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PREFACE 

Microarray technologies are widely used experimental techniques in functional 

genomic research. The experiments generate a large amount of data and efficient 

computational methods are required. Experimental data are clustered into similar 

biological functional groups and common subsequences (motifs) are detected among 

them to find subsequences that affect functions of the genomes. 

This thesis is a survey of commonly used algorithms in the two processes. 

Clustering algorithms: nearest neighbor clustering (K-means clustering, SOM 

(self-organizing map) and model-based clustering), agglomerative clustering 

(hierarchical clustering and quality-based clustering), divisive clustering (SOTA 

(self-organizing tree algorithm) and adaptive quality-based clustering). 

Motif finding algorithms: string-based method, greedy algorithm, EM 

(expectation-maximization) algorithm, Gibbs sampling and Gibbs motif sampling. 

Each algorithm's advantages, disadvantages and experimental results are discussed in 

each section. Finally, comparisons of the algorithms are made in a conclusion. 
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1. INTRODUCTION 

Studies of infomiation science, statistics and computer science are applied to 

molecular biology to help biologists process large and complex data sets m their 

experiments and databases. This study is known as bioinformatics and its goal 1s a 

knowledge acquisition from genomic data: gene sequences, protein interactions and 

protein folding. This paper is a survey on some representative algorithms in microarray 

technologies that are commonly used for knowledge acquisition from gene sequences. 

DNA (deoxyribonucleic acid) sequencing technology has been improving greatly 

and the entire human genome was sequenced in 2001. The number of known gene 

sequences in public databases has been increasing exponentially. However, knowledge 

about the genes grows at a slow rate [Kohane et al. 03)[Ermolaeva et al. 98). There is a 

high demand on effective manipulation and analysis of large data sets in a functional 

genomic research. 

One of the main goals of current genomic research is identifying gene functions. 

Genes are specific regions in DNA sequences and they have necessary information to 

produce proteins that develop cells in organisms. Unraveling and modifying genes 

enhance our ability in scientific fields. For example, we may be able to cure a currently 

incurable serious disease by detecting the disease in gene sequences in early stage and 

rewriting a gene sequence to make malfunction proteins work properly rather than 

maintenance complex protein sequences [NOVA 01]. 



Microarrays are widely used experimental techniques to identify gene functions 

because they can compare tens of thousands of genes at a time. Microarrays generate 

gene expression-levels of many different genes to show similarity of the gene activities in 

different stages of the biological process. Similarities of the gene activities imply their 

biological functional similarities. We classify genes into the same functional groups and 

analyze sequence patterns to find statistically significant segments (motifs) that 

commonly appear in groups of genes and control gene activities. However, efficient 

computational and statistical techniques are necessary to analyze a large amount of data 

and to understand complex data patterns [Moreau et al. 02). 

There are mainly two computational processes in microarray technologies: 

clustering and motif finding. Clustering classifies genes into certain biological functional 

groups by observing gene expression-levels. Using the result from the clustering, motif 

finding analyzes a group of the gene sequences and identifies motifs among the same 

group of genes. There are many different types of algorithms in the computational 

processes, because each microarray experimental result has a different nature of 

similarities and available prior infonnation. Therefore, choosing the appropriate 

algorithms for analysis is a crucial element of the experimental design [Quackenbush O 1). 

This paper wi ll introduce some representative algorithms th.at are emp\oyed in microarray 

technologies with their advantages, disadvantages, experimental results and examples. 

ln Chapter two, microarray technologies are briefly described. Its experimental 

methods and applications are introduced with some molecular biology basics. 

In Chapter three, representative clustering algorithms such as hierarchical 

clustering [Eisen et al. 98], K-means clustering [Tavzoie et al. 99] , SOM (self-organizing 
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map) [Tamayo et al. 99], SOTA (self-organizing tree algorithm) [Herrero et al. 01 ], 

model-based clustering [Yeung et al. 01 ], quality-based clustering [Heyer et al. 99] and 

adaptive quality-based clustering [De Smet et al. 02] are described. Also, this chapter 

presents general description of the EM algorithm that is widely used in both clustering 

and motif finding algorithms. 

In Chapter four, motif finding algorithms that use a likelihood or information 

content measurements are discussed. A string-based method [Tompa 99], greedy 

algorithm [Hertz et al. 90], EM algorithm [Lawrence et al. 90], Gibbs sampling 

Lawrence et al. 93] [Liu et al. 95] and Gibbs motif sampling [Neuwald et al. 95], are 

introduced as well as a concept of information content measurement. 
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2. MICROARRA YS 

2.1 Molecular Biology 

Molecular biology is a study of cells that compose all living-organisms in 

molecular level. Nucleic acids (that contains DNA and RNA (ribonucleic acid)) and 

proteins manage functions of the all organisms; nucleic acids encode and convey 

information to produce proteins and proteins are in charge of the physical activities. DNA 

is transcribed to RNA that is translated to proteins and proteins do all cell activities with 

enzymes. 

2.2 DNA to Proteins 

DNA is a blue print of the organism activities. DNA has double strands (chains) 

of DNA molecule and each DNA molecule is called nucleotide. The nucleotide consists 

of a sugar, a phosphate, and a base. To identify each DNA molecule, we call it with one 

of four bases: adenine (A), thymine (T), cytosine (C) and guanine (G) in computational 

molecular biology. Each base in a single strand pairs with its own complement; adenine 

always pairs with thymine and cytosine always pairs with guanine. Therefore, if there is a 

single DNA sequence, it will anneal to a complementary sequence and be able to form a 

double-strand DNA sequence. 

A complete set of DNA sequences is called a genome. Genomes in any organisms 

are long; E. Coli (bacterium) has 600,000 bp (base pairs) and the human genome has 3 

billion bp approximately. Genomes are found in chromosomes in any cells in human 
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except for mature red blood cells. According to [HGP 04], about 99.9% of human 

genomes are identical among all people and only 2% of genomes are encoding regions 

that are cal led genes. 

Human has 30,000-40,000 genes with length of 3,000 bp in average. Genes are 

tagged with 3' and 5' at each end and there are upstream region and downstream region 

in a gene. Upstream region is where motifs are usually found and it is also called control 

region. Downstream region is composed by a sequence of codons that are groups of three 

nucleotides. Each codon will be transcribed into corresponding mRNA (messenger 

RNA). 

mRNA is a single stranded and the structure is very similar to DNA. It is possible 

to obtain DNA from mRNA. DNA transcription splices out intron that are regions of 

genes that are not necessary in further biological process and the rest of genes are called 

exon. A reverse transcribed DNA is called cDNA ( complementary DNA) and it only 

contains exon. As DNA is transcribed into mRNA, mRNA goes out from nucleus and 

Chromosomes Cell 

cDNA 
Reverse Transcription 

Proteins 

3' 3' 
mRNA 

5' 5' 

3' ........ TAGCAGA......... 5' 
5' ........ ATCGTCT.......... 3' 

Figure 1. Biological Process from DNA to Proteins. 
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moves to certain proteins called ribosomes. mRNA downstream is translated into proteins 

in ribosomes. Figure l shows a summary of biological process from DNA to proteins. 

2.3 Microarray Experimental Methods 

One of advantages of microarray technologies is that microarrays are able to 

directly measure gene activities that are involved in a particular mechanism or system. 

Examples of such gene activities are transcription and translation; microarrays that use 

transcription and translation for its expression-level measurement are called RNA 

detection microarrays [Kohane et al. 03]. 

RN A detection microarrays work as following. A targeted tissues or cells are 

chosen and its mRNA is extracted from their gene sequences. cDNA is reversely 

transcribed by the mRNA and stored in each grid on a slide. These cDNA are called 

probes. Transcription can be initiated externally by heat shock or stress. By sampling 

produced mRN A in different time phase, we can measure how far the transcription has 

done in each different gene sequences. Also, we can measure how far the translation has 

done by checking how much RNA left in the produced protein in ribosomes. 

Sample probes are fluorescently labled and hybridized with probes on the slides. 

The sample probe only hybridizes with its complementary probe and rest of them will be 

washed away. The brightness of the probes are measured by a laser scanner, converted to 

quantitative numbers and recorded as an expression-level in a table that has genes in its 

row and samples in its column. Each row is referred as a gene profile. 

cDNA microarrays and oligonucleotide arrays are two main technologies of 

microarrays. Following subsections describe the both technologies briefly with emphasis 
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on cDNA microarrays, because most of papers we refer in this thesis employed cDNA 

microarrays. 

2.3.1 cDNA Microarrays 

cDNA microarrays are also called robotically spotted microarrays [Kohane et al. 

03]. DNA sequences are amplified by PCR (polymerase chain reaction) so that more 

information is available from the sequences. The gene profiles are derived from a certain 

DNA of interest and mechanically cDNA is spotted on a slide glass. Two different probes 

are used in each expression: test probes and reference probes (controlled probes). The 

experiment data takes ratio of these two expression-levels. In RNA detection m.icroarray, 

reference probes will be complete mRNA sequences and test probes will be sampled 

DNA sequences from incomplete transcription stage or reference probes will be complete 

mRNA sequences and test probes will be sampled mRNA sequences from incomplete 

Extracted mRNAs 
Reference 

.... AUGCAAUUCCG ... 

cDNA 
.... ATGCAATICCG ... 

Test 

. ... UUGCACUACCG ... 

000000000 

Read out intensities separately and compute the ratio. 
X/Y 

Figure 2. Overview ofcDNA Microarray. 
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translation stage. 

Advantage of this method is that we can customize target gene profiles for each 

slide. We can put a larger piece of cDNAs or entire cDNAs on the chip. Disadvantage is 

that we cannot obtain absolute quantities from the measurement since experiment result is 

shown as a ratio of test probes versus reference probe. 

2.3.2 Oligonucleotide Arrays 

Oligonucleotide arrays are mass-produced and distributed by manufactures 

[Kohane et al. 03]. Gene profiles are provided according to characteristics of 

experiments: yeast genes, mouse genes, etc. The most popular product is the GeneChip® 

(Affymetrix Inc., Santa Clara, CA) that allows us to compare more genes in a single 

experiment than cDNA microarray because of its high density. Basic experimental 

procedure is still the same, however, a pair of probes: mismatch and perfect match is 

read, computed and intensity is recorded in absolute value. 

Advantages of this technology are an availability of absolute value measurement 

and its large capacity. However, this technology is more expensive than cDNA 

microarray. Especially if target gene profiles are on two different slides, we have to do 

the experiment twice, because current technology allows us to use one slide at a time in a 

single experiment. 
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3. CLUSTERING 

3.1 Clustering Algorithms 

Once experiments give us gene-expression profiles, we can group them with 

respect to their behaviors. Each gene profile is represented as a vector; ith gene profile 

with n observations is represented as x; = [x;,1, x ;,2, ... , X;,n]. The vector is called a 

gene-expression vector. Usually obtained expression-levels in each vector are normalized 

over different observations and comparison between the gene-expression vectors is made 

by Euclidean distance most commonly [Quackenbush O 1 ]. 

All clustering algorithms that we discuss in this thesis are considered to be an 

unsupervised analysis, since they look for characterization of the components of the 

dataset without a priori input such as particular priori patterns [Kohane et al. 03]. They 

are technically classified into three groups: nearest-neighbor clustering, agglomerative 

clustering and divisive clustering. 

Nearest-neighbor clustering decides the number of clusters and cluster centers 

initially, and gene-expression vectors are assigned into each cluster (K-means clustering, 

SOM and model-based clustering). Agglomerative clustering is a bottom-up method; a 
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cluster is initially empty and genes are added into a cluster (hierarchical clustering and 

quality-based clustering). D ivisive clustering is a top-down method; initially a large 

cluster is created and it will be divided into small clusters (SOTA and adaptive 

quality-based clustering). 

Many of the algorithms in this thesis involve a likelihood analysis and EM 

(Expectation-Maximization) algorithm [Dempster et al. 77], and they help algorithms 

attain global optima from a large set of gene-expression vectors. 

3.2 General Description of EM algorithm 

The EM algorithm is a general method of finding a maximum-likelihood 

estimate of parameters of an underlying distribution from a given data set when the data 

is incomplete or has missing values [Bilmes 98]. 

Let X be a data set size of n such as X = {x1, x2, ••• , Xn}, the probability of 

drawing X given by a set of parameters e is TI 7 = 1 Pr(x;j0). Most of the time, a 

logarithmic-likelihood is used for its computational simplicity and written as log(Pr(Xl0)). 

The likelihood function is represented as L( 01X). To maximize the likelihood L, we need 

to find 0 • such that, 

• 0 = argmax L( e J;\J. 
e 
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Next. we consider a hidden (or missing) data set Ywith an observable data setX. 

A complete-data will be Z = (X, Y). Since there is no observable distribution in Y, Y is 

dependent on X and e . Then Pr(zlfJ) = Pr(xJJlfJ) = Pr(yjx,e) Pr(xlfJ). Its likelihood 

function will be L(fJ IZ) = L(fJIX,Y) = log(Pr(X,Yl8)). 

We define a two-place function Q( e, 8 ' ) that maximizes the likelihood of set Z 

with its parameter e, where e is an optimized variable set that maximizes the likelihood 

of set Z and 8 ' is a temporary variable set that is used to estimate a likelihood in the 

current random variable set Y. An EM algorithm obtains e, using two steps: Expectation 

step and Maximization step. The algorithm alternates the two steps until the algorithm 

converges. 

Expectation step: we estimate a likelihood log(Pr(X,Y\0)) from the current random 

variable Y and the current parameter e (i-1 ): 

Q(e, g(i-1)) = £[log (Pr(X, Yi 0)) IX, g (i-1 )] 

= J y e r log(Pr(X, y\ 0))f(yµ', g <H ))dy, 

where f(yjX, e CH)) is a probability distribution function that governs the random variable 

Y. By taking average of such y with the current parameter e <H>, we can estimate the 

complete-data likelihood, log(Pr(X,Yj 6)). 

Maximization step: X and e (i-t) are constant but Y is random variable. so adjust e to 
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obtain the maximized expectation. Then we will compute e (i), 

The more accurate estimation we have, the more maximization we can make; 

once we capture correct gene-expression vectors ( or motif candidates in motif finding) in 

the estimation step, right vectors (motif candidates) are obtained in the further 

maximization step. Examples of EM algorithms are shown in sections 3.3.1, 3.3.3, 3.5.2, 

4.3.2, 4.3.3, and 4.3.4. 

3.3 Nearest-Neighbor Clustering 

3.3.1 K-means Clustering 

K-means clustering [Tavzoie et al. 99] partitions an n-dimensional space into K 

clusters by EM algorithm, where K is the expected number of clusters and n is the 

number of observations of gene-expression. All gene-expression vectors are assigned to 

one of the clusters. 

Advantages of this algorithm are that biologists can easily see the clusters in the 

n-dimensional space and simplicity of computation; however, this algorithm requires the 

number of clusters as a priori knowledge. 

An experiment [Tavzoie et al. 99] shows that estimating the number of clusters 
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is difficult and suggests independent analyses: functional category enrichment and motif 

searching to validate clustering. In the experiment, 3,000 genes from an oligonucleotide 

array were categorized into 30 clusters and it took 200 iterations to converge by the 

statistical software package SYSTAT 7.0 (SPSS). Each cluster had 49 to 186 genes and 

successfully obtained some meaningful clusters, however, not all clusters showed 

significant enrichment for functions. They concluded that the number of clusters 

overestimated the diversity of biological expression classes in the dataset. 

K-means Clustering Algorithm: 

The algorithm employs the EM algorithm; where X is a set of gene-expression 

vectors, Y is a set of cluster centers, and a set of parameters is partitions of clusters. 

Input: a set of gene-expression vectors X = {x1, x2, .•. , x;, ... , Xm}, where 1 <= i <= m and 

the number of expected clusters, K. 

1. Randomly, partitions are created in an n-dimensional space to form K clusters, 

where n is the number of observations in a gene-expression. Map the set of 

vectors X into the space. 

2. Its cluster centers Y = {y1, y 2, ••• , Yk, ... , yK}, where 1 <= k <= K, are calculated 

by taking an average of the vectors in each cluster. (Estimation Step) 
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Yk = [(I 'i= 1 X;.1)/u, (I~= 1 X;,2)/u, ... , (I 1= 1 X;,n)lu], 

where a cluster k has u vectors. 

3. Reassign the set of vectors X into each cluster according to the new cluster center; 

a vector x; will belong to a cluster that has the nearest cluster center, Yt.p from the 

vector, 

where n is the number of observations in a vector x. A function D calculates a 

distance between X; and an arbitrary chosen cluster center Yk by Euclidean distance 

measurement, 

Y;,p = argmin (D(x;,Yk)). 
y 

Vector X; is assigned into the cluster that the nearest cluster center Y;,p belongs. 

After all the vectors are reassigned into the clusters, repartition the space into 

clusters, according to the vectors' locations that belong to the same cluster. 

(Maximization Step) 

4. Repeat the step 2 and 3 until the cluster centers Y become stationary. 
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Example of K-means Clustering Algorithm: 

Figure 3 shows alternation of the expectation-maximization steps: continuous 

changes of cluster centers and partitions. Gray dots represent gene-expression vectors and 

black circles are cluster centers. The sequence of alternation demonstrates that some 

vectors move from cluster to cluster as the process goes on. 

First, assign a set of vectors in an n-dimensional space and partition the space 

into four (Figure 3 (a)). The same numbers implies that they belong to the same cluster. 

Cluster centers are calculated (Figure 3 (b)). The partition is removed. Assign the set of 

vectors again into the space (Figure 3 (c)). Partition the space according to the vectors 

that belong to the same clusters. Bold numbers imply that the vectors belong to different 

(a) 

(d) 

.3 .. 3 •3 
• •3 

•3 •3•3 .. 3 

(b) 

(e) 

Figure 3. K-means Clustering. 
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clusters from the last time (Figure 3 (d)). Recalculate and locate the cluster centers 

again (Figure 3 (e)). The set of vectors are reassigned to the clusters and the space is 

repartitioned accordingly (Figure 3 (f)). 

3.3.2 SOM (Self-Organizing Map) 

SOM [Tamayo et al. 99] is an application of neural network; cluster centers are 

considered to be cells and vectors are used as inputs. In an n-dimensional space, SOM 

initially locates a certain simple dimensional shape (such as a two-dimensional rectangle) 

of grids into the space, where n is the number of observations of gene-expression vector. 

The grids represent cluster centers. All gene-expression vectors are mapped into the space. 

In each iteration, a vector is randomly selected and a distance between the selected vector 

and each cluster centers are calculated. The nearest cluster center is moved toward the 

selected vector. The neighboring cluster centers are also moved proportional to the 

distance between each cluster center and the vector. The process continues until it 

converges. 

Advantage of the algorithm is that initial clusters are assigned with certain 

geometrical shape of grids and biologists can estimate the shape from their observation of 

plotted vectors in a space. Unlike K-means clustering, initial clusters are not assigned 
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randomly, therefore, the convergence is attained more efficiently. Disadvantage of this 

algorithm is that the number of clusters has to be known. 

The experiments [Tamayo et al. 99] were done on yeast (828 genes into 30 

clusters) and hematopoietic differentiation (567 genes into 12 clusters and 1,036 genes 

into 24 clusters). A similar yeast experiment had been presented earlier [Cho et al. 98] 

with hierarchical clustering and [Tamayo et al. 99] used the same data sets to see an 

accuracy of SOM. They stated that their result matches to hierarchical clustering result 

very close. The hematopoietic differentiation experiment showed one of clusters 

contained 32 genes with four duplicates and 18 genes were expected genes. A Web-based 

software package GENECLUSTER was used in the experiments and it is available at 

http://www.broad.mit.edu/cancer/software/software.html. 

SOM Algorithm: 

Input: a set of gene-expression vectors X = {x1, x2, ..• , x;, ... , Xm}, the number of 

expected cluster Kand a geometrical shape of grids ( cluster centers), Y= {y1, Y2, ... , 

Yk,··· ,YK}, where 1 <= i <= m and 1 <=k <= K. 

1. Map the set of vectors X into an n-dimensional space, where n is the number of 

observations in gene-expressions. Then map the simple geometry shape of grids Y 
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as initial cluster centers. 

2. Train a set of clusters Y for the certain numbers of iterations or until the cluster 

centers become stationary. 

I. Randomly select a vector x; and choose the nearest cluster y;,p, 

2 )2 ( )2] 1/2 D(x;,Yk) = 11 x;-ykll = [(x;,1-Yk,1) +(x;,2- Yk.2 + ... + X;J- YkJ • 

A function D calculates distance between X; and an arbitrary chosen 

cluster center Yk by Euclidean distance measurement, 

Y;p = argmin (D(x;,Yk)). 
y 

2. Move clusters according to a learning function, 

Fs(vk) = Yk + -r(D(yk, y;,p), s)(D( X;,Yk)). 

Function Fs(yk) calculates position of cluster center Yk at s th iteration. 't 

is a learning rate that decreases with distance of cluster center Yk from 

Yi.p· -r(t,s) = 0.02T/(T+100s) fort= p(s), where Tis a maximum number 

of iteration, p(s) decreases linearly withs and initially t=3. 

Example of SOM: 

Figure 4 shows a principle of SOM with initial geometry of clusters in 

rectangular grid. Each grid is numbered and arrows show their location after algorithm 

18 



converged. The gene-expression vectors are represented by black dots. 

. ' . 
' I 
l 
' ' ' I 
' I 
1 
' I 
I 

' \ . 
• 

Figure 4. The Principle of SOMs [Tamayo et al. 99]. 

3.3.3 Model-Based Clustering 

The model-based clustering [Yeung et al. O 1] uses a statistical approach with 

assumption that there are finite number of multivariate normal distributions (and the 

number of distributions is the number of clusters) over gene-expression data. The 

clustering chooses a model (sets of parameters) and the correct number of clusters by EM 

algorithm ( see Section 3 .2). Models are a combination of parameters: volume, shape and 

orientation. Classical K-means clustering is an example of the equal volume spherical 

model that is the simplest model and does not have any three of parameters as variables. 

The algorithm performs EM algorithm on every possible models of different 

number of clusters, compares the result by BIC (Bayesian Information Criterion) 
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[Schwarz 78] in different number of clusters and finds the best models with the number 

of clusters. The EM algorithm estimates parameters by calculating a conditional 

probability that each vector belongs to each cluster (Estimation Step), and adjusts 

parameters to maximize the likelihood that the vectors belong to each cluster 

(Maximization Step). 

Advantage of this algorithm is its accuracy because a variety of combinations of 

variables are available (Table I). The algorithm can choose models and the number of 

clusters that fit to each dataset. Also, the algorithm is totally data-driven and the number 

of clusters is not required as an input. However, the computational complexity is 

quadratic. 

[Yeung et al. 0 I] reports successful experiment results in their paper. Their 

model-based clustering software MCLUST [Fraley 99] was compared to the leading 

heuristic-based clustering CAST (Cluster Affinity Search Technique) [Ben-Dor 99] in 

experiments of two different types of data sets: synthetic data and real microarray 

experimental data. Synthetic data was created as a mixture of normal distributions to 

verify the performance of the algorithm over different kinds of distributions. 

In the experiment result of synthetic data, there were over-estimated number of 

clusters, however, they claimed that the clusters were strongly related each other to form 
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one cluster that was statistically correct. In real gene-expression experiment, MCLUST 

correctly chose the right number of clusters and model (384 genes into 5 clusters and 237 

genes into 4 clusters; the model-based clustering usually reduces the number of genes by 

preprocessing a set of genes by hierarchical clustering, therefore, more genes were 

involved in the experiment than indicated above). In some data sets, MCLUST 

outperformed CAST. 

Figure 5 shows an example of the experimental result of real gene-expression data. 

(Figure 5 (a)) shows that CAST predicted 6 clusters; however, (Figure 5 (b)) shows that 

MCLUST predicted 5 clusters correctly. 

The MCLUST is available at http://www.stat.washington.edu/fraley/mclust/. 
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Figure 5. Example Result from the Experiment [Yeung et al. 01]. 

21 



Modeling Datasets: 

Our assumption is that some underlying probability distributions generate each 

component of gene-expresion vectors X. A likelihood of mixture model is defined as: 

where K is the number of clusters, k is an index of cluster, 1tk is the probability of an 

gene-expression vector belongs to kth cluster and defined as L f = 11tk=l and 1t,?= O,fi is a 

density function of vectors x in given parameter 0. The parameter 0 is the Gaussian 

mixture model and it is decomposed into two: mean vectors ( cluster center) µk and 

covariance matrix Lk= Ak Dk Ak Dl(parameters), where Ak is a scalar and controls volumes, 

Dk is an orthogonal matrix of eigenvectors and controls orientation, and Ak is a diagonal 

matrix, its values are proportional to eigenvalues and it controls shape. Each model is 

represented by covariance matrix as shown in Table 1. 

ID Model Volume Shape Orientation 

EI ll equal equal NIA 

VI 41 variable equal NIA 

EEE lDADT equal equal equal 

vvv T 
4DkAkDk variable variable variable 

EFV lDkADJ equal fixed variable 

EEV lDkADJ equal equal variable 

VFV lDkADJ variable fixed variable 

VEY 4DkADJ variable equal variable 

Table I. Currently Available Parameters in MCLUST [Fraley 99]. 
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For example, VI (Aki), where I = Dk Ak Dl, can take volume of each cluster into account 

and obtain tightly related group of vectors in one cluster. The functionfi is defined as 

Model-Based Clustering Algorithm: 

Input: a set of gene-expression vectorsX= {x1,x2, ••• ,x;, ... ,xm}, where I<=i <= m. 

[Ghosh 02] presents an actual implementation of the model-based algorithm. 

Let X be a set of gene-expression vectors and Y be a set of variables Y;.k that represents a 

membership of x; and Y;,k =I if x; belongs to cluster k or y;,k =O otherwise. Let Z be the 

complete data set of (X, Y). As we mentioned above, an EM algorithm is used to find the 

best model that fits to the dataset X, however, to enhance efficiency and accuracy of the 

EM algorithm, we usually use agglomerative hierarchical clustering (see Section 3.4.1) to 

create initial dataset. Unlike normal hierarchical clustering, the hierarchical clustering 

uses probability of genes that belongs to the same cluster instead of using Euclidian 

distance to compare a pair of vectors. 

1. Hierarchical Clustering: merge clusters that increase logarithmic likelihood / CL, 

/ CL (01, ... , 0K, Ct, ••• , Cm I Xt, ... , Xm) = ll; 1fi;(X; 101)), 

where c represents a membership of cluster, /; indicates a known membership of 
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L 

cluster i and there are K clusters all together. 

2. The following EM algorithm is done on all potential models with the different 

estimated number of clusters. 

Expectation Step: We estimate y1 that represents cluster assignment by 

Maximization Step: We adjust x and 0 to maximize a likelihood of the complete 

data, that is Led= 11 'i= 1 11 f = 1 (xkfi(x1 10k)) Y;,k, or its logarithmic likelihood is 

m K 
led = :E ;= 1 :E k = 1 Y;,k log( 1tkfi(x; 10k) ). 

3. We select the best model with the suitable number of clusters by measuring 

integrated likelihood of the models. 

Integrated likelihood over different models are taken as, 

where function p represents a probability that X is observed under model Mn, n is 

a set of different models, 0n is parameters in a set of models n. The estimate 0n is 

the maximized likelihood estimate for parameter 0n that is a clustered set of genes 

we obtained from step 2. For example, ifwe haven= { 1, 2}, B12 = p{.X] Mi) I p(XI 

M2) and if B12>l, Mi is more favored than M2. BIC {Bayesian Information 

Criterion) [Schwarz 78] is used for computational simplicity. 
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2log p(X]Nl11)~ 2logp(X]011 ,Mn)- v,, log m = BIC11, 

where v,, is the number of independent parameters obtained from covariance I:11, 

and m is the number of vectors. The first term symbolizes a maximized mixture 

likelihood model and the second term penalizes over-fitting from free variables. 

3.4 Agglomerative Clustering 

3.4.1 Hierarchical Clustering 

Hierarchical clustering 1s one of the most widely used clustering algoritluns, 

because the clustering process is graphically represented by a tree and it is easy to 

observe clusters and clustering process for biologists. There are bottom-up and top-down 

approaches in hierarchical clustering. In this thesis, we discuss bottom-up hierarchical 

clustering [Eisen et al. 98], since it is more popular than top-down approach. 

Initially, gene-expression vectors are ordered by simple methods of weighting 

genes, such as an average expression level, maximum time taken to observe certain gene 

expression level, or chromosomal positions, and we place the element with the lower 

average weight earlier in the ordering. Then we calculate every pair of Euclidean distance 

and create a table and merge the closest pair of gene-expression vectors with the 

average-linkage method fSoka\ 581-
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This algorithm's advantage is that it is simple, easy to implement and easy to 

visualize the clustering process. However, it suffers from space complexity of data tables 

and distortion of clusters by averaging original clusters. 

The paper [Eisen et al. 98] shows that the algorithm is more successful on 

properly ordered wide variety of observations than repeated observations. Experiments 

were done on a growth response in human cell (8,600 genes) and a budding yeast S. 

cerevisiae (6,200 genes). They also mentioned that a single noise in the observation did 

not affect in its neighboring genes. However, randomized ordered data sets were also 

tested and they could not obtain the same result. They concluded that gene-expression 

vectors' order is significantly important for accuracy. 

Hierarchical Clustering Algorithm: 

Input: a set of gene-expression vectors X = {x1, •• • , x;, ... Xj, ••• , Xn} and 1 <= i <j <= n. 

1. Initially, every vector is considered to be a cluster. Create an ordered data table, 

which has biologically similar gene-expression vectors adjacently. Develop 

Euclidean distance table of every couple of clusters. The distance is obtained by 

function D that is defined by: 

D(x,, X1) = If X;- X:,·II = [(x;,1- Xj.1)2+(x;,2- X1.2i+ ... +(x;,n- XJ.n)2] 112
, 
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where each vector has n observations. 

2. Comparing distance between every couple of clusters, the algorithm merges the 

shortest-distance pair by talcing average of two vectors. Continue this process 

until there is only one cluster left. An average-linkage method of vectors x; and x1 

is defined as, 

ave(x;, Xj)= [ (x;.1+ Xj.1)/2, (x ;,2+ x i,2) 12, ... , (x ;,n+ x J,n) /2]. 

3. Create a tree, which has initial clusters as its leaves and the last cluster as a root. 

Final clusters are obtained by cutting the tree at the certain level. 

Example of Hierarchical Algorithm: 

Figure 6 shows an example of hierarchical clustering. Data table is created 

(Figure 6 (a)). Euclidean distance table is created (Figure 6 (b)). According to the 

Euclidean distance table, gene2 and gene3 is merged and the data table is updated (Figure 

6 (c)). Figure 6 (d) shows the actual process of entire clustering process by tree. 
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Data Table 
el e2 e3 

gl 0.1 0.8 0.8 
g2 0.8 0.2 0.1 
g3 0.7 0.3 0.2 
g4 0.2 0.7 0.8 
g5 0.3 0.8 0.7 
g6 0.7 0.2 0.3 

(a) 

Updated Data Table 
el e2 e3 

gl 0.1 0.8 0.8 
g2,3 0.75 0.25 0.15 
g4 0.2 0.7 0.8 
g5 0.3 0.8 0.7 
g6 0.7 0.2 0.3 

(c) 

e4 
0.9 
0.4 
0.4 
0.7 
0.6 
0.1 

e4 
0.9 
0.4 
0.7 
0.6 
0.1 

Euclidean Distance 
gl g2 g4 g5 g6 

gl 0.00 1.26 0.24 0.37 1.27 
g2 0.00 1.09 1.00 0.37 
g3 0.00 0.93 0.84 1.05 
g4 0.00 0.20 0.96 
g5 0.00 0.00 
g6 0.00 

(b) 

____ gl 

/gl,4,5~g2.~ 

gl,2,3,4,5,~ ~ ~ 
,3,~4~4 

~5 
6 

(d) 

Figure 6. Example of Hierarchical Clustering. 

3.4.2 Quality-Based Clustering 

Quality-based clustering [Heyer et al. 99] takes into account of errors from the 

experiments and instead of using all expression-levels, uses expression-levels that satisfy 

qualities: similarity of gene-expressions and minimum population of cluster. When we 

use Euclidean distance measurement to compare gene-expression vectors similarity, 

sometimes one or two very similar expression-levels bias the clustering analysis and give 

us higher correlation of two vectors as a result; however, this will generate false positive 

genes that are not biologically correlated but they are correlated in the analysis. 

The quality-based clustering standardizes expression levels and uses jackknife 
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correlation [Efron 82] to measure correlation of gene-expression vectors, instead of plain 

Euclidean distance measurement. A vector is selected as a cluster candidate and is located 

in a space. Then vectors that have the larger jackknife correlation with the cluster are 

added. Also, other vectors that minimize the increment of the cluster diameter are added 

and the process is repeated until the diameter reaches user-defined maximum diameter 

size. Once the process has been saturated, next cluster candidate is selected. The 

algorithm continues until doing the same procedures for all vectors. Finally, the largest 

cluster is selected and all vectors that belong to the cluster will be removed. The same 

iteration continues until algorithm cannot select a cluster that meets the minimum 

population that is defined by user. 

The algorithm can eliminate bad gene-expression vectors, improve accuracy and 

capture clusters in small range. However, there are disadvantages; its computational 

complexity is high (O(N 2)), additional input is required (minimum number of vectors in 

a cluster and diameter of circle) and diameter is fixed locally. [Heyer et al. 99] consider 

only single observation for outlier. When we need to consider more than one observation 

such as size s, there are (s!-1) of combinations and an effective computational technique 

is necessary to calculate jackknife correlation for every possible set. 

The experiments are done on 4169 ORFs (open reading frames; downstream of 
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genes) from yeast cell cycle. Twenty-four clusters that maintain high quality are reported 

in [Heyer et al. 99]. They state that alternating jackknife correlation threshold does not 

make significant difference in the experiment but alternating a diameter of circle and the 

number of vectors in a cluster does. 

They suggest two applications of quality-based clustering. Taking a median of 

representative pattern from the clusters, the algorithm can group gene-expression vectors 

that satisfy quality of the cluster. Also, we can generate only clusters of genes with 

interest. Instead of clustering on all gene-expression vectors, we can select a vector with 

special interest and group the vectors that satisfy quality of the cluster. 

Quality-based Algorithm: 

Input: a set of gene-expression vectors X = {x1, x2, ... , x;, ... , Xm}, where 1 <=i <= m, the 

minimum number of vectors in a cluster and the maximum cluster diameter d. 

1. Standardize gene-expression levels by taking mean µ over observation in each 

profile, subtracting mean from the values and divide it by its standard deviation a: 

X;j= (X;j- µ;)la; and u; = (:EJ=i(X;J- µ;}2 !n-1)112
, 

where O<j <=n and n is the number of observations in gene-expression vectors. 

2. Calculate jackknife correlations Jp.q = min(pp,/>, pp)2>, ... , pp)n>, Pp,q), where 
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O<p<q <=m, Pp.q is a correlation of the pair of vectors Xp and Xq. Pp,q <1> denotes that 

a correlation without expression-level sample from column t. We use Euclidean 

distance D for our correlation measurement: 

3. Select a vector x; (initially x 1) to make a cluster center of candidate cluster C;, 

where O < i <= m and group of clusters C = { C1, •• • , C;, ... ,Cm}. Select the nearest 

vector Xp that its jackknife correlation J;JJ meets threshold d. Add it into the cluster 

C . C· d '· = . (p· (I) (2) (n) . ) d ,. XpE , an J1.p mm '.P , p;JJ , ••• 'p;JJ 'p,.p > . 

Take average of X; and Xp, and update cluster center. 

4. Within user-defined diameter d, find neighboring vectors Xq that minimizes the 

diameter increase of cluster C; and Xq is added into the cluster C;: 

xq = argmin (D(c;,Xq)), 
X 

_ _ 2 2 _ )2] 1/2 d 
D(c;, Xq) - II C; - Xqll - [(c;,1- Xq,t) +(c;,2- Xq,2) + ... +(c;,n Xq,n < 

5. Repeat step 4 until there are no more vectors to be added. Create a candidate 

cluster with next vector and repeat the step 3 and 4. Continue the process until last 

vectorxm. 

6. Select the largest cluster Cmax and remove all vectors that belong to cluster Cmax 

from X, then move to step 2. Continue the whole process until there is no more 
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clusters that meet the minimum size that user specified. 

Example of jackknife correlation: 

Assuming that we obtained a result from microarray experiment and 

standardized the data as below, we demonstrate the algorithm from Step 2 to Step 4 as 

follows. 

X1 -0.2105 -0.36441 -0.92235 -0.92663 

X2 0.29574 0.93209 0.56843 0.23017 

X3 0.03307 -0.32469 -0.40135 0.79631 

X4 -0.80204 -0.22714 0.63205 0.3681 

X5 -0.38479 -0.03287 0.70618 -0.826 

X6 -0.35284 -0.66014 0.06172 -0.65343 

Let X = {x,, xi, X3, X4, xs, X6} and d = 0.5 be input data. Starting from xi, we consider C1. 

We take a jackknife correlation to all other vectors versus xi and obtain the smallest 

correlation for each vector is underlined as follows, 

(removed term) (0) 

X2 2.34473 

(1) 

2.28943 

(2) 

1.95368 

(3) 

1.80980 

X3 1.81682 1.80042 1.81639 1. 74052 

X4 2.11216 2.02764 2.10770 1.43006 

X5 1.67407 1.66497 1.64091 0.38784 

X6 1.07272 1.06324 1.03116 0.42703 

(4) 

2.03951 

0.57649 

1.66880 

1.67104 

1.03735 

i.e. p,}1
> =~+(x1,2-x2,2)2+(x1,3-x2,3)2+ (x1,4-x2,4)2) 112 

=<11-o.36441-0.93209112+11-0.92235-0.5684311 2+11-0.92663-0.2301111
2
)

112 

=2.28943 73 76 
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0.42703; and Xp = xs. 

Now., cluster center will be the average of x1 and x5, that is c1 [-0.29764, -0.19864, 

-0.10808, -0.87631]. Then add another gene vectors Xq into cluster Ci, if the distance 

from c I to the vector Xq is the smallest and it is less than d. 

(removed term) ( 0) (1) (2) (3) (4) 

X2 1 .82006 1.72061 1 .42621 1.68966 1.44510 

X3 1 .73462 1.70281 1.73004 1.70965 0.45963 

X4 1.53349 1.44816 1.53322 1.34305 0.89611 

X6 0.54271 0.53990 0.28558 0.51546 0.49483 

J. -p (2)_ c 1,2- c 1,2 - 1 .42621, J -p (4)_ 
CJ,3- CJ,3 - 0.45963, - <4>- 0 89611 J = <

2>= J c1,4~Pc1,4 - • , c1,6 Pc1,6 

0.28558., and x6 is added into C1• Cluster center is recalculated and repeat the same 

process. 

3.5 Divisive Clustering 

3.5.1 SOTA (Self-Organizing Tree Algorithm) 

SOTA [Herrero et al. 01] is a hybrid algorithm of SOM and hierarchical 

algorithm. Like a hierarchical clustering, clusters are represented by a tree; however, the 

cluster updates are done by SOM algorithm. By hybridizing two algorithms, SOTA is 

able to overcome disadvantages of both algorithms and produce high quality clusters. 

Initially, a root has an average vector of all gene-expression vectors. Its child 
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nodes are created and the parent node vector is copied into them. The child nodes are 

called terminals and considered to be clusters. In each iteration, distance between a 

randomly selected gene-expression vector and all terminals are compared. The closest 

terminal is selected and updated, and its sibling and its parent are updated as well. Upon 

updates, an error rate is calculated and the terminal with the largest error creates its child 

nodes and the tree grows. The iteration lasts until clusters do not satisfy the threshold any 

longer. The threshold can be the maximum or average distance between cluster centers 

and vectors. 

An advantage of this algorithm is overcoming drawbacks of hierarchical 

algorithm and SOM. By adopting an update method from SOM, the algorithm avoids 

losing identity of genes during the tree growth. A tree structure enables us to obtain 

clusters without knowing the number of clusters and to observe a hierarchical relationship 

of clusters. The algorithm compares purely heterogeneity of vectors rather than the 

number of similar vectors. A disadvantage of this algorithm is that defining the threshold 

to terminate the algorithm is time consuming. 

[Herrero et al. 01] reports that SOTA can produce high quality clusters; cluster 

centers obtained by SOTA were very close to an average values of each sample from 

gene-expression vectors in the clusters (less than 0.3% discrepancy). An experiment was 
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done on a yeast cellular cycle data with 800 genes and obtained 40 clusters ( cluster set A) 

and 174 clusters (cluster set B). The cluster set A had threshold of distance 0.75 and the 

cluster set B had threshold of confidence level 5%. The cluster set B was at about four 

times higher resolution than the cluster set A, because clusters in A were spliced into 

approximately four clusters. 

Self-Organizing Tree Algorithm: 

Input: a set of gene-expression vectors X = {x1, x2, ••• , X;, ... , Xm}, where 1 <=i <= m, 

threshold 8, where {) could be a minimum distance to update terminals or 

confidence level. 

I . Create a root of tree by taking an average of all n observations of all 

gene-expression vectors in X, 

Xavg=((L ':= I Xt,s)lm, (I:':= 1 X2,s)lm, ... , (L ':= I Xn,s)lm). 

2. Create child nodes and copy Xavg into the nodes as initial cluster centers. The child 

nodes are called terminals. 

3. Randomly select a gene-expression vector from X and compare distance between 

the vector and terminals. Select the nearest terminal that is called a winning cell. 

Update the winning cell, its sibling and parent nodes, 
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x,('r+ 1 )= x,( 't) + rt·(x; - x,( 't)) 

where on t th node vector at 't th iteration, selected vector X; chooses x,( 't) as either 

winning cell or sibling node or parent node, then updates as x,( 't+ 1 ). rt represents 

magnitude of update and decreases winning cell (Ttw), ancestor node (Tta) and 

sibling node (Tts) respectively. Typically, the values are 11w=O.Ol, TJa=0.005 and 

rts=O.001 [Dopazo 97]. 

4. The step 3 lasts until every vector in Xis selected and this cycle is counted as one 

epoch. In each iteration, heterogeneity of each cell is calculated by: 

Rk=(E ,'= 1 D(x;, Yk))lu. 

where D(x;, Yk) = II x;- Ykll = [(x;,1- Yk, 1)2+(x;,2- Yk,2)2+ ... +(x;J- YkJ)2] 
112 

, u is the 

number of vectors in cluster k. Rk is called a resource value and the total error eat 

v epoch is obtained by ev=l: f = 1 Rte. Relative increase of the error is measured and 

when it is below a given threshold 0, the iteration stops: 

When it does not converges, the highest resource value Rt of the cell Xk is going to 

split into two child nodes. The child nodes have parent node vector as a default. 

Then iteration is resumed from step 3. 

The threshold using resource value Rk measures a quality of cluster. Another 
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threshold measures confidence level of clusters. A variability Vis used instead of 

resource value R. Vis obtained by V = max (dk), where dk = m~ (D (x;, x,)), 
k ~ 

where 1 <= i < I <= m, and x; and x1 belong to the same cluster. 

Example of SOTA: 

Assuming that the following subset of standardized microarray data are obtained 

from an experiment, 

x, -0.2105 -0.36441 -0.92235 -0.92663 

X2 2.29574 1.93209 1.56843 0.23017 

X3 0.03307 -0.32469 -0.40135 1.79631 

X4 -0.80204 -0.22714 2.63205 0.3681 

X5 -1.38479 -0.03287 0.70618 -0.826 

X6 -0.35284 -0.66014 0.06172 -0.65343 

we take average of each column and we have the root= [-0.06986, 0.05368, 0.606407, 

-0.003681). The root is copied into initial child nodes and a tree is constructed (Figure 7 

(a)). A gene is randomly picked and updates either one of terminals (child nodes). The 

terminal 1 is updated by x2• based on formula in algorithm explained above. Its sibling 

(terminal 2) is also updated (Figure 7 (b)). (The root will not be updated, however, 

usually parent node is updated in further generation.) Figure 7 (c) shows updates of tree 

after one epoch. We measure error to determine either to grow tree or to terminate the 
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iteration. Since this is the only the first epoch, we continue the iteration and decide which 

terminal will grow first. R1 =(D(x2, Yi)+ D(xi, Yi)+ D(xs, Yi))/3 -

(3.17853+ 1.82371 + 1.53517)/3 = 2.17914 and R2 = (D(x4, Yi)+ D(x6, Yi)+ D(x3, Yt))/3 = 

(2.20383+1.12484+ 2.11060)/3=1.81309. Ri > R2• So R1 will grow as Figure 7 (d). Error 

rate for the first epoch is £1 = Ri + R2 = 3.99223. 

(a) (b) 

Root [-0.06986 0.05368 0.60640 -0.00368] 
Root 

Terminal l [-0.06656 0.05258 0.59705 -0.01959] 

Terminal I Terminal 2 [-0.06986 0.05368 0.60640 -0.00368] 

(c) 

Root [-0.06986 0.05368 0.60640 -0.00368] 

Terminal 1 [-0.07212 0.05218 0.60645 -0.00211] 

Terminal 2 [-0.08919 0.03759 0.59753 -0.00393] 

(d) 

Root [-0.06986 0.05368 0.60640 -0.00368] 

Node l [-0.07212 0.05218 0.60645 -0.00211] 

Terminal 2 Terminal 2 [-0.08919 0.03759 0.59753 -0.00393] 

Terminal 3 [-0.07212 0.05218 0.60645 -0.00211] 

Terminal 3 Terminal 4 [-0.07212 0.05218 0.60645 -0.00211] 

Figure 7. Example of SOTA. 

3.5.2 Adaptive Quality-Base Clustering 

Adaptive quality-based clustering [De Smet et al. 02] can adjust (adapt) the radius 

of cluster to obtain quality-guaranteed clusters for the each different cluster. This 
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algorithm does not use jackknife correlation, however, uses EM algorithm and likelihood 

ratio of gene-expression vectors in a cluster and successfully generate clusters with 

highly correlated vectors. Clusters are represented as a sphere in a multi-dimensional 

space; we assume that vectors in a cluster exist on the intersection of hyperplane and 

hypersphere. The algorithm has two steps: finding a location of cluster in 

high-dimensional space and deciding the radius of the sphere. 

A sphere is located in a space that contains all vectors initially, then the center of 

sphere is considered to be a cluster center. The sphere center that is an average of the 

vectors in the cluster is calculated and the sphere is relocated according to obtained 

cluster center in each iteration. The radius of cluster decreases in each iteration until the 

sphere capture minimum number of vectors. Once the cluster captures the minimum 

number of vectors, a likelihood ratio of vectors in the sphere is calculated. Finally, the 

cluster only takes the vectors that have certain likelihood ratio (usually 95%), and the 

sphere and the vectors are removed from space. Next iteration starts with remaining 

vectors and iteration lasts until there are no more clusters to take. 

Advantage of this algorithm is that highly quality-guaranteed clusters are obtained 

in linear running time that increases with the number of gene-expression vectors. A 

flexible radius size can capture clusters without extra computation on data processing 
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such as jack.knife correlation. On the other hand, a convergence of algorithm has not been 

proved theoretically, therefore, there may be situations that never converge. Also, the 

algorithm can only apply for Euclidean distance measurement, since a likelihood analysis 

involves distance to cluster center. 

Experiment result [De Smet et al. 02] shows that adaptive quality-based clustering 

can successfully generate biologically significant clusters and it outperforms the K-means 

clustering; the algorithm could detects some functional genes that the K-means clustering 

can not find and the algorithm produces more high density clusters than the K-means 

clustering. The software that is implemented by MATLAB and detail experiment results 

are available online at http://www.esat.kuleuven.ac.be/-fdesmet/paper/adaptpaper.html. 

Adaptive Quality-Based Clustering Model: 

Expression vectors are normalized as their mean is zero and variance is one. By 

definition, we have mean µ; = l/n (:E : = 1 x;,s) = O, where n is the number of observations 

in gene-expression vector and the number of gene-expression vectors is m and i <= m. 

Also, a standard deviation <T; = (1/(n-l)L := 1 (x;,s-µ;) 2
)

112 = 1. Solving for L ~= 1 x;,s, we 

have (n-1 )112• [De Smet et al. 02] assumes that vectors in a cluster exists on the 

intersection of hyperplaneµ; and hypersphere with radius of (n-1 )112 in an n-dimensional 
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space and model the probability distribution as following. 

The probability distribution of vectors with given cluster radius p(rc) = 

Pc•p(rclC) + Pa•p(rclB), where Pc is a prior cluster probability distribution and p(rclC) is a 

current cluster probability distribution. Pe and p(rclB) denote a prior and a current 

background probability distributions and Pc + Pe= 1: 

-(2) 

where En-2 is a surface area of a unit sphere in n-dimensions. A likelihood of vectors in a 

cluster with a given radius re is: 

P(q re)= (Pc•p(rclC))/(Pc•p(rclC) + Pe•p(rclB)). -- (3) 

We employs EM algorithm (see Section 3.2) to maximize P(CI re) by adjusting re, 

where Xis a set of gene-expression vectors, Y is a radius of cluster re and 0 is a prior 

standard deviation <J and probability distribution Pc (or Pa). 

Adaptive Quality-Based Clustering Algorithm: 

Input: a set of gene-expression vectors X = {x1, x2, ••• , x;, ... , Xm}, where I <=i <= m, the 

minimum number of vectors in a cluster, the significance level S (95% by 

default). 
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1. [Locate Cluster] Map a set of gene-expression vector X and set an initial cluster C 

as a sphere in a n-dimensional space, where n is the number of observations in a 

vector and C = {x1, x2, ... , x;, ... , Xm} initially. Before iteration starts, initialize an 

estimated minimum radius rest= (n-1)1n./2. 

2. Relocate cluster by making the cluster center y to be an average of all vectors in 

the cluster,y =xavg = (0:Ps==l x1~)/p, (LPs==l x~Yp, ... , (LPs=J Xn.,s)lp), where ICI= p. 

If this is the first iteration for cluster C, calculate a delta for radius r 6· 

r6 = (D(;xz, y) - rest)/ Tftaction, where Tftaction=30 by default, 

2 2 ( )2]112 C d D(x;, y) = II x;- yll = [(x;.1- y) +(x;,2- y) + ... + X;,n - y , X;E an 

Xz = argmax (D(xc,Y)). 
X 

Radius re is adjusted by re= re- r6. 

3. Calculate a new cluster center and compare with the last cluster center. If it is the 

same, the algorithm converges, otherwise return to step 2. 

4. Repeat step 2 and 3 until it reaches a maximum iteration times ( 50 times by 

default) or the radius is reduced into rest· If the cluster center has not been fixed or 

the algorithm does not converge, then the algorithm will be terminated. 

5. [Adjust Radius r] Maximize the likelihood of gene-expression vectors in a cluster 

by EM algorithm. Initially, re= rest and calculate a and Pc by measuring distance 
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between a current cluster center and all vectors: 

Pc= (I:~= 1 D(xs,Y))/(£ ':'= 1 D(x,,y)) and Pe= 1- Pc, 

where XseC, p is the number of genes in a cluster and m is the number of all 

vectors in a space. a= ((I: ':'= 1µ-D(x1,y))2l(m-1)) 112 andµ=(I: 'F= 1D(x,,y))lm. 

Using equations listed above, we can obtain p(rclC) and p(rclB) by plug-in u, Pc 

and Pe into formula (1) and (2). (Estimation Step) Adjust re in formula (3) to 

maximizes likelihood of gene-expression vectors with given cluster P(CI re). 

(Maximization Step) Alternate two steps until it converges. 

6. The iteration also stops when either relocating of a cluster or adjusting radius does 

not converge, or the cluster obtained does not meet the minimum number of vectors. 

Example of Adaptive Quality-Based Clustering: 

We demonstrate the relocation of cluster using algorithm Step 1 to Step 4. 

Assuming that the following is a subset of standardized microarray data, 

Xm,I Xm,2 Xm,3 D(y,x) 

Xt -0.2105 -0.36441 -0.92235 1.59212 

X2 2.29574 1.93209 1.56843 3.17005 

X3 0.03307 -0.32469 -0.40135 1.08241 

X4 -0.80204 -0.22714 2.63205 2.17106 

X5 -1.38479 -0.03287 0.70618 1.32111 

X6 -0.35284 -0.66014 0.06172 0.94202 
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we estimate the minimum radius as rest= (n-1)11212 = (3-1) 112/2 = 0.7071 and the center 

of cluster is set to bey = Xavg = [-0.07023, 0.05381, 0.60745]. The furthest gene from 

cluster center x== xi. Then rA = (D(x2, y) - rest)/ rrraction=(3.17005) - 0.7071)/ 30=0.0821. 

In the next step, we reduce radius by rAand rc=2.38085. x2 is discarded because D(x2,Ycl)) 

=3.17005 . New center Y<i>= [-0.45285, -0.26821, 0.34604] is recalculated without x2. 

Since D(x4, Y(2)) =2.31289 and rc=2.29875, x4 is discarded. Then YCJ) = [-0.31918, 

-0.23035, -0.09263]. At iteration 4, no more genes are discarded from the cluster and 

radius is fixed, therefore, the algorithm converges. Figure 8 shows how cluster was 

relocated in the process. 

Xm,2 

o Cluster Center 

Xm,1 

Figure 8. Relocation of Cluster in Adaptive Quality-Based Algorithm. 

44 



4. MOTIF FINDING 

After clustering and its validation, we look for common subsequences in upstream 

of the gene sequences within the same clusters. The common subsequences are called 

motifs (or binding sites) that control the expression behaviors and have the same 

characteristics in functional genes. Each sequence may have zero or more motifs. 

Sometimes a certain pair or multiple motifs tend to occur together; therefore, there is a 

possibility that multiple motifs are detected simultaneously [Morequ et al. 02]. 

Detecting statistically significant motifs is a goal for motif finding. Finding such 

motifs from multiple sequences is shown to be NP-complete [Tompa OO][Akutsu 

98][Akutsu et al. 00]. There are many algorithms to measure statistical significance of the 

motifs, however, this thesis focuses on methods that measure and compare a likelihood 

and information content of motifs. 

4.1 Information Content 

When we analyze motifs, it is important to consider not only the motif patterns 

but also the background frequencies. The background is a region in the sequences that the 

motifs exclude. If the most frequently occurring sequences are randomly selected from 

the set of sequences, they are heavily biased by base frequencies of the set. As a result, 

we will fail to detect significantly common motif patterns among the different sequences. 

We want the motif pattern frequencies to be different from the background 

frequencies. The logarithmic-likelihood is used to measure how unlikely the motifs occur 
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in the multiple sequences. Instead of using the motif probability distribution, we use 

information content, that is a product of the motif probability distribution and the motif 

likelihood, to adjust the motif probability with its background frequencies. The more the 

motif contents are different from the background frequencies, the larger the information 

content will be. 

Figure 9 shows an example of motif representation of a set of sequence S and { s., 

s2, s3, s4} eS. First, we count the number of each different base with respect to the position 

and create an alignment matrix. The number of base r in position i is represented as n;. r 

(Figure 9 (a)). Next, we compute the probability distribution P(s;, r), that is also called 

Position index I 2 3 

St ............... ATCGITCG ATC TITGG ........ A T C 

S2 ............... GACC CTG TATATATIT ........ C T G 

S3 ............... GGCCGCGCAA ITC AA ........ T T C 

S4 ............... TATCAA ATG TCAAGT ........ A T G 

A 2 0 0 0.5 0 0 

T I 4 0 0.25 I 0 

C I 0 2 0.25 0 0.5 

G 0 0 2 0 0 0.5 

(a) (b) 

0.5 

0 2 0 0 2 0 

0 0 0.5 

0.5 

(c) (d) 

(a) Alignment Matrix, (b) Profile, (c) Position Weight Matrix, 
(d) Relative Entropies of Motifs 

Figure 9. Example of Motif Candidates of Width 3. 
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profile. P(s;.r) = n;, r I k, where k is the number of sequences in S (Figure 9 (b )). 

We will have a position weight matrix of motif (Figure 9 (c)) by obtaining logarithmic­

likelihood ratio on each element that is logi P(s ;, r)IQ(sr). The background model is 

represented by a weight matrix of position zero. In Figure 9, background model (Q) is 

assumed to be an equal distribution; the same number of bases exists in the background. 

So background model is represented as Q(S) = [0.25, 0.25, 0.25, 0.25]T , where S 

represents a set of gene sequences. 

Finally, information content (Figure 9 (d)) is a product of the probability 

distribution and the logarithmic likelihood ratio. We obtain the information content of 

motif fseq by weighting likelihood ratio with probability of motif and summing result of 

all bases and the position within the motif as 

fseq = L ~= 1L re{A,T,C,G} P(s;.r) logi P(s;,,)/Q(sr), where Lis length of motif. 

The motif finding is classified into two methods: a string-based method and a 

probabilistic method. 

4.2 String-Based Methods 

String-based method counts, compares a base frequencies and finds motif 

patterns. Tompa proposed a string-based method [Tompa 99], which counts all bases, 

selects the most frequently occurring strings and estimates their statistical significance 

with its background frequencies by z-score, z = (NrNp,) I (Np, (1-p,)) 112
, where tis the 

index of all possible candidate motifs, N, is the number of sequences that have a motif 

candidate t with at most one substitution of base and p1 is the probability that a randomly 

selected sequence have at least one motif t. Then Np, is the number of sequences that 
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have at least one occurrence of a motif candidate t. The z-score measure how unlikely it 

is to have N, occurrences of a motif candidate t. 

The string-based method demonstrates two advantages. It takes into account of 

the absolute number of occurrences. Under the uniform distribution, a perfectly 

conserved motif that occurs in only a few sequences will have a greater information 

content than an imperfectly conserved motif that occurs in nearly all the sequences. Since 

the algorithm uses exhaustive approach, it will not suffer from local optima like other 

heuristic methods do. 

On the other hand, this method only works well on finding short and simple 

motifs. Because of the exhaustive approach, it is too expensive to apply for long 

sequences for complicated motifs. 

This method is applied to the ribosome binding site problem and [Tompa 99] 

concluded this method successfully enumerates short motifs with their exact z-scores. 

The experiment is done on 14 prokaryotic genomes to find motifs of width 7. The result 

shows lists of 20 high z-score sequences from each sequence. The paper does not validate 

the result, however, suggests further analysis of the high z-score sequences and constructs 

a weight matrix from the 20 sequences to produce a single motif as an example of such 

analysis. 

String .. Based Algorithm: 

Input: set of sequences S = {s1, s2, ••• , sk}and width of motif L 

I . Count and compare strings in the set of sequences and count each string's number 

of occurrences N, in the set by Staden's algorithm (Staden 89]; create a dictionary 
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that has all possible motifs of length L and count the number of each motif 

occurred in the set of sequence. 

2. Calculate p1, that is a probability that single random sequence contains at least one 

occurrence of candidate motif t of length L. 

I . Construct a deterministic finite automaton (DF A) M that accepts a 

sequence with a subsequence that matches with candidate motif t with at 

most one base substitution. 

2. Construct a Markov chain G that generates a randomly sampled sequence 

X ={xi, x2, . .. xi, ... , Xn} with degree of one. G satisfies Pr(xj) = Pr(xi I Xj-J) 

= ai-l,i and contains all possible transition probabilities of sequence X such 

that, a1,2, a2,3, ... , ai-l,i, ai,i+l,· . . , a1r1, n· 

3. Transform M into M' by mapping transition probabilities from Markov 

chain G on the edges of DF A M' and calculate the random sequence X s 

probability p, by tracing a start state to an accepting state. 

3. Calculate the z-score of each candidate motif t and select the significantly large z­

score strings as motifs. 

Example of Computingp,: 

Consider a subsequence t = { ATC} and a randomly sampled sequence X from a 

set of sequence S withX= {AAACCCGTICGAC}. Then Xhas three subsequences oft 

with one substitution as the underlines indicate, therefore, X satisfies the condition in step 

2. 
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Create a DF A Mas shown in the Figure 10. States qu and q.., contain the prefix and 

suffix of matched subsequence in X Then generate a first order Markov chain and 

compute the probability transitions aj,J+I, where j is an index in the sequence X and there 

are IXl-1 pairs in X, aj,J+ 1 = number of occurrence of pattern (AJ, Aj+ 1) / (IXl-1 ). 

Finally, using the probability transitions as a weight, we transform Minto M' as shown in 

the figure. The bold arrows in M' indicate {CGTTCG} of subsequence in.X: 

Finally, we have p 1 = Pr(A)aAAaAAaAcaccaccacaaaTarraTcacaaaAaAc 

=(5/13 )(2/12)(2/12)(2/12)(2/12)(2/12)(2/12)(1/12)(1/12)(1/12)(2/12)(1/12)(2/12) 

= l.10431E-11. 

M: 

0-0)-·······~ 

M': 

8c,G 

Figure 10. Transformation from Mto M '. 
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4.3 Probabilistic Methods 

4.3.1 Greedy Algorithm 

In probabilistic methods, instead of comparing strings, the algorithms measure 

and compare the information content of candidate motifs with a greedy approach. Hertz 

[Hertz 99] implemented an algorithm to find the highest information contents with a pure 

greedy algorithm that tests gene sequences one by one and selects the alignment with the 

highest information content from each sequence. This algorithm assumes that exactly one 

motif exists in every sequence and the motif length is already known (mononucleotide 

model). 

An advantage of this algorithm is its efficiency on finding motifs of high 

information content over string-based methods. A disadvantage is its lack of flexibility on 

finding motifs; a prior knowledge such as motif width is required and the algorithm 

cannot apply for any other models such as gapped motifs. 

The greedy algorithm generated very successful result in [Hertz 99]. The 

experiment is validated and it has 19 out of 24 expected motifs with width of 22. The 

three out of five missing motifs are found to be overlapped with one of expected motifs. 

Greedy Algorithm: 

Input: set of sequences S = {s1, ••• sm,· .. , sk}, where 1 < m <= k and width of motif L. 

1. Calculate information content of all possible motif candidates with length of L in 

the set of sequences Sincluding a set of motif S' (initially S' is empty): 

fseq mJ = L ~=IL re (A,T,C,G) P(sm,J, ;, r) log2 P(sm,j, i, r)IQ(sr), 

where j is a starting index of possible motif candidates in sequence Sm. 
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2. Select a motif that has the highest information content, 

Remove the sequence Sm from the set Sand add Sm,j to S' as following, 

s (t)= s(t-1) -{sm} and S' (l)= s,(H) +{sm,j}. 

3. Continue this step 1 and 2 until the setSbecomes empty (ktimes). 

Example of Greedy Algorithm: 

Figure 11 shows the example of Greedy algorithm with three different sequences. 

Matrices in the figure are alignment matrices. In each cycle the largest information 

content motif is selected and added into the alignment matrix. 
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CYCLE 1 

CYCLE 2 

A 
C 
G 
T 

CYCLE 3 

sequence I 

ACTGA 
sequence 2 

TAGCG 
sequence 3 

CTTGC 

"~ 

ACTG 
TAGC 

l 1 0 0 
0 1 0 1 
0 0 1 1 
1 0 1 0 

lwq = .us 

A 
C 
G 
T 

A 
C 
G 
T 

ACTG 

A 1 0 0 0 
C o J O 0 
a o o o 1 
T O O 1 0 

ACTG 
ACCG 

2 0 0 0 A 
0 1 1 0 C 
0 l o. 2 G 
0 n 1 0 T 

lHq = •l.2 

I 
ACTG 
AGCG 
CTTG 

2 0 0 0 
1 1 1 0 
0 1 0 3 
0 1 2 0 

'""I= 3.2 

ACTG ACTG 
CTTG 1.' ·1· G C ---·-
1 0 0 0 A 1 0 0 0 
J 1 0 0 C 0 1 0 l 
0 0 0 2 G {) 0 1 1 
0 1 2 0 T 1 I 1 0 

faeq = ~-2 /Rq = 2.8 

ACTG 
AGCG 
TTGC 

A 2 0 0 0 
C 0 1 1 l 
G 0 1 1 2 
T 1 1 1 0 

/Mq ==- 2.1 

Figure 11. Example of Greedy Algorithm [Hertz 99]. 

4.3.2 EM Algorithm 

EM algorithm [Lawrence et al. 90] optimized a greedy algorithm into two steps: 

estimating base frequencies of motif in each position with current set of motif candidates 
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and maximizing likelihood of set of motif by changing the starting position of each motif 

candidate so that its base population satisfies the estimated base frequencies. By 

considering a set of motif candidates in a group of sequences at once, EM algorithm can 

detect correlated motifs. 

An advantage of the algorithm is its enhanced capabilities and computational 

simplicity that is linear in the number of sequences. EM algorithm (see Section 3.2) is 

applied to motif finding; where X is a set of sequences, Y is a starting position of motif 

and e is base frequency. This model enhances the motif finding capability by adding the 

second variable; adding variable-length gaps in the missing variable Y, we can obtain 

gapped motifs. On the other hand, this algorithm requires a prior knowledge such as a 

proposed motif set by statistical or biological analysis initially, because initial set of motif 

is very important to obtain accurate result. 

An experiment [Lawrence et al. 90] shows that EM algorithm can detect motifs 

successfully. The experiment is done on 18 sequences with length of 105 and a motif was 

expected to have a width of 22. The result identified motifs correctly in 16 out of 18 

sequences. 

EM Algorithm: 

Input: set of sequences S= {s1, ... sm, ... , sk}, where 1< m <= k and width of motif L. 

1. Initially, set a motif starting positionj for each sequence sm in S, according to a 

proposed motif set. 

2. Model the set of sequences with information measurement lseq, 

lseq = k"fJ=/i re(A,T,C,G} f(s ;,r)logeP(s i,r) + 
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k(M-L)I re{A.T,C,G}f(s 0, r )logeP(s o. r), 

and f(s J,r) = P(s J.r) = nj,rl k, f(so,r) = P(so,r) = no,rl k(M-L), wherej= 0 denotes 

background, M is a length of sequence, lJJ. r is the number of bases r at position j, 

the function f is observed base frequency and the function P is our parameter. 

Calculate population frequencies of each position of motif candidates by summing 

probability that is obtained by Bayes fonnula shown below: 

P(y mJ-1 I P(s r,iiq>, Sm)= P ( Sm I Y mJ=l, P(s r,iiq)) I 

(IM-lj= IP ( Sm I Y mJ=l, P(s r,;)'q)), 

wherey ,,,J-1 ifa motif starts atj,y mj= 0 otherwise and 

P( Sm I Y mJ-1, P(s r,lq)) = fl]= 1IT re{A,T,C,G} P(s r,i)Vrj+t,m,, 

where j <= t<=j+L , therefore, t is relative index within the motif candidate. 

The probability is used as weight and added across the positions to find the 

expected number of bases for each position. e1, r(q) = E(n1, r I P(s1, riq-1), S). 

(Estimation Step) 

3. Now, adjust the number of bases in a set of motif that we obtained from the last 

step by changing starting positionj so that we can maximize /seq· (Maximization 

Step) By changing the starting positions of motif, P(s1• r) is updated. If P(s1. riq+l) is 

different from previous P(s1• r)'q>, go back to Estimation Step. 

4. Repeat step 2 and 3 until it converges. 

Example of EM Algorithm: 

Figure 12 (a) shows a model of motif alignment and background in EM algorithm 

with 10 sequences that have 40 bases in length. We look for a motif with width of 8. In 
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L 

estimation step, count the number of each base and create alignment matrix. In 

maximization step, we sum the probability of each position as Figure 12 (b ). 

The formulas are given in step 3. As an example, obtain probability of having A at first 

sequence of first index at iteration q. The first motif starts from index 12, so we have, 

P( S1 I Y 1.12=1, P(s 12,Aiq)) = 07= 1TI re{A,T,C,G} P(s j,,lrJ+t,m 

=(# of At 2>110(# ofTi13>110 ... (# ofC)<J>110 ... (# of Ai8>/lo, then 

By normalizing probability in Figure 12 (b), we will get expected number of base A at 

motif position 1. 

Therefore, adjust starting position of motifs so that there is only one A in the first column 

of motif set. 

s,;, 

S12,A, S13,T,• .. , Sj,C,•• ,, Sw,A 

r ... _ ----~~:.JS::<··::-~;::-:-•/•J,.:)Ji:;)':"•-••-" <-f-- •-ill 

(a) 

Motif 

1 2 ... j ... 8 
A .13 .45 
T .33 .33 
C .12 .18 
G .59 .22 

(b) 

Figure 12. Example of EM Algorithm. 

56 



4.3.3 Gibbs Sampling 

Gibbs sampling [Lawrence et al. 93] [Liu et al. 95] is similar to EM algorithm, 

however, Gibbs sampling only considers one element at a time, rather than summing all 

possibilities of each positions in a motif candidate like the EM algorithm does. This 

process reduced the time complexity. The algorithm improved performance of the EM 

algorithm by drawing a motif from all possible candidate motifs with weighted likelihood 

of generating motifs under current motif sets instead of taking a motif that maximizes the 

likelihood. As a result, Gibbs sampling is less likely to be trapped in local optima than is 

the EM algorithm. Also, the algorithm does not require a prior knowledge of the motif set 

as a default but only requires a set of sequences. The algorithm can also detect the width 

of motifs by running algorithm with different width on the same input. The algorithm can 

also apply to detect gapped motifs by taking account of relative positions with motif 

starting position within a sequence in likelihood analysis. 

The experiment shows that Gibbs sampling is able to detect a set of motifs 

correctly and to handle gapped motifs and widely spread weakly conserved motifs. For 

instance, a set of 30 proteins is tested with different width and the algorithm detects 

motifs with width of 21 as the highest information content. The detected motifs are very 

close to the known motifs with width of 20. 

Gibbs Sampling Algorithm: 

Input: set of sequences S = {s1, ••• sm, . .. , sk}, where 1 < m <= k. 

1. Initially, set a motif starting positionj for each sequence sm in S randomly. 
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2. Select a sequences= and exclude it from the set S. Obtain pattern description P(s;,r) 

(also known as profiles in 4.1) and background P(s,) as, 

P(s;.,)= L7=j (n;,r+ b;)l(k-l+B) and P(sr)= r,''J= 1 (n,j + bj)l((k-l)(M-L)+B), 

where n . is the number of base r at position i, Mis a length of sequence, L is a r.1 

width of motif, i is index that is excluded from motif set, bj is a pseudocounts (to 

avoid condition log2 0 = oo) at position/ and Bis sum of b1. 

(Estimation Step) 

3. Let x be a motif that is generated by s= by all possible j. Draw a position j based 

on probabilities of generating motif x under the current motif set, Px = Pr(xl Sm, 

81,) and probabilities of generating motif x by the background probability of Bo, 

Q.,. = Pr(xl Sm, Bo). A weight Ax is calculated by Ax = Pxl QT and normalize the 

probability distribution by A.;=Axl IM-L+l ;=1 Ax,i· We use information content, 

l scqx ="i,~ = jL re (A.T.C.G} n;, r log2 P(s;, ,)/ P(s,), to obtain Ax. (Maximization Step) 

4. Repeat step 2 and 3 until it converges. 

Example of Gibbs Sampling: 

In this example, we have l O sequences with length 20 and look for motif with 

width of 5 (Figure I 3 (a)). In estimation step, a sequence z is selected and we obtain the 

number of base at each position in a motif set and the background model (sequence z is 

excluded) as Figure I 3 (b ). ln maximization step, we calculate all possible information 

content of motif set including a motif from z. As an example, we obtain information 

content that starts at index 3 in sequence z. Let z be sequence { GCTGTGAACCGT .... }. 

Then we have P(s1,r )=( 4+ 1 )log2(4+ 1/l 0)/.25=5, P(s2,G)=(3+ 1 )log2(3+ 1/10)/.25=2. 75 , 
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P(s3.T)=( 1 + 1 )log2(l + 1/10)/.25=-.64, P(s4,a)=(3+ l)log2(3+ 1/10)/.25=2. 75, 

P(s3.A)=(O+ 1 )log2(0+ 1/10)/.25=-1.32 

and information content for motif that includes z with motif starts at index 3 is: 

We normalize IC3 over other starting index ICj and obtain probability of having motif 

that starts at 3 in sequence s=: 

A sampled motif in s= may not always maximize the over all information content, 

however, a motif with higher information content is more likely selected. 

s. 
S2 

S3 

s=· 

Background 
S10 

(a) 

,. 2 3 4 5 Backoround Model 

A 1 3 2 2 0 0.25 
T 4 0 2 2 0.25 
C 2 3 1 2 3 0.25 
G 2 3 5 3 4 0.25 

(b) 

Figure 13. Example of Gibbs Sampling. 
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4.3.4 Gibbs Motif Sampling 

Gibbs motif sampling [Neuwald et al. 95] can detect multiple motifs 

simultaneously by partitioning motif-encoding regions into different motifs with a prior 

knowledge of number of occurrences of each motif. There is a high demand on detecting 

widely spread weakly conserved motifs, because it often reveals important structural or 

functional roles of motif models. The paper [Neuwald et al. 95] mainly discusses protein 

sequences, however, the algorithm can be applied to DNA sequences as well. In this 

section, we define different group of motifs to be motif models since we discuss multiple 

groups of motifs in the algorithm. Also, we define motif candidates as sites. 

The algorithm uses two samplings: motif sampling and column sampling. 

Alternatively applying these two sampling methods, we can obtain convergence more 

eff ecti vel y. Motif sampling partitions sequences into motif models and background 

regions and column sampling adjust width of the site in motif sampling. After the 

algorithm converges, we will calculate significance of each motif in the motif models and 

rank them for future analysis. 

Experiments are done on some protein sequences and show the effectiveness of 

algorithm. The algorithm detects highly significant motifs by converging three motif 

models with width of 12; 66, 35 and 63 motifs are obtained from 258 sequences. Also, 

the algorithm obtained 130 repetitive motifs with width of 11 varying in one to nine 

residues (same as bases in DNA sequences) by running on 32 bacterial iomps that past 

algorithm (BLAST [ Altschul et al. 90]) could not detect any similarity among them. 
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Gibbs Motif Sampling Algorithm: 

Input: set of sequences S = {s1, ... Sm, ••• , Sk}, where I< m <= k, the number of motif 

models, the width of motifs L; and O <j <= L;, and the expected number of motifs 

in each motif model e;. 

1. Initially, set e; of sites for each model M; in the Sand Mo denotes background 

model. 

2. [Motif Sampling] Target probabilities (also known as profiles in 4.1) {Jj, r for each 

model M; and the background q, are calculated based on current motif model 

alignments. (JJ,r= (n1.,+ b,)l(c +B), where n1,, is a count of baser at positionj, br 

is a pseudocounts of baser (to avoid condition logi O = oo), c is the number of 

sites in the alignment and Bis the total number of base pseudocounts. 

A site x is selected randomly from S ( or in a succeeding process, x is succeeding 

site in S), if the site is within one of motifs in the motif alignment, remove the site 

from the alignment and recalculate the target probability. 

3. Sample one of motif models (including background model Mo) proportional to a 

likelihood, L(x, M;) that the selected site x is derived from the models and given as, 

L(x, M;) = (p;/1- p;)Ilj= 1 (q;, 1, ') / q;,,-), wherep/(1- p;) is a posterior probability 

that x belongs to the model M; andp; is obtained initially by e;IC;, where C; is the 

total number of possible site in sequences, CFL~ = rmax(O, Um-L;+ 1) and Um is a 

length of sm. p; is updated as the iteration goes on; p ',- ( c;+ a;)!( C;+ A;), where c; is 

the number of motifs in the motif models and a; and A; are psuedocounts and they 

are given as, a;= (e;•W)/(1- W) A;= (C;•W)/(1- W) and W= 0.8 by default. q;,J. 'J 
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is a target probability of observed base rj that is in selected site x at positionj of 

model M; and q ;, 'J is its background target probability. 

4. [Column Sampling] Select a motif y randomly or proportional to how poor the 

information content of the motif is in the previously selected motif model M;. 

Remove the motif y temporary from the alignment. 

5. Select a site z with the largest width that does not belong to any motif models. 

Calculate information contents with all possible (Lz-L,+ 1) motif width within z 

and sample a site z' proportional to how rich the information content of motif is, 

n~ = I [f(n;, 'J + b'J)/ q;, ,), r function is obtained from [Liu et a/. 95]. 

6. If the selected site z' is subsequence (or the same) of x then replace y with z', 

otherwise y is restored in Model i and z' is used as motif x in Motif Sampling in 

the next iteration. The step 2 to 6 is repeated until it converges. 

Example of Gibbs Motif Sampling: 

Figure 14 demonstrates Gibbs Motif Sampling step by step. 
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(1) Initially, motif sets are assigned in a group 
of sequences (Step I). In this sample, 
rectangulars represent M1, blackests represent 
M2 and ovals represent M3 and the background 
becomes M0• A site x is selected randomly ( or 
succeeded from the last iteration) and a motif 
model that x belongs the most likely is 
selected by Motif Sampling (Step 2 and 3 ). In 
this example, M1 is selected 

(2) A site y is randomly selected from M1 and 
y is temporary removed from the alignment 
(Step 4). 

(3) The largest width site that belongs to 
background model Mo is selected as z (Step 5). 

( 4) Within the region z, a higher information 
content site with width of M1 is selected as z' 
by Column Sampling (Step 5). However, the 
site z' is not in the same region with the site x. 

Figure 14. Example of Gibbs Motif Sampling (continue). 
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(5) The samplings failed. The site y is restored 
into M1 and the site z' becomes the next target 
site x (Step 6). Since the site x overlaps with 
alignment motif model Mi, the site y is 
removed from the alignment (Step 1 ). 

(6) Motif sampling detected that x is the most 
likely in M2 (Step 2 and 3) and randomly a site 
y is selected from M2 (Step 4 ). 

(7) Temporary remove the site y and a site z is 
selected as the largest width site from 
background model Mo. 

(8) By Column Sampling, a site z' is detected 
(Step 5) and the site z' shares the same region 
with the site x. 

Figure 14. Example of Gibbs Motif Sampling (continue). 
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(9) The site z' is added to Mi (Step 6). y 
becomes the next site x and new iteration 
begins. 

Figure 14. Example of Gibbs Motif Sampling. 
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5. CONCLUSION 

To summarize characteristics and differences of the algorithm studied, two tables 

are developed as follows: comparisons of algorithms in clustering (Table 2) and motif 

finding (Table 3 ). 

In general, the first-generation clustering algorithms: hierarchical clustering, 

K-means algorithm and SOM, are popular among erbiologists because they had been 

applied in some other fields' data mining before and the implementation is simple 

[Moreau et al. 02]. However there are some cases that they cannot handle, such that there 

are some vectors in a small range and quality guaranteed clustering is required, datasets 

involves some experimental errors etc. The second genation clustering algorithms are 

especially developed for clustering over gene expression profiles to manage these cases. 

The algorithms are tend to be more computationally expensive as they offer more 

flexibility on their performance; however, a priori knowledge on datasets may overcome 

the drawback. [Yeung et al. 01] states that the model based clustering can reduce 

computational time by customizing methods for well-known or common experiments. 

Motif finding algorithms have to handle varieties of motif types: mononucleotide 
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model, multiple motif models, gapped motifs, palindrome motifs and widely spread weak 

motif etc.; algorithms were developed to manage each type of motif. [Heiden et al. 98] 

states that probabilistic method such as Gibbs sampling is not always efficient. String 

method is considered to be narve in terms of its computational efficiency; however, 

probabilistic methods may take about the same time, because probabilistic methods tend 

to be trapped by local optima and we need to run programs several time with different 

initial conditions to validate the result. In spite of its exhaustive approach, string-based 

method is pref erred when we detects short motifs. 

On the other hand, more and more powerful probabilistic methods are developed. 

EM algorithm gave us a prospective approach by alternating estimation and 

maximization of the likelihood of motif positions, once the algorithm captures a correct 

pattern in a set of motif, next iterations favor further correct patterns [Neuwald et al. 95]. 

As the iteration goes on, correct patterns dominate the set of motif and improve its 

likelihood. A maximization of likelihood is applied to different features of motif sets (not 

only positions of motifs but also width of motifs, etc.) and new algorithm such as motif 

sampling can detect similarities among sequences that past algorithms could not detect. 

Every microarray experiment data has different nature of similarities and 

available prior knowledges, therefore, many different types of clusterings and motif 
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finding algorithms are applied. This thesis explored some representative algorithms used 

in microarray technology today. 
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6. APPENDIX: PSEUDOCODES LISTINGS 

K-means Clustering 

K_means_ Clustering(X, numOfClusters){ 
/* A set of vectors X and a set of cluster centers Y is represented by an object arrays that has 
vectors. Clusters are represented by linked-list array: CLUSTER[].*/ 
/* Step 1 */ 
/* randomly partition n-dimensional space---> randomly assign cluster centers*/ 
for(i = 1; i <= numOfClusters; i++) 

for(j = 1; j <= numOfObsetvations ;j++) 
Y [ i] .set(j, Random_ number _generator()); 

do { /* until the algorithm has converged */ 
/* copy and initialize the new cluster centers Y for the convergence test */ 
oldY = Y; 
Y.initialize(); 
/* for all vectors, assign to the nearest cluster center's cluster * / 
for(i = 1; i <= numOfGenes; i++) 

CLUSTER(MinEuclideanDistance(X, i, Y)].add(X[i]); 
/* Step 2: [Estimation Step] recalculate the cluster*/ 
ComputeClusterCenter (CLUSTER, Y); 
/* Step 3: [Maximization Step] reassign the vectorsXinto clusters corresponding to the new 
cluster centers. */ 
for(i = I; i <= numOfDenes; i++) 

CLUSTER[MinEuclideanDistance(X, i, Y)].add(X[i]); 
}while(Compare(oldY, Y) =false);/* compare Yif it was the same as last time or not*/ 
return CLUSTER; 
} /* end function K_means_Clustering */ 

/* return the index of nearest cluster center's cluster Y[k] */ 
MinEuclideanDistance(X, i, Y){ 
for(k= I; k <= numOfClusters; k++) 

Distance[k]=EucledianDistance(X[i],Y[k]); 
if(Distance[min] > Distance[k]) 

min= k; 
return min; 
} /* end function MinEuclideanDistance */ 

/* function EuclideanDistance returns the distance between two points*/ 
EuclideanDistance(x, y){ 

forG = I ; j <= numOfObsetvations ; j++) 
d =(x[i].get_x(j)+ y[k].get (j))2; 
Distance[k]=Distance[k]+d; 

d =sqrt(Distance[k ]); 
return d; 

} /* end function EuclideanDistance * / 
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/* function Compares two arrays if they are identical or not, if identical return true*/ 
Compare(oldY~ Y){ 

while(oldY[i] !=null) 
for(i = 1 ~ j <= numOfObseivation ;j++) 

if(oldY[i].get(j) = Y[i].get(j)) 
i++; 

else 
return false; 

return true; 
} /* end function Compare */ 

ComputeClusterCenter (CLUSTER, Y){ 
for(i = 1; i <= numOfClusters; i++) 

for(i = 1; j <= numOfObseivation ;j++) 
while(CLUSTER[i].get_x() != null) 

sum_X = sum_X +CLUSTER[i].get_xG); 
counter++;/* count the number of vector in a cluster*/ 
CLUSTER[i].get_next(); 

Y[i].set(j, sum_X I counter);/* take an average and store in each observation*/ 
sum_X = O; counter= O; /* initialization for the next obseivation */ 

return Y; 
} /* end function ComputeClusterCenter */ 

SOM (self-organizing map) 

SOM(X, numOfClusters, Y){ 
/* A set of vectors X and a set of cluster centers initial geometric shape grids Y is represented 
by an object array */ 
counter= 1; 
/* Step 2-1 : randomly select one of gene vectors and find the nearest cluster center. 
indexOfX[] has flag to tell if the index X[i] has already been selected or not. */ 
do{ /* until iteration reaches the maximum number of times*/ 

/* copy and initialize the new cluster centers Yfor the convergence test*/ 
oldY = Y; 
Y.initialize(); 
i = Random_ number _generator(); 

while(indexOtX[i] = 1) /* X[i] has already been selected, draw another i *I 
i = Random_number.generator()]; 

indexOfX[i] = 1/* set a flag for already drawn gene X[i] */ 
/* function MinEuclideanDistance returns index of Ythat is the nearest cluster. */ 
p = MinEuclideanDistance(X, i, Y); 
/* Step 2-2: update cluster centers ¥ proportional to the distance to X; *I 
/* functionP decreases (from 3) linearly with some function with respect to counter (the 
number of iteration). Other coefficients are given above. */ 
learn ingRate=O. 02 *MaxNumlteration/ (MaxNumlteration+ I 00 *functionP( counter)); 
for(j= 1; j <= numOfObservation ; j++) 

newLocation=Y[k].getG)+leamingRate*EuclideanDistance(Y[p],Y[k])* 
(EuclideanDistance(X[i], Y[k]); 

Y[k].set(j, newLocation); 
counter++; 
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if(Compare(oldY, Y) =true)/* convergence test*/ 
return Y; 

} while( count < Max.Numlteration); 
return Y; 

} /* end function SOM*/ 

Model-based Clustering 

Model_ based_ Clustering(X){ 
/* A set of vectors, X is represented by an object array. result[ ][ ] has clustered vectors in 
linked list */ 
/* Step 1: preprocess the data with hierarchical clustering according to logarithmic likelihood 
*I 
Hierarchical_ Clustering(X); 
/* Step 2: try n possible models for different number of clusters 2 to k *I 
for(t = 2; t <=k; t++) 

result[] ][t] = K_means_Clustering(X, k); 
result[2][t] = ............... ./* try other models*/ 

result[n][t] = ............... . 

/* Step 3: calculate BIC (Bayesian Information Criterion) and print them for further analysis 
*/ 
/* BIC compares all possible n models in one time*/ 
for(t = 2; t <=k; t++) /* for each number of clusters*/ 

Print(CalculateBIC(t, result[] ][t], result[2][t], ... , result[n][t])); 
} /* end function Model_based_Clustering */ 

Hierarchical Algorithm 

Hierarchical_ Clustering(X){ 
/* A set of vectors X is represented by an object array (size in icceil(lgN)+tL I, where 
N umOfGenes = N) and stored in biologically related order. Each object has pointers to a 
dataset table (DistanceTable) and their child nodes, and a vector x. When the vectors are 
merged and their parent node is created, the vectors' obsolete flag becomes true.*/ 
do{ /* until there is only one gene in a data table*/ 
/* Step I: Construct Euclidean distance table*/ 

for(i= I; i <= numOfGenes; i++) 
if(X [i].obsolete() !=true)/* if the vector i is not obsolete, compare with other vectors*/ 

forG= l;j <= numOfGenes ;j++) 
if(X [j].obsolete() != true) 

if(i!=j) 
distanceTable[i][j]= oo; 

else 
distanceTable[i][j]=EuclideanDistance(X[i], X [j]); 

/* Step 2: Merge the shortest distance pair into one gene vector*/ 
shortestDistance = Distance Table[ I][ I]; /* initialize the shortest distance value * / 
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for(i= I; i <= numOfGenes; i++) 
for(j= 1; j <= numOfGenes ; j++) 

if( distanceTable[i] Li] < shortestDistance) 
shortestDistance = distanceTable[i][j]; 

/* merge X[i] and X[j] into new (parent) node X[numOfGenes +l] */ 
if(i = j) /* case there is only one gene in the distance table */ 

return X; 
else 

for(k= 1; k <= numOfDbservation; k++) /* for all observations take an average*/ 
X [numOfGenes].set_x((X[i].getX(k) + X[j] .getX(k))/2, k); 

numOfGenes++; /* new node created */ 
I * set pointers of parent node to a merged pair X[i] and X[j]. */ 

X [ numOfGenes] .setLCPointTo(X[i]); 
X[numOfGenes] .setRCPointTo(X[j]); 

/* X[i] and X[j] are obsolete since they are merged.*/ 
X[i] .setObsolete(); 
X[j] .setObsolete(); 

}while(i != j); 
} /* end function Hierarchical_ Clustering * / 

Quality-based Clustering 

Quality _based_Clustering(X, minNumGenes, diameter_d){ 
/* A set of vectors Xis represented by an object array and cluster centers are stored in array Y. 
Clusters are represented by object array CLUSTER[ ] and it has a gene index and vectors in 
the linked-list array. Jackknife correlation is stored in two-dimensional array. When gene is 
a lready selected, set oo to avoid being selected by the same cluster center. */ 
/* Step I : preprocess the data and obtain standardized X *I 
for(i = 1; i <= numOfGenes; i++) 

sum = O; 
forU = I ; j <= numOfObserv~tion;j++) 

sum = sum + X(i].get_xU); 
mean = sum/ numOfObservation; 

sum= O· 
for(j = i'; j <= numOfDbservation; j++) 

sum = sum + (mean-X[i].get_ xG))1'2; 
sigma = sqrt(sum/numOfObservation-1 ); 
/* obta in standard deviations */ 

forU = J; j <= nurnOfObse~ation; j++) 

X[i].set xU, X[iJ .gct_x(1)- mean); 
X[i].set=x(j, X[i].get_xU) I slgmu); 

/* Step 2: Calculate jackknife correlation */ 
for( i = I ; i <= numOfGenes; i++) 

for(j = 1 ;j <= numOfGenes; j++) 
min= EuclideanDistance(X[i].get_x(j)); /* initialize minimum value */ 
for(k = 1; k <= numOfGenes+l; k-H-) 

/* function EuclideanDistance has polymorphism functions and when it has the 
second argument, it eliminates term in index k when it calculates distance */ 

if(i != j) 
d = EuclideanDistance(X[i].get_x(j), k); 
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if(d < min) 
min= d; 

jackknife[i][j] = min; 
/* Step 3: find a greatest jackknife correlation gene to every one of genes */ 
/* find a pair of genes x, and xi that have a minimum jackknife correlation and set the average 
as cluster center of cluster C, */ 
do{ /* until there are no more clusters that meet minimum number of vectors*/ 

t++; I* increment an index of array CLUSTER */ 
tempCLUSTER.empty(); /* initialize a temporary cluster set */ 
for(i = 1; i <= numOfGenes; i++){ /* all genes can be a temporary cluster center i *I 

/* use a temporary jackknife for temporary CLUSTER sets*/ 
/* the same genes can be selected by different index i in temporary CLUSTER[i] */ 

tempJackknife =jackknife;/* reset tempJackknife to be original jackknife*/ 
min= tempJackknife[i][l]; /* initialize minimum correlation*/ 
if(tempJackknife[i][l] <= 1) /* if the gene does not belong to any cluster yet*/ 

for(p = 2; p <= numOfGenes; p++) 
if (min> tempJackknife[i][p] && tempJackknife[p][l]!= oo && diameter d > 

tempJackknife[i][p] && i != p) -
min= tempJackknife[i][p]; 

tempCLUSTER[i].add(X[i]); /* first, add the current cluster center i *I 
if(diameter_d > tempJackknife[i][p]) 

tempCLUSTER[i].add(X[p]); /* second, add selected vector*/ 
I* set null so that next time it is not selected in next step on current cluster center*/ 

tempJackknife[p][l] = oo; 
ComputeClusterCenter(tempCLUSTER, Y); 
cluster_center = Y[i]; 
/* Step 4 */ 
do{/* until there are no more vectors that meets threshold d *I 

min= EuclideanDistance(tempJackknife[i][l], cluster_center); 
for(q = 2; q <= numOfGenes; q++) 

if (i!= q && tempJackknife[q][l]!= oo && min> 
EuclideanDistance(tempJackknife[i][q], cluster_center)) 
min= EuclideanDistanceGackknife[i][q], cluster_center); 

if(min < diameter d) 
tempCLUSTER[i] .add(X[ q]); 
/* set null so that the next time it is not selected in this for loop*/ 
tempJackknife[q][l] = oo; 
ComputeClusterCenter(tempCLUSTER, Y); 
cluster center = Y[i]; 

}while(min < diameter_d); 
} /* end for i * / 

/* Step 6*/ 
max= O; max.NumOfDenes = O; 
for(i = I; i<= numOfDenes; i++)/* find the largest cluster*/ 

if( max.N umOfGenes < tempCLUSTER[i].count() ){ 
maxNumOfDenes = tempCLUSTER[i].count(); 
max= i; 

if(max.NumOfDenes >= minNumGenes) 
CLUSTER[t] = tempCLUSTER[max]; 

/* set to selected genes to be null so that the gene k is not selected in further iteration */ 
do{ 
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jackknife[CLUSTER[t].get_index()][l] = 2; 
}while(CLUSTER[t].get_next() != null); 
tempJackknife =jackknife;/* renew jackknife correlation table */ 

/* if there still cluster that satisfies minimum number of genes, continue the loop */ 
}while(maxNumOfGenes >= minNumGenes); 
return CLUSTER; 
} /* end function Quality_ based_ Clustering*/ 

EuclideanDistance(x, y, k){ 
forU = 1 ; j <= numOtobseivations ; j++) 

ifU!=k) 
d =(x[i].get_xG)+ y[k].get (j))2; 
d =sqrt(Distance[k]); 

return d; 
}/* end function EuclideanDistance */ 

SOTA (self-organizing tree algorithm) 

SOTA(X, threshold_h){ 
/* A set of vectors X is represented by an object array and cluster centers are stored in array Y 
that forms tree. Y is array object that has vectors X and the index of parent and sibling * / 
/* Step 1 : create the root by taking an average of all vectors */ 
for(i=l; i<= numOfGenes; i++) 

CLUSTER[i].add(X[i]); 
ComputeClusterCenter(CLUSTER, Y); 
/* Step 2: create two child nodes from the root*/ 

root= Y[l]; 
copy(Y[ 1 ], Y[2]); 
copy(Y[ 1 ], Y[3]); 
Y[2].setParentTo( 1) 
Y[2].setSiblingTo(3) 
Y[3 ].setParentTo( 1) 
Y[3] .setSiblingTo(2); 

/* Step 3 */ 
do{ /* until it converges*/ 

old_e = e; /* initialize error rate for the convergence test*/ 
counter= I; 

do{ /* until all vectors are selected; one epoch*/ 
/* randomly select X[i] */ 
i = Random_ number _generator(); 
while(indexOfX[ i] = 1) /* i has already been selected, draw another i *I 

i = Random_number.generator(); 
indexOfX[ i ] = 1 
/* function MinEuclideanDistance returns index of Ythat is the nearest cluster to X[i] */ 
winning = MinEuclideanDistance(X, i, Y); 
/* Update the winning cluster, its parent and sibling with proportional to the distance to 
X[i], coefficients are obtained from step 3. */ 
R[winning] = R[winning] + X[i].get_xG)-Y[winning].get_xG)]; 
countVectors[winning] ++;/*increment counter of vectors in a cluster*/ 
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Y[winning].set(j, Y[winning].get_x(j) + 0.01 *(X[i].get_x(j)-Y[winning].get_x(j))); 
node = Y[winning][j].getSibling(); 
node.set(j, node.get_x(j) + 0.001 *(X[i].get_x(j)- node.get_x(j))); 
node= Y[winning][j].getParent(); 
node.set(j, node.get_x(j) + O.OOS*(X[i].get_x(j)- node.get_x(j))); 

} while(counter != numOfGenes); /* one epoch*/ 
/* Step 4 */ 
k = 1; 
while(k<= numOfGenes && counter[k]>O) 

R = R[k]/countVectors[k++]; 
k = 1; 
while(k<= numOfGenes && counter[k]>O) 

e = R[k++ ]+e; 
---initialized array Rand counter --­

}while(( e-old_e )/ old_e >= threshold_h); 
return Y; /* process is converged*/ 

} /* end function SOTA*/ 

Adaptive Quality-based Clustering 

Adaptive_ Quality _Based_ Clusteimg(X, minNumOfGenes, significance_level_h){ 
/* A set of vectors X and a set of cluster centers Y is represented by an object arrays that has 
vectors. Clusters are represented by linked-list array: CLUSTER[]. */ 
/* Step 1 */ 
min_radius = sqrt(numOfObservation -1) /2; 
/* Step 2 */ 
do{ /* until there is cluster that satisfies the minimum number of vectors*/ 

I terationCounter = 1; 
do { /* until locate cluster into proper place*/ 

for(i=l; i<= numOfGenes; i++) 
if(X[i].obsolete() = false) 

CLUSTER[j].add(X[i]); 
ComputeClusterCenter(CLUSTER, Y); 
cluster_center = Yfj]; 
if(I terationCounter = 1) 

delta_radius = (maxEuclideanDistance(Y,j, X)-min_radius)/fraction_radius; 
/* shrink the Cluster by delta_radius */ 
radius= maxEuclideanDistance(Y,j, X)-delta_radius; 
/* clear cluster once and pick up vectors that are inside the cluster*/ 
CLUSTER[j].delete(); 
for(i=l; i<= numOfGenes; i++) 

if(EuclideanDistance( cluster_ center, X[i])<radius) 
if(X[i].obsolete() = false) 

CLUSTERfj] .add(X[i]); 
/* Step 3 */ 
old_cluster_center = cluster_center;/* keep last cluster center for convergence test*/ 
ComputeClusterCenter(CLUSTER, Y); 
cluster center= Yfj]; 
/* remove all genes in cluster} from the space*/ 
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if(Compare(old_cluster_center, cluster_center) = false) 
if( Di stance( cluster_ center, X [i])<radius) 

X[ i] .set_ obsolete(); 
}while(Compare(old_cluster_center, cluster_center) = true II IterationCounter <= 50 II 

radius> min_radius); 
if(CLUSTER[j].empty() = true) /* Step 6 */ 

return CLUSTER;/* relocating cluster does not converge*/ 
/* Step 5 *I 
radius= min_radius; newRadius=radius; /* initialize radius*/ 
/* obtain Pc from distribution of distance between cluster center and vectors*/ 
while(radius != lastRadius){ 

/* Estimation Step */ 
/* measure distance between vector i that belongs to the cluster and the cluster center 
and, and calculate likelihood.*/ 
for(i= 1; i<= numOfGenes; i++) 

if( Distance( cluster_ center, X[i]}<radius) 
if(X[i].obsolete() = false)/* if vector is not taken by other cluster already*/ 

CenterToVectors = Distance(cluster_center, X[i]) + CenterToVectors; 
count Vectors++; 

else 
if(X[i].obsolete() = false) 

CenterToBackground=Distance( cluster_ center,X[i])+ 
CenterToBackground; 

if(countVector < minNumOfVectors) /* cluster does not have enough vectors*/ 
radius=lastRadius; 
break; 

else 
readus=newRadius; 

Pc = CenterTo Vectors/CenterToBackground; 
Pb= l - Pc; 
mean= Pc_b/numOfGenes; 
sum= O; 
for(i= l; i<= numOfDenes; i++) 

for(j = l; j <= numOfObservation; j++) 
sum =sum+ (mean-X[i].get_x(j)}2; 

sigma = sqrt(sum/numOfObservation-1 ); 
PrC=Formulal(Pc,sigma); 
PrB= Formula2(Pb,sigma); 
/* Maximization Step*/ 
newRadius = Formula3(PrC,PrB,significance_level_h); 
lastRadius = newRadius; /* keep the last radius for convergence test * / 

} /* end while*/ 
/* empty cluster once, pick up all vectors within the radius and store them in cluster*/ 
CLUSTER[j].delete(); 
CountGenes = O; 
if(EucledianDistance(cluster_center, X[i])<radius) 

if(X[i].obsolete() = false) 
CLUSTER[j].add(X[i]); 
/* genes in the cluster are removed from the space for the next iteration * / 
X[ i] .set_ obsolete(); 
countGenes++; 
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j++; /* obtain next cluster */ 
}while(countGenes >= minNumOfGenes); 
return CLUSTER; /* Step 6 */ 
}/* function Adaptive_Quality_Based_Clusteirng */ 
/* Refer to formulas (I), (2) and (3) above for subfunctions Formula I, Formula2 and 
Formula3. */ 

String Method 

String_Method(S, L){ 
/* A set of sequences S is stored in two-dimensional string array and significant motifs with 
length of L is stored in an object array MOTIF that has motif sequences and z-scores */ 
/* Step 1: By Staden's algorithm count the occurrence of all possible 4L strings N_t [] and the 
number of sequences that contain at least one motif candidate t of N_sq [ ]. Assume array 
dictionary[ ] already contains all possible string oflength L with {A,T,C,G} */ 
t=l; 
while(t <= 4L){/* for each possible string t *I 

for(m= 1; m<=numOfSequence; m++){ /* for all sequence in S */ 
forU= I ; j <= lengthOfSequence-(L +I); j++ ){/* for all location in sequence s * / 

for(k=l; k <= L; k++)/* for all indexofstringt */ 
if(S[m][k+j] = dictionary[t][k]) 

matched++; 
if(matched >= L-1) /* string t found within S[m] and at most one substitution */ 

N_t[t]++; 
flag= true;/* there is at least one string t found in sequence S[m] */ 

matched= O; 
} /* end for j * I 

if(flag == true) 
N_sq[t]++; 

flag = false; 
} /* end for m * / 
t++; I* go to the next possible string t *I 

} /* end while */ 
/* Step 2: construct DNF and find probability p_t */ 
do{ /* do for all possible string t */ 

/* Step 2-1 : construct DNF that accepts string t with sequence m * I 
M = ConstructDNF(dictionary, t, S, m); 
/* Step 2-2: construct object array A[ ] [] that has a pattern a; and ak and count of 
occurrence, as a first order Markov Chain */ 
m = Random_nwnber_generator(); /* randomly select a sequence from S */ 
/* count the number of occurrence of pair a; and ak *I 
for(j= I ; j <= lengthOfSequence-1; j++) 

for(i=l; i <= 4; i++) 
for(k=l; k <= 4; k++) 

if(A[i][k].get_a_i() = S[m]U]) 
if(A[i][k].get_aj() = S[m]U+ I]) 

A[i][k].incrementO; 
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/* to obtain probability divide the count by length of sequence-I */ 
for(i= J: i <= 4; i++) 

for(k= I; k <= 4; k++) 
A[i][k ].set_prob(A[i][k ].get_ count()/JengthOfSequence-1 ); 

M = TransformM(M,A[i][k]); /* Step 2-3: transform M to M ' */ 
I* traverse DNF and detennine the probability of occurrence of string tin randomly selected 
sequence S[m]. */ 
p _ t[t]=Traverse(M); 
/* Step 3: calcu late z-score */ 
Z[t) = (N_t[t]-N_sq[t]) / (N_sq[t](l-p_t[t]))112

; 

t++: 
}while(t <= 4L): 

/* create an object array MOTIF for only significant strings*/ 
s= I : 
for(t= I : t <= 4\ t++) 

if(Z[t] > I) 
M OTIF[s++] = CreateMotif(Z[t], dictionary[t]); 

return MOTIF; 
}/* function String_Method */ 
/* pseudocode for subfunctions: ConstructDNF, TransformM and Traverse are omitted, please 
refer to an example in the next section. */ 

Greedy Algorithm 

G reedy _ Algorithm(S,L){ 
/ * A set of sequences S is stored in an object array that has a two-dimensional string array, 
starting index and information content of motif candidate in the sequence. Motif is copied into 
array MOTIF (S ' ) as soon as it is considered to be significant. Array M has a motif profile of a 
set that has a lready selected as MOTIF and array P has a temporary motif profile and array Q 
has the background model. */ 
/* Step I and 2 */ 
for(k= 1; k<= numOfSequences; k++) 

m= MaxlnfonnationContent(S,L,P) 

/* once the highest information content is found in sequence m, it is removed from S *I 
S[m] set obsolete(); 
/* subsequence oflength Lin S[~] is copied into array MOTIF[] */ 
Copy(MOTIF[k], S[m).get_mot1f())'. . . * 
/* count the number of bases ~or next 1terat1on / 
,. c·= S[ ] cl stnrtlndex(); 1<= S[m].get_startlndexQ+L; i++){ 
,or I rn .g _ . . , , I[ ){')++· 

if(S[m].getBase(1)= ~) tv a .\ , 
if(Slm l .gcrOnsc(i)== '1 ') M(tJ[•)-1 I·; 

if(S[mJ.gctBasc(i)==~ 'C') M[_cll1.]++; 
if(S[m].getBase(i)= 10 1

) MlsJ[11++; 
}/* function Greedy _Algorithm */ 

/* return array Q that has a background model */ 
C reateBackgroundModel(S,P){ 
for(m= J; m <=numOfSequence; m++) 

forU= I ; j <=lengthOfSequence; j++) 
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if(S[m].getBaseG)= 'A') Q[a]++; 
if(S[m].getBaseG)= 'T') Q[t]++; 
if(S[m].getBaseG)= 'C') Q[c]++; 
if(S[m].getBaseG)= 'G') Q[g]++; 

m = Total(P)/L; /* calculate the number of sequence involved so far */ 
/* subtract total number of bases in motif from the background*/ 

for(base=a; basee (a,t,c,g); next base)/* for all different bases*/ 
Q[base]=(Q[base]-SubTotal(P,base))/(m*(lengthOfSequences-L)); 

return Q; 
} /* end function CreateBackgroundModel */ 

/* returns object that has maximum information content with its starting index*/ 
MaxlnformationContent(S,L,P){ 
/* Array M has the number of bases in the motif set. Array P hold the number of each base 
initially, then it has information content of each base*/ 
for(m=l; m<=numOfSequence; m++) 

if(S[m].obsolete() = false) 
for(j= I; j<=lengthOfSequence; j++) 

Copy(P,M); /* initialize base counter array P */ 
/* obtain alignment matrix */ 
for(i=j; i<=j+L; i++) /* index in array P, i is relative index ofj *I 

if(S[m].getBase(i)= 'A') P[a][i-j+ I]++; 
if(S[m].getBase(i)= 'T') P[t][i-j+l]++; 
if(S[m].getBase(i)= 'C') P[c][i-j+l]++; 
if(S[m].getBase(i)= 'G') P[g][i-j+l]++; 

Q = CreateBackgroundModel(S,P); 
/* obtain information contents*/ 

IC= O; 
for(i=j; i<=j+L; i++){ /* index in array P, i is relative index of j *I 

for(base=a; basee (a,t,c,g); next base)/* for all different bases*/ 
P(base][i-j+l]=(P[base][i-j+l]/(numOfMotifFound+l))logi((P[base][i-j+l 
]/( numOfMotitFound+ 1 ))/Q(base ]); 

IC= IC+ P[a)[i-j+l]+ P[t][i-j+l]+ P[c][i-j+l]+ P[g][i-j+l]; 

if(max < IC} 
max= IC; 
maxSeq = m; maxStartlndex = j; 

S [ m]. set_ start( maxStartlndex ); 
return m; 
} /* end function MaxlnformationContent */ 

Total(P){ 
for(base=a; basee (a,t,c,g); next base} 

for(k=l; k<=4; k++) 
n=n+P(base] [k ]; 

return n; 
}/* function Total */ 

SubTotal(P,base){ 
for(k=l; k<=4; k++) 

n=n+P[base][k]; 
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return n; 
}/* function Total */ 

EM Algorithm 

EM_Algorithm(S,L){ 
I* A set of sequences S is stored in array of object that has a rv.:o-dimensional string array, start 
index (that is a lready given in itia lly)*/ 
do { 

/* Step 2: Estimation Step */ 
/* Count each di ffe rent bases of each different position in motif cand idates. Pr[][ ] contains 
base frequency of each position of motif */ 
P = CalculateMoti fprofile(S,L) 
Pr = CalculateFrequency(S,L,P); 
/* Step 3: Maximization Step*/ 
newP = CalculateFunctionP(S,L); 
---adj ust) (starting positions) to satisfy estimated base frequency Pr --­

}while(Compare(P, newP)=false); /* if the function P is not the same*/ 
return S; 
} /* function EM_Algorithm */ 

CalculateFrequency (S,L,P){ 
Q = C reateBackgroundModel(S,L); 
for(m= l ; m<= numOfSequence; m++) 

for( i=S[m].get_startlndexO; i<=L; i++) 
base = S[m].getBase(i); 

/* i- S(m].get_startlndexO+ I is the index that is considered to be starting point in Bayes 
formula*/ 

Pr[base][j] = Pr[base]Li ] + Baye'sFormula(S,m,i- S[m].get_startlndexO+ l ,P); 

return Pr; 
}/* function CalculateFrequency */ 

CalculateMotifProfile(S,L){ 
for(m= l ; m<=numOfSequence; m++) 

for(j= l ; j <= lengthOfSequence; j ++) 
/ * obtain alignment matrix (count the number of each base)*/ 
for(i=j; i<=L; i++) /* index in array A, ; is relative index with)*/ 

if(S[m].getBase(i)= 'A') P[a][i- j+ l )++; 
if(S[m].getBase(i)= 'T') P[t][i- j+ l]++; 
if(S[m].getBase(i)= 'C ') P[c][i- j+ l]++; 
if(S[m].getBase(i)= ' G' ) P[g][i- j+ l]++; 

fo1·(base=a; basee (a,t,c,g); next base) 
for(i=j ; i<=L; i++) 

P[a][ i-j+l )= P[a][i-j+ 1)/numOfSequence; 
return P; 
} /* function CalculateFunctionP */ 

Bayes Form u la(S,m,k,P) { 
ProbOfPositionK = l ; 
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for(i=k; i<=L+k; i++) 
probOfPositionK= probOfPositionK*P[S[m].getBase(i)][i]; 

ProbOfDtherPositions = I; 
for(i= 1; i<=lengthOfSequence; i++) 

ProbOfDtherPositions = ProbOfOtherPositions*P[S[m].getBase(i)][i]; 
sum = sum+ ProbOfOtherPositions; 

return ProbOfPositionK/ProbOtOtherPositions; 
} /* end function BayesFormula */ 

Gibbs Sampling 

GibbsSampling(S){ 
I* A set of sequences S is represented by an object array that has a two-dimensional string 
array. */ 
/* Step 1 */ 
for(m= 1; m<=numOfSequence; m++) 

S[m].set_startlndex(Random_number_generator()); 
/* Step 2: Estimation Step*/ 
do { /* until converges * / 

iterationCounter++; 
oldS = S; /* store last motif set for convergence test*/ 
/* once al I sequence has been selected, clear counter and index and start from beginning * / 
if( iterationCounter =numOfSeq+ I) 

iteration Counter= l; 
for( q= l; q<=numOfSequence; q++) 

sequencel ndex[ q]=O; 
/*select a sequence z that has not been selected randomly*/ 
z = Random_number_generator(); 
while(sequencelndex[z] = true) 

z = Random_ number _generator(); 
sequencelndex[z]= true;/* set a flag to mark the sequence to be already selected*/ 
P = ObainProfiles(S,z); 
Q = ObtainBackgroundProfile(S,P); 
/* Step 3: Maximization Step*/ 
/* calculate a probability of starting position j by the information contents measurement 
and set it in array IC[ ]*/ 

forU= 1; j<=lengthOfSequence; j++) 
S[z].set_startlndexG); 
IC[j] = CalculateIC(S,P,Q,z); 

--- draw j proportional to the probability calculated above --­
S [ m] .set_ startlndexG); 

}while(Compare(oldS, S)); 
}/* function GibbsSampling */ 

ObainProfiles(S,z) { 
for(m=l; m<=numOfSequence; m++){ 

if(m !=z) /* exclude S[z] */ 
/* obtain alignment matrix*/ 
j= S[m].get_startlndex(); 
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for(i=j; i<=j+L; i++){ /* index in array P, i is relative index toj *I 
if(S[m].getBase(i)= 'A') P[a][i-j+l]++; 
if(S[m].getBase(i)= 'T') P[t][i-j+l]++; 
if(S[m].getBase(i)= 'C') P[c][i-j+ 1]++; 
if(S[m].getBase(i)= 'G') P[g][i-j+l]++; 

for(i=j; i<= j+L; i++) 
for(base=a; basee (a,t,c.,g); next base)/* for all different bases*/ 

P[base][i]=(P[base][i] )+pseduoCount)/(numOfSequence-1); 
return P: 
} /* function ObtainProfile */ 

ObainBackgroundProfiles(S,z){ 
for(m= I; m<=numOfSequence; m++) 

if(m !=z) /* exclude S[z] */ 
/* obtain alignment matrix*/ 
j= S[m].get_startlndex(); 
for(i= I; i<=lengthOfSequence; i++){ 

if(i< S[m].get_startlndexO && i> S[m].get_startlndex()+L){ 
if(S[m].getBase(i)= 'A') P[a][i]++; 
if(S[m].getBase(i)= 'T') P[t][i]++; 
if(S[m].getBase(i)= 'C') P[c][i]++; 
if(S[m].getBase(i)= 'G') P[g][i]++; 

for(i= I; i<= lengthOfSequences; i++) 
for(base=a; basee (a,t,c,g); next base)/* for all different bases*/ 

P[base][i]=(P[base][i]+pseduoCount)/lengthOfSequences; 
return Q; 
} /* function ObtainBackgroundProfile */ 

CalculateIC(S,P,Q,z){ 
/* let P be algihtment matrix of motif set */ 
for{i= 1; i<= lengthOfSequences; i++) 

for(base=a; basee (a,t,c,g); next base)/* for all different bases*/ 
P[base ][ i]= P[base ][i] *(numOfSequences-1) -pseudoCount; 

/* obtain alignment matrix including S[z] start atj */ 
j= S[m].get_startlndex(); 
for(i= j; i<= j+L; i++) 

if(S[z].getBase(i)= 'A') P[a][i-j+ 1 ]++; 
if(S[z] .getBase(i)= 'T') P[t][i-j+ 1 ]++; 
if(S[z].getBase(i)= 'C') P[c][i-j+l]++; 
if(S[z].getBase(i)= 'G') P[g][i-j+ l]++; 

for{i= 1; i<= L; i++) 
for(base=a; basee (a,t,c,g); next base)/* for all different bases*/ 

IC=IC + (P[base][i])log2((P[base ][i]/numOfSequence)/Q[base]); 
return IC; 
} /* end function CalculateIC */ 
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Gibbs Motif Sampling 

GibbsMotifSampling(S,numOfModel,width,expectedNumOfMotifs){ 
/ * A set of sequences Sis stored in an object array that has a two-dimensional string array and 
sets of motif is in an object array MOTIF[ ]. width and expectedNumOfMotifs are stored in 
array width[ ] and expectedNumOfMotifs[ ] . To avoid overlapping, sequence S has flag that 
indicates whether it is included in motif or not by passing start index and its motif width.*/ 
/* Step I : initially e, numbers of set of motifs are located randomly*/ 
for(i= I: i<= numOfModels; i++) 

for(n= I: n<= expectedNumOfMotifs[i]; n++) 
AssignRandomSites(S); 

/* Step 2: [Motif Sampling] Estimation Step: obtain probability distributions*/ 
/* define an initial sampled site x */ 
seq I ndexX = Random_ number _generator(numOfSequences); 
start I ndexX = Random_number _generator(lengthOfSequence); 
do {/* until converges*/ 

/* store current value for next convergence test */ 
lastSeqX =seqlndexX; lastStartX=startlndexX; 

lastSeqZ =seqlndexZ; lastStartZ=startlndeXZ; 
/ * if site x is already in the alignment (selected as motif candidates), remove the motif 
candidate that overlaps with x from the alignment.*/ 

if(S[seqlndexX).get_flag(startlndexX,widthX) = true) 
S[seqlndexX].reset_flag(start~ndexX,widthX); 
for(i= 1; i<= numOfModels; 1++) 

P[i] = ObainProfiles(S,0); 
Q = Obta inBackgroundProfi le(S ,P); 

/* Step 3: [Motif Sampling] Ma~imization Step: draw a motif ~ode! _*/ 
/ * initialize a posterior probability an~ the total number of possible sites*/ 

for(i= J; i<= nurnOIMoclcls; 1++){ . 
for(i= I ; j <= numOfScq11cnccs; J++) . . . . 

tota!NumOfPoss ibleSitcs:-lcnglhOfScqucnce[J]- widfb[i ]+ 1' 

if(max< tota!NumOfPossiblcSites) 
max=totalNumOfPossibleSites; 

totalNumOfPossibleSites[i]=max; 
if(posterirProb[i] =O) 

for(i= I; i<= numOfModels; i++) 
posterirProb[i] = expectedNumOfMotifs[i] 

/totalNumOfPossibleSites[i]; 
for(i= 1; i<= numOfModels; i++) 

L[i]=CalculateLikelihood(S,P,seqlndexX,startTndexX,totalNumOfPossibleSites, 
po steriorProb ); 

--- draw a model i proportional to likelihood calculated above ---
/* update a posterior probability for given selected model i *I 
posteriorProb[i] = (numOfMotifs[i)+ pseudocount)/totalNumOfPossibleSites + 

sumOfPseudocount) 
I* Step 4 : [Column Sampling] Estimation Step: select one of motif candidates in model i *I 
seq Index Y =Random_ number _generator(numOfMotifs[i]); 
s iteY=MOTIF[i)[seqlndexY); 
/* remove site y temporary from alignment*/ 
numOfMotifs[i] -; 
M OTI F[i)[numOfMotifs[i]].remove _ site(seqlndexY,startlndexY); 
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/* Step 5: [Column Sampling] Maximization Step: select a highest information content site 
from the largest width site that belongs to background.*/ 

forG= I; j<= numOtMotifs[O]; j++) 
if(max < MOTIF[O]U].get_ width()) 

max = MOTIF[O][j].get_ width(); 
z=j; I* select largest width segment z */ 

seqlndexZ=MOTIF[O][z].get_index(); 
startindexZ=MOTIF[O][z].get_startindexO; 

for(n = O; n<= widthZ; n++) 
I C=CalculatelnformationContent(S,P,widthZ,seqlndexZ,startlndexZ +n ); 
if(max <IC) 

max =IC; 
maxStartlndexZ= startlndexZ+n; 

/* Step 6: merge two samplings; if two samplings selected the same region, replace site x 
with site y, otherwise, restore y that previously removed from alignment and use site z as 
next site x *I 

if(seqlndexX= seqlndexZ) 
if( startl ndexX =maxStartlndexZ) 

startlndexX = startlndex Y; 
seqlndexX= seqlndexY; 

else 
startlndexX = startlndexZ; seqlndexX seqlndexZ; 
numOfMotifs[i]++; 
MOTIF[i][numOtMotifs[i]].set_site(seqlndexY,startlndexY); 

}while(seqlndexX!= lastSeqX II startlndexX!= lastStartX II seqlndexZ!= lastSeqZ II 
start I ndexZ ! = lastStartZ); 
return MOTIF; 
} /* function GibbsMotifSampling */ 

AssignRandomSites(S){ 
m = Random_number_generator(numOfSequences); 
startl ndex = Random_ number _generator(lengthOfSequence ); 
while(S[m].get_flag(startlndex,width[i]) = true) 

m = Random_ number _generator( numOfSequences ); 
startl ndex = Random_ number _generator(lengthOfSequence ); 

S[m].set_flag(startlndex,width[i]); 
S[m].set_MotifModelld(i); 
numOtMotifs[i]++; 
MOTIF[i][numOfMotifs[i]].set_site(m,startlndex); 
} /* AssignRandomSites *I 

CalculateLikelihood(S,P,L,m,startlndex,totalNumOfPossibleSites,posterirProb){ 
/* let P be algihtment matrix of motif set */ 
for(i=I; i<= lengthOfSequences; i++) 

for(base=a; basee (a,t,c,g); next base)/* for all different bases*/ 
P[base] [ i]= P[base] [i] *( numOfSequences-1 )-pseudoCount; 

/* obtain alignment matrix with site x start*/ 
for(i= startlndex(); i<= startlndex +L; i++) 

if(S[m].getBase(i)= 'A') P[a][i-startlndex + I]++; 
if(S[m].getBase(i)= 'T') P[t][i-startlndex +I]++; 
if(S[m].getBase(i)= 'C') P[c][i-startlndex +I]++; 

89 



if(S[m].getBase(i)= ~G') P[g][i-startlndex +I]++; 
for(i= startlndex; i<= L; i++) 

likelihood=likelihood*(posterirProb[m]/(1-posterirProb[m]))*((P[S[m].getBase(i)][i]/m)/Q 
[S[m].getBase(i)]); 

return likelihood; 
} /* end function CalculateLikelihood */ 

Calculate In formationContent(S,P,L,seqlndexZ,startlndexZ){ 
/* let P be algihtment matrix of motif set */ 
for(i= 1; i<= lengthOfSequences; i++) 

for(base=a; basee (a,t,c,g); next base)/* for all different bases*/ 
P[base][i]= P[base][i]*(numOfSequences-1)-pseudoCount; 

/* obtain alignment matrix with site z */ 
for(i= S[seqlndexZ].get_startlndexQ; i<= startlndexZ +L; i++) 

if(S[seqlndexZ].getBase(i)= 'A') P[a][i-startlndexZ+ I]++; 
if(S[seqlndexZ].getBase(i)= 'T') P[t][i-startlndexZ+l]++; 
if(S[seqlndexZ].getBase(i)= 'C') P[c][i-startlndexZ+l]-H-; 
if(S[seqlndexZ].getBase(i)= 'G') P[g][i-startlndexZ+l]-H-; 

for(i= I; i<= L; i++) 
for(base=a; basee (a,t,c,g); next base)/* for all different bases*/ 

IC=IC + (P[base][i])log2((P[base][i]/m)/Q[base]); 
} /* end function CalculatelnfonnationContent */ 

90 



VITA 

Megumi Igarashi 

Candidate for the Degree of 

Master of Science 

Thes is: A SURVEY OF CLUSTERING AND MOTIF FINDING FOR 
M ICROARRA Y TECHNOLOGIES 

Major Field: Computer Science 

Biographical: 

Personal Data:Born in Tochigi, Japan, On January 23, 1973, daughter of Takao 
Igarashi and Yoko lgarashi. 

Education:Graduated from Omiya Koryo High School, Saitama, Japan in 1991; 
received Associates of Science from Miles Community College, Montana 
in May 1998; received Bachelor of Science from Oklahoma State 
Univcrsiry, Oklahoma in May 2002. Completed the requirements for the 
Master of Science degree at the Computer Science Department at 

Oklahoma State University in July 2004. 

Experience:Employed as a desktop publisher at Kurashiki Print,n~ Company, 
Tokyo Japan Apri l 1993 through December l 996 and May 1998 through 

January 1999. 




