
DISTRIBUTED RAID SYSTEM: A UNIQUE

USE FOR REED SOLOMON CODING

By

NATHANIEL PAUL LEWIS

Bachelor of Science

University of Wisconsin - Madison

Madison, Wisconsin

2001

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May2004

DISTRIBUTED RAID SYSTEM: A UNIQUE

USE FOR REED SOLOMON CODING

Thesis Approved:

~~·
anofthe Graduate College

11

Preface

This study was conducted to investigate the usability of a locally distributed

RAID system in a way that utilizes previously underutilized workstation storage space.

I sincerely thank my advisor, Professor Douglas R. Heisterkamp, for his guidance

and support in completion of this research.

iii

Table of Contents

Chapter Page

I. Introduction .. 1

II. Background ... 3

2.1 RAID Background Infonnation ... 3
2 ? RAID O (Stn·p1·ng) 3 ·- ·· ...
? 3 RAID l (M1·rron·ng) .. 4 ...,.
2 4 RAID 4 (Pan·ty) .. 4
? 5 RAID 5 (Interleaved Pan·ty) ... 4 .-.
2.6 Related Works Rev1·ew ... 5
2 7 Reed-Solomon Cod1·ng .. 7

III. Problem Domain .. 10 ··
III Hypothesis .. 11 . ··
Iv. Foundations.......... 12 ····································

5.1 Overview.......... 12 ····································
5. 2 Proposed Approach 14 ·····························
5.3 Introductory Setup ... 15

VI. Experimental Results .. 19

6.1 Environment .. 19
6.2 RAID 5 Control Test ... 20
6.3 Distributed Reed-Solomon Test, Partially Degraded .. 22
6.4 Additional Tests .. 25

VII. Conclusion and Future Work ... 29

7.1 Experimental Conclusion .. 29
7.2 Future Work .. 30

References ... 32

iv

Appendix A - IOZone Test Result Tables .. 35

RAID 5, Local ... 35
RS-RAID Distributed, Partially Degraded ... 36
RS-RAID Distributed, Fully Degraded ... 37
RS-RAID Distributed, Non-Degraded .. 38
RS-RAID Local, Partially Degraded .. 39
RAID 5, Distributed .. 40

Appendix B - Reed-Solomon RAID Source Code ... 41

rs_raid.h .. 41
rs_raid.c (Reed-Solomon encoding and decoding parts only) 43

V

List of Tables

Table Page

Table l: The relationship between Data Devices, Checksum Devices, and Data
Segments ... 15

List of Figures

Figure Page

Figure l: Typical LAN storage system .. 1

Figure 2: Proposed distributed RAID system .. 13

Figure 3: Logical flow of data in the proposed RAID system ... 14

Figure 4: Local RAID 5 IOZone Results (Read) ... 21

Figure 5: Local RAID 5 IOZone Results (Write) .. 22

Figure 6: Distributed Reed-Solomon, Some Degraded IOZone Results (Read) 23

Figure 7: Distributed Reed-Solomon, Some Degraded IOZone Results (Write) 24

Figure 8: Sustained Data Rate IOZone Results (Read) ... 26

Figure 9: Sustained Data Rate IOZone Results (Write) ... 27

vi

IDE

LAN

RAID

SCSI

Nomenclature

Integrated Drive Electronics

Local Area Network

Redundant Array of Inexpensive/Independent Disks

Small Computer Standard Interface

vii

I. Introduction

Traditional studies of Redundant Array of Inexpensive/Independent Disk (RAID)

systems generally concern a single central server with a stack of disks directly attached to

the server via a disk bus such as Small Computer Standard Interface (SCSI) or Integrated

Drive Electronics (IDE) as shown in Figure 1 [7, 13, 14, 20]. Their focus is on reliable

storage methods that can survive a single or even double disk failure. Such systems are

very common, and are regularly implemented in both hardware and software. These

systems can be costly in comparison to non-redundant systems, and upgrades generally

require the replacement of all of the disks in the system with larger disks. In many Local

Area Network (LAN) implementations, when the central storage becomes full, an

upgrade of the central storage or purge of data is required; workstation storage is often

vastly underutilized.

Workstation Workstation Workstation

Figure 1: Typical LAN storage system

Research has been done on distributed storage systems, utilizing the storage capabilities

of a network of computers as a single volume [4, 8, 12, 16, 28, 29, 30]. Most of this

1

research has focused on distributed storage for large clusters of computers which make

up a supercomputer or a set of reliable, networked storage servers. Workstations in the

can be unreliable and uniquely problematic in the hands of users. Prior studies that utilize

workstation storage in a distributed manner have focused on file mirroring techniques

which yield a low percentage of usable disk space and often no guarantee on availability

[L 5].

2

II. Background

2.1 RAID Background Information

Disk arrays are a way to increase performance and reliability over a single disk. By

spreading data over multiple disks, called striping, disk arrays improve petformance by

simultaneously utilizing multiple disks and presenting them as a single RAID volume.

However, since more disks are involved, this can decrease reliability unless redundant

disks are included in the array to tolerate failures. Many options are available for the

RAID storage as described by the most common RAID levels. Note that all RAID levels

are implemented at the block level, such that any file system could be used on top of the

RAID volume [7].

2.2 RAID O (Striping)

RAID O spreads the data across all of the disks to achieve a performance increase using

as few as 2 disks. Given n disks, the data is split up into blocks of equal size and written

such that block bis stored on drive bmodn. Thus, consecutive blocks are always written

to different disks, in order. A series of 11 consecutive blocks across the n disks is called a

stripe. Both read and write performance is increased especially for large accesses.

Despite the name, RAID O offers no redundancy; if any of the disks fail, the data on the

array cannot be completely recovered [7, 13].

3

2.3 RAID 1 (Mirroring)

RAID I is the simplest form of redundancy in which data written to one disk is also

written to another so there are always two copies of the data. Writes are done

simultaneously to both disks so the performance is similar to that of a single disk. By

combining RAID O with RAID 1, mirroring can be achieved with any even number of

disks and also benefit from the performance increases associated with striping. If any

disk fails, the disk's mirror is used to retrieve the corresponding data [7, 13, 20].

2.4 RAID 4 (Parity)

RAID 4 can be considered as a RAID O array with one additional disk, therefore

requiring at least 3 disks. The extra disk is used to store parity information for each of

the stripes. Read performance is similar to that of RAID 0, but write performance can be

much slower because the parity disk must be updated on every write and is therefore a

bottleneck. If any disk fails, the other stripe information is combined with the

information on the parity disk to calculate the failed drive's data [7, 13, 20].

2.5 RAID 5 (Interleaved Parity)

RAID 5 works in exactly the same way as RAID 4 except that the parity information is

interleaved across all of the disks to eliminate the single bottleneck parity disk. Since

RAID 5 offers a performance increase over RAID 4 with the same redundancy, RAID 4

is almost never implemented in practice [7, 13, 20].

4

2.6 Related Works Review

There have been several studies and implementations of distributed storage systems. The

focus of such studies has been decentralizing storage and utilizing the capacity of several

reliable networked servers. These systems generally rely on replication techniques

si mi Jar to RAID I or parity to distribute the data similar to RAID 5, often built on top of

a custom file system.

Coda: Coda is a distributed file system developed at Carnegie Melon University by the

systems group of M. Satyanarayanan in the School of Computer Science. It is based off

several central servers and replication. It also allows for a cached, disconnected

operation allowing offline use of the files on the system [28].

lntemiezzo: Intermezzo is also developed at Carnegie Melon University, and was

inspired by the Coda project. Like Coda, it is based off central servers and replication

and also allows for offline use and synchronization, but is implemented with a simpler

design [4].

Lustre: The same group that develops Intermezzo (Cluster File System) is also working

on a system called Lustre. Lustre is object based and abandons block-based file systems.

It is oriented toward a new storage paradigm but is still based on a large number of fairly

reliable nodes with uses on today's largest clusters [8].

5

Frangipani/Petal: Frangipani is a file system designed to be used on top of Petal, which

is a distributed, block-based storage system [16]. It is designed for a set of central servers

and can only sustain a single failure [30].

Sistina GFS: Sistina GFS is a commercial file system designed for cluster systems

similar to those targeted by Lustre, a large number of fairly reliable nodes [29].

Berkley xFS: xFS is a serverless distributed file system designed to distribute data over

cooperating workstations. It uses parity information to guarantee no individual node is

the single point of failure. The goal of the system is a high performance, scalable storage

system based on workstations connected via a very fast network like ATM or Myrinet.

Since it is based off parity for replication, the system can only sustain a single failure [1].

The system also appears to be unfinished and has not been updated in several years.

Serverless Distributed File System: Bolosky et al. at Microsoft Research have published

a paper on a serverless distributed file system based on replication of files amongst the

peer nodes. By making multiple replicas of each file and distributing them amongst the

client machines, the system provides high availability and high reliability. The system is

unique in that it does not assume a mutual trust among the client computers, eliminating

the need for central administration [5].

Google FS: Ghemawat et al. have developed a file system for the Google search services

designed to run on inexpensive commodity hardware while maintaining high

6

performance. It is based off a master server and uses block level replication for

redundancy. It has been used successfully to store hundreds of terabytes of data across

more than a thousand nodes [12].

2.7 Reed-Solomon Coding

Reed-Solomon coding extends beyond the traditional RAID levels to allow for multiple

simultaneous failures. James S. Plank gives an excellent description of Reed-Solomon

coding in [24], and even briefly describes a system similar to the proposed system, but

only for checkpointing (22, 23], not for a general purpose storage system. Plank defined

the problem domain of Reed-Solomon coding as follows:

Let there be n storage devices, D,, Di, ... , Dno each of which holds k bytes. These are
called the "Data Devices." Let there be m more storage devices C,, C2, ... , Cm, each of
which also holds k bytes. These are called the "Checksum Devices. " The contents of each
checksum device will be calculated from the contents of the data devices. The goal is to
define the calculation of each C; such that if any m of D,. D2, ... , Dn, C,, C2, ... , Cm, fail,
then the contents of the failed devices can be reconstructed from the non-failed devices
[24].

First the Data and Checksum devices must be split up into consecutive words of length w,

where w is generally 8 or 16 bits. Thus, D; consists of words d;,1, d;,2, ... , d;,k/w, and C;

consists of words c;, 1, c;,2, ••• , c;.kfw. To simplify, the second subscript can be dropped and

Reed-Solomon encoding can be defined in terms of blocks of length w, d 1,d2, ••• ,dn,

C1, C2, ... , c,,,.

Per Plank's correction in [25], it is necessary to construct a dispersal matrix, B, such that:

• It is an (n + m)xn matrix.

• The n x n matrix in the first n rows are the identity matrix.

• Any submatrix formed by deleting m rows of the matrix is invertible.

7

The dispersal matrix B can be created by starting with a Vandermonde matrix. Define the

n+m by 11 Vandennonde matrix V such that v . . = /-1
: I,}

oo o• 02 on-1

lo 1• 12 1 n-1

V= 20 2• 22 2n-l

(n +m-1)0 (n+m-1)1 (n+m-1)2 (n +m-It-•

By definition, V has the property that any submatrix formed by deleting m rows is

invertible [17]. V can then be converted to the desired B and still retain this property by

performing column-wise Gaussian elimination on the first n rows, such that

V' = B = [; J. where/ is the nxn identity matrix and Zis the remaining lower m rows

of B forming an mxn matrix. Now construct the vectors D = [d.,d2 , ••• ,dJT and

C = [c1 ,c2 , ••• ,c,,, JT. C is then calculated by the matrix-vector multiplication ZD=C.

Recovery also employs the B matrix defined above and involves Gaussian elimination as

follows. Define n+m vector E = [~ J. Thus BD=E. Now suppose t devices fail such

that t ::; m. Now define B' and E' from Band Eby removing the rows corresponding to

the failed devices. Now B'D = E' and D can be determined using Gaussian elimination,

. which is guaranteed to succeed due to the linearly independent properties of B, and thus

all Data Devices can be recovered. Any failed Checksum Devices can then be recovered

from the ZD=C equation above [24].

8

It should also be noted that if a data word changes from di to dj' then

c, '= c, + z,.
1
(d' 1 -d 1) • Thus, the new checksum data can be calculated using the old

checksum data, an item from the Z matrix and the difference between the old data and the

new data. Lastly, while the above equations are guaranteed to work with infinite

precision mathematics, a Galois Field with 2w elements must be utilized for all

calculations. Thus addition and subtraction are replaced by the XOR operation while

multiplication and division involve a table of logarithms [24].

It should also be noted that the particular variation on Reed-Solomon Coding used here is

denoted by Plank as RS-Raid, which is only used as an erasure code algorithm. A

complete, much slower implementation of Reed-Solomon Coding like the one found in

[15] and described in [3] and [21] can handle not only erasures but also errors, and is

often used for media-storage such as CD-ROMs as well as applications in Forward Error

Correcting [26,3 l].

9

III. Problem Domain

This thesis investigates the feasibility of a distributed storage system to utilize the unused

disk storage on a LAN of workstations, creating a network storage system that scales in

capacity with the number of workstations. Since workstations are essentially controlled

by the user, they are inherently unreliable, as the user may reboot or shutdown the

machine at any time. As such, a system based off the storage of workstations must be

able to handle a very large percentage of simultaneous failures.

Most of the existing distributed storage systems reviewed above would be unsuitable for

such an environment since they can generally only handle a small number of

simultaneous failures and are designed for use on fairly reliable nodes. The serverless

distributed file system by Bolosky et al. at Microsoft research is an exception, and was

designed to run on workstations. However, it is also based on the file replication which is

the most inefficient in terms of storage space to provide redundancy. The system is also

based off a custom file system requiring custom client software.

10

III. Hypothesis

It is hypothesized that a distributed RAID system can be developed for a group of

unreliable storage devices by utilizing Reed-Solomon coding to provide configurable

redundancy to handle multiple simultaneous failures. Furthermore, such a system can

provide adequate performance similar to that of a local RAID system. For the purposes

of testing the system, adequate performance is defined as reading and writing data with a

sustained data throughput at least 50 percent that of a local RAID system, and a burst

throughput at least 90 percent that of a local RAID system. Such performance would be

considered a reasonable trade-off for the reduced cost of implementing a distributed

RAID system on existing workstations versus a local RAID system.

11

IV. Foundations

5.1 Overview

This distributed storage system was designed with a medium-sized LAN in mind, such as

an educational institution's computer labs, or a medium to large business. Each

workstation will have a block of storage allocated for use by the distributed system.

Further, each block will be designated as either a Data Device or a Checksum Device.

The Reed-Solomon encoding algorithm allows an arbitrary number of Checksum Devices

to be designated. For each failed Data Device, the data from a single Checksum Device,

along with the data from the rest of the Data Devices is needed to calculate the missing

data. Thus any combination of Data Devices and Checksum Devices can fail

simultaneously, as long as the number of simultaneous failures does not exceed that of

the number of Checksum Devices.

These devices will be made available only to a central coordinating server via a network.

The central server will create the logical volume from the devices and handle all read and

write requests, as well as the Reed-Solomon calculations. Since the system is block­

based, any file system could be implemented on top of the logical volume. Additiona1ly,

the logical volume could be made available to any client on the network via existing

protocols such as NFS, or SMB.

12

Figure 2 shows the physical network connections of the system, and Figure 3 shows the

logical flow of data during a typical read or write. Notice that all of the data must travel

through the coordinating server where the Reed-Solomon coding takes place. Also note

that a RAID Data Workstation could also make a read or write request to the logical

volume, but the flow of data would remain the same.

RAID Data Workstations Other Workstations

Figure 2: Proposed distributed RAID system.

13

~001

Hardllsk

Figure 3: Logical flow of data in the proposed RAID system.

5.2 Proposed Approach

To fully analyze such a proposed distributed storage system, several aspects of the system

must be examined. First, both read and write performance must be evaluated in the

situation where all nodes are online, as well as when one or more nodes are offline. If

performance is deemed adequate when the system is in a stable state, the performance

during rebuild must be considered, after a node goes offline then comes back online,

similar to the analysis done in [14]. The ability and associated performance

considerations could also be examined when a node is added or removed permanently

from the system.

14

5.3 Introductory Setup

The first step in describing a RAID system is to designate a stripe size. That is, given

data of size S, it must be split into s equal size segments S1,S2,S3, .. . ,Ss. The resulting s

segments must then each be split up into n equal size blocks, each one stored sequentially

on each of then Data Devices. Thus, S; is split up into (Si.1,Si.2, ... ,Si.n). The result thus

far is exactly equivalent to Raid 0, striping. To add fault tolerance, for every segment

S 1,S2,S3, ... ,Ss, we must designate m additional blocks of calculated, redundant data (R) to

be placed sequentially on the Checksum Devices. Note that if m equals 1, and the

checksum algorithm was parity instead of Reed-Solomon coding, it would be equivalent

to a RAID 4 system.

n Data Devices m Checksum Devices

Data Segments D1 D2 ... Dn C1 C2 ... Cm

S1: s,., S1.2 ... S1,11 R1.1 R1.2 . .. R1.m

S2: S2,1 S2.2 ... S2,, R2,1 R2.2 . .. R2.m
'

.

Ss: Ss,1 Ss,2 ... Ss,11 Rs.I Rs.2 . .. Rs.m

Table 1: The relationship between Data Devices, Checksum Devices, and Data Segments.

Now, if only a partial segment is needed, and the appropriate Data Devices are available,

that data may be retrieved directly from the Data Devices with no computation.

However, if one of the Data Devices is not available, the entire segment must be

15

reconstructed from the remaining blocks from the Data Devices, plus one block from a

corresponding Checksum Device for each missing Data Device.

For example, if there are 50 data devices (1 through 50) and 50 Checksum Devices, but

Data Devices 46 through 50 of the data devices are unavailable (offline) at the moment.

A read is being processed by the central coordinating server that requests Segment i,

blocks 25 through 50. This request cannot be processed directly since Data Devices 46

through 50 are offline. Thus, the entire Segment i must be reconstructed on the central

coordinating server. The server must request 50 blocks from 50 different devices to

reconstruct the Segment i. The beauty of Reed-Solomon coding allows the coordinating

server to request the blocks from any 50 unique devices, there is no need to request

blocks 1-45 from Data Devices 1-45, and then checksum data from 5 of the Checksum

Devices. To maximize throughput, the coordinating server would need to be designed to

make such requests to the 50 least used Devices when reconstructing an entire segment.

This system allows for very configurable redundancy, which means reliability is

customizable, at the expense of storage space and computation time. If the reliability of

the workstations to be used as Devices in the system is carefully analyzed prior to

implementation, the reliability of the Distributed RAID system can be configured as

needed by determining n and m to maximize storage space while maintaining an

appropriate level of redundancy.

16

Note that stripe size (the size of a block of a segment Si.j) can greatly affect performance.

For example., if the stripe size is too small., incoming requests will be more likely to

require more than one stripe to fulfill and therefore the coordinating server will need to

send out a large number of requests to Data Devices and Checksum Devices to fulfill

each incoming request, and the required overhead for each packet of data could become

excessive. On the other hand, if the stripe size is too large, in the case where an entire

segment must be reconstructed, a very large amount of data may need to be requested

from the Data Devices and the Checksum Devices in order to fill a relatively small

incoming request. For the distributed RAID system proposed, stripe size will need to be

determined on a system by system basis. The type of data the system holds, the request

pattern of clients, the network throughput, the network latency, and the availability of the

Data Devices will each play a role in determining stripe size.

5.4 Experimental Methodology

Since no distributed system shares the same goals as the system proposed., the system

cannot fairly be tested against any such system. However, the proposed system is

essentially an alternative for a single centralized server utilizing a few large drives in a

RAID 5 configuration, and thus will be used as the comparison system during

experimentation. Though the two systems are not congruent, it is a valid comparison, as

it is the same comparison system administrators would make if deciding which system to

implement. The single, central RAID 5 system may be faster, but if the proposed system

can at least remain competitive, it becomes a viable alternative for system administrators

17

since a distributed RAID system would utilize otherwise unused storage located on

workstations, and thus, could be cheaper and scale better to the users' needs.

The distributed RAID test system was comprised of a number of workstations connected

to a central server via Network Block Devices (NBD). The central server is responsible

for the Reed-Solomon calculations. For comparison, the same central server was also

equipped with several drives locally and configured for RAID 5 via Linux software

RAID.

To measure array performance, a disk benchmark utility called !Ozone was run on both

systems to highlight the strengths and weaknesses of each. !Ozone performs a wide

variety of tests on a range of parameters to determine a system's abilities in terms of file

size access, cache performance and limitations, etc [6]. Specifically, !Ozone was used to

measure sustained throughput and burst throughput while varying the request (record)

size to simulate various usage types. I0Zone is a popular tool that has been used

extensively to test various storage systems [I, 11, 16]. While there are efforts to improve

mass storage system benchmark tools [19], IOZone remains one of the most common,

and is well suited for this application.

18

VI. Experimental Results

6.1 Environment

The coordinating server was a dual S33Mhz Xeon processor system with 512MB of

RAM, and six 7200RPM 9GB Ultra-SCSI hard disks for local testing. The system was

connected to seven other machines through NBD via a switched lOOMbit network for

distributed testing.

The Linux Software Multi-Device (MD) driver served as a basis for both the local and

distributed testing. The Linux Kernel version 2.6.2 was employed with the RAIDS block

driver as well as a custom RS-RAID driver written with the assistance of [27] and [9]. A

portion of the RS-RAID driver can be found in Appendix B. Due to limitations in the

Linux kernel and MD architecture, the stripe size was fixed at 4KB. However, since the

NBD protocol has very little overhead, this was not a problem in the distributed system.

The custom RS-RAID driver was based on the work of Evan Danaher [10], then modified

to be highly optimized for w=8 bits, including a pre-built lookup table for the Galois field

multiplication and division. The interface to the MD driver was then based off the

existing RAIDS and RAID6 drivers, expanding the number of parity devices to m versus

the one of RAIDS or two of RAID6.

19

For al I tests, IOZone was used to measure throughput on increasing file sizes from 64

kilo bytes to 1 gigabyte in order to exceed the coordinating server's RAM size and thus

internal disk cache so that disk-level performance could be measured. Thirteen tests

(writer, rewriter, reader, rereader, random read, random write, backward read, record re­

write, stride read, fwrite, fre-write, fread, and fre-read) were performed in each scenario.

However, only the read and write tests were analyzed, as they clearly show the burst and

sustained throughput for reads and writes. The tests were performed with a range of

record sizes from 4k to 16M, though record sizes of 32K and lower were not tested with

file sizes 32M or higher to save time. All of the test arrays were created with a chunk

size of 32KB and formatted as a single ext2 file system with a block size of 4KB.

6.2 RAID 5 Control Test

Figures 4 and 5 show the baseline RAID 5 test, to which all other tests can be compared.

This is the "normal" speed that a server disk system would operate. All 6 local disks

were utilized during this test.

20

Alo Size (KB)

RAID 5 Read

co

Record Size (KB)

---- - -------

Disk Cache

Throughput (KB/&)

• 400000-450000

D 350000-400000

• 300000-350000

D 250000-300000

• 200000-250000

D 150000-200000

D 1 00000-150000

• 50000-1 00000

0 0-50000

Figure 4: Local RAID 5 IOZone Results (Read)

2 1

RAID 5 Write

FIie Size (KB)

a,

Record Size (KB)

Figure 5: Local RAID 5 IOZone Results (Write)

Disk Cache

Throughput (KB/s)

a 300000-350000

D 250000-300000

• 200000-250000

D 150000-200000

D 100000-150000

• 50000-1 00000

tl0-50000

The effects of the CPU cache and Disk Cache can clearly be seen with a burst speed well

above 300MB/sec, but the last test with the 1GB file size shows sustained data rate of

approximately 50MB/sec for both reads and writes.

6.3 Distributed Reed-Solomon Test, Partially Degraded

The first Reed-Solomon RAID test was a distributed test with 5 of the 7 dist1ibuted nodes

such that 11=3, 111=4. This test shows how the RS-RAID a lgorithm can perfo1m with 2 of

22

the 3 data disks fai led, but with all 4 parity di sks in tact, about 30% failure. While it taxed

the CPU heavil y, it did not max it out the entire time.

RS-RAID Read

FIio Size (KB)

Sustained

Record Size (KB)

Disk Cache

Throughput (KB/s)

D 350000-400000

• 300000-350000

D 250000-300000

• 200000-250000

D 150000-200000

D 100000-1 50000

• 50000-1 00000

0 0-50000

Figure 6: Distributed Reed-Solomon, Some Degraded JOZone Results (Read)

23

64

FIie Size (KB)

Sustained

--~----------

---- -------- --- ----
RS-RAID Write

Record Size (KB)

Disk Cache

Throughput (KBJs)

D 250000-300000

• 200000-250000

D 150000-200000

D 100000-150000

• 50000-100000

0 0-50000

Fi~ure 7: Distributed Reed-Salam.on, Some Degraded IOZone Results (Write)

lt is c lear from Figures 6 and 7 that RS-RAID can compete with RAIDS in burst

th roughput, but this is not surprising as the burst throughput is a lmost entirely dependent

on the operating system's disk cache as well as the CPU cache: the underlying storage

mechanism is iITe levant. However, it appears that the RS-RAID test shown above was

limited by the lOOMbit switched network with a sustained data rate for both reads and

24

writes around 1 OMB/sec. Thus, more tests were performed to get a better idea of how

RS-RAID and RAID 5 compare.

6.4 Additional Tests

In addition to the RAID 5 Control Test and Distributed RS-RAID, Partially Degraded

tests above, four additional tests were performed as follows:

• RAIDS Distributed - a baseline network test. For this test, 6 of the distributed

nodes were utilized so it could be compared directly with the RAIDS Control

Test, which used 6 local disks. This test showed that the network can be a

bottleneck at approximately lOMB/sec.

• RS-RAID Distributed, Non-Degraded. This test shows how the RS_RAID

algorithm can perform at best-case conditions with n=3 and m=4 with no failed

devices. It maxed out the network for both reads and writes while still consuming

a fair amount of CPU time. Reads had a sustained throughput of approximately

1 OMB/sec, while writes, due to the need to write to the parity devices, sustained

approximately 5MB/sec.

• RS-RAID Distributed, Fully Degraded. This test shows how the RS-RAID

algorithm can perform in worst-case scenario with n=7, m=1, with exactly n

devices operational, 3 data and 4 parity. Since RS-RAID is a processor-intensive

algorithm, this test was designed to see if the CPU could become the limiting

factor in a fairly small system. It heavily taxed the CPU, with the network no

longer the limiting factor.

25

• RS-R AID Local, Partially Degraded - In a typical implementation, it is expected

that the dist1ibuted RS-RAID would usua lly work at some level of degradation

but not the maximum. This test shows how well the algorithm performs assuming

the ne twork is not a limiting fac tor. This test maxed out at least l CPU for the

duration of the test. It is a direct comparison for RS-RAID Distributed, Partially

Degraded. It shows the maximum throughput of the a lgorithm, on that central

server, wi th n=3, m=4, and 2 data devices failed.

Figures 8 and 9 below are graphs of the sustained data rate , using the 1GB fi le size over

the vari ous record sizes of all 6 tests. Note that record size did not significantly affect

sustained data rate for any of the tests.

I
I

I

60000

50000

-en m 40000
:::£ -
1 30000
C)
:::,

~ 20000
1-

10000

0

! __ _

-
m -

-·-

-

>E)E H

• • ~ • : ; :

Sustained Data Rate (Read)

- ...
m ~

. ..
m

~E)E H ~E

• • • • : : : :

-m

~E ~<

• • : :
i

-+- RS Dist ributed,
Degraded

~ RS Distributed, Some
Degraded

RS Distributed, Non­
Degraded

-x- RS Local, Some
Degraded

---- RAID 5, Local

! --- RAID 5, Distributed

-- -----

~_'l,<o r{?'o ~...._'l, ... <::)rt <;:)tfl:> .,f.,<o_o.,'l, <:>:JC?J'
' (1) IX"' <o .._<o

Record Size (KB)

Figure 8: Sustained Data Rate IO Zone Results (Read)

26

Sustained Data Rate (Write)

60000

50000

-1/) m 40000
:::a:::: --:::J
_g- 30000 -1------------------l
C'l
:::J

~ 20000
.....

10000

o-------~----------~
~ ,ri,<o h (o ,ri, ~ "~ .0.0J(o , OJ<'/,, °.)c:J"

V ~ " <:) ~ ~ '<) ,ro

Record Size (KB)

-+- RS Distributed,
Degraded

~ RS Distributed, Some
Degraded

RS Distributed, Non­
Degraded

\ ~ RS Local, Some
1 Degraded

~ RAID 5, Local

. RAID 5, Distributed

Figure 9: Sustained Data Rate IOZone Results (Write)

The RS-RAID Local , Parti ally Degraded test shows potentia l, reaching 22MB/sec on

reads, but only showing a mere lOMB/sec on write. This poor w1ite performance is due

to the fac t that when any data devices are missing, the coordinating server a lmost always

needs to read the enti re st1ipe first to reconstruct the miss ing data then do the w1i te .

However, this is onl y 47% and 19% of the, sustained data rate for reads and wri tes

achieved by the local RAIDS array, respecti vely.

T he Distributed tests (both RS and RAIDS) also shows that in a real-world distributed

system, a switched lOOMbps network would not be nearly fast enough to handle a

27

distributed RAID system; lOOOMbps would certainly be necessary to match the

22MB/sec achieved by the RS-RAID Local test.

28

VII. Conclusion and Future Work

7 .1 Experimental Conclusion

Despite a highly optimized RS-RAID algorithm, the Gaussian elimination of data

recovery and matrix-vector multiplication of checksum data calculations proved to be a

significant bottleneck with fairly small values for n and m when testing for sustained

throughput. Higher values for n and m, as would be found in a medium-size business or

large educational computer lab would certainly produce similar or worse sustained

throughput due to the 0(12 2
) nature of the matrix calculations. Clearly, distributed RAID

via Reed-Solomon coding is not a viable alternative to a local RAID 5 system for general

use where sustained throughput is a concern.

However, such a distributed RAID system may have other uses. Such a system could be

used as a backup system for a local disk array in lieu of an expensive tape backup system.

Its distributed nature is ideal for a backup system, especially if the nodes of the

distributed system are in different physical structures, providing additional means for

disaster recovery. A distributed RAID system may also have uses in an environment

where burst throughput is important, but sustained throughput is not. One such example

is a large database, where a small number of records are accessed very frequently.

29

7.2 Future Work

Transaction Log: Though it was not tested in this experiment, it is apparent that the slow

performance of a rebuild of a node after it comes back online would be detrimental to the

system, especially considering the frequency of expected node failures. (i.e. a user

rebooting a workstation would require that node to be rebuilt.) To counteract this

situation, a transaction log could be added, located on the central coordinating server. It

would simply maintain a list of writes over a given period of time. Thus, if a node is

down for a short period of time, that is, less than the amount of time covered by the

transaction log, the central server can retrieve the changed data from the other nodes and

send the node the writes that occurred during its offline period. This would prevent the

need for a full synchronization.

Central Disk Cache: In addition to the operating system's built-in disk cache in memory,

it is possible to consider a disk cache, stored on one of the central server's local disks.

This would create another performance plateau between that of the memory cache and

the distributed storage, thus increasing average performance, but would not change the

sustained throughput of the system.

Distributed Processing: With a custom client, it may be possible to speed up the system

by utilizing each node's processor to facilitate the Reed-Solomon coding, particularly on

writes. A write to a block would consist of sending the new data to the data device, plus

the difference between the old and new data to the checksum devices (d'J-dJ), which

30

would then read their own checksum data for that stripe and recalculate the checksum

using c; '= c; + z;./d' i -di) as mentioned above.

lmerleaved Parity: To simplify coding, testing, and debugging, the system was set up

analogous to RAID 4, with designated Data Devices and Checksum Devices. In order to

alleviate the bottleneck of needing to write to the same Checksum Devices for every

write, checksum data could be interleaved amongst then+ m disks. This would improve

performance in the same way tha~ RAID 5 improves over RAID 4.

31

References

[l] A. Acharya, M. Uysal, R. Bennett, A. Mendelson, M. Beynon, J. Hollingsworth,
J. Saltz and A. Sussman. Workshop on YO in Parallel and Distributed Systems.
Proceedings of the fourth Workshop on 1/0 in Parallel and Distributed Systems:
Part of the Federated Computing Research Conference, Philadelphia, PA, May
1996, pages 15-27.

[2] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli and R. Wang.
Serverless Network File Systems. ACM Transactions on Computer Systems,
Volume 14, Issue 1, February 1996, pages 41-79.

[3] E. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York, 1968.

[4] P. Braam, M. Callahan and P. Schwan. The JnterMezzo File System. The Perl
Conference 3.0, O'Reilly Open Source Convention, Monterey, CA, August 1999.

[5] W. Bolosky, J. Douceur, D. Ely and M. Theimer. Feasibility of a Serverless
Distributed File System Deployed on an Existing Set of Desktop PCs. ACM
SIGMETRICS Performance Evaluation Review, June 18-21, 2000, pages 34-43.

[6] D. Capps, /ozone Filesystem Benchmark. http://www.iozone.org/. Date of
access: November 15, 2003, Date of creation: unknown, Date of update: April 29,
2003.

[7] P. Chen, E. Lee, G. Gibson, R. Katz and D. Patterson. RAID: High-Performance,
Reliable Secondary Storage. ACM Computing Surveys, Volume 26, Issue 2,
June 1994, pages 145-185.

[8] Cluster File Systems, Inc. Lustre: A Scalable, High-Performance File System.
http://www.lustre.org/docs/whitepaper.pdf, Date of Access: November 2003, Date
of creation: November 11, 2002, Date of update: None.

[9] J. Corbet. Porting Device Drivers to the 2.6 Kernel.
http://lwn.net/Articles/driver-porting/, Date of Access: February 2004, Date of
Creation: October 2003, Date of update: January 2004.

[10] E. Danaher. Distributed Storage.
http://www.tjhsst.edu/-edanaher/techlab/index.php, Date of access: February
2004, Date of creation: September 2003, Date of update: January, 2004.

32

[11] A. Gefflaut, T. Jaeger, Y. Park, J. Liedtke, K. Elphinstone, V. Uhlig, J. Tidswell,
L. Deller and L. Reuther. The SawMill Multiserver Approach. Proceedings of the
Ninth Workshop on ACM SIGOPS European Workshop, Kolding, Denmark
September 2000, pages 109-114.

[12] S. Ghemawat, H. Gobioff and S. Leung. The Google File System. Proceedings of
the nineteenth ACM Symposium on Operating Systems Principles, Bolton
Landing, NY, October 2003, pages 29-43.

[13] J. Hennesy and D. Patterson. Computer Architecture A Quantitative Approach,
Third Edition. Morgan Kaufmann Publishers, San Francisco, CA, 2003.

[14] H. Kari, H. Saikkonen, N. Park and F. Lombardi. Analysis of Repair Algorithms
for Mirrored-Disk Systems. IEEE Transactions on Reliability, Volume 46, Issue
2, June 1997, pages 193-200.

[15] P. Kam. Fonvard Error Correcting Codes. http://www.ka9q.net/code/fec/, Date
of update: August 2003, Date of access: February 2004, Date of creation:
unknown.

[16] E. Lee and C. Thekkath. Petal: Distributed Virtual Disks. Proceedings of the
seventh international conference on Architectural Support for Programming
Languages and Operating Systems, Cambridge, MA, October 1996, pages 84-92.

[17] F. Mac Williams and N. Sloane. The Theory of Error-Correcting Codes, Part I.
North-Holland Publishing Company, Amsterdam, New York, Oxford, 1977.

[18] D. Michail, Flouris, P. Evangelos and Markatos. The Network RamDisk: Using
remote memory on heterogeneous NOWs. Cluster Computing, Volume 2, Issue 4,
1999, pages 281-293.

[19] E. Miller, Towards Scalable Benchmarks for Mass Storage Systems. Fifth NASA
Goddard Space Flight Center Conference on Mass Storage Systems and
Technologies, College Park, MD, September 1996, pages 515-528.

[20] D. Patterson, G. Gibson and R. Katz. A Case for Redundant Arrays of
Inexpensive Disks (RAID). Proceedings of the 1988 ACM SIGMOD Conference
on Management of Data, Chicago, IL, June 1988, pages 109-116.

[21] W. Peterson and E. Weldon, Jr. Error-Correcting Codes, Second Edition. The
MIT Press, Cambridge, Massachusetts, 1972.

[22] J. Plank and K. Li. Algorithm-Based Diskless Checkpointing for Fault Tolerant
Matrix Operations. Proceedings of the twenty-fifth International Symposium on
Fault-Tolerant Computing, Pasadena, CA, June 1995, pages 351-360.

33

[23] J. Plank, bnproving the Perfonnance of Coordinated Checkpointers on Networks
of Workstations Using RAID Techniques. Proceedings of the fifteenth
Symposium on Reliable Distributed Systems, Niagara-on-the-Lake, Canada,
October 1996, pages 76-85.

[24] J. Plank. A Tutorial on Reed-Solomon Coding for Fault-Tolerance in RAID-like
Systems. Software Practice & Experience, Volume 27, Number 9, September
1997, pages 995-1012.

[25] J. Plank and Y. Ding. Note: Correction to the 1997 Tutorial on Reed-Solomon
Coding. Technical Report UT-CS-03-504, University of Tennessee, April, 2003.

[26] M. Purser. Introduction to Error Correcting Codes. Artech House, Boston, 1995.

[27] A. Rubini and J. Corbet. Linux Device Drivers, Second Edition. O'Reilly &
Associates, Inc., 2001.

[28] M. Satyanarayanan. Coda: A Highly Available File System for a Distributed
Workstation Environment. IEEE Transactions on Computers, Volume 39,
Number 4, April 1990, pages 447-459.

[29] Sistina Software, Inc. Sistina GFS.
http://www.sistina.com/downloads/datasheets/GFS_datasheet. pdf, Date of access:
October 31, 2003, Date of creation: unknown, Date of update: unknown.

[30] C. Thekkath and T. Mann, E. Lee. Frangipani: A Scalable Distributed File
System. Sixteenth Symposium on Operating Systems Principles, St. Malo,
France, December 1997, pages 224-237.

[31] S. Wicker and V. Bhargava. Reed-Solomon Codes and Their Applications. IEEE
Press, New York, 1994.

34

Appendix A - IOZone Test Result Tables

The results of the IOZone read and write tests can be found below. The results of the 11

other tests are available from the OSU Computer Science department.

RAID 5, Local

File Size Record Size (KB)
(KB) 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

64 413089 385446 426528 380881 382990
128 331692 336046 358611 371977 349805 344911
256 332492 345058 359529 365164 368339 311813 257789
512 329481 353098 358061 379517 382919 315863 253580 238029

1024 336964 350081 367415 366225 374678 299775 246918 210739 216582
2048 337563 357169 368204 383089 378632 296207 234136 213197 199630 196149
4096 329602 349340 369312 377890 379015 298696 237919 206586 196979 201526 194583
8192 328417 346266 366253 380386 383252 295165 238750 209144 198733 200161 195056 206931

16384 331484 350100 367411 381404 378522 304897 250872 212809 201253 202296 198859 205924 205640
32768 380510 307311 247580 216140 202946 202549 201140 208482 205946
65536 380826 313872 255109 216658 203942 205871 204745 209055 209638

131072 381645 309521 251706 219703 204520 201967 202516 211914 210402
262144 382364 310159 251824 216911 205024 203739 202774 209621 213868
524288 49972 47655 47891 43924 46889 47398 46687 46881 47515

1048576 49281 48205 47935 46797 47099 47080 46177 46077 46957

RAID 5 Local IOZone Test Results (Read) in KB/sec

File Size Record Size (KB)
(KB) 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

64 4363 244285 271259 293630 241598
128 259678 294195 283834 303991 288219 226545
256 248088 262559 270606 271759 238831 192191 155146
512 191405 211569 210777 209062 177844 166771 167545 144510

1024 178085 187755 186009 176311 166452 162255 160700 152129 144085
2048 168171 174683 172957 166098 157368 155057 149936 154810 154333 141564
4096 162565 167663 166058 163624 152426 149778 150660 150727 151027 148994 145185
8192 159822 171578 171779 164656 158021 155077 152440 152895 153675 154881 155652 153979

16384 162203 170083 167813 161313 155313 153709 155006 154309 154633 153853 155475 155410 149243
32768 151679 152505 151381 153924 153637 154681 156319 154949 153517
65536 135745 141091 138893 142135 141332 147210 143874 150076 149644

131072 136427 124834 123130 134012 132249 125338 125732 125011 128917
262144 115337 115145 120084 131776 119201 120068 128812 115565 120966
524288 69104 70822 69240 72630 72200 72172 71030 72709 72027

1048576 52364 53680 53432 52906 54293 53867 53621 52666 53830

RAID 5 Local IOZone Test Results (Write) in KB/sec

35

RS-RAID Distributed, Partially Degraded

File Size Record Size (KB)
(KB) 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

64 326411 357688 353477 376580 367741
128 333364 349813 360461 372084 379746 358508
256 329497 354553 364127 372643 378700 351206 299096
512 329891 346894 367573 373207 380100 337715 290097 266396

1024 331293 351642 370619 379264 377288 338061 277053 261088 254344
2048 334372 353226 370283 374330 383377 335952 287805 254154 243551 241341
4096 330669 348005 367747 373656 384386 327731 280125 249194 239490 237476 238097
8192 327757 347797 365014 379189 378714 338609 283175 249087 238980 238890 231924 236851

16384 334537 348535 366302 380210 376989 335991 283592 250569 238688 234798 237945 238222 238576
32768 379214 332842 283801 247148 235305 234583 237693 237633 237129
65536 380388 336370 287409 249334 234896 237198 237069 234040 237046

131072 380492 339727 288177 250355 234606 234097 233943 234133 233918
262144 380613 343933 284501 250262 237379 234001 234082 233779 233844
524288 7968 7665 7642 7940 7780 7961 7961 7717 7732

1048576 7718 7725 7712 7649 7611 7712 7575 7693 7643

RS-RAID Distributed, Partially Degraded IOZone Test Results (Read) in KB/sec

Record Size (KB)

File Size
(KB) 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

64 837 232774 255044 253905 264564

128 258057 268908 275827 278295 276478 227375
256 250464 261494 262822 257042 250718 220884 181161
512 223962 231991 233046 224164 212881 195045 184897 163370

1024 207669 212535 209192 203864 191580 178518 172655 176522 164950
2048 200842 200605 201855 196411 178661 175104 168809 167321 172814 167127
4096 196574 200470 198181 188695 175058 172137 170566 168213 172324 172929 168664
8192 194903 195601 194003 182812 172068 168736 165578 165364 168472 166886 169200 167755

16384 192185 193098 193930 183693 171189 164872 164567 166090 167096 165111 165218 165048 167219
32768 166283 166224 165427 165968 164353 166584 163315 164603 164535
65536 149390 119613 149778 141958 144638 145894 136913 132593 147465

131072 135510 125526 154228 110834 136546 120131 111201 117945 107992
262144 20562 21726 19932 20525 19364 20774 15432 19577 20127
524288 6410 7034 6990 6892 6872 6839 6956 6773 7002

1048576 5021 5014 5068 5099 5118 5145 5199 5069 5127

RS-RAID Distributed, Partially Degraded IOZone Test Results (Write) in KB/sec

36

RS-RAID Distributed, Fully Degraded

File Size Record Size (KB)
(KB) 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

64 331730 320132 355790 367571 359458
128 329863 349624 355652 364668 369888 348708
256 330339 345530 364665 370431 370416 345028 286696
512 330095 343375 364179 373995 368348 331620 266656 269904

1024 329260 351641 341670 376334 363642 329058 275047 260620 250799
2048 332689 337288 354147 373591 368949 328042 282244 255521 242708 244537
4096 328075 347734 365844 369573 369777 337064 280144 253119 242037 240106 240671
8192 331660 350624 364135 371671 376108 328361 282668 251713 239476 238987 236319 239580

16384 330382 355571 368288 380263 377545 329784 286058 251605 236472 235368 236053 235392 235061
32768 378505 335092 282417 247587 235410 238091 238238 235324 234702
65536 379546 334437 286866 251093 235246 237649 237360 234859 237414

131072 379431 334643 286585 247378 235525 237283 237085 237019 237264
262144 386030 335458 286566 250367 235472 234366 234864 236548 235009
524288 5514 5495 5629 5579 5648 5580 5673 5559 5543

1048576 5660 5655 5657 5746 5798 5848 5758 5706 5607

RS-RAID Distributed, Fully Degraded IOZone Test Results (Read) in KB/sec

File Size Record Size (KB)
(KB) 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

64 223047 255020 262362 262393 239664
128 246100 271214 275323 266728 280736 227768
256 245208 248540 256779 243117 246629 213671 179663
512 220025 228458 226946 217602 206862 180155 176253 163577

1024 208763 203901 201856 202210 185610 177966 172275 174242 165079
2048 202891 207643 200351 194862 181542 172738 173617 174091 173516 166368
4096 198392 202631 200292 188027 176903 168920 171108 169129 170156 171971 166321
8192 194271 195606 195582 184293 173140 168293 165317 165917 166219 166247 168761 165588

16384 191897 193543 192977 181353 168053 165991 165893 166370 166771 164678 167525 164989 166761
32768 166410 164891 164452 163236 162951 163668 165855 163754 166105
65536 157254 155422 152298 130826 114778 105047 156091 157136 113479

131072 85197 73804 156880 139833 141365 80843 128296 84897 63531
262144 27270 27588 27408 26914 27724 27071 27375 29490 28472
524288 9646 9697 9724 9732 9930 9655 10149 10006 10032

1048576 7144 7159 7060 6978 7030 6994 7053 7008 7058

RS-RAID Distributed, Fully Degraded IOZone Test Results (Write) in KB/sec

37

RS-RAID Distributed, Non-Degraded

File Size Record Size (KB)
(KB) 4 8 16 32 64 128 256 512 I024 2048 4096 8192 16384

64 326502 355376 369866 374283 376517
128 329002 359597 358655 376355 376440 324958
256 330318 348291 364205 362063 361613 326122 299762
512 328423 345937 365708 372116 373421 324652 292056 268193

1024 330421 339635 367408 377033 377718 324046 266389 247349 249884
2048 329894 348419 354630 378775 374473 3IOll7 283733 254506 242800 245179
4096 326714 351435 365223 368180 367356 321711 284723 252137 241394 236557 241154
8192 329763 351815 365387 376348 376437 321633 281009 246762 235788 234997 239190 239315

16384 329128 352094 365445 379181 372770 325945 283312 246820 237897 237590 234906 237825 237900
32768 380753 325311 283085 246866 234911 234361 236987 234556 234598
65536 381202 320158 283716 250278 237261 237079 236888 234139 234198

131072 375551 325984 279460 250231 234702 236965 233799 234658 236818
262144 363316 326036 279353 247065 234654 233975 233984 237013 236791
524288 9214 9165 9317 9220 9374 9109 9236 9215 9280

1048576 9323 9223 9269 9246 9243 9247 9266 9176 9288

RS-RAID Distributed, Non-Degraded IOZone Test Results (Read) in KB/sec

File Size Record Size (KB)
(KB) 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

64 218414 246124 257122 246209 236164
128 255990 269467 280100 286386 259116 212602
256 252960 270619 271495 267783 248290 209836 184438
512 221451 227246 230534 217968 204474 191764 184776 166779

1024 209192 214588 213328 200978 189522 179393 169763 171728 162979
2048 199067 201495 200707 188806 178492 174459 170014 167895 170609 165949
4096 194437 202201 200215 189577 177331 168941 166564 170516 168566 169424 168524
8192 193321 195616 194662 182975 173196 165464 166065 165836 165685 168062 166092 167207

16384 192671 195370 194139 182545 170709 164339 162359 163674 166277 164155 164004 166208 163496
32768 168708 162145 161492 163077 162920 164842 166023 163759 163777
65536 142632 157865 130143 133474 131763 143848 143922 153174 143155

131072 110626 113002 113964 112715 155340 116666 119537 116409 117450
262144 19327 18444 18266 21269 21020 20264 21306 23203 18868
524288 6878 6738 6734 7110 6975 6955 7280 6857 6885

1048576 5272 5299 5215 5148 5331 5086 5322 5251 5292

RS-RAID Distributed, Non-Degraded IOZone Test Results (Write) in KB/sec

38

RS-RAID Local, Partially Degraded

File Size Record Size (KB)
(KB) 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

64 344014 359554 254865 387620 349527
128 339510 342290 365595 382076 377564 333399
256 324489 355992 356492 368406 377567 325269 283532
512 327557 346656 369396 367798 381811 318808 284904 248419

I024 329902 348289 373051 379688 374129 327158 285471 255748 249945
2048 334693 349788 366956 380958 383021 325183 274566 249148 244889 244770
4096 329575 348063 365939 374888 374473 325365 282656 248632 241479 237711 240968
8192 332145 349921 371756 378976 376209 320727 282024 248822 239105 238022 235665 238799

16384 330876 353157 366221 370821 376998 321028 278100 250030 236043 237301 234831 234896 238392
32768 378230 318943 278159 249581 237492 232089 236607 237025 237560
65536 363241 317970 281802 246268 234281 232188 236592 236739 237211

131072 377090 323107 277036 246188 234168 235836 236298 236571 237072
262144 378020 325034 278001 246558 234524 233282 236220 233704 233918
524288 22683 22579 22378 22524 22432 22339 22292 22531 22309

1048576 22570 22459 22368 22133 22278 22168 22111 22239 22196

RS-RAID Local, Partially Degraded IOZone Test Results (Read) in KB/sec

File Size Record Size (KB)
(KB) 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

64 219929 266674 265616 274785 265581
128 258113 277648 275286 293517 271124 218443
256 243560 269172 265846 266690 253977 212780 186731
512 225850 226959 230834 218437 206197 189425 181623 16311 I

1024 205830 214629 212758 196844 187441 176247 174181 174472 163681
2048 199514 201953 201613 191814 178302 170071 169452 170822 171050 168283
4096 196113 200068 196621 185557 175642 169003 167909 168034 168998 169339 167054
8192 195695 195080 192454 181914 171775 166565 164878 165585 165682 166119 166341 164759

16384 189106 191332 189572 178937 169764 164802 164045 164565 164301 167067 167323 166248 166033
32768 170599 163917 165185 165729 163868 166520 166276 164152 164782
65536 157028 161251 158938 161064 151395 161163 159286 160406 154668

131072 129377 135829 130649 125388 130490 127141 128240 131448 131641
262144 40024 39802 38510 39985 39022 38187 40103 39091 40888
524288 13657 13759 13573 13578 13518 13552 13636 13610 13649

1048576 10271 10156 10153 10171 10153 10172 10260 10201 10140

RS-RAID Local, Partially Degraded IOZone Test Results (Write) in KB/sec

39

RAID S, Distributed

File Size Record Size (KB}
(KB) 4 8 16 32 64 128 256 512 I024 2048 4096 8192 16384

64 333286 359390 370070 372253 361430
128 322509 347746 362596 358627 356645 351678
256 331171 347839 365200 370459 379879 345992 297679
512 326305 348082 367786 376215 376188 328837 293735 245568

1024 333121 347601 364160 367021 376198 328724 286117 245618 250429
2048 331125 349248 365518 372023 375028 329947 277466 246123 235426 245977
4096 335135 348302 366136 372970 372159 330431 283951 247343 239755 238611 237378
8192 328507 348327 366432 371181 370546 333998 277731 244332 237207 239517 236626 236996

16384 331237 347729 365616 378575 373500 326505 281918 250152 236267 238907 238861 238409 238423
32768 372638 326556 287696 248917 234542 237488 235031 237811 235096
65536 377781 334186 284319 249378 234895 234649 234677 234769 236867

131072 380845 329286 284434 246939 237419 234690 237178 234669 234370
262144 383315 329108 284474 247112 237934 234705 237304 237118 237173
524288 9775 9852 9942 9695 9666 9961 10029 9992 9765

1048576 9761 9838 9798 9723 9770 9738 9693 9740 9155

RAID 5, Distributed IOZone Test Results (Read) in KB/sec

File Size Record Size (KB}
(KB) 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

64 216961 257049 266722 263374 257060
128 261255 280053 264959 280141 260713 221875
256 252732 264479 266964 270024 241058 219738 181175
512 223097 231472 228887 223384 201497 192113 181111 164899

1024 210876 217785 211783 200942 186793 178829 174417 174359 162156
2048 200806 207393 203860 196056 178073 171281 172475 169592 173413 156491
4096 197911 205529 203004 190087 172848 169234 170233 167054 171409 171516 170092
8192 191805 196639 192476 185234 171685 166727 167433 168455 166220 166884 169557 167669

16384 190370 194679 193289 182924 172055 165924 163877 164797 164025 164474 167944 165446 167231
32768 167372 165262 162452 163265 165241 165978 164346 164571 166631
65536 153741 162457 162872 141804 150584 161951 165595 165889 163765

131072 147031 144372 121078 148503 164872 141949 119890 147306 119749
262144 43141 36096 39740 41005 43162 40496 41993 42233 40095
524288 14152 13582 13178 14450 13662 13628 14172 14260 13692

1048576 10372 10105 10232 9911 10148 9814 10148 7281 10060

RAID 5, Distributed IOZone Test Results (Write) in KB/sec

40

Appendix B - Reed-Solomon RAID Source Code

Selecte d porti ons of the RS-RAID d1iver can be found below. The full source is

avail able from the OSU Computer Science department.

rs raid.h

t 1 fndc (_ RS_ RAJ O_ H

i d<' f 1 n C' _ R S _ RA I 0 _ 11

,t inc luclc , linux/ ra1 d / md .h>

• • • • • • • • • • • • REF.fl !:Ot.t...""'l~ ON P,\RAMF.TE-:RS • • • • • • • • • • • • • • • • 1

ll dc f 1 n (' MAX_ DISKS 256

Md c-! 1111(" MAXM ~ 5

i d<"f in f' MAX.N 2 5

...., r, t ~ h ,"t :· bt ·••n c h n:•c.•n r; the• d1v1 s 1o n ~ nd mul tiplt c l\tlOn
t ,._l 1 , · it 1m1 .· , , t 1 0 11 ~~,n bt.• u:-, <"cL I [w we r e ltti rgc t. the tables ,.:o u ld
lu • t ,H.., h 1 q 1 0 ltt 111 m e m l.'.> 1)'

t y µ c dc ! u8 RS_ WORO;

lll c.l c !.1nc NUMBITS 8
Ndcfinc PRIME Oxl D

Hd c (1 n c MSB ~ l <., t NUMBITS

lfllde ! inc SIZE l l << NUMB ITS

T h,• r,,-ll O l !_', l1f'l cl O l)C lil"lt o r:,

Nd c fi n c MUL (a,b conf >mu l Table((a))((b)))
•define DIV (a.b) (conf >div'l'able((a))((b)) l
Ndc ! ine A DD (a, b ' l (a ' - l b ' 1

lfde f 1ne SUB t a,b) ((a) -t b J!

•••. • , . • • · t-~ND R£ED S OLOMON PARAMETERS •• •••••••• • • • • • • /

NR STR IPES
HASH_PAGES_ORDER
HAS H_PAGES

256
0

PAGE_SIZE

(S '1'RIPE_SIZE»9 l
(PAGE_SHIFT 9)

Hclc(ine
#de fine
Hdc (1 ne
Nde (inc
#define
ffdcf inc
ndef ine
ffdcfinc
ffdcfi n e

I0_ '1'HRES 1l0LD
S TRIPE_S IZE
S'l'RIPE_ SEC'l'ORS
S 'l'RIPE_SHIFT
NR_ HASll
HAS H_ MASK (NR_ HASH

(HASH_PAGES. PAGE_ S IZE I s izcof (GtfUCt ncripe_head • J)
- l)

/ •

:i t I 1 pf• !", t A ll '

t1<1 c f i n o
ll(tpf:. i n o

• 4o eino
it r,,10 t i 11ti

Nd~r i n o
H (11-. (t no

· Flag~

S 'l'RIPE_ERROR
S'l'R IPE_HANDLE

S ~'R!PE_ S YNClNG
O'l'lllPE:~ I NS YNC
D'l'Rl t>F.; P RJ-:;}1.8AD_ACTIVE

n'l'Rt PE_ DELAYKD

4
5
6

Hdef i ne RS _ UP'l'ODA'l'E
Hdc fine RS_ LOCKEO 1

0 • pnoe C"Ont" ins c u1· t~nt dat:ft • 1
1 • I. 0 ha~ been subm1t"tt:'d o n ·req• · I

•define RS _ O VERWRITE
· 11n<1 some- lhat ftr- c- 1n t('1 nft l c o

HdefinP RS _ Insync 3
ffdef i n e RS _ I..-Jantread
Hdef i n e RS _ Wan t write
Hdefine R5_ Syn cio 6

/ · t owl'.ite C'ov c : ::. who le, Pll()C
ha ndlc_ st1 ipe · 1

tdev &'- 1dcv >in_s~·nc at ~tdrt • /

1 • want t o schedule a read · /

th1 :-; 1 0 ne ert t o be a ccount ecl a s re~y n c.-

41

1 0 • /

I \'.t rr• • t

l c!<-t tnr RECONSTRUCT WRI T E
• d<" f l n"" H C.AO_ MO D 1 FY _ WR I TE

1 -...~ 1 • , ~ .. r h I I 'I ' "\ r: :-;.·utc-_ p,, : 1t1· r'IO<le
l <lt .. ! ! nr C li ECK_ P AR I TY l

,\, \ ! . • \ "' l u'P(.l,,tl' r: tht" P,.1.f'lt)' wJo LOCKIUG •
I d€" f, nf' UPOATE_ PAR l TY

1 <11-.. ! 1 n"" mddcv_ t o _ con(unddcv

~ lluc · d1 n k _ 11lf o I
mdk_ r"dcv t

).

nt r-uc t nr 1· 1 pc_ hc11d (

r s_ra1d_conf_t · 1 mddev - >privatc)

·rdcv:

hl\!.h po 1nten; · ~ tt \1r t ~ Lt 1pc_ hcod
~ t n1c-t l 1::. t h ead

• ho.sh_next. · · ha!.h_ppre v;
lru ; 1nact1vc_ l1 z t o r handle_ list · /

);

r. t :uc t 1. n _ rl\1d_pr1.vatc_data
.:1cctor_ t
,nt
un:-: i o nf'd l o ng
at o m i c _ t
::;p 1n l ock _ t
nt iuc t r5dcv

:-:r ruct b :. o
:.t 1uct b1o_vec
::.tn.1cl POQC
ntruc t bio

• r l\1d,_conf:
sect o : ;

pd_ 1dx ;
state;

count :

vcc ;
reQ;

· page:

lock :

:;ect o :. o ! thi n r o ~ · 1
/ · pari t.)' d i sk i ndex • /

~uu.c flags · /
· n1 o f o ct 1 ve thr ead / requencn • /

· t o read, ·towr1te , •written;
nectar _ t sect o r; nee t o r- o f this pzu~e • /
unn i oncd long flaos:

) devil) ; · .i ll'JC ,, tt•! '•nth C"Xtn, a pl\c- t.· depcnd1nq o ! RAID geo:net::y • /

;, t 1· u c t n :. _ raid_privatc_ datet (
ntn1ct s t1 ipc_ head
mddev_ t

•• stripe_hashtbl ;
' mddev;

· spare:

) ;

S lJUC L dink _ into
int

lOL

chunk_s1=e. level:

ra1d_d1sks, working_disks, failed_disks;
int ma.x_nr_s tr1pes;

r.t 1 uct 11.st h e flcl handl c _ lu•t : r. ttlpf' f: necchng ?rnndl1n()
s lruc t l1st _ hecad dela)•ed_l1st ; • ttt ipt•~ th.ll IMve plugged reQues ts · 1

at.omi c_t preread_act 1vc_ 5tr1pe~; st ripe~ w1th 5chcduled 10 · ,

c har cache_name[20);
kmem_cache_t · slab_cache; , . f o r allocnt1ng ~tr1pe~ · 1

at omic_ t
~tru c t list_head
wai t _ gueue_ h e ad_ t
1 nt

active_stripes ;
1nactive_ list ;
wa1 t._for_st ripe ;

release o f 1nactive 5tr1pes blocked
wa1t1ng for ~5._, to be f ree

inactive_blocked;

spinlock _ t device_lock:

• • REED SOLOMON T A BLES ,\ NO PARAMETERS• • • • /
int t1 , m :

RS_ \·IORD
RS_WORD
RS _WORD
RS _WORD
RS _WORD
, clo n · t , <·il 1 l Y r\-'~d l hcsc t1 (tc1
RS _ WORD

~ c r uet dis k_info d1 s k s (OJ;

divTable(SIZEJ(SIZE);
mulTable(SIZE)(SIZEJ ;
encodematnx(HAXMJ (MAXN) ;
o vcrallmatrix(HAXN • HAXl<!] (HAXNI;
decodematrix(HAXN] (HAXNI;

1n1t . but ttlcy · 1c o nly ~Sb bytec c~ch.
gflog(SI ZEJ. gfalog(SIZE) ;

t ypede (!;t ruct rs_raid_pr.ivace_data rs_r aid_ cont_t;

#e n d i f

42

rs_raid.c (Reed-Solomon encoding and decoding parts only)

••• , 1-· .. 1

1 • q 1'. 1 tr t !1··: i :, : ur:c · 1 0 11!, u~·-.d t n r,,n: t: uc · th<> • ithlt>!..
nt 1' tic i n l int'! R.S WO RD _ mu l RS_ WORO a , RS_\\ORD b, r s_ra1d_ conf_t • conf)

I
retu r n 1 6 .:=0 b =O '0 cont >11falog(1conf - >11flo11(a) • con f - >11 fl og(b (l % (S I ZE - l l I;

!1t n t.1c i nl i n o RS _ h"ORD _d 1v 1RS_\iORO a. RS_WORO b , r~_ ra1d_con f_t • conf

r o t.u r n " -O ".'0 : c o nt >Qf l\ loot con(- >Qtloolal - conf >gflog(b] • S I ZE - l J % (SIZE l } 1;

Bt.a t l c vo id !1 llMul Toblc rn_ra1d_conf_t · conf
I

i n t. 1 . J ;

! o r ~ t =O , 1 ... s 1::E : 1 ••
t' or 1J=O : J,S I ZE;J +•

c o n ! >mul Toblcl l i !J J=_mul , l . J.con!

Bt<"lt i c vo i d f1ll D1 vTnbl c \ t·s_ro1d_conf_t · conf i

I
i nt 1, J:
! o r , 1 -: 0; 1 <SIZE; 1 •• 1

Co r I J ;:;0; J<S l Z E ; J • •)

conf > d1.vTablc(1J (J] =_div 11 .J ,co:1 f ' :

' Ill '

,t.J,· "' ' , \1,1 , 1 · h~ . •·, rl , n\ ,•q1,•nd1x ,\ t c•1 n-0 1,· 1n! c,, : :n..1~1'n ·
~tati c vo i d 8 etupMu ltToblc ~ s _ r a 1d_co nf_ t • conf

(

RS _ WORD c u rva l = l;
RS_\'IORD c.·lu · Loo:

conf >gfl o g (O(• L
t o r , c u rLog = 0: c u1Loo , S IZE
(

l; curLog• ...

cont >Q fl og{cu r ValJ = cu r Log;
C"Onf >g {o log(cui l..Og) : c ur\lal ;

Th1· \, • \ l '• 'I '. 1 lh' l ! l "\ i j U,'o{

th, .. , . ti • n • 'X!: \ b1r- :- t ,-.. i l 1 y •..,•1t h

if (curVa1 & MSB)

c. ---.d, 1n r·10\11t' ,: duf" ro the' :.c1cr
..<. .. ht-> :-.hilt m11:;t -~cc-ti : on l •/ ,h,.n

curVal
e l se

, , c u 1' Vo.l • MSB) << 1 1 • PRIME;

curVa l <<= l:

rh1'. tunc t 1<1 n :, ,-.. t: ·, up t h t."' o v..,,L, 11 m.,t11x as dcf1ncd 1n Plank 's r e v ision p arer 1aq7 No te
rh,11 t h , ,·nml1 Jl1t ' d r , v mnti ix df't1n<'rl 1n tht ("itto1no l popc 1 docs net wor 'I< ,

o tatic voit1 ootupT rtn1aforrn . rs_ ra1.d_conf_t · conf ~

(

int n a conf >n;
int m• c o nt >m :

int 1. j, k ;
RS_WORD fsc t;

for (i = 0; i .; m + n : i•+ :

con f - >overallmatrix{ i J (0 I 1;
for (j : l; j < n ; j•-+ '

conf >overallrnatr1.x(1 J(j) _mul d, conf - >overallmatr ix (i](j - l J.cont) :

1 ,. h1C t f ' I I[' ·,·J'i'

for (i : 0; i < n; i++ }
I

f act ;: conf >overallmatr1.x[il [1) :

f o r < j z i : j < n, • n ; j • +
1

conf >overallr.rntrix (J)l 1 l: _ d1.v icon{ >overallmatrix{j)[i) , faet.conf) :

f o r j = 0: J < n : J + • i f (i i = j
(

fact = conf >overallmatr1x (i) (j);

for I k = 1. ; k < m • n; k + + l
conf >o ver allmat r1 x (k) [j) = SUB (conf >overallmatrix (k] {j), _ mul {conf - >overallmatr1x{k) (11 . fact ,con f)

for (i = 0. i < m · 1 • +

t o r t j = 0:) < n : J + + J

43

c o nt >cnco<lcm.ac.r1x(1) (JI con! >o vernl l mat.r1x (1 • n) lj);

n t a ti c int c ncodCl t·o_:01d_cont_t · con!. voic, •• pt.rs) s t:uC"t S t t q1.•f·•.1f:,-: • t; b , 1nt n . in t m

i n t n con : ·n

i n t :-n cont > m:

, : . : l ! . , h •

R~; h'U HI'! 1nVcc(MAXN) C'lutVcc[?-t.AX!i };

i nt 1 . l "-

RS _l'tO HI' • " hul t, .. :

! o r 1 1 :· ~

- ,\,
! o r O; , J .. n : J ..

111Vcc[J) - buf.fc : (]](1) ;

·,· ::-.;,. · ,.

·\ 1t 1 ,:

mcm!::.C t 1t. ou lVcc(OJ.O, !toi 2. ~o ! hS_ \\'ORD · m ;

:n11 1 ' I l l !, .. I ' 1 ~' 'h, l , ... , f l ' ' ' U : ''• '<.."

! or , J - 0: ") .. m; J • • l
t o r I k = 0: k "' n ; k. • •

ou lVcc(J I = AOD , ou t Vecl J). MUL \ conf - >cn codemac. rix(J)(k] . inVec(kl l ;

A I, • t•• It' : l l ly ' rt' '1k• ·c,;·y <"' t tht' doto, but t hi s 1~ t nztcr.
(or 1 J ::: 0; i < m:) • .. '

buf fc 1 (j •nl 11) :::o utVcc(J):

r e turn 0:

!Ito.ti c i nt decode s truc t at 1 1pe_ head ' sh . voi C, •• ptrs l

I
1 : , tl\1 d cont t · c o nt. - ::. h > :a1d_co n(;
i n t n c-o nf ..- n ;
int m - cont >m ;

RS_WOR D " • bu t. l ~ t :.. HS _ l•/ ORD · ' pt : s.

int i . J . k. 1 .
int n e wvl'll id :::0 ;
RS _ WOR D facto t , tmp:

R S_WORD c.n.igmentcdmott 1.x(MAXN) (M,AXN) :

Fl r • ' :l:: ·h, 1 t •.\ 1111n,11 · , 1 in 1t11'< ,.· 1th d ,, t,, t1 0 :n th.._ .. '-"'"'-' 1,, l lm,,t.1ix ._v"cct dtnr, t c sb > \'al1d.

j = O:
for t i :::.O;i< l n } ; 1.++ l

i f l t c s L ., ncl_ set _ b 1 t t R5 _ UPTOD,\TE . &sh - >dev(1 J . flags 1

memcp',' , augment.edmot r ix f 1 l . conf :>ove r al lmatr 1.xl 1 J. s i %l!IOf (RS_WORD) • n 1 :

el s o t h 1: 1 ifl t , 1 ,, m q v n l 1 d f t nd , c hf"C''ic. ~um 1' ('1W co use.

k = O:
for ' : j<m; j + ..)

if (tes t _ bi t < RS_ Insync. &sh - >dev (n-+-j) . flags))
(

memcpy (augme nte clma tr 1x(1) . conf >overallmatr1x(n+ j J , 9i%eof (RS_WORO) ·n) ;
.t l: 1• ,) t ·, · th, l, H ,1 ll\ th, r;{l\l' t.'bH tt\" I

memcp-,• <buff er I 1 I . b uffer I n+ j). STRIPE_SlZE • ~ 1 ::Po£ 1 HS_l...:ORD · c hunk!> t 7" •) ;

J , • : th i !" 1 r-.w · ~ h r0n \ 1!:t" rl don t ll5<" l l aqo 1 n
k e \;
break ;

r e turn 1 :

newval i d + +;

' I,.., 1J1•'"' t ,., f I h 1 1 ::C l ~ t " 11 • '•'~
• h 11 f fr· 1 ,·,, n • , , ~, : 111 1 }11~ ,i~I I,.., 11 l\t't' , i 11 I •"' '.\'!" ' ~h1 n\.111h N 1

th, l'I JO' • '' ' • II I 1 '1 u 1 11 '<1, 1r1t1 1 x Wt' l l l, l. Lil l th, ~tdH~! 1 tn ~l1min 1r :

fo r { J = 0: j < n; J ••
i f , ~ augment edmat t· ix I j 1 I j I \

I
f o r 1 =- J f l: 'augmentcdmatri x (r)(j] ; tH·

44

0 1.

l! t>n roturn O -. · i. ,,1! ,l'nJj•nt•,I t1.'.'t" C' ?trl

.. ,, ", • , ~ , , r1 ; i: P hn" l ·1 t n • den, • ! · ,•n , •n o uqh t o -..·orty about.
f o r k 0, k , n k • •

tmp n uy:ll<"nlt:ct.mJ\tr1xlJl l k l:
ftu gm..-•ntedm.tn t 1x (J) (k) ouQTnCn tedmatr 1 x lrJ (kl;
nu<7mt.'ntc-dmtn: 1x(t l (k l - trn.p ;

! o r k O k,STRIPl-: s1:.E Tl· : k ••
t mp bu!fc- : (J](kl·
buff.- 1 !Jll k l bu :tc: l : ll k);
bu ! f , •: rt I (lri. I t:rp

!l\l.' t f1uy-m,•nt(•, lm •. , t :lx lJ'.1"
i ! , t o c t o : · ! 11· · 1 '· I •

! o r k k ... n \i:: • •
a wJmt.•nt1.. ... dm.-,t : ~x . 1, _,c, tl!\' l\uqtnCntcdmat11 x iJ)(k l tacto r .

tor k 0 · k, S TRIPE S IZE , \ t.·, • k • • i'l11 1t1'1:-<('nt1..""d f'l :"\t t c, f ttw n-:nttx
buf t c : [Jl(kl !'1\' bu f fet ()) (k]. fact C" t :

! or k k • •

I(l) k
fncto t tn .1gmcnt cdrMt. r1x(k) (J);

i! foc t·o1 · - o •··· ! -,al • ti ly 1,;· 'I, · twn 1t• ' t .l(": 0 !: om ::: , ... 1(...

I
tor < 1 J;

ouy--m(... n t('t..L'l\l\tt1x ! k i(l l SUB auornentedmat11x (k }[l), MUL , tactor, augment.edmatrix (jJ[l])l ;
for 1 .:::0 l <STRI PE_ St::E · , ·hu:ii<r,1:, • :) -0. 1 k • ""'~ , •nt:t(s t:q <· l'lt cince·

butt<'rl k lll l = SUB buf[er(kl lll, HUL , factor. bufforlilllJ :1,

rot.urn ncwva l l d ,

otn.tic int c-omput. c _ block :.;, struct s tr1pc_ head · s h

I
: :-. 1a1 d cvnl _ t · cont
int. l ('O U l\l , , .. .il !-k :,
V"Oi d · pt 1 s(M.,.\ X _ D .1 S K S I

cou n t O;
1 = 0 : i.

c,o I

s h > Id i d _conf :
1,.' 0 lll > : ll 1d_ d 1 SkS ;

ptrs!cou n t ~~ J = p oge_ftddreSS \ Sh >dev{1 J .page) :
i = rs_ 1·a id_ n ext_d1Sk \ i, disks

while i : = 0 · , i l 1 Ix·

i ' l' .. Fi . . , ,11 1M1'?.J l'F1·, 1;•1 t1: HFrt-

ult t,I 1dxl , 1nt dd 1idx::!

return decode ! s h , pt t s : i• •1'\'·'•' t ,kl': C'(H •• '"' f :·,•t t uw t ht" up! o dntp h i t.

!ltatic voi d. compu t ~ _ pct. 1 1Ly l struct !:: tr i pe_h ead ' s h . int met h od 1

I
r ~ _ ra1d_ co11L _ l · cont - ~h >1.a1d_con L
int 1 . pd_ 1dx - s h >pd i dx . i I 1)'{ df' l(i'< . • disks
struc t bi o · c hosen;

void. · pt t s (MAX_ D I ::;KS l;

n••-..:t II: i: p,I t ix ll: V.. ,, 1 1 1 \ 11,,t \1·0. l tl 1h, lt;-, 'lt;,!·

PRI NT K , · c-rnnp utt• _p nt· 1ty , 5 t 1 1P f' - l l u . me tho d ~d \n~.
, unsigned. l o ng l o n g i s h >sec t o i , me tho d ,

swit.Ch \ metho d
c ase READ_ MOOlFY_ WRlTE ·

BUG • l· l-,\ f• (,: ·i' lt-"1 t.··~j~ . .. :-; .\ t ! h.,\ll' (I'

c ase RECONSTRUCT WRITE·
C390 U P DATE_ PAR l TY ;

f or 1 =- c o n(>n ; 1

conf ·> ra~d_disks, count:

if t ,t I h. ,., l 1 I b ,,.,· s h >dev(il towr1te

chosen - s h >dev l 1] . towr 1 te
s h >dev(1 I towr1te : NULL ·
if sh >dev(1 J . w11tten DUG

sh >dev 11 J wt 1 t t 1:;"n =- c h o sen

break ,
c a se C HECK PARITY

BUG :q

45

for l = d1okt1; 1

if , r.h >c1f'v I l I wr 1 t ten'
occto1_t ucctor - sh ~dev(i).sector:
11truct blo ·wb1 = ah >devl 1 I .written:
whila wbl i.i. wb1 >b1_sccto1·.; sector• STRIPE_SECTORSl

cop~·-dntn l. wbl. sh >devliJ.paoe. sector 1 :

wb1 r~_ncxt_b10.wb1. sectorl:

nrt bu .R~_l.OCKED. I.sh >devl1).flaosl:
oct_bll .R~_UPTODATE. t.oh >devli).flagsl;

count O.
1 :: 0 ; ~ ~,

do I
ptr::lcount ••I page _nddreGt.. sh >dev l 1 l • page>;
1 ° 1r..1·n1d.n,•xt __ d1nk 1. disks:

whila (1 • I ,,h'

~-l-l-:· ~! ·~: F~: ••. ,·. HF~'F - - - - I

cncodc,con!.ptro·:

awitch1mcthod
caaa RECONSTRUCT_WRtTE,

for1i=conl >n:i.;conf >rn1d_d1sks;1•+>
(

oet_b1t(R5_UPT0DATE, t.sh >dev[iJ.flAQSl;
set_bit(R5_LOCKED. &sh >devli).flagsl:

~~ .. , tq t ~,,. t'l"l"" ,p;,:r~:
:,,.t _t,1 t H', t1P1"'ll,'l':'l-'.

.':~o·t hit 'R', t.<X"!'>P.(),

"'"' l•11 I<'• t.,'<·1;1-:r,
braak;

caoo UPDATE_PARITY:
£or1i=conf->n:1~cont
(

,. ,:h •.It•\' [pd_ HIX I f l<'\gr.
1, :ah •,h•v [4d_ 1<b I . ! l<'\gs
&:1h •di'vlpd_idxl flc,gs
·'-"h •dt-•v[qd_ 1dxl .fl11qs·

r.et _b1 t • R5_lJM'ODA'l'E. &sh >dcv (1 J . f lagsl:

, r.,~t _ \>11 w,_ t11··:'<1PA1'~:. i.::h - >dev (pd_irixl. flognl;
,.,., 1,1, 1<', tll'T,•l>,\'l'r:. i.:-,h •d .. v(qd_itlic:J.flag.si;

break;

46

VITA

Nathaniel Paul Lewis

Candidate for the Degree of

Master of Science

Thesis: DISTRIBUTED RAID SYSTEM: A UNIQUE USE FOR REED SOLOMON
CODING

Major Field: Computer Science

Biographical:

Education: Graduated from Neenah High School, Neenah, Wisconsin in June 1998;
received Bachelor of Science degree in Computer Science from the University of
Wisconsin - Madison, Madison, Wisconsin in May 2001. Completed the
requirements for the Master of Science degree with a major in Computer Science
at Oklahoma State University in May 2004.

Experience: Employed as a software developer by Epic Systems Corporation,
Madison, Wisconsin from June 2001 to August 2002; employed by Seagate,
Oklahoma City, Oklahoma summer 2003; employed by Oklahoma State
University, Computer Science Department as a teaching assistant, August 2003 to
present.

Professional Memberships: Association for Computing Machinery.

