
SECURE COMMUNICATION ON JAVA CARD

By

JAEHYUKJOO

Bachelor of Engineering

Tae-Jon University

Tae-Jon, South Korea

1995

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
July, 2004

SECURE COMMUNICATION ON JAVA CARD

Thesis Approved:

zr Thesis Advisor
f

~nz/2/ ·J;Q_

11

PREFACE

This research concentrates on secure communication between a host application

and an applet on the Java card. We propose a one-time password based on one-way hash

chains in this thesis. The passwords are generated by a one-way hash chain computation

on the hash value of a Converted Applet (CAP) file. After each communication between

a host application and an applet, the password is updated. More secure between a host

application and an applet on the Java card is achieved successfully this way.

This thesis is organized into five chapters, references, and an appendix. Chapter

I, Introduction, describes the background and current problems of Java Card technology.

This chapter also states the objectives of this research. Chapter II, Literature Review,

introduces the concepts of Smart Card and Java Card. Chapter III, Secure

Communication, describes our approach to secure communications based on one-time

passwords generated from a one-way hash chain. Chapter IV, Secure Communication

Simulation, simulates the communication between a host application applet and a client

applet. Various malicious attacks are also simulated. In Chapter V, we end with

Conclusions, and suggest areas for future work. References for this thesis are listed next.

The Appendix presents the source code designed and implemented for the simulation.

l1l

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ... 1

Background .. 1
Current Problems ... 2
Objectives .. 4

II. LITERATURE REVIEW ... 5

Smart Card . 6
Basic Types Of Smart Card ... 6
Smart Card Merits And Weakness ... 7
Smart Card Hardware .. 7
Smart Card Communication .. 8
APDU Protocol .. 9
TPDU Protocol ... 11
A TR .. 11
Smart Card Operating Systems .. 11
Smart Card Systems ... 12
Open Platform And Open Card Framework .. 13
Java Card .. 14
Architecture .. 14
Language Subset .. 15
Java Card Virtual Machine . 15
CAP File And Export File .. 16
Java Card Converter ... 16
Java Card Interpreter .. 17
Java Card Installer And Off-Card Installation Program 17
Java Card Runtime Environment... 18
JCRE Lifetime ... 19
Java Card Runtime Features .. 20
Java Card Applets .. 20
Application Identifier (AID) .. 20
Objects ... 21
Atomicity ... 21
Exceptions .. 21
Applet Installation .. 22
Class Javacard.Framework.Applet. .. 26

JV

Chapter Page

Java Card Security ... 27
Java Card Platform Security .. 28
Java Language Security ... 28
Additional Security Features of the Java Card Platform 28
Applet Firewall .. 29
Object Sharing Across Contexts .. 30
Java Card Platform Security Mechanisms ... 31

III. SECURE COMMUNICATION ... 33

One-way Function .. 33
One-way Hash Function .. 3 3
Message Digest (MD) 5 ... 34
One-way Hash Chain ... 34
Applet Installation Process on the Java Card ... 35
Check In Compile Time ... 36
Class File Verification ... 37
Subset Checking ... 3 8
CAP File And Export File Verification ... 39
Check By Off-card Installation Program And Installer 41
Traditional Applet Communication And Risks ... 43
Applet Communication And Problems .. 43
Secure Applet Communication By One-time Password 46
Integrated System ... 53
Proposed one-time password merits .. 55

IV. SECURE COMMUNICATION SIMULATION BETWEEN HOST APPLICATION
AND THE JAVA CARD .. 57

Prerequisites ... 57
Difference between the Java card and the simulation .. 58
Simulation .. 59

V

Chapter Page

V. CONCLUSION .. 70

BIBLOGRAPHY .. 72

APPENDIX ... 72
Ebank.java ... 74
Mask.j ava .. 78
HostEbank.java ... 82
Installer.java .. 101
HashMaker.java .. 118
Installerlnterface.java .. 135
Terminal.java .. 136

VI

LIST OF TABLES

Table Page

I . Command APDU structure ... I 0

2. Response APDU structure .. I 0

3. Supported and unsupported Java features ... 15

4. Exception classes in the java.lang package ... 22

5. Applet SELECT command ... 25

6. Methods in the class javacard.framework.Applet.. ... 27

vii

LIST OF FIGURES

Figure Page

1. Smart card communication model .. 9

2. Command and response APDU cases ... 11

3. ISO 7816-4 file system structure .. 12

4. Java Card Virtual Machine ... 15

5. Java card installer and off-card installation program .. 18

6. On-card system architecture ... 19

7. Structure of application idenfiers (AID) ... 20

8. Applet execution states and communication ... 24

9. The object system partitions on the Java Card platform ... 30

10. Shareable interface object mechanism .. 31

11.0ne-way hash chain generation process .. 35

12. Applet installation process .. 36

13. CAP file verification ... 41

14. After an applet installation .. 44

15. An applet selection from a host application .. 44

16. The PROCESS and DESELECT method ... 46

17. Initial state after applet installation ... 48

18. The proposed applet selection method .. 49

19. One-time password update .. 51

Vlll

Figure Page

20. ith time selection an and update ... 53

21. Integrated System .. 54

22. The Real Java Card ... 58

23. Simulation Model .. 59

24. Masking hash installer .. 60

25. Ebank applet installation ... 61

26. Select and deposit with the first password .. 62

27. Reselect and deposit with the second password ... 64

28. A fake host application ... 65

29. Reselection after a fake host application tried .. 66

30. Original Ebank source code .. 67

3 I . Fake Ebank code ... 68

32. The result of fake Ebank applet .. 69

ix

CHAPTER I

INTRODUCTION

Background

The explosion of the Internet and wireless digital communication has rapidly

altered the way that people connect with each other. As the world has become more

linked, the traditional business model that is face-to-face in-store transaction has been

changed to the on-line transaction that uses a few mouse clicks not in a store but in our

home or other places. To succeed in the electronic business market, the market must give

the same confidence to people as the traditional face-to-face transaction market has

given.

A smart card is similar to a credit card in an appearance. However, it has a

microprocessor and memory chips in the plastic substrate of the card and has a

computation capability. As result, smart cards offer great security and portability. Smart

cards therefore are widely used in payment industries, banking industries, storage of

identification and medical records, prepaid phone cards, retail royalty cards, and

electronic purses, where data security and privacy are major concerns. The demand for

smart cards has been growing every year. The total number of smart cards manufactured

for use within the United States and Canada for 2000 is 28,430,000 [16]. The total

number in 2001 is 41,320,000, a 45 percent growth rate [16]. Smart card shipments in the

first half of 2001 totaled 14,800,000 and the second half of 2001 saw the growth of smart

card shipments to 26,520,000, which is a 79 percent increase in smart card shipments

from the first to second half of 2001 [16]. Smart card growth from 1999 to 2000 was 3 7

percent [16].

1

However, smart cards still have some limitations although they are widely used.

First one is the portability of applications. Second is the lack of flexibility to download

applications into a card. This limitation is caused because smart card applications are

burned in the chip. Therefore, once the card is made, the implanted application in the card

cannot be updated or modified in any way. Finally, there is only a small universe of

knowledgeable programmer who can develop the card applications. This is because the

interior workings of the smart cards of each manufacturer are different even though the

card size, shape, and communication protocol is normalized. Therefore, only a small

group of highly skillful programmers can develop card applications.

A Java Card is simply defined as a smart card that is able to run several

applications written in the java programming language within the limitations of memory

size. The Java Card Virtual Machine offers a solution to the smart card's limitations with

the following features. One is dynamic update. Card issuers might provide services by

updating applets as they are developed. New applications can be added whenever needed.

The only limitation is memory size. An existing applet can be deleted at any time.

Another is security. The Java Programming Language is well known and proven as a

secure language. The Java Card offers an applet firewall. This firewall provides a secure

environment that allows several applets to reside on the same card without the leak of

secure data. Java is also platform independent. Portability across different chip

architectures, convenience of code reuse and all the benefits of object-programming

languages are available to the Java Card Programmer.

2

Current Problems

Although Java Card technology offers a secure environment, there is still a hole

in the security defense that malicious attackers can exploit to access secure data from a

host application or the Java Card. Communication between a host application and the

Java Card applet is one-way communication, known as a 'half-duplex'. The entire data

exchanged between an applet and a host application takes place by using Application

Protocol Data Units (APDUs). When the host application wants to communicate with a

specific applet on the card, it sends an APDU that specifies the SELECT command,

which is defined in the class javacard.framework.Applet and an application identifier

(AID). When the Java Card Runtime Environment (JCRE) receives this command, it

simply compares the command AID with the AID in internal table on the JCRE. If they

match, the communication between a host application and an applet on the card is

accepted and can proceed.

To select a specific applet as we have seen above, only the AID is needed in the

host application, the JCRE, and the applet. If this AID is somehow revealed by the host

application manager to malicious attackers or if this AID is obtained during the process

of sending the SELECT method from a host application to the card by malevolent

attackers, these attackers can pretend to be the host application to access secure

information on the card.

In addition, Attackers can counterfeit the legal applet with this revealed or taken

AID to harm the host application or by performing illegal functions. In Java Card

technology, the Java Card Virtual Machine (VM) is divided in two parts: off-card VM

and on-card VM. When an applet is installed on the card, the off-card VM verifies the

3

CAP (Converted Applet File) file, which the converter creates from class files as

inputs. A CAP file is a binary representation of converted Java package. The CAP file

includes class information, executable byte codes, linking information, verification

information and so forth. After this process, the CAP file is installed to the card.

However, this CAP file verification is only performed on the off-card part and not on

the on-card portion. The lack of on-card verification makes it possible for a malicious

applet to be installed onto a card via a legal applet installation process.

Objectives

The purpose of this research is to prevent malicious attackers from stealing secure

information from the Java Card and a host application. Our objectives are the following:

• Our first objective is to verify a host application on the Java Card Runtime

Environment (JCRE). As we have seen above, a malicious attacker can pretend to

be a real host application with a stolen or revealed AID to select the Java Card

applet for stealing secure information or performing illegal functions. This can

happen since the JCRE uses only the AID to authorize a host application to access

an applet. Therefore, the JCRE needs some verification functions for checking

whether the host application is legal or not.

• Our second objective is to distinguish whether an applet on the card is legal or

not. As we have seen above, currently this CAP file verification is performed only

on the off-card VM. The JCRE therefore has to have some functions to verify the

CAP file on the on-card VM. This makes an applet installation more secure.

4

CHAPTER II

LITERATURE REVIEW

There are three types of machine-readable cards. These are:

•

•

•

embossing card

magnetic stripe card, and

smart card .

Embossing card is the oldest technique for marking ID cards in machine-readable

form [2]. The embossed design on a card can be transferred to paper by printing using a

simple and cheap device (2]. The type and positioning of the embossing are specified in

ISO standard 7811 ''Identification cards - Recording Technique" [2]. The simplicity of

this technique has made worldwide proliferation possible, including developing countries

(2]. Exploitation of this technique requires neither electric current nor connection to a

telephone network [2].

Magnetic stripe card is read by pulling it across a reading head, either manually or

automatically, whereby the data is read and stored electronically [2]. Processing this data

no longer requires any paper (2]. This feature compensates one of the main drawbacks of

the embossing card. The main drawback of the magnetic stripe technique is the

considerable ease with which the stored data may be altered (2]. This type of card is often

used in automatic machines where visual inspection is impossible, as in cash dispensers

[2]. The potential criminal, having obtained valid card data, can use simple duplicates of

cards at such unattended machines without having to forge the visual security features

designed to prove the card's authenticity [2].

5

The Smart card is the youngest and most sophisticated member of the

identification card family in the ID-1 format [2]. It is characterized by an integrated

circuit incorporated in the card, which contains elements used for data transmission,

storage and processing [2]. We review a smart card in section 2.1, section 2.2 outlines a

java card, and finally we review smart card security in section 2.3.

Smart Card

Smart cards are often called chip cards, or integrated circuit (IC) cards [I]. The

integrated circuit incorporated in the credit card-sized plastic substrate contains elements

used for data transmission, storage, and processing [I]. The initial smart card trials took

place in France and Germany [I]. Due to vandalism and theft in the early 1980s, France's

Public Telephone and Telegraph System began to move to a coinless public telephone

system that used ''smart" cards to hold a prepurchased value [3]. Microsoft employed

smart card technology for the Microsoft Computer Dictionary. The smart card in

computers and electronics is a circuit board with built-in logic or firmware that gives it

some kind of independent decision-making ability [4]. In banking and finance, the smart

card is like a credit card that contains an integrated circuit that gives it a limited amount

of intelligence and memory [4].

Basic Types Of Smart Card

A smart card is divided into memory cards and microprocessor cards. Memory

cards, and all smart cards for that matter, have some form of memory storage [3].

Memory cards are primarily designed for storing information or values and are

commonly used for applications such as disposable prepaid telephone cards used in

6

public telephones [2]. Microprocessor cards are truly "smart'' cards (2). Henceforth in

this thesis, a smart card refers to a microprocessor card.

Smart Card Merits And Weakness

A smart card can perform all functions as needed. A smart card can save

transaction time since the smart card does not need to access remote databases. Smart

cards are broadly used in areas such as payment and banking where data security and

privacy are main concerns. However, in spite of these merits, there are limits to using a

smart card widely. One is portability of applications. Another is flexibility to download

applications on to a card. A small universe of knowledgeable programmers is another

obstacle.

Smart Card Hardware

A smart card contains a central processing unit, RAM, ROM, mass storage

(EEPROM). The central processing unit in most current smart card chips is an 8-bit

microcontroller, usually based on the Motorola 6805 or Intel 8051 instruction set, and

with clock speeds up to 5MHz[l]. High-end cards very often include a clock multiplier

(by 2,4, or 8), which allows these cards to operate up to 40MHz (5MHz times 8) [1].

Newer smart card chips have a l 6·bit or 32-bit microcontroller, and smart cards with

reduced instruction set (RISC) architecture are also available (1].

RAM (random access memory) is used as temporary working space for storing

and modifying data [I]. RAM is nonpersistent memory; that is, the information content is

not preserved when power is removed from the memory cell. RAM can be accessed an

unlimited number of times, and none of the restrictions found with EEPROM apply.

7

ROM (read-only memory) is used for storing the fixed program of the card [I].

As the name implies, this type of memory cannot be written [2]. No power is needed to

hold data in this kind of memory. Because the data are stored in the chip by hard wiring,

a smart card's ROM contains operating system routines as well as permanent data and

user applications. These programs are built into the chip during production [2].

EEPROM (electrical erasable programmable read-only memory), like ROM, can

preserve data content when power to the memory is turned off [1]. Functionally, an

EEPROM corresponds to a PC hard disk, since data remain in memory in the absence of

power and can be modified as necessary [2]. User applications can also be written into

EEPROM after the card is made. The important electrical parameters of EEPROM are the

number of write cycles over the lifetime of a card, data retention period, and access time.

EEPROM in most smart cards can reliably accept at least I 00,000 write cycles and can

retain data for 1 0 years.

ROM is the least expensive of these three kinds of memory [1]. EEPROM is more

expensive than ROM because an EEPROM cell takes up four times as much space as a

ROM cell. RAM is very scarce in a smart card chip. A RAM cell tends to be

approximately four times larger than an EEPROM cell.

The current generation of chip cards has an eight-bit processor, 16KB read-only

memory, and 512 bytes of random-access memory [18]. This gives them the equivalent

processing power of the original IBM-XT computer [18].

Smart Card Communication

A smart card is inserted in to a card acceptance device (CAD), which may be

connected to another computer [1]. Card acceptance devices can be classified as two

8

types: readers and terminals [1]. A reader is connected to the serial, parallel, USB port of

a computer, through which a smart card communicates. Terminals, on the other hand, are

computers on their own. A terminal integrates a smart card reader as one of its

components. The communication pathway between the card and the host is half

duplexed; that is, the data can either be sent from the host to the card or from the card to

the host but not both at the same time.

Smart cards speak to other computers by using their own data packets - called

APDUs (application protocol data units) [1]. APDU denotes internationally standardized

data units in the application layer, which in the OSI model is layer 7 [2]. This is the layer,

which in Smart Cards is located directly above the transmission protocols [2]. An APDU

contains either a command or a response message. A host and a smart card mutually

exchange command APDUs and response APDUs, as shown in Figure 1.

A host

Command
APDUs

Response
APDUs

Asman card

Figure 1. Smart card communication model [1]

APDU Protocol

The APDU protocol as specified in ISO 7816-4, is an application-level protocol

between a smart card and a host application [1]. An APDU message consists of a either a

command APDU or a response APDU. A command APDU is used by a host and a

response APDU is used by a smart card as shown in Figure 1. A command and response

structure is illustrated in Table 1 and Table 2, respectively.

9

Mandatory header Optional body

CLA INS Pl P2 Le >ata field Le

Table 1. Command APDU structure (1)

Optional body Mandatory Trailer

Data field SWl SW2

Table 2. Response APDU structure (2]

The command APDU header consists of 4 bytes: CLA (class of instruction), INS

(instruction code), and Pl and P2 (parameters I and 2) [I]. CLA field indicates a class of

command APDUs. INS field mentions a command instruction. The two parameter bytes

P 1 and P2 are used to provide further qualifications to the instruction [1]. The section

after the header in a command APDU is an optional body that varies in length [1]. The Le

field shows the length of a data field in bytes. The data field contains data that are sent to

the card for executing the instruction specified in the APDU header [I]. The Le field

indicates the length in bytes anticipated by the host in the card's reply. The response

APDU is composed of an optional body (data) and a mandatory trailer field (swl and

sw2). The body consists of the data field, whose length is determined by the Le field in

the corresponding command APDU. The trailer consists of two fields SWI and SW2,

together called the status word, denoting the processing state in the card after executing

the command APDU. APDUs communication between a host and a card can be divided

into 4 cases as shown in Figure 2.

10

Command APDU response APDU

Case 1 lheaderl E:J
Case 2 lheaderlLe ldata jsw

Case 3 lheader,Lc !data E:J
Case 4 I header I Le ldata ILe I I data lsw

Figure 2. Command and response APDU cases (l]

TPDU Protocol

The data structures exchanged by a host and a card using the transport protocol

are called transmission protocol data units, or TPDUs (1]. A total of 15 transmission

protocols are provided, and their basic functions are defined in [2]. They are designated

''T=" plus a serial number. Currently, two transmission protocols are used widely. One is

the T=O protocol which is byte-oriented and used for processing the smallest unit such as

a single byte. The other is the T=l protocol which is block-oriented. The unit of

processing is a block-a sequence of bytes.

ATR

After booting the power supply, the clock, and the reset signal, the smart card

sends out an answer to reset (ATR) at the 1/0 pin [2]. This conveys to the host the

parameters required by the card for establishing a data communication pathway (1]. The

ATR is up to 33 bytes. ATR is composed of transport protocol, data transmission rate, the

chip serial number, mask version number, and other information that is needed by a host.

Smart Card Operating Systems

Smart card operating systems have little resemblance to desktop operating

11

systems, such as UNIX, Microsoft Windows, or even DOS [1]. Rather, the smart card

operating system supports a collection of instructions on which user applications can be

built [I]. ISO 7816-4 standardizes a wide range of instructions in the format of APDUs.

ISO 7816-4 APDUs are largely file system-oriented commands, such as file selection and

file access commands. Smart cards defined in ISO 7816-4 can have a hierarchical file

system structure, as shown in Figure 3.

I MF I
/ l ~
~ i--DF____,I ~

1/l~
~IDF ~

l
~

Figure 3. ISO 7816-4 file system structure [1]

There are three types of files. One is the master file (MF). The second one is the

dedicated file (DF). The last one is the elementary file (EF). Each file is specified by

either a 2-byte identifier or a symbolic name up to I 6 bytes [1]. MF is the root, DF is a

directory file, and EF is a data file. It is similar to the UNIX file system. The MF can

contain DFs and EFs. A DF can contain other DFs and EFs. An EF can contain other EFs.

Smart Card Systems

Smart card systems are distributed systems that consist of two parts: the host

12

system residing in the computer connected to the reader or in the terminal and the card

system inside a smart card [I]. Most smart card software, including system software and

user application software, runs on the host side. The system software recognizes a

specific smart card and handles communication between the user application and the card.

The system software manages a card issuance and operations. The system software

supports security and key management as well. User applications implement functions

that work with a specific card or an application on the card.

Card software runs on the smart card itself. It contains system and user

application software. The system software typically includes the operating system and

utilities that control memory management, handle 1/0 communication with the host,

ensure data integrity and security, support the ISO file system, and provide system

utilities to the card application (l]. Card applications include data and maintain functions

that work on data.

Open Platform And Open Card Framework

The Open platform (OP) defines an integrated environment for the development

and operation of multiple-application smart card systems [I]. The OP is made up a card

specification and a terminal specification. The cross-industry, nonproductive-specific

requirements to apply an open platform and the off-card communication between the

terminal and the on-card application management are prescribed in the card specification.

The terminal specification defines the part of the application architecture within the

terminal.

The OCF is a standard framework announced by an Industry consortium that

provides for inter-operable smart cards solutions across many hardware and software

13

platforms [7]. OCF is the host-side application framework providing a standard interface

for interacting with card readers and applications in the card [l]. The OCF is a

functionally divisible structure model that divides functions among card terminal vendors,

card operating system providers, and card issuers. This makes a card more independent.

Java Card

A Java Card is a smart card that is written in the java programming language. Java

Card technology defines a secure, portable, and multi-applicable smart card platform that

incorporates many of the advantages of the Java language. The Java Card extends the

limits of the smart card by providing dynamic updates and more security.

Architecture

The Java Card 2.0 specification contains detailed information for building the java

card virtual machine and application programming interface (API) in smart cards [5]. The

minimum system requirements are 16 kilobytes of read-only memory (ROM), 8 kilobytes

of EEPROM, and 256 bytes of random access memory (RAM). The java card virtual

machine is divided into two parts: one part that works off-card and the other part that

works on-card.

Java card technology essentially defines a platform on which applications written

in the java programming language can run in smart cards and other memory-constrained

devices [1]. This platform is distributed into both the smart card and desktop environment

because of the split virtual machine features. It consists of three parts. The first one is the

java card 2.1 virtual machine (JCVM), the second one is the java card 2.1 runtime

environment (JCRE), and the third one is the java card 2.1 application programming

interface (API).

14

Language Subset

As seen in Table 3, the java card terminal supports only a subset of the java

language because of ajava card's memory limitation.

Supported Java Features Unsupported Java Features

-Small primitive data types: byte, -Large primitive data types: long, double,
boolean, short float
-One-dimensional arrays -Characters and strings

-Java packages, classes, interfaces, and -Multidimensional arrays
-Dynamic class loading

exceptions -Security manager
-Java object-oriented features: -Garbage collection and finalization
inheritance, virtual methods, overloading

-Threads
and dynamic object creation, access -Object serialization
scope, and binding rules

-Object cloning
-The int key word and 32-bit integer data
type support are optional

Table 3. Supported and unsupported Java features [1]

Java Card Virtual Machine

JCVM is composed of two separate pieces, as depicted in Figure 4. The on-card

piece includes the java card byte-code interpreter. The off-card piece includes the

converter that runs on a pc or workstation.

Off-card VM On-card VM

[J ...
converter I I interpreter I

class
files I j ...

+

~ e

15

Figure 4. Java Card Virtual Machine

CAP File And Export File

A CAP (Converted Applet) file is a container file in JAR (Java TM Archive) file

format. The JAR file format enables us to bundle multiple files into a single archive file.

The JAR file format is used as the container format for CAP files [1]. A CAP file is a JAR

file that contains a set of components, such as class information, executable byte-codes,

linking information, verification information, and so forth. The CAP file also includes

the manifest file. This manifest file offers additional human-readable information

concerning the contents of the CAP file and the package that it stands for. A software

form loading on the java card virtual machine is a CAP file format. For example, CAP

files enable dynamic loading of applet classes after the card has been made.

Export files are not loaded onto smart cards and thus are not directly used by the

interpreter. Exported files are produced and consumed by the converter for verification

and linking purposes [I]. An export file contains public API information for an entire

package of classes. It defines the access scope and name of a class and the access scope

and signatures of the methods and fields of the class.

Java Card Converter

The conversion unit of the java card converter is a package. Class files are

produced by java from source code. Then, the converter preprocesses all the class files

that make up ajava package and converts the package to a CAP file [I]. Besides

producing a CAP file, the converter generates an export file for the converted package.

During the conversion, the converter verifies that the load images of the java classes are

well formed, performs static variable initialization, checks the Java Card language

16

subset's violations, resolves symbolic references to classes, methods, and fields into a

more compact form, optimizes bytecode, allocates storage, and creates virtual machine

data structures to represent classes.

Java Card Interpreter

The java card interpreter provides runtime support of the java language model and

thus allows hardware independence of applet code [1]. The interpreter executes bytecode

instructions, carries out applet, manages memory allocation and object creation, and plays

an important role in guaranteeing runtime security.

Java Card Installer And Off-Card Installation Program

The off-card installation program is implemented to the pc or workstation side

and the on-card installer is implemented to the smart card side as shown in Figure 5. The

off-card installation program sends out the executable binary in a CAP file to the on-card

installer via a card acceptance device (CAD). The on-card installer writes it to the smart

card memory, connects it to the other classes already placed on the card, and creates any

data structures used by the java card runtime environment.

17

classo
files

+
converter

+
~
V
l

Off-card Installation
program

.~
PC or 'NOrkst:atfon ~

Runtime environment
On-card
installer

interpreter

Smart card

Figure S. Java Card installer and off-card installation program (l]

Java Card Runtime Environment

The JCRE is responsible for card resource management, network communications,

applet execution, and on-card system and applet security [l]. As illustrated in Figure 6,

the JCRE is composed of APls, industry-specific extensions, installer, System classes,

java card virtual machine (JCVM) and native methods. Applets are separated from the

JCRE.

The system classes are in charge of managing transactions, managing

communication between the host applications and java card applets, and controlling

applet creation, selection, and deselection [1]. To complete tasks, the system classes

typically invoke native methods. A specific industry or business can supply add-on

Ii braries to provide additional services or to refine the security and system model. The

installer enables the secure downloading of software and applets onto the card after the

18

card is made and issued to the card holder [1].

Java card applets are applications on the java card platform. Applets can be

downloaded and added to ajava smart card after being manufactured and it is managed

by the JCRE.

Applets

JCRE

r loyalty
applet l wallet

applet
authentication

applet

frame Industry-specific
Classes(APls) extensions

installer

System classes

applet transaction 1/0 network other
management management communication services

Java card virtual machine
(bytecode interpreter)

native methods

Smart card hardware and native system

Figure 6. On-card system architecture

JCRE Lifetime

The JCVM's lifetime coincides with that of the card itself: It begins at some time

after the card is manufactured and tested, and before it is issued to the cardholder, and it

ends when the card is discarded or destroyed [6]. The JCRE initialization is performed at

card initialization time and it is executed only once during the card lifetime. During this

process, the JCRE initializes the virtual machine and creates objects for providing the

JCRE services and managing applets [1]. As applets are installed, the JCRE creates applet

instances, and applets create objects to store data.

19

Java Card Runtime Features

Java card assists three runtime features aside from java language runtime model:

persistent and transient objects, atomic operations and transactions, and applet firewall

and the sharing mechanisms.

Java Card Applets

An applet is an application that runs on java smart card. Java Card applets do not

have to be burned into the ROM during the manufacturing time. These can be

downloaded later after the card has been manufactured. An applet class must extend from

the javacard.framework.Applet class [1]. The Applet class is the super class and defines

the methods and variables of all applets. The JCRE supports a multi-application

environment so multiple applets can exist together on a single card.

Application Identifier (AID)

Each applet instance and package in the java platform has a unique application

identifier. ISO 7816 specifies AIDs to be used for unique identification of card

applications and certain kinds of files in card file systems [1].

I AID I
I RID I PIX I

5 bytes O to 1 1 bytes

Figure 7. Structure of application identifiers (AID)

The AID is composed of two elements: RID and PIX as shown in Figure 7. The

first element is the register identifier (RID) of 5 bytes length. It is allocated by a national

20

or international registration office, and contains a country code, an application category

and a number identifying the application provider [2]. The second element is a variable

length value: PIX (proprietary identifier extension, 0-11 bytes). Thus an AID can range

from 5 to 16 bytes in total length [1].

Objects

Runnable applets on the card are objects that are instances of classes or array

types. A persistent object that is made by the new operator holds states and values across

a CAD (Card Acceptance Device) session. Any update to a single field in a persistent

object has an atomic property. A transient object created by invoking the Java Card APis

does not hold states and values across a CAD session. Any update to a single field in a

transient object does not have an atomic property.

Atomicity

Atomicity means that any update to a single field in a persistent object or to a

class field is guaranteed to either terminate successfully or else be restored its original

value if error occurs during the update time. Atomicity on the java card supports any

update to a single field in a persistent object or a single class field and a transactional

model, in which an applet can group a set of updates into a transaction.

Exceptions

An exception is an event that disrupts the normal flow of instructions during the

execution of a program [I]. When an applet detects or throws programmatically internal

runtime problem, the JCRE and the JCVM throw exceptions. Exception classes in the

java.lang package are listed in Table 4.

21

Throwable Exception RuntimeException

ArithmeticException ArrayStoreException ArraylndexOutOffioundsException

ClassCastException NullPointerException lndexOutOffioundsException

Security Exception NegativeArraySizeException

Table 4. Exception classes in the java.Iang package

The class Throwable is a common ancestor for all exception classes. It extends to

the class Exception. All java Card checked exception classes extend from the class

CardException that derives from the class Exception and all java Card unchecked

exception classes extend from the class cardRuntimeException that comes from the class

Exception. The class CardException is the root class for all checked exceptions that

indicate a programming error in an applet. The class cardRuntimeException is the root

class for all unchecked exceptions, often called runtime exceptions, that show unexpected

runtime problems, programming errors, or erroneous APDU processing states in thejava

card platform. The java card exception classes give a short type numerical reason code

that is used to describe optional details related to the throwing of the exception.

Applet Installation

A running applet in the JCRE is an instance of the applet class. A multiapplication

environment is supported by the JCVM and each applet instance has a unique AID.

Applet installation refers to the process of loading applet classes in a CAP file,

combining them with the execution state of the JCRE, and creating an applet instance to

bring the applet into a selectable and execution state [1].

To load an applet, the off-card installer takes the CAP file as an input. Then it

transforms the input into a sequence of APDU commands that bring the CAP file content.

22

By exchanging the APDU commands with the off-card installation program, the on-card

installer writes the CAP file content into the card's persistent memory (EEPROM) and

links the classes in the CAP file with other classes that reside on the card [1]. The

installer also creates and initializes any data that are used internally by the JCRE to

support the applet [1]. At the last step of the installation, the installer invokes the install

method.

The JCRE calls the install method as the last step during applet installation to

create an applet instance-a runnable applet. The arguments to the install method carry the

applet installation parameters [1]. The install method calls the applet's constructor. This

constructor creates an applet instance by using the new operator. In the constructor, an

applet typically creates objects that the applet needs during its lifetime and it initializes

objects and the applet's internal variables. An applet also calls the register method.

The register method has two functions. One is that it stores a reference to the

applet instance with JCRE. Second - it assigns an AID to the applet instance. As we have

seen above, each applet instance on the card has a unique AID to identify. The CAP file

that defines the applet classes contains a default AID [I]. However, an applet may choose

to have an AID different from the default one. When an applet's instance is created and

registered with JCRE, an applet's life starts.

During applet installation, the installation parameters are sent to the card along

with the CAP files that define an applet [I]. Then, the JCRE supplies the installation

parameters to the applet through the arguments to the install method. The applet

designers or the card issuers define the content and format of the installation parameters.

Usually, they include applet configuration parameters and initialization values.

23

Configuration parameters can be used to specify the size of an internal file, an array, AID

(-not the default one in the CAP file) and so on [I]. For example, applet initialization

values can specify the initial balance such as the card holder's ID and the account number

in an electronic wallet. The installation process is transactional. This means that when

errors such as programmatic failure, running out of memory, or card tear occur, the

installer discards the CAP file and any applets it had created during the installation. It

then recovers the space and the previous state of the JCRE.

When an applet is installed for the first time successfully, it enters an inactive

state. This applet becomes active when a host application selects it. Through exchanging

APDUs the communication between an applet and a host application is performed. This

is illustrated in Figure 8.

.----- Corrmand
APDU ... A host

application R:Soonse
APDU

Applet create 8 ~ 8ctive
deselect

sef~ Lcommands
Command except select

APDU.., ~n
~ponse applet

APDU

Figure 8. Applet execution states and communication

When the host application wants to select an applet to run, it sends an APDU that

specifies the SELECT command and the AID of the requested applet [I]. The Select

APDU command is the only APDU command that is uniformed on the Java Card

platform. It ensures interoperable applet selection on various Java Card platform

implementations. This standardized select command is depicted in Table 5. The data part

of the SELECT APDU contains an applet AID. This AID length is between 5 and 16

24

bytes. The entire data field of the APDU must match the AID of the applet to be selected

successfully.

CLA INS Pl P2 Le Data Field

OxO OxA4 Ox4 OxO Length of AID AID bytes

Table 5. Applet SELECT command

When the JCRE gets an APDU, it decodes its header (CLA, INS, Pl, and P2) to

determine whether this command is a select command or not. If this command is a select

command, the JCRE determines whether the AID in the APDU data matches with that of

an applet on the card or not. That is, the JCRE searches its internal table for an applet

whose AID matches the one specified in the command [1]. If the JCRE can't find it, the

JCRE returns the status word Ox6999 to the host application. This indicates that applet

selection is failed. If it is found, the JCRE informs the applet of its selection by invoking

its select method. In the SELECT method, the applet can check whether its conditions for

selection have been met, and if so, it can set internal variables and states necessary to

handle subsequent APDUs [1]. The applet returns true from the call to the select method

if it is ready to accept incoming APDUs via its process method. All subsequent APDUs

(including the SELECT APDU) are forwarded to the current applet until a new applet is

selected.

Before a new applet is selected, the JCRE deactivates the current applet by calling

its current applet [1]. This deselect method makes the applet carry out any cleanup

operations to prepare to go "off stage" and makes another applet ready to execute. If the

APDU is not for applet selection, the JCRE delivers it to the current applet for processing.

25

When the JCRE receives an APDU command, it calls the current applet's process method.

An applet is expected to execute a function requested in the APDU in the process method.

Class Javacard.Framework.Applet

The JCRE calls the methods to install, register, select, process, and deselect.

Public static void install (byte[] bArray, short bOffset, byte bLength)

The JCRE calls this static method to create an instance of the

Applet subclass.

Protected final void registerO

This method is used by the applet to register this applet instance

with the JCRE and to assign the default AID in the CAP file to

the applet instance.

Protected final void register (byte[] bArray, short bOffset, byte bLength)

This method is used by the applet to register this applet instance

with the JCRE and to assign to the applet instance the AID

specified in the array bArray.

Public boolean select O

The JCRE calls this method to inform the applet that it has been

selected.

Public abstract void process (APDU apdu)

This JCRE calls this method to instruct the applet to process an

incoming APDU command.

Public void deselect()

The JCRE calls this method to inform the currently selected

26

applet that another (or the same) applet will be selected.

Table 6. Methods in the class javacard.framework.Applet (l]

The JCRE calls install method to construct an instance of an applet. One of the two

register methods registers the applet instance with the JCRE. When the JCRE accepts the

select method, the JCRE checks first whether the applet is selected or not. If the applet is

selected previously, the JCRE deselects the current applet, and then it selects the new

applet by the select method. After successful selection, each APDU (including the

SELECT APDU) is delivered to the active applet via a call to its process method [l]. The

process method handles APDU commands and thus offers functions of the applet.

Java Card Security

Security refers to protection against unwanted disclosure, modification, or

destruction of data in a system and also to the safeguarding of systems themselves [8]. It

also refers to the technologies used to make a service resistant to unauthorized access to

the data that it holds or for which it is responsible [4]. In order to exchange data securely,

these distributed applications require access to a variety of security services, which

include data confidentially, data integrity, authentication, and non-repudiation [8].

Confidentiality means keeping confidential the content of users' data, even the users'

identities - in fact anything which is no to be made generally known [9]. Data integrity

pertains to protection of information from modification by unauthorized users [8].

Authentication is a mechanism or process that associates a particular person's identity

with a statement, action, or event to verify that internal user identification is correctly

associated with its owner [10].

27

Java Card Platform Security

The security features of the Java Card platform are a combination of the basics of

Java language security and additional security protections defined by the Java Card

platform [I].

Java Language Security

The Java Card platform supports a subset of the Java programming language and

virtual machine specifications appropriate for smart card applications [I].

• The Java language is strongly typed. No illegal data conversions can be done.

• The Java Language enforces boundary checks on array access.

• Variables must be initialized before they are used.

• The level of access to all classes, methods, and fields is strictly controlled.

Additional Security Features of the Java Card Platform

Card issuers desire a secure computing platform to meet the special requirements

of the smart card system [I].

• Transient and persistent object models - Objects are stored by default in

persistent memory. For security reason, the Java Card platform allows temporary

data to be stored in transient objects in RAM.

• Atomicity and transactions - Three security features are defined. First, a single

update to a field of a persistent object or a class will be atomic. Second, the

method arrayCopy in the class javacard.framework. Util guarantees atomicity for

block updates of multiple data elements in an array. Third, the Java Card

platform supports a transaction model in which an applet can atomically update

several different fields in different persistent objects.

28

• Applet firewall - This is defined below.

• Object sharing - First, the JCRE is a privileged user that has full access to

applets and to objects created by applets. Second, an applet gains access to JCRE

services and resources through JCRE entry point objects. Third, applets in

different contexts can share objects that are instances of a class implementing a

shareable interface. This is detailed below. Finally, applets and the JCRE can

share data through global arrays.

• Native methods in applets - Native methods are not executed by the Java Card

virtual machine.

Applet Firewall

The applet firewall is a mechanism to protect sensitive data of single applets and

to support cooperative applications. This isolates an applet. With applet isolation, the

applet firewall provides protection against the most frequently anticipated security

concerns: developer mistakes and design oversights that might allow sensitive data to be

leaked to another applet (1].

The applet firewall partitions the Java Card object system into separate protected

object spaces called contexts (l]. The boundary between one and another context is the

firewall. When an instance of an applet is created the JCRE allocates it to a context that

usually is a group context. When one applet accesses an object of different context, this is

not permitted because of the firewall. Accessing an object in the same group context is

allowed. Notice that there is only one active context within the virtual machines at any

time: either the JCRE context or an applet's group context. There is also a firewall

29

between the applet space and the JCRE. Figure 9 describes the object system partitions

on the java card platform.

system space

(JCRE context J
applet space

package B

package A
applet firewall

Figure 9. The object system partitions on the Java Card platform [1]

Object Sharing Across Contexts

The applet cannot reach beyond its context to access objects owned by the JCRE

or by another applet in a different context [I]. But in situations where applets need to

execute cooperatively, java card technology provides well-defined and secure sharing

mechanisms that are accomplished by the following means: JCRE privileges, JCRE entry

point objects, global arrays and shareable interfaces.

Since the JCRE is the system context that has particular privileges, it can call a

method on any object or access an instance field of any object on the card. Such system

privileges enable the JCRE to control system resources and manage applets [I]. And

JCRE entry point objects are normal objects owned by the JCRE context, but they have

30

been flagged as containing entry point methods that are the gateways through which

applets ask privileged JCRE services. Global arrays are handled by a particular kind of

JCRE entry point object. The applet firewall enables public fields (array components and

array length) of such arrays to be accessed from any context.

A shareable interface is simply an interface that extends, either directly or

indirectly, the tagging interfacejavacard.framework.Sharable [I]. An object of a class

that implements a shareable interface is called a shareable interface object (SIO). An SIO

is a normal object to the owning context but is an instance of the shareable interface type

to any other context. Methods only defined by SIO can access any other context Sharable

interface object mechanism is illustrated in Figure I 0.

applet A

Figure 10. Shareable interface object mechanism

Java Card Platform Security Mechanisms

The Java Card security features are enforced through a number of mechanisms

that are addressed at every level from the applet development process and the installation

procedure to the runtime enforcement [I].

Section 3. I describes each level security mechanism - compile-time checking,

class file verification, subset checking, and CAP file and export file verification.

31

• Runtime Security Enforcement [1] -It covers both ensuring Java language type

safety and enforcing applet isolation through the applet firewall. The CAP file

contains sufficient type information to enable through type checking at runtime.

To enforce the applet firewall, when an object is accessed, the Java Card

interpreter performs checks to determine whether the access can be granted [l].

32

....

CHAPTER III

SECURE COMMUNICATION

Although Java Card technology offers a safe environment, Java Card technology

does not standardize applets installation policy [1]. It is therefore possible for a malicious

attacker to execute an applet's function to gain illegal access by pretending to be a legal

host application. Moreover, attackers can legally install a fake applet that has

unauthorized or malicious data or code on the card. In this thesis, we adapt one-time

password via one-way hash chain to the Java Card to augment Java Card security.

One-way Function

A one-way function is a mathematical function that is significantly easier to

compute in one direction (the forward direction) than in the opposite direction (the

inverse direction) [11]. For example, it might be possible to work out the function in the

forward way in seconds but to compute its opposite it could take months or years, if at all.

We define the one-way function as Y = F(X). If the X value and the function F are

revealed, anyone can calculate the Y value. However, even if the Y value and the

function F are revealed no one can calculate the X value.

One-way Hash Function

In our work we use one-way hash functions and chains to enhance security. A

one-way Hash function can serve as a cryptographic checksum. A one-way hash function

is a mathematical function that takes a message string of any length and returns a smaller

fixed-length string (hash value) [12]. This has many names such as message digest,

checksum, contraction function, data integrity check, message authentication code,

message integrity check, and data authentication code. A hash function H accepts a

33

variable-size message Mas input and outputs a fixed-size representation H(M) ofM (13].

M will be much larger than H(M). H(M) can be 64 or 128 bits but M may be a megabyte

or more. To serve the authentication process properly a hash function F must have the

following properties (13]:

• F can be applied to an argument of any size.

• F produces a fixed-size output. F(x) is relatively easy to compute for any given x.

• For any given y it is computationally infeasible to find x with F(x) = y. This property

indicates this function is a one-way function.

• For any fixed x it is computationally infeasible to find x' from x with F(x)' = F(x). This

ensures that an alternative message hashing to the same value as a given message can't be

found. This prevents forgery and also allows F to function as a cryptographic checksum

for integrity.

Message Digest (MD) 5

MD5 is a one-way hash function designed by Rivest after some cryptanalytic

attacks were discovered against Rivest's previous MD4 algorithm [8]. MD5 handles

arbitrary lengths of blocks as input and computes a message digest of 128 bits.

One-way Hash Chain

One-way chains are a widely-used cryptographic primitive. One of the first uses

of one-way chains was for one-time passwords by Lamport [14]. Haller later used the

same approach for the SIKEY one-time password system (15]. This chain is used in many

other applications. This chain can be generated by repeatedly applying a one-way hash

function on a random number. First we randomly pick the last elements to generate a

chain's length n. We apply this to the hash function (H) to Sn as a seed. Si is a hash value

34

from Si+l by the hash function. Si+l is a hash value from Si+2 by the hash function. i shows

how many times the hash function is used. For example, n is 4 and i is 2, it shows hash

function is used 3 times (repeat times= n-i+ 1). The verification of this one-way hash

chain is in reverse order of its generation. For example a sender sends So. The receiver

stores S0• Next the sender sends S1• When a receiver accepts this, it can verify So by

computing So = H(S 1) as the receiver has S 1• However the sender cannot generate S2 from

the S 1 it received. This verification can be performed until it meets Sn. The one-way hash

chain's generation and verification order is depicted in Figure 11.

Generation
~-·································-····-········-···········----·-·---·-·---·-·---·----------·----·---·-------·--·-···--·····-··-·------···-·---··-·-··------•

So 4H(S1) sl(S2) ... ~(Sn-2) Sn-2~(Sn-1) Sn-1 4H(Sn) Sn
•···--··---····-···-······--·····-·---·------------··-·---------------·-·--·-·-····-··--··----·-·----•

Verification
Figure 11. One-way hash chain generation process

By this one-time password, communication between a host application and the

Java Card will be made secure. We describe the applet installation process in section 3.1.

In section 3 .2, we show existing communication mechanisms between a host application

and an applet on the Java Card and we describe current security problems. Finally, our

proposed one-time password is specified in section 3 .3.

Applet Installation Process on the Java Card

Applets to run on the Java Card can be either burned into the ROM during

manufacture time or can be downloaded whenever it is needed later after the card has

been made. In this thesis we investigate security problems caused by installing applets

after manufacture time by downloading them, that is, the applet installation process is

performed from host side to the Java Card side via a card acceptance device (CAD). In

35

this section, we go through the applet installation process with security verification. This

is illustrated in Figure 12.

java compiler

I o--.. (standard
java development

java files
Environment) I

1 Off-cardVM I
I !

I •onverter I I I
Cj I [

d b
I

B I I class files CJ I

I
\ .,, ...

CAP file export file I card

+ export files

~I
i

acceptance
J device lmmpn~, j
!

I ! I f on-card VM

PC
j

I
I Off-card I Jat'IO or installation i

works1ation program CAD I Caril
I
I

Figure 12. Applet installation process

An applet is composed of one or more Java files. These source codes are

compiled by using any standard Java development envirorunent like Symantec's Cafe or

Sun's JD K. After compilation, binary class files are produced.

Check In Compile Time

The Java compiler performs extensive and stringent compile-time checking so

that the compiler detects as many errors as possible. The Java language is strongly typed.

Unlikely C or C++, the type system does not have loopholes. Several examples are

described below.

• Objects can't be cast to a subclass without an explicit runtime check .

36

• All references to methods and variables are checked to make sure that the objects

are of the appropriate type.

• Integers can't be converted into objects and objects cannot be converted into

integers.

• The Java compiler checks that access controls like referencing a private method or

variable from another class are not violated.

• It also guarantees that a program does not access the value of a local variable that

is not initialized.

Class File Verification

Although a trustworthy compiler can ensure that Java source code does not violate

safety rules, class files could come from a network that is untrustworthy [1]. A verifier

that resides in Java virtual machine checks all class files loaded in before they are

executed. The class file verifier goes through class files in several passes to make sure

that they have the correct format. It also ensures that byte codes of class files adhere to a

set of structural constraints. In particular, class files are checked to ensure the following.

• There are no violations of memory management.

• There are no stack underflows or overflows. Restrictions of access are enforced.

• Methods are called with appropriate arguments of the proper type.

• Fields are altered with the correct type's values.

• Objects are accessed as what they are. For example, an APDU object is always

used not as anything else but as an APDU object.

• Binary compatibility rules are put in force.

• No pointers are fabricated.

37

• Illegal data conversions are not allowed.

Unlike, the Java virtual machine, the Java Card virtual machine has a split

architecture that consists of two pieces: the converter running off card on a PC or a

workstation and the interpreter running inside a card as shown in Figure 12. The

converter is the front end of the virtual machine and takes class files and export files as

input. During this conversion, the class files of an applet are subject to the same level of

rigorous verification as they would be by the Java virtual machine with its class file

verifier at class-loading time. The converter can integrate the verifier component of the

Java virtual machine, or it can plant its own class file verifier.

Subset Checking

The converter moreover should check class files further to make sure that only

features in that subset are used because Java Card technology defines a subset of the Java

language. This step is called subset checking [l]. During this subset checking, the

converter checks that the applet does not violate the following rules.

• Unsupported data types such as the variables of type char, long, double, and float

must not be used. Recall that in chapter two, int data type can be used only if the

Java Card interpreter supports them.

• Unsupportedjava language features are used.

• Certain Java operations are used within limited ranges. These operations on the

Java Card platform are smaller than those of the Java platform.

• No potential overflow or underflow that might cause arithmetic results to be

computed in a different way than they would be on the Java Platform can occur.

38

CAP File And Export File Verification

The classes of an applet make up one or more packages. The converter takes all

classes in a package as inputs and converts them into a CAP file. The CAP file is then

loaded onto a Java smart card. Then, the interpreter on the on-card virtual machine

executes it. Besides creating a CAP file, the converter generates an export file

representing the public AP Is of the package being converted. This export file is not

directly used by the interpreter but used later to convert another package that imports

classes from the package represented in the export file. That is, the export file's

information is used for linking and external reference checking. The CAP file in the Java

Card platform is an interoperable binary format for loading a java package onto a Java

smart card.

In practice, there is no guarantee that a CAP file generated from verified class

files by a trustworthy converter will immediately be loaded onto a Java smart card in a

secure environment [1]. Thus, the CAP file's correctness and integrity cannot be taken

for granted. The CAP file verifier ensures that the CAP file plays by the rules. Due to the

limited memory space and computing power of a smart card, the CAP file verifier runs

off card as shown in Figure 12. The verifier performs static checks on a CAP file before it

is loaded onto a Java smart card. It ensures that a CAP file has the correct format and that

the byte codes in it adhere to a set of structural constraints. Because of the analogous role

of class files and CAP files, the CAP file verifier has a function that is similar to the class

file verifier's function. In particular, it checks the CAP file to ensure the following.

• There are no violations of memory management.

• There are no stack underflows or overflows. Restrictions of access are enforced.

39

• Methods are called with appropriate arguments of the proper type.

• Fields are altered with the correct type's values.

• Objects are accessed as what they are. For example, an APDU object is always

used not as anything else but as an APDU object.

• Binary compatibility rules are put in force.

• No pointers are fabricated. Illegal data conversions are not allowed.

Note that these checks are same to those of the class file verifier. In addition, the

CAP file verifier enforces rules that are special to the CAP file structure and the Java

Card environment [I].

• The package and each applet defined in the package should have a valid AID

(Application Identifier). The range of AID lengths should be between 5 and 16

bytes. The package AID and the applet AIDs must share the same RID (Register

Identifier) number that is the first 5 bytes in the AIDs.

• An applet must define an install method with the correct signature in order that

instances of the applet can be appropriately created on the card.

• The order of class and interface definitions in a CAP file must follow the rules

that interfaces appear ahead of classes and super-classes appear ahead of

subclasses so that the CAP file-loading and linking process can be handled in

sequence on the card.

• If the int type is used in the CAP file, the int flag should be set. This check allows

a Java Card implementation that does not support the int type to reject the CAP

file during loading by simply checking the int flag.

40

During verification in Figure 13, the CAP file verifier ensures that a CAP file is

internally consistent, is consistent with the export files it imports, and is consistent with

the export file that represents its API [I]. The verifier also examines whether the Java

Card version rule, including those forced for binary compatibility that is defined in the

Java Card 2.1 Virtual Machine Specification, have been followed.

Export file of

this package

CAP file of

this package

export file of the

imported package

Figure 13. CAP file verification

reject

/
accept

Export file verification checks an export file both internally and against its

corresponding CAP file to ensure that it is well formatted and satisfies the constraints

required by the Java Card virtual machine specification [I].

Check By Off-card Installation Program And Installer

CAP file installation is accomplished through the collaboration of the off-card

installation and the on-card installer. They load a CAP file. Then, if the CAP file defines

any applets, they create one or more applet instances.

There are two levels of installation security. The first level is that the standard

security protections enforced by the installer and the JCRE. The Second level is the

security policies stated by the card issuers. These protect against the following [I]:

41

• Installation data corruption and tampering

• Inappropriateness between the CAP file and on-card resources

• Illegal access from outside the CAP file

• Insufficient resources and other errors during installation and initialization

• Inconsistent state due to card tearing or power loss during process of installation

The correctness and integrity of a CAP file are verified off-card. The Java Card

installer does not perform most of the traditional Java verifications at class-loading time.

Before any data is written on the card, the installer checks to see whether the card can

support the CAP file, such as whether the card's available memory resources are

sufficient for the CAP file or whether the int flag in the CAP file is set if the CAP file

contains any int usage.

When the CAP file is read in, it can be linked either on the fly or after the entire

CAP file is loaded [I]. The linking process includes resolving both internal and external

references. The installer makes sure that internal references are in fact local to the

package's memory and external references are linked to accessible locations of other

packages and the JCRE. It also ensures that the CAP file is binary compatible with the

existing software on the card.

Unlike the Java platform, the loading unit on the Java Card platform is a CAP file

as a package. Since loading new classes incrementally is not supported, the installer

ensures that the CAP file references only packages that are already on the card. If the

CAP file defines any applets, the installer can create applets' instances by calling their

install methods that are defined in Methods of the class javacard.framework.Applet. The

install method is typically called by the JCRE at the last step during applet installation to

42

create an applet instance. When an applet instance is created, a context is assigned to the

applet instance. Multiple instances of the same applet and instances of multiple applets

defined in the same package share one context. Recall from chapter 2 that the install

method is combined with the register method. This register method stores a reference to

the applet instance with the JCRE and assigns an AID to the applet instance.

The installation process is transactional. If an error, card tearing, or power loss

occurs during installation, the installer discards the CAP file and any applets it had

created during installation and recovers the space and the previous state of the JCRE [1].

Traditional Applet Communication And Risks

So far we have seen an applet installation process on the Java Card.

Communication between a host application and the Java Card applet is one-way

communication, known as a 'half-duplex' as we have seen in section 2.2. The entire data

exchanged between an applet and a host application takes place using Application

Protocol Data Units (APDUs). The following shows traditional communication between

a host application and the Java Card applet and current problems.

Applet Communication And Problems

This communication is processed by 4 steps: firstly applet installation, secondly

the SELECT method to activate an applet, the PROCESS method for applet execution

and finally the DESELECT method to deactivate the applet. After the applet is created on

the Java Card, the applet enters an inactive state as we have seen in section 2.2. This is

illustrated in Figure 14.

43

AID

JCRE Applet

Java Card inactive state

Figure 14. After an applet installation

This applet state enters an active state when a SELECT method with its AID is

received by a host application. When the JCRE accepts the SELECT method with AID, it

looks up its internal table for an applet whose AID matches the one specified in the

command. If the JCRE can find it, this applet is verified. This is showed in Figure 15.

AID

Response

Applet

Ho st application JCRE

(AID ooaparison here) Java Card active state

Figure 15. An applet selection from a host application

There is one major security problem is here. Malicious attackers can steal the AID

of an applet when a host application sends AID with the SELECT method to the Java

Card or the AID may be revealed by a host application manager to malevolent attackers.

These attackers then make a forged application with the stolen AID and send the

SELECT method with this AID to the Java Card. They can now access the applet on the

card and access secure information on the card as well as perform illegal functions using

44

the applet. When the JCRE accepts this AID with the SELECT method, the JCRE cannot

reject this request from the counterfeit application because the JCRE only compares the

AID arriving with the SELECT method to the AID stored in the internal table in the

JCRE.

A second problem arises when those malicious attackers can install a trojan or

malicious applet on the Java Card with a revealed or stolen AID. After the spurious

applet is installed, attackers can execute attack functions for their benefits by cheating a

host application. This can happen because a host application only sends the AID to select

the Java Card Applet. If the Java Card has a bogus applet with a revealed or stolen AID,

the host application does not have a way to figure out that the called applet is a bogus

applet. These two problems can be solved by a one-time password. This one-time

password is explained in the next section.

After the applet is selected, the PROCESS method performs the communication

between a host application and an applet. After using the Java Card, a host application

sends the DESELECT method to the Java Card. After the JCRE accepts this method, it

makes a currently selected applet inactive state. These steps are depicted in Figure 16.

45

AID PROCESS

Host application

AID DESELEC

Host application

JCRE

AID

Applet
(active state)

Java Card

JCRE
Applet

PROCESS method

: perform functions.

DESELECT method

: Applet is inactive

Java Card inactive state

Figure 16. The PROCESS and DESELECT method

Secure Applet Communication By One-time Password

Recall from section 3.2 that current problems of communication between a host

application and an applet are simply defined as verification of a host application and an

applet. To verify a host application and an applet, this research adopts a one-time

password that is implemented by a one-way hash chain to the Java Card. First, we show

how the applet installation process on the card adopts a one-way hash chain. Secondly,

we show how this one-way hash chain works on communication between a host

application and an applet.

As we have seen in section 3.1 , CAP file verification is not verified on the Java

Card. This means that malicious attackers can install illegal applets by legal installation.

Jang [17] verifies CAP files by using a one-way hash function on the on-card installer. In

Jang's work when a client applet is installed. the JCRE stores a hash value from its own

CAP file via a one-way hash function. The JCRE generates this hash value using the on

card hash value function unit. A host applet has this hash value before it is installed from

a client applet provider. Whenever a client and server applet communicates with each

46

other, the JCRE compares the hash value on the JCRE and the hash value from a server

applet. As the hash value is computed on-card, it is never transmitted to the card. An

attacker cannot therefore obtain the hash value by intercepting communications between

the card and the host application. However, his work focused on communication not

between a host application and an applet on the card but between two applets on the card.

A fundamental assumption in this work is that the JCRE is fully protected and attackers

cannot gain access to the code or data stored in the JCRE. We make the same assumption

in our work. We adapt this one-way hash function installer here. However, even though

we install applets through this installer still there is a hole for attacks. Because this hash

value is static, there is still a possibility that this hash value will be revealed. In this

research, we adapt this hash value to verify the CAP file. In other words, this thesis

focuses on a changeable hash value to protect a host application and every applet on the

Java Card. The one time password that is introduced below is used to verify it. A 'one

time password' is used once only and then discarded and becomes invalid.

This one-way hash function computes a hash value (H.V.) from a CAP file. By

using this, the problem of the CAP file verification on the card is solved. This one-way

hash function is also used for one-way hash chain to generate a one-time password.

When an applet is installed on the card, the JCRE stores it's AID, the hash value

(H.V.) computed from its CAP file, and the password. This password is the last one

generated from the hash value in the one-way hash chain. As we saw in figure 11, the

hash value is to be Sn and the password is to be S0• Figure 17 illustrates this.

47

...

On~ay hash/unction ___ .._ ___
On the installer '---___;;_.....1

JCRE

One Time Password
From the CAP file by HO

AID

Applet

Java Card inactive state

Figure 17. Initial state after applet installation

Sn

As we saw in chapter 2, So is computed from a seed by a one-way hash function

using n times repeatedly. The card provider decides this n value -that is how many times

this one-way hash function will be performed. The seed Sn is generated from the applet

CAP file's entire contents. The hash value and So are therefore not transmitted by the host

to the card as they are generated on-card. This increases the security of the system. Figure

18 shows that the first communication between a host application and the Java Card

applet by using the SELECT method as we have seen in section 3 .2. In the host

application side, the host application manager uses the Sn-I as an original seed at the host

application. We assume that the host manager does not know the value of Sn. If the host

manager knows Sn and he reveals Sn, the security is broken. As Sn is equal to the hash

value HV (fig. 17), not only can the intruder compute Sn-I to So, but he can also submit a

correct HV value. On the other hand, if the host manager does reveal Sn-I, the system is

still secure as the attacker still does not know the value HV. At the initial state,

computations range from Sn-I to S1, resulting in n-2 hash computations. This serves as an

index which reduces by one each time a communication with the card takes place n-2

value to make the first one-time password (S 1). The host application manager first obtains

48

...

the one-way hash function and the Sn-I value from the card provider (the host manager is

never given Sn). A host application sends the SELECT method with AID and the S1 to the

Java Card. When the JCRE on the card receives this, the JCRE finds the matched AID on

the internal table. If it is found it computes So from S 1, which is sent from the host

application, and then it compares this computed So with the So stored on the table in the

JCRE. If they match, the JCRE permits the host application's access to the applet. If they

don't match, it rejects the host application's access and a fail message is sent as a

response to the host application. This is illustrated in Figure 18.

Seed

AID
--+--s SELECT

Host application JCRE

Java Card

Java Card

Check AID
Computes hash val e
from S1 Compares to So

AID

Applet

AID

Applet

Figure 18. The proposed applet selection method

The communication between a host application and the Java Card applet is

performed by the PROCESS method as described in section 3 .2.

49

One-time passwords have a problem of synchronization when updating a

password. In other words, the password submitted by the host application should be the

one that is expected by the Java Card JCRE. For example, if the last password submitted

by the host application is S 1, the JCRE will be expecting S2 next time. A host application

may instead submit S4 (instead of S2). Ifthere is no synchronization, the S4 will be

accepted by the JCRE as So can be derived from S4. Clearly, if S4 is submitted instead of

S2., the JCRE should at least raise a alarm, even if it does not reject it outright. In the

proposed scheme, this update is made easy. Before starting the next communication by

the PROCESS method, the JCRE updates its table by changing the password (So) to the

password (S1) that the JCRE received from the host application in the previous

communication (and the previous the SELECT method was a success). At the host end,

on receiving a success message of an applet selection from an applet on the card, the host

application updates its index from n-2 to n-3 and its one-time password from S1 to S2 by

performing the hash function from the seed Sn-I) with index n-3.This process is illustrated

in Figure 19.

50

AID

AID

0 Is stored lnste o 1

Host application
Applet

JCRE

Berore Update Java Card ,--------------------

AID

Host appllcatlon
Applet

JCRE

After Update Java Card

Figure 19. One-time password update

To generalize, assume in the most recent successful PROCESS (or SELECT)

method the one-time password Si was submitted by the host application. The JCRE

updates its table to Si. The host application updates its index entry to n-2-i and its one

time password (the next one to the sent to the JCRE) to Si+I· The last password is

generated when n-2-i equals zero. The index therefore serves to synchronize the

password generation and defines the terminating condition when no more passwords will

be generated. The next time (or the i+ I th time) the host application communicates with

the applet it sends Si+t (or S2 if it is the second communication). Using this selection

process, we can solve the security drawbacks of the Java Card. In case the AID is

revealed or stolen by a malicious attacker, the attacker can make a forged application

51

with the stolen AID, send the SELECT method with this AID to the Java Card to access

secure information from the card or perform malicious functions. However, our proposed

one-time password can prevent this attack by computing So from the transmitted S1 value,

and comparing with the stored So value in the JCRE as shown above in Figure 18.

Therefore by comparing a one-time password, a forged applet problem with stolen AID

can be solved. The malicious attacker, even if he has stolen So cannot break the security

of the system because he cannot generate the password S1 (or Si} If the attacker has stolen

S1 (or Si) he cannot access the applet because S1 (or Si) is no longer valid and he cannot

generate S2 from S1 (or Si+t from Si). Therefore an attacker obtaining AID or Si illegally

will not be able to break system security. The only remaining option for an attacker is to

generate the hash value (HV), that is, generate Sn. The Sn is generated from the CAP file

of an applet. To generate Sn, an illegal applet source file should be the exactly same as an

original applet source file. In other words, it is almost impossible for an attacker to

generate Sn. unless the attacker is able to attack the host or the JCRE itself and obtain Sn.

Therefore even if an attacker obtains AID or Si illegally, it is virtually impossible for an

attacker to generate Sn, Figure 20 illustrates ith time selection and update between a host

application and an applet.

52

Seed

AID

---s SELECT

(AID, Sa)
n-1-1

Host a ppllcatlon SELECT

Ill
After Selection mccess

+ UPDATE
AID

Host a ppllcatlon

JCRE

JCRE

Check AID

Computes hash value fro Sa.
Compares computed value to S1-1

AID

Applet

Java Card

AID

Applet

Java Card

Figure 20. ith time selection and update

Integrated System

We integrate this proposed method to the work reported in (17] - 'Secure object

sharing on Java Card' -where secure communications between two on-card applets - a

client and server applet is described. This server and client applet can communicate each

other via Sharable Interface Object (SIO). In the integrated system, a host application, a

client and a server applet after installation are illustrated in Figure 21. As we have seen

above, every applet and host application communication is secured by our proposed

method. Two applets (as a server and a client) on the card communicating via the SIO are

secured by the method in [1 7].

53

CAID

Host appllcatlon
ror a client applet

r

\...

G
Installer with
htt<!h fi1n,-t;,u,.

CAID

lPanuneter

Client Applet

CAD> CSL,

SAID ss .. ,
Internal Table

JCRE

SAID

CHV
!Parameter

Jaw Card

Figure 21. Integrated System

"""
CHV

SHV

~

Firewall

Server

Applet

Figure 21 shows the integrated secure Java card architecture. CAID stands for the

client applet AID and SAID for the server applet AID. CSn-I is the seed provided at the

host application by the card provider as described above. CSi is the one-time password on

the host application. CSi-1 specifies the client applet one-time password and SSi-1

indicates the server applet one-time password. Therefore n-i-1 is the index at the host

application. CHV is the hash value of the client applet from the client applet CAP file.

SHV is the hash value of the server applet from the server applet CAP file. Parameter is

a security token, which carries a secret share by the server and the client. This parameter

is decided by the applet provider. The parameter is used for secure communication

between a client and a server applet on real card. However, even if the parameter is used

-The JCRE compares a server applet's parameter and client applet's parameter, there can

be a problem with security. The CHV is additionally used for communication between

the client and server applet on the Java Card for more security. When the client applet

communicates with the server applet, the JCRE compares not only the client applet

parameter with the server applet parameter but also the CHY on the JCRE and SHY on

54

the server applet. The CHV and SHV on the JCRE are generated by the JCRE at time the

applets are installed on the card. This communication is described detailed in [17]. The

host application for the client applet and that for the server applet can be the same or they

may be different. If they are different, there is another host application with a server

applet password and a hash function for the server applet. If they are the same, one host

application has a client applet password, a server applet password and a hash function.

Proposed one-time password merits

The proposed One-time password implemented by infinite one-way hash chains

offers the following benefits:

• The proposed one-time password prevents an unauthorized host application from

assuming a valid host application.

• It prevents an unauthorized applet from accessing an authorized host application.

• There can be other methods to verify a host application and the Java Card applet

such as password exchange or key algorithms of encryption and decryption

between a host application and the Java Card. However, these methods still have

threats such as network eavesdropping and password cracking when a host

application sends passwords or encrypted messages to the Java Card. The

proposed method protects the Java Card from these kinds of attacks since the one

time password is not reusable.

• In this proposed one-time password it is easy to synchronize on a host application

and the Java Card. Therefore, this feature makes simple management of the one

time password.

55

• On the memory resource side of the Java Card, only a one-way hash function is

implemented on the card. This makes the Java Card memory resource usage

minimal.

56

CHAPTERIV

SECURE COMMUNICATION SIMULATION

BETWEEN HOST APPLICATION AND THE JAVA CARD

To simulate our secure communication between a host application and the Java

Card, we developed an installer with a hash function, an applet as a client, and a host

application as a server. We also installed some tools for the simulation. In this chapter,

we present our simulation environment in section 4.1. Section 4.2 shows the simulation

proceeds for to a real card without our proposed security enhancements. Section 4.3

shows the simulation for our proposed method.

Prerequisites

For the simulation, we installed the Java Development Kit (JDK) version 1.3.

JDK is a development environment to build applications and applets on the Java

platform. We installed the Open Card Framework (OCF) version 1.2. It includes

exportable source and executable code of the OpenCard Framework owned by the

OpenCard Framework association. We also installed tools in the Java Card 2.2

development kit to install an applet. This kit is a collection of tools for implementing and

developing applets based on the Java Card 2.2 framework. This facilitates java card

implementations and development of applets based on the Java Card terminal 2.2 API

(Application Programming Interface). After installing these, we copied the files base

core.jar and base-opt jar from the OCF into the Java Card 2.2.

57

Difference between the Java card and the simulation

There are differences between the Java Card and simulation. The reason is that

our proposed method actually requires modifications to the JCRE. Our proposed installer

and comparison function should be implanted in the JCRE. However, we cannot modify

the JCRE in a real card and our simulation is therefore not a direct reflection of a real

Java Card.

Host appllc:atlon
for a client applet

HOIC:oaftl
hasb&
CODlpaft
limctlon Internal Table

ICRE

Java Card

Figure 22. The real Java Card

Firewall

Figure 22 shows the selection process of a real java card that implements our

proposed one-time password. When a host application selects applet (1), the JCRE checks

the applet AID and password. If they match, the JCRE sends ok message to the host

application (2). Otherwise, the JCRE sends a fail message to the host application (2).

58

Applet AID
s

n-1-1

Host application
ror a client applet

1

Java Card

Figure 23. Simulation Model

HOIC:0~1
I

As we see in Figure 23, simulation is different. First, a host application sends the

select method to the JCRE (1). After checking an applet! 's AID, JCRE sends the select

method to applet 1 (2). Applet 1 sends the select method to an applet2 (3). Applet2

performs the hash function and compares passwords. If they match, it sends ok message

to the applet 1 (4). Otherwise, it sends a fail message to appletl (4). Applet I forwards the

result message to the JCRE (5). The JCRE sends the result message to the host

application (6).

Simulation

An applet was implemented and installed on the C-language Java Card Runtime

Environment (C-JCRE). We call this applet a hash installer. As this is a simulation

environment instead of a real Java Card environment, we developed applets for

installation. The hash installer has a hash function that generates a hash value when an

applet is installed from the CAP file. So, the hash installer and the Java Card installer that

exists in the C-JCRE perform as the traditional on-card installer.

59

To make a card, we use a command: cref- o card on the command prompt. The

switch o means that the card will be saved. After making and saving the card, we can call

and use it anytime by a command: cref - i card - o card. The switch i means we are

calling an existing card. After making a card, we can use these commands to use it.

Figure 23 shows that a hash installer is installed to the Java Card.

0 lnslalle_r;;:c~p- ... --·· .
D Installers.exp

-.. _l

.-----------------,. r·
filen~me: jinstall~r~_cap _____ _ _____ J j Qpen I
Files of!w e; !AIF_1es_r._, ________ ,_~ J~-;-i

Figure 24. Masking hash installer

As we have seen in section 2.2, the off-card installation program and the installer

on the C-JCRE perfo1m an applet installation. In the simulation environment, the hash

installer is also used. When the off-card installation program sends the CAP file to the

installer, the installer sends this CAP file with an AID to the hash installer. Then, the

hash installer generates a hash value from the CAP file. This hash installer installs the

60

password So generated from the hash value (Sn)- This password is therefore provided by

the c a.rd provider. The card provider decides how many times the ha.sh function can be

used once the applet is installed to the card. This makes us achieve one of our objectives

- CAP file verification on the on-card part.

Figure 25 illustrates that the Ebank applet is installed to the Java Card at terminal.

The Ebank CAP file is installed to the card.

fa Choo~c "CAP r.Jc ? . .' ;: · ~·.

l
b electrobank.cap

, D electro bank.exp- - - --

1

1. -·· ·-· . -·-··-··· ·-··-··-···---·-··""··-·· ··-·-··--·-- . -----·-·--·

Filesof~e: [_AII_Fles __ (·_., __________ ... __ I £ancel I
-----·-

Figure 25. Ebank applet installation

After this Ebank applet is installed, the hash installer has this Ebank AID (OxOO

OxOO OxOO OxOO OxOC Ox03 OxO l OxOC Ox06 OxOl), Hash value (Ox6e Oxf3 Ox2a Oxa2

Ox8a Oxe6 Ox84 Oxeb Ox30 Ox68 OxOf Oxf6 Ox7c Oxc7 Oxla Oxce), and password (Ox6d

Ox9f Ox9a Ox8e Oxd3 Ox08 Oxfd Ox2a Ox65 Oxa6 Ox 1 f Ox48 Ox24 Ox8a Oxf9 Oxd6). This

password is made from the hash value by using the hash function n times. And a host

application has Ebank AID, n-2 value, and a hash value (Ox21 Oxcd Oxf4 Ox44 Oxdd Ox5a

61

Oxcd Ox05 Ox2a OxOO OxdO Ox6b Ox6b Oxcd Ox54 Ox57). After obtaining these values, the

host application makes the first password from the n-2 index and the hash value. The

password is Ox34 Ox68 Ox23 Oxbb Oxa8 Ox9e Oxbb Ox8d Oxe9 Ox56 Oxdc Ox13 Oxc3 Ox5e

Ox35 Ox8c.

The host application sends AID and the first password to the card (Ox34 Ox68

Ox23 Oxbb Oxa8 Ox9e Oxbb Ox8d Oxe9 Ox56 Oxdc Ox13 Oxc3 Ox5e Ox35 Ox8c). As we

saw in section 3.3, the hash installer takes this password, performs the hash function, and

compares with it's own password. First, it sends AID, first password and deposits OxlO

($16). We see the result in figure 26.

I '"l:oGitf. ~ I
• · · w~come J-Hyuk Joo! • • •

l11llit11 b.tl'1,U;t, W'1S $
r - - -- -

. , - • 'i ' ;- - - :-

: ' 111 I t1 J r I 11 !l , 1

I I, !

., : ' 11q l

r ·• / •ii I

~ ~
! I: ' ,.,"J1 ' ~

·.· ~ · ..

r ~-' · -,;--,;•<t'. '1~11,:;;w:f~a,::a-9r~~~"mw

,, --··1
ll

·---IID
Tho n ew lrnl,mc:., Is S

-
Figure 26. Select and deposit with the first password

62

As we see from the result window in figure 26, line A line shows that the first

password (34 68 23 bb a8 9e bb 8d e9 56 de 13 c3 Se 35 8c) is sent. Line B shows

selection of the Ebank applet with AID and the result is indicated by SWl :90, SW2:00.

The switch 9000 means that the selection of the Ebank applet is a success. If this

selection failed, the switch would be 6999. The C line's INS:03 is the balance method

and the balance is Oas shown by the underlined 00, 00. The D line's INS:01 is the deposit

method with $16 (underlined OxlO). E line shows $16 is deposited. After this selection

and deposit, the password of the host application is updated to Ox2c OxOe Ox91 Ox24 Oxe8

Oxeb Ox9b Ox99 Ox 1 a Ox 12 Ox 11 Oxc2 Ox42 Ox8b Ox3d Oxe3 as the second password. The

password of the hash installer is updated to Ox34 Ox68 Ox23 Oxbb Oxa8 Ox9e Oxbb Ox8d

Oxe9 Ox56 Oxdc Oxl3 Oxc3 Ox5e Ox35 Ox8c.

As the host application sends the second password to the Ebank applet, we can

verify whether our proposed method works or not. At this time, $32 will be deposited.

After depositing this, the balance should be $48.

63

'" WOlcomo .Jao Hyuk Joo! ...

- - - - ... - - - . r- .
I• •.1 · P i . 1,

I ' • . • • 1 •1 . - . ' - ·,

~
f' I • "'I I , ~ "'1'. - : : -n ,. · . r . r I"!: .. - .. ", " • 1r

'_!_J,,.;,fit';¥&; .'.ii@'.£~ !Mffli¥Bi
C ! ho now bal-,t1cc l!I ~ j.i_ I .

-
Figure 27. Reselect and deposit with the second password

Line A shows the second password. Line B tells us the selection is successful

(9000). Line C shows the resulting balance to be $48. This shows that our proposed one

time password works - that is, the password is updated each time after the applet is

selected with the password. The next password of host application will be Ox56 Oxb3

Ox97 OxOd Oxl3 Ox2d OxlO Oxec Ox9c Ox3e Ox06 Ox2f0x2a Ox9b Ox91 Ox3a. The next

password of Ebank applet will be Ox2c OxOe Ox91 Ox24 Oxe8 Oxeb Ox9b Ox99 Oxla Oxl2

Oxl 1 Oxc2 Ox42 Ox8b Ox3d Oxe3.

It is almost impossible for malicious attackers to obtain or guess the password

because they have to know the hash function (), the n-2 index or the current value, and

the original password. This original password comes from the Ebank CAP file . So, any

64

malicious input should exactly match the Ebank applet source code to make this

password. This is practically impossible. The only way that attackers can obtain a

password is to capture and replay the password at communication time between a host

application and an applet. In figure 26 above, the host application sent the password

(Ox2c OxOe Ox91 Ox24 Oxe8 Oxeb Ox9b Ox99 Oxla Ox12 Oxl 1 Oxc2 Ox42 Ox8b Ox3d

Oxe3). We assume that an attacker illegally catches that password and submits it to the

Java Card. The result is shown in figure 28.

00°-:·up:

.'/ s!:. : <?ct lrsu 1 er In the KR~
Fake host sends the password

:,.,o :h.a! o,,~ 1ho o~oa o,c-0 o,oo o.,oo o.,oo o~oo o·,o, o:r.01 Otoe 0x01i 0~01 oxif;

/ is c"ld 01ss·#ord t hH i s st olen t
:i,s~· foll \/XUU \ixo,j vd2 or~c V)O~ Or91 0(?4 0):S u,~b 0,9b O'f99 Orla 0:02 O'l1.l. Ore? l)).l 2 O,Sb :>,~i'.i ,he3 Or(lll 0¥C.:i (J)lf;

//~=1ecr ;:hg eb~nl; iflpl et I
:,,·,) c)>·at o~~ o~o OxO~ OlOO 0Y00 OxOO ~ IMC OlOl OxOl oxoc OxOo OxOl ()-(if:

/ i di~play b1l.n~~
:.>,ac u,o; o,oo o·;C) 1h01 ~,02 o,if:

" ,. .: ·--

The result
A: 00, ms: a¢, Pl: 04 , P2: 00, LC: Oa, 00, 00, 00, 00, Ob, 03, 01, OC, 06, 01, Le: 00, S\ol1: 90, S'vil : 00

~LA : bO, IIIS: 01, Pl: 00, P2 : 00, LC: 12, 2c, oe, 91, 24, e8, eb, 9b, 99, la, 12, 11 , c2, 42, 8b, 3d, el , 00, 00, Le:
:LA: 00, 111$: a.4, Pl: 04, P2 : 00, LC oa, 00, 00, 00, 00, oc, 03, 01, oc, 06, 01, Le: 00, jSl{1: 69, s,12: 99 C
l:t"A; t 1 • f J.' I • I I.,_ 1 ..!. t I I f : t;) } f :

Figure 28. A fake host application

In figure 28, the fake host application sent a real password; this is captured at line

A. The fake host application tried to select the Ebank applet at line B. The result is shown

at line C. The switch 6999 means the selection has failed. Our proposed method can

therefore detect a fake host application which is attempting to get the information

illegally from the card. This is one of our objectives. Even though the real password has

65

been stolen, our proposed method still works fine. This is because of the characteristic of

one-time password as described in section 3.3.

Next, the honest real host application sends the next password (Ox56 Oxb3 Ox97

OxOd Ox13 Ox2d OxlO Oxec Ox9c Ox3e Ox06 Ox2f0x2a Ox9b Ox91 Ox3a) and deposits $16

to the card. We observe whether the password works and whether the fake host

application has affected the real applet. This is illustrated in figure 29.

. - -,,. -
I --.,- I . ' . t ' '1t I ; ' ' ' ..

. . t
·, r

I • • .: i... ... J _ ,'. l

-
Figure 29. Reselection after a fake host application tried

As shown in figure 29, the selection is successful (9000) and the deposit has been

successful ($64).

Next, we show the difficulty in making a fake applet. The only way a fake applet

could be the same as an original applet source code is if the password is derived from the

CAP file of the original applet. We add some code such as byte i; to the original Ebank

66

applet. This added code does not affect the function in any way. This is shown in figures

30 and 31. After installing this fake applet, the real host application sends a real password

to this applet. We observe whether this fake applet is able to communicate and get

information from the real host application. This is illustrated in figure 30.

p a c l a g e e e c t rob a n~;

Import JA•n.,.._rJ. frol:nh•ork. •;
1Mpor,: ,nsta l lc,..s. Instal1Intef"fa,:c:

p ub 11 ,: c1a1~ Eb,1n, e :.tend5 t.pple, {

//cocle~ nf \'.:LA b>'te In the coornand .,,Pou,
pr1v;Jtl? l'1n;i1 ~,:a,:k by,I? Eb.lnl<_CL'- - (oyti'.!)O,eO:

//c.:id1<s of 1:-.:s byte in the conund >lPOus
private ,-1nal Hatk b>•,1! DEPOSrT • ~·by,:e) Ox01:
prl VHil flrul n.t'I<: ~l'CQ D!;BIT • byte)OX02;
private "'1nal st ,nic by,e 04.l..>.HCE ~ byte'.\Ox03;

//.>.pplet-speciflc 5tatu5 -..ords;
pr1vate f1n.:i1 s,:a,:1c short SW_NEGATIVL8ALANCE • Ox6AOi:
pr ivate fin•l HHI.: short S',,'_lNV"'LID_DiBIT.,A\!OUllT•0.<6A02;
priv.:ite f 1n.:il si:a,:1c Shor,: $W_NO_SERVER • 0:<6A03:
prh, ,lle final static short S'«_SIQ_,:;;;rrl!',,\j_l'AlL ~ O.u~.\o.l;

private short b,lancc:

;'/ AID l'o th1$ applet Instance
prlv~te f-ln"l bytef] O'A11_&id • {o,oo, o,oo, OYOO, 0:.00, o·,cc. o.,03, 0)-01, O.a.OC, o.,os , O:rOl};
pri v.ltl? f-lnJ.l bycc J installcr_aid • {0 (0 0 . OxOO, OxOO, oxoo, OxOB, Ox03, OxOl. Ox i:>:. 0)(00, 0.-01}:

/1par,1mc,: er5 for 5hJ.r1n,;i l>e,ween Ebank anct InSta l1ef'
JJr" Iv ate final b ytG sh~rGpar~ 9 (bytQ) o-.cc;

//~tar~ i;.banr. •:onstl"u<:tor
pr 1 ""t ~ F.ban~ () l

//Initial ,:hed.
balance - (short) o,oo:
//register this applet ins~ancl! to ,:he JCRE

I
ri,g1ster(a,,,n_.).1d, (short)O, (b}ttll)(o·~·n-~1d. length));

}/ / end £b.lr)I· constructor

Figure 30. Original Ebank source code

67

package e e c tro ban~:

1inport 1 ,.va,:a r d. frar.iworL •;
1inpor lnsullers. 1ns ui11nterf.1ce :

pubn c c lass Ebar,I. e•U nds Applet {

//.:ode s of c t.o. byte 1n the c01m1and P.PDOs
pr h •,He f\na l stat I.: bytEe Eba n~_t:LA • (byte)OdlO;

byte 1: Everything is same except this is added
//code s of ltlS byt e 1 n t he <01Tt11and _l.PDUS
prl vdte f ina l s tat i c oy t e DEPOS[T • ~byte~O:o.01;
private fln.i l stat ic byte OE8IT • byte o xoz:
priv ue flnal stati< byte 8-lLANCE • byte oxo,:

//Applt.-t - ~pec if k sta t u s ~'Ords :
private f ina l st at i c ~hort 5W_ NEG_l.TIVE_6ALAIICE "0:-6.l.Ol;
pr Iv ate fio.! l st at ic s hor t 5W_ 1"!V~ID_OE6IT_ Ll·10 UNTa0,6AO? ;
pr i vate fin3 l Stdt ic s hort S'w_HO_SERVER " 0 <6A03 ;
pr i vate final Stdti c shon S"n'_S[O_GETTJUG_FAJ L " 0•:6AO-I;

prh-ate shor t bal m c e;

//.l,JD fo this ai:-pl et inst an~e
priv ate f inal by~ef1 c-wn_a i d ~ {0~00, 0•00, 0 (00, OACO. OxCC, 0Y03, 0~01, Oxoc, 0,06, 0~01}:
priv ate flna l by~e instiller_ald £ {oxoo. o,oo. oxoo, OxOO, OxO!l. o~o;, oxol. oxoc. Ox06, OxOl} :

//p,srcmet ers fo~ ~h~r i ng bet.,.·een Ebank and !nsta l l er
private f in.il byte sharep<1ra & (byte) Oxce;

/ /start Ebdnt cons truct or
private Ebank() {

//initial .:t,oecl.
balancoe - (shor t) 0~00;

1 / registcr th's lpplet ins,~nce to the XRE
register(o~n_a1d, (short)O, (byte)(own_aid. length)) ;

)//end Ebank con~tr uc.:o r

Figure 31. Fake Ebank code

68

LOGIN..:J
" · Luuin f4ilu11! • ••

• l . , -
" ,I §

II ' t 'I ~ '

1hr n ew h ,114111:e " ' ~ I_ _

Figure 32. The result of fake Ebank applet

As we see in figure 32, the selection fails (6999). The real host application has the

message 6999 and so it knows the applet is not a real applet but a fake applet.

69

CHAPTERV

CONCLUSION

Modem Java Card technology provides a secure environment. However, there is

still a hole in the system that allows malevolent attackers to illegally obtain secure data

from a host application or the Java Card. This is possible because a CAP file is verified

only at the off-card portion. Hence malicious attackers can access and install fake

applets on the card. Communication between a host application and an applet starts

with the SELECT method specifying an applet AID. In the current Java card

environment attackers can create a forged host application.

We have proposed a one-time password via a one-way hash chain in this thesis for

secure communication between a host application and an on-card applet. The one-time

password is generated by hashing an applet' s CAP file. The JCRE has an applet' s AID

and a hash value from the CAP file. The password is updated every time after

communication between a host application and an applet.

Even if malicious attackers make a fake host application and a counterfeit applet,

they cannot access secure information. In the case of a fake host application, they have to

know a hash function, the initial index ofn-2 computations, and input value that the

applet provider provided. This is almost impossible. The only way they can capture and

replay a password is when a real application communicates with an applet on the card.

However, since the password is changed after each communication with our proposed

method, it is impossible to illegally access information on a card. In the case of a fake

applet, attackers have to create an applet that is identical (not just similar) to the real

applet installed on the card. An applet source code must therefore be exactly identical.

70

This is also practically impossible. We have simulated our scheme with the Java Card 2.2

Development Kit. It contains over 3,000 lines of code.

One of the disadvantages with the proposed scheme is the limitation imposed on

the number of communications. In other words, the password is not infinite as only n - 1

secure communications are possible. Future work would involve developing schemes to

remove the restriction on the number of secure communications between the host

application and the JCRE. In this work we have also assumed that the JCRE is secure.

Developing defenses against attacks on the JCRE have also to be devised. The first step

would be to identify the vulnerabilities of the JCRE.

71

BIBLIOGRAPHY

1. Chen, Zhiqun. Java Card Technology for Smart Cards: architecture and programmer's
guide. California: Sun Microsystems, Inc., 2000.

2. Rankl, Wolfgang and Effing, Wolfgang. Smart Card Handbook. England: John Wiley
& Sons Ltd., 1997.

3. Dreifus, Henry and J. Thomas Monk. Smart Cards: A guide to building and managing
smart card applications. United States of America: John Wiley & Sons, Inc., 1997.

4. Microsoft Computer Dictionary, Fifth Edition. Microsoft Corporation., 2002.

5. ''Java Card Special Interest Group." Online. Internet. Jan. 2000. Available:
http://www.javacard.org/others/what is java card.htm#Applications.

6. "An Introduction to Java Card Technology-part I." Online. Internet. May. 2003.
Available: An Introduction to Java Card Technology - Part 1.

7. "What is OpenCard and OpenCard Framework?" Online. Internet. May. 2003.
Available: http://www.opencard.org/overview.shtml.

8. Ahuja, Vijay. Network & Internet Security. Michigan: AP Professional, 1996.

9. Purser, Michael. SECURE DATA NETWORKING. Norwood, MA: Artech House,
Inc., 1993.

10. Richard E. Smith. Authentication From Passwords to Public Keys. Boston: Addison
Wesley ., 2002.

11. "What is a one-way function?" Online. Internet. May. 2003. Available:
http://www.rsasecurity.com/rsalabs/fag/2-3-2.html.

12. ''One-way hash functions." Online. Internet. May. 2003. Available:
http://www.cs.bris.ac.uk/--cooper/HOT/guide.html.

13. "Hash Functions and Message Digests." Online. Internet. May. 2003. Available:
http://www.cs.nps.navy.mil/curricula/tracks/security/notes/chap05 19.html -
HEADING 18.

14. L. Lamport and P. Melliar-Smith. Password authentication with insecure
communication. Communications of the ACM, 24(11): 770-772, November 1981.

72

15 .. N. Haller. The S/Key one-time password system. In Proceedings of the Symposium
on Network and Distributed Systems Security, pages 151-157. Internet Society,
February 1994.

16. "Press Releases." Online. Internet. May. 2003. Available:
http://www.smartcardalliance.org/about alliance/press 020702shipmentsurvey.cfm.

17. Jang, SyengHo. "SECURE OBJECT SHARING ON JAVA CARD." Oklahoma State
university: Master thesis. May. 2003.

18. '"Smart Card Overview." Online. Internet. May. 2003. Available:
http://iava.sun.com/products/j avacarcl/smartcards.html.

73

APPENDIX
Ebank.java

1··· This applet works as a client.
When the JCRE decides that a host application is real, this applet accepts a host application's
request and perfonn it.

***/

package electrobank;

import javacard.framework. *;
import installers.Installlnterface;

public class Ebank extends Applet {

//codes of CLA byte in the command APDUs
private final static byte Ebank_CLA = (byte)OxBO;

//codes of INS byte in the command APDUs
private final static byte DEPOSIT = (byte)OxOl;
private final static byte DEBIT = (byte)Ox02;
private final static byte BALANCE = (byte)Ox03;

// Applet-specific status words;
private final static short SW NEGATIVE BALANCE = Ox6A01;

private final static short SW -INVALID DEBIT AMOUNT=Ox6A02;
private final static short SW=NO_SERVER - = Ox6A03;
private final static short SW_SIO_GETTING_FAIL = Ox6A04;

private short balance;

//AID fo this applet instance
private final byte[] own_aid = {OxOO, OxOO, OxOO, OxOO, OxOC, Ox03, OxOl, OxOC, Ox06, OxOl };
private final byte[] installer_aid = {OxOO, OxOO, OxOO, OxOO, Ox0B, Ox03, OxOl, OxOC, Ox06, OxOl };

//parameters for sharing between Ebank and Installer
private final byte sharepara = (byte) OxCC;

I /start Ebank constructor
private EbankO {

//initial check
balance = (short) OxOO;

//register this applet instance to the JCRE
register(own_aid, (short)O, (byte){own_aid.length));

}//end Ebank constructor

//start install method
public static void install(byte[] bArray, short bOffset, byte bLength) {

74

//create an Ebank applet instance
new Ebank();

} //end install method

//initialize the applet when it is selected
public boolean select() {

//obtain the server(installer) AID object
AID sAid = JCSystem.lookupAID(installer_aid, (short)O, (byte)(installer_aid.length));

//If there is no that server, then error
if(sAid==null)

ISOException.throwlt(SW _NO_ SERVER);

//request the sio from the server
I nstalllnterface sio = (lnstalllnterface)(JCSystem.getAppletShareablelnterfaceObject(

sAid, sharepara));

//if the server does not have sharing interface, then error
if(sio==null)

ISOException.throwlt(SW _SIO_GETIING_FAIL);

//call the installer applet to check password
//if they are matched, return true and Ebank is selected
if(sio.check()!=true)

return false;
//if they are not matched, this applet is not selected
else

return true;

}//end select method

//processmethod
public void process(APDU apdu) {

//the APDU buffer
byte[] buffer = apdu.getBuffer();

//return if the APDU is the applet SELECT command
if(selectingApplet())

return;

//verify the CLA byte
if(buffer[IS07816.0FFSET _ CLA]!=Ebank_ CLA)

IS0Exception.throwlt(IS078I6.SW _CLA_NOT_SUPPORTED);

//check the INS byte to decide which service method to call
switch(buffer[IS07816.0FFSET _INS]) {

case DEPOSIT: deposit(apdu);
return;

case DEBIT: debit(apdu);
return;

case BALANCE: balance(apdu);
return;

75

default: ISOException.throwlt(IS07816.SW _INS_NOT_SUPPORTED);
} / /end switch method

} / /end process method

/start deposit method
private void deposit(APDU apdu) {

byte[] buffer = apdu.getBufferO;

//get the number of bytes in the command field APDU's data field
byte numBytes = buffer[IS07816.0FFSET_LC];

I /read the data into the apdu buffer
byte read Byte = (byte)(apdu.setlncomingAndReceiveO);

//if the data bytes read does not match the number in the LC byte
//then error
if((numBytes != I) II (readByte != I))

ISO Exception.throw It(IS078 l 6.SW _WRONG_ LENGTH);

//get the deposit amount
byte depositAmount = buffer[IS078 I 6.0FFSET _ CDA TA];

//deposit the amount
alance = (short)(balance + depositAmount);

return;
} / /end deposit method

//start debit method
private void debit (APDU apdu) {

byte[] buffer = apdu.getBuffer();

//get the number of bytes in the command field APDU's data field
byte numBytes = buffer[IS07816.0FFSET_LC];

//read the data into the apdu buffer
byte readByte = (byte)(apdu.setlncomingAndReceiveO);

//if the data bytes read does not match the number in the LC byte
/ /then error
if((numBytes != I) II (readByte != 1))

ISOException.throw It(1S07816.SW _WRONG_ LENGTH);

/ /get the deposit amount
byte debitAmount = buffer[IS07816.0FFSET_CDATA];

//if debit amount is negative, then error
if(debitAmount<O)

ISOException.throwlt(SW_INVALID_DEBIT_AMOUNT);

//if new balance is negative then error

76

if((short)(balance-debitAmount)<(short)O)
ISOException.throwlt(SW _NEGATIVE_BALANCE);

//new balance
balance (short)(balance-debitAmount);

} //end debit method

//start balance method
private void balance (APDU apdu) {

byte[] buffer= apdu.getBuffer();

//notify the JCRE that the applet has data to return
short le = apdu.setOutgoingO;

//set actual data byte's numbers
apdu .setOutgoingLength((byte)2);

//write the balance in to the APDU buffer
Util.setShort(buffer, (short)O, balance);

//send balance
apdu.sendBytes((short)O, (short)2);

}//end balance method

}//end Ebank class

77

I Ito install installer applet to the card
installlns = new JButton("lnstall");
installlns.setBackground(Color.yellow);
installlns.setBounds(25, 130, 275, 30);

//to compile
com pi le Ins .add.ActionListener(new ActionListener() {

public void actionPerfonned (ActionEvent e){

try{

String order= "c:/defense/batch/compilelnstaller.bat";
Process child= Runtime.getRuntime().exec(order);

} catch (Exception ee) {}
} });

//to convert
converterlns.add.ActionListener(new ActionListener(){

public void actionPerfonned (ActionEvent e){

try{

String order = "c:/defense/batch/convertlnstaller.bat";
String order2 = "c:/defense/batch/movelnstallExp.bat";
Process child = Runtime.getRuntime().exec(order);
chi Id = Runtime.getRuntime().exec(order2);

} catch (Exception ee) {}
} });

//to mask
installlns.add.ActionListener(new ActionListener() {
public void actionPerfonned (ActionEvent e) {

fileChooser = new JFileChooser("c:\\defense\\class\\installers\\javacard");
fileChooser.setDialogTitle("Choose a CAP file?");
int forError = fileChooser.showOpenDialog(Mask.this);

//for checking CAP selection error
if(forError == JFileChooser.APPROVE OPTION)

capFile = fileChooser.getSelectedFile();
else{

}

JOptionPane.showMessageDialog(Mask. this,
"Need a CAP file", "ERROR",JOptionPane.ERROR_MESSAGE);
capFile = null;
return;

I Ito make batch file and script file for sending them to JCRE
try{

I /make script batch file
batchFile = new File("script.bat");
//make script file
scriptFile = new File("apdu.scr");

79

BufferedWriter text= new BufferedWriter(new FileWriter(batchFile));
text. write('•@echo oft\n ..);
text. write("scriptgen -o " + scriptFile.getAbsolutePathO + n n

+ capFile.getAbsolutePath() + "\n");
text.close();
String path = batchFile.getAbsolutePath();
path = path.replace('\\', 'f);
Process child = Runtime.getRuntimeQ.exec(path);
child.waitFor();

} catch (Exception e 1) {
} finally {

batch File.delete();
batchFile = null;

I Ito send power.scr file to the installer
outputFile = new File("power.scr");
String readData = new String();

try{
BufferedReader reader= new BufferedReader(new FileReader(scriptFile));
BufferedWriter writer= new BufferedWriter(new FileWriter(outputFile));

//tum on the card
writer. write("powerup;\n ");

//to wake up the JCRE installer
writer.write("//select the installer \n");

//apdu command
writer.write("OxOO OxA4 Ox04 OxOO Ox09 Ox.AO OxOO OxOO OxOO

Ox62 Ox03 OxOI Ox08 OxOI Ox7F;\n\n");

//read whole data from script file that is made by scriptgen command
while((readData = reader.read.Line()) != null){

writer.write(readData + 11\n ..);
}

//create installer
writer.write("\n//Install this applet\n");
writer.write("Ox80 Oxb8 OxOO OxOO OxOc OxOa OxOO OxOO OxOO OxOO

OxOB Ox03 OxOI OxOC Ox06 OxOI OxOO Ox7f;\n\n");
//tum card off
writer. write("powerdown;");

//done read data
reader .close();
writer .closeQ;

}catch(FileNotFoundException ee){
} catch(IOException eee){
}finally{

}

scriptFile.deleteO;
scriptFile = null;

80

//create installer applet
try{

//make ebank install batch file
batchFile = new File("install.bat");
BufferedWriter toWrite = new BufferedWriter(new FileWriter(batchFile));
toWrite.write("@echo oft\n");

!Ito send installer and have an answer from the JCRE installer applet
toWrite.write("apdutool .. o answer"+ outputFile.getAbsolutePath() + "\n");
to Write.close();

String path = batchFile.getAbsolutePathO;
path= path.replace('\\', 'f);
Process child = Runtime.getRuntime().exec(path);
child.waitFor();

} catch(Exception e I){
} finally {

outputFile.deleteQ;
outputFile = null;
batch File.delete();
batchFile = null;

}}
});

//add these to simulation window
getContentPane().add(compile Ins);
getContentPane().add(converter Ins);
getContentPane().add(installlns);

}//end constructor

//start main method
public static void main (String[] args){

//call the constructor
JFrame main Window = new Mask();

//to set simulation window boundary
main Window.setBounds{O, 0, 330, 218);
mainWindow.setVisible(true);

}//end main method

}//end class Mask

81

HostEbank.java

1···***********
HostEbank can work as a host application.
It sends a one-time password to select a client (Ebank) applet.
A hash function to make a password is included.
Actual original name is the MD5 message-Digest Algorithm from RFC 1321
It is implemented as C language on webpage (http://www.faqs.org/rfcs/frc1321.htm1).

**/ . . . * import Java.10. :
import java.awt.*;
import java.awt.event.*;
import javax.swing. *;

class HostEbank extends JFrame {
I Ito make visible window
//define panel, text, label, button

//make first panel
private JPanel first_panel;
private JLabel message I;
private JTextField amount;
private JLabel message2;
I /make second panel
private JPanel second_panel;
private JButton login;
private JLabel response;
//make third panel
private JPanel third_panel;
private JLabel initial;
private JTextField initial_bal;
private JLabel initial2;
private JTextArea area;
private JScrollPane scroll;
private JLabel after;
private JTextField after_bal;
private JLabel after2;
/ /make fourth panel
private JPanel fourth_panel;
private JButton reset;

private int money;
private int pre_ index;
private int index;
private String message_digest;

private File scr_file;
private File batch;
private File result;

private byte[] password= new byte [16];
private byte[] hashval new byte [16];
private byte[] tempMessage = new byte [64];
private MD5 md5 = new MD5();
private int[][] index table= new int[4][2];

82

private int index_table_index = O;

HostEbank () {
//title
setTitle("Ebank Host Application Simulator");

setDefaultCloseOperation(JFrame.EXIT _ON_ CLOSE);
//color
getContentPane().setLayout(null);
getContentPane().setBackground(Color.blue);
//size & color
first_panel = new JPanel();
first_panel.setBounds(25, 25,630, 80);
first _panel.setBackground(Color. white);
first_panel.setBorder(BorderFactory.createTitledBorder

(BorderFactory.createLineBorder(Color.orange), n Notice "));
//message
message I = new JLabel("After select the Ebank applet, $ ");
amount= new JTextField(4); //amount will be saved in text field 4
message2 = new JLabel("will be deposited if it is selected successfully.");
//add message l, amount, message2 to the first panel
first_panel.add(message 1);
first_panel.add(amount);
first_panel.add(message2);

//second panel
second _panel = new JPanel();
second_panel.setBounds(25, 135, 630, 90);
second _panel.setBackground(Color. white);
second _panel.setBorder(BorderFactory .createTitledBorder

(BorderFactory.createLineBorder(Color.orange)," Login & Deposit "));
//make label
JLabel ghost= new JLabel(" 0

);

login = new JButton(" LOGIN ");
login.setBackground(Color.orange);
JLabel ghost2 = new JLabel(" ");
response = new JLabel(" 11

, SwingConstants.CENTER);
response.setF oreground(Color. blue);
//add them to second panel
second _panel.add(ghost);
second _panel.add(login);
second _panel.add(ghost2);
second _panel.add(response);

//make third panel
third_panel = new JPanel();
third_panel.setBounds(25, 245,630,250);
third_panel.setBackground(Color.white);
third _panel.setBorder(BorderFactory .createTitledBorder

(BorderFactory.createLineBorder(Color.orange), 11 Result "));
//make label and text
initial = new JLabel('' Initial balance was $ ");
initial_bal = new JTextField(4);
initial_bal.setEnabled(false);
initiaI2 = new JLabel(" . 11

);

JLabel ghost3 = new JLabel("\t");
area = new JTextArea(250, I 00);

83

area.setBackground(Color. white);
area.setForeground(Color.black);
area.set Enabled(false);
scroll = new JScrollPane(area);
scroll.setPreferredSize(new Dimension(580, 150));
JLabel ghost4 = new JLabel("\t");
after= new JLabel("The new balance is$");
after_bal = new JTextField(4);
after_ bal.setEnabled(false);
after2 = new JLabel(" . ");
//add them to third pannel
third_panel.add(initial);
third_panel.add(initial_bal);
third _pane I.add(in itial2);
third_panel.add(ghost3);
third_panel.add(scroll);
third _pane l.add(ghost4);
third_panel.add(after);
third _pane I.add(after_ bal);
third _panel .add(after2);

//start fourth panel
fourth_panel = new JPanelQ;
fourth_panel.setBounds(25, 525,630, 70);
fourth_panel.setBackground(Color.white);
fourth_panel.setBorder(BorderFactory.createTitleclBorder

(BorderFactory.createLineBorder(Color.orange)," Reset "));
I !initialize reset button
reset = new JButton(" RESET ");
reset.setBackground(Color.blue);
//add it to fourth panel
fourth_panel.add(reset);

I Ith is index used for times to make hash value
pre_index = 4;
index= 6;

//initial hash value
hashval[O] = (byte) Ox21;
hashval[1] = (byte) Oxcd;
hashval[2] = (byte) Oxf4;
hashval[3] = (byte) Ox44;
hashval[4] = (byte) Oxdd;
hashval[5] = (byte) Ox5a;
hashval[6] = (byte) Oxcd;
hashval[7] = (byte) Ox05;
hashval[8] = (byte) Ox2a;
hashval[9] = (byte) OxOO;
hashval[10] = (byte) OxdO;
hash val[11] = (byte) Ox6b;
hashval[12] = (byte) Ox6b;
hashval[13] = (byte) Oxcd;
hashval[14] = (byte) Ox54;
hashval[15] = (byte) Ox57;

//index table

84

index_table[O][O] = 4;
index_table[O][I] = 6;
index_table[I][O] = 3;
index_table[I][I]= O;
index_table[2][0] = 2;
index_table[2][l] = 0;
index_table[3}[0J = l;
index_table[3][I]= O;

// login button -> power up -> select instller -> send password and index -> select ebank
II ->checkup-> hash-> reponse update label

II -> current balance-> deposit (amount-> money)-> current balance-> power down.
login.addActionListener(new ActionListener() {

public void actionPerformed (ActionEvent e) {

try {
//set as a false
amount.set Enabled(false);

II stroe the value of deposit
money = lnteger.parselnt(amount.getText());

String moneyl6 = Integer.toString(money, 16);
if (money 16.lengthO == I)

money 16 = 110 11 + money 16;

!Ito make a password from hash value
//from the hash value buffer to temp message buffer
for(int j=O; j<l 6; j++)

tempMessage[j] = hashval[j];

//to make initial password
for(short k=O; k<index table[index table index][O]; k++){ - - -

//md5 initialize
md5.md5Init();
//md5 update
md5.md5Update(tempMessage, (short) 16);
//md5 generate and save it
md5 .md5Gen(password);

for(int l=O; 1<16; I++)
tempMessage[l] = password[l];

}

String indexl6 = Integer.toString(index_table[index_table_index][I], 16);
if (index 16.Iength() == 1)

index 16 = "0" + index 16;
//make defined apdu file
scr _ file = new File("apdu.scr");
BufferedWriter out= new BufferedWriter(new FileWriter(scr_file));

//write apdu command file
//turn the card on
out. write("powerup;\n\n ");

85

out.write("// select installer applet\n\n");
out.write("OxO Oxa4 Ox04 OxO OxOa OxOO OxOO OxOO OxOO OxOB Ox03 OxOI

OxOC Ox06 OxO I Ox7f; \n\n");

message_digest = new StringQ;
String tern p = new String();

//append OxOOOOOOOF -> show that one command is finished
for (inti= O; i < 16; i++) {

temp= lnteger.toString(password[i]&OxOOOOOOFF, 16);

if (temp.length()== I)
temp = "O" + temp;

temp= "Ox"+ temp;
message_digest = message_digest +temp+"";

out.write("// store initial password to the installer\n\n");
out.write("OxBO OxOI OxOO OxOO Ox12" + message_digest +"Ox"+ index16 +

" OxOO Ox7f;\n\n");

out.write("// Select Ebank applet\n");
out. write("OxO Oxa4 Ox04 OxO OxOa OxOO OxOO OxOO OxOO OxOC Ox03 OxO 1

OxOC Ox06 OxO I Ox7f;\n\n");

out.write("// display balance\n");
out.write("OxBO Ox03 OxOO OxOO OxOI Ox02 Ox7f;\n\n");

out. write("II deposit\n ");
out.write("OxBO OxOI OxOO OxOO OxOI Ox"+ money16 + "Ox7F;\n\n");

out.write("// display balance\n");
out. write("OxBO Ox03 OxOO OxOO OxO I Ox02 Ox7f;\n\n");

out. write("powerdown;");
out.close();

} catch (Exception ee) {
}

try {
//make them into batch file to execute
batch = new File("execute.bat");
result = new File("result");
BufferedWriter out= new BufferedWriter(new FileWriter(batch));
out.write("@echo off\n");
//to send commands to the card
out. write("apdutool -o " + result.getAbsolutePath() + " "

+ scr_file.getAbsolutePathO + "\n");
out.close();
//replace\\ to/ to make a path
String batch _path = batch.getAbsolutePath();
batch_path = batch_path.replace('\\', 'f);
Process child = Runtime.getRuntime().exec(batch _path);

86

child.waitFor();

} catch (Exception e2) {

String text;
int access_ line = O;
boolean access_result = false;
String access_text = new String();
String first_ bal = new String();
String end_ bal === new String();

try {
//show result
BufferedReader reader= new BufferedReader(new FileReader(result));
//read line by line
while ((text = reader.readLine()) != null) {

++ access_ line;

if (access_line = 3) {
access_ text = text;

}

access_ text = access_ text.substring(95,97);
//90 means success
if (lnteger.parselnt(access text)= 90)
access_result = true;

if (access_line = 4) {

if (access_result = true) {
first_ bal = text;
first_bal = first_bal.substring(54,56) +
first_ bal .substring(5 8,60);
//make balance
first_ bal =String. valueOf(Integer.parselnt(first_ bal, 16));

}

else {

}
}

//set up when it is failed
response.setForeground(Color.red);
response.setText("*** Login Failed! ***");
area.appendf'\n ");
result.delete();
result = null;
return;

//compute banlance
if (access_line = 6) {

end bal = text;
end=bal = end_bal.substring(54,56) +end_bal.substring(58,60);
end_bal = String.valueOf(Integer.parselnt(end_bal, 16));

87

area.append(text+ "\n");

} // end of while

reader.close();
//set up response
response.setForeground(Color.blue);
response.setText(" ••• Welcome Jae Hyuk Joo!***");
area.append("\n ");

initial_ bal.setText(first_ bal);
after_bal.setText(end_bal);

index_ table_ index++;

if (index_table_index = 4)
index_table_index = O;

} catch (Exception e3) { //error
} finally { //delete them all after done

scr _tile.delete();

}
});

scr_file = null;
batch.delete();
batch = null;
result.delete();
result = null;

reset.addActionListener(new ActionListenerO {
public void actionPerfonned (ActionEvent e) {

//make them null

}
});

amount.setText(null);
amount.setEnab led(true);
response.setText(null);
initial_ bal.setText(null);
area.append("\n ");
after_ bal.setText(null);

getContentPane().add(first_panel);
getContentPane().add(second_panel);
getContentPane().add(third _panel);
getContentPane().add(fourth_panel);

} // end of constructor

I /main method
public static void main (String[] args) {

88

//set up boundary
JFrame frame= new HostEbankO;
frame.setBounds(O, 0, 695, 670);
frame.setVisible(true);

}//end main method

}//end HostEbank

//start md5 class
class MD5 {

/* The source of this MD5 algorithm is from RFC 1321 from MIT laboratory for
Computer Science and RSA data security .inc.
The original source is untimitly distributed.
This MD5 is changed and adapted to the JAVA CARD */

/* Constants for MD5Transfonn routine*/
private static final byte S 11 = 7; private static final byte S 12 = 12;
private static final byte S 13 = 17; private static final byte S 14 = 22;
private static final byte S2 l = 5; private static final byte S22 = 9;
private static final byte S23 = 14; private static fmal byte S24 = 20;
private static final byte S3 l = 4; private static final byte S32 = 11;
private static final byte S33 = 16; private static fmal byte S34 = 23;
private static final byte S41 = 6; private static fmal byte S42 = 1 O;
private static final byte S43 = 15; private static fmal byte S44 = 21;

//to append padding bits - 128bits (64 bytes)
private static final byte[] padding= {

(byte)Ox80,0xOO,OxOO,OxOO,OxOO,OxOO,OxOO,Ox00,0x00,0x00,0x00,
OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,Ox00,0xOO,
OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,
OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,
OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,Ox00,0xOO,OxOO,
OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO

};

//for four-word buffer(A,B,C,D)
/ /These register buffers are used for computing the message digest
private byte[] wordA = new byte[4];
private byte[] wordB = new byte[4];
private byte[] wordC = new byte[4];
private byte[] wordD = new byte[4];

//temp four-word buffer for increment each of the four registers by the value
private byte[] wordAA = new byte[4];
private byte[] wordBB = new byte[4];
private byte[] wordCC = new byte[4];
private byte[] wordDD = new byte[4];

//for before padding initialize it to false

89

private boolean beforePadding = false;

//a 64-element table
/ffhis is constructed from the sine function
private byte[] sixtyFourETable = new byte[64];

//for total message length
private byte(] totalML = new byte[8];

I !for partial message
private byte[] partialM = new byte[4];
private byte[] partialM2 = new byte[4];

//start md51nit method for MD5 initialization
//Begins an MD5 operation
void md5Init () {

//wordA Ox67452301
wordA[O] = (byte)Ox67; wordA[I] = (byte)Ox45;
wordA[2] = (byte)Ox23; wordA[3] = (byte)OxOI;
//wordB = Oxefcdab89
wordB[O] = (byte)OxEF; wordB[l] = (byte)OxCD;
wordB[2] = (byte)OxAB; wordB[3] = (byte)Ox89;
//wordC = Ox98badcfe
wordC[O] = (byte)Ox98; wordC[l] = (byte)OxBA;
wordC[2] = (byte)OxDC; wordC[3] = (byte)OxFE;
//wordD Ox I 0325476
wordD[O] = (byte)OxlO; wordD[I] = (byte)Ox32;
wordD[2] = (byte)Ox54; wordD[3] = (byte)Ox76;

//initialize total message length buffer
for (short i = O; i<8; i++)

totalML[i] = OxOO;

/ /initialize beforePadding as a false
beforePadding = false;

}//end md5Init method

/ /hash value update
void md5Update(byte[] buffer, short length) {

//by input length - initial case is 0
short processByCase O;

switch(length) {

//In case each data block bits are 512 bits
case 64: processByCase = I;
break;

//after processing all data blocks
case 0:
if (beforePadding = false){

processByCase = -1 ;
break;

90

}
else

return:

/ /for the last data block
default: processByCase = 3;
beforePadding = true;

I Ito add message length
appendLength(totalML, length);

//copy from Array wordA to paste Array wodrdAA
arrayCopy(wordA, (short)O, wordAA, (short)O, (short)4);

I /copy from Array wordB to paste Array wodrdBB
arrayCopy(wordB, (short)O, wordBB, (short)O, (short)4);

//copy from Array wordC to paste Array wodrdCC
arrayCopy(wordC, (short)O, wordCC, (short)O, (short)4);

//copy from Array wordD to paste Array wodrdDD
arrayCopy(wordD, (short)O, wordDD, (short)O, (short)4);

do{

//making 64-element table T[1...64]
switch (processByCase) {

//padding 448 bits (100 ... 0) and save it with 64bits (tottal message)
case -1:

arrayCopy(padding, (short)O, sixtyFourETable, (short)O, (short)56);
arrayCopy(totalML, (short)O, sixtyFourETable, (short)56, (short)S);
processByCase = O;
break;

//save 512 bit message
case I:

arrayCopy(buffer, (short)O, sixtyFourETable, (short)O, (short)64);
processByCase = O;
break;

//padding 448 bits (000 ... 0) and save it with 64bits (tottal message)
case 2:

arrayCopy(padding, (short)S, sixtyFourETable, (short)O, (short)56);
arrayCopy(totalML, (short)O, sixtyFourETable, (short)56, (short)S);
processByCase = O;
break;

//to make the last input(8bits-512bits) 512bits and make it 128 bits
case 3:

if(length < 56) {
short required_pad = (short)((short)56 - length);
arrayCopy(buffer, (short)O, sixtyFourETable, (short)O, length); .
arrayCopy(padding, (short)O, sixtyFourETable, (short)length, requ1red_pad);

91

}

arrayCopy(totalML, (short)O, sixtyFourETable, (short)56, (short)8);
processByCase = O;

else {
short required_pad = (short)((short)64 - length);
arrayCopy(buffer, (short)O, sixtyFourETable, (short)O, length);
arrayCopy(padding, (short)O, sixtyFourETable, (short)length, required _pad);
processByCase = 2;

}
break;

/* call methods - Round 1,2,3,4.
each method is called by total 16*/

//round I
roundOne (wordA, wordB, wordC, word.D, sixtyFourETable, (short)O, SI I, (byte)OxD7, (byte)Ox6A,

(byte)OxA4, (byte)Ox78);
roundOne (wordD, word.A, wordB, wordC, sixtyFourETable, (short)4, SI2, (byte)OxES, (byte)OxC7,

(byte)OxB7, (byte)Ox56);
roundOne (wordC, word.D, wordA, wordB, sixtyFourETable, (short)8, Sl3, (byte)Ox.24, (byte)Ox.20,

(byte)Ox70, (byte)OxDB);
roundOne (wordB, wordC, word.D, wordA, sixtyFourETable, (short)l2, SI4, (byte)OxCl, (byte)OxBD,

(byte)OxCE, (byte)OxEE);
roundOne (wordA, wordB, wordC, word.D, sixtyFourETable, (short)l6, SI I, (byte)OxF5, (byte)Ox7C,

(byte)Ox OF, (byte)OxAF);
roundOne (wordD, word.A, wordB, wordC, sixtyFourETable, (short)20, Sl2, (byte)Ox47, (byte)Ox87,

(byte)OxC6, (byte)Ox2A);
roundOne (wordC, wordD, wordA, wordB, sixtyFourETable, (short)24, S13, (byte)OxA8, (byte)Ox30,

(byte)Ox46, (byte)Oxl3);
roundOne (wordB, wordD, word.D, wordA, sixtyFourETable, (short)28, Sl4, (byte)OxFD, (byte)Ox46,

(byte)Ox95, (byte)OxOl);
roundOne (word.A, wordB, wordC, word.D, sixtyFourETable, (short)32, SI 1, (byte)Ox69, (byte)Ox80,

(byte)Ox 98, (byte)OxD8);
roundOne (wordD, wordA, wordB, wordC, sixtyFourETable, (short)36, Sl2, (byte)Ox8B, (byte)Ox44,

(byte)OxF7, (byte)OxAF);
roundOne (wordC, wordD, wordA, wordB, sixtyFourETable, (short)40, Sl3, (byte)OxFF, (byte)OxFF,

(byte)Ox5B, (byte)Ox.Bl);
roundOne (wordB, wordC, word.D, wordA, sixtyFourETable, (short)44, Sl4, (byte)Ox89, (byte)Ox5C,

(byte)OxD7, (byte)Ox.BE);
roundOne (word.A, wordB, wordC, word.D, sixtyFourETable, (short)48, SI I, (byte)Ox6B, (byte)Ox90,

(byte)Oxl 1, (byte)Ox22);
roundOne (wordD, word.A, wordB, wordC, sixtyFourETable, (short)52, S12, (byte)OxFD, (byte)Ox98.

(byte)Ox71, (byte)Ox93);
roundOne (wordC, wordD, wordA, wordB, sixtyFourETable, (short)56, Sl3, (byte)OxA6, (byte)Ox79,

(byte)Ox43, (byte)Ox8E);
roundOne (wordB, wordC, word.D, wordA, sixtyFourETable, (short)60, S14, (byte)Ox49, (byte)Ox84,

(byte)Ox 08, (byte)Ox2 l);

//round 2
roundTwo (word.A, wordB, wordC, word.D, sixtyFourETable, (short)4, S21, (byte)OxF6, (byte)Ox 1 E,

(byte)Ox25, (byte)Ox62);
roundTwo (wordD, wordA, wordB, wordC, sixtyFourETable, (short)24, S22, (byte)OxCO, (byte)Ox40.

92

(byte)OxB3, (byte)Ox40);
roundTwo (wordC, wordD, word.A, word.B, sixtyFourETable, (short)44, S23, (byte)Ox26, (byte)Ox5E,

(byte)Ox5A, (byte)Ox51);
roundTwo (wordB, wordC, wordD, word.A, sixtyFourETable, (short)O, S24, (byte)OxE9, (byte)OxB6,

(byte)OxC7, (byte)OxAA);
roundTwo (word.A, wordB, wordC, wordD, sixtyFourETable, (short)20, S21, (byte)OxD6, (byte)Ox2F,

(byte)Ox I 0, (byte)Ox5D);
roundTwo (wordD, word.A, wordB, wordC, sixtyFourETable, (short)40, S22, (byte)Ox2, (byte)Ox44,

(byte)Ox 14, (byte)Ox53);
roundTwo (wordC, wordD, word.A, word.B, sixtyFourETable, (short)60, S23, (byte)Ox.D8, (byte)OxA 1,

(byte)OxE6, (byte)Ox81);
roundTwo (wordB, wordD, wordD, word.A, sixtyFourETable, (short)24, S24, (byte)OxE7, (byte)Ox.D3,

(byte)OxFB, (byte)OxC8);
roundTwo (word.A, wordB, wordC, wordD, sixtyFourETable, (short)36, S21, (byte)Ox21, (byte)OxEl,

(byte)OxCD, (byte)OxE6);
roundTwo (wordD, word.A, wordB, wordC, sixtyFourETable, (short)56, S22, (byte)OxC3, (byte)Ox37,

(byte)Ox 07, (byte)OxD6);
roundTwo (wordC, wordD, word.A, word.B, sixtyFourETable, (short)12, S23, (byte)OxF4, (byte)Ox.D5,

(byte)Ox OD, (byte)Ox87);
roundTwo (wordB, wordC, wordD, word.A, sixtyFourETable, (short)32, S24, (byte)Ox45, (byte)Ox5A,

(byte)Oxl4, (byte)OxED);
roundTwo (word.A, wordB, wordC, wordD, sixtyFourETable, (short)52, S21, (byte)OxA9, (byte)OxE3,

(byte)OxE9, (byte)Ox05);
roundTwo (wordD, word.A, wordB, wordC, sixtyFourETable, (short)8, S22, (byte)OxFC, (byte)OxEF,

(byte)OxA3, (byte)OxF8);
roundTwo (wordC, wordD, word.A, word.B, sixtyFourETable, (short)28, S23, (byte)Ox67, (byte)Ox6F,

(byte)Ox02, (byte)OxD9);
roundTwo (wordB, wordC, wordD, word.A, sixtyFourETable, (short)48, S24, (byte)Ox8D, (byte)Ox2A,

(byte)Ox4C, (byte)Ox8A);

//round 3
roundThree(word.A, wordB, wordC, wordD, sixtyFourETable, (short)20, S31, (byte)OxFF,

(byte)OxFA, (byte)Ox39, (byte)Ox42);
roundThree(wordD, word.A, wordB, wordC, sixtyFourETable, (short)32, S32, (byte)Ox87,

(byte)Ox7 l, (byte)Ox.F6, (byte)Ox8 l);
roundThree(wordC, wordD, word.A, word.B, sixtyFourETable, (short)44, S33, (byte)Ox6D,

(byte)Ox9D, (byte)Ox61, (byte)Ox22);
roundThree(wordB, wordC, wordD, word.A, sixtyFourETable, (short)56, S34, (byte)OxFD,

(byte)OxE5, (byte)Ox3 8, (byte)OxOC);
roundThree(word.A, wordB, wordC, wordD, sixtyFourETable, (short)4, S3 l, (byte)OxA4,

(byte)OxBE, (byte)OxEA, (byte)Ox44);
roundThree(wordD, word.A, wordB, wordC, sixtyFourETable, (short) 16, S32, (byte)Ox4B,

(byte)OxDE, (byte)OxCF, (byte)OxA9);
roundThree(wordC, wordD, word.A, wordB, sixtyFourETable, (short)28, S33, (byte)OxF6,

(byte)OxBB, (byte)Ox4B, (byte)Ox80);
roundThree(wordB, wordD, wordD, word.A, sixtyFourETable, (short)40, S34, (byte)OxBE,

(byte)OxBF, (byte)OxBC, (byte)Ox70);
roundThree(word.A, wordB, wordC, wordD, sixtyFourETable, (short)52, S3 I, (byte)Ox28,

(byte)Ox9B, (byte)Ox7E, (byte)OxC6);
roundThree(wordD, word.A, wordB, wordC, sixtyFourETable, (short)O, S32, (byte)OxEA,

(byte)OxA 1, (byte)Ox27, (byte)OxFA);
roundThree(wordC, wordD, word.A, wordB, sixtyFourETable, (short)l2, S33, (byte)OxD4,

(byte)OxEF, (byte)Ox30, (byte)Ox85);
roundThree(wordB, wordC, wordD, word.A, sixtyFourETable, (short)24, S34, (byte)Ox4,

(byte)Ox 88, (byte)Ox ID, (byte)Ox05);
roundThree(word.A, wordB, wordC, wordD, sixtyFourETable, (short)36, S3 l, (byte)OxD9,

93

(byte)OxD4, (byte)OxDO, (byte)Ox39);
roundThree(wordD, word.A, wordB, wordC, sixtyFourETable, (short)48, S32, (byte)OxE6,

(byte)OxDB, (byte)Ox99, (byte)OxE5);
roundThree(wordC, wordD, wordA, wordB, sixtyFourETable, (short)60, S33, (byte)OxlF,

(byte)OxA2, (byte)Ox7C, (byte)OxF8);
roundThree(wordB, wordC, wordD, wordA, sixtyFourETable, (short)8, S34, (byte)OxC4,

(byte)OxAC, (byte)Ox56, (byte)Ox65);

//round 4
roundFour (word.A, wordB, wordC, wordD, sixtyFourETable, (short)O, S41, (byte)Ox.F4, (byte)Ox29,

(byte)Ox22, (byte)Ox44);
roundFour (wordD, word.A, wordB, wordC, sixtyFourETable, (short)28, S42, (byte)Ox43, (byte)Ox2A,

(byte)Ox FF, (byte)Ox97);
roundFour (wordC, wordD, wordA, wordB, sixtyFourETable, (short)56, S43, (byte)Ox.AB, (byte)Ox94,

(byte)Ox23, (byte)OxA 7);
roundFour (wordB, wordC, wordD, wordA, sixtyFourETable, (short)20, S44, (byte)Ox.FC, (byte)Ox93,

(byte)OxAO, (byte)Ox39);
roundFour (word.A, wordB, wordC, wordD, sixtyFourETable, (short)48, S41, (byte)Ox65, (byte)Ox5B,

(byte)Ox5 9, (byte)OxC3);
roundFour (wordD, word.A, wordB, wordC, sixtyFourETable, (short)12, S42, (byte)Ox8F, (byte)OxOC,

(byte)OxCC, (byte)Ox92);
roundFour (wordC, wordD, wordA, wordB, sixtyFourETable, (short)40, S43, (byte)OxFF, (byte)OxEF,

(byte)OxF4, (byte)Ox7D);
roundFour (wordB, wordD, wordD, wordA, sixtyFourETable, (short)4, S44, (byte)Ox85, (byte)Ox84,

(byte)Ox5D, (byte)OxDI);
roundFour (word.A, wordB, wordC, wordD, sixtyFourETable, (short)32, S41, (byte)Ox6F, (byte)Ox.A8,

(byte)Ox7E, (byte)Ox4F);
roundFour (wordD, word.A, wordB, wordC, sixtyFourETable, (short)60, S42, (byte)OxFE, (byte)Ox2C,

(byte)OxE6, (byte)OxEO);
roundFour (wordC, wordD, wordA, wordB, sixtyFourETable, (short)24, S43, (byte)Ox.A3, (byte)OxOI,

(byte)Ox43, (byte)Ox 14);
roundFour (wordB, wordC, wordD, wordA, sixtyFourETable, (short)52, S44, (byte)Ox4E, (byte)Ox08,

(byte)Ox 11, (byte)OxA 1);
roundFour (word.A, wordB, wordC, wordD, sixtyFourETable, (short)l6, S41, (byte)OxF7, (byte)Ox53,

(byte)Ox7E, (byte)Ox82);
roundFour (wordD, word.A, wordB, wordC, sixtyFourETable, (short)44, S42, (byte)OxBD,

(byte)Ox3 A, (byte)OxF2, (byte)Ox35);
roundFour (wordC, wordD, word.A, wordB, sixtyFourETable, (short)8, S43, (byte)Ox2A, (byte)OxD7,

(byte)OxD2, (byte)OxBB);
roundFour (wordB, wordC, wordD, wordA, sixtyFourETable, (short)36, S44, (byte)OxEB, (byte)Ox86,

(byte)OxD3, (byte)Ox91);

/* save A as AA, Bas BB, C as CC, and Das DD*/
byteAddFun(wordA, wordAA, (short)O, (short)3);
byteAddFun(wordB, wordBB, (short)O, (short)3);
byteAddFun(wordC, wordCC, (short)O, (short)3);
byteAddFun(wordD, wordDD, (short)O, (short)3);

} while (processByCase !:: O);

} / /end md5 update method

I /start md5Gen method
void md5Gen (byte[] md) {

94

I /generate output A
for (short i = 0, j = 3; j >= O; ++i, --j)

md[i] = wordAU];

//generate output B
for (short i = 4,j = 3;j >= O; ++i, --j)

md[i] = wordBU];

//generate output C
for (short i = 8, j = 3; j >= O; ++i, --j)

md[i] = wordCU];

//generate output D
for (short i = 12, j = 3; j >= O; ++i, --j)

md[i] = wordDU];

}//end md5Gen method

//for round 1: a= b +((a+ F(b,c,d) + X[k] + T[i]) <<< s)
private void roundOne (byte[] a, byte[] b, byte[] c, byte[] d, byte(] x,

short point, byte s, byte t 1, byte t2, byte t3, byte t4) {

andFun(b, c, partialM);
compFun(b, partialM2);
andFun(partialM2, d, partialM2);
orFun(partialM, partialM2, partialM2);
arrayCopy(x, (short)point, partialM, (short)O, (short)4);
byteAddFun(partialM2, partialM, (short)O, (short)3);
partialM(O] = tl; partialM[l] = t2;
partialM[2] = t3; partialM[3] = t4;
byteAddFun (partialM2, partialM, (short)O, (short)3);
byteAddFun (partia1M2, a, (short)O, (short)3);
leftRotation(partialM2, s, partialM2);
byteAddFun(partialM2, b, (short)O, (short)3);
arrayCopy(partialM2, (short)O, a, (short)O, (short)4);

}//end round 1

//for round 2: a= b +((a+ G(b,c,d) + X[k] + T[i]) <<< s)
private void roundTwo (byte(] a, byte[] b, byte[] c, byte[] d, byte[] x,

short point, bytes, byte tl, byte t2, byte t3, byte t4) {

andFun(b, d, partialM);
compFun(d, partialM2);
andFun(c, partialM2, partialM2);
orFun(partialM, partialM2, partialM2);
arrayCopy(x, (short)point, partialM, (short)O, (short)4);
byteAddFun(partialM2, partialM, (short)O, (short)3);
partialM(O] = tl; partialM(l] = t2;
partialM[2] = t3; partialM[3] = t4;
byteAddFun (partialM2, partialM, (short)O, (short)3);
byteAddFun (partia1M2, a, (short)O, (short)3);
leftRotation(partialM2, s, partia1M2);
byteAddFun(partialM2, b, (short)O, (short)3);

95

arrayCopy(partialM2, (short)O, a, (short)O, (short)4);

}//end round 2

//round 3: a = b +((a+ H(b,c,d) + X[k] + T[i]) <<< s)
private void roundThree (byte[] a, byte[] b, byte[] c, byte[] d, byte[] x,

short point, byte s, byte t I, byte t2, byte t3, byte t4) {

xorFun(b, c, partialM);
xorFun(partialM, d, partiaIM2);
arrayCopy(x, (short)point, partialM, (short)O, (short)4);
byteAddFun(partialM2, partialM, (short)O, (short)3);
partial M [0] = t I ; partialM[I] = t2;
partialM[2] = t3; partialM[3] = t4;
byteAddFun (partialM2, partialM, (short)O, (short)3);
byteAddFun (partialM2. a, (short)O, (short)3);
leftRotation(partialM2, s, partialM2);
byteAddFun(partialM2, b, (short)O, (short)3);
arrayCopy(partialM2, (short)O, a, (short)O, (short)4);

}//end round 3

//round 4: a= b +((a+ I(b,c,d) + X[k] + T[i]) <<< s)
private void roundFour (byte[] a, byte[] b, byte[] c, byte[] d, byte[] x,

short point, bytes, byte t1, byte t2, byte t3, byte t4) {

compFun(d, partialM);
orFun(a, partialM, partialM);
xorFun(c, partialM, partialM2);
arrayCopy(x, (short)point, partialM, (short)O, (short)4);
byteAddFun(partialM2, partialM, (short)O, (short)3);
partialM[O] =ti; partialM[l] = t2;
partialM[2] = t3; partialM[3] = t4;
byteAddFun (partialM2, partialM, (short)O, (short)3);
byteAddFun (partialM2, a, (short)O, (short)3);
leftRotation(partialM2, s, partialM2);
byteAddFun(partialM2, b, (short)O, (short)3);
arrayCopy(partialM2, (short)O, a, (short)O, (short)4);

}//end round 4

//start array copy method
private void arrayCopy (byte[] original, short oStart,

byte[] destine, short dStart, short length) {

short index = O;

for (index= length; index> O; --index) {
destine[dStart] = original[oStart];
oStart++;
dStart++;

}

96

} //end array copy method

//start byte add function
private void byteAddFun (byte[] a, byte[] b, short point2, short length) {

if (length= -I)
return;

short oneByte = (short)((short)(a[length]&OxOOFF) +
(short)(b[length)&OxOOFF) + point2);

a[length] = (byte)(oneByte & (short)OxOOFF);

if (over Flow(oneByte))
byteAddFun(a, b, (short)l, --length);

else
byteAddFun(~ b, (short)O, --length);

return;

}//end byte add function

private void appendLength (byte[] lengthTotal, short length) {

byte[] partialLength = new byte[5];
short point = -1;

while (true) {

}

if (length >= 127) {
partiaJLength[++point] = (byte)Ox7F;
length = (short)(length - (short) 127);

}
else {

}

partiaJLength[++point] = (byte)(length%((short)l27));
break;

for (short index= 7; point>= O;--point, index= 7) {
short oneByte = (short)((short)(lengthTotal[index]&OxOOft) +

(short)(partialLength[point]&OxOOft));
lengthTotal[index] = (byte)(oneByte & (short)OxOOFF);
if (overflow(one Byte))

length Total = round(lengthTotal, --index, (short) I);
}

} //end appendLength method

//start overflow function
private boolean overflow (short number) {

if ((short)(nurnber&(short)OxFFOO) >= (short)OxO 100)
return true;

97

else
return false;

}//end overflow function

//start left rotation function
private void left.Rotation (byte[] array, byte shifting, byte[] answer) {

byte one = OxOO; byte two = OxOO;
byte three = OxOO; byte four = OxOO;
byte pointer = OxOO; byte shifter=== OxOO;
byte oppositeShift = OxOO;
byte current = OxOO; short next = OxOO;

switch (shifting% (byte)8) {
case 0: pointer= (byte)OxFF;

break;
case 1: pointer= (byte)Ox80;

break;
case 2: pointer= (byte)OxCO;

break;
case 3: pointer= (byte)OxEO;

break;
case 4: pointer= (byte)OxFO;

break;
case 5: pointer= (byte)OxFS;

break;
case 6: pointer= (byte)OxFC;

break;
case 7: pointer= (byte)OxFE;

break;

shifter= (byte)(shifting % (byte)8);
oppositeShift = (byte)((byte)Ox08 ~ shifter);

if (shifter== O) {
shifter= 8;

oppositeShift = O;
}

if (shifting <= 8) {

}

one = array[O]; two= array[I];
three= array[2]; four= array[3];

else if (shifting <= 16) {

one= array[l]; two= array[2];
three= array[3]; four= array[O];

}

else if (shifting<= 24) {

98

one= array[2]; two= array[3];
three= array[O]; four= array[l];

}

next= (short)((four & pointer) & OxOOFF);
answer[3] = (byte)(four << shifter);
current= (byte)(next >>> oppositeShift);
next = (short)((three & pointer) & OxOOFF);
answer[2] = (byte)((three << shifter) I current);
current= (byte)(next >>> oppositeShift);
next = (short)((two & pointer) & OxOOFF);
answer[I] = (byte)((two << shifter) I current);
current= (byte)(next >>> oppositeShift);
next= (short)((one & pointer) & OxOOFF);
answer(O] = (byte)((one << shifter) I current);
current= (byte)(next >>> oppositeShift);
answer[3] = (byte)(answer[3] I (current));

}//end left Rotation method

//start round function
private byte[] round(byte[] total, short index, short point2) {

if (index< 0)
return total;

short oneByte = (short)((short)(total[index]&OxOOft) + point2);
total[index] = (byte)(oneByte & (short)OxOOFF);

if (overflow(oneByte))
total = round(total, --index, (short) 1);

return total;

}//end round function

//start bit complemention function
private void comp Fun (byte[] array, byte[] answer) {

for (short i = O; i < (short)4; i++)
answer[i] = (byte)-(array[i]);

} //end bit complemention function

//start bit and function
private void andFun (byte[] array I, byte[] array2, byte[] answer) {

for (short i O; i < (short)4; i++)
answer[i] = (byte)(arrayl [i] & array2[i]);

}//end bit and function

99

//start bit or function
private void orFun (byte[] array I, byte[] array2, byte[] answer) {

for (short i = O; i < (short)4; i++)
answer[i] = (byte)(arrayl [i] I array2[i]);

} / /end bit or function

I /start xor function
private void xorFun (byte[) array I, byte[] array2, byte[] answer) {

for (short i = O; i < (short)4; i++)
answer[i] = (byte)(array I [i] "array2[i]);

}//end xor function

}//end md5 class

100

IL

Installer .j ava

/****•·· This applet resides on the JCRE by masking
When an applet is installed, it makes original input by hash function from CAP file
Hash function is included here•...........••..............•...........•.. ,

package installers;

import javacard. framework.•;

public class Installer extends Applet
implements Installlnterface {

//CLA byte
private final static byte Installer_ CLA = (byte)OxBO;

//INS byte to store temp password
private final static byte STORE = (byte)OxOI;
//for initialize md5
private final static byte INITIMD5 = (byte)Ox02;
//for make and update md5
private final static byte UPDATEMD5 (byte)Ox03;
//for save md5
private final static byte GENMD5 = (byte)Ox04;
//for display md5 password
private final static byte DISPLAYPASS= (byte)Ox05;
/!for display md5 hashvalue
private final static byte DISPLA YHASH= (byte)Ox06;

//this applet instance's AID
private final byte[] own_aid = {OxOO, OxOO, OxOO, OxOO, OxOB, Ox03, OxOI, OxOC, Ox06, OxOI };
//client(Ebank)'s AID
private final byte[] cAid = {OxOO, OxOO, OxOO, OxOO, OxOC, Ox03, OxOI, OxOC, Ox06, OxOI };

/!status word
private final static short INVALID_MESSAGE_BLOCK_LENGTH = Ox6AOI;

//parameters for sharing between Ebank and Installer
private final byte parashare = (byte) OxCC;

//for instance of md5
private MD5 md5;

// AFTER GENERA TING HASH BALUE FROM EBANK CAP FILE
//instance variables declaration
//for static hash value from installer (128 bits)
private final byte[] hashValue;
//for changeable password (128 bits)
private final byte[] password;
//for the temp password from host application
private byte[] tempPass;

101

//to making hash value
private byte[] tempMessage;

//start Installer constructor
private Installer(){

I lmd5 instance
md5 = new MD5();

I !for hash value
hash Value= new byte[I6];
I /for password
password= new byte[I6];
I /make storage for the temp-pass
tempPass = new byte[I6];
I !for message block
tempMessage = new byte[64];

//register this applet instance to the JCRE
register(own_aid, (short)O, (byte)(own_aid.length));

} //end Installer constructor

I !start install method
public static void install(byte[] bArray, short bOffset, byte bLength) {

//create this applet instance
new Installer();

}//end install method

I /start process method
public void process(APDU apdu) {

byte[] buffer = apdu.getBufferQ;

//if this apdu is select method, then return
if(selectingAppletO)

return;

//check the CLA bytes
if(buffer[IS07816.0FFSET_CLA]!=Installer_CLA)

IS0Exception.throwlt(IS078l6.SW _CLA_NOT_SUPPORTED);

//check the INS byte to decide which service method to call
switch(buffer[IS078 l 6.0FFSET _INS]) {

case STORE: store(apdu);
return;

case INITIMD5: initmd5(apdu);
return;

case UPDA TEMD5: updatemd5(apdu);
return;

case GENMD5: genmd5(apdu);
return;

102

case DISPLA YPASS: displaypass(apdu);
return;

case DISPLA YHASH: displayhash(apdu);
return;

default: IS0Exception.throw1t(IS07816.SW _INS_NOT_SUPPORTED);
}//end switch method

}//end process method

I !start store method to store temp password from host application
private void store(APDU apdu){

byte[] buffer = apdu.getBuffer();

//set to data_length value
short data_length = (short)(buffer[IS07816.0FFSET_LC]&Ox.FF);

//set to data receive mode
apdu.setlncomingAndReceiveQ;

//temp buffer
byte[] temp;

//set to temp buffer length
temp= new byte[data_length];

//copy buffer from buffer[] to temp[]
Util.arrayCopy(buffer,(short)(IS07816.0FFSET _ CDA T A&OxOOFF),

temp,(short)O, (short)buffer[IS07816.0FFSET_LC]);

I !for times value to make first password
short length= (short)16;
short timesValue = (short) temp[length];

//copy buffer from temp[] to tempPass(]
Util.arrayCopy(temp,(short)O,tempPass,(short)O, (short) 16);

I Ito make first password from hash value
if(timesValue != (short)O) {

I Ito make a password from hash value
//from the hash value buffer to temp message buffer
Util.arrayCopy(hash Value,(short)O,tempMessage,(short)O, (short) 16);

//to make initial password
for (short i=O; i<timesValue; i++){

I lmd5 initialize
md5 .mdS Init();
//mdS update
mdS .mdSUpdate(tempMessage, (short) 16);

I lmd5 generate and save it
md5 .md5Gen(password);

Util.arrayCopy(password,(short)O,tempMessage,(short)O, (short) 16);
}

103

} / /end store method

//start initialization method to initialize md5 instance
private void initmdS(APDU apdu){

//initialize mdS
md5.md5Init();

} //end initialize method

I !start updatemdS method to update hash value
private void updatemdS(APDU apdu){

byte[] buffer = apdu.getBuffer();

//set mode to receiving data
apdu .setl ncomingAndReceive();

I !set to message block length value
short length = (short)(buffer[IS07816.0FFSET _ LC]&OxOOFF);

/ /check whether the length is valid or not
if(length< I II length>64)

ISOException.throwlt(INVALID _MESSAGE_BLOCK_LENGTH);

I /copy data from buffer's data field to tempMessage
Util.arrayCopy(buffer,(short)(IS07816.0FFSET _ CDA T A&OxOOFF),

tempMessage,(short)O, length);

/ /call mdS update method to update hash value
md5.md5Update(tempMessage, (short)length);

} / /end update method

//start generate mdS method to store hash value
private void gerundS(APDU apdu){

//call md5 update method to update hash value
md5.md5Update(tempMessage, (short)O);

/ /save md5 hash value into password
md5 .md5Gen(hash Value);

}//end generate method

//start display method to show hash value
private void displaypass(APDU apdu) {

byte[] buffer = apdu.getBufferO;

//notify the JCRE that the applet has data to return
short le = apdu.setOutgoing();

104

I !set actual data byte's numbers
apdu.setOutgoingLength((byte) 16);

apdu.sendBytesLong(password,(short)O,(short)I6);

}//end display method

//start display method to show hash value
private void displayhash(APDU apdu) {

byte(] buffer = apdu.getBuffer();

//notify the JCRE that the applet has data to return
short le = apdu.setOutgoingO;

//set actual data byte's numbers
apdu.setOutgoingLength((byte) 16);

apdu.sendBytesLong(hashValue,(short)O,(short)I6);

}//end display method

//start shareable interface object method
public Shareable getShareablelnterfaceObject(AID clientAid, byte parameter){

//if the client AID does not match, then return null
if(clientAid.equals(cAid, (short)O, (byte)(cAid.length))!= true)
return null;

I /check the parameter
if(parameter != parashare)

return null;

//if client AID and parameter matched, then return this SIO
return this;

} / /end shareable interface object method

//to check password
public boolean check(){

//to compare between pass and updated temp pass(checkupPass)
byte[] checkupPass = new byte[16];

//copy tempPass to checkupPass
Util.arrayCopy(tempPass,(short)O,checkupPass,(short)O, (short)16);

I Ito generate next password from the checkupPass
//and update it to temp pass2
Util.arrayCopy(checkupPass,(short)O,tempMessage,(short)O, (short) 16);

I lmd5 initialize
md5.md5Init();

105

//md5 update
md5.md5Update(tempMessage, (short)16);

//md5 generate and save it
md5 .md5Gen(checkupPass);

//comapre between checkupPass and password
I /In case that they are not matched, then return false
if(Util.arrayCompare(checkupPass,(short)O,password,(short)O,(short)l6)!= OxOO){

}

//tempPass is set up to OxOO
for(short i = O; i<l6; i++)

tempPass[i] = OxOO;

return false;

//If they are matched, update password and return true
else{

I /update password
Util.arrayCopy(tempPass,(short)O,password,(short)0, (short) 16);

//tempPass is set up to OxOO
for(short i = O; i<l6; i++)

tempPass[i] = OxOO;

return true;
}

}
}//end Installer class

//start md5 class
class MD5 {

/* The source of this MOS algorithm is from RFC 1321 from MIT laboratory for
Computer Science and RSA data security.inc.
The original source is untimitly distributed.
This MD5 is changed and adapted to the JAVA CARD */

I* Constants for MD5Transfonn routine • /
private static final byte Sl l = 7; private static final byte Sl2 = 12;
private static final byte S13 = 17; private static final byte S14 = 22;
private static fmal byte S21 = 5; private static final byte S22 = 9;
private static final byte S23 = 14; private static final byte S24 = 20;
private static final byte S3 l = 4; private static final byte S32 = 11;
private static fmal byte S33 = 16; private static fmal byte S34 = 23;
private static fmal byte S4 l = 6; private static final byte S42 = 1 O;
private static fmal byte S43 = 15; private static fmal byte S44 = 21;

//to append padding bits- 128bits (64 bytes)
private static fmal byte[] padding = {

(byte)Ox80,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,
OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,

106

OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,
OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,
OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO};

//for four-word buffer(A,B,C,D)
/ ffhese register buffers are used for computing the message digest
private byte[) word.A= new byte[4];
private byte[] wordB = new byte[4];
private byte[] wordC = new bytef 4];
private byte[] wordD = new byte[4];

//temp four-word buffer for increment each of the four registers by the value
private byte[) word.AA = new bytef 4];
private byte[] wordBB = new byte[4];
private byte[] wordCC = new byte[4];
private byte[] wordDD = new byte[4];

I !for before padding initialize it to false
private boolean beforePadding = false;

/ /a 64-element table
/ffhis is constructed from the sine function
private byte[] sixtyFourETable = new byte[64];

I !for total message length
private byte[] totalML = new byte[8];

I !for partial message
private byte[] partialM = new byte[4];
private byte[] partialM2 = new byte[4];

//start md5Init method for MD5 initialization
/ /Begins an MD5 operation
void md5Init () {

//word.A= Ox67452301
wordA[O] = (byte)Ox67; wordA[l] = (byte)Ox45;
wordA[2] = (byte)Ox23; wordA[3] = (byte)OxOl;
I lwordB = Oxefcdab89
wordB[O] = (byte)OxEF; wordB[l] = (byte)OxCD;
wordB[2] = (byte)OxAB; wordB[3] = (byte)Ox89;
//wordC Ox98badcfe
wordC[O] = (byte)Ox98; wordC[l] = (byte)OxBA;

wordC[2] = (byte)OxDC; wordC[3] = (byte)OxFE;
//wordD = Oxl0325476
wordD[O] = (byte)OxlO; wordD[t] = (byte)Ox32;
wordD[2] = (byte)Ox54; wordD[3) = (byte)Ox76;

//initialize total message length buffer
for (short i = O; i<8; i++)

107

totalML(i] = OxOO;

//initialize beforePadding as a false
beforePadding = false;

}//end md5Init method

void md5Update(byte[] buffer, short length) {

//by input length - initial case is 0
short processByCase = O;

switch(length) {

//1 n case each data block bits are 512 bits
case 64: processByCase = I;

break;

//after processing all data blocks
case 0:

if (beforePadding = false){
processByCase = -1;
break;

else
return;

//for the last data block
default:

processByCase = 3;
beforePadding = true;

//to add message length
appendLength(totalML, length);

//copy from Array word.A to paste Array wodrdAA
arrayCopy(wordA, (short)O, wordAA, (short)O, (short)4);

//copy from Array wordB to paste Array wodrdBB
arrayCopy(wordB, (short)O, wordBB, (short)O, (short)4);

//copy from Array wordC to paste Array wodrdCC
arrayCopy(wordC, (short)O, wordCC, (short)O, (short)4);

//copy from Array wordD to paste Array wodrdDD
arrayCopy(wordD, (short)O, wordDD, (short)O, (short)4);

do{

//making 64-element table T[l...64]
switch (processByCase) {

//padding 448 bits (100 ... 0) and save it with 64bits (tottal message)
case -1:

108

arrayCopy(padding, (short)O, sixtyFourETable, (short)O, (short)56);
arrayCopy(totalML, (short)O, sixtyFourETable, (short)56, (short)8);
processByCase = O;
break;

//save 512 bit message
case 1:

arrayCopy(buffer, (short)O, sixtyFourETable, (short)O, (short)64);
processByCase = O;
break;

// padding 448 bits (000 ... 0) and save it with 64bits (tottal message)
case 2:

arrayCopy(padding, (short)8, sixtyFourETable, (short)O, (sbort)56);
arrayCopy(totalML, (short)O, sixtyFourETable, (sbort)56, (short)8);
processByCase = O;
break;

//to make the last input(8bits-512bits) 512bits and make it 128 bits
case 3:

if(length < 56) {

}

short required _pad= (short)((short)56 - length);
arrayCopy(buffer, (short)O, sixtyFourETable, (short)O, length);
arrayCopy(padding, (short)O, sixtyFourETable, (short)length, required_pad);
arrayCopy(totalML, (short)O, sixtyFourETable, (short)56, (short)8);
processByCase = O;

else {
short required_pad = (short)((short)64- length);
arrayCopy(buffer, (short)O, sixtyFourETable, (short)O, length);
arrayCopy(padding, (short)O, sixzyFourETable, (short)length, required_pad);
processByCase = 2;

}
break;

/* call methods - Round 1,2,3,4.
each method is called by total 16*/

//round 1
roundOne (wordA, wordB, wordC, wordD, sixtyFourETable, (short)O, SI I, (byte)Ox.07,

(byte)Ox6A, (byte)OxA4, (byte)Ox78);
roundOne (wordD, wordA, wordB, wordC, sixtyFourETable, (short)4, S 12, (byte)Ox.E8,

(byte)OxC7, (byte)OxB7, (byte)Ox56);
roundOne (wordC, wordD, wordA, wordB, sixtyFourETable, (short)8, Sl3, (byte)Ox24,

(byte)Ox20, (byte)Ox70, (byte)OxDB);
roundOne (wordB, wordC, wordD, wordA, sixtyFourETable, (short)l2, Sl4, (byte)OxCI,

(byte)OxBD, (byte)OxCE, (byte)OxEE);
roundOne (wordA, wordB, wordC, wordD, sixtyFourETable, (short)l6, SI I, (byte)Ox.F5,

(byte)Ox7C, (byte)OxOF, (byte)OxAF);
roundOne (wordD, wordA, wordB, wordC, sixtyFourETable, (short)20, Sl2, (byte)Ox47,

(byte)Ox87, (byte)OxC6, (byte)Ox2A);
roundOne (wordC, wordD, wordA, wordB, sixtyFourETable, (short)24, S 13, (byte)Ox.A8,

(byte)Ox30, (byte)Ox 46, (byte)Ox 13);
roundOne (wordB, wordD, wordD, wordA, sixtyFourETable, (short)28, S 14, (byte)OxFD,

109

(byte)Ox46, (byte)Ox95, (byte)OxOl);
roundOne (word.A, wordB, wordC, wordD, sixtyFourETable, (short)32, SI 1, (byte)Ox69,

(byte)Ox80, (byte)Ox98, (byte)OxD8);
roundOne (wordD, word.A, wordB, wordC, sixtyFourETable, (short)36, Sl2, (byte)Ox8B,

(byte)Ox44, (byte)OxF7, (byte)OxAF);
roundOne (wordC, wordD, word.A, wordB, sixtyFourETable, (short)40, Sl3, (byte)OxFF,

(byte)OxFF, (byte)Ox5B, (byte)OxBl);
roundOne (wordB, wordC, wordD, word.A, sixtyFourETable, (short)44, Sl4, (byte)Ox89,

(byte)Ox5C, (byte)OxD7, (byte)OxBE);
roundOne (word.A, wordB, wordC, wordD, sixtyFourETable, (short)48, SI I, (byte)Ox6B,

(byte)Ox90, (byte)Oxl I, (byte)Ox22);
roundOne (wordD, word.A, wordB, wordC, sixtyFourETable, (short)52, Sl2, (byte)OxFD,

(byte)Ox98, (byte)Ox71, (byte)Ox93);
roundOne (wordC, wordD, word.A, wordB, sixtyFourETable, (short)56, Sl3, (byte)Ox.A6,

(byte)Ox79, (byte)Ox43, (byte)Ox8E);
roundOne (wordB, wordC, wordD, word.A, sixtyFourETable, (short)60, Sl4, (byte)Ox49,

(byte)OxB4, (byte)Ox08, (byte)Ox2 l);

//round 2
roundTwo (word.A, wordB, wordC, wordD, sixtyFourETable, (short)4, S21, (byte)OxF6,

(byte)Ox l E, (byte)Ox25, (byte)Ox62);
roundTwo (wordD, word.A, wordB, wordC, sixtyFourETable, (short)24, S22, (byte)OxCO,

(byte)Ox40, (byte)OxB3, (byte)Ox40);
roundTwo (wordC, wordD, word.A, wordB, sixtyFourETable, (sbort)44, S23, (byte)Ox26,

(byte)Ox5 E, (byte)Ox5A, (byte)Ox5 l);
roundTwo (wordB, wordC, wordD, word.A, sixtyFourETable, (short)O, S24, (byte)OxE9,

(byte)OxB6, (byte)OxC7, (byte)OxAA);
roundTwo (word.A, wordB, wordC, wordD, sixtyFourETable, (short)20, S2I, (byte)Ox.D6,

(byte)Ox2F, (byte)OxlO, (byte)Ox5D);
roundTwo (wordD, word.A, wordB, wordC, sixtyFourETable, (short)40, S22, (byte)Ox2,

(byte)Ox44, (byte)OxI4, (byte)Ox53);
roundTwo (wordC, wordD, word.A, wordB, sixtyFourETable, (short)60, S23, (byte)Ox.D8,

(byte)Ox.A 1, (byte)OxE6, (byte)Ox81);
roundTwo (wordB, wordD, wordD, word.A, sixtyFourETable, (short)24, S24, (byte)OxE7,

(byte)Ox.03, (byte)OxFB, (byte)OxC8);
roundTwo (word.A, wordB, wordC, wordD, sixtyFourETable, (short)36, S21, (byte)Ox21,

(byte)OxEI, (byte)OxCD, (byte)OxE6);
roundTwo (wordD, word.A, wordB, wordC, sixtyFourETable, (short)56, S22, (byte)OxC3,

(byte)Ox3 7, (byte)Ox07, (byte)OxD6);
roundTwo (wordC, wordD, word.A, wordB, sixtyFourETable, (short)l2, S23, (byte)OxF4,

(byte)OxD5, (byte)OxOD, (byte)Ox87);
roundTwo (wordB, wordC, wordD, word.A, sixtyFourETable, (short)32, S24, (byte)Ox45,

(byte)Ox5A, (byte)Oxl4, (byte)OxED);
roundTwo (word.A, wordB, wordC, wordD, sixtyFourETable, (short)52, S21, (byte)Ox.A9,

(byte)OxE3, (byte)OxE9, (byte)Ox05);
roundTwo (wordD, word.A, wordB, wordC, sixtyFourETable, (short)8, S22, (byte)OxFC,

(byte)OxEF, (byte)OxA3, (byte)OxF8);
roundTwo (wordC, wordD, word.A, wordB, sixtyFourETable, (short)28, S23, (byte)Ox67,

(byte)Ox6F, (byte)Ox02, (byte)OxD9);
roundTwo (wordB, wordC, wordD, word.A, sixtyFourETable, (short)48, S24, (byte)Ox8D,

(byte)Ox2A, (byte)Ox4C, (byte)Ox8A);

//round 3
roundThree(wordA, wordB, wordC, wordD, sixtyFourETable, (short)20, S31, (byte)OxFF,

(byte)OxFA, (byte)Ox39, (byte)Ox42);
roundThree(wordD, word.A, wordB, wordC, sixtyFourETable, (short)32, S32, (byte)Ox87,

I 10

(byte)Ox 71, (byte)OxF6, (byte)Ox8 l);
roundThree(wordC, wordD, wordA, wordB, sixtyFourETable, (short)44, S33, (byte)Ox6D,

(byte)Ox9D, (byte)Ox61, (byte)Ox22);
roundThree(wordB, wordC, wordD, wordA, sixtyFourETable, (short)56, S34, (byte)OxFD,

(byte)OxES, (byte)Ox38, (byte)OxOC);
roundThree(word.A, wordB, wordC, wordD, sixtyFourETable, (short)4, S31, (byte)OxA4,

(byte)OxBE, (byte)OxEA, (byte)Ox44);
roundThree(wordD, word.A, wordB, wordC, sixtyFourETable, (short)16, S32, (byte)Ox4B,

(byte)OxDE, (byte)OxCF, (byte)OxA9);
roundThree(wordC, wordD, word.A, wordB, sixtyFourETable, (short)28, S33, (byte)OxF6,

(byte)OxBB, (byte)Ox4B, (byte)Ox80);
roundThree(wordB, wordD, wordD, wordA, sixtyFourETable, (short)40, S34, (byte)OxBE,

byte)OxBF, (byte)OxBC, (byte)Ox70);
roundThree(word.A, wordB, wordC, wordD, sixtyFourETable, (short)52, S31, (byte)Ox.28,

(byte)Ox9B, (byte)Ox7E, (byte)OxC6);
roundThree(wordD, wordA, wordB, wordC, sixtyFourETable, (short)O, S32, (byte)OxEA,

(byte)OxA I, (byte)Ox27, (byte)OxFA);
roundThree(wordC, wordD, wordA, wordB, sixtyFourETable, (short)l2, S33, (byte)OxD4,

(byte)OxEF, (byte)Ox30, (byte)Ox85);
roundThree(wordB, wordC, wordD, wordA, sixtyFourETable, (short)24, S34, (byte)Ox4,

(byte)Ox88, (byte)Ox 1 D, (byte)Ox05);
roundThree(word.A, wordB, wordC, wordD, sixtyFourETable, (short)36, S31, (byte)Ox.09,

(byte)Ox.04, (byte)OxDO, (byte)Ox39);
roundThree(wordD, word.A, wordB, wordC, sixtyFourETable, (short)48, S32, (byte)OxE6,

(byte)Ox.DB, (byte)Ox99, (byte)OxES);
roundThree(wordC, wordD, wordA, wordB, sixtyFourETable, (short)60, S33, (byte)OxlF,

(byte)OxA2, (byte)Ox7C, (byte)OxF8);
roundThree(wordB, wordC, wordD, wordA, sixtyFourETable, (short)S, S34, (byte)OxC4,

(byte)OxAC, (byte)Ox56, (byte)Ox65);

//round 4
roundFour (word.A, wordB, wordC, wordD, sixtyFourETable, (short)O, S41, (byte)OxF4,

(byte)Ox.29, (byte)Ox22, (byte)Ox44);
roundFour (wordD, wordA, wordB, wordC, sixtyFourETable, (short)28, S42, (byte)Ox43,

(byte)Ox2A, (byte)OxFF, (byte)Ox97);
roundFour (wordC, wordD, wordA, wordB, sixtyFourETable, (short)56, S43, (byte)OxAB,

(byte)Ox94, (byte)Ox23, (byte)OxA7);
roundFour (wordB, wordC, wordD, wordA, sixtyFourETable, (short)20, S44, (byte)OxFC,

(byte)Ox93, (byte)OxAO, (byte)Ox39);
roundFour (word.A, wordB, wordC, wordD, sixtyFourETable, (short)48, S41, (byte)Ox65,

(byte)Ox5B, (byte)Ox59, (byte)OxC3);
roundFour (word.D, wordA, wordB, wordC, sixtyFourETable, (short)I2, S42, (byte)Ox8F,

(byte)OxOC, (byte)OxCC, (byte)Ox92);
roundFour (wordC, wordD, wordA, wordB, sixtyFourETable, (short)40, S43, (byte)OxFF,

(byte)OxEF, (byte)OxF4, (byte)Ox7D);
roundFour (wordB, wordD, wordD, wordA, sixtyFourETable, (short)4, S44, (byte)Ox85,

(byte)Ox84, (byte)Ox5D, (byte)OxDl);
roundF our (word.A, wordB, wordC, wordD, sixtyFourETable, (short)32, S4 l, (byte)Ox6F,

(byte)OxA8, (byte)Ox7E, (byte)Ox4F);
roundFour (wordD, wordA, wordB, wordC, sixtyFourETable, (short)60, S42, (byte)OxFE,

(byte)Ox2C, (byte)OxE6, (byte)OxEO);
roundFour (wordC, wordD, wordA, wordB, sixtyFourETable, (short)24, S43, (byte)OxA3,

(byte)OxOl, (byte)Ox43, (byte)Oxl4);
roundFour (wordB, wordC, wordD, wordA, sixtyFourETable, (short)52, S44, (byte)Ox4E,

(byte)Ox 08, (byte)Ox 11, (byte)OxA I);
roundFour (word.A, wordB, wordC, wordD, sixtyFourETable, (short)l6, S41, (byte)OxF7,

111

(byte)Ox53, (byte)Ox7E, (byte)Ox82);
roundFour (wordD, wordA, wordB, wordC, sixtyFourETable, (short)44, S42, (byte)OxBD,

(byte)Ox3A, (byte)OxF2, (byte)Ox3S);
roundFour (wordC, wordD, wordA, wordB, sixtyFourETabJe, (short)8, S43, (byte)Ox2A,

(byte)OxD7, (byte)OxD2, (byte)OxBB);
roundFour (wordB, wordC, wordD, wordA, sixtyFourETable, (short)36, S44, (byte)OxEB,

(byte)Ox86, (byte)OxD3, (byte)Ox91);

/* save A as AA, B as BB, C as CC, and Das DD */
byteAddFun(wordA, wordAA, (short)O, (short)3);
byteAddFun(wordB, wordBB, (short)O, {short)3);
byteAddFun(wordC, wordCC, (short)O, (short)3);
byteAddFun(wordD, wordDD, (short)O, (short)3);

} while (processByCase != O);

}//end mdS update method

I !start md5Gen method
void mdSGen (byte[] md) {

//generate output A
for (short i = 0, j = 3; j >= O; ++i, --j)

md[i] = wordAU];

//generate output B
for (short i = 4,j = 3;j >= O; ++i, --j)

md[i] = wordB[j];

I /generate output C
for (short i = 8,j = 3;j >= O; ++i, --j)

md[i] = wordC[j];

//generate output D
for (short i = 12,j = 3;j >= O; ++i, --j)

md[i] = wordD(j];

}//end md5Gen method

//for round I: a= b +((a+ F(b,c,d) + X[k] + T[i]) <<< s)
private void roundOne (byte[] a, byte[] b, byte[] c, byte[] d, byte[] x,
hart point, bytes, byte ti, byte t2, byte t3, byte t4) {

andFun(b, c, partialM);
compFun(b, partialM2);
andFun(partialM2, d, partialM2);
orFun(partialM, partialM2, partialM2);
arrayCopy(x, (short)point, partialM, (short)O, (short)4);
byteAddFun(partialM2, partialM, (short)O, (short)3);
partialM[O] = t 1; partialM[I] = t2;
partialM[2] = t3; partialM[3] = t4;
byteAddFun (partialM2, partialM, {short)O, (short)3);
byteAddFun (partialM2, a, (short)O, (short)3);

112

leftRotation(partialM2, s, partialM2);
byteAddFun(partialM2, b, (short)O, (short)3);
arrayCopy(partialM2, (short)O, a, (short)O, (short)4);

} / lend round I

//for round 2: a= b +((a+ G(b,c,d) + X[k] + T[i]) <<< s)
private void round Two (byte[] a, byte[] b, byte[] c, byte[] d, byte[) x,
short point, bytes., byte tl, byte t2, byte t3, byte t4) {

andFun(b, d, partialM);
compFun(d, partialM2);
and Fun(c, partialM2, partialM2);
orFun(partialM, partia1M2, partia1M2);
arrayCopy(x, (short)point, partialM, (short)O, (short)4);
byteAddFun(partialM2, partialM, (short)O, (short)3);
partialM(O] =ti; partiaIM[I] = t2;
partialM[2] = t3; partia1M[3] = t4;
byteAddFun (partialM2, partialM, (short)O, (short)3);
byteAddFun (partialM2, a, (short)O, (short)3);
leftRotation(partialM2, s, partialM2);
byteAddFun(partiaIM2, b, (short)O, (short)3);
arrayCopy(partialM2, (short)O, a, (short)O, (short)4);

}//end round 2

//round 3: a= b +((a+ H(b,c,d) + X[k] + T[i]) <<< s)
private void roundThree (byte[] a, byte(] b, byte[] c, byte[] d, byte[] x,

short point, byte s, byte t I, byte t2, byte t3, byte t4) {

xorFun(b, c, partialM);
xorFun(partialM, d, partialM2);
arrayCopy(x, (short)point, partialM, (short)O, (short)4);
byteAddFun(partialM2, partialM, (short)O, (short)3);
partialM[O] =ti;
partialM[I] = t2;
partialM[2] = t3;
partialM(3] = t4;
byteAddFun (partialM2, partialM, (short)O, (short)3);
byteAddFun (partialM2, a, (short)O, (short)3);
leftRotation(partiaIM2, s, partialM2);
byteAddFun(partialM2, b, (short)O, (short)3);
arrayCopy(partialM2, (short)O, a, (short)O, (short)4);

}//end round 3

//round 4: a= b +((a+ I(b,c,d) + X[k] + T[i]) <<< s)
private void roundFour (byte[] a, byte[] b, byte[] c, byte[] d, byte[] x,
short point, bytes, byte tl, byte t2, byte t3, byte t4) {

comp Fun(d, partialM);
or Fun(a, partialM, partialM);
xorFun(c, partialM, partia1M2);

113

arrayCopy{x, (short)point, partialM, (short)O, (short)4);
byteAddFun(partialM2, partialM, (short)O, (short)3);
partialM[O] = t I;
partialM[l] = t2;
partia1M[2] = t3;
partialM[3] = t4;
byteAddFun (partialM2, partialM, (short)O, (short)3);
byteAddFun (partialM2, a .. (short)O, (short)3);
leftRotation(partialM2, s, partialM2);
byteAddFun(partialM2, b, (short)O, (short)3);
arrayCopy{partialM2, (short)O, a, (short)O, (short)4);

}//end round 4

I !start array copy method
private void arrayCopy (byte[] original, short oStart,
byte[) destine, short dStart, short length) {

short index = O;

for (index= length; index> O; --index) {
destine[dStart] = original[oStart];
oStart++;
dStart++;

}//end array copy method

//start byte add function
private void byteAddFun (byte[] a, byte[] b, short point2, short length) {

if (length== -1)
return;

short oneByte = (short)((short)(a[length]&OxOOFF) +
(short)(b[length]&OxOOFF) + point2);

a[length] = (byte)(oneByte & (short)OxOOFF);

if (overFlow(oneByte))
byteAddFun(a, b, (short) I, --length);

else
byteAddFun(a, b, (short)O, --length);

return;

}//end byte add function

private void appendLength (byte[] lengthTotal, short length) {

byte[] partialLength = new byte[5];
short point = -I;

114

while (true) {
if (length>= 127) {

partialLength[++point] = (byte)Ox7F;
length = (short)(length - (short) 127);

}
else {

partialLength[++point] = (byte)(length%((short)l27));
break;

}
}

for (short index = 7; point>= O; --point, index= 7) {
short oneByte = (short)((short)(lengthTotal[index]&OxOOff) +

(short)(partialLength[point]&OxOOff));
lengthTotal[index] = (byte)(oneByte & (short)OxOOFF);
if (overFlow(oneByte))

lengthTotal = round(lengthTotal, --index, (short)I);
}

} / /end appendLength method

//start overflow function
private boolean overflow (short number) {

if ((short)(number&(short)OxFFOO) >= (short)OxOIOO)
return true;

else
return false;

} / /end overflow function

//start left rotation function
private void leftRotation (byte[] array, byte shifting, byte[] answer) {

byte one = OxOO; byte two = OxOO;
byte three = OxOO; byte four= OxOO;
byte pointer = OxOO; byte shifter = OxOO;
byte oppositeShift = OxOO;
byte current= OxOO; short next= OxOO;

switch (shifting% (byte)8) {
case 0: pointer= (byte)OxFF;

break;
case I: pointer= (byte)Ox80;

break;
case 2: pointer= (byte)OxCO;

break;
case 3: pointer= (byte)OxEO;

break;
case 4: pointer= (byte)OxFO;

break;
case 5: pointer= (byte)OxF8;

break;
case 6: pointer= (byte)OxFC;

115

break;
case 7: pointer= (byte)OxFE;

break;

shifter= (byte)(shifting % (byte)8);
oppositeShift = (byte)((byte)Ox08 - shifter);

if (shifter= 0) {
shifter= 8;
oppositeShift = O;

if (shifting<= 8) {

one = array[O]; two= array[l];
three= array[2]; four= array[3];

else if (shifting<= 16) {

one= array[l]; two= array[2];
three= array[3]; four= array[O];

else if (shifting<= 24) {

}

one = array[2]; two = array[3];
three= array[O]; four= array[l];

next = (short)((four & pointer) & OxOOFF);
answer[3] = (byte)(four << shifter);
current= (byte)(next >>> oppositeShift);
next (short)((three & pointer) & OxOOFF);
answer[2] = (byte)((three << shifter) I current);
current= (byte)(next >>> oppositeShift);
next = (short)((two & pointer) & OxOOFF);
answer[l] = (byte)((two << shifter) I current);
current= (byte)(next >>> oppositeShift);
next= (short)((one & pointer) & OxOOFF);
answer[O] = (byte)((one << shifter) I current);
current= (byte)(next >>> oppositeShift);
answer[3] = (byte)(answer[3] I (current));

}//end left Rotation method

//start round function
private byte[] round(byte[] total, short index, short point2) {

if (index < 0)
return total;

116

shon oneByte = (short)((short)(total[index]&OxOOff) + point2);
total[index] = (byte)(oneByte & (short)OxOOFF);

if (overFlow(oneByte))
total = round(total, --index, (short) I);

return total;

}//end round function

//start bit complemention function
private void compFun (byte[] array, byte[] answer) {

for (shon i = O; i < (short)4; i++)
answer[i] = (byte)-(array[i]);

}//end bit complemention function

I !start bit and function
private void andFun (byte[] arrayl, byte[] array2, byte[] answer) {

for (shon i = O; i < (short)4; i++)
answer[i] = (byte)(arrayl[i] & array2[i]);

}//end bit and function

I !start bit or function
private void orFun (byte[] array 1, byte[] array2, byte[] answer) {

for (shon i = O; i < (short)4; i++)
answer[i] = (byte)(arrayl[i] I array2[i]);

}//end bit or function

I /stan xor function
private void xorFun (byte[] array 1, byte[] array2, byte[] answer) {

for (shon i = O; i < (short)4; i++)
answer[i] = (byte)(arrayl[i] /\ array2[i]);

}//end xor function

}//end md5 class

117

HashMaker.java

1·· We can check the password from the input by this applet.
This is made to help on simulation.

···1
import java.io. *;
import java.awt. *;
import java.awt.event. *;
import javax.swing. *;

//start main class hash maker
class HashMaker extends JFrarne {

//to declare variables
//for simulation window, buttons, and text fields
private JButton selection;
private JButton valueMaker;
private JButton nextMaker;
private JLabel name;
private JLabel name2;
private JTextField boundruy;
private JTextField boundruy2;

//for cap file choose
private JFileChooser fileChooser;

I Ito read cap file
private File capFile;
private File dumpFile;
private File batch;

//to declare instance of md5 class
private MD5 md5;

//to generate hash value
private byte[] data= new byte[64];
private byte[] hv = new byte[l6];

//start HashMaker constructor
Hash Maker() {

//to set simulation window and color
getContentPane().setLayout(null);
getContentPane().setBackground(Color.blue);

//set window title
setTitle("Hash Value Maker");
setDefaultCloseOperation(JFrame.EXIT _ON_ CLOSE);

//for choosing cap file
selection = new JButton(''What Cap File ?11

);

118

selection.setBackground(Color.yellow);
selection.setBounds(25,20,275,30);

I !for button to make hash value
valueMaker = new JButton("Make Hash Value");
valueMaker.setBackground(Color.yellow);
valueMaker.setBounds(25, 65, 275, 30);

I Ito show generated hash value from cap tile
name = new JLabel("Made Hash Value");
name.setBounds(25, l 05, 240, 30);
boundary = new JTextField();
boundary .setEditable(false);
boundary.setBounds(25, 135,275, 25);

//to make next hash value from the pre-made hash value
nextMaker = new JButton("Make next Hash Value");
nextMaker.setBackground(Color.yellow);
nextMaker.setBounds(25, 200,275, 30);

I I! Ito show generated hash value from pre-made hash value
name2 = new JLabel("Made Hash Value");
name2.setBounds(25, 240, 240, 30);
boundary2 = new JTextField();
boundary2.setEditable(false);
boundary2.setBounds(25, 270, 275, 25);

I !for cap file chooser
fileChooser = new JFileChooser();

I /make instance of MD5 class
md5 = new MOS();

// select a CAP file
selection.addActionListener(new ActionListenerQ {
public void actionPerformed (ActionEvent e) {

//initialize text field
boundary .setText(null);

//to make directroy for choosing cap file
file Chooser = new JFileChooser("c:\ \defense\\tenninal\ \electrobank\ \javacard");
int retumVal = fileChooser.showOpenDialog(HashMaker.this);

//choose cap file
if(retumVal == JFileChooser.APPROVE_OPTION){

capFile = fileChooser.getSelectedFile();
}
else{

}

//if it is not a valid cap file, then shows error message
JOptionPane.showMessageDialog (HashMaker.this,

"It's not a valid cap file", "ERROR",JOptionPane.ERROR_MESSAGE);
capFile = null;
return;

119

//if it is not a valid cap file, then shows error message
String temp = capFile.getNameQ;
if (temp.indexOf(".cap") = -1){

}
} })~

JOptionPane.showMessageDialog(HashMaker.this,
"It's not a valid cap file", 11ERROR11,JOptionPane.ERROR_MESSAGE);
capFile = null;

/* This method is for making Hash Value from the valid CAP file
first, choose the valid cap file
second, read this file line by line until 64 bytes
Third, sends this reading bytes to the md5 update method
Fourth, repeate third step until meeting the last line
Fifth, after processed the last line
sends the vlaue that it's updated until now
to md5 hash value making method */

value Maker .addActionListener(new ActionListener() {
public void actionPerfonned (ActionEvent e){

try{

//First step
batch = new File("dump.bat11

);

}

BufferedWriter out= new BufferedWriter(new FileWriter(batch));
out.write("capdump" + capFile + "\n");
out.close();
Process child = Runtime.getRuntimeQ.exec("dump.bat");
dumpFile = new File("capdump");
Buffered.Reader in= new BufferedReader(new InputStreamReader(child.getlnputStream()));
BufferedWriter out2 = new BufferedWriter(new FileWriter(dumpFile));
String input;
int control = O;
while ((input= in.readLineO) != null){

if(control < 2) {
control++;
continue;

}
out2. write(input + "\n");

out2.close();
} catch (Exception ee) {
}finally{

if(dumpFile.length() = O){
batch.delete();

batch = null;
dumpFile.delete();
umpFile = null;
JOptionPane.showMessageDialog
(HashMaker.this, "You have to select a valid CAP file",
"ERROR",JOptionPane.ERROR_MESSAGE);
capFile = null;
return;

}}

I !for read line byte length
short length = O;

120

I Ito show made hash value

String message_ digest = new StringQ;

I Ito initialize the md5 instance

md5 .md51nit();

//second and third step
try{

BufferedlnputStream bufferin = new BufferedlnputStream

(new FilelnputStream(dumpFile));
while (true){

}

length = (short)(bufferin.read(data));

if (length= -1)
break;
md5.md5Update(data, length);

bu ff erin .close();
//third step
md5.md5Update(data, (short)O);

I /fourth step
md5.md5Gen(hv);
String temp;
//to show a made hash value
for (inti= O; i < 16; i++){

temp= lnteger.toString(hv[i]&OxOOOOOOFF, 16);

if(temp.length() = I)
temp = 110" + temp;

if(i!=l5)
message_digest = message_digest +temp+":";

else
message_ digest = message_ digest + temp;

}
boundary. setText(message _ digest);

batch .delete();
batch = null;
dump File.delete();
dumpFile = null;

} catch (FileNotFoundException ee){

}catch (IOException eee){}
} });

/ffhis method for making hash value from

//original hash value befor made from the cap file

nextMaker .addActionListener(new ActionListener() {

public void actionPerfonned (ActionEvent e){

if(boundary .getText().lengthQ = O){

//make a hash value from the cap file first

J Option Pane. showMessageDialog(HashMaker .this,

"Must get a hash value of a CAP file first!",

"ERROR",JOptionPane.ERROR_MESSAGE);

return;
}
boundary2.setText(nuI1);
short length = O;
//to show the hash value
String message_ digest = new String();

121

//for hash value generation
for(byte i = OxOO; i<Ox IO; i++)

data[i] = hv[i];

//md5 initialize, update, and generation
md5.md5[nit();
md5.md5Update(data, (short)16);
md5 .md5Gen(hv);

I Ito show the generated hash value
String temp:
for (inti= O; i<l6; i++){

temp= lnteger.toString(hv[i]&OxOOOOOOFF, 16);
if (temp.length() = I)

temp = 11011 + temp;
if(i!=l5)

message_digest = message_digest +temp+ n:";
else

message_ digest = message_ digest + temp;
}
boundary2 .setText(message _ digest);
} }):

//add these to simulation window
getContentPane().add(selection);
getContentPane().add(valueMaker);
getContentPane().add(nextMaker);
getContentPane().add(name);
getContentPane().add(name2);
getContentPane().add(boundary);
getContentPane().add(boundary2);

}//end constructor

I /start main method
public static void main (String[] args){

II cal I the constructor
JFrame main Window new HashMakerO;

/Ito set simulation window boundmy
mainWindow.setBounds(O, 0, 340,350);
mainWindow.setVisible(true);

}//end main method

}//end start main class hash maker

//start md5 class
class MD5 {

/* The source of this MD5 algorithm is from RFC 1321 from MIT laboratory for
Computer Science and RSA data security.inc.

122

The original source is untimitly distributed.
This MD5 is changed and adapted to the JAVA CARD •/

1• Constants for MD5Transfonn routine •t
private static final byte SI I = 7; private static final byte S12 = 12;
private static final byte SI 3 = 17; private static final byte S14 = 22;
private static final byte S2 l = 5; private static final byte S22 = 9;
private static final byte S23 = 14; private static final byte S24 = 20;
private static final byte S3 I = 4; private static final byte S32 = 11;
private static final byte S33 = 16; private static final byte S34 = 23;
private static final byte S4 l = 6; private static fmal byte S42 = IO;
private static final byte S43 = 15; private static fmal byte S44 = 21;

//to append padding bits - 128bits (64 bytes)
private static final byte[] padding= {

(byte)Ox80. OxOO.OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,
OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,Ox00,0xOO,OxOO,Ox00,
OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,
OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,Ox00,0x00,0xOO,OxOO,
OxOO,OxOO,OxOO,OxOO,OxOO,Ox00,0x00,0xOO,OxOO,OxOO,Ox00,
OxOO,OxOO.OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO};

//for four-word buffer(A,BtC,D)
/ rrhese register buffers are used for computing the message digest
private byte[] word.A= new byte[4];
private byte[] wordB = new byte[4];
private byte[] wordC = new byte[4J;
private byte[] wordD = new byte[4];

//temp four-word buffer for increment each of the four registers by the value
private byte[] word.AA = new byte[4];
private byte(] wordBB = new byte[4];
private byte[] wordCC = new byte[4];
private byte[] wordDD = new byte[4];

//for before padding initialize it to false
private boolean beforePadding = false;

//a 64-element table
//This is constructed from the sine function
private byte[] sixtyFourETable = new byte[64J;

//for total message length
private byte[] totalML = new byte[8];

//for partial message
private byte[] partialM = new byte[4];
private byte[] partialM2 = new byte[4];

//start md5Init method for MOS initializ.ation

123

/ /Begins an MD5 operation
void md5Init () {

//wordA = Ox67452301
wordA(O] (byte)Ox67; wordA[l] = (byte)Ox45;
wordA[2] = (byte)Ox23; wordA[3] = (byte)OxOl;
//wordB = Oxefcdab89
wordB[O] = (byte)OxEF; wordB[l]:::: (byte)OxCD;
wordB[2] = (byte)Ox.AB; wordB[3] = (byte)Ox89;
I lwordC = Ox98badcfe
wordC[O] = (byte)Ox98; wordC[l] = (byte)OxBA;

wordC[2] = (byte)OxOC; wordC[3] = (byte)OxFE;
I /wordD = Ox 10325476
wordD(O] = (byte)OxlO; wordD[l] = (byte)Ox32;
wordD[2] = (byte)Ox54; wordD[3] = (byte)Ox76;

//initialize total message length buffer
for (short i = O; i<8; i++)

totalML[i] = OxOO;

//initialize beforePadding as a false
beforePadding = false;

}//end md51nit method

void md5Update(byte[] buffer, short length) {

/ /by input length - initial case is 0
short processByCase = O;

switch(length) {

}

//In case each data block bits are 512 bits
case 64: processByCase = I;

break;

//after processing all data blocks
case 0:

if (beforePadding = false){
processByCase = -1;
break;

}
else

return;

//for the last data block
default:

processByCase = 3;
beforePadding = true;

//to add message length
appendLength(totalML, length);

// copy from Array word.A to paste Array wodrdAA

124

arrayCopy(wordA, (short}O, wordAA, (short)O, (short)4);

//copy from Array wordB to paste Array wodrdBB
arrayCopy(wordB, (short}O, word.BB, (short)O, (short)4);

//copy from Array wordC to paste Array wodrdCC
arrayCopy(wordC. (short)O, wordCC, (short)O, (short)4);

//copy from Array word.D to paste Array wodrdDD
arrayCopy(wordD, (short)O, wordDD, (short)O, (short)4};

do{

//making 64-element table T[1 ... 64]
switch (processByCase) {

//padding 448 bits (I 00 ... 0) and save it with 64bits (tottal message)
case -I:

arrayCopy(padding, (short)O, sixtyFourETable, (short)O, (short)56);
arrayCopy(totalML, (short)O, sixtyFourETable, (short)56, (short)8);
processByCase = O;
break;

//save 512 bit message
case 1:

arrayCopy(buffer, (short)O, sixtyFourETable, (short)O, (short)64);
processByCase = O;
break;

// padding 448 bits (000 ... 0) and save it with 64bits (tottal message)
case 2:

arrayCopy(padding, (short)8, sixtyFourETable, (short)O, (short)56);
arrayCopy(totalML, (short)O, sixtyFourETable, (short)56, (short)8);
processByCase = O;
break;

//to make the last input(8bits-512bits) 512bits and make it 128 bits
case 3:

if(length < 56) {

}

short required_pad:;: (short)((short)56 - length);
arrayCopy(buffer, (short)O, sixtyFourETable, (short)O, length);
arrayCopy(padding, (short)O, six:tyFourETable, (short)length, required_pad);
arrayCopy(totalML, (short)O, six:tyFourETable, (short)56, (short)8);
processByCase = O;

else {
short required_pad = (short)((short)64- length);
arrayCopy(buffer, (short)O, six:tyFourETable, (short)O, length);
arrayCopy(padding, (short)O, six:tyFourETable, (short)length, required_pad);
processByCase = 2;

}
break;

}

/* call methods - Round l ,2,3,4.

125

each method is called by total 16*/

//round I

roundOne (word.A, word.B, wordC, wordD, sixtyFourETable, (short)O, SI 1, {byte)OxD7,
(byte)Ox6A, {byte)OxA4, {byte)Ox78);

roundOne (wordD, word.A, wordB, wordC, sixtyFourETable, (short)4, S12, {byte)Ox.E8,
(byte)OxC7, {byte)OxB7, (byte)Ox56);

roundOne (wordC, wordD, wordA, wordB, sixtyFourETable, (short)8, S13, {byte)Ox24,
(byte)Ox20, (byte)Ox70, (byte)OxDB);

roundOne (wordB, wordC, wordD, word.A, sixtyFourETable, (short)I2, S14, {byte)OxCl,
(byte)OxBD, (byte)OxCE, (byte)OxEE);

roundOne (word.A, word.B, wordC, wordD, sixtyFourETable, (short)I6, SI 1, (byte)OxF5,
(byte)Ox7C, (byte)OxOF, (byte)OxAF);

roundOne (wordD, wordA, wordB, wordC, sixtyFourETable, (short)20, S12, (byte)Ox47,
(byte)Ox87, (byte)OxC6, (byte)Ox2A);

roundOne (wordC, wordD, wordA, wordB, sixtyFourETable, (short)24, S13, (byte)OxA8,
(byte)Ox30, (byte)Ox46, (byte)OxI3);

roundOne (wordB, word.D, wordD, word.A, sixtyFourETable, (short)28, S14, (byte)OxFD,
(byte)Ox46, (byte)Ox95, (byte)OxOI);

roundOne (word.A, wordB, wordC, wordD, sixtyFourETable, (short)32, SI 1, (byte)Ox69,
(byte)Ox80, (byte)Ox98, (byte)OxD8);

roundOne (wordD, word.A, wordB, wordC, sixtyFourETable, (short)36, S12, {byte)Ox8B,
(byte)Ox44, (byte)OxF7, (byte)OxAF);

roundOne (wordC, word.D, wordA, wordB, sixtyFourETable, (short)40, Sl3, {byte)OxFF,
(byte)OxFF, (byte)Ox5B, (byte)OxBI);

roundOne (wordB, wordC, wordD, wordA, sixtyFourETable, (short)44, S 14, (byte)Ox89,
(byte)Ox5C, (byte)OxD7, (byte)OxBE);

roundOne (wordA, wordB, wordC, wordD, sixtyFourETable, (short)48, SI 1, (byte)Ox6B,
(byte)Ox90, (byte)Oxl 1, (byte)Ox22);

roundOne (wordD, wordA, wordB, wordC, sixtyFourETable, (short)52, S12, (byte)OxFD,
(byte)Ox98, (byte)Ox71, (byte)Ox93);

roundOne (wordC, wordD, wordA, wordB, sixtyFourETable, (short)56, S13, (byte)OxA6,
(byte)Ox79, (byte)Ox43, (byte)Ox8E);

roundOne (wordB, wordC, wordD, wordA, sixtyFourETable, (short)60, S14, (byte)Ox49,
(byte)OxB4, {byte)Ox08, (byte)Ox21);

//round 2
roundTwo (wordA, wordB, wordC, wordD, sixtyFourETable, (short)4, S21, {byte)OxF6,

(byte)Ox IE, (byte)Ox25, (byte)Ox62);
roundTwo (wordD, wordA, wordB, wordC, sixtyFourETable, (short)24, S22, {byte)OxCO,

(byte)Ox40, {byte)OxB3, (byte)Ox40);
roundTwo (wordC, wordD, wordA, wordB, sixtyFourETable, (short)44, S23, {byte)Ox26,

(byte)OxSE, (byte)OxSA, (byte)Ox51);
roundTwo (wordB, wordC, wordD, wordA, sixtyFourETable, (short)O, S24, {byte)OxE9,

(byte)OxB6, {byte)OxC7, {byte)OxAA);
roundTwo (wordA, wordB, wordC, wordD, sixtyFourETable, (short)20, S21, {byte)OxD6,

(byte)Ox2F, (byte)OxlO, (byte)Ox5D);
roundTwo (wordD, wordA, wordB, wordC, sixtyFourETable, (short)40, S22, (byte)Ox2,

(byte)Ox 44, (byte)Ox 14, (byte)Ox53);
roundTwo (wordC, wordD, word.A, wordB, sixtyFourETable, (short)60, S23, {byte)OxD8,

(byte)OxA 1, (byte)OxE6, (byte)Ox81);
roundTwo (wordB, wordD, wordD, wordA, sixtyFourETable, (short)24, S24, (byte)OxE7,

(byte)OxD3, (byte)OxFB, (byte)OxC8);
roundTwo (wordA, wordB, wordC, wordD, sixtyFourETable, (short)36, S21, {byte)Ox21,

(byte)OxE I, {byte)Ox CD, (byte)OxE6);
roundTwo (wordD, wordA, wordB, wordC, si.xtyFourETable, (short)56, S22, (byte)OxC3,

126

(byte)Ox37, (byte)Ox07, (byte)OxD6);
roundTwo (wordC, wordD, word.A, wordB, sixtyFourETable, (short)l2, S23, (byte)OxF4,

(byte)OxD5, (byte)OxOD, (byte)Ox87);
roundTwo (wordB, wordC, wordD, word.A, sixtyFourETable, (short)32, S24, (byte)Ox45,

(byte)Ox5A, (byte)Oxl4, (byte)OxED);
roundTwo (wordA, wordB, wordC, wordD, sixtyFourETable, (short)52, S21, (byte)OxA9,

(byte)OxE3, (byte)OxE9, (byte)Ox05);
roundTwo (wordD, wordA, wordB, wordC, sixtyFourETable, (short)8, S22, (byte)Ox.FC,

(byte)OxEF, (byte)OxA3, (byte)OxF8);
roundTwo (wordC, wordD, word.A, wordB, sixtyFourETable, (short)28, S23, (byte)Ox67,

(byte)Ox6F, (byte)Ox02, (byte)OxD9);
roundTwo (wordB, wordC, wordD, wordA, sixtyFourETable, (short)48, S24, (byte)Ox8D,

(byte)Ox2A, (byte)Ox4C, (byte)Ox8A);

//round 3
roundThree(wordA, wordB, wordC, wordD, sixtyFourETable, (short)20, S3 l, (byte)Ox.FF,

(byte)OxF A, (byte)Ox39, (byte)Ox42);
roundThree(wordD, word.A, wordB, wordC, sixtyFourETable, (short)32, S32, (byte)Ox87,

(byte)Ox 71, (byte)OxF6, (byte)Ox8 l);
roundThree(wordC, wordD, wordA, wordB, sixtyFourETable, (short)44, S33, (byte)Ox6D,

(byte)Ox9D, (byte)Ox 61, (byte)Ox22);
roundThree(wordB, wordC, wordD, wordA, sixtyFourETable, (short)56, S34, (byte)Ox.FD,

(byte)OxE5, (byte)Ox38, (byte)OxOC);
roundThree(wordA, wordB, wordC, wordD, sixtyFourETable, (short)4, S31, (byte)OxA4,

(byte)OxBE, (byte)OxEA, (byte)Ox44);
roundThree(wordD, word.A, word.B, wordC, sixtyFourETable, (short)I6, S32, (byte)Ox4B,

(byte)OxD E, (byte)Ox CF, (byte)OxA9);
roundThree(wordC, wordD, word.A, word.B, sixtyFourETable, (short)28, S33, (byte)Ox.F6,

(byte)Ox.BB, (byte)Ox4B, (byte)Ox80);
roundThree(wordB, wordD, wordD, wordA, sixtyFourETable, (short)40, S34, (byte)OxBE,

byte)OxBF, (byte)OxBC, (byte)Ox70);
roundThree(wordA, wordB, wordC, wordD, sixtyFourETable, (short)52, S31, (byte)Ox28,

(byte)Ox98, (byte)Ox7E, (byte)OxC6);
roundThree(wordD, word.A, wordB, wordC, sixtyFourETable, (short)O, S32, (byte)OxEA,

(byte)OxA I, (byte)Ox27, (byte)OxF A);
roundThree(wordC, wordD, wordA, wordB, sixtyFourETable, (short)I2, S33, (byte)OxD4,

(byte)OxEF, (byte)Ox30, (byte)Ox85);
roundThree(wordB, wordC, wordD, wordA, six.tyFourETable, (short)24, S34, (byte)Ox4,

(byte)Ox88, (byte)Ox ID, (byte)Ox05);
roundThree(wordA, wordB, wordC, wordD, sixtyFourETable, (short)36, S31, (byte)OxD9,

(byte)Ox04, (byte)OxDO, (byte)Ox39);
roundThree(wordD, word.A, wordB, wordC, sixtyFourETable, (short)48, S32, (byte)OxE6,

(byte)OxDB, (byte)Ox99, (byte)OxES);
roundThree(wordC, wordD, wordA, wordB, sixtyFourETable, (short)60, S33, (byte)OxlF,

(byte)OxA2, (byte)Ox7C, (byte)OxF8);
roundThree(wordB, wordC, wordD, wordA, six.tyFourETable, (short)8, S34, (byte)OxC4,

(byte)OxAC, (byte)Ox56, (byte)Ox65);

//round 4
roundFour (word.A, wordB, wordC, wordD, sixtyFourETable, (short)O, S41, (byte)OxF4,

(byte)Ox29, (byte)Ox22, (byte)Ox44);
roundFour (wordD, wordA, wordB, wordC, sixtyFourETable, (short)28, S42, (byte)Ox43,

(byte)Ox2A, (byte)OxFF, (byte)Ox97);
roundFour (wordC, wordD, wordA, wordB, six.tyFourETable, (short)56, S43, (byte)OxAB,

(byte)Ox94, (byte)Ox23, (byte)OxA7);
roundFour (wordB, wordC, wordD, wordA, sixtyFourETable, (short)20, S44, (byte)OxFC,

127

(byte)Ox93, (byte)OxAO, (byte)Ox39);
roundFour (wordA, wordB, wordC, wordD, sixtyFourETable, (short)48, S41, (byte)Ox65,

(byte)Ox5B, (byte)Ox59, (byte)OxC3);
roundFour (wordD, word.A, wordB, wordC, sixtyFourETable, (short)l2, S42, (byte)Ox8F,

(byte)OxOC, (byte)OxCC, (byte)Ox92);
roundFour (wordC, wordD, wordA, wordB, sixtyFourETable, (short)40, S43, (byte)OxFF,

(byte)OxEF, (byte)OxF4, (byte)Ox7D);
roundFour (wordB, wordD, wordD, wordA, sixtyFourETable, (short)4, S44, (byte)Ox85,

(byte)Ox84, (byte)Ox5D, (byte)OxDl);
roundFour (word.A, wordB, wordC, wordD, sixtyFourETable, (short)32, S4l, (byte)Ox6F,

(byte)OxA8, (byte)Ox7E, (byte)Ox4F);
roundFour (wordD, word.A, wordB, wordC, sixtyFourETable, (short)60, S42, (byte)Ox.FE,

(byte)Ox2C, {byte)OxE6, (byte)OxEO);
roundFour {wordC, wordD, wordA, wordB, sixtyFourETable, (short)24, S43, (byte)OxA3,

(byte)OxOl, (byte)Ox43, (byte)Ox14);
roundFour (wordB, wordC, wordD, wordA, sixtyFourETable, (short)52, S44, (byte)Ox4E,

(byte)Ox08, (byte)Oxl l, (byte)OxAI);
roundFour (word.A, wordB, wordC, wordD, sixtyFourETable, (short)l6, S41, (byte)Ox.F7,

(byte)Ox53, (byte)Ox7E, (byte)Ox82);
roundFour (wordD, word.A, wordB, wordC, sixtyFourETable, (short)44, S42, (byte)OxBD,

(byte)Ox3A, (byte)OxF2, (byte)Ox35);
roundFour (wordC, wordD, wordA, wordB, sixtyFourETable, (short)8, S43, (byte)Ox2A,

(byte)OxD7, (byte)OxD2, (byte)OxBB);
roundFour (wordB, wordC, wordD, wordA, sixtyFourETable, (short)36, S44, (byte)OxEB,

(byte)Ox86, (byte)OxD3, (byte)Ox91);

/* save A as AA, B as BB, C as CC, and D as DD */
byteAddFun(wordA, wordAA, (short)O, (short)3);
byteAddFun(wordB, wordBB, (short)O, (short)3);
byteAddFun(wordC, wordCC, (short)O, (short)3);
byteAddFun(wordD, wordDD, (short)O, (short)3);

} while (processByCase != O);

}//end md5 update method

//start md5Gen method
void md5Gen (byte[] md) {

//generate output A
for (short i = O,j = 3;j >= O; ++i, --j)

md[i] = wordA[j];

I /generate output B
for (short i = 4,j = 3;j >= O; ++i, --j)

md[i] = wordB[j];

//generate output C
for (short i = 8,j = 3;j >= O; ++i, --j)

md[i] = wordC[j];

//generate output D
for (short i = 12,j = 3;j >= O; ++i, --j)

md[i] = wordD[j];

128

} / lend md5Gen method

//for round I: a= b +((a+ F(b,c,d) + X[k] + T[i]) <<< s)
private void roundOne (byte[] a, byte[J b, bytef] c, bytef] d, bytef] x,
hort point, bytes, byte ti, byte t2, byte t3, byte t4) {

andFun{b, c. partialM);
compFun{b, partialM2);
andFun(partialM2, d, partialM2);
orFun{partialM, partialM2, partialM2);
arrayCopy{x, (short)point, partialM, (short)O, (short)4);
byteAddFun{partialM2, partialM, (short)O, (short)3);
partialM[O] = ti; partialM[l] =t2;
partialM[2] = t3; partialM[3] = t4;
byteAddFun (partialM2, partialM, (short)O, (short)3);
byteAddFun (partialM2, a, (short)O, (short)3);
leftRotation(partialM2, s, partialM2);
byteAddFun(partialM2, b, (short)O, (short)3);
arrayCopy(partialM2, (short)O, a, (short)O, (short)4);

}//end round I

//for round 2: a= b +((a+ G(b,c,d) + X[k] + T[i]) <<< s)
private void roundTwo (byte[] a, byte[] b, byte[] c, byte[] d, byte[] x,
short point, byte s, byte t l, byte t2, byte t3, byte t4) {

andFun(b, d, partialM);
compFun(d, partialM2);
and Fun(c, partialM2, partialM2);
orFun(partialM, partialM2, partialM2);
arrayCopy(x, (short)point, partialM, (short)O, (short)4);
byteAddFun(partialM2, partialM, (short)O, (short)3);
partialM[O] = ti; partialM[l] = t2;
partialM[2] = t3; partialM[3J = t4;
byteAddFun (partialM2, partialM, (short)O, (short)3);
byteAddFun (partialM2, a, (short)O, (short)3);
leftRotation(partialM2, s, partialM2);
byteAddFun(partialM2, b, (short)O, (short)3);
arrayCopy(partialM2, (short)O, a, (short)O, (short)4);

}//end round 2

//round 3: a= b +((a+ H(b,c,d) + X[k] + T[i]) <<< s)
private void roundThree (byte[] a, byte[] b, byte[] c, byte[] d, byte[] X,

short point, byte s, byte t l, byte t2, byte t3, byte t4) {

xorFun(b, c, partialM);
xorFun(partiaIM, d, partialM2);
arrayCopy(x, (short)point, partialM, (short)O, (short)4);
byteAddFun(partialM2, partialM, (short)O, (short)3);
partialM[O] = t I;
partialM[I] = t2;
partialM[2] = t3;

129

partialM[3) = t4;
bytcAddFun (partialM2. partialM, (short)O, (short)3);
byteAddFun (partialM2. a. (short)O, (short)3);
leftRotation(partialM2. s. partialM2);
byteAddFun(partialM2. b. (short)O, (short)3);
arrayCopy(partialM2. (short)O, a, (short)O, (short)4);

}/lend round 3

//round 4: a b +((a+ l(b,c.d) + X[k] + T[i]) <<< s)
private void roundFour (byte[] a, byte[] b, byte[] c, byte[] d, byte[] x,
short point. byte s. byte t I, byte t2, byte t3, byte t4) {

compFun(d. partialM);
orFun(a. partialM. partialM);
xorFun(c. partialM, partialM2);
arrayCopy(x. (short)point. partialM, (short)O, (short)4);
byteAddFun(partialM2, partialM, (short)O, (short)3);
partialM[O] = t I:
partialM[l) = t2:
partialM[2] = t3;
partialM[3] = t4;
byteAddFun (partialM2, partialM, (short)O, (short)3);
byteAddFun (partialM2, a, (short)O, (short)3);
leftRotation(partialM2, s, partialM2);
byteAddFun(partialM2, b, (short)O, (short)3);
arrayCopy(partialM2, (short)O, a, (short)O, (short)4);

}//end round 4

//start array copy method
private void arrayCopy (byte[] original, short oStart,
byte[] destine, short dStart, short length) {

short index = O;

for (index = length; index > O; --index) {
destine[dStart] = original[oStart];
oStart++;
dStart++;

}

}//end array copy method

//start byte add function
private void byteAddFun (byte[] a, byte[] b, short point2, short length) {

if (length = -1)
return;

short oneByte = (short)((short)(a[length]&OxOOFF) +
(short)(b[length]&OxOOFF) + point2);

130

a[length] = (byte)(oneByte & (short)OxOOFF);

if (ovcrFlow(oneByte))
bytcAddFun(a. b. (short)l, -length);

else
byteAddFun(a. b. (short)O, -length);

return:

}//end byte add function

private void appendLength (byte[] lengthTotal, short length) {

byte[] partialLength = new byte[S];
short point = -1 ;

while (true) {
if (length>= 127) {

partial Length[++point] = (byte)Ox7F;
length = (short)(length - (short) 127);

}
else {

partial Length[++point] = (byte)(length%((short) 127));
break;

}

for (short index = 7; point>= O; --point, index= 7) {
short oneByte = (short)((short)(lengthTotal[index]&OxOOff) +

(short}(partialLength[point]&OxOOff)};
lengthTotal[index] = (byte)(oneByte & (short)OxOOFF);
if (overFlow(oneByte))

lengthTotal = round(lengthTotal, --index, (short)l};

}//end appendLength method

I /start overflow function
private boolean overflow (short number) {

if ((short)(number&(short)OxFFOO) >= (short)OxOIOO)
return true;

else
return false;

} //end overflow function

I /start left rotation function
private void leftRotation (byte[] array, byte shifting, byte[] answer) {

byte one = OxOO; byte two = OxOO;
byte three= OxOO; byte four= OxOO;
byte pointer = OxOO; byte shifter = OxOO;

131

byte oppositeShift = OxOO:
byte current OxOO: short next = OxOO;

switch (shifting% (byte)S) {
case 0: pointer= (byte)OxFF;

break:
case I: pointer= (byte)Ox80;

break:
case 2: pointer = (byte)OxCO;

break~
case 3: pointer = (byte)OxEO;

break:
case 4: pointer= (byte)OxFO;

break:
case 5: pointer= (byte)OxF8;

break:
case 6: pointer (byte)OxFC;

break;
case 7: pointer= (byte)OxFE;

break;

shifter= (byte)(shifting % (byte)8);
oppositeShift = (byte)((byte)Ox.08 - shifter);

if (shifter== 0) {
shifter= 8:
oppositeShift = 0;

if (shifting <= 8) {

}

one= array[O]; two= array[I];
three = array[2]; four= array[3];

else if (shifting<= 16) {

}

one= array[l]; two= array[2];
three = array[3]; four= array[O];

else if (shifting<= 24) {

}

one= array[2]; two= array[3];
three= array[O]; four= array[I];

next= (shortX(four & pointer) & OxOOFF);
answer[3) = (byte)(four << shifter);
current= (byte)(next >>> oppositeShift);
next = (short)((three & pointer) & OxOOFF);
answer[2] = (byte)((three << shifter) I current);

132

current = (byte)(next >>> oppositeShift);
next = (short)((two & pointer) & OxOOFF);
answer[I] = (byte)((two << shifter) I current);
current = (byte)(next >>> oppositeShift);
next= (short)((one & pointer) & OxOOFF);
answcr[O] (byte)((one << shifter) I current);
current = (byte)(next >>> oppositeShift);
answcr[3] = (byte)(answer[3] I (current));

} / lend left Rotation method

//start round function
private byte[] round(byte[] total, short index, short point2) {

if (index < 0)
return total:

short oneByte = (short)((short)(total[index]&OxOOff) + point2);
total[index] = (byte)(oneByte & (short)OxOOFF);

if (overFlow(oneByte))
total = round(total, --index, (short) 1);

return total;

} //end round function

//start bit complemention function
private void compFun (byte[] array, byte[] answer) {

for (short i = 0~ i < (short)4; i++)
answer[i] = (byte)-(array[i]);

}//end bit complemention function

I !start bit and function
private void andFun (byte[] arrayl, byte[] array2, byte[] answer) {

for (short i = O; i < (short)4; i++)
answer[i] = (byte)(arrayl[i] & array2[i]);

}//end bit and function

//start bit or function
private void or Fun (byte[] array 1, byte[] array2, byte[] answer) {

for (short i = O; i < (short)4; i++)
answer[i] = (byte)(array l [i] I array2[i]);

}//end bit or function

133

//start xor function
private void xorFun (byte[] array I, byteO array2, byteO answer) {

for (short i = O; i < (short)4; i++)
answer[i] = (byte)(arrayl [i] "array2[i]);

}//end xor function

} //end md5 class

134

lnstallcrlntcrface.java

;••·· This applet make a way to connect between the installer and Ebank using SIO•..••.•.•.•...•.•••••.•.••••.•••.......•••...... ,
package installers~

import javacard.framework.Shareable;

public interface lnstalllnterface extends Shareable{

I Ito check password
public boolean check():

135

Terminal.ja,,a

;••··· It is used for install applets.
The terminal download applet's class and conver it to it's CAP file.
And then send it to the installer on the JCRE ,

import java.awt. •;
import java.awt.cvent. •;
import javax.swing. •;
import java.io. •;

//start Terminal applet
class Terminal extends JFrame {

I Ito declare variables
//for simulation window. buttons, and text fields
I !for Ebankk applet
private JButton ebankApp;
private JButton converterEbank;
private JButton installEbank· ,

//for cap file choosing
private JFileChooser fileChooser·
//to read cap file '
private File capFile;
//to make dump file
private File dumpFile;
I Ito make batch file
private File batchFile;
I Ito make script file
private File scriptFile;
//for making output file to show result
private File outputFile;

//start Terminal constructor
Terminal(){

//to set simulation window and color
getContentPane().setLayout(null);
getContentPane().setBackground(Color.blue);
//set main window title
setTitle(" Terminal");
setDefau ltCloseOperation(JFrame.EXIT _ ON_ CLOSE);

/*for simulation window •1
I !for choosing Installer applet file
ebankApp = new JButton("Down Applet file");
ebankApp.setBackground(Color.yellow);
ebankApp.setBounds(25,30,275,30);

136

//to convert Installer
convcrtcrEbank = new JButton("Convert");
convcncrEbank.setBackground(Color.yellow);
convcrterEbank.setB0tu1ds(25. 80. 275, 30);

I Ito install installer applet to the card
installEbank new JButton("lnstall");
installEbank.setBackground(Color.yellow);
insta11Ebank.set8ounds(25, 130, 275, 30);

I Ito down load Ebank applet
cbankApp.addActionListener(new ActionListener(){
public void actionPerformed (ActionEvent e){

try{

String order = .. c:/defense/batch/downEbankClass.bat";
Process child= Runtime.getRuntimeQ.exec(order);

l catch (Exception ee){}
} }):

I Ito convert Ebank applet
converterEbank.addActionListener(new ActionListener(){

public void action Performed (ActionEvent e){

try{

String order = "c:/defense/batch/convertEbank.bat";
Process child = Runtime.getRuntimeQ.exec(order);

} catch (Exception ee}{}
}});

//to installEbank applet
ins ta 11 Ebank. addActionListener(new ActionListenerO {

public void actionPerformed (ActionEvent e){

fileChooser new JFileChooser("c:\\defense\\terminal");
fileChooser.setDialogTitleC'Choose a CAP file?");
int forError = fileChooser.showOpenDialog(Terminal.this);

I /for checking CAP selection error
if(forError == JFileChooser.APPROVE_OPTION)

capFile = fileChooser.getSelectedFileQ;
else{

JOptionPane.showMessageOialog(Terminal.this,
"Need a CAP file", nERRORu,JOptionPane.ER.ROR_MESSAGE);

capFile = null;
return;

}

137

//to make batch file and script file for sending them to installer
try {

//make script batch file
batchFile = new File("script.bat");
I /make script file
scriptFile new File("apdu.scr");
Buffered Writer text= new BufferedWriter(new FileWriter(batchFile));
text. write("@echo otl\n");
text. write("scriptgen -o .. + scriptFile.getAbsolutePathO + 11

"

+ capFile.getAbsolutePath() + "\n");
text.close():
String path = batchFile.getAbsolutePath();
path path.replace('\\'. '/');
Process child = Runtime.getRuntime().exec(path);
child.waitFor():

}catch (Exception el){
} finally {

batch File.delete():
batchFile = null:

//to make dump file to see a CAP file
String makeText = new String();
dumpFile new File("dump11

):

try{
batchFile = new File("mak.edump.bat");
BufferedWriter to Write= new BufferedWriter(new FileWriter(batchFile));
to Write. write("@echo oft\n11

);

to Write. write("capdump " + capFile.getAbsolutePathO + "\n");
to Write.close();

String path = batchFile.getAbsolutePathO;
path =path.replace('\\\'/');
Process child= Runtime.getRuntime().exec(path);

BufferedReader readData = new BufferedReader(new
InputStreamReader(child.getlnputStreamQ));

BufferedWriter towrite = new BufferedWriter(new FileWriter(dumpFile)};

while ((makeText = readData.readLineO) != null)
towrite.write(makeText + 11\n");
towrite.close();

}catch(Exception ee){
} finally{

}

batchFile.delete();
batchFile = null;
capFile = null;

//to send power.scr file to the installer
outputFile = new File("power.scr");
byte[] sendBuffer = new byte[64];
String readData = new String();
int length= O;
byte length2 = O;

138

String byte2 = new String():

try {
BufTcredReader reader= new BufferedReader(new FileReader(scriptFile));
Buffered Writer writer= new BufferedWriter(new FileWriter(outputFile));

I !turn on the card
writer. write("powerup;\n");

I Ito wake up the JCRE installer
writer. write("/ /select the installer \n");

I /apdu command
writer. write("OxOO OxA4 Ox04 OxOO Ox09 OxAO OxOO OxOO OcOO

Ox62 Ox03 OxO I Ox08 OxO I Ox7F;\n\n");

//read whole data from script file that is made by scriptgen command
while((readData = reader.readLine()) != null){
writer. write(readData + "\n");

// create an instance of this applet
writer.write("\n//lnstall this applet\n");
writer.write("Ox80 Oxb8 OxOO OxOO OxOc OxOa OxOO OxOO OxOO OxOO

OxOC Ox03 OxO I OxOC Ox06 OxO I OxOO Ox7f;\n\n");

//done read data
reader.close();

//to send script file to the installer to make hash value
BufferedlnputStream reader2 = new BufferedlnputStream(

new FilelnputStream(dumpFile));

//select installer applet on the JCRE
writer.write("//Select installer\n");
writer.write("OxO Oxa4 Ox04 OxOO OxOa OxOOOxOO OxOO OxOO Ox0B

Ox03 OxO I OxOC Ox06 OxO I Ox7f;\n\n");

//for md5 init apducommand
writer.write("//cap file start\n");
writer.write("OxBO Ox02 OxOO OxOO OxOO Ox7F;\n\n");

I !send cap file to the installer
while(true){

//data read length
length = (reader2.read(send8uffer));

//if no data
if (length = -I)

break;

length2 = (byte)(length & OxOOOOOOFF);
byte2 = (lnteger.toString(length2 & OxOOOOOOFF, 16)).toUpperCaseO;
if (byte2. length() == 1)

byte2 = "O" + byte2;

139

I/after read one line. start md5 update apdu command
writer.write("Ox BO Ox03 OxOO OxOO" + noxu + byte2 + u n);

I /start for loop
for(int i O: i < length; i++){

byte2 (lntcger.toString(sendBuffer[i] & OxOOOOOOFF, 16)).toUpperCaseQ;
if (bytc2.Icngth() == I)
bytc2 "O" + byte2:
writer.writc("Ox" + byte2 + "");

i 1/cnd for loop

writer. write("Ox 7F:\n"):
}//end while loop

I Ito generate hash value
writer.write(.,\n"):
writer.write("I/CAP file end\n");

//md5 generate command
writer.write("OxBO Ox04 OxOO OxOO OxOO Ox7F;\n\n'');

//tum off the card
writer. write("powerdown;"):

I !stop read data and write data
reader2.close():
writer.close():

}catch(FileNotFoundException ee){
} catch(IO Exception eee) {
} finally {
dum pFi le .delete():
dumpFile null;
scriptFile.delete();
scriptFile = null;
}

try{
I !make ebank install batch file
batchFile = new File("install.bat");
BufferedWriter to Write= new BufferedWriter(new FileWriter(batchFile));
to Write. write("@echo off\n 11

);

//to send installer and have an answer from the JCRE installer applet
toWrite.write("apdutool -o answer 11 + outputFile.getAbsolutePathQ + "\n");
to Write.close();

String path= batchFile.getAbsolutePath();
path = path.replace('\\', '/');
Process chi Id Runtime.getRuntime().exec(path);
chi Id. waitF or();
} catch(Exception e 1) {
} finally{

outputFile.delete();
outputFile = null;
batch File .delete();
batchFile null;

140

} }
})~

//add these to simulation ,,,indow
getContcntPanc().add(ebankApp);
getC on tent Pane().add(converterEbank);
gctContentPanc().add(installEbank);

} //end constructor

//start main method
public static void main (String[] args){

I /cal I the constructor
JFramc main Window= new Terminal();

!Ito set simulation window boundary
mainWindow.setBounds(O. o. 330. 218);
mainWindow.setVisible(true);

} //end main method

}//end class Terminal

141

VITA

JAEHYUKJOO

Candidate for the Degree of

Master of Science

Thesis: SECURE COMMUNICATION ON JAVA CARD

Major Field: Computer Science

Biographical:

Personal: The son of Kap Eung Joo and Jong Sun Kim
The brother of Eun Hee, Eun Ha, and Jae Sung

Education: Received Bachelor of Engineering degree in Environmental
Engineering from Tae Jon University, Tae Jon, Korea in February 1995.
Completed the requirements for the Master of Science degree with a major
in Computer Science at Oklahoma State University in July, 2004.

