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Preface 

This study was conducted to investigate the usability of a locally distributed 

RAID system in a way that utilizes previously underutilized workstation storage space. 

I sincerely thank my advisor, Professor Douglas R. Heisterkamp, for his guidance 

and support in completion of this research. 
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I. Introduction 

Traditional studies of Redundant Array of Inexpensive/Independent Disk (RAID) 

systems generally concern a single central server with a stack of disks directly attached to 

the server via a disk bus such as Small Computer Standard Interface (SCSI) or Integrated 

Drive Electronics (IDE) as shown in Figure 1 [7, 13, 14, 20]. Their focus is on reliable 

storage methods that can survive a single or even double disk failure. Such systems are 

very common, and are regularly implemented in both hardware and software. These 

systems can be costly in comparison to non-redundant systems, and upgrades generally 

require the replacement of all of the disks in the system with larger disks. In many Local 

Area Network (LAN) implementations, when the central storage becomes full, an 

upgrade of the central storage or purge of data is required; workstation storage is often 

vastly underutilized. 

Workstation Workstation Workstation 

Figure 1: Typical LAN storage system 

Research has been done on distributed storage systems, utilizing the storage capabilities 

of a network of computers as a single volume [4, 8, 12, 16, 28, 29, 30]. Most of this 
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research has focused on distributed storage for large clusters of computers which make 

up a supercomputer or a set of reliable, networked storage servers. Workstations in the 

can be unreliable and uniquely problematic in the hands of users. Prior studies that utilize 

workstation storage in a distributed manner have focused on file mirroring techniques 

which yield a low percentage of usable disk space and often no guarantee on availability 

[L 5]. 
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II. Background 

2.1 RAID Background Information 

Disk arrays are a way to increase performance and reliability over a single disk. By 

spreading data over multiple disks, called striping, disk arrays improve petformance by 

simultaneously utilizing multiple disks and presenting them as a single RAID volume. 

However, since more disks are involved, this can decrease reliability unless redundant 

disks are included in the array to tolerate failures. Many options are available for the 

RAID storage as described by the most common RAID levels. Note that all RAID levels 

are implemented at the block level, such that any file system could be used on top of the 

RAID volume [7]. 

2.2 RAID O (Striping) 

RAID O spreads the data across all of the disks to achieve a performance increase using 

as few as 2 disks. Given n disks, the data is split up into blocks of equal size and written 

such that block bis stored on drive bmodn. Thus, consecutive blocks are always written 

to different disks, in order. A series of 11 consecutive blocks across the n disks is called a 

stripe. Both read and write performance is increased especially for large accesses. 

Despite the name, RAID O offers no redundancy; if any of the disks fail, the data on the 

array cannot be completely recovered [7, 13]. 
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2.3 RAID 1 (Mirroring) 

RAID I is the simplest form of redundancy in which data written to one disk is also 

written to another so there are always two copies of the data. Writes are done 

simultaneously to both disks so the performance is similar to that of a single disk. By 

combining RAID O with RAID 1, mirroring can be achieved with any even number of 

disks and also benefit from the performance increases associated with striping. If any 

disk fails, the disk's mirror is used to retrieve the corresponding data [7, 13, 20]. 

2.4 RAID 4 (Parity) 

RAID 4 can be considered as a RAID O array with one additional disk, therefore 

requiring at least 3 disks. The extra disk is used to store parity information for each of 

the stripes. Read performance is similar to that of RAID 0, but write performance can be 

much slower because the parity disk must be updated on every write and is therefore a 

bottleneck. If any disk fails, the other stripe information is combined with the 

information on the parity disk to calculate the failed drive's data [7, 13, 20]. 

2.5 RAID 5 (Interleaved Parity) 

RAID 5 works in exactly the same way as RAID 4 except that the parity information is 

interleaved across all of the disks to eliminate the single bottleneck parity disk. Since 

RAID 5 offers a performance increase over RAID 4 with the same redundancy, RAID 4 

is almost never implemented in practice [7, 13, 20]. 
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2.6 Related Works Review 

There have been several studies and implementations of distributed storage systems. The 

focus of such studies has been decentralizing storage and utilizing the capacity of several 

reliable networked servers. These systems generally rely on replication techniques 

si mi Jar to RAID I or parity to distribute the data similar to RAID 5, often built on top of 

a custom file system. 

Coda: Coda is a distributed file system developed at Carnegie Melon University by the 

systems group of M. Satyanarayanan in the School of Computer Science. It is based off 

several central servers and replication. It also allows for a cached, disconnected 

operation allowing offline use of the files on the system [28]. 

lntemiezzo: Intermezzo is also developed at Carnegie Melon University, and was 

inspired by the Coda project. Like Coda, it is based off central servers and replication 

and also allows for offline use and synchronization, but is implemented with a simpler 

design [4]. 

Lustre: The same group that develops Intermezzo (Cluster File System) is also working 

on a system called Lustre. Lustre is object based and abandons block-based file systems. 

It is oriented toward a new storage paradigm but is still based on a large number of fairly 

reliable nodes with uses on today's largest clusters [8]. 
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Frangipani/Petal: Frangipani is a file system designed to be used on top of Petal, which 

is a distributed, block-based storage system [16]. It is designed for a set of central servers 

and can only sustain a single failure [30]. 

Sistina GFS: Sistina GFS is a commercial file system designed for cluster systems 

similar to those targeted by Lustre, a large number of fairly reliable nodes [29]. 

Berkley xFS: xFS is a serverless distributed file system designed to distribute data over 

cooperating workstations. It uses parity information to guarantee no individual node is 

the single point of failure. The goal of the system is a high performance, scalable storage 

system based on workstations connected via a very fast network like ATM or Myrinet. 

Since it is based off parity for replication, the system can only sustain a single failure [1]. 

The system also appears to be unfinished and has not been updated in several years. 

Serverless Distributed File System: Bolosky et al. at Microsoft Research have published 

a paper on a serverless distributed file system based on replication of files amongst the 

peer nodes. By making multiple replicas of each file and distributing them amongst the 

client machines, the system provides high availability and high reliability. The system is 

unique in that it does not assume a mutual trust among the client computers, eliminating 

the need for central administration [5]. 

Google FS: Ghemawat et al. have developed a file system for the Google search services 

designed to run on inexpensive commodity hardware while maintaining high 
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performance. It is based off a master server and uses block level replication for 

redundancy. It has been used successfully to store hundreds of terabytes of data across 

more than a thousand nodes [12]. 

2.7 Reed-Solomon Coding 

Reed-Solomon coding extends beyond the traditional RAID levels to allow for multiple 

simultaneous failures. James S. Plank gives an excellent description of Reed-Solomon 

coding in [24], and even briefly describes a system similar to the proposed system, but 

only for checkpointing (22, 23], not for a general purpose storage system. Plank defined 

the problem domain of Reed-Solomon coding as follows: 

Let there be n storage devices, D,, Di, ... , Dno each of which holds k bytes. These are 
called the "Data Devices." Let there be m more storage devices C,, C2, ... , Cm, each of 
which also holds k bytes. These are called the "Checksum Devices. " The contents of each 
checksum device will be calculated from the contents of the data devices. The goal is to 
define the calculation of each C; such that if any m of D,. D2, ... , Dn, C,, C2, ... , Cm, fail, 
then the contents of the failed devices can be reconstructed from the non-failed devices 
[24]. 

First the Data and Checksum devices must be split up into consecutive words of length w, 

where w is generally 8 or 16 bits. Thus, D; consists of words d;,1, d;,2, ... , d;,k/w, and C; 

consists of words c;, 1, c;,2, ••• , c;.kfw. To simplify, the second subscript can be dropped and 

Reed-Solomon encoding can be defined in terms of blocks of length w, d 1,d2, ••• ,dn, 

C1, C2, ... , c,,,. 

Per Plank's correction in [25], it is necessary to construct a dispersal matrix, B, such that: 

• It is an (n + m)xn matrix. 

• The n x n matrix in the first n rows are the identity matrix. 

• Any submatrix formed by deleting m rows of the matrix is invertible. 

7 



The dispersal matrix B can be created by starting with a Vandermonde matrix. Define the 

n+m by 11 Vandennonde matrix V such that v . . = /-1
: I,} 

oo o• 02 on-1 

lo 1• 12 1 n-1 

V= 20 2• 22 2n-l 

(n +m-1)0 (n+m-1)1 (n+m-1)2 (n +m-It-• 

By definition, V has the property that any submatrix formed by deleting m rows is 

invertible [ 17]. V can then be converted to the desired B and still retain this property by 

performing column-wise Gaussian elimination on the first n rows, such that 

V' = B = [; J. where/ is the nxn identity matrix and Zis the remaining lower m rows 

of B forming an mxn matrix. Now construct the vectors D = [d.,d2 , ••• ,dJT and 

C = [c1 ,c2 , ••• ,c,,, JT. C is then calculated by the matrix-vector multiplication ZD=C. 

Recovery also employs the B matrix defined above and involves Gaussian elimination as 

follows. Define n+m vector E = [ ~ J. Thus BD=E. Now suppose t devices fail such 

that t ::; m. Now define B' and E' from Band Eby removing the rows corresponding to 

the failed devices. Now B'D = E' and D can be determined using Gaussian elimination, 

. which is guaranteed to succeed due to the linearly independent properties of B, and thus 

all Data Devices can be recovered. Any failed Checksum Devices can then be recovered 

from the ZD=C equation above [24]. 
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It should also be noted that if a data word changes from di to dj' then 

c, '= c, + z,.
1 
(d' 1 -d 1 ) • Thus, the new checksum data can be calculated using the old 

checksum data, an item from the Z matrix and the difference between the old data and the 

new data. Lastly, while the above equations are guaranteed to work with infinite 

precision mathematics, a Galois Field with 2w elements must be utilized for all 

calculations. Thus addition and subtraction are replaced by the XOR operation while 

multiplication and division involve a table of logarithms [24]. 

It should also be noted that the particular variation on Reed-Solomon Coding used here is 

denoted by Plank as RS-Raid, which is only used as an erasure code algorithm. A 

complete, much slower implementation of Reed-Solomon Coding like the one found in 

[15] and described in [3] and [21] can handle not only erasures but also errors, and is 

often used for media-storage such as CD-ROMs as well as applications in Forward Error 

Correcting [26,3 l]. 
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III. Problem Domain 

This thesis investigates the feasibility of a distributed storage system to utilize the unused 

disk storage on a LAN of workstations, creating a network storage system that scales in 

capacity with the number of workstations. Since workstations are essentially controlled 

by the user, they are inherently unreliable, as the user may reboot or shutdown the 

machine at any time. As such, a system based off the storage of workstations must be 

able to handle a very large percentage of simultaneous failures. 

Most of the existing distributed storage systems reviewed above would be unsuitable for 

such an environment since they can generally only handle a small number of 

simultaneous failures and are designed for use on fairly reliable nodes. The serverless 

distributed file system by Bolosky et al. at Microsoft research is an exception, and was 

designed to run on workstations. However, it is also based on the file replication which is 

the most inefficient in terms of storage space to provide redundancy. The system is also 

based off a custom file system requiring custom client software. 
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III. Hypothesis 

It is hypothesized that a distributed RAID system can be developed for a group of 

unreliable storage devices by utilizing Reed-Solomon coding to provide configurable 

redundancy to handle multiple simultaneous failures. Furthermore, such a system can 

provide adequate performance similar to that of a local RAID system. For the purposes 

of testing the system, adequate performance is defined as reading and writing data with a 

sustained data throughput at least 50 percent that of a local RAID system, and a burst 

throughput at least 90 percent that of a local RAID system. Such performance would be 

considered a reasonable trade-off for the reduced cost of implementing a distributed 

RAID system on existing workstations versus a local RAID system. 
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IV. Foundations 

5.1 Overview 

This distributed storage system was designed with a medium-sized LAN in mind, such as 

an educational institution's computer labs, or a medium to large business. Each 

workstation will have a block of storage allocated for use by the distributed system. 

Further, each block will be designated as either a Data Device or a Checksum Device. 

The Reed-Solomon encoding algorithm allows an arbitrary number of Checksum Devices 

to be designated. For each failed Data Device, the data from a single Checksum Device, 

along with the data from the rest of the Data Devices is needed to calculate the missing 

data. Thus any combination of Data Devices and Checksum Devices can fail 

simultaneously, as long as the number of simultaneous failures does not exceed that of 

the number of Checksum Devices. 

These devices will be made available only to a central coordinating server via a network. 

The central server will create the logical volume from the devices and handle all read and 

write requests, as well as the Reed-Solomon calculations. Since the system is block­

based, any file system could be implemented on top of the logical volume. Additiona1ly, 

the logical volume could be made available to any client on the network via existing 

protocols such as NFS, or SMB. 
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Figure 2 shows the physical network connections of the system, and Figure 3 shows the 

logical flow of data during a typical read or write. Notice that all of the data must travel 

through the coordinating server where the Reed-Solomon coding takes place. Also note 

that a RAID Data Workstation could also make a read or write request to the logical 

volume, but the flow of data would remain the same. 

RAID Data Workstations Other Workstations 

Figure 2: Proposed distributed RAID system. 
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Hardllsk 

Figure 3: Logical flow of data in the proposed RAID system. 

5.2 Proposed Approach 

To fully analyze such a proposed distributed storage system, several aspects of the system 

must be examined. First, both read and write performance must be evaluated in the 

situation where all nodes are online, as well as when one or more nodes are offline. If 

performance is deemed adequate when the system is in a stable state, the performance 

during rebuild must be considered, after a node goes offline then comes back online, 

similar to the analysis done in [14]. The ability and associated performance 

considerations could also be examined when a node is added or removed permanently 

from the system. 
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5.3 Introductory Setup 

The first step in describing a RAID system is to designate a stripe size. That is, given 

data of size S, it must be split into s equal size segments S1,S2,S3, .. . ,Ss. The resulting s 

segments must then each be split up into n equal size blocks, each one stored sequentially 

on each of then Data Devices. Thus, S; is split up into (Si.1,Si.2, ... ,Si.n). The result thus 

far is exactly equivalent to Raid 0, striping. To add fault tolerance, for every segment 

S 1,S2,S3, ... ,Ss, we must designate m additional blocks of calculated, redundant data (R) to 

be placed sequentially on the Checksum Devices. Note that if m equals 1, and the 

checksum algorithm was parity instead of Reed-Solomon coding, it would be equivalent 

to a RAID 4 system. 

n Data Devices m Checksum Devices 

Data Segments D1 D2 ... Dn C1 C2 ... Cm 

S1: s,., S1.2 ... S1,11 R1.1 R1.2 . .. R1.m 

S2: S2,1 S2.2 ... S2,, R2,1 R2.2 . .. R2.m 
' 

. . . . . . 

Ss: Ss,1 Ss,2 ... Ss,11 Rs.I Rs.2 . .. Rs.m 

Table 1: The relationship between Data Devices, Checksum Devices, and Data Segments. 

Now, if only a partial segment is needed, and the appropriate Data Devices are available, 

that data may be retrieved directly from the Data Devices with no computation. 

However, if one of the Data Devices is not available, the entire segment must be 
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reconstructed from the remaining blocks from the Data Devices, plus one block from a 

corresponding Checksum Device for each missing Data Device. 

For example, if there are 50 data devices (1 through 50) and 50 Checksum Devices, but 

Data Devices 46 through 50 of the data devices are unavailable (offline) at the moment. 

A read is being processed by the central coordinating server that requests Segment i, 

blocks 25 through 50. This request cannot be processed directly since Data Devices 46 

through 50 are offline. Thus, the entire Segment i must be reconstructed on the central 

coordinating server. The server must request 50 blocks from 50 different devices to 

reconstruct the Segment i. The beauty of Reed-Solomon coding allows the coordinating 

server to request the blocks from any 50 unique devices, there is no need to request 

blocks 1-45 from Data Devices 1-45, and then checksum data from 5 of the Checksum 

Devices. To maximize throughput, the coordinating server would need to be designed to 

make such requests to the 50 least used Devices when reconstructing an entire segment. 

This system allows for very configurable redundancy, which means reliability is 

customizable, at the expense of storage space and computation time. If the reliability of 

the workstations to be used as Devices in the system is carefully analyzed prior to 

implementation, the reliability of the Distributed RAID system can be configured as 

needed by determining n and m to maximize storage space while maintaining an 

appropriate level of redundancy. 
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Note that stripe size (the size of a block of a segment Si.j) can greatly affect performance. 

For example., if the stripe size is too small., incoming requests will be more likely to 

require more than one stripe to fulfill and therefore the coordinating server will need to 

send out a large number of requests to Data Devices and Checksum Devices to fulfill 

each incoming request, and the required overhead for each packet of data could become 

excessive. On the other hand, if the stripe size is too large, in the case where an entire 

segment must be reconstructed, a very large amount of data may need to be requested 

from the Data Devices and the Checksum Devices in order to fill a relatively small 

incoming request. For the distributed RAID system proposed, stripe size will need to be 

determined on a system by system basis. The type of data the system holds, the request 

pattern of clients, the network throughput, the network latency, and the availability of the 

Data Devices will each play a role in determining stripe size. 

5.4 Experimental Methodology 

Since no distributed system shares the same goals as the system proposed., the system 

cannot fairly be tested against any such system. However, the proposed system is 

essentially an alternative for a single centralized server utilizing a few large drives in a 

RAID 5 configuration, and thus will be used as the comparison system during 

experimentation. Though the two systems are not congruent, it is a valid comparison, as 

it is the same comparison system administrators would make if deciding which system to 

implement. The single, central RAID 5 system may be faster, but if the proposed system 

can at least remain competitive, it becomes a viable alternative for system administrators 
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since a distributed RAID system would utilize otherwise unused storage located on 

workstations, and thus, could be cheaper and scale better to the users' needs. 

The distributed RAID test system was comprised of a number of workstations connected 

to a central server via Network Block Devices (NBD). The central server is responsible 

for the Reed-Solomon calculations. For comparison, the same central server was also 

equipped with several drives locally and configured for RAID 5 via Linux software 

RAID. 

To measure array performance, a disk benchmark utility called !Ozone was run on both 

systems to highlight the strengths and weaknesses of each. !Ozone performs a wide 

variety of tests on a range of parameters to determine a system's abilities in terms of file 

size access, cache performance and limitations, etc [6]. Specifically, !Ozone was used to 

measure sustained throughput and burst throughput while varying the request (record) 

size to simulate various usage types. I0Zone is a popular tool that has been used 

extensively to test various storage systems [I, 11, 16]. While there are efforts to improve 

mass storage system benchmark tools [19], IOZone remains one of the most common, 

and is well suited for this application. 
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VI. Experimental Results 

6.1 Environment 

The coordinating server was a dual S33Mhz Xeon processor system with 512MB of 

RAM, and six 7200RPM 9GB Ultra-SCSI hard disks for local testing. The system was 

connected to seven other machines through NBD via a switched lOOMbit network for 

distributed testing. 

The Linux Software Multi-Device (MD) driver served as a basis for both the local and 

distributed testing. The Linux Kernel version 2.6.2 was employed with the RAIDS block 

driver as well as a custom RS-RAID driver written with the assistance of [27] and [9]. A 

portion of the RS-RAID driver can be found in Appendix B. Due to limitations in the 

Linux kernel and MD architecture, the stripe size was fixed at 4KB. However, since the 

NBD protocol has very little overhead, this was not a problem in the distributed system. 

The custom RS-RAID driver was based on the work of Evan Danaher [10], then modified 

to be highly optimized for w=8 bits, including a pre-built lookup table for the Galois field 

multiplication and division. The interface to the MD driver was then based off the 

existing RAIDS and RAID6 drivers, expanding the number of parity devices to m versus 

the one of RAIDS or two of RAID6. 
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For al I tests, IOZone was used to measure throughput on increasing file sizes from 64 

kilo bytes to 1 gigabyte in order to exceed the coordinating server's RAM size and thus 

internal disk cache so that disk-level performance could be measured. Thirteen tests 

(writer, rewriter, reader, rereader, random read, random write, backward read, record re­

write, stride read, fwrite, fre-write, fread, and fre-read) were performed in each scenario. 

However, only the read and write tests were analyzed, as they clearly show the burst and 

sustained throughput for reads and writes. The tests were performed with a range of 

record sizes from 4k to 16M, though record sizes of 32K and lower were not tested with 

file sizes 32M or higher to save time. All of the test arrays were created with a chunk 

size of 32KB and formatted as a single ext2 file system with a block size of 4KB. 

6.2 RAID 5 Control Test 

Figures 4 and 5 show the baseline RAID 5 test, to which all other tests can be compared. 

This is the "normal" speed that a server disk system would operate. All 6 local disks 

were utilized during this test. 
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Alo Size (KB) 

RAID 5 Read 

co 

Record Size (KB) 

---- - -------

Disk Cache 

Throughput (KB/&) 

• 400000-450000 

D 350000-400000 

• 300000-350000 

D 250000-300000 

• 200000-250000 

D 150000-200000 

D 1 00000-150000 

• 50000-1 00000 

0 0-50000 

Figure 4: Local RAID 5 IOZone Results (Read) 
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RAID 5 Write 

FIie Size (KB) 

a, 

Record Size (KB) 

Figure 5: Local RAID 5 IOZone Results (Write) 

Disk Cache 

Throughput (KB/s) 

a 300000-350000 

D 250000-300000 

• 200000-250000 

D 150000-200000 

D 100000-150000 

• 50000-1 00000 

tl0-50000 

The effects of the CPU cache and Disk Cache can clearly be seen with a burst speed well 

above 300MB/sec, but the last test with the 1GB file size shows sustained data rate of 

approximately 50MB/sec for both reads and writes. 

6.3 Distributed Reed-Solomon Test, Partially Degraded 

The first Reed-Solomon RAID test was a distributed test with 5 of the 7 dist1ibuted nodes 

such that 11=3, 111=4. This test shows how the RS-RAID a lgorithm can perfo1m with 2 of 
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the 3 data disks fai led, but with all 4 parity di sks in tact, about 30% failure. While it taxed 

the CPU heavil y, it did not max it out the entire time. 

RS-RAID Read 

FIio Size (KB) 

Sustained 

Record Size (KB) 

Disk Cache 

Throughput (KB/s) 

D 350000-400000 

• 300000-350000 

D 250000-300000 

• 200000-250000 

D 150000-200000 

D 100000-1 50000 

• 50000-1 00000 

0 0-50000 

Figure 6: Distributed Reed-Solomon, Some Degraded JOZone Results ( Read) 
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64 

FIie Size (KB) 

Sustained 

--~----------

---- -------- --- ----
RS-RAID Write 

Record Size (KB) 

Disk Cache 

Throughput (KBJs) 

D 250000-300000 

• 200000-250000 

D 150000-200000 

D 100000-150000 

• 50000-100000 

0 0-50000 

Fi~ure 7: Distributed Reed-Salam.on, Some Degraded IOZone Results (Write) 

lt is c lear from Figures 6 and 7 that RS-RAID can compete with RAIDS in burst 

th roughput, but this is not surprising as the burst throughput is a lmost entirely dependent 

on the operating system's disk cache as well as the CPU cache: the underlying storage 

mechanism is iITe levant. However, it appears that the RS-RAID test shown above was 

limited by the lOOMbit switched network with a sustained data rate for both reads and 
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writes around 1 OMB/sec. Thus, more tests were performed to get a better idea of how 

RS-RAID and RAID 5 compare. 

6.4 Additional Tests 

In addition to the RAID 5 Control Test and Distributed RS-RAID, Partially Degraded 

tests above, four additional tests were performed as follows: 

• RAIDS Distributed - a baseline network test. For this test, 6 of the distributed 

nodes were utilized so it could be compared directly with the RAIDS Control 

Test, which used 6 local disks. This test showed that the network can be a 

bottleneck at approximately lOMB/sec. 

• RS-RAID Distributed, Non-Degraded. This test shows how the RS_RAID 

algorithm can perform at best-case conditions with n=3 and m=4 with no failed 

devices. It maxed out the network for both reads and writes while still consuming 

a fair amount of CPU time. Reads had a sustained throughput of approximately 

1 OMB/sec, while writes, due to the need to write to the parity devices, sustained 

approximately 5MB/sec. 

• RS-RAID Distributed, Fully Degraded. This test shows how the RS-RAID 

algorithm can perform in worst-case scenario with n=7, m=1, with exactly n 

devices operational, 3 data and 4 parity. Since RS-RAID is a processor-intensive 

algorithm, this test was designed to see if the CPU could become the limiting 

factor in a fairly small system. It heavily taxed the CPU, with the network no 

longer the limiting factor. 
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• RS-R AID Local, Partially Degraded - In a typical implementation, it is expected 

that the dist1ibuted RS-RAID would usua lly work at some level of degradation 

but not the maximum. This test shows how well the algorithm performs assuming 

the ne twork is not a limiting fac tor. This test maxed out at least l CPU for the 

duration of the test. It is a direct comparison for RS-RAID Distributed, Partially 

Degraded. It shows the maximum throughput of the a lgorithm, on that central 

server, wi th n=3, m=4, and 2 data devices failed. 

Figures 8 and 9 below are graphs of the sustained data rate , using the 1GB fi le size over 

the vari ous record sizes of all 6 tests. Note that record size did not significantly affect 

sustained data rate for any of the tests. 
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Figure 8: Sustained Data Rate IO Zone Results ( Read) 
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Sustained Data Rate (Write) 
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Figure 9: Sustained Data Rate IOZone Results (Write) 

The RS-RAID Local , Parti ally Degraded test shows potentia l, reaching 22MB/sec on 

reads, but only showing a mere lOMB/sec on write. This poor w1ite performance is due 

to the fac t that when any data devices are missing, the coordinating server a lmost always 

needs to read the enti re st1ipe first to reconstruct the miss ing data then do the w1i te . 

However, this is onl y 47% and 19% of the, sustained data rate for reads and wri tes 

achieved by the local RAIDS array, respecti vely. 

T he Distributed tests (both RS and RAIDS) also shows that in a real-world distributed 

system, a switched lOOMbps network would not be nearly fast enough to handle a 
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distributed RAID system; lOOOMbps would certainly be necessary to match the 

22MB/sec achieved by the RS-RAID Local test. 
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VII. Conclusion and Future Work 

7 .1 Experimental Conclusion 

Despite a highly optimized RS-RAID algorithm, the Gaussian elimination of data 

recovery and matrix-vector multiplication of checksum data calculations proved to be a 

significant bottleneck with fairly small values for n and m when testing for sustained 

throughput. Higher values for n and m, as would be found in a medium-size business or 

large educational computer lab would certainly produce similar or worse sustained 

throughput due to the 0(12 2
) nature of the matrix calculations. Clearly, distributed RAID 

via Reed-Solomon coding is not a viable alternative to a local RAID 5 system for general 

use where sustained throughput is a concern. 

However, such a distributed RAID system may have other uses. Such a system could be 

used as a backup system for a local disk array in lieu of an expensive tape backup system. 

Its distributed nature is ideal for a backup system, especially if the nodes of the 

distributed system are in different physical structures, providing additional means for 

disaster recovery. A distributed RAID system may also have uses in an environment 

where burst throughput is important, but sustained throughput is not. One such example 

is a large database, where a small number of records are accessed very frequently. 
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7.2 Future Work 

Transaction Log: Though it was not tested in this experiment, it is apparent that the slow 

performance of a rebuild of a node after it comes back online would be detrimental to the 

system, especially considering the frequency of expected node failures. (i.e. a user 

rebooting a workstation would require that node to be rebuilt.) To counteract this 

situation, a transaction log could be added, located on the central coordinating server. It 

would simply maintain a list of writes over a given period of time. Thus, if a node is 

down for a short period of time, that is, less than the amount of time covered by the 

transaction log, the central server can retrieve the changed data from the other nodes and 

send the node the writes that occurred during its offline period. This would prevent the 

need for a full synchronization. 

Central Disk Cache: In addition to the operating system's built-in disk cache in memory, 

it is possible to consider a disk cache, stored on one of the central server's local disks. 

This would create another performance plateau between that of the memory cache and 

the distributed storage, thus increasing average performance, but would not change the 

sustained throughput of the system. 

Distributed Processing: With a custom client, it may be possible to speed up the system 

by utilizing each node's processor to facilitate the Reed-Solomon coding, particularly on 

writes. A write to a block would consist of sending the new data to the data device, plus 

the difference between the old and new data to the checksum devices (d'J-dJ), which 
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would then read their own checksum data for that stripe and recalculate the checksum 

using c; '= c; + z;./d' i -di) as mentioned above. 

lmerleaved Parity: To simplify coding, testing, and debugging, the system was set up 

analogous to RAID 4, with designated Data Devices and Checksum Devices. In order to 

alleviate the bottleneck of needing to write to the same Checksum Devices for every 

write, checksum data could be interleaved amongst then+ m disks. This would improve 

performance in the same way tha~ RAID 5 improves over RAID 4. 
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Appendix A - IOZone Test Result Tables 

The results of the IOZone read and write tests can be found below. The results of the 11 

other tests are available from the OSU Computer Science department. 

RAID 5, Local 

File Size Record Size (KB) 
(KB) 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 

64 413089 385446 426528 380881 382990 
128 331692 336046 358611 371977 349805 344911 
256 332492 345058 359529 365164 368339 311813 257789 
512 329481 353098 358061 379517 382919 315863 253580 238029 

1024 336964 350081 367415 366225 374678 299775 246918 210739 216582 
2048 337563 357169 368204 383089 378632 296207 234136 213197 199630 196149 
4096 329602 349340 369312 377890 379015 298696 237919 206586 196979 201526 194583 
8192 328417 346266 366253 380386 383252 295165 238750 209144 198733 200161 195056 206931 

16384 331484 350100 367411 381404 378522 304897 250872 212809 201253 202296 198859 205924 205640 
32768 380510 307311 247580 216140 202946 202549 201140 208482 205946 
65536 380826 313872 255109 216658 203942 205871 204745 209055 209638 

131072 381645 309521 251706 219703 204520 201967 202516 211914 210402 
262144 382364 310159 251824 216911 205024 203739 202774 209621 213868 
524288 49972 47655 47891 43924 46889 47398 46687 46881 47515 

1048576 49281 48205 47935 46797 47099 47080 46177 46077 46957 

RAID 5 Local IOZone Test Results (Read) in KB/sec 

File Size Record Size (KB) 
(KB) 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 

64 4363 244285 271259 293630 241598 
128 259678 294195 283834 303991 288219 226545 
256 248088 262559 270606 271759 238831 192191 155146 
512 191405 211569 210777 209062 177844 166771 167545 144510 

1024 178085 187755 186009 176311 166452 162255 160700 152129 144085 
2048 168171 174683 172957 166098 157368 155057 149936 154810 154333 141564 
4096 162565 167663 166058 163624 152426 149778 150660 150727 151027 148994 145185 
8192 159822 171578 171779 164656 158021 155077 152440 152895 153675 154881 155652 153979 

16384 162203 170083 167813 161313 155313 153709 155006 154309 154633 153853 155475 155410 149243 
32768 151679 152505 151381 153924 153637 154681 156319 154949 153517 
65536 135745 141091 138893 142135 141332 147210 143874 150076 149644 

131072 136427 124834 123130 134012 132249 125338 125732 125011 128917 
262144 115337 115145 120084 131776 119201 120068 128812 115565 120966 
524288 69104 70822 69240 72630 72200 72172 71030 72709 72027 

1048576 52364 53680 53432 52906 54293 53867 53621 52666 53830 

RAID 5 Local IOZone Test Results (Write) in KB/sec 
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RS-RAID Distributed, Partially Degraded 

File Size Record Size (KB) 
(KB) 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 

64 326411 357688 353477 376580 367741 
128 333364 349813 360461 372084 379746 358508 
256 329497 354553 364127 372643 378700 351206 299096 
512 329891 346894 367573 373207 380100 337715 290097 266396 

1024 331293 351642 370619 379264 377288 338061 277053 261088 254344 
2048 334372 353226 370283 374330 383377 335952 287805 254154 243551 241341 
4096 330669 348005 367747 373656 384386 327731 280125 249194 239490 237476 238097 
8192 327757 347797 365014 379189 378714 338609 283175 249087 238980 238890 231924 236851 

16384 334537 348535 366302 380210 376989 335991 283592 250569 238688 234798 237945 238222 238576 
32768 379214 332842 283801 247148 235305 234583 237693 237633 237129 
65536 380388 336370 287409 249334 234896 237198 237069 234040 237046 

131072 380492 339727 288177 250355 234606 234097 233943 234133 233918 
262144 380613 343933 284501 250262 237379 234001 234082 233779 233844 
524288 7968 7665 7642 7940 7780 7961 7961 7717 7732 

1048576 7718 7725 7712 7649 7611 7712 7575 7693 7643 

RS-RAID Distributed, Partially Degraded IOZone Test Results (Read) in KB/sec 

Record Size (KB) 

File Size 
(KB) 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 

64 837 232774 255044 253905 264564 

128 258057 268908 275827 278295 276478 227375 
256 250464 261494 262822 257042 250718 220884 181161 
512 223962 231991 233046 224164 212881 195045 184897 163370 

1024 207669 212535 209192 203864 191580 178518 172655 176522 164950 
2048 200842 200605 201855 196411 178661 175104 168809 167321 172814 167127 
4096 196574 200470 198181 188695 175058 172137 170566 168213 172324 172929 168664 
8192 194903 195601 194003 182812 172068 168736 165578 165364 168472 166886 169200 167755 

16384 192185 193098 193930 183693 171189 164872 164567 166090 167096 165111 165218 165048 167219 
32768 166283 166224 165427 165968 164353 166584 163315 164603 164535 
65536 149390 119613 149778 141958 144638 145894 136913 132593 147465 

131072 135510 125526 154228 110834 136546 120131 111201 117945 107992 
262144 20562 21726 19932 20525 19364 20774 15432 19577 20127 
524288 6410 7034 6990 6892 6872 6839 6956 6773 7002 

1048576 5021 5014 5068 5099 5118 5145 5199 5069 5127 

RS-RAID Distributed, Partially Degraded IOZone Test Results (Write) in KB/sec 
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RS-RAID Distributed, Fully Degraded 

File Size Record Size (KB) 
(KB) 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 

64 331730 320132 355790 367571 359458 
128 329863 349624 355652 364668 369888 348708 
256 330339 345530 364665 370431 370416 345028 286696 
512 330095 343375 364179 373995 368348 331620 266656 269904 

1024 329260 351641 341670 376334 363642 329058 275047 260620 250799 
2048 332689 337288 354147 373591 368949 328042 282244 255521 242708 244537 
4096 328075 347734 365844 369573 369777 337064 280144 253119 242037 240106 240671 
8192 331660 350624 364135 371671 376108 328361 282668 251713 239476 238987 236319 239580 

16384 330382 355571 368288 380263 377545 329784 286058 251605 236472 235368 236053 235392 235061 
32768 378505 335092 282417 247587 235410 238091 238238 235324 234702 
65536 379546 334437 286866 251093 235246 237649 237360 234859 237414 

131072 379431 334643 286585 247378 235525 237283 237085 237019 237264 
262144 386030 335458 286566 250367 235472 234366 234864 236548 235009 
524288 5514 5495 5629 5579 5648 5580 5673 5559 5543 

1048576 5660 5655 5657 5746 5798 5848 5758 5706 5607 

RS-RAID Distributed, Fully Degraded IOZone Test Results (Read) in KB/sec 

File Size Record Size (KB) 
(KB) 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 

64 223047 255020 262362 262393 239664 
128 246100 271214 275323 266728 280736 227768 
256 245208 248540 256779 243117 246629 213671 179663 
512 220025 228458 226946 217602 206862 180155 176253 163577 

1024 208763 203901 201856 202210 185610 177966 172275 174242 165079 
2048 202891 207643 200351 194862 181542 172738 173617 174091 173516 166368 
4096 198392 202631 200292 188027 176903 168920 171108 169129 170156 171971 166321 
8192 194271 195606 195582 184293 173140 168293 165317 165917 166219 166247 168761 165588 

16384 191897 193543 192977 181353 168053 165991 165893 166370 166771 164678 167525 164989 166761 
32768 166410 164891 164452 163236 162951 163668 165855 163754 166105 
65536 157254 155422 152298 130826 114778 105047 156091 157136 113479 

131072 85197 73804 156880 139833 141365 80843 128296 84897 63531 
262144 27270 27588 27408 26914 27724 27071 27375 29490 28472 
524288 9646 9697 9724 9732 9930 9655 10149 10006 10032 

1048576 7144 7159 7060 6978 7030 6994 7053 7008 7058 

RS-RAID Distributed, Fully Degraded IOZone Test Results (Write) in KB/sec 
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RS-RAID Distributed, Non-Degraded 

File Size Record Size (KB) 
(KB) 4 8 16 32 64 128 256 512 I024 2048 4096 8192 16384 

64 326502 355376 369866 374283 376517 
128 329002 359597 358655 376355 376440 324958 
256 330318 348291 364205 362063 361613 326122 299762 
512 328423 345937 365708 372116 373421 324652 292056 268193 

1024 330421 339635 367408 377033 377718 324046 266389 247349 249884 
2048 329894 348419 354630 378775 374473 3IOll7 283733 254506 242800 245179 
4096 326714 351435 365223 368180 367356 321711 284723 252137 241394 236557 241154 
8192 329763 351815 365387 376348 376437 321633 281009 246762 235788 234997 239190 239315 

16384 329128 352094 365445 379181 372770 325945 283312 246820 237897 237590 234906 237825 237900 
32768 380753 325311 283085 246866 234911 234361 236987 234556 234598 
65536 381202 320158 283716 250278 237261 237079 236888 234139 234198 

131072 375551 325984 279460 250231 234702 236965 233799 234658 236818 
262144 363316 326036 279353 247065 234654 233975 233984 237013 236791 
524288 9214 9165 9317 9220 9374 9109 9236 9215 9280 

1048576 9323 9223 9269 9246 9243 9247 9266 9176 9288 

RS-RAID Distributed, Non-Degraded IOZone Test Results (Read) in KB/sec 

File Size Record Size (KB) 
(KB) 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 

64 218414 246124 257122 246209 236164 
128 255990 269467 280100 286386 259116 212602 
256 252960 270619 271495 267783 248290 209836 184438 
512 221451 227246 230534 217968 204474 191764 184776 166779 

1024 209192 214588 213328 200978 189522 179393 169763 171728 162979 
2048 199067 201495 200707 188806 178492 174459 170014 167895 170609 165949 
4096 194437 202201 200215 189577 177331 168941 166564 170516 168566 169424 168524 
8192 193321 195616 194662 182975 173196 165464 166065 165836 165685 168062 166092 167207 

16384 192671 195370 194139 182545 170709 164339 162359 163674 166277 164155 164004 166208 163496 
32768 168708 162145 161492 163077 162920 164842 166023 163759 163777 
65536 142632 157865 130143 133474 131763 143848 143922 153174 143155 

131072 110626 113002 113964 112715 155340 116666 119537 116409 117450 
262144 19327 18444 18266 21269 21020 20264 21306 23203 18868 
524288 6878 6738 6734 7110 6975 6955 7280 6857 6885 

1048576 5272 5299 5215 5148 5331 5086 5322 5251 5292 

RS-RAID Distributed, Non-Degraded IOZone Test Results (Write) in KB/sec 
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RS-RAID Local, Partially Degraded 

File Size Record Size (KB) 
(KB) 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 

64 344014 359554 254865 387620 349527 
128 339510 342290 365595 382076 377564 333399 
256 324489 355992 356492 368406 377567 325269 283532 
512 327557 346656 369396 367798 381811 318808 284904 248419 

I024 329902 348289 373051 379688 374129 327158 285471 255748 249945 
2048 334693 349788 366956 380958 383021 325183 274566 249148 244889 244770 
4096 329575 348063 365939 374888 374473 325365 282656 248632 241479 237711 240968 
8192 332145 349921 371756 378976 376209 320727 282024 248822 239105 238022 235665 238799 

16384 330876 353157 366221 370821 376998 321028 278100 250030 236043 237301 234831 234896 238392 
32768 378230 318943 278159 249581 237492 232089 236607 237025 237560 
65536 363241 317970 281802 246268 234281 232188 236592 236739 237211 

131072 377090 323107 277036 246188 234168 235836 236298 236571 237072 
262144 378020 325034 278001 246558 234524 233282 236220 233704 233918 
524288 22683 22579 22378 22524 22432 22339 22292 22531 22309 

1048576 22570 22459 22368 22133 22278 22168 22111 22239 22196 

RS-RAID Local, Partially Degraded IOZone Test Results (Read) in KB/sec 

File Size Record Size (KB) 
(KB) 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 

64 219929 266674 265616 274785 265581 
128 258113 277648 275286 293517 271124 218443 
256 243560 269172 265846 266690 253977 212780 186731 
512 225850 226959 230834 218437 206197 189425 181623 16311 I 

1024 205830 214629 212758 196844 187441 176247 174181 174472 163681 
2048 199514 201953 201613 191814 178302 170071 169452 170822 171050 168283 
4096 196113 200068 196621 185557 175642 169003 167909 168034 168998 169339 167054 
8192 195695 195080 192454 181914 171775 166565 164878 165585 165682 166119 166341 164759 

16384 189106 191332 189572 178937 169764 164802 164045 164565 164301 167067 167323 166248 166033 
32768 170599 163917 165185 165729 163868 166520 166276 164152 164782 
65536 157028 161251 158938 161064 151395 161163 159286 160406 154668 

131072 129377 135829 130649 125388 130490 127141 128240 131448 131641 
262144 40024 39802 38510 39985 39022 38187 40103 39091 40888 
524288 13657 13759 13573 13578 13518 13552 13636 13610 13649 

1048576 10271 10156 10153 10171 10153 10172 10260 10201 10140 

RS-RAID Local, Partially Degraded IOZone Test Results (Write) in KB/sec 
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RAID S, Distributed 

File Size Record Size (KB} 
(KB) 4 8 16 32 64 128 256 512 I024 2048 4096 8192 16384 

64 333286 359390 370070 372253 361430 
128 322509 347746 362596 358627 356645 351678 
256 331171 347839 365200 370459 379879 345992 297679 
512 326305 348082 367786 376215 376188 328837 293735 245568 

1024 333121 347601 364160 367021 376198 328724 286117 245618 250429 
2048 331125 349248 365518 372023 375028 329947 277466 246123 235426 245977 
4096 335135 348302 366136 372970 372159 330431 283951 247343 239755 238611 237378 
8192 328507 348327 366432 371181 370546 333998 277731 244332 237207 239517 236626 236996 

16384 331237 347729 365616 378575 373500 326505 281918 250152 236267 238907 238861 238409 238423 
32768 372638 326556 287696 248917 234542 237488 235031 237811 235096 
65536 377781 334186 284319 249378 234895 234649 234677 234769 236867 

131072 380845 329286 284434 246939 237419 234690 237178 234669 234370 
262144 383315 329108 284474 247112 237934 234705 237304 237118 237173 
524288 9775 9852 9942 9695 9666 9961 10029 9992 9765 

1048576 9761 9838 9798 9723 9770 9738 9693 9740 9155 

RAID 5, Distributed IOZone Test Results (Read) in KB/sec 

File Size Record Size (KB} 
(KB) 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 

64 216961 257049 266722 263374 257060 
128 261255 280053 264959 280141 260713 221875 
256 252732 264479 266964 270024 241058 219738 181175 
512 223097 231472 228887 223384 201497 192113 181111 164899 

1024 210876 217785 211783 200942 186793 178829 174417 174359 162156 
2048 200806 207393 203860 196056 178073 171281 172475 169592 173413 156491 
4096 197911 205529 203004 190087 172848 169234 170233 167054 171409 171516 170092 
8192 191805 196639 192476 185234 171685 166727 167433 168455 166220 166884 169557 167669 

16384 190370 194679 193289 182924 172055 165924 163877 164797 164025 164474 167944 165446 167231 
32768 167372 165262 162452 163265 165241 165978 164346 164571 166631 
65536 153741 162457 162872 141804 150584 161951 165595 165889 163765 

131072 147031 144372 121078 148503 164872 141949 119890 147306 119749 
262144 43141 36096 39740 41005 43162 40496 41993 42233 40095 
524288 14152 13582 13178 14450 13662 13628 14172 14260 13692 

1048576 10372 10105 10232 9911 10148 9814 10148 7281 10060 

RAID 5, Distributed IOZone Test Results (Write) in KB/sec 
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Appendix B - Reed-Solomon RAID Source Code 

Selecte d porti ons of the RS-RAID d1iver can be found below. The full source is 

avail able from the OSU Computer Science department. 

rs raid.h 

t 1 fndc ( _ RS_ RAJ O_ H 

i d<' f 1 n C' _ R S _ RA I 0 _ 11 

,t inc luclc , linux/ ra1 d / md .h> 

• • • • • • • • • • • • REF.fl !:Ot.t...""'l~ ON P,\RAMF.TE-:RS • • • • • • • • • • • • • • • • 1 

ll dc f 1 n (' MAX_ DISKS 256 

Md c-! 1111(" MAXM ~ 5 

i d<"f in f' MAX.N 2 5 

...., r, t ~ h ,"t :· bt ·••n c h n:•c.•n r; the• d1v1 s 1o n ~ nd mul tiplt c l\tlOn 
t ,._l 1 , · it 1m1 .· , , t 1 0 11 ~~,n bt.• u:-, <"cL I [ w we r e ltti rgc t. the tables ,.:o u ld 
lu • t ,H.., h 1 q 1 0 ltt 111 m e m l.'.> 1)' 

t y µ c dc ! u8 RS_ WORO; 

lll c.l c !.1nc NUMBITS 8 
Ndcfinc PRIME Oxl D 

Hd c ( 1 n c MSB ~ l <., t NUMBITS 

lfllde ! inc SIZE l l << NUMB ITS 

T h,• r,,-ll O l !_', l1f'l cl O l)C lil"lt o r:, 

Nd c fi n c MUL ( a,b conf >mu l Table( ( a ) )( (b ) ) ) 
•define DIV (a.b) ( conf >div'l'able( (a ) )( ( b ) ) l 
Ndc ! ine A DD ( a, b ' l ( a ' - l b ' 1 

lfde f 1ne SUB t a,b ) (( a ) -t b J! 

•••. • , . • • · t-~ND R£ED S OLOMON PARAMETERS •• •••••••• • • • • • • / 

NR STR IPES 
HASH_PAGES_ORDER 
HAS H_PAGES 

256 
0 

PAGE_SIZE 

( S '1'RIPE_SIZE»9 l 
( PAGE_SHIFT 9 ) 

Hclc(ine 
#de fine 
Hdc ( 1 ne 
Nde (inc 
#define 
ffdcf inc 
ndef ine 
ffdcfinc 
ffdcfi n e 

I0_ '1'HRES 1l0LD 
S TRIPE_S IZE 
S'l'RIPE_ SEC'l'ORS 
S 'l'RIPE_SHIFT 
NR_ HASll 
HAS H_ MASK ( NR_ HASH 

( HASH_PAGES. PAGE_ S IZE I s izcof ( GtfUCt ncripe_head • J) 
- l ) 

/ • 

:i t I 1 pf• !", t A ll ' 

t1<1 c f i n o 
ll(tpf:. i n o 

• 4o eino 
it r,,10 t i 11ti 

Nd~r i n o 
H (11-. ( t no 

· Flag~ 

S 'l'RIPE_ERROR 
S'l'R IPE_HANDLE 

S ~'R!PE_ S YNClNG 
O'l'lllPE:~ I NS YNC 
D'l'Rl t>F.; .... P RJ-:;}1.8AD_ACTIVE 

n'l'Rt PE_ DELAYKD 

4 
5 
6 

Hdef i ne RS _ UP'l'ODA'l'E 
Hdc fine RS_ LOCKEO 1 

0 • pnoe C"Ont" ins c u1· t~nt dat:ft • 1 
1 • I. 0 ha~ been subm1t"tt:'d o n ·req• · I 

•define RS _ O VERWRITE 
· 11n<1 some- lhat ftr- c- 1n t('1 nft l c o 

HdefinP RS _ Insync 3 
ffdef i n e RS _ I..-Jantread 
Hdef i n e RS _ Wan t write 
Hdefine R5_ Syn cio 6 

/ · t owl'.ite C'ov c : ::. who le, Pll()C 
ha ndlc_ st1 ipe · 1 

tdev &'- 1dcv >in_s~·nc at ~tdrt • / 

1 • want t o schedule a read · / 

th1 :-; 1 0 ne ert t o be a ccount ecl a s re~y n c.-
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I \'.t rr• • t 

l c!<-t tnr RECONSTRUCT WRI T E 
• d<" f l n"" H C.AO_ MO D 1 FY _ WR I TE 

1 -...~ 1 • , ~ .. r h I I 'I ' "\ r: :-;.·utc-_ p,, : 1t1· r'IO<le 
l <lt .. ! ! nr C li ECK_ P AR I TY l 

,\, \ ! . • \ "' l u'P(.l,,tl' r: tht" P,.1.f'lt)' wJo LOCKIUG • 
I d€" f, nf' UPOATE_ PAR l TY 

1 <11-.. ! 1 n"" mddcv_ t o _ con( unddcv 

~ lluc · d1 n k _ 11lf o I 
mdk_ r"dcv t 

). 

nt r-uc t nr 1· 1 pc_ hc11d ( 

r s_ra1d_conf_t · 1 mddev - >privatc ) 

·rdcv: 

hl\!.h po 1nten; · ~ tt \1r t ~ Lt 1pc_ hcod 
~ t n1c-t l 1::. t h ead 

• ho.sh_next. · · ha!.h_ppre v; 
lru ; 1nact1vc_ l1 z t o r handle_ list · / 

); 

r. t :uc t 1. n _ rl\1d_pr1.vatc_data 
.:1cctor_ t 
,nt 
un:-: i o nf'd l o ng 
at o m i c _ t 
::;p 1n l ock _ t 
nt iuc t r5dcv 

:-:r ruct b :. o 
:.t 1uct b1o_vec 
::.tn.1cl POQC 
ntruc t bio 

• r l\1d,_conf: 
sect o : ; 

pd_ 1dx ; 
state; 

count : 

vcc ; 
reQ; 

· page: 

lock : 

:;ect o :. o ! thi n r o ~ · 1 
/ · pari t. )' d i sk i ndex • / 

~uu.c flags · / 
· n1 o f o ct 1 ve thr ead / requencn • / 

· t o read, ·towr1te , •written; 
nectar _ t sect o r; nee t o r- o f this pzu~e • / 
unn i oncd long flaos: 

) devil) ; · .i ll'JC ,, tt•! '•nth C"Xtn, a pl\c- t.· depcnd1nq o ! RAID geo:net::y • / 

;, t 1· u c t n :. _ raid_privatc_ datet ( 
ntn1ct s t1 ipc_ head 
mddev_ t 

•• stripe_hashtbl ; 
' mddev; 

· spare: 

) ; 

S lJUC L dink _ into 
int 

lOL 

chunk_s1=e. level: 

ra1d_d1sks, working_disks, failed_disks; 
int ma.x_nr_s tr1pes; 

r.t 1 uct 11.st h e flcl handl c _ lu•t : r. ttlpf' f: necchng ?rnndl1n() 
s lruc t l1st _ hecad dela)•ed_l1st ; • ttt ipt•~ th.ll IMve plugged reQues ts · 1 

at.omi c_t preread_act 1vc_ 5tr1pe~; st ripe~ w1th 5chcduled 10 · , 

c har cache_name[ 20); 
kmem_cache_t · slab_cache; , . f o r allocnt1ng ~tr1pe~ · 1 

at omic_ t 
~tru c t list_head 
wai t _ gueue_ h e ad_ t 
1 nt 

active_stripes ; 
1nactive_ list ; 
wa1 t._for_st ripe ; 

release o f 1nactive 5tr1pes blocked 
wa1t1ng for ~5._, to be f ree 

inactive_blocked; 

spinlock _ t device_lock: 

• • REED SOLOMON T A BLES ,\ NO PARAMETERS• • • • / 
int t1 , m : 

RS_ \·IORD 
RS_WORD 
RS _WORD 
RS _WORD 
RS _WORD 
, clo n · t , <·il 1 l Y r\-'~d l hcsc t1 ( tc1 
RS _ WORD 

~ c r uet dis k_info d1 s k s (OJ; 

divTable(SIZEJ(SIZE); 
mulTable(SIZE)(SIZEJ ; 
encodematnx(HAXMJ (MAXN) ; 
o vcrallmatrix(HAXN • HAXl<!] (HAXNI; 
decodematrix(HAXN] (HAXNI; 

1n1t . but ttlcy · 1c o nly ~Sb bytec c~ch. 
gflog(SI ZEJ. gfalog(SIZE) ; 

t ypede ( !;t ruct rs_raid_pr.ivace_data rs_r aid_ cont_t; 

#e n d i f 
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rs_raid.c (Reed-Solomon encoding and decoding parts only) 

••• , 1-· .. 1 

1 • q 1'. 1 tr t !1··: i :, : ur:c · 1 0 11!, u~·-.d t n r,,n: t: uc · th<> • ithlt>!.. 
nt 1' tic i n l int'! R.S WO RD _ mu l RS_ WORO a , RS_\\ORD b, r s_ra1d_ conf_t • conf ) 

I 
retu r n 1 6 .:=0 b =O '0 cont >11falog( 1conf - >11flo11( a) • con f - >11 fl og(b ( l % (S I ZE - l l I; 

!1t n t.1c i nl i n o RS _ h"ORD _d 1v 1RS_\iORO a. RS_WORO b , r~_ ra1d_con f_t • conf 

r o t.u r n " -O ".'0 : c o nt >Qf l\ loot con( - >Qtloolal - conf >gflog(b] • S I ZE - l J % ( SIZE l } 1; 

Bt.a t l c vo id !1 llMul Toblc rn_ra1d_conf_t · conf 
I 

i n t. 1 . J ; 

! o r ~ t =O , 1 ... s 1::E : 1 •• 
t' or 1J=O : J,S I ZE;J +• 

c o n ! >mul Toblcl l i !J J=_mul , l . J.con! 

Bt<"lt i c vo i d f1ll D1 vTnbl c \ t·s_ro1d_conf_t · conf i 

I 
i nt 1, J: 
! o r , 1 -: 0; 1 <SIZE; 1 •• 1 

Co r I J ;:;0; J<S l Z E ; J • • ) 

conf > d1.vTablc(1J (J ] =_div 11 .J ,co:1 f ' : 

' Ill ' 

,t.J,· "' ' , \1,1 , 1 · h~ . •·, rl , n\ ,•q1,•nd1x ,\ t c•1 n-0 1,· 1n! c,, : :n..1~1'n · 
~tati c vo i d 8 etupMu ltToblc ~ s _ r a 1d_co nf_ t • conf 

( 

RS _ WORD c u rva l = l; 
RS_\'IORD c.·lu · Loo: 

conf >gfl o g ( O( • L 
t o r , c u rLog = 0: c u1Loo , S IZE 
( 

l; curLog• ... 

cont >Q fl og{cu r ValJ = cu r Log; 
C"Onf >g {o log(cui l..Og) : c ur\lal ; 

Th1· \, • \ l '• 'I '. 1 lh' l ! l "\ i j U,'o{ 

th, .. , . ti • n • 'X!: \ b1r- :- t ,-.. i l 1 y •..,•1t h 

if ( curVa1 & MSB ) 

c. ---.d, 1n r·10\11t' ,: duf" ro the' :.c1cr 
..<. .. ht-> :-.hilt m11:;t -~cc-ti : on l •/ ,h,.n 

curVal 
e l se 

, , c u 1' Vo.l • MSB) << 1 1 • PRIME; 

curVa l <<= l: 

rh1'. tunc t 1<1 n :, ,-.. t: ·, up t h t."' o v..,,L, 11 m.,t11x as dcf1ncd 1n Plank 's r e v ision p arer 1aq7 No te 
rh,11 t h , ,·nml1 Jl1t ' d r , v mnti ix df't1n<'rl 1n tht ("itto1no l popc 1 docs net wor 'I< , 

o tatic voit1 ootupT rtn1aforrn . rs_ ra1.d_conf_t · conf ~ 

( 

int n a conf >n; 
int m• c o nt >m : 

int 1. j, k ; 
RS_WORD fsc t; 

for ( i = 0; i .; m + n : i•+ : 

con f - >overallmatrix{ i J (0 I 1; 
for ( j : l; j < n ; j•-+ ' 

conf >overallrnatr1.x( 1 J(j) _mul d, conf - >overallmatr ix ( i](j - l J.cont ) : 

1 ,. h1C t f ' I I[' ·,·J'i' 

for ( i : 0; i < n; i++ } 
I 

f act ;: conf >overallmatr1.x[il [ 1) : 

f o r < j z i : j < n, • n ; j • + 
1 

conf >overallr.rntrix ( J)l 1 l: _ d1.v icon{ >overallmatrix{j)[i) , faet.conf ) : 

f o r j = 0: J < n : J + • i f ( i i = j 
( 

fact = conf >overallmatr1x ( i ) (j); 

for I k = 1. ; k < m • n; k + + l 
conf >o ver allmat r1 x ( k ) [j) = SUB ( conf >overallmatrix (k ] {j), _ mul {conf - >overallmatr1x{k) (11 . fact ,con f ) 

for ( i = 0. i < m · 1 • + 

t o r t j = 0: ) < n : J + + J 
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c o nt >cnco<lcm.ac.r1x(1) (JI con! >o vernl l mat.r1x (1 • n) lj ); 

n t a ti c int c ncodCl t·o_:01d_cont_t · con!. voic, •• pt.rs ) s t:uC"t S t t q1.•f·•.1f:,-: • t; b , 1nt n . in t m 

i n t n con : ·n 

i n t :-n cont > m: 

, : . : l ! . , h • 

R~; h'U HI'! 1nVcc( MAXN ) C'lutVcc[ ?-t.AX!i }; 

i nt 1 . l "-

RS _l'tO HI' • " hul t, .. : 

! o r 1 1 :· ~ 

- ,\, 
! o r O; , J .. n : J .. 

111Vcc[J) - buf.fc : (]](1) ; 

·,· ::-.;,. · .... ,. 

·\ 1t 1 ,: 

mcm!::.C t 1t. ou lVcc(OJ.O, !toi 2. ~o ! hS_ \\'ORD · m ; 

:n11 1 ' I l l !, .. I ' 1 ~' 'h, l , ... , f l ' ' ' U : ''• '<.." 

! or , J - 0: ") .. m; J • • l 
t o r I k = 0: k "' n ; k. • • 

ou lVcc(J I = AOD , ou t Vecl J). MUL \ conf - >cn codemac. rix(J )( k ] . inVec( kl l ; 

A I, • t•• It' : l l ly ' rt' '1k• ·c,;·y <"' t tht' doto, but t hi s 1~ t nztcr. 
( or 1 J ::: 0; i < m: ) • .. ' 

buf fc 1 (j •nl 11) :::o utVcc(J): 

r e turn 0: 

!Ito.ti c i nt decode s truc t at 1 1pe_ head ' sh . voi C, •• ptrs l 

I 
1 : , tl\1 d cont t · c o nt. - ::. h > :a1d_co n( ; 
i n t n c-o nf ..- n ; 
int m - cont >m ; 

RS_WOR D " • bu t. l ~ t :.. HS _ l•/ ORD · ' pt : s. 

int i . J . k. 1 . 
int n e wvl'll id :::0 ; 
RS _ WOR D facto t , tmp: 

R S_WORD c.n.igmentcdmott 1.x( MAXN ) ( M,AXN) : 

Fl r • ' :l:: ·h, 1 t •.\ 1111n,11 · , 1 in 1t11'< ,.· 1th d ,, t,, t1 0 :n th.._ .. '-"'"'-' 1,, l lm,,t.1ix ._v"cct dtnr, t c sb > \'al1d. 

j = O: 
for t i :::.O;i< l n } ; 1.++ l 

i f l t c s L ., ncl_ set _ b 1 t t R5 _ UPTOD,\TE . &sh - >dev(1 J . flags 1 

memcp',' , augment.edmot r ix f 1 l . conf :>ove r al lmatr 1.xl 1 J. s i %l!IOf ( RS_WORD) • n 1 : 

el s o t h 1: 1 ifl t , 1 , ... .., m q v n l 1 d f t nd , c hf"C''ic. ~um 1' ('1W co use. 

k = O: 
for ' : j<m; j + .. ) 

if ( tes t _ bi t < RS_ Insync. &sh - >dev ( n-+-j) . flags ) ) 
( 

memcpy ( augme nte clma tr 1x( 1) . conf >overallmatr1x(n+ j J , 9i%eof ( RS_WORO) ·n ) ; 
.t l: 1• , ) t ·, · th, l, H ,1 ll\ th, r;{l\l' t.'bH tt\" I 

memcp-,• <buff er I 1 I . b uffer I n+ j). STRIPE_SlZE • ~ 1 ::Po£ 1 HS_l...:ORD · c hunk!> t 7" • ) ; 

J , • : th i !" 1 r-.w · ~ h r0n \ 1!:t" rl don t ll5<" l l aqo 1 n 
k e \; 
break ; 

r e turn 1 : 

newval i d + +; 

' I,.., 1J1•'"' t ,., f I h 1 1 ::C l ~ t " 11 • '•'~ 
• h 11 f fr· 1 ,·,, n • , , ~, : 111 1 }11~ ,i~I I,.., 11 l\t't' , i 11 I •"' '.\'!" ' ~h1 n\.111h N 1 

th, l'I JO' • '' ' • II I 1 '1 u 1 11 '<1, 1r1t1 1 x Wt' l l l, l. Lil l th, ~tdH~! 1 tn ~l1min 1r : 

fo r { J = 0: j < n; J •• 
i f , ~ augment edmat t· ix I j 1 I j I \ 

I 
f o r 1 =- J f l: 'augmentcdmatri x (r)(j] ; tH· 
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l! t>n roturn O -. · i. ,,1! ,l'nJj•nt•,I t1.'.'t" C' ?trl 

.. ,, ", • , ~ , , r1 ; i: P hn" l ·1 t n • den, • ! · ,•n , •n o uqh t o -..·orty about. 
f o r k 0, k , n k • • 

tmp n uy:ll<"nlt:ct.mJ\tr1xlJl l k l: 
ftu gm..-•ntedm.tn t 1x ( J) ( k ) ouQTnCn tedmatr 1 x lrJ (kl; 
nu<7mt.'ntc-dmtn: 1x( t l ( k l - trn.p ; 

! o r k O k,STRIPl-: s1:.E Tl· : k •• 
t mp bu!fc- : (J](kl· 
buff.- 1 !Jll k l bu :tc: l : ll k ); 
bu ! f , •: rt I ( lri. I t:rp 

!l\l.' t f1uy-m,•nt(•, lm •. , t :lx lJ'.1" 
i ! , t o c t o : · ! 11· · 1 '· I • 

! o r k k ... n \i:: • • 
a wJmt.•nt1.. ... dm.-,t : ~x . 1, _,c, tl!\' l\uqtnCntcdmat11 x iJ)( k l tacto r . 

tor k 0 · k, S TRIPE S IZE , \ t.·, • k • • i'l11 1t1'1:-<('nt1..""d f'l :"\t t c, f ttw n-:nttx 
buf t c : [Jl(kl !'1\' bu f fet ()) (k ]. fact C" t : 

! or k k • • 

I( l ) k 
fncto t tn .1gmcnt cdrMt. r1x(k) (J); 

i! foc t·o1 · - o •··· ! -,al • ti ly 1,;· 'I, · twn 1t• ' t .l(": 0 !: om ::: , ... 1( ... 

I 
tor < 1 J; 

ouy--m( ... n t('t..L'l\l\tt1x ! k i( l l SUB auornentedmat11x ( k }[l), MUL , tactor, augment.edmatrix ( jJ[l] )l ; 
for 1 .:::0 l <STRI PE_ St::E · , ·hu:ii<r,1:, • :) -0. 1 k • ""'~ , •nt:t( s t:q <· l'lt cince· 

butt<'rl k lll l = SUB buf[er( kl lll, HUL , factor. bufforlilllJ :1, 

rot.urn ncwva l l d , 

otn.tic int c-omput. c _ block :.;, struct s tr1pc_ head · s h 

I 
: :-. 1a1 d cvnl _ t · cont 
int. l ('O U l\l , , .. .il !-k :, 
V"Oi d · pt 1 s(M.,.\ X _ D .1 S K S I 

cou n t O; 
1 = 0 : i. 

c,o I 

s h > Id i d _conf : 
1,.' 0 lll > : ll 1d_ d 1 SkS ; 

ptrs!cou n t ~~ J = p oge_ftddreSS \ Sh >dev{1 J .page ) : 
i = rs_ 1·a id_ n ext_d1Sk \ i, disks 

while i : = 0 · , i l 1 Ix· 

i ' l' .. Fi . . , ,11 1M1'?.J l'F1·, 1;•1 t1: HFrt-

ult t,I 1dxl , 1nt dd 1idx::! 

return decode ! s h , pt t s : i• •1'\'·'•' t ,kl': C'(H •• '"' f :·,•t t uw t ht" up! o dntp h i t. 

!ltatic voi d. compu t ~ _ pct. 1 1Ly l struct !:: tr i pe_h ead ' s h . int met h od 1 

I 
r ~ _ ra1d_ co11L _ l · cont - ~h >1.a1d_con L 
int 1 . pd_ 1dx - s h >pd i dx . i I 1 )'{ df' l( i'< . • disks 
struc t bi o · c hosen; 

void. · pt t s ( MAX_ D I ::;KS l; 

n••-..:t II: i: p,I t ix ll: V.. ,, 1 1 1 \ 11,,t \1·0. l tl 1h, lt;-, 'lt;,!· 

PRI NT K , · c-rnnp utt• _p nt· 1ty , 5 t 1 1P f' - l l u . me tho d ~d \n~. 
, unsigned. l o ng l o n g i s h >sec t o i , me tho d , 

swit.Ch \ metho d 
c ase READ_ MOOlFY_ WRlTE · 

BUG • l· l-,\ f• (,: ·i' lt-"1 t.··~j~ . .. :-; .\ t ..... ! h.,\ll' (I' 

c ase RECONSTRUCT WRITE· 
C390 U P DATE_ PAR l TY ; 

f or 1 =- c o n( >n ; 1 

conf ·> ra~d_disks, count: 

if t ,t I h. ,., l 1 I b ,,.,· s h >dev(il towr1te 

chosen - s h >dev l 1] . towr 1 te 
s h >dev( 1 I towr1te : NULL · 
if sh >dev( 1 J . w11tten DUG 

sh >dev 11 J wt 1 t t 1:;"n =- c h o sen 

break , 
c a se C HECK PARITY 

BUG :q 
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for l = d1okt1; 1 

if , r.h >c1f'v I l I wr 1 t ten' 
occto1_t ucctor - sh ~dev(i).sector: 
11truct blo ·wb1 = ah >devl 1 I .written: 
whila wbl i.i. wb1 >b1_sccto1·.; sector• STRIPE_SECTORSl 

cop~·-dntn l. wbl. sh >devliJ.paoe. sector 1 : 

wb1 r~_ncxt_b10.wb1. sectorl: 

nrt bu .R~_l.OCKED. I.sh >devl1).flaosl: 
oct_bll .R~_UPTODATE. t.oh >devli).flagsl; 

count O. 
1 :: 0 ; ~ ~, 

do I 
ptr::lcount ••I page _nddreGt.. sh >dev l 1 l • page>; 
1 ° 1r..1·n1d.n,•xt __ d1nk 1. disks: 

whila (1 • I ,,h' 

~-l-l-:· ~! ·~: F~: ••. ,·. HF~'F - - - - I 

cncodc,con!.ptro·: 

awitch1mcthod 
caaa RECONSTRUCT_WRtTE, 

for1i=conl >n:i.;conf >rn1d_d1sks;1•+> 
( 

oet_b1t(R5_UPT0DATE, t.sh >dev[iJ.flAQSl; 
set_bit(R5_LOCKED. &sh >devli).flagsl: 

~~ .. , tq t ~,,. t'l"l"" ,p;,:r~: 
:,,.t _t,1 t H', t1P1"'ll,'l':'l-'. 

.':~o·t hit 'R', t.<X"!'>P.(), 

"'"' l•11 I<'• t.,'<·1;1-:r, 
braak; 

caoo UPDATE_PARITY: 
£or1i=conf->n:1~cont 
( 

,. ,:h •.It•\' [ pd_ HIX I f l<'\gr. 
1, :ah •,h•v [ 4d_ 1<b I . ! l<'\gs 
&:1h •di'vlpd_idxl flc,gs 
·'-"h •dt-•v[qd_ 1dxl .fl11qs· 

r.et _b1 t • R5_lJM'ODA'l'E. &sh >dcv ( 1 J . f lagsl: 

, r.,~t _ \>11 w,_ t11··:'<1PA1'~:. i.::h - >dev (pd_irixl. flognl; 
,.,., 1,1, 1<', tll'T,•l>,\'l'r:. i.:-,h •d .. v(qd_itlic:J.flag.si; 

break; 
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