
Database 

Nrune Server I Server II Server III 
Time Time Time 
(ms) Rows (ms) Rows (ms) Rows 

NorthCrunpus 205 855 
South Campus 337 1771 
MainCrunpus 128 10634 

Table 4.30 Query Performance of Query 11 

Query 12 - SELECT (SELECT * FROM STUDENT) INTO SAMPLETEST 
Database 

Nrune Server I Server Il Server ill 
Time Time Time 
(ms) Rows (ms) Rows (ms) Rows 

North Campus 485 5708 
South Campus 900 8250 
Main Campus 450 13578 

Table 4.31 Query Performance of Query 12 

52 



200 
180 
160 
140 

E 120 
';' 100 
E 80 
t- 60 

40 
20 

0 

1000 

D NorthCampus 

1400 -

1200 -

- 1000 
(/) 

E 800 
(1) 

600 -E 
.= 400 -

200 -

0 -
2670 

D North Campus 

7870 16410 22060 25000 

Non-join Select Query (rows) 

• SouthCampus D MainCampus 

Figure 4.5 Non-join Query Analyses 

11510 18840 20750 25000 

Join Select Query (rows) 

• South Campus D MainCampus 

- - ----- ---- ----------

Figure 4.6 Join Query Analyses 

53 

I 
__J 



-- - -
600 

500 

- 400 V) 

E 
Q) 300 
E 
i= 200 

100 

0 
2670 9380 18840 22050 25000 

Multi-Database Thread Query (rows) 

• Multi-Database 

Figure 4.7 Multi-Database Thread Query Analysis 

---- - -

1000 

800 

~ 
600 

Q) 

E 
i= 400 
c':' 
Q) 
::, 
CJ 

200 

0 
40000 60000 80000 100000 120000 140000 16 00 

-200 

______ 'Select' Query Result rows 
1 -North Campus DataBase -a-South Campus Database 
' -Main Campus Database -North Campus Database with Thread 

- south Ca_~pus Q~tabase with Thread -Main Campus Database ~ith Thread 

Figure 4. 8 Multi-Database Thread Overall Query Compare 

54 



4.3.2 Performance Test Summary 

The benchmark presented here a multi-database and multi-user environment using tables 

populated 50,000 Students, 100000 grades, 400 employees, and 30 departments. Various typical 

SQ L statement executions provided times and query results used to compute a mean time for each 

test. The test results are summarized below: 

• Figure 4.1 and Figure 4.2 show the execution time to access SQL 2000 and MS Access 

individually, Figure 4.3 shows the time to execute multi-database queries using multi­

thread access approach. 

• Figure 4.1 demonstrates measurements permit to investigate how the data access cost varies 

for different size of non-join query to each single relational database. The result shows 

there are not considerable differences between accessing MS SQL 2000 versus MS Access. 

• Figure 4.2 shows performance of join query is similar as the non-join performance under 

the single database environment. 

• Finally, Figure 4.3 compares the overall performance of the multi-database system obtained 

from multi-thread access method; this confirms the assumption that multi-thread database 

access is optimal performance. 

55 



CHAPTERV 

CONCLUSIONS 

This paper presented strategies to access multiple, heterogeneous and distributed relational 

databases using multi-thread and ODBC capabilities. This strategy is an abstract and extended 

model to the MOBS architecture that provides the necessary support for the reliability in the 

information transaction of an object-oriented application system. 

5.1 The Key Features Of The Multi-Thread Database Access Strategy 

• It can reduce the frequency of global transaction using the ODBC standard and OS thread 

concepts onto any relational DBMSs for which a driver is available can be accessed. 

• The solution of the relational DBMSs interoperability problem involves constructing multi­

database views in homogeneous interfaces from the desired set of data sources. 

• Multi-thread solution provided the ability to quickly and easily modify applications in this 

manner allows them to be rapidly tuned and redeployed for a distributed multi-database 

system. 

• The flexibility and reuse of multi-thread ODBC settings hides all internal synchronization 

mechanisms from the multi-database application development so that it is able to deal with 

extensibility using the standard SQL interface to access the any kind of OD BC-compatible 

data sources. 

56 



5.2 Future Work 

Based on the performance analysis, this approach demonstrated the feasibility of how the 

benefits from all the traditional features supported by commercial database systems, namely, 

features such as recovery, data integrity constraints, concurrency, optimization algorithms and 

implementations, are all available to the information retrieval application without additional 

software development. Because modern information retrieval systems need to sustain a high 

degree of accuracy and scale in terms of the volume of object-oriented data, therefore, the 

future work can he combined with an object oriented view mechanism to build an abstraction 

of the data retrieved with multi-thread interface. This abstraction is capable of tackling 

schematic discrepancies among the heterogeneous databases in an object-oriented system. The 

improvements that also need to be considered for multi-threading ODBC include: 

• ODBC-thread specific object-oriented data type 

• ODBC-thread cancellation and error handling 

• ODBC-thread pool 

51 



APPENDIX A 

CLASS SCHEMA DEFINITION OF MULTI-THREAD RETRIEVAL 
APPROACH TO A RELATIONAL 

MULTI-DATABASE 

struct CMDBFieldlnfo 
{ 

}; 

char m_sName[50]; 
short m_nType; 
long m_lSize; 
long m _ 1DefinedSize; 
long m_lAttributes; 
short m _ n Ordinal Position; 
BOOL m_bRequired; 
BOO L m_ bAllowZeroLength; 
long m_lCollatingOrder; 

Class CMDBDatabase: Public CDatabase 
{ 
public: 

CMDBDatabase() 
{ 

} 

m_pConnection = NULL; 
m _ sConnection = _ T(""); 
m _ sLastError = _ T('"'); 
m_dwLastError = O; 
m_nRecordsAffected = O; 
m_nConnectionTimeout = O; 

virtual --CMDBDatabase() 
{ 

} 

Close(); 

m_pConnection = NULL; 
m _ sConnection = _ T(" "); 
m_sLastError = _ T('"'); 
m_dwLastError = O; 

SYSTEM 

58 



BOOL open(LPCTSTR lpstrConnection = _ T('"'), LPCTSTR IpstrUserID = _ T(''"), LPCTSTR 
lpstrPassword = _ T('"')); 

_ ConnectionPtr GetActi veConnection() 
{ return m _pConnection;}; 

BOOL Execute(LPCTSTR lpstrExec); 
DWORD get_RecordCountLRecordsetPtr m_pRs); 

BOOL IsOpen(); 

void Close(); 

void set_ ConnectionString(LPCTSTR lpstrConnection) 
{m_sConnection = lpstrConnection;}; 

CString get_ConnectionString() {return m_sConnection;}; 

CString get_LastErrorString() {return m_sLastError;}; 

DWORD get_LastError() { return m _ dwLastError;}; 

CString get_ErrorDescription() { return m _ sErrorDescription;}; 

void set_ ConnectionTimeout(long nConnectionTimeout = 30) 
{m_nConnectionTimeout = nConnectionTimeout;}; 

protected: 
void dump_com_errorLcom_error &e); 

public: 
_ ConnectionPtr m _pConnection; 

protected: 

}; 

CString m _ sConnection; 
CString m _ sLastError; 
CString m _ sErrorDescription; 
DWORD m_dwLastError; 
int m _ nRecordsAffected; 
long m_nConnectionTimeout; 

Figure 3.2 CMDBDatabase Class Schema Definition 

59 



Class CMDBRecordset: Public CRecordset 
{ 
public: 

Enum CMDBSearchEnum 
{ 

searchForward = I, 
searchBackward = -1 

}~ 

BOOL set_FieldValue(int nlndex, int nValue); 
BOOL set_FieldValue(LPCTSTR lpFieldName, int nValue); 
BOOL set_FieldValue(int nlndex, long }Value); 
BOOL set_FieldValue(LPCTSTR lpFieldName, long IValue); 
BOOL set_FieldValue(int nlndex, unsigned long !Value); 
BOOL set_FieldValue(LPCTSTR lpFieldName, unsigned long !Value); 
BOOL set_FieldValue(int nlndex, double dblVafue); 
BOOL set_FieldValue(LPCTSTR lpFieldName, double dblValue); 
BOOL set_FieldValue(int nlndex, CString strValue); 
BOOL set_FieldValue(LPCTSTR lpFieldName, CString strValue); 
BOOL set_FieldValue(int nlndex, COleDateTime time); 
BOOL set_FieldValue(LPCTSTR lpFieldName, COleDateTime time); 
BOOL set_FieldValue(int nlndex, bool bValue); 
BOOL set_FieldValue(LPCTSTR lpFieldName, bool bValue); 
BOOL set_FieldValue(int nlndex, COleCurrency cyValue); 
BOOL set_FieldValue(LPCTSTR lpFieldName, COleCurrency cyValue); 
BOOL set_FieldValue(int nlndex, _ variant_t vtValue); 
BOOL set_FieldValue(LPCTSTR lpFieldName, _variant_t vtValue); 

BOOL set_FieldEmpty(int nlndex); 
BOOL set_FieldEmpty(LPCTSTR lpFieldName); 

void cancel_ Update(); 

BOOL Update(); 
void Edit(); 
BOOL AddNew(); 

BOOL Find(LPCTSTR lpFind, int nSearchDirection = CMDBRecordset::searchForward); 
BOOL FindFirst(LPCTSTR lpFind); 
BOOL FindNext(); 

CMDBRecordset(); 

60 



CMDBRecordset(CMDBDatabase* pAdoDatabase); 

virtual -CMDBRecordset() 
{ 

} 

Close(); 

if(m_pRecordset) m_pRecordset.Release(); 

if( m _pCmd) m _pCmd.Release(); 

m_pRecordset = NULL; 
m_pCmd = NULL; 
m_pRecBinding = NULL; 
m_sQuery = _ T('"'); 
m_sLastError = _T(""); 
m_dwLastError = O; 
m _ nEditStatus = dbEditNone; 

CString get_ Query() 
{ return m _ sQuery;}; 

void set_ Query(LPCSTR strQuery) 
{ m _ sQuery = strQuery;}; 

DWORD get_RecordCount(); 

BOOL IsOpen(); 

void Close(); 

BOOL OpenLConnectionPtr mpdb, LPCTSTR lpstrExec = _T('"'), int nOption = 
CMDBRecordset::openUnknown); 

BOOL Open(LPCTSTR lpstrExec = _T(""), int nOption = CMDBRecordset::openUnknown); 
BOOL OpenSchema(int nSchema, LPCTSTR SchemaID = _T("")); 

long get_FieldCount() 
{ return m _pRecordset-> Fields->GetCount();}; 

BOOL get_FieldValue(LPCTSTR lpFieldName, int& nValue); 
BOOL get_FieldValue(int nlndex, int& nValue); 
BOOL get_FieldValue(LPCTSTR lpFieldName, long& !Value); 
BOOL get_FieldValue(int nlndex, long& !Value); 
BOOL get_FieldValue(LPCTSTR lpFieldName, unsigned long& ulValue); 
BOOL get_FieldValue(int nlndex, unsigned long& ulValue); 

61 



BOOL get_FieldValue(LPCTSTR lpFieldName, double& db Value); 
BOOL get_FieldValue(int nlndex, double& db Value); 
BOOL get_FieldValue(LPCTSTR lpFieldName, CString& strValue, CString strDateFormat = 

_T('"')); 
BOOL get_FieldValue(int nlndex, CString& strValue, CString strDateFormat = _T("")); 
BOOL get_FieldValue(LPCTSTR lpFieldName, COleDateTime& time); 
BOOL get_FieldValue(int nlndex, COleDateTime& time); 
BOOL get_FieldValue(int nlndex, bool& bValue); 
BOOL get_FieldValue(LPCTSTR lpFieldName, bool& bValue); 
BOOL get_FieldValue(int nlndex, COleCurrency& cyValue); 
BOOL get_FieldValue(LPCTSTR lpFieldName, COleCurrency& cyValue); 
BOOL get_FieldValue(int nlndex~ _variant_t& vtValue); 
BOOL get FieldValue(LPCTSTR lpFieldName, variant t& vtValue); - - -
BOOL IsFieldNull(LPCTSTR lpFieldName); 
BOOL IsFieldNull(int nlndex); 
BOOL IsFieldEmpty(LPCTSTR lpFielclName); 
BOOL IsFieldEmpty(int nlndex); 

bool IsEOF() 
{return m_pRecordset->EndOtFile = VARIANT_TRUE;}; 

bool IsEOF() 
{return m_pRecordset->EndOfFile = VARIANT_TRUE;}; 

bool IsBOF() 
{return m_pRecordset->BOF = V ARIANT_TRUE;}; 

bool IsBOF() 
{return m_pRecordset->BOF = VARIANT_TRUE;}; 

void move_First() 
{ m _pRecordset->MoveFirst();}; 

void move_Next() 
{ m _pRecordset-> MoveNext();}; 

void move_ Previous() 
{ m _pRecordset-> MovePrevious();}; 

void move_ Last() 
{ m _pRecordset->MoveLast();}; 

long get_ AbsolutePage() 
{ return m_pRecordset->GetAbsolutePage();}; 

62 



void set_AbsolutePage(int nPage) 
{ m _pRecordset-> PutAbsolutePage( ( en urn PositionEnurn )nPage ); } ; 

long get_ PageCount() 
{ return m_pRecordset->GetPageCount();}; 

long get_PageSize() 
{ return m _pRecordset->GetPageSize();}; 

void set_PageSize(int nSize) 
{ m _pRecordset->PutPageSize(nSize ); } ; 

long get_AbsolutePosition() 
{ return m _pRecordset->GetAbsolutePosition();}; 

void set_AbsolutePosition(int nPosition) 
{ m _pRecordset-> PutAbsolutePosition( ( en urn PositionEnum)nPosition);}; 

BOO L get_ Fieldlnfo(LPCTSTR lpFieldName, CMDBFieldlnfo* fldlnfo ); 
BOOL get_Fieldlnfo(int nlndex, CMDBFieldinfo* fldlnfo); 

CString get_LastErrorString() 
{ return m _ sLastError;}; 

DWORD get_LastError() 
{ return m _ dwLastError;}; 

void GetBookmark() 
{m_ varBookmark = m_pRecordset->Bookmark;}; 

BOOL set_Bookmark(); 
BOOL Delete(); 

bool IsConnectionOpen() 
{return m_pConnection != NULL && m_pConnection->GetState() != adStateClosed;}; 

BOOL set_Filter(LPCTSTR strFilter); 
BOOL set_Sort(LPCTSTR lpstrCriteria); 

BOOL Execute(CMDBThreadMgr* pCommand); 

BOOL Requery(); 

63 



public: 

protected: 

int m _ nSearchDirection; 
CString m_sFind; 

int m_nEditStatus; 
CString m_sLastError; 
DWORD m_dwLastError; 
void dump_com_error(_com_error &e); 
CString m_sQuery; 

protected: 

BOOL put_FieldValue(LPCTSTR lpFieldName, _variant_t vtFld); 
BOOL put_FieldValue(_variant_t vtlndex, _variant_t vtFld); 
BOOL get_Fieldlnfo(FieldPtr pField, CMDBFieldlnfo* fldlnfo); 

Figure 3 .3 CMDBRecordset Class Schema Definition 

64 



template<typename T> 
Class CMDBSQL ThreadTmp: Public CWinThread 
{ 
public: 

CMDBSQL ThreadTmp(T & thObject, void (T::*pfnOnRunning)O, int nPriority = 
THREAD _PRIORITY _NORMAL); 

bool wait_until_terminate(DWORD dwMiliSec = INFINITE); 

bool start(); 

bool start_and_ wait(); 

bool suspend(); 

bool resume(); 

bool pause(); 

bool is_ running(); 

bool is_ terminated(); 

bool is_ suspend(); 

void set_priority(int nLevel); 

int get_ Priority(); 

void speed_up(); 

void slow_ down(); 

void terminate(); 

virtual --CMDBSQLThreadTmp() 
{ 

: :CloseHandle(m _ hEvent); 
} 

protected: 
static unsigned _stdcall _ ThreadProc(LPVOID lpParameter); 

void exit(); 

65 



inline void on_running(); 

private: 

hide copy contructor and assignment 
CMDBSQL ThreadTmp ( const CMDBSQL ThreadTmp& t ); 
CMDBSQL ThreadTmp& operator= ( const CMDBSQLThreadTmp& t ); 

CString GetLastError(); 

bool copy_handle ( HANDLE h) 
{ 

BOOL b = ::DuplicateHandle ( 
::GetCurrentProcess(), h, 
: :GetCurrentProcess(), &m _ h Thread, 
0, FALSE, DUPLICATE_SAME_ACCESS 
); 

return (b != FALSE); 
} 

protected: 

T& m_thObject; 
void (T::*m_pfnOnRunning)(); 
HANDLE m_hThread, m_hEvent; 
int m_nlnitPriority; 
unsigned int m dwThreadlD; 
bool m_bTerminate, m_bSuspend, m_blsRunning; 

}; 

Figure 3 .4 CMDBSQLThreadTmp Class Schema Definition 

66 



Class CMDBException: Public CException 
{ 

public: 

enum 
{ 

noError, ' no error 
Unknown, 'unknown error 

}; 

DECLARE_DYNAMIC(CMDBException); 

CMDBException(); 

CMD BException( const CString& sMessage ); 

--CMDBException(); 

public: 

CString get_Description() const; 

void set_Message(const String& sMessage); 

virtual CString get_ExceptionType() const; 

virtual CString get_Message() const; 

static int get_Error(int nADOError); 

int m_nCause; 

CString m _ sErrorString; 

protected: 

virtual CString to_ String() const; 

virtual CString get_ LocalizedDescription() const; 

} 

Figure 3.5 CMDBException Class Schema Definition 

67 



Class CMDBGeneralMgr 
{ 
public: 

CMDBGeneralMgr(); 

virtual -CMDBGeneralMgr() 
{ 

} 

m _pParameter.Release(); 
m_pParameter = NULL; 
m_sName = _T('"'); 

BOO L create_ MD BThreadMgr(); 

BOOL create_MDBThreadQryMgrO; 

BOOL destroy_MDBThreaclMgrQ; 

BOOL destroy_MDBThreadQryMgr(); 

void analysis_SQL(CString& sSQLStatements); 

void create_LocalSQL(); 

CMDBRecordset* query_LocalSQLO; 

protected: 
void dump_com_error(_com_error &e); 

protected: 

CMDBThreadMgr *pMDBThreadMgr; 
CMDBThreadQryMgr *pMDBThreadQryMgr; 
CArray *pMDBThreadRegTable; 

CString m_sName; 

CArray m_aryLocaISQL; 

CString m_sLastError; 

68 



DWORD m_dwLastError; 

private: 

}; 

//gives back the sql table name of criterion with a counter e.g. forder 
CString fordertTableSQL(); 

//gives back the sql table name of student quality with a counter e. 
CString hatTableSQL(); 

//gives back an sql string representing the matching criterion criterion 
CString matchCriterionSQL(); 

/ /return specific matching criterion implemented by subclasses 
CString specMatchSQL(): 

Figure 3.6 CMDBGeneralMgr Class Schema Definition 

69 



Class CMDBThreadMgr 
{ 
public: 

CMDBThreadMgr(); 

virtual -CMDBThreadMgr() 
{ 

} 

m _pCommand.Release(); 
m_pCommand = NULL; 
m_sCommandText = _T(""); 

void set_ TimeOut(long nTimeOut) 
{ m _pCommand-> PutCommandTimeout(n Timeout);}; 

void allocate_MDBThread(LPCTSTR lpstrConnection = _T('"'), LPCTSTR lpstrUserlD = 
_ T('"'), LPCTSTR lpstrPassword = _ T(""), int nPriority = THREAD _PRIORITY _NORMAL) 

{ 

CMDBDatabase* pDB; 
pDB = new CMDBDatabase(); 

CMDBSQL ThreadTmp<CMDBDatabase>* pMDBTrd = new 
CMDBSQL ThreadTmp<CMDBDatabase>(*pDB,&CMDBDatabase::open(lpstrConnection,lpstrU 
serID, lpstrPassword\ nPriority); 

pMDBTrd ->start_and_wait(); 
pMDBTrd ->wait_ until_ terminate(); 

aryMDBThreadRegTable.Add(pMDBTrd); 

} 

CMDBDatabase* get_ MDB _by_ Thread(LPCTSTR lpstrConnection); 

BOO L deallocate_ MDBThread(LPCTSTR lpstrConnection); 

CArray* get_MDBThreadRegTable(); 

I I Retrieves the thread ID of the calling thread 
DWORD get_ CurrentThreadld(); 

int GetRecordsAffected() 
{ return m_ nRecordsAffected;}; 

70 



_ CommandPtr GetCommand() 
{ return m _pCommand;}; 

protected: 
void dump_com_errorLcom_error &e); 

protected: 

}; 

CArray aryMDBThreadRegTable; 

int m _ nRecordsAffected; 

CString m_sLastError; 
DWORD m_dwLastError; 

Figure 3. 7 CMDBThreadMgr Class Schema Definition 

71 



Class CMDBThreadQryMgr 
{ 
public: 

CMDBThreadQryMgr(); 

virtual -CMDBThreadQryMgr() 
{ 

} 

m _pCommand. Release(); 
m_pCommand = NULL; 
m_sCommandText = _T('"'); 

CMDBRecordset* process_LocalSQL(); 

CMD BRecordset* inter join_ LocalSQL(); 

int get_MDBThreadAffected() 
{ return m _ nRecordsAffected;}; 

void resort_MDBThread(); 

bool init (); 

void update_evalQuery (); 

CString* get_ Fields(); 

protected: 
void dump_com_error(_com_error &e); 

protected: 

}; 

CArray m_aryLocalSQL; 

int m nRecordsAffected; 

CString m _ sLastError; 

DWORD m_dwLastError; 

Figure 3 .8 CMDBThreadQryMgr Class Schema Definition 

72 



REFERENCES 

[ 1] Codd_ E. F. ( 1970). A Relational Model of Data for Large Shared Data Banks. 
Communications of the ACM, Vol. 13, No. 6, June 1970, pp. 377-387. Association for 
Computing Machinery, Inc. 1970 

[2] Codd,E.F. ( 1979). Extending the Database Relational Model to Capture More Meaning. 
ACM TODS, Vol.4:4, pp. 177-227. 

[3] Codd_ E. F. ( 1990). The Relational Model for Database Management (2nd Edition}.:. New 
York, NY: Addison-Wesley Publishing Company, 1990. 

[4] Date, C. J., & Darwen, Hugh (1993). The SOL Standard_ Third Edition. New York, NY: 
Addison-Wesley Publishing Company, 1993. 

[5] Elmasri R., Navathe S. (1989). Fundamentals of Database Systems. New York, NY: 
Addison-Wesley Publishing Company, Reading, 1989. 

[6] Elmasri,R., Weeldreyer,J., & Hevner,A. (1985). The Category Concept: An Extension to the 
Entity-Relationship Model. Int'l Journal of Data and Knowledge Engineering, Vol. I: 1. 

[7] Elmasri,R. and S.B.Navathe (2004). Fundamentals of Database Systems, 4th ed. Addison 
Wesley. Extension of the 3rd edition with SQL3 and XML 

[8] Embley,D.W. (1998). Obiect Database Development - Concepts and Principles. New York, 

NY: Addison-Wesley Publishing Company, Reading, 1998 

[9] Hurson, A.R., M.W. Bright, and S.H. Pakzad, ed. (1994). Multidatabase Systems: An 
Advanced Solution for Global Information Sharing. IEEE 1994. 

[1 O] Khoshafian, S. (1993). Obiect-oriented Databases. NY: John Wiley & Sons, 1993. 

[I l] Litwin et al, W. (1990). MSOL: A Multidatabase language. Information Sciences, 49(1-3): 
59--101, October-December 1990. 16. 

[12] Sheth, A. & Klas, W. (Eds). (1998). Multimedia Data Management: Using Metadata to 
Integrate and Apply Digital Media. McGraw-Hill Series on Data Warehousing and Data 
Management, 1998. 

73 



[13] Silberschatz, Abraham, Peter Baer Galvin and Greg Gagne (2002). Operating System 
Concepts. John Wiley & Sons, Inc., 2002 

[14] Simon, Richard J. (1996). Windows 95 multimedia & ODBC API Bible. Corte Madera, CA: 
Waite Group Press, 1996. 

[15] Ullman, J. ( 1989). Principles of Database and Knowledge-base Systems (Vol. I & II). 
Rockville .. MD: Computer Science Press, 1989. 

[ 16] Zaratian, Beck ( I 998) Microsoft Visual C++ 6.0 Programmer's Guide. Redmond, WA: 
Microsoft Press, 1998 

74 



GLOSSARY 

ANSI American National Standards Institute 

API Application Programming Interfaces 

ARM Annotated Reference Manual 

BSI British Standards Institute 

class Template from which objects can be created. It is used to specify the behavior and attributes 
common to all objects of the class. 

DAO Data Access Objects 

DBMS Database management systems. 

encapsulation The facility by which access to data is restricted to legal access. Illegal access is 
prohibited in an object by encapsulating the data and providing the member functions as the only 
means of obtaining access to the stored data. 

encompass The facility by which access to data is restricted to legal access. Illegal access is 
prohibited in an object by encapsulating the data and providing the member functions as the only 
means of obtaining access to the stored data. 

ERP Enterprise Resource Planning Project; 

GDI Global Defense Information 

GUI Graphic User Interface 

MOBS Multi-database management systems. 

heterogeneous Consisting of dissimilar data structure or parts; 

inheritance The mechanism by which new classes are defined from existing classes. Subclasses 
inherit operations of their parent class. Inheritance is the mechanism by which reusability is 
facilitated. It is a mechanism for sharing behavior and attributes between 

integrity A kind of consistency that guaranteed the existence of all objects referenced. The 

75 



consistency of the database can be typically expressed through predicates or conditions on the 
current state of the database. 

inter join A statement is used to combine the data contained in two relational database tables 
based upon a common attribute. 

ISO International Standards Organization 

object A combination of data and the collection of operations that are implemented on data; also, a 
collection of operations that shares a state. An object is used to model a person, place, thing, or 
event from the real world. It encapsulates data and operations that can be used to manipulate the 
data and ponds to requests for service. 

ODBC Open Database Connectivity 

OODBMS Objected-oriented database management system that can be used to store and retrieve 
objects. 

primary key The primary key of a relational table uniquely identifies each record in the table. It 
can either be a normal attribute that is guaranteed to be unique (such as Social Security Number in 
a table with no more than one record per person) or it can be generated by the DBMS (such as a 
globally unique identifier, or GUID, in Microsoft SQL Server). 

query An activity that involves selecting objects from implicitly or explicitly identified collections 
based on a specified predicate. 

recordset A set of database record consists of one set of tuples for a given relational table. In a 
relational database, records correspond to rows in each table. 

RTTI Run-Time Type Identification 

thread A thread is basically a path of execution through a program. It is also the smallest unit of 
execution that Win32 schedules. A thread consists of a stack, the state of the CPU registers, and an 
entry in the execution list of the system scheduler. Each thread shares all of the process's 
resources. 

table The grouping of information in a relational database. Tables are composed of columns and 
rows. 

transaction A sequence of database operations that transforms a consistent state of a database into 
another consistent state, without necessarily preserving consistency at all intermediate points. 

76 



type A predicate defined over value that can be used in a signature to restrict a possible parameter 
or characterize a possible result. 

77 



Hui Lin 

Candidate for the Degree of 

Master of Science 

Thesis: A MULTI-THREAD RETRIEVAL APPROACH TO A RELATIONAL 

MULTI-DATABASE SYSTEM 

Major Field: Computer Science 

Biographical: 

Personal Data: Born in Beijing, P.R. China, April 12, 1962, the only daughter of 
Mr. Yincheng Lin and Mrs. Qian Zhang 

Education: Graduated from the No. 28 High School of Beijing, Beijing, P.R. 
China, in July 1980; received the Bachelor of Science from Beijing 
Technology University, Beijing, China, in July 1987; Completed the 
requirements for the Master of Science at Oklahoma State University in 
May, 2004. 

Professional Experience: Employed by Yu Yang Trading Corp., Beijing, China, 
as a inspector, September 1987 to July 1989; Employed by Ocean China 
Inc., Alberta, Canada, as a market director, January 1991 to January 1995. 
Employed by Jinxin Telecom Corp. Beijing, China, as a Senior Software 
Design Engineer from August 1995. 




