DISTRIBUTED RAID SYSTEM: A UNIQUE

USE FOR REED SOLOMON CODING

By
NATHANIEL PAUL LEWIS
Bachelor of Science
University of Wisconsin — Madison
Madison, Wisconsin

2001

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
May 2004

DISTRIBUTED RAID SYSTEM: A UNIQUE

USE FOR REED SOLOMON CODING

Thesis Approved:

[Fan of the Graduate College

i

Preface

This study was conducted to investigate the usability of a locally distributed
RAID system in a way that utilizes previously underutilized workstation storage space.
I sincerely thank my advisor, Professor Douglas R. Heisterkamp, for his guidance

and support in completion of this research.

iii

Table of Contents

Chapter Page
L INEPOAUCTION ..ottt ses e eeseseesesesasaese e eseeeesessasssasesesassssseasasasans 1
IL BACKBIOUNM ...ttt eae e e eeee s s s s s e s et sseneneeseaeeeeseeanasasasans 3
2.1 RAID Background INfOrmationcoeeeeeveeesseresssssssesssssssssesesesesssssessssssssesesens 3
2.2 RAID O (SHPING) «...evovreeeeeeeeereeseseeseeseseseeesssssssssssssesesssssessesesesesesessssnssssssssssesaes 3
2.3 RAID 1 (MIITOTING) ...ttt tsveaeeesse s ssesesasse st et esestesaasnennesessensessessssenes 4
2.4 RAID 4 (PaTity)........cooouveseeeeereeseesseeeseeeeesesessassssassesessessssesessasasasssesneesessssssasses 4
2.5 RAID S (Interleaved Parity)....ccevierreeeetneniiiiee e 4
2.6 RelAted WOTKS REVIEWcoorreerveerseeeesessesassessssssessssssssssessssnssssssseessssseesennn. 5
2.7 Reed-Solomon COMING....oeietieieeeeeere ettt et e e st e aeeanenaeas 7
IIL Problem DOMAINcooooreveeeeseieesesssssssessesssssssssssssssssesas s 10
IIL HYPOUNESIS. .ot eveeteeese st s s s s a st s ese st nsesensssessssenaes 11
IV, FOUNAAUONS..c...cvuviiieii st s sttt bbb se b s s ssss s s nans 12
Sc1 OVETVIEW .ottt saesss s a bttt st e e sae et s ssaeseseseane 12
5.2 PropoSed APPIOACh..................co.cooeeeerrsreessersesessessesessesesseeaeessesssessesssesseesseessessns 14
5.3 INrOAUCLOTY SEUUPoooeeoee ettt e s e s s s e e e s, 15
VL EXPerimental RESULLS.......................cooooveveemremeieisenesessssessaeseasessesessesssesssesssssssessoes 19
6.1 ENVITONIMEN . ..ot oot e eeeeeeeessteessee s s s e s eee e e ee e, 19
6.2 RAID 5 CONMIOI TESL ... veeeeeeseeeeeeeeesessesssesssstsseeseesaesesesesesesssesssssenesseenns 20
6.3 Distributed Reed-Solomon Test, Partially Degraded........c.cceceuvvniiivivinineeniinnnnnn. 22
6.4 AdAItIONAL TESESceooesoeeeee e se s eessseeesseeteseses s s e st oo 25
VIL. Conclusion and FULUIE WOTKeveeueveeuevreeuersesesseeesesesseeseseseseeoeeeeeeeeeeseseoee 29
7.1 EXPerimental CONCIUSION............ovuev.veeeeeeereeeeeeeeeeeeeteseeeeseeeseseeese s oo 29
T2 FULUTE WOTK .ot e e oo eve s e s s s eee et e e e e 30
REFETENCES ...t ee e e 32

iv

Appendix A — IOZone Test ReSUlt TADIES......ccoveveurrviuieeieireeeeeerererersereeenreessesseeseesessenenes 35

RAID 5, LOCAL.....cioririteeieeerceterer et sesvetstesessesssesesse et sssssesessessesassesssssssaensensesessnes gg
RS-RAID Distributed, Partially Degradedcooueueivinirmmeeninreeniiiiccceccaceceens i
RS-RAID Distributed, Fully Degraded............cccoeuiuiuminiininnnnsientieeiininiccneeeeeceenens >
RS-RAID Distributed, Non-Degraded...........c.eiiiiiiririniereenteieeceinceeeeneeneeseeeenes >
RS-RAID Local, Partially Degradedccoovimimiinmsisnesenenieicnccceeeeeeeneens pe
RAID 5, DiSUIDULE........c.ooeeverieiierereeresessessesesecssesessessesssstesssessssssessesassassssnssarssenns
Appendix B — Reed-Solomon RAID Source Code........coeeemmmieieriinniiiniiinncecnenneesaeenes 41
rs_raid.h e AR RER Z;
rs_raid.c (Reed-Solomon encoding and decoding parts only)cccoccvereeninnnennnene.

List of Tables

Table

Table 1: The relationship between Data Devices, Checksum Devices, and Data

SEGIMENLS.vititnireieee e eeeeeeeseesesessssessessssssasaneessesaeeeaeeeseeneeasessesaeasessenes

List of Figures

Figure

Figure 1: Typical LAN Storage system...........c.creeusnerinrmimersnsisisnenscusesessssmsssanssanss
Figure 2: Proposed distributed RAID SYSEEM.ccomvusmrssssrssesisemiaiassrisnsissnsssneses
Figure 3: Logical flow of data in the proposed RAID SYStem.cc.coccuevumcrurerenne
Figure 4: Local RAID 5 I0Zone Results (Read) .cc.ceevuermnuieiniieenrereeeeeesieee e
Figure 5: Local RAID 5 IOZone Results (WHHE) c.v..vveeversrenserersesrmraessensersnaesenens
Figure 6: Distributed Reed-Solomon, Some Degraded I0Zone Results (Read)
Figure 7: Distributed Reed-Solomon, Some Degraded IOZone Results (Write)
Figure 8: Sustained Data Rate I0Zone Results (Read) wuvvveveeieneiiiiiiiieiceeeeeeevvaaen

Figure 9: Sustained Data Rate I0Zone Results (WIte)....ovveevevreereeeeerereererererseereras

vi

Page

....... 15

....... 13

....... 14

IDE

LAN

RAID

SCSI

Nomenclature

Integrated Drive Electronics
Local Area Network
Redundant Array of Inexpensive/Independent Disks

Small Computer Standard Interface

vii

I. Introduction

Traditional studies of Redundant Array of Inexpensive/Independent Disk (RAID)
systems generally concern a single central server with a stack of disks directly attached to
the server via a disk bus such as Small Computer Standard Interface (SCSI) or Integrated
Drive Electronics (IDE) as shown in Figure 1 [7, 13, 14, 20]. Their focus is on reliable
storage methods that can survive a single or even double disk failure. Such systems are
very common, and are regularly implemented in both hardware and software. These
systems can be costly in comparison to non-redundant systems, and upgrades generally
require the replacement of all of the disks in the system with larger disks. In many Local
Area Network (LAN) implementations, when the central storage becomes full, an
upgrade of the central storage or purge of data is required; workstation storage is often

vastly underutilized.

\va
= B . =&
Workstation Workstation Workstation

Figure 1: Typical LAN storage system

Research has been done on distributed storage systems, utilizing the storage capabilities

of a network of computers as a single volume [4, 8, 12, 16, 28, 29, 30]. Most of this

research has focused on distributed storage for large clusters of computers which make
up a supercomputer or a set of reliable, networked storage servers. Workstations in the
can be unreliable and uniquely problematic in the hands of users. Prior studies that utilize
workstation storage in a distributed manner have focused on file mirroring techniques
which yield a low percentage of usable disk space and often no guarantee on availability

[1,5].

II. Background

2.1 RAID Background Information

Disk arrays are a way to increase performance and reliability over a single disk. By
spreading data over multiple disks, called striping, disk arrays improve performance by
simultaneously utilizing'multiple disks and presenting them as a single RAID volume.
However, since more disks are involved, this can decrease reliability unless redundant
disks are included in the array to tolerate failures. Many options are available for the
RAID storage as described by the most common RAID levels. Note that all RAID levels
are implemented at the block level, such that any file system could be used on top of the

RAID volume [7].

2.2 RAID 0 (Striping)

RAID O spreads the data across all of the disks to achieve a performance increase using
as few as 2 disks. Given »n disks, the data is split up into blocks of equal size and written
such that block b is stored on drive »modn . Thus, consecutive blocks are always written
to different disks, in order. A series of n consecutive blocks across the n disks is called a
stripe. Both read and write performance is increased especially for large accesses.
Despite the name, RAID 0 offers no redundancy; if any of the disks fail, the data on the

array cannot be completely recovered [7, 13].

2.3 RAID 1 (Mirroring)

RAID 1 is the simplest form of redundancy in which data written to one disk is also
written to another so there are always two copies of the data. Writes are done
simultaneously to both disks so the performance is similar to that of a single disk. By
combining RAID 0 with RAID 1, mirroring can be achieved with any even number of
disks and also benefit from the performance increases associated with striping. If any

disk fails, the disk's mirror is used to retrieve the corresponding data [7, 13, 20].

2.4 RAID 4 (Parity)

RAID 4 can be considered as a RAID 0 array with one additional disk, therefore
requiring at least 3 disks. The extra disk is used to store parity information for each of
the stripes. Read performance is similar to that of RAID O, but write performance can be
much slower because the parity disk must be updated on every write and is therefore a
bottleneck. If any disk fails, the other stripe information is combined with the

information on the parity disk to calculate the failed drive's data [7, 13, 20].

2.5 RAID S (Interleaved Parity)

RAID 5 works in exactly the same way as RAID 4 except that the parity information is
interleaved across all of the disks to eliminate the single bottleneck parity disk. Since
RAID 5 offers a performance increase over RAID 4 with the same redundancy, RAID 4

is almost never implemented in practice [7, 13, 20].

2.6 Related Works Review

There have been several studies and implementations of distributed storage systems. The
focus of such studies has been decentralizing storage and utilizing the capacity of several
reliable networked servers. These systems generally rely on replication techniques
similar to RAID 1 or parity to distribute the data similar to RAID 5, often built on top of

a custom file system.

Coda: Coda is a distributed file system developed at Carnegie Melon University by the
systems group of M. Satyanarayanan in the School of Computer Science. It is based off
several central servers and replication. It also allows for a cached, disconnected

operation allowing offline use of the files on the system [28].

Intermezzo: Intermezzo is also developed at Carnegie Melon University, and was
inspired by the Coda project. Like Coda, it is based off central servers and replication
and also allows for offline use and synchronization, but is implemented with a simpler

design [4].

Lustre: The same group that develops Intermezzo (Cluster File System) is also working
on a system called Lustre. Lustre is object based and abandons block-based file systems.
It is oriented toward a new storage paradigm but is still based on a large number of fairly

reliable nodes with uses on today's largest clusters [8].

Frangipani/Petal: Frangipani is a file system designed to be used on top of Petal, which
is a distributed, block-based storage system [16]. It is designed for a set of central servers

and can only sustain a single failure [30].

Sistina GFS: Sistina GFS is a commercial file system designed for cluster systems

similar to those targeted by Lustre, a large number of fairly reliable nodes [29].

Berkley xFS: xFS is a serverless distributed file system designed to distribute data over
cooperating workstations. It uses parity information to guarantee no individual node is
the single point of failure. The goal of the system is a high performance, scalable storage
system based on workstations connected via a very fast network like ATM or Myrinet.
Since it is based off parity for replication, the system can only sustain a single failure [1].

The system also appears to be unfinished and has not been updated in several years.

Serverless Distributed File System: Bolosky et al. at Microsoft Research have published
a paper on a serverless distributed file system based on replication of files amongst the
peer nodes. By making multiple replicas of each file and distributing them amongst the
client machines, the system provides high availability and high reliability. The system is
unique in that it does not assume a mutual trust among the client computers, eliminating

the need for central administration [5].

Google FS: Ghemawat et al. have developed a file system for the Google search services

designed to run on inexpensive commodity hardware while maintaining high

performance. It is based off a master server and uses block level replication for
redundancy. It has been used successfully to store hundreds of terabytes of data across

more than a thousand nodes [12].

2.7 Reed-Solomon Coding

Reed-Solomon coding extends beyond the traditional RAID levels to allow for multiple
simultaneous failures. James S. Plank gives an excellent description of Reed-Solomon
coding in [24], and even briefly describes a system similar to the proposed system, but
only for checkpointing [22, 23], not for a general purpose storage system. Plank defined

the problem domain of Reed-Solomon coding as follows:

Let there be n storage devices, D;, D, ..., Dn, €ach of which. holds & bytes. These are
called the "Data Devices.” Let there be m more storage devnce§ Cy, Cz «voy Cp, each of
which also holds & bytes. These are called the "Checksum Devices. ‘The contents qf each
checksum device will be calculated from the contents of the data devices. The goal is to
define the calculation of each C; such that if any m of Dy, D, ..., Da, C,, Cz.. C,,,,.fall.
then the contents of the failed devices can be reconstructed from the non-failed devices
[24].

First the Data and Checksum devices must be split up into consecutive words of length w,
where w is generally 8 or 16 bits. Thus, D; consists of words d; ;, d; 2, ..., dixw, and C;
consists of words ¢;, ¢;2, ..., ciu,. To simplify, the second subscript can be dropped and
Reed-Solomon encoding can be defined in terms of blocks of length w, d;,d,...,d,

CI,CZ.--nCm-

Per Plank’s correction in [25], it is necessary to construct a dispersal matrix, B, such that:
e Itis an (n+ m)xn matrix.
e The nXnmatrix in the first n rows are the identity matrix.

® Any submatrix formed by deleting m rows of the matrix is invertible.

The dispersal matrix B can be created by starting with a Vandermonde matrix. Define the

n+m by n Vandermonde matrix V such that v, ; = j

F 00 Ol 02 e On—l

10 ll 12 e ln—l

V = 20 21 22 e 2n—l
_(n-i-m—l)0 (n+m-1)" (n+m-1>* - (n+m—l)""J

By definition, V has the property that any submatrix formed by deleting m rows is
invertible [17]. V can then be converted to the desired B and still retain this property by

performing column-wise Gaussian elimination on the first n rows, such that

1
V' =B= [Z] , where 7 is the nxn identity matrix and Z is the remaining lower m rows

of B forming an mxn matrix. Now construct the vectors D = l4,.d,,....d,]T and

C= [cl +Ca 3000y Cy]T. C is then calculated by the matrix-vector multiplication ZD=C.

Recovery also employs the B matrix defined above and involves Gaussian elimination as

follows. Define n+m vector E = [?] Thus BD=E. Now suppose ¢ devices fail such

that t < m. Now define B’ and E' from B and E by removing the rows corresponding to
the failed devices. Now B’D = E’ and D can be determined using Gaussian elimination,
~which is guaranteed to succeed due to the linearly independent properties of B, and thus
all Data Devices can be recovered. Any failed Checksum Devices can then be recovered

from the ZD=C equation above [24].

It should also be noted that if a data word changes from dj to d ; then
¢'=c +z, ,d',—d ;). Thus, the new checksum data can be calculated using the old

checksum data, an item from the Z matrix and the difference between the old data and the
new data. Lastly, while the above equations are guaranteed to work with infinite
precision mathematics, a Galois Field with 2" elements must be utilized for all
calculations. Thus addition and subtraction are replaced by the XOR operation while

multiplication and division involve a table of logarithms [24].

It should also be noted that the particular variation on Reed-Solomon Coding used here is
denoted by Plank as RS-Raid, which is only used as an erasure code algorithm. A
complete, much slower implementation of Reed-Solomon Coding like the one found in
[15] and described in [3] and [21] can handle not only erasures but also errors, and is
often used for media-storage such as CD-ROMs as well as applications in Forward Error

Correcting [26,31].

III. Problem Domain

This thesis investigates the feasibility of a distributed storage system to utilize the unused
disk storage on a LAN of workstations, creating a network storage system that scales in
capacity with the number of workstations. Since workstations are essentially controlled
by the user, they are inherently unreliable, as the user may reboot or shutdown the
machine at any time. As such, a system based off the storage of workstations must be

able to handle a very large percentage of simultaneous failures.

Most of the existing distributed storage systems reviewed above would be unsuitable for
such an environment since they can generally only handle a small number of
simultaneous failures and are designed for use on fairly reliable nodes. The serverless
distributed file system by Bolosky et al. at Microsoft research is an exception, and was
designed to run on workstations. However, it is also based on the file replication which is
the most inefficient in terms of storage space to provide redundancy. The system is also

based off a custom file system requiring custom client software.

10

III. Hypothesis

It is hypothesized that a distributed RAID system can be developed for a group of
unreliable storage devices by utilizing Reed-Solomon coding to provide configurable
redundancy to handle multiple simultaneous failures. Furthermore, such a system can
provide adequate performance similar to that of a local RAID system. For the purposes
of testing the system, adequate performance is defined as reading and writing data with a
sustained data throughput at least 50 percent that of a local RAID system, and a burst
throughput at least 90 percent that of a local RAID system. Such performance would be
considered a reasonable trade-off for the reduced cost of implementing a distributed

RAID system on existing workstations versus a local RAID system.

11

IV. Foundations

5.1 Overview

This distributed storage system was designed with a medium-sized LAN in mind, such as
an educational institution's computer labs, or a medium to large business. Each
workstation will have a block of storage allocated for use by the distributed system.
Further, each block will be designated as either a Data Device or a Checksum Device.
The Reed-Solomon encoding algorithm allows an arbitrary number of Checksum Devices
to be designated. For each failed Data Device, the data from a single Checksum Device,
along with the data from the rest of the Data Devices is needed to calculate the missing
data. Thus any combination of Data Devices and Checksum Devices can fail
simultaneously, as long as the number of simultaneous failures does not exceed that of

the number of Checksum Devices.

These devices will be made available only to a central coordinating server via a network.
The central server will create the logical volume from the devices and handle all read and
write requests, as well as the Reed-Solomon calculations. Since the system is block-
based, any file system could be implemented on top of the logical volume. Additionally,
the logical volume could be made available to any client on the network via existing

protocols such as NFS, or SMB.

12

Figure 2 shows the physical network connections of the system, and Figure 3 shows the
logical flow of data during a typical read or write. Notice that all of the data must travel
through the coordinating server where the Reed-Solomon coding takes place. Also note
that a RAID Data Workstation could also make a read or write request to the logical

volume, but the flow of data would remain the same.

0. O

Workstation Workstation

RAID Data Workstations Other Workstations

Figure 2: Proposed distributed RAID system.

13

O

Wordstation Workstation

RAID Data Workstations Other Workstations

Figure 3: Logical flow of data in the proposed RAID system.
5.2 Proposed Approach
To fully analyze such a proposed distributed storage system, several aspects of the system
must be examined. First, both read and write performance must be evaluated in the
situation where all nodes are online, as well as when one or more nodes are offline. If
performance is deemed adequate when the system is in a stable state, the performance
during rebuild must be considered, after a node goes offline then comes back online,
similar to the analysis done in [14]. The ability and associated performance

considerations could also be examined when a node is added or removed permanently

from the system.

14

5.3 Introductory Setup

The first step in describing a RAID system is to designate a stripe size. That is, given
data of size S, it must be split into s equal size segments S;,5,,S3,...,S;. The resulting s
segments must then each be split up into n equal size blocks, each one stored sequentially
on each of the n Data Devices. Thus, S; is split up into (S;.1,Si2,...,5is). The result thus
far is exactly equivalent to Raid 0, striping. To add fault tolerance, for every segment
S1,S2,S3,...,Ss, we must designate m additional blocks of calculated, redundant data (R) to
be placed sequentially on the Checksum Devices. Note that if m equals 1, and the

checksum algorithm was parity instead of Reed-Solomon coding, it would be equivalent

to a RAID 4 system.
n Data Devices m Checksum Devices
Data Segments Dl D2 Yy Dn Cl C2 ese Cm
Si: Sii Si2 Sin R Ri2 Rim
Sa: Sai S22 e San Ra, R2> s Rom
S;: Ss,l Ss.2 ves Ss.n Rs.1 Rs.2 ces Rem

Table 1: The relationship between Data Devices, Checksum Devices, and Data Segments.

Now, if only a partial segment is needed, and the appropriate Data Devices are available,
that data may be retrieved directly from the Data Devices with no computation.

However, if one of the Data Devices is not available, the entire segment must be

15

reconstructed from the remaining blocks from the Data Devices, plus one block from a

corresponding Checksum Device for each missing Data Device.

For example, if there are 50 data devices (1 through 50) and 50 Checksum Devices, but
Data Devices 46 through 50 of the data devices are unavailable (offline) at the moment.
A read is being processed by the central coordinating server that requests Segment 7,
blocks 25 through 50. This request cannot be processed directly since Data Devices 46
through 50 are offline. Thus, the entire Segment i must be reconstructed on the central
coordinating server. The server must request 50 blocks from 50 different devices to
reconstruct the Segment i. The beauty of Reed-Solomon coding allows the coordinating
server to request the blocks from any 50 unique devices, there is no need to request
blocks 1-45 from Data Devices 1-45, and then checksum data from 5 of the Checksum
Devices. To maximize throughput, the coordinating server would need to be desi gned to

make such requests to the 50 least used Devices when reconstructing an entire segment.

This system allows for very confi gurable redundancy, which means reliability is
customizable, at the expense of storage space and computation time. If the reliability of
the workstations to be used as Devices in the system is carefully analyzed prior to
implementation, the reliability of the Distributed RAID system can be configured as
needed by determining n and m to maximize storage space while maintaining an

appropriate level of redundancy.

16

Note that stripe size (the size of a block of a segment S;;) can greatly affect performance.
For example, if the stripe size is too small, incoming requests will be more likely to
require more than one stripe to fulfill and therefore the coordinating server will need to
send out a large number of requests to Data Devices and Checksum Devices to fulfill
each incoming request, and the required overhead for each packet of data could become
excessive. On the other hand, if the stripe size is too large, in the case where an entire
segment must be reconstructed, a very large amount of data may need to be requested
from the Data Devices and the Checksum Devices in order to fill a relatively small
incoming request. For the distributed RAID system proposed, stripe size will need to be
determined on a system by system basis. The type of data the system holds, the request
pattern of clients, the network throughput, the network latency, and the availability of the

Data Devices will each play a role in determining stripe size.

5.4 Experimental Methodology

Since no distributed system shares the same goals as the system proposed, the system
cannot fairly be tested against any such system. However, the proposed system is
essentially an alternative for a single centralized server utilizing a few large drives in a
RAID 5 configuration, and thus will be used as the comparison system during
experimentation. Though the two systems are not congruent, it is a valid comparison, as
it is the same comparison system administrators would make if deciding which system to
implement. The single, central RAID 5 system may be faster, but if the proposed system

can at least remain competitive, it becomes a viable alternative for system administrators

17

since a distributed RAID system would utilize otherwise unused storage located on

workstations, and thus, could be cheaper and scale better to the users' needs.

The distributed RAID test system was comprised of a number of workstations connected
to a central server via Network Block Devices (NBD). The central server is responsible
for the Reed-Solomon calculations. For comparison, the same central server was also

equipped with several drives locally and configured for RAID 5 via Linux software

RAID.

To measure array performance, a disk benchmark utility called IOzone was run on both
systems to highlight the strengths and weaknesses of each. 10zone performs a wide
variety of tests on a range of parameters to determine a system's abilities in terms of file
size access, cache performance and limitations, etc [6]. Specifically, IOzone was used to
measure sustained throughput and burst throughput while varying the request (record)
size to simulate various usage types. I0Zone is a popular tool that has been used
extensively to test various storage systems [1, 11, 16]. While there are efforts to improve

mass storage system benchmark tools [19], IOZone remains one of the most common,

and is well suited for this application.

18

VI. Experimental Results

6.1 Environment
The coordinating server was a dual 533Mhz Xeon processor system with 512MB of
RAM, and six 7200RPM 9GB Ultra-SCSI hard disks for local testing. The system was

connected to seven other machines through NBD via a switched 100Mbit network for

distributed testing.

The Linux Software Multi-Device (MD) driver served as a basis for both the local and
distributed testing. The Linux Kernel version 2.6.2 was employed with the RAID5 block
driver as well as a custom RS-RAID driver written with the assistance of [27] and [9]. A
portion of the RS-RAID driver can be found in Appendix B. Due to limitations in the
Linux kernel and MD architecture, the stripe size was fixed at 4KB. However, since the

NBD protocol has very little overhead, this was not a problem in the distributed system.

The custom RS-RAID driver was based on the work of Evan Danaher [10], then modified
to be highly optimized for w=8 bits, including a pre-built lookup table for the Galois field
multiplication and division. The interface to the MD driver was then based off the

existing RAIDS and RAIDG drivers, expanding the number of parity devices to m versus

the one of RAIDS5 or two of RAIDS6.

19

For all tests, I0Zone was used to measure throughput on increasing file sizes from 64
kilobytes to 1 gigabyte in order to exceed the coordinating server’s RAM size and thus
internal disk cache so that disk-level performance could be measured. Thirteen tests
(writer, rewriter, reader, rereader, random read, random write, backward read, record re-
write, stride read, fwrite, fre-write, fread, and fre-read) were performed in each scenario.
However, only the read and write tests were analyzed, as they clearly show the burst and
sustained throughput for reads and writes. The tests were performed with a range of
record sizes from 4k to 16M, though record sizes of 32K and lower were not tested with
file sizes 32M or higher to save time. All of the test arrays were created with a chunk

size of 32KB and formatted as a single ext2 file system with a block size of 4KB.

6.2 RAID 5 Control Test
Figures 4 and 5 show the baseline RAID 5 test, to which all other tests can be compared.
This is the "normal" speed that a server disk system would operate. All 6 local disks

were utilized during this test.

20

RAID 5 Read

Disk Cache

CPU Cache

Throughput (KB/s)

o 200000 | W400000-450000 |
4096 150000 | 0350000-400000
File Size (KB) — | [300000-350000
Untested | 0 250000-300000
CHese 50000 [200000-250000

' 0150000-200000
| 00 100000-150000
| H50000-100000

| B0-50000
Record Size (KB) —

Sustained

o
w

©

= el

) o 8 3 ¢ «
w© i @

Figure 4: Local RAID 5 10Zone Results (Read)

Disk Cache

CPU Cache

200000
Throughput (KB/s)

| E300000-350000
[250000-300000
‘ B 200000-250000
Untested cEpld e)-s0000 O 150000-200000
a ' I 100000-150000
B 50000-100000
E0-50000

File Size (KB) 16384 W

Sustained

o
fe]

©
o

Record Size (KB)

Figure 5: Local RAID 5 10Zone Results (Write)

The effects of the CPU cache and Disk Cache can clearly be seen with a burst speed well
above 300MB/sec, but the last test with the 1GB file size shows sustained data rate of

approximately SOMB/sec for both reads and writes.

6.3 Distributed Reed-Solomon Test, Partially Degraded
The first Reed-Solomon RAID test was a distributed test with 5 of the 7 distributed nodes

such that n=3, m=4. This test shows how the RS-RAID algorithm can perform with 2 of

[&]
]

the 3 data disks failed, but with all 4 parity disks in tact, about 30% failure. While it taxed

the CPU heavily, it did not max it out the entire time.

" RS-RAID Read

Disk Cache

CPU Cache

200000 Throughput (KB/s)

! 1024 [0350000-400000
| - — 150000 I 300000-350000
\ @ 250000-300000
| File Size (KB) 1684 oo B 200000-250000
Untested o O 150000-200000

[100000-150000

Sustained | B 50000-100000

mos0000 |

Record Size (KB)

Figure 6. Distributed Reed-Solomon, Some Degraded [OZone Results (Read)

]
(O]

RS-RAID Write

Disk Cache

CPU Cache

-150000 Throughput (KB/s)

— [250000-300000
B 200000-250000
O 150000-200000
O 100000-150000
B 50000-100000

B 0-50000

Flle Size (KB)

Untested

‘ Sustained

w
©
&8

‘ Record Size (KB)

Figure 7: Distributed Reed-Solomon, Some Degraded 10Zone Results (Write)

It is clear from Figures 6 and 7 that RS-RAID can compete with RAIDS in burst
throughput, but this is not surprising as the burst throughput is almost entirely dependent
on the operating system’s disk cache as well as the CPU cache; the underlying storage
mechanism is irrelevant. However, it appears that the RS-RAID test shown above was

limited by the 100Mbit switched network with a sustained data rate for both reads and

writes around 10MB/sec. Thus, more tests were performed to get a better idea of how

RS-RAID and RAID 5 compare.
6.4 Additional Tests

In addition to the RAID 5 Control Test and Distributed RS-RAID, Partially Degraded

tests above, four additional tests were performed as follows:

e RAIDS Distributed - a baseline network test. For this test, 6 of the distributed
nodes were utilized so it could be compared directly with the RAID5 Control
Test, which used 6 local disks. This test showed that the network can be a
bottleneck at approximately 10MB/sec.

e RS-RAID Distributed, Non-Degraded. This test shows how the RS_RAID
algorithm can perform at best-case conditions with n=3 and m=4 with no failed
devices. It maxed out the network for both reads and writes while still consuming
a fair amount of CPU time. Reads had a sustained throughput of approximately
10MB/sec, while writes, due to the need to write to the parity devices, sustained
approximately SMB/sec.

e RS-RAID Distributed, Fully Degraded. This test shows how the RS-RAID
algorithm can perform in worst-case scenario with n=7, m=7, with exactly n
devices operational, 3 data and 4 parity. Since RS-RAID is a processor-intensive
algorithm, this test was designed to see if the CPU could become the limiting
factor in a fairly small system. It heavily taxed the CPU, with the network no

longer the limiting factor.

25

e RS-RAID Local, Partially Degraded — In a typical implementation, it is expected
that the distributed RS-RAID would usually work at some level of degradation
but not the maximum. This test shows how well the algorithm performs assuming
the network is not a limiting factor. This test maxed out at least 1 CPU for the
duration of the test. It is a direct comparison for RS-RAID Distributed, Partially
Degraded. It shows the maximum throughput of the algorithm, on that central

server, with n=3, m=4, and 2 data devices failed.

Figures 8 and 9 below are graphs of the sustained data rate, using the 1GB file size over
the various record sizes of all 6 tests. Note that record size did not significantly affect

sustained data rate for any of the tests.

]
Sustained Data Rate (Read)
60000 U - B
—e— RS Distributed,
| 50000 Degraded |
- | —=— RS Distributed, Some
| % 40000 Al Degraded ,
| = r I RS Distributed, Non- LI‘
(=) ' Degraded _
& 300+ —o——————
L5 | | —<— RS Local, Some H
| B ¥t S X | Degraded .
‘ £ 200 e e L S] ' —%— RAID 5, Local ;
| 10000 1oty vt 'i | —e— RAID 5, Distributed |
——o——0—0———» |l
0 |

> o 9 ®
SR PN Qq, Qb?’ oS Cb\q@%@"‘

Record Size (KB)

Figure 8: Sustained Data Rate IO0Zone Results (Read)

Sustained Data Rate (Write) T

\
B0 e M BT o I
IR G e e S - | —e—RS Distributed, |
50000 Al U | Degraded -
. ‘ | —a— RS Distributed, Some
2 40000 | | Degraded
x RS Distributed, Non-
= . D d
a 30000 | B Loovi o iiln e | egrade f
S | | —«— RS Local, Some |
3 ‘ Degraded .
| £ 20000 e e e | |
= . | —=—RAID 5, Local ‘
i | |
| —e— RAID 5, Distributed "
|

Record Size (KB)

Figure 9: Sustained Data Rate I0Zone Results (Write)

The RS-RAID Local, Partially Degraded test shows potential, reaching 22MB/sec on
reads, but only showing a mere 10MB/sec on write. This poor write performance is due
to the fact that when any data devices are missing, the coordinating server almost always
needs to read the entire stripe first to reconstruct the missing data then do the write.

However, this is only 47% and 19% of the sustained data rate for reads and writes

achieved by the local RAIDS array, respectively.

The Distributed tests (both RS and RAIDS) also shows that in a real-world distributed

system, a switched 100Mbps network would not be nearly fast enough to handle a

distributed RAID system; 1000Mbps would certainly be necessary to match the

22MB/sec achieved by the RS-RAID Local test.

28

VII. Conclusion and Future Work

7.1 Experimental Conclusion

Despite a highly optimized RS-RAID algorithm, the Gaussian elimination of data
recovery and matrix-vector multiplication of checksum data calculations proved to be a
significant bottleneck with fairly small values for n and m when testing for sustained
throughput. Higher values for n and m, as would be found in a medium-size business or

large educational computer lab would certainly produce similar or worse sustained
throughput due to the O(nz) nature of the matrix calculations. Clearly, distributed RAID

via Reed-Solomon coding is not a viable alternative to a local RAID 5 system for general

use where sustained throughput is a concern.

However, such a distributed RAID system may have other uses. Such a system could be
used as a backup system for a local disk array in lieu of an expensive tape backup system.
Its distributed nature is ideal for a backup system, especially if the nodes of the
distributed system are in different physical structures, providing additional means for
disaster recovery. A distributed RAID system may also have uses in an environment
where burst throughput is important, but sustained throughput is not. One such example

is a large database, where a small number of records are accessed very frequently.

29

7.2 Future Work

Transaction Log: Though it was not tested in this experiment, it is apparent that the slow
performance of a rebuild of a node after it comes back online would be detrimental to the
system, especially considering the frequency of expected node failures. (i.e. a user
rebooting a workstation would require that node to be rebuilt.) To counteract this
situation, a transaction log could be added, located on the central coordinating server. It
would simply maintain a list of writes over a given period of time. Thus, if a node is
down for a short period of time, that is, less than the amount of time covered by the
transaction log, the central server can retrieve the changed data from the other nodes and
send the node the writes that occurred during its offline period. This would prevent the

need for a full synchronization.

Central Disk Cache: In addition to the operating system’s built-in disk cache in memory,
it is possible to consider a disk cache, stored on one of the central server’s local disks.
This would create another performance plateau between that of the memory cache and
the distributed storage, thus increasing average performance, but would not change the

sustained throughput of the system.

Distributed Processing: With a custom client, it may be possible to speed up the system
by utilizing each node’s processor to facilitate the Reed-Solomon coding, particularly on
writes. A write to a block would consist of sending the new data to the data device, plus

the difference between the old and new data to the checksum devices (d' j—d j), which

30

would then read their own checksum data for that stripe and recalculate the checksum

using ¢,'=c, +z,;(d';—d;) as mentioned above.

Interleaved Parity: To simplify coding, testing, and debugging, the system was set up
analogous to RAID 4, with designated Data Devices and Checksum Devices. In order to
alleviate the bottleneck of needing to write to the same Checksum Devices for every
write, checksum data could be interleaved amongst the n + m disks. This would improve

performance in the same way that RAID 5 improves over RAID 4.

31

(1]

(3]
(4]

(5]

(6]

[7]

(8]

(9]

[10]

References

A. Acharya, M. Uysal, R. Bennett, A. Mendelson, M. Beynon, J. Hollingsworth,
J. Saltz and A. Sussman. Workshop on I/0O in Parallel and Distributed Systems.
Proceedings of the fourth Workshop on I/O in Parallel and Distributed Systems:
Part of the Federated Computing Research Conference, Philadelphia, PA, May
1996, pages 15-27.

T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli and R. Wang.
Serverless Network File Systems. ACM Transactions on Computer Systems,
Volume 14, Issue 1, February 1996, pages 41-79.

E. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York, 1968.

P. Braam, M. Callahan and P. Schwan. The InterMezzo File System. The Perl
Conference 3.0, O'Reilly Open Source Convention, Monterey, CA, August 1999.

W. Bolosky, J. Douceur, D. Ely and M. Theimer. Feasibility of a Serverless
Distributed File System Deployed on an Existing Set of Desktop PCs. ACM
SIGMETRICS Performance Evaluation Review, June 18-21, 2000, pages 34-43.

D. Capps, lozone Filesystem Benchmark. http://www.iozone.org/. Date of
access: November 15, 2003, Date of creation: unknown, Date of update: April 29,
2003.

P. Chen, E. Lee, G. Gibson, R. Katz and D. Patterson. RAID: High-Performance,

Reliable Secondary Storage. ACM Computing Surveys, Volume 26, Issue 2,
June 1994, pages 145-185.

Cluster File Systems, Inc. Lustre: A Scalable, High-Performance File System.
http://www lustre.org/docs/whitepaper.pdf, Date of Access: November 2003, Date
of creation: November 11, 2002, Date of update: None.

J. Corbet. Porting Device Drivers to the 2.6 Kernel.
http://lwn.net/Articles/driver-porting/, Date of Access: February 2004, Date of
Creation: October 2003, Date of update: January 2004.

E. Danaher. Distributed Storage.
http://www.tjhsst.edu/~edanaher/techlab/index.php, Date of access: February
2004, Date of creation: September 2003, Date of update: January, 2004.

32

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

A. Gefflaut, T. Jaeger, Y. Park, J. Liedtke, K. Elphinstone, V. Uhlig, J. Tidswell,
L. Deller and L. Reuther. The SawMill Multiserver Approach. Proceedings of the
Ninth Workshop on ACM SIGOPS European Workshop, Kolding, Denmark
September 2000, pages 109-114.

S. Ghemawat, H. Gobioff and S. Leung. The Google File System. Proceedings of
the nineteenth ACM Symposium on Operating Systems Principles, Bolton
Landing, NY, October 2003, pages 29-43.

J. Hennesy and D. Patterson. Computer Architecture A Quantitative Approach,
Third Edition. Morgan Kaufmann Publishers, San Francisco, CA, 2003.

H. Kari, H. Saikkonen, N. Park and F. Lombardi. Analysis of Repair Algorithms
for Mirrored-Disk Systems. IEEE Transactions on Reliability, Volume 46, Issue
2, June 1997, pages 193-200.

P. Kam. Forward Error Correcting Codes. http://www .ka9q.net/code/fec/, Date
of update: August 2003, Date of access: February 2004, Date of creation:
unknown.

E. Lee and C. Thekkath. Petal: Distributed Virtual Disks. Proceedings of the
seventh international conference on Architectural Support for Programming
Languages and Operating Systems, Cambridge, MA, October 1996, pages 84-92.

F. MacWilliams and N. Sloane. The Theory of Error-Correcting Codes, Part L.
North-Holland Publishing Company, Amsterdam, New York, Oxford, 1977.

D. Michail, Flouris, P. Evangelos and Markatos. The Network RamDisk: Using
remote memory on heterogeneous NOWs. Cluster Computing, Volume 2, Issue 4,
1999, pages 281-293.

E. Miller, Towards Scalable Benchmarks for Mass Storage Systems. Fifth NASA
Goddard Space Flight Center Conference on Mass Storage Systems and
Technologies, College Park, MD, September 1996, pages 515-528.

D. Patterson, G. Gibson and R. Katz. A Case for Redundant Arrays of
Inexpensive Disks (RAID). Proceedings of the 1988 ACM SIGMOD Conference
on Management of Data, Chicago, IL, June 1988, pages 109-116.

W. Peterson and E. Weldon, Jr. Error-Correcting Codes, Second Edition. The
MIT Press, Cambridge, Massachusetts, 1972.

J. Plank and K. Li. Algorithm-Based Diskless Checkpointing for Fault Tolerant

Matrix Operations. Proceedings of the twenty-fifth International Symposium on
Fault-Tolerant Computing, Pasadena, CA, June 1995, pages 351-360.

33

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

[31]

J. Plank, Improving the Performance of Coordinated Checkpointers on Networks
of Workstations Using RAID Techniques. Proceedings of the fifteenth
Symposium on Reliable Distributed Systems, Niagara-on-the-Lake, Canada,
October 1996, pages 76-85.

J. Plank. A Tutorial on Reed-Solomon Coding for Fault-Tolerance in RAID-like
Systems. Software Practice & Experience, Volume 27, Number 9, September
1997, pages 995-1012.

J. Plank and Y. Ding. Note: Correction to the 1997 Tutorial on Reed-Solomon
Coding. Technical Report UT-CS-03-504, University of Tennessee, April, 2003.

M. Purser. Introduction to Error Correcting Codes. Artech House, Boston, 1995.

A. Rubini and J. Corbet. Linux Device Drivers, Second Edition. O’Reilly &
Associates, Inc., 2001.

M. Satyanarayanan. Coda: A Highly Available File System for a Distributed
Workstation Environment. IEEE Transactions on Computers, Volume 39,
Number 4, April 1990, pages 447-459.

Sistina Software, Inc. Sistina GFS.
http://www sistina.com/downloads/datasheets/GFS_datasheet.pdf, Date of access:
October 31, 2003, Date of creation: unknown, Date of update: unknown.

C. Thekkath and T. Mann, E. Lee. F rangipani: A Scalable Distributed File

System. Sixteenth Symposium on Operating Systems Principles, St. Malo,
France, December 1997, pages 224-237.

S. Wicker and V. Bhargava. Reed-Solomon Codes and Their Applications. IEEE
Press, New York, 1994,

34

Appendix A — 10Zone Test Result Tables

The results of the I0Zone read and write tests can be found below. The results of the 11

other tests are available from the OSU Computer Science department.

RAID §, Local
File Size Record Size (KB)
(KB) 4 8 16 32 64] 128] 256] 512] 1024] 2048 4096] 8192] 16384
64 [413089 [385446 | 426528 | 380881 | 382990
128 | 331692 | 336046 | 358611 [371977 | 349805 | 344911
256 | 332492 345058 | 359529 | 365164 | 368339 [311813 | 257789
512 [329481 [353098 | 358061 | 379517 382919 315863 | 253580 | 238029
1024 | 336964 | 350081 | 367415 | 366225 | 374678 | 299775 246918 | 210739 | 216582
2048 | 337563 | 357169 | 368204 | 383089 | 378632 | 296207 [234136 | 213197] 199630 196149
4096 | 329602 | 349340 | 369312 | 377890 | 379015 | 298696 | 237919 | 206586 | 196979 | 201526 | 194583
81921 328417 [346266 | 366253 | 380386 | 383252 295165 | 238750 | 209144 | 198733 | 200161 | 195056 | 206931
16384 | 331484 | 350100 | 367411 | 381404 | 378522 304897 | 250872 | 212809 | 201253 | 202296 | 198859 | 205924 | 205640
32768 380510 307311 | 247580 | 216140 | 202946 | 202549 | 201140 | 208482 | 205946
65536 380826 | 313872 | 255109 | 216658 | 203942 | 205871 | 204745 | 209055 | 209638
131072 381645 | 309521 | 251706 | 219703 | 204520 [201967 | 202516 | 211914 | 210402
262144 382364 | 310159 | 251824 | 216911 | 205024 | 203739 | 202774 | 209621 | 213868
524288 49972 47655] 47891| 43924 | 46889 47398 | 46687 46881[47515
1048576 49281 | 48205 47935 46797] 47099] 47080| 46177 46077] 46957
RAID 5 Local 10Zone Test Results (Read) in KB/sec
File Size Record Size (KB)
(KB) 4 8 16 32 64] 128] 256] 512] 1024] 2048] 4096] 8192] 16384
64| 4363] 244285 271259 | 293630 | 241598
128 | 259678 | 294195 [283834 | 303991 | 288219 | 226545
256 | 248088 | 262559 | 270606 | 271759 | 238831 192191 | 155146
512 | 191405 | 211569 | 210777 209062 | 177844 | 166771 | 167545 | 144510
1024 | 178085 | 187755 | 186009 | 176311 | 166452] 162255 | 160700 | 152129 | 144083
2048 | 168171 | 174683 | 172957 166098 | 157368 | 155057 | 149936 | 154810 | 154333 | 141564
4096 | 162565 | 167663 | 166058 | 163624 | 152426 | 149778 150660 | 150727 151027 | 148994 | 145185
8192] 159822 | 171578 | 171779 164656 | 158021 | 155077 | 152440 | 152895 | 153675 | 154881 | 155652 | 153979
16384 | 162203 [170083 | 167813 161313 155313 153709 | 155006 | 154300 | 154633 | 153853 | 155475 | 155410 149243
32768 151679] 152505 | 151381 | 153924 | 153637 | 154681 | 156319 | 154949 | 153517
65536 135745 | 141091 | 138893 | 142135 | 141332 | 147210 143874 | 150076 | 149644
131072 136427 | 124834 | 123130 | 134012 | 132249 | 125338 | 125732 | 125011 | 128917
262144 115337 | 115145 [120084 | 131776 | 119201 | 120068 | 128812 | 115565 | 120966
524288 69104 | 70822] 69240| 72630| 72200] 72172] 71030] 72709| 72027
1048576 52364| 53680| 53432 52006| 54293 53867 53621] 52666| 53830

RAID 5 Local 10Zone Test Results (Write) in KB/sec

35

RS-RAID Distributed, Partially Degraded

File Size Record Size (KB)

(KB) 4 8 16 32 64 128 256 512 1024 2048 4096 8192 | 16384
64 | 326411 | 357688 | 353477 | 376580 | 367741
128 | 333364 | 349813 | 360461 | 372084 | 379746 | 358508
256 | 329497 | 354553 | 364127 | 372643 | 378700 | 351206 | 299096
512 329891 | 346894 | 367573 | 373207 | 380100 | 337715 | 290097 | 266396
1024 | 331293 | 351642 | 370619 | 379264 | 377288 | 338061 | 277053 | 261088 | 254344

2048 | 334372 | 353226 | 370283 | 374330 | 383377 | 335952 | 287805 | 254154 | 243551 | 241341
4096 | 330669 | 348005 | 367747 | 373656 | 384386 | 327731 | 280125 | 249194 | 239490 | 237476 | 238097
8192 | 327757 | 347797 | 365014 | 379189 | 378714 | 338609 | 283175 | 249087 | 238980 | 238890 | 231924 | 236851
16384 | 334537 | 348535 | 366302 | 380210 | 376989 | 335991 | 283592 | 250569 | 238688 | 234798 | 237945 | 238222 | 238576

32768 379214 | 332842 | 283801 | 247148 | 235305 | 234583 | 237693 | 237633 | 237129
65536 380388 | 336370 | 287409 | 249334 | 234896 | 237198 | 237069 | 234040 | 237046
131072 380492 | 339727 | 288177 | 250355 | 234606 | 234097 | 233943 | 234133 | 233918
262144 380613 | 343933 | 284501 | 250262 | 237379 | 234001 | 234082 | 233779 | 233844
524288 7968| 7665| 7642 7940| 7780 7961 7961 7717 7732
1048576 7718 7725 7712 7649| 7611 7712 7575) 7693| 7643

RS-RAID Distributed, Partially Degraded I0Zone Test Results (Read) in KB/sec

Record Size (KB)

File Size

(KB) 4 8 16 32 64 128 256 512 1024 2048 4006 8192 16384
64 837 | 232774 | 255044 | 253905 | 264564

128 | 258057 | 268908 | 275827 | 278295 | 276478 | 227375
256 | 250464 | 261494 | 262822 | 257042 | 250718 | 220884 | 181161
5121223962 | 231991 | 233046 | 224164 | 212881 | 195045 | 184897 | 163370
1024 | 207669 | 212535 | 209192 | 203864 | 191580 178518 | 172655 | 176522 | 164950
2048 | 200842 | 200605 | 201855 | 196411 | 178661 | 175104 | 168809 | 167321 | 172814 | 167127
4096 | 196574 | 200470 | 198181 | 188695 | 175058 | 172137 | 170566 | 168213 | 172324 | 172929 | 168664
8192 | 194903 | 195601 | 194003 | 182812 | 172068 | 168736 | 165578 | 165364 | 168472 | 166886 | 169200 | 167755
16384 | 192185 | 193098 | 193930 | 183693 | 171189 | 164872 | 164567 | 166090 { 167096 | 165111 | 165218 | 165048 | 167219

32768 166283 | 166224 | 165427 | 165968 | 164353 | 166584 | 163315 | 164603 | 164535
65536 149390 | 119613 | 149778 | 141958 | 144638 | 145894 | 136913 | 132593 | 147465
131072 135510 | 125526 | 154228 | 110834 | 136546 | 120131 | 111201 | 117945 | 107992
262144 20562 21726| 199321 20525| 19364 | 20774 | 15432} 19577 20127
524288 6410 7034 6990 6892| 6872 6839 6956 | 6773 7002
1048576 5021 5014 5068| 5099| S5118| 5145 5199 5069) 5127

RS-RAID Distributed, Partially Degraded I0Zone Test Results (Write) in KB/sec

36

RS-RAID Distributed, Fully Degraded

File Size Record Size (KB)
(KB) 4 8 16] 32| 64| 128 256] s12| 1024] 2048| 4096| 8192| 16384
64 | 331730 320132 355790 367571 | 359458
128 | 329863 | 349624 | 355652 | 364668 | 369888 | 348708
256 | 330339 | 345530 | 364665 | 370431 | 370416 | 345028 | 286696
512 | 330095 | 343375 | 364179 | 373995 [368348 | 331620 | 266656 | 269904
1024 | 329260 | 351641 | 341670 | 376334 | 363642 | 329058 | 275047 | 260620 | 250799
2048 | 332689 | 337288 | 354147 | 373591 | 368949 | 328042 | 282244 | 255521 | 242708 | 244537
4096 | 328075 | 347734 | 365844 | 369573 | 369777 | 337064 | 280144 | 253119 | 242037 [240106 | 240671
8192 | 331660 | 350624 | 364135 | 371671 | 376108 | 328361 | 282668 | 251713 | 239476 | 238987 | 236319 | 239580
16384 | 330382 355571 | 368288 | 380263 | 377545 | 329784 | 286058 | 251605 | 236472 | 235368 | 236053 | 235392 | 235061
32768 378505 | 335092 | 282417 | 247587 | 235410 | 238091 | 238238 | 235324 | 234702
65536 379546 | 334437 | 286866 | 251093 | 235246 | 237649 | 237360 | 234859 | 237414
131072 379431 | 334643 | 286585 | 247378 | 235525 | 237283 | 237085 | 237019 | 237264
262144 386030 | 335458 | 286566 | 250367 | 235472 | 234366 | 234864 | 236548 | 235009
524288 5514| 5495| 5629] 5579| 5648 5580 5673| 5559| 5543
1048576 5660 5655| 5657| 5746] 5798| 5848 5758| 5706] 5607
RS-RAID Distributed, Fully Degraded 10Zone Test Results (Read) in KB/sec
File Size Record Size (KB)
(KB) 4 8 16] 32| ea] 128] 256] s12] 1024] 2048] 4096 8192] 16384
64 | 223047 | 255020 | 262362 | 262393 | 239664
128 | 246100 | 271214 | 275323 | 266728 | 280736 | 227768
256 | 245208 | 248540 256779 | 243117 | 246629 | 213671 | 179663
512 | 220025 | 228458 | 226946 | 217602 | 206862 | 180155 | 176253 | 163577
1024 | 208763 [203901 | 201856 | 202210 | 185610 177966 | 172275 | 174242 | 165079
2048 | 202891 | 207643 | 200351 | 194862 | 181542 172738 173617 174091 | 173516 | 166368
4096 | 198392 | 202631 | 200292 | 188027 | 176903 | 168920 171108 | 169129 170156 | 171971 [166321
8192 | 194271 195606 | 195582 | 184293 [173140 168293 165317 | 165917 166219 | 166247 | 168761 | 165588
16384 | 191897 [193543 | 192977 181353 | 168053 | 165991 | 165893 | 166370 166771 | 164678 | 167525 | 164989 [166761
32768 166410 164891 | 164452 163236 | 162951 | 163668 | 165855 | 163754 | 166105
65536 157254 | 155422 [152298 | 130826 | 114778 | 105047 | 156091 | 157136 | 113479
131072 85197 73804 | 156880 139833 141365 | 80843 | 128296 | 84897| 63531
262144 27270| 27588| 27408| 26914 27724| 27071 27375| 29490 28472
524288 9646| 9697| 9724| 9732| 9930| 9655| 10149 10006 10032
1048576 7144| 7159] 7060] 6978 7030| 6994| 7053| 7008] 7058

RS-RAID Distributed, Fully Degraded 10Zone Test Results (Write) in KB/sec

37

RS-RAID Distributed, Non-Degraded

File Sizc Record Size (KB)
(KB) 4 8 16 32 64| 128(256 512 1024| 2048| 4096| 8192]| 16384
64 | 326502 355376 | 369866 | 374283 376517
128 | 3290021359597 358655 | 376355 | 376440 [324958
256 | 330318 | 348291 | 364205 | 362063 | 361613 | 326122 299762
512 | 328423 | 345937 365708 | 372116 | 373421 324652 | 292056 | 268193
1024 | 330421 | 339635 | 367408 | 377033 [377718 324046 | 266389 | 247349 | 249884
2048 | 329894 | 348419 | 354630 | 378775 | 374473 | 310117 | 283733 | 254506 | 242800 | 245179
4096 | 326714 | 351435 | 365223 | 368180 | 367356 | 321711 284723 | 252137 241394 | 236557 241154
8192 | 329763 | 351815 | 365387 [376348 | 376437 321633 | 281009 | 246762 | 235788 | 234997 | 239190 | 239315
16384 | 329128 | 352094 | 365445 | 379181 | 372770 325945 | 283312 246820 237897 | 237590 | 234906 | 237825 | 237900
32768 380753 | 325311 | 283085 | 246866 | 234911 | 234361 | 236987 | 234556 | 234598
65536 381202 | 320158 | 283716 | 250278 | 237261 | 237079 | 236888 | 234139 | 234198
131072 375551 | 325984 | 279460 | 250231 | 234702 | 236965 | 233799 | 234658 | 236818
262144 363316 | 326036 | 279353 | 247065 | 234654 | 233975 | 233984 | 237013 | 236791
524288 9214] 9165 9317] 9220] 9374| 9109 9236 9215] 9280
1048576 9323 9223 9269] 9246 9243| 9247 9266| 9176| 9288
RS-RAID Distributed, Non-Degraded 10Zone Test Results (Read) in KB/sec
File Size Record Size (KB)
(KB) 4 8 16 32 64] 128] 256 s12] 1024] 2048] 4096] 8192] 16384
64 | 218414 | 246124 257122 246209 | 236164
128 | 255990 | 269467 | 280100 | 286386 | 259116 | 212602
256 | 252960 | 270619 | 271495 | 267783 | 248290 | 209836 | 184438
512 | 221451 | 227246 | 230534 | 217968 | 204474 | 191764 | 184776 | 166779
1024 | 209192 | 214588 | 213328 | 200978 | 189522 | 179393 | 169763 | 171728 | 162979
2048 | 199067 | 201495 | 200707 | 188806 | 178492 174459 | 170014 | 167895 | 170609 | 165949
4096 | 194437 | 202201 | 200215 | 189577 | 177331 168941 | 166564 | 170516 | 168566 | 169424 | 168524
8102 | 193321 195616 | 194662 | 182975 | 173196 | 165464 | 166065 | 165836 | 165685 | 168062 | 166092 | 167207
16384 | 192671 | 195370 194139 182545 | 170709 | 164339 [162359 | 163674 | 166277 | 164155 | 164004 | 166208 | 163496
32768 168708 | 162145 | 161492] 163077 162920 | 164842 | 166023 | 163759 | 163777
65536 142632 | 157865 | 130143 | 133474 | 131763 | 143848 | 143922 [153174 | 143155
131072 110626 | 113002 | 113964 | 112715 | 155340 | 116666 | 119537 | 116409 | 117450
262144 19327| 18444 18266| 21269 21020 20264| 21306| 23203| 18868
524288 6878| 6738] 6734 7110] 6975| 6955] 7280] 6857 6885
1048576 5272 5299| 5215| 5148| 5331| 5086| 5322 5251| 5292

RS-RAID Distributed, Non-Degraded 10Zone Test Results (Write) in KB/sec

38

RS-RAID Local, Partially Degraded

Filc Sizc Record Size (KB)
(KB) 4 8 16 32 64 128 256 512 1024] 2048| 4096| 8192 16384
64 | 344014 | 359554 | 254865 | 387620 | 349527
128 | 339510 | 342290 | 365595 | 382076 | 377564 | 333399
256 | 324489 | 355992 356492 | 368406 | 377567 | 325269 | 283532
512 | 327557 | 346656 | 369396 | 367798 | 381811 | 318808 | 284904 | 248419
1024 | 329902 | 348289 | 373051 | 379688 | 374129 | 327158 | 285471 | 255748 | 249945
2048 | 334693 | 349788 | 366956 | 380958 | 383021 | 325183 | 274566 | 249148 | 244889 | 244770
4096 | 329575 | 348063 | 365939 | 374888 | 374473 | 325365 | 282656 | 248632 | 241479 | 237711 | 240968
8192 | 332145 [349921 | 371756 | 378976 | 376209 | 320727 | 282024 | 248822 [239105 | 238022 | 235665 | 238799
16384 | 330876 | 353157 366221 [370821 | 376998 | 321028 | 278100 | 250030 | 236043 | 237301 | 234831 | 234896 | 238392
32768 378230 318943 | 278159 | 249581 | 237492 | 232089 | 236607 [237025 | 237560
65536 363241 | 317970 | 281802 | 246268 | 234281 | 232188 | 236592 | 236739 | 237211
131072 377090 | 323107 | 277036 | 246188 | 234168 | 235836 | 236298 | 236571 | 237072
262144 378020 | 325034 | 278001 | 246558 | 234524 | 233282 | 236220 | 233704 | 233918
524288 22683 | 22579 22378 22524 22432| 22339] 22292 22531 22309
1048576 22570 22459 22368 22133] 22278 22168 22111 22239[22196
RS-RAID Local, Partially Degraded I0Zone Test Results (Read) in KB/sec
File Size Record Size (KB)
(KB) 4 8 16 32 64 128 256 512 1024| 2048| 4096| 8192] 16384
64| 219929 | 266674 | 265616 | 274785 | 265581
128 | 258113 [277648 | 275286 | 293517 [271124 | 218443
256 | 243560 | 269172 | 265846 | 266690 | 253977 | 212780 | 186731
512 | 225850 | 226959 | 230834 [218437 206197 | 189425 181623 [163111
1024 | 205830 214629 | 212758 | 196844 | 187441 | 176247 | 174181 174472 163681
2048 | 199514 | 201953 201613] 191814 | 178302 | 170071 | 169452 | 170822 | 171050 | 168283
4096 | 196113 | 200068 | 196621 | 185557 | 175642 | 169003 | 167909 | 168034 | 168998 | 169339 | 167054
8192 | 195695 | 195080 | 192454] 181914 | 171775 166565 | 164878 | 165585 | 165682 | 166119 | 166341 | 164759
16384 | 189106 | 191332 189572 | 178937 | 169764 | 164802 | 164045 | 164565 | 164301 | 167067 | 167323 | 166248 | 166033
32768 170599 | 163917 165185 | 165729 | 163868 | 166520 | 166276 | 164152 | 164782
65536 157028 [161251 [158938 | 161064 | 151395 | 161163 | 159286 | 160406 | 154668
131072 129377 [135829 | 130649 | 125388 | 130490 | 127141 | 128240 | 131448 | 131641
262144 40024 | 39802 38510 39985] 39022 38187 40103| 39091| 40838
524288 13657] 13759 13573] 13578 13518] 13552| 13636| 13610| 13649
1048576 10271] 10156 10153] 10171 10153] 10172 10260| 10201 10140

RS-RAID Local, Partially Degraded 10Zone Test Results (Write) in KB/sec

39

RAID 5, Distributed

File Size Record Size (KB)
(KB) 4 8 16 32 64] 128 256 si2] 1024| 2048 4096] 8192 16384
64 | 333286 | 359390 | 370070 | 372253 361430
128 | 322509 | 347746 | 362596 | 358627 | 356645 | 351678
256 | 331171 | 347839 | 365200 | 370459 { 379879 | 345992 | 297679
512 | 326305 | 348082 | 367786 | 376215 | 376188 | 328837 [293735 | 245568
1024 | 333121 [347601 | 364160 | 367021 | 376198 | 328724 | 286117 | 245618 | 250429
2048 | 331125 | 349248 365518 | 372023 | 375028 | 329947 | 277466 | 246123 | 235426 | 245977
4096 | 335135 | 348302 | 366136 | 372970 | 372159 | 330431 | 283951 | 247343 | 239755 | 238611 | 237378
8102 | 328507 | 348327 | 366432 | 371181 | 370546 | 333998 | 277731 | 244332 | 237207 | 239517 | 236626 | 236996
16384 | 331237 | 347729 | 365616 | 378575 | 373500 | 326505 | 281918 | 250152 | 236267 | 238907 | 238861 | 238409 | 238423
32768 372638 | 326556 | 287696 | 248917 | 234542 | 237488 | 235031 | 237811 | 235096
65536 377781 | 334186 | 284319 | 249378 | 234895 | 234649 | 234677 | 234769 | 236867
131072 380845 | 329286 | 284434 | 246939 | 237419 | 234690 | 237178 | 234669 | 234370
262144 383315 | 329108 | 284474 | 247112 | 237934 | 234705 | 237304 | 237118 | 237173
524288 9775| 9852| 9942| 9695| 9666] 9961| 10029 9992| 9765
1048576 9761| 9838| 9798 9723| 9770 9738| 9693| 9740| 9755
RAID 5, Distributed 10Zone Test Results (Read) in KB/sec
File Size Record Size (KB)
(KB) 4 8 16 32 64| 128] 2s6| 512 1024] 2048| 4096| 8192] 16384
64 | 216961 | 257049 | 266722 | 263374 | 257060
128 | 261255 | 280053 | 264959 | 280141 | 260713 | 221875
256 | 252732 | 264479 | 266964 | 270024 | 241058 | 219738 | 181175
512 | 223097 | 231472 | 228887 | 223384 | 201497 | 192113 | 181111 | 164899
1024 | 210876 | 217785 | 211783 | 200942 | 186793 | 178829 | 174417 | 174359 | 162156
2048 | 200806 | 207393 | 203860 | 196056 | 178073 | 171281 | 172475 169592 | 173413 | 156491
4006 | 197911 | 205529 | 203004 | 190087 | 172848 | 169234 | 170233 167054 | 171409 | 171516 [170092
8192 | 191805 | 196639 | 192476 | 185234 | 171685 | 166727 | 167433 | 168455 | 166220 | 166884 | 169557 | 167669
16384 | 190370 | 194679 | 193289 | 182924 | 172055 | 165924 | 163877 | 164797 | 164025 | 164474 | 167944 | 165446 | 167231
32768 167372 | 165262 | 162452 163265 | 165241 | 165978 | 164346 | 164571 | 166631
65536 153741 | 162457 | 162872 | 141804 | 150584 | 161951 | 165595 | 165889 | 163765
131072 147031 | 144372 [121078 | 148503 | 164872 | 141949 | 119890 | 147306 | 119749
262144 43141 | 36096| 39740| 41005| 43162| 40496| 41993 | 42233| 40095
524288 14152| 13582| 13178 14450| 13662| 13628| 14172] 14260] 13692
1048576 10372| 10105| 10232 9911] 10148 9814| 10148| 7281| 10060

RAID 5, Distributed 10Zone Test Results (Write) in KB/sec

40

Appendix B - Reed-Solomon RAID Source Code

Selected portions of the RS-RAID driver can be found below. The full source is

available from the OSU Computer Science department.

rs_raid.h

#ifndef _RS_RAID_H
idefine _RS_RAID_H

#finclude <linux/raid/md.h>

a1 o ki e «« *REED SOLOMON PARAMETE
#cdef ine MAX_DISKS 256
idefine MAXM 25
idef ine MAXN 25

w nf 8 has been chosen Yivisis
divaision and multiplicati
1 T = 4 - e Pk plication
k.fitos! b If w were large: the tables would
be roo bhig to fit 1o memory J A O

typedet u8 RS_WORD;

#def ine NUMBITS 8
#define PRIME O0x1D

#define MSB (1 << (NUMBITS 1
#define SIZE (1 << NUMBITS

The Galeis field operators
#define MUL(a, b conf >mulTable((a;
#define DIVia,b} (conf->divTablel((a)
#define ADD(a,b! (tal”(b))
idefine SUB{a,b) ((a) (b))

(b)

11(1
IH(b)]

A <+ +END REED SOLOMON PARAMETERS®**<+essscss -

#define NR_STRIPES
idefine HASH_PAGES_ORDER
#define HASH_PAGES
Hdefine I10_THRESHOLD
#define STRIPE_SIZE PAGE_SIZE
fidefine STRIPE_SECTORS (STRIBE-STiES56)

#define STRIPE_SHIFT {PAGE S;IFT - 9)

::32::2 :zg:ﬁﬂsx (NR_HASH —lT',\SH_pAGEs * PAGE_SIZE / sizeof (struct stripe_head =)!

o

P
S5ty ipe state

#define STRIPE_ERROR

#def ine STRIPE_HANDLE

fidef ina STRIFPE_SYNCING

Hdet {ne STRIPE_INSYNC

def ine STRIPE_PREREAD_ACTIVE

e f ine ATRIPE _DELAYED

O e B

Flags ¢
idefine R5_UPTODATE 0 * page contains current data
idefine RS5_LOCKED 1 * 10 has been submitted on “req~
fidefine R5_OVERWRITE 2 * towrite covers whole page *
- and some that are internal te handle_stripe °
#tdefine R5_Insync 3 rdev && rdev >in_sync at start */
hdefine RS5_Wantread 4 ‘* want to schedule a read
def ine RS5_Wantwrite 5
kdefine R5_Syncio 6

this io need to be accounted as resync io

41

#define RECONSTRUCT_WRITE
READ_MODIFY_WRITE

1 bur a

tdefine
ner oA wa met hod

CHECK_PARITY

nal n

et ine
Aditsr g

my
UPDATE_PAR

sdefine ITY

tdefine mddev_to_conf imddev

1

=

compute_parity mode */
3
updates

mode

r the parity w/o LOCKING *
&

irs_raid_conf_t ') mddev->private)

astruct daask_info |(
mdk_rdev_t *rdev;
¥y
atruct stripe_head (
struct stripe_head *hash_next. *"“"hash_pprev; /* hash pointers *
atruct list_head 1ru; *= inactive_list or handle_list */
struct rs_raid_private_data *raid_conf;
sector_t sector: /* ‘sector of this row */
int pd_1dx; /* parity disk index
unsigned long state; /* state flags */
atomic_t count: * nr of active thread/requests "/
spinlock_t lock:
struct rSdev [
struct bio req:
struct bio_vec vec;
struct page *page:
struct bio “toread, “towrite, ‘written;
sector._t sector; '+ sector of this page */
unsigned long flags;
} devil]); 7 alle ed with extra space depending of RAID geometry °/
Y3
struct rs_raid _private_data (
struct stripe_head *"*stripe_hashtbl;
mddev_t *mddev;
struct disk_info *spare;
int chunk_size, level;
int raid_disks, working_disks, failed_disks;
int max_nr_stripes;
struct list_head handle_list: %

struct list_head
atomic_t

char
kmem_cache_t

- Free

stripes poo
atomic_t

struct list_head
wait_queue_head_t
int

spinlock_t

stripes needing handling

delayed_list: /* stripes that have plugged requests */
preread_active_stripes; /° stripes with scheduled io *
cache_name [20]):

slab_cache; / for allocating stripes "/

1

active_stripes;
inactive_list;
wait_for_stripe;
release of inactive stripes blocked,
* waiting for 25% to be free

inactive_blocked;

device_lock;

/+*REED SOLOMON TABLES AND PARAMETERS®® -~/

int

RS_WORD
RS_WORD
RS_WORD
RS_WORD
RS_WORD

ffdont

RS_WORD

really need

struct disk_info
yi

n,m:

divTable[SIZE] [SIZE];
mulTable [SIZE] [SIZE];
encodematrix|MAXM] [MAXN] ;
overallmatrix[MAXN + MAXM] [MAXN]:
decodematrix[MAXN] [MAXN] ;

init, but they're only 256 bytes each.
gilog(SI12E)., gfalog[SIZE];

these after

disks[0];

typedef struct rs_raid private_data rs_raid_conf_t;

flendif

rs_raid.c (Reed-Solomon encoding and decoding parts only)

CREEL VMR EUNCT Sereasreaneesnnnnn

' 3l mudr i 1
static inline RS5_WORD

wtions, used to construct the e

a, RS_WORD b, rs_raid_conf_t *conf)

mul (RS

return (a==0 | bh==0 ?0:conf >gfalogliconf->gfloglal + conf->gflog[bl) % (SIZE - 1)];

static inline RS_WORD _div(RS_WORD a, RS_WORD b, rs_raid_conf_t <conf
{

return (a==0?0:cont >gfalogl|.conf->gfloglal - conf->gflogib} + SIZE - 1) & (SIZE - 1)]:

atatic void fi:llMulTable rs_raid_conf_t “conf
{
ifnt .

for(1=0,i<S12E;1++
for(3=0:3)<SIZE;J++
conf >mulTable{1](3l=_mul.|i,3.conf
)

atatic void fillDivTable,rs_raid_conf_t *conf
l
int i.37
for (1=0;1i<SIZE;1++!
for | j=0;3<SIZE;3j*+*)
conf >divTableli][jl=_div(i,j,conf);

and gta 7 tab which are the

vhrle 1] 1 O vi «¢ Flank, appendix A for more inf

astatic void setupMultTable rs_raid_conf_t *conf!
{

RS_WORD curVal = 1:
RS_WORD curlkog:

conf >gflog(0] = Tz
for .curLog = 0: curbkog < S1ZE 1; curLoges+
|
conf >gfloglcurval] = curlLog;
conf >gfaloglcurLlog] = curvVal:
Thas gode Traht 1y Plank ‘= code 1n Figure 4 due to the T
thers are extta bites to with 50 the shift must occul
B S AT
if(curval & MSB)
curVal = (curvVal ° MSB) << 1) * PRIME:
alse
curval <<= 1;
}
)
This function Sets up the overall matrix as defined in Plank's revision paper 1997 Aeve
that the combaned 1AV matrix defined in the original paper does not work.
static void setupTransform rs_raid conf_t “conf!
{
int n=conf >n;
int m=cont >m;
int 1., J. ki
RS_WORD fact;:
for(i = 0; 4 < m + n; i++]
{
conf->overallmatrix(i] (0] = 1;
forij = 1i 3 < np J*+)
conf »overallmatrix(illj) = _mul(i, conf->overallmatrix[il{j - 1).cenf):
¥
peluce 1r {41 "DPE]
fori(i = 0; 1 < n; 1++)
1
fact = conf >overallmatrax(i:
for(j = i: 3 < m + n; j++)
conf »overallmatrix(3l(i] = _diviconf »pverallmatrix(jl[i], fact,cenf)
forti = B: 3 < n; J#+) LE(L 1= 3
{
fact = conf >overallmatrixii]([j];
forik = 1: k < m + n; k++)
conf »overallmatrix(k](j] = SUB(conf->overallmatrix(k](j]. _mul(conf->overallmatrixl(kll(il. fact.conf));
}
}
feE (il = 0 ke mp e
fortd = @F 3 = BF 3%

43

conf »encodematrix{i]{jl = conf->overallmatrix(i + nl[3jl;

)
static int encodeirs_raid_conf_t °*conf. void** ptrs)//struct 8b. int n.
(
int n=con! =n
int m=conf >m;
i constant e ste the =“fastest® way
RS_WORD ainVec [MAXN], outVec [MAXM]:
int 1, 3. k
RS _WORD *"*buttfe: WORD® * ptrs ! loca >t
foriy = 0 1<STRIPE_SIZE L L I+t
i
T e 1173 ¥ make ¥ £ the data laike this. But trou we, it 15 faste
foxr 3 = 0 I3 = n Jee
(
inVeclyl=butfer(iil1l}:
)
memset (houtVec [0].0,sizeocf RS_WORD "m):
mulr aply e tematrax by fhe ’ get ourVec
fer (3 = O < ®g j+8)
forik = 0: k < n; ke
outVec(3] = ADD(outVec([3]). MUL(conf->encodematrix(j](k]. inVec(kl!):
A o 111y t make a copy of the data. but this is faster.
forly = 0% jee)
butfer|[j+n] [a]=cutVec(y]:
|
return 0:
)
scatic int decodestruct stripe_head *sh. vold** ptrs!
{
rs_raid_conf t -cont=sh >raid_cont;
int n=conf >n:
int m=conf >m;
RS_WORD+* butfer= | RS_WORD*®* ptrs;
o A, 3. ki oLy ey
int newvalid=0;
RS_WORD factor. tmp: outbuf fer M 1 ufier [MAXM]
RS WORD augmentedmatrix({MAXN] [MAXN]; the au nted part is the
Firot il the preavamented matvix with data from the overallmatrix a Lo
1=0;
forti=0;i<(n);i++)
{
if (test _and_set_bit (RS _UPTODATE, &sh->dev(i].flags!'
memcpy augmentedmatrix(i],conf >overallmatrix[i],sizeof (RS_WORD)™n,;
alae this data row not valid, find a checksum row to use,
{
k=0;
for | ;j<m;j++!
{
if (test_bit (R5_Insynec, &sh->dev(n+j].flags))
(
memcpy (augmentedmatrix(i], conf >overallmatrix[n+j],sizeof (RS_WORD) *n):
Alsmo copy the dara 1 the stripebuffer
memcpy (buffer (i), buffer(n+j).STRIPE_SIZE *s1zeof (RS_WORD, *chunk ey
I+ thiz row's been used, don't use 1t again.
k=1;
break;
1
H
1€ (k==0
(
BUG ! ; no more valid checrksum rows tound
return 1:
)
newvalid++:
¥
1
N the stare of this s as follows
b sBifEer eontarnz all the data we 11 peed in vows 0 through N 1
i el ATTAY U AN N0 matiix we 11 be doing the gaussian elimination on
for(j = 0i 3 < ng jee! 1
if(taugmentedmatrix(jl (3]’
{
for r = 1 + 1; 'augmentedmatvix|r][j]: r++

44

if(r>=n return 0 et oy bad i. T got toe big
ST) " o et 1 v QUi pr rddure but not done fren enough to worry about.
forik U:; k « n: keel {
v mp augmentedmarrix[3]lk]):
augmentedmatrix(3] (k] = augmentedmatrix(rllk]):
augmentedmatrix(r] [k] = tmp:
)
tor X=0, k~STRIPE_SIZE X £ sk} {
tmp butfer(y)ik):
butfer(jl{k] = butteririlk]:
bufter[zr]| tmp
i
J
tactoz augmentedmats 1x]
ifitactor =1 T e ¥ 1e 1
{
for k 0 k « n kee
augmentedmatz x| 1] lk} DIV. augmentedmatrix{j) k], tactor
for k 0; k < STRIPE_SIZE hunksize* Kee The augmen of the matrix
bufter(ylik] DIV buffer{j)(k]. factor
]
for ik = @: k. = M ke
{
£€¢3 = k|
factor = augmentedmatrix{k](j):
if facrtor'=0 e et miltaply by 0, then subtract from self
{
for(l = §; 1 = nmy I+sd
augmentedmatrix(k] 1] = SUB augmentedmatrix(k)({l], MUL.factor, augmentedmatrix[jl[2]));
fori1l1=0; 1<STRIPE_SIZE: *chunk?t o F7led) 10 an entire stripe at once'
buffer(k]) (1] = SUB/buffer[k][1], MUL{factor, buffer[j]l(1]!}
}
)
1

return newvalid:

atatic int compute_blocks struct stripe_head *sh) int dd_idxl,
{
15 raid conf_t *cont sh »rard_conf;
int 1 count., dJdisks cont >raid_disks;
void* ptrs{MAX_DISKS].
count = 07
i =402 Heoadx
do |
ptrs[count++] = page_address sh- >dev(1].page]
i = rs_raid_next_disk(i, disks);
} while i f= 0 E, idxe i
h REED SOLOMON DEC
return decode (sh.ptrs ; takes care of settinag the upt

)

astatic void compute_parity.struct stripe_head

rs_raid_cont_t “cont = sh >raid_c
int 1, pd_i1dx sh >pd_1dx. =gl
atruct bic “chosen;

vold *ptrs|MAX_DISKS]:

s
£ 5

1 eyt pl 1

ad

1akx
rikx

i
o

vad nekd i

PRINTK | "compute_parity, stripe #1

*sh. int method!
onf ;
rebx. A0 _adx; disks = conf->r
dx 53
ix das
lu, method %*d\n"

junsigned long long'sh »>sector. method
switch method |
case READ MODIFY _WRITE:
BUG (| ; KEAES MODIEY WRITE N A f51 RAID 6
case RECONSTRUCT WRITE:
case UPDATE _PARITY
for (i= conft >n; 1
if RS TS 5 VT | i) fr Rkt sh >dev(1].towrite
chosen = sh >dev(1i].towrite:
sh >dev|1] towrite = NULL:
if sh >devii] . written BUG
sh >dev[:] wraitten = chosen
I
break
case CHECEK_PARITY
BUG L !} T | '

int

odate birt,

aid_disks,

¥l

dd_i1dx2

count;

for 1 = diskas: 1 .
if .sh >devii] wiitten' |

sector _t snector - sh ~devi{i].sector:

struct bio *wb: : sh >dev{:].written:

while wbi &4 wb: >bi_sector < sector « STRIPE_SECTORS)
copy_data. 1. wbi. sh >dev|i].page, sector):
wb: - 15 _next_bio . wbi. sector);

)

fet_bit .RS_LOCKED. &sh >deviil.flags’:
sct_bit (RS_UPTODATE. &sh >devl(i).flags):

}
count - 0,
s = 0 1 B
do
ptralcount v+] - page_address. sh >dev(i].page):
1 s 15 rawd next _disk 1. disks
) while F o “t SN
IVCORERD L Lo MO RN DN HEERE - e 4

encode conf . ptrs’ ;

ol il gen Wl ome 4y STRIPE _SICE. ptrs ¢

switchimethod' (
cagse RECONSTRUCT_WRITE:
fori{i=cont >n;i<conf >raid_disks;1++)
{
set_bit (RS_UPTODATE. &sh >devl(i).flags):
set _bit (R5_LOCKED. &sh >dev(i).flags):

net bt BN OUDODATE sdev{pd_adx] flags
t bt RS UPTODATE. sash -devgd_idxl.flags
et bit ‘RS LOCKED, &ah -devipd_idx) flags:
et bt K OLOYCKED ssh ~deviqd, 1dx] . flags®
break:
cagse UPDATE_PARITY:
for(i=conf->n;1xcont >raid_disks;i++:
{

set _bit .R5_UPTODATE. &sh >dev{1i]).flags):
]
‘net _bit RY_UFTODATE, Ash->devipd_idx]. flags);
et bat BRSO UPTODATE. ash dev(gd_idx]).flaas’;
break:

46

#4

VITA
Nathaniel Paul Lewis
Candidate for the Degree of
Master of Science

Thesis: DISTRIBUTED RAID SYSTEM: A UNIQUE USE FOR REED SOLOMON
CODING

Major Field: Computer Science
Biographical:

Education: Graduated from Neenah High School, Neenah, Wisconsin in June 1998;
received Bachelor of Science degree in Computer Science from the University of
Wisconsin — Madison, Madison, Wisconsin in May 2001. Completed the
requirements for the Master of Science degree with a major in Computer Science
at Oklahoma State University in May 2004.

Experience: Employed as a software developer by Epic Systems Corporation,
Madison, Wisconsin from June 2001 to August 2002; employed by Seagate,
Oklahoma City, Oklahoma summer 2003; employed by Oklahoma State
University, Computer Science Department as a teaching assistant, August 2003 to
present.

Professional Memberships: Association for Computing Machinery.

