
A SURVEY OF CLUSTERING AND MOTIF FINDING

FOR MICROARRAY TECHNOLOGIES

By

MEGUMI IGARASIIl

Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

2002

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
July 2004

A SURVEY OF CLUSTERING AND MOTIF FINDING

FOR MICROARRAY TECHNOLOGIES

Thesis Approved:

Thesis Adviser

II

PREFACE

Microarray technologies are widely used experimental techniques in functional

genomic research. The experiments generate a large amount of data and efficient

computational methods are required. Experimental data are clustered into similar

biological functional groups and common subsequences (motifs) are detected among

them to find subsequences that affect functions of the genomes.

This thesis is a survey of commonly used algorithms in the two processes.

Clustering algorithms: nearest neighbor clustering (K-means clustering, SOM

(self-organizing map) and model-based clustering), agglomerative clustering

(hierarchical clustering and quality-based clustering), divisive clustering (SOTA

(self-organizing tree algorithm) and adaptive quality-based clustering).

Motif finding algorithms: string-based method, greedy algorithm, EM

(expectation-maximization) algorithm, Gibbs sampling and Gibbs motif sampling.

Each algorithm's advantages, disadvantages and experimental results are discussed in

each section. Finally, comparisons of the algorithms are made in a conclusion.

iii

ACKNOWLEDGEMENT

I would like to express my appreciation to my thesis adviser, Dr. H. K. Dai for his

patience, guidance and assistance. I would like to extend my appreciation to

committee members Dr. J.P. Chandler and Dr. M. H. Samadzadeh.

Also~ I am thankful to my family and friends for their encouragement.

iv

TABLE OF CONTENTS

I . INTRODUCTION I

2. MICROARRAYS

2. 1 Molecular Biology 4

2.2 DNA to Proteins 4

2.3 Microarray Experimental Method 6

2.3. I cDNA Microarrays 7

2.3.2 Oligonucleotide Arrays 8

3. CLUSTERING

3. I Cluster1·ng Aloor1'thms ... 9 ::,

3 .2 General Description of EM Algorithm I 0

3.3 Nearest Neighbor Clustering

3 3 I K-means Cluster1·ng .. 12 . . '

3.3.2 SOM (Self-organizing Map) 16

3.3.3 Model-Based Clusteing 19

3.4 Agglomerative Clustering

3.4.1 Hierarchical Clustering 25

3.4.2 Quality-Based Clustering 28

3 : Divi ive Clustering

'"

3.S.2 J\ L\<'\,)\\\ t Qualit) ~8 u ed C lustering 38

V

4. MOTIF FINDING

4.1 Information Contents .. 45

4.2 String Method ... 47

4.3 Probablistic Method

4.3.1 Greedy Algorithm ... 51

4.3.2 EM Algorithm ... 53

4.3.3 Gibbs Sampling .. 57

4.3.4 Gibbs Motif Sampling .. 60

5. CONCLUSION ... 66

6. REFERENCES ... 71

APPENDIX: Pseudocode Listings ... 74

vi

LIST OF TABLES

Table 1 Currently Available Parameters in MCLUST·························· 22

Table 2 Comparison of Clustering Algorithms··· 69

Table 3 Comparison of Motif Finding Algorithm··· 70

Figure I

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

LIST OF FIGURES

Biological Process from DNA to Proteins··· 5

Overview of cDNA Microarray ·· ··· · · · ·· ·· ··· ··· ·· ··· ··· ·· ··· · ···· ·· · ·· ··· ··· ·· · ·· ·· ··· ··· · 7

K-means Clustering··· 15

Principle of SO Ms ·· ··· ····· ··· ··· ····· ··· ·· · ·· ·· ··· ··· ·· ·· · · · · ·· ··· ·· ··· ·· 19

Example Result from the Experiment···· .. ··· 21

Example of Hierarchical Clustering · ··· ·· ··· ··· ·· ·· · ·· ··· ··· ·· ··· ·· · ·· ··· ·· · ·· ··· · · · ·· ·· 28

Example of SOTA··· 38

Relocation of Cluster in Adaptive Quality-based Clustering ··· ·· · ·· ··· · · ··· ·· 44

Example of Motif Candidates of Width 3 ··· 46

Figure JO Transformation from M to M' .. ········ ····· ····· ·· 50

Figure 11 Example of Greedy Algorithm · ··· ··· ·· ... ·· .. · ... ·· ·· · · ·· ·· · · · ·· · ·· · .. ·· ·· · · · · · · · · · · · · .. · · 5 3

Figure 12 Example of EM Algorithm · ... ·· ·· · ·· ... ··· ·· ··· ··· · · ··· ·· ··· ··· ·· ··· ····· ··· ··· · · ··· ··· · · ·· 56

Figure 13 Example of Gibbs Sampling···· ... ······· ··· 59

Figure 14 Example of Gibbs Motif Sampling····················· 63

vii

1. INTRODUCTION

Studies of infomiation science, statistics and computer science are applied to

molecular biology to help biologists process large and complex data sets m their

experiments and databases. This study is known as bioinformatics and its goal 1s a

knowledge acquisition from genomic data: gene sequences, protein interactions and

protein folding. This paper is a survey on some representative algorithms in microarray

technologies that are commonly used for knowledge acquisition from gene sequences.

DNA (deoxyribonucleic acid) sequencing technology has been improving greatly

and the entire human genome was sequenced in 2001. The number of known gene

sequences in public databases has been increasing exponentially. However, knowledge

about the genes grows at a slow rate [Kohane et al. 03)[Ermolaeva et al. 98). There is a

high demand on effective manipulation and analysis of large data sets in a functional

genomic research.

One of the main goals of current genomic research is identifying gene functions.

Genes are specific regions in DNA sequences and they have necessary information to

produce proteins that develop cells in organisms. Unraveling and modifying genes

enhance our ability in scientific fields. For example, we may be able to cure a currently

incurable serious disease by detecting the disease in gene sequences in early stage and

rewriting a gene sequence to make malfunction proteins work properly rather than

maintenance complex protein sequences [NOVA 01].

Microarrays are widely used experimental techniques to identify gene functions

because they can compare tens of thousands of genes at a time. Microarrays generate

gene expression-levels of many different genes to show similarity of the gene activities in

different stages of the biological process. Similarities of the gene activities imply their

biological functional similarities. We classify genes into the same functional groups and

analyze sequence patterns to find statistically significant segments (motifs) that

commonly appear in groups of genes and control gene activities. However, efficient

computational and statistical techniques are necessary to analyze a large amount of data

and to understand complex data patterns [Moreau et al. 02).

There are mainly two computational processes in microarray technologies:

clustering and motif finding. Clustering classifies genes into certain biological functional

groups by observing gene expression-levels. Using the result from the clustering, motif

finding analyzes a group of the gene sequences and identifies motifs among the same

group of genes. There are many different types of algorithms in the computational

processes, because each microarray experimental result has a different nature of

similarities and available prior infonnation. Therefore, choosing the appropriate

algorithms for analysis is a crucial element of the experimental design [Quackenbush O 1).

This paper wi ll introduce some representative algorithms th.at are emp\oyed in microarray

technologies with their advantages, disadvantages, experimental results and examples.

ln Chapter two, microarray technologies are briefly described. Its experimental

methods and applications are introduced with some molecular biology basics.

In Chapter three, representative clustering algorithms such as hierarchical

clustering [Eisen et al. 98], K-means clustering [Tavzoie et al. 99] , SOM (self-organizing

2

map) [Tamayo et al. 99], SOTA (self-organizing tree algorithm) [Herrero et al. 01],

model-based clustering [Yeung et al. 01], quality-based clustering [Heyer et al. 99] and

adaptive quality-based clustering [De Smet et al. 02] are described. Also, this chapter

presents general description of the EM algorithm that is widely used in both clustering

and motif finding algorithms.

In Chapter four, motif finding algorithms that use a likelihood or information

content measurements are discussed. A string-based method [Tompa 99], greedy

algorithm [Hertz et al. 90], EM algorithm [Lawrence et al. 90], Gibbs sampling

Lawrence et al. 93] [Liu et al. 95] and Gibbs motif sampling [Neuwald et al. 95], are

introduced as well as a concept of information content measurement.

3

2. MICROARRA YS

2.1 Molecular Biology

Molecular biology is a study of cells that compose all living-organisms in

molecular level. Nucleic acids (that contains DNA and RNA (ribonucleic acid)) and

proteins manage functions of the all organisms; nucleic acids encode and convey

information to produce proteins and proteins are in charge of the physical activities. DNA

is transcribed to RNA that is translated to proteins and proteins do all cell activities with

enzymes.

2.2 DNA to Proteins

DNA is a blue print of the organism activities. DNA has double strands (chains)

of DNA molecule and each DNA molecule is called nucleotide. The nucleotide consists

of a sugar, a phosphate, and a base. To identify each DNA molecule, we call it with one

of four bases: adenine (A), thymine (T), cytosine (C) and guanine (G) in computational

molecular biology. Each base in a single strand pairs with its own complement; adenine

always pairs with thymine and cytosine always pairs with guanine. Therefore, if there is a

single DNA sequence, it will anneal to a complementary sequence and be able to form a

double-strand DNA sequence.

A complete set of DNA sequences is called a genome. Genomes in any organisms

are long; E. Coli (bacterium) has 600,000 bp (base pairs) and the human genome has 3

billion bp approximately. Genomes are found in chromosomes in any cells in human

4

except for mature red blood cells. According to [HGP 04], about 99.9% of human

genomes are identical among all people and only 2% of genomes are encoding regions

that are cal led genes.

Human has 30,000-40,000 genes with length of 3,000 bp in average. Genes are

tagged with 3' and 5' at each end and there are upstream region and downstream region

in a gene. Upstream region is where motifs are usually found and it is also called control

region. Downstream region is composed by a sequence of codons that are groups of three

nucleotides. Each codon will be transcribed into corresponding mRNA (messenger

RNA).

mRNA is a single stranded and the structure is very similar to DNA. It is possible

to obtain DNA from mRNA. DNA transcription splices out intron that are regions of

genes that are not necessary in further biological process and the rest of genes are called

exon. A reverse transcribed DNA is called cDNA (complementary DNA) and it only

contains exon. As DNA is transcribed into mRNA, mRNA goes out from nucleus and

Chromosomes Cell

cDNA
Reverse Transcription

Proteins

3' 3'
mRNA

5' 5'

3' TAGCAGA......... 5'
5' ATCGTCT.......... 3'

Figure 1. Biological Process from DNA to Proteins.

5

moves to certain proteins called ribosomes. mRNA downstream is translated into proteins

in ribosomes. Figure l shows a summary of biological process from DNA to proteins.

2.3 Microarray Experimental Methods

One of advantages of microarray technologies is that microarrays are able to

directly measure gene activities that are involved in a particular mechanism or system.

Examples of such gene activities are transcription and translation; microarrays that use

transcription and translation for its expression-level measurement are called RNA

detection microarrays [Kohane et al. 03].

RN A detection microarrays work as following. A targeted tissues or cells are

chosen and its mRNA is extracted from their gene sequences. cDNA is reversely

transcribed by the mRNA and stored in each grid on a slide. These cDNA are called

probes. Transcription can be initiated externally by heat shock or stress. By sampling

produced mRN A in different time phase, we can measure how far the transcription has

done in each different gene sequences. Also, we can measure how far the translation has

done by checking how much RNA left in the produced protein in ribosomes.

Sample probes are fluorescently labled and hybridized with probes on the slides.

The sample probe only hybridizes with its complementary probe and rest of them will be

washed away. The brightness of the probes are measured by a laser scanner, converted to

quantitative numbers and recorded as an expression-level in a table that has genes in its

row and samples in its column. Each row is referred as a gene profile.

cDNA microarrays and oligonucleotide arrays are two main technologies of

microarrays. Following subsections describe the both technologies briefly with emphasis

6

on cDNA microarrays, because most of papers we refer in this thesis employed cDNA

microarrays.

2.3.1 cDNA Microarrays

cDNA microarrays are also called robotically spotted microarrays [Kohane et al.

03]. DNA sequences are amplified by PCR (polymerase chain reaction) so that more

information is available from the sequences. The gene profiles are derived from a certain

DNA of interest and mechanically cDNA is spotted on a slide glass. Two different probes

are used in each expression: test probes and reference probes (controlled probes). The

experiment data takes ratio of these two expression-levels. In RNA detection m.icroarray,

reference probes will be complete mRNA sequences and test probes will be sampled

DNA sequences from incomplete transcription stage or reference probes will be complete

mRNA sequences and test probes will be sampled mRNA sequences from incomplete

Extracted mRNAs
Reference

.... AUGCAAUUCCG ...

cDNA
.... ATGCAATICCG ...

Test

. ... UUGCACUACCG ...

000000000

Read out intensities separately and compute the ratio.
X/Y

Figure 2. Overview ofcDNA Microarray.

7

translation stage.

Advantage of this method is that we can customize target gene profiles for each

slide. We can put a larger piece of cDNAs or entire cDNAs on the chip. Disadvantage is

that we cannot obtain absolute quantities from the measurement since experiment result is

shown as a ratio of test probes versus reference probe.

2.3.2 Oligonucleotide Arrays

Oligonucleotide arrays are mass-produced and distributed by manufactures

[Kohane et al. 03]. Gene profiles are provided according to characteristics of

experiments: yeast genes, mouse genes, etc. The most popular product is the GeneChip®

(Affymetrix Inc., Santa Clara, CA) that allows us to compare more genes in a single

experiment than cDNA microarray because of its high density. Basic experimental

procedure is still the same, however, a pair of probes: mismatch and perfect match is

read, computed and intensity is recorded in absolute value.

Advantages of this technology are an availability of absolute value measurement

and its large capacity. However, this technology is more expensive than cDNA

microarray. Especially if target gene profiles are on two different slides, we have to do

the experiment twice, because current technology allows us to use one slide at a time in a

single experiment.

8

3. CLUSTERING

3.1 Clustering Algorithms

Once experiments give us gene-expression profiles, we can group them with

respect to their behaviors. Each gene profile is represented as a vector; ith gene profile

with n observations is represented as x; = [x;,1, x ;,2, ... , X;,n]. The vector is called a

gene-expression vector. Usually obtained expression-levels in each vector are normalized

over different observations and comparison between the gene-expression vectors is made

by Euclidean distance most commonly [Quackenbush O 1].

All clustering algorithms that we discuss in this thesis are considered to be an

unsupervised analysis, since they look for characterization of the components of the

dataset without a priori input such as particular priori patterns [Kohane et al. 03]. They

are technically classified into three groups: nearest-neighbor clustering, agglomerative

clustering and divisive clustering.

Nearest-neighbor clustering decides the number of clusters and cluster centers

initially, and gene-expression vectors are assigned into each cluster (K-means clustering,

SOM and model-based clustering). Agglomerative clustering is a bottom-up method; a

9

cluster is initially empty and genes are added into a cluster (hierarchical clustering and

quality-based clustering). D ivisive clustering is a top-down method; initially a large

cluster is created and it will be divided into small clusters (SOTA and adaptive

quality-based clustering).

Many of the algorithms in this thesis involve a likelihood analysis and EM

(Expectation-Maximization) algorithm [Dempster et al. 77], and they help algorithms

attain global optima from a large set of gene-expression vectors.

3.2 General Description of EM algorithm

The EM algorithm is a general method of finding a maximum-likelihood

estimate of parameters of an underlying distribution from a given data set when the data

is incomplete or has missing values [Bilmes 98].

Let X be a data set size of n such as X = {x1, x2, ••• , Xn}, the probability of

drawing X given by a set of parameters e is TI 7 = 1 Pr(x;j0). Most of the time, a

logarithmic-likelihood is used for its computational simplicity and written as log(Pr(Xl0)).

The likelihood function is represented as L(01X). To maximize the likelihood L, we need

to find 0 • such that,

• 0 = argmax L(e J;\J.
e

10

Next. we consider a hidden (or missing) data set Ywith an observable data setX.

A complete-data will be Z = (X, Y). Since there is no observable distribution in Y, Y is

dependent on X and e . Then Pr(zlfJ) = Pr(xJJlfJ) = Pr(yjx,e) Pr(xlfJ). Its likelihood

function will be L(fJ IZ) = L(fJIX,Y) = log(Pr(X,Yl8)).

We define a two-place function Q(e, 8 ') that maximizes the likelihood of set Z

with its parameter e, where e is an optimized variable set that maximizes the likelihood

of set Z and 8 ' is a temporary variable set that is used to estimate a likelihood in the

current random variable set Y. An EM algorithm obtains e, using two steps: Expectation

step and Maximization step. The algorithm alternates the two steps until the algorithm

converges.

Expectation step: we estimate a likelihood log(Pr(X,Y\0)) from the current random

variable Y and the current parameter e (i-1):

Q(e, g(i-1)) = £[log (Pr(X, Yi 0)) IX, g (i-1)]

= J y e r log(Pr(X, y\ 0))f(yµ', g <H))dy,

where f(yjX, e CH)) is a probability distribution function that governs the random variable

Y. By taking average of such y with the current parameter e <H>, we can estimate the

complete-data likelihood, log(Pr(X,Yj 6)).

Maximization step: X and e (i-t) are constant but Y is random variable. so adjust e to

11

obtain the maximized expectation. Then we will compute e (i),

The more accurate estimation we have, the more maximization we can make;

once we capture correct gene-expression vectors (or motif candidates in motif finding) in

the estimation step, right vectors (motif candidates) are obtained in the further

maximization step. Examples of EM algorithms are shown in sections 3.3.1, 3.3.3, 3.5.2,

4.3.2, 4.3.3, and 4.3.4.

3.3 Nearest-Neighbor Clustering

3.3.1 K-means Clustering

K-means clustering [Tavzoie et al. 99] partitions an n-dimensional space into K

clusters by EM algorithm, where K is the expected number of clusters and n is the

number of observations of gene-expression. All gene-expression vectors are assigned to

one of the clusters.

Advantages of this algorithm are that biologists can easily see the clusters in the

n-dimensional space and simplicity of computation; however, this algorithm requires the

number of clusters as a priori knowledge.

An experiment [Tavzoie et al. 99] shows that estimating the number of clusters

12

is difficult and suggests independent analyses: functional category enrichment and motif

searching to validate clustering. In the experiment, 3,000 genes from an oligonucleotide

array were categorized into 30 clusters and it took 200 iterations to converge by the

statistical software package SYSTAT 7.0 (SPSS). Each cluster had 49 to 186 genes and

successfully obtained some meaningful clusters, however, not all clusters showed

significant enrichment for functions. They concluded that the number of clusters

overestimated the diversity of biological expression classes in the dataset.

K-means Clustering Algorithm:

The algorithm employs the EM algorithm; where X is a set of gene-expression

vectors, Y is a set of cluster centers, and a set of parameters is partitions of clusters.

Input: a set of gene-expression vectors X = {x1, x2, .•. , x;, ... , Xm}, where 1 <= i <= m and

the number of expected clusters, K.

1. Randomly, partitions are created in an n-dimensional space to form K clusters,

where n is the number of observations in a gene-expression. Map the set of

vectors X into the space.

2. Its cluster centers Y = {y1, y 2, ••• , Yk, ... , yK}, where 1 <= k <= K, are calculated

by taking an average of the vectors in each cluster. (Estimation Step)

13

Yk = [(I 'i= 1 X;.1)/u, (I~= 1 X;,2)/u, ... , (I 1= 1 X;,n)lu],

where a cluster k has u vectors.

3. Reassign the set of vectors X into each cluster according to the new cluster center;

a vector x; will belong to a cluster that has the nearest cluster center, Yt.p from the

vector,

where n is the number of observations in a vector x. A function D calculates a

distance between X; and an arbitrary chosen cluster center Yk by Euclidean distance

measurement,

Y;,p = argmin (D(x;,Yk)).
y

Vector X; is assigned into the cluster that the nearest cluster center Y;,p belongs.

After all the vectors are reassigned into the clusters, repartition the space into

clusters, according to the vectors' locations that belong to the same cluster.

(Maximization Step)

4. Repeat the step 2 and 3 until the cluster centers Y become stationary.

14

Example of K-means Clustering Algorithm:

Figure 3 shows alternation of the expectation-maximization steps: continuous

changes of cluster centers and partitions. Gray dots represent gene-expression vectors and

black circles are cluster centers. The sequence of alternation demonstrates that some

vectors move from cluster to cluster as the process goes on.

First, assign a set of vectors in an n-dimensional space and partition the space

into four (Figure 3 (a)). The same numbers implies that they belong to the same cluster.

Cluster centers are calculated (Figure 3 (b)). The partition is removed. Assign the set of

vectors again into the space (Figure 3 (c)). Partition the space according to the vectors

that belong to the same clusters. Bold numbers imply that the vectors belong to different

(a)

(d)

.3 .. 3 •3
• •3

•3 •3•3 .. 3

(b)

(e)

Figure 3. K-means Clustering.

15

• I 4 I .. I
•I• l • I
•l ·Ie 0 I
• I .. I

...t •4•4
·4~ •4

·2·2 ·2
·2· ·2

.,3 .. 3 ·2"2
·3 ·3·3 ·3

•3
•3 ~.3 ·3

(c)

(f)

clusters from the last time (Figure 3 (d)). Recalculate and locate the cluster centers

again (Figure 3 (e)). The set of vectors are reassigned to the clusters and the space is

repartitioned accordingly (Figure 3 (f)).

3.3.2 SOM (Self-Organizing Map)

SOM [Tamayo et al. 99] is an application of neural network; cluster centers are

considered to be cells and vectors are used as inputs. In an n-dimensional space, SOM

initially locates a certain simple dimensional shape (such as a two-dimensional rectangle)

of grids into the space, where n is the number of observations of gene-expression vector.

The grids represent cluster centers. All gene-expression vectors are mapped into the space.

In each iteration, a vector is randomly selected and a distance between the selected vector

and each cluster centers are calculated. The nearest cluster center is moved toward the

selected vector. The neighboring cluster centers are also moved proportional to the

distance between each cluster center and the vector. The process continues until it

converges.

Advantage of the algorithm is that initial clusters are assigned with certain

geometrical shape of grids and biologists can estimate the shape from their observation of

plotted vectors in a space. Unlike K-means clustering, initial clusters are not assigned

16

randomly, therefore, the convergence is attained more efficiently. Disadvantage of this

algorithm is that the number of clusters has to be known.

The experiments [Tamayo et al. 99] were done on yeast (828 genes into 30

clusters) and hematopoietic differentiation (567 genes into 12 clusters and 1,036 genes

into 24 clusters). A similar yeast experiment had been presented earlier [Cho et al. 98]

with hierarchical clustering and [Tamayo et al. 99] used the same data sets to see an

accuracy of SOM. They stated that their result matches to hierarchical clustering result

very close. The hematopoietic differentiation experiment showed one of clusters

contained 32 genes with four duplicates and 18 genes were expected genes. A Web-based

software package GENECLUSTER was used in the experiments and it is available at

http://www.broad.mit.edu/cancer/software/software.html.

SOM Algorithm:

Input: a set of gene-expression vectors X = {x1, x2, ..• , x;, ... , Xm}, the number of

expected cluster Kand a geometrical shape of grids (cluster centers), Y= {y1, Y2, ... ,

Yk,··· ,YK}, where 1 <= i <= m and 1 <=k <= K.

1. Map the set of vectors X into an n-dimensional space, where n is the number of

observations in gene-expressions. Then map the simple geometry shape of grids Y

17

as initial cluster centers.

2. Train a set of clusters Y for the certain numbers of iterations or until the cluster

centers become stationary.

I. Randomly select a vector x; and choose the nearest cluster y;,p,

2)2 ()2] 1/2 D(x;,Yk) = 11 x;-ykll = [(x;,1-Yk,1) +(x;,2- Yk.2 + ... + X;J- YkJ •

A function D calculates distance between X; and an arbitrary chosen

cluster center Yk by Euclidean distance measurement,

Y;p = argmin (D(x;,Yk)).
y

2. Move clusters according to a learning function,

Fs(vk) = Yk + -r(D(yk, y;,p), s)(D(X;,Yk)).

Function Fs(yk) calculates position of cluster center Yk at s th iteration. 't

is a learning rate that decreases with distance of cluster center Yk from

Yi.p· -r(t,s) = 0.02T/(T+100s) fort= p(s), where Tis a maximum number

of iteration, p(s) decreases linearly withs and initially t=3.

Example of SOM:

Figure 4 shows a principle of SOM with initial geometry of clusters in

rectangular grid. Each grid is numbered and arrows show their location after algorithm

18

converged. The gene-expression vectors are represented by black dots.

. ' .
' I
l
' ' ' I
' I
1
' I
I

' \ .
•

Figure 4. The Principle of SOMs [Tamayo et al. 99].

3.3.3 Model-Based Clustering

The model-based clustering [Yeung et al. O 1] uses a statistical approach with

assumption that there are finite number of multivariate normal distributions (and the

number of distributions is the number of clusters) over gene-expression data. The

clustering chooses a model (sets of parameters) and the correct number of clusters by EM

algorithm (see Section 3 .2). Models are a combination of parameters: volume, shape and

orientation. Classical K-means clustering is an example of the equal volume spherical

model that is the simplest model and does not have any three of parameters as variables.

The algorithm performs EM algorithm on every possible models of different

number of clusters, compares the result by BIC (Bayesian Information Criterion)

19

[Schwarz 78] in different number of clusters and finds the best models with the number

of clusters. The EM algorithm estimates parameters by calculating a conditional

probability that each vector belongs to each cluster (Estimation Step), and adjusts

parameters to maximize the likelihood that the vectors belong to each cluster

(Maximization Step).

Advantage of this algorithm is its accuracy because a variety of combinations of

variables are available (Table I). The algorithm can choose models and the number of

clusters that fit to each dataset. Also, the algorithm is totally data-driven and the number

of clusters is not required as an input. However, the computational complexity is

quadratic.

[Yeung et al. 0 I] reports successful experiment results in their paper. Their

model-based clustering software MCLUST [Fraley 99] was compared to the leading

heuristic-based clustering CAST (Cluster Affinity Search Technique) [Ben-Dor 99] in

experiments of two different types of data sets: synthetic data and real microarray

experimental data. Synthetic data was created as a mixture of normal distributions to

verify the performance of the algorithm over different kinds of distributions.

In the experiment result of synthetic data, there were over-estimated number of

clusters, however, they claimed that the clusters were strongly related each other to form

20

one cluster that was statistically correct. In real gene-expression experiment, MCLUST

correctly chose the right number of clusters and model (384 genes into 5 clusters and 237

genes into 4 clusters; the model-based clustering usually reduces the number of genes by

preprocessing a set of genes by hierarchical clustering, therefore, more genes were

involved in the experiment than indicated above). In some data sets, MCLUST

outperformed CAST.

Figure 5 shows an example of the experimental result of real gene-expression data.

(Figure 5 (a)) shows that CAST predicted 6 clusters; however, (Figure 5 (b)) shows that

MCLUST predicted 5 clusters correctly.

The MCLUST is available at http://www.stat.washington.edu/fraley/mclust/.

-3000

06
-5000

05

04 -7000
-0

~
03 a:

l 02 ::II

u
-9000 iii

,;' -11000

"' 0 1 --H-EI
-13000 ---vi

00

-0 1
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 3

-15000

-0 · diagonal
~ EEE

number of clusten number or clusters

(a) (b)

Figure 5. Example Result from the Experiment [Yeung et al. 01].

21

Modeling Datasets:

Our assumption is that some underlying probability distributions generate each

component of gene-expresion vectors X. A likelihood of mixture model is defined as:

where K is the number of clusters, k is an index of cluster, 1tk is the probability of an

gene-expression vector belongs to kth cluster and defined as L f = 11tk=l and 1t,?= O,fi is a

density function of vectors x in given parameter 0. The parameter 0 is the Gaussian

mixture model and it is decomposed into two: mean vectors (cluster center) µk and

covariance matrix Lk= Ak Dk Ak Dl(parameters), where Ak is a scalar and controls volumes,

Dk is an orthogonal matrix of eigenvectors and controls orientation, and Ak is a diagonal

matrix, its values are proportional to eigenvalues and it controls shape. Each model is

represented by covariance matrix as shown in Table 1.

ID Model Volume Shape Orientation

EI ll equal equal NIA

VI 41 variable equal NIA

EEE lDADT equal equal equal

vvv T
4DkAkDk variable variable variable

EFV lDkADJ equal fixed variable

EEV lDkADJ equal equal variable

VFV lDkADJ variable fixed variable

VEY 4DkADJ variable equal variable

Table I. Currently Available Parameters in MCLUST [Fraley 99].

22

For example, VI (Aki), where I = Dk Ak Dl, can take volume of each cluster into account

and obtain tightly related group of vectors in one cluster. The functionfi is defined as

Model-Based Clustering Algorithm:

Input: a set of gene-expression vectorsX= {x1,x2, ••• ,x;, ... ,xm}, where I<=i <= m.

[Ghosh 02] presents an actual implementation of the model-based algorithm.

Let X be a set of gene-expression vectors and Y be a set of variables Y;.k that represents a

membership of x; and Y;,k =I if x; belongs to cluster k or y;,k =O otherwise. Let Z be the

complete data set of (X, Y). As we mentioned above, an EM algorithm is used to find the

best model that fits to the dataset X, however, to enhance efficiency and accuracy of the

EM algorithm, we usually use agglomerative hierarchical clustering (see Section 3.4.1) to

create initial dataset. Unlike normal hierarchical clustering, the hierarchical clustering

uses probability of genes that belongs to the same cluster instead of using Euclidian

distance to compare a pair of vectors.

1. Hierarchical Clustering: merge clusters that increase logarithmic likelihood / CL,

/ CL (01, ... , 0K, Ct, ••• , Cm I Xt, ... , Xm) = ll; 1fi;(X; 101)),

where c represents a membership of cluster, /; indicates a known membership of

23

L

cluster i and there are K clusters all together.

2. The following EM algorithm is done on all potential models with the different

estimated number of clusters.

Expectation Step: We estimate y1 that represents cluster assignment by

Maximization Step: We adjust x and 0 to maximize a likelihood of the complete

data, that is Led= 11 'i= 1 11 f = 1 (xkfi(x1 10k)) Y;,k, or its logarithmic likelihood is

m K
led = :E ;= 1 :E k = 1 Y;,k log(1tkfi(x; 10k)).

3. We select the best model with the suitable number of clusters by measuring

integrated likelihood of the models.

Integrated likelihood over different models are taken as,

where function p represents a probability that X is observed under model Mn, n is

a set of different models, 0n is parameters in a set of models n. The estimate 0n is

the maximized likelihood estimate for parameter 0n that is a clustered set of genes

we obtained from step 2. For example, ifwe haven= { 1, 2}, B12 = p{.X] Mi) I p(XI

M2) and if B12>l, Mi is more favored than M2. BIC {Bayesian Information

Criterion) [Schwarz 78] is used for computational simplicity.

24

2log p(X]Nl11)~ 2logp(X]011 ,Mn)- v,, log m = BIC11,

where v,, is the number of independent parameters obtained from covariance I:11,

and m is the number of vectors. The first term symbolizes a maximized mixture

likelihood model and the second term penalizes over-fitting from free variables.

3.4 Agglomerative Clustering

3.4.1 Hierarchical Clustering

Hierarchical clustering 1s one of the most widely used clustering algoritluns,

because the clustering process is graphically represented by a tree and it is easy to

observe clusters and clustering process for biologists. There are bottom-up and top-down

approaches in hierarchical clustering. In this thesis, we discuss bottom-up hierarchical

clustering [Eisen et al. 98], since it is more popular than top-down approach.

Initially, gene-expression vectors are ordered by simple methods of weighting

genes, such as an average expression level, maximum time taken to observe certain gene

expression level, or chromosomal positions, and we place the element with the lower

average weight earlier in the ordering. Then we calculate every pair of Euclidean distance

and create a table and merge the closest pair of gene-expression vectors with the

average-linkage method fSoka\ 581-

25

This algorithm's advantage is that it is simple, easy to implement and easy to

visualize the clustering process. However, it suffers from space complexity of data tables

and distortion of clusters by averaging original clusters.

The paper [Eisen et al. 98] shows that the algorithm is more successful on

properly ordered wide variety of observations than repeated observations. Experiments

were done on a growth response in human cell (8,600 genes) and a budding yeast S.

cerevisiae (6,200 genes). They also mentioned that a single noise in the observation did

not affect in its neighboring genes. However, randomized ordered data sets were also

tested and they could not obtain the same result. They concluded that gene-expression

vectors' order is significantly important for accuracy.

Hierarchical Clustering Algorithm:

Input: a set of gene-expression vectors X = {x1, •• • , x;, ... Xj, ••• , Xn} and 1 <= i <j <= n.

1. Initially, every vector is considered to be a cluster. Create an ordered data table,

which has biologically similar gene-expression vectors adjacently. Develop

Euclidean distance table of every couple of clusters. The distance is obtained by

function D that is defined by:

D(x,, X1) = If X;- X:,·II = [(x;,1- Xj.1)2+(x;,2- X1.2i+ ... +(x;,n- XJ.n)2] 112
,

26

where each vector has n observations.

2. Comparing distance between every couple of clusters, the algorithm merges the

shortest-distance pair by talcing average of two vectors. Continue this process

until there is only one cluster left. An average-linkage method of vectors x; and x1

is defined as,

ave(x;, Xj)= [(x;.1+ Xj.1)/2, (x ;,2+ x i,2) 12, ... , (x ;,n+ x J,n) /2].

3. Create a tree, which has initial clusters as its leaves and the last cluster as a root.

Final clusters are obtained by cutting the tree at the certain level.

Example of Hierarchical Algorithm:

Figure 6 shows an example of hierarchical clustering. Data table is created

(Figure 6 (a)). Euclidean distance table is created (Figure 6 (b)). According to the

Euclidean distance table, gene2 and gene3 is merged and the data table is updated (Figure

6 (c)). Figure 6 (d) shows the actual process of entire clustering process by tree.

27

Data Table
el e2 e3

gl 0.1 0.8 0.8
g2 0.8 0.2 0.1
g3 0.7 0.3 0.2
g4 0.2 0.7 0.8
g5 0.3 0.8 0.7
g6 0.7 0.2 0.3

(a)

Updated Data Table
el e2 e3

gl 0.1 0.8 0.8
g2,3 0.75 0.25 0.15
g4 0.2 0.7 0.8
g5 0.3 0.8 0.7
g6 0.7 0.2 0.3

(c)

e4
0.9
0.4
0.4
0.7
0.6
0.1

e4
0.9
0.4
0.7
0.6
0.1

Euclidean Distance
gl g2 g4 g5 g6

gl 0.00 1.26 0.24 0.37 1.27
g2 0.00 1.09 1.00 0.37
g3 0.00 0.93 0.84 1.05
g4 0.00 0.20 0.96
g5 0.00 0.00
g6 0.00

(b)

____ gl

/gl,4,5~g2.~

gl,2,3,4,5,~ ~ ~
,3,~4~4

~5
6

(d)

Figure 6. Example of Hierarchical Clustering.

3.4.2 Quality-Based Clustering

Quality-based clustering [Heyer et al. 99] takes into account of errors from the

experiments and instead of using all expression-levels, uses expression-levels that satisfy

qualities: similarity of gene-expressions and minimum population of cluster. When we

use Euclidean distance measurement to compare gene-expression vectors similarity,

sometimes one or two very similar expression-levels bias the clustering analysis and give

us higher correlation of two vectors as a result; however, this will generate false positive

genes that are not biologically correlated but they are correlated in the analysis.

The quality-based clustering standardizes expression levels and uses jackknife

28

correlation [Efron 82] to measure correlation of gene-expression vectors, instead of plain

Euclidean distance measurement. A vector is selected as a cluster candidate and is located

in a space. Then vectors that have the larger jackknife correlation with the cluster are

added. Also, other vectors that minimize the increment of the cluster diameter are added

and the process is repeated until the diameter reaches user-defined maximum diameter

size. Once the process has been saturated, next cluster candidate is selected. The

algorithm continues until doing the same procedures for all vectors. Finally, the largest

cluster is selected and all vectors that belong to the cluster will be removed. The same

iteration continues until algorithm cannot select a cluster that meets the minimum

population that is defined by user.

The algorithm can eliminate bad gene-expression vectors, improve accuracy and

capture clusters in small range. However, there are disadvantages; its computational

complexity is high (O(N 2)), additional input is required (minimum number of vectors in

a cluster and diameter of circle) and diameter is fixed locally. [Heyer et al. 99] consider

only single observation for outlier. When we need to consider more than one observation

such as size s, there are (s!-1) of combinations and an effective computational technique

is necessary to calculate jackknife correlation for every possible set.

The experiments are done on 4169 ORFs (open reading frames; downstream of

29

genes) from yeast cell cycle. Twenty-four clusters that maintain high quality are reported

in [Heyer et al. 99]. They state that alternating jackknife correlation threshold does not

make significant difference in the experiment but alternating a diameter of circle and the

number of vectors in a cluster does.

They suggest two applications of quality-based clustering. Taking a median of

representative pattern from the clusters, the algorithm can group gene-expression vectors

that satisfy quality of the cluster. Also, we can generate only clusters of genes with

interest. Instead of clustering on all gene-expression vectors, we can select a vector with

special interest and group the vectors that satisfy quality of the cluster.

Quality-based Algorithm:

Input: a set of gene-expression vectors X = {x1, x2, ... , x;, ... , Xm}, where 1 <=i <= m, the

minimum number of vectors in a cluster and the maximum cluster diameter d.

1. Standardize gene-expression levels by taking mean µ over observation in each

profile, subtracting mean from the values and divide it by its standard deviation a:

X;j= (X;j- µ;)la; and u; = (:EJ=i(X;J- µ;}2 !n-1)112
,

where O<j <=n and n is the number of observations in gene-expression vectors.

2. Calculate jackknife correlations Jp.q = min(pp,/>, pp)2>, ... , pp)n>, Pp,q), where

30

O<p<q <=m, Pp.q is a correlation of the pair of vectors Xp and Xq. Pp,q <1> denotes that

a correlation without expression-level sample from column t. We use Euclidean

distance D for our correlation measurement:

3. Select a vector x; (initially x 1) to make a cluster center of candidate cluster C;,

where O < i <= m and group of clusters C = { C1, •• • , C;, ... ,Cm}. Select the nearest

vector Xp that its jackknife correlation J;JJ meets threshold d. Add it into the cluster

C . C· d '· = . (p· (I) (2) (n) .) d ,. XpE , an J1.p mm '.P , p;JJ , ••• 'p;JJ 'p,.p > .

Take average of X; and Xp, and update cluster center.

4. Within user-defined diameter d, find neighboring vectors Xq that minimizes the

diameter increase of cluster C; and Xq is added into the cluster C;:

xq = argmin (D(c;,Xq)),
X

_ _ 2 2 _)2] 1/2 d
D(c;, Xq) - II C; - Xqll - [(c;,1- Xq,t) +(c;,2- Xq,2) + ... +(c;,n Xq,n <

5. Repeat step 4 until there are no more vectors to be added. Create a candidate

cluster with next vector and repeat the step 3 and 4. Continue the process until last

vectorxm.

6. Select the largest cluster Cmax and remove all vectors that belong to cluster Cmax

from X, then move to step 2. Continue the whole process until there is no more

31

clusters that meet the minimum size that user specified.

Example of jackknife correlation:

Assuming that we obtained a result from microarray experiment and

standardized the data as below, we demonstrate the algorithm from Step 2 to Step 4 as

follows.

X1 -0.2105 -0.36441 -0.92235 -0.92663

X2 0.29574 0.93209 0.56843 0.23017

X3 0.03307 -0.32469 -0.40135 0.79631

X4 -0.80204 -0.22714 0.63205 0.3681

X5 -0.38479 -0.03287 0.70618 -0.826

X6 -0.35284 -0.66014 0.06172 -0.65343

Let X = {x,, xi, X3, X4, xs, X6} and d = 0.5 be input data. Starting from xi, we consider C1.

We take a jackknife correlation to all other vectors versus xi and obtain the smallest

correlation for each vector is underlined as follows,

(removed term) (0)

X2 2.34473

(1)

2.28943

(2)

1.95368

(3)

1.80980

X3 1.81682 1.80042 1.81639 1. 74052

X4 2.11216 2.02764 2.10770 1.43006

X5 1.67407 1.66497 1.64091 0.38784

X6 1.07272 1.06324 1.03116 0.42703

(4)

2.03951

0.57649

1.66880

1.67104

1.03735

i.e. p,}1
> =~+(x1,2-x2,2)2+(x1,3-x2,3)2+ (x1,4-x2,4)2) 112

=<11-o.36441-0.93209112+11-0.92235-0.5684311 2+11-0.92663-0.2301111
2
)

112

=2.28943 73 76

32

0.42703; and Xp = xs.

Now., cluster center will be the average of x1 and x5, that is c1 [-0.29764, -0.19864,

-0.10808, -0.87631]. Then add another gene vectors Xq into cluster Ci, if the distance

from c I to the vector Xq is the smallest and it is less than d.

(removed term) (0) (1) (2) (3) (4)

X2 1 .82006 1.72061 1 .42621 1.68966 1.44510

X3 1 .73462 1.70281 1.73004 1.70965 0.45963

X4 1.53349 1.44816 1.53322 1.34305 0.89611

X6 0.54271 0.53990 0.28558 0.51546 0.49483

J. -p (2)_ c 1,2- c 1,2 - 1 .42621, J -p (4)_
CJ,3- CJ,3 - 0.45963, - <4>- 0 89611 J = <

2>= J c1,4~Pc1,4 - • , c1,6 Pc1,6

0.28558., and x6 is added into C1• Cluster center is recalculated and repeat the same

process.

3.5 Divisive Clustering

3.5.1 SOTA (Self-Organizing Tree Algorithm)

SOTA [Herrero et al. 01] is a hybrid algorithm of SOM and hierarchical

algorithm. Like a hierarchical clustering, clusters are represented by a tree; however, the

cluster updates are done by SOM algorithm. By hybridizing two algorithms, SOTA is

able to overcome disadvantages of both algorithms and produce high quality clusters.

Initially, a root has an average vector of all gene-expression vectors. Its child

33

nodes are created and the parent node vector is copied into them. The child nodes are

called terminals and considered to be clusters. In each iteration, distance between a

randomly selected gene-expression vector and all terminals are compared. The closest

terminal is selected and updated, and its sibling and its parent are updated as well. Upon

updates, an error rate is calculated and the terminal with the largest error creates its child

nodes and the tree grows. The iteration lasts until clusters do not satisfy the threshold any

longer. The threshold can be the maximum or average distance between cluster centers

and vectors.

An advantage of this algorithm is overcoming drawbacks of hierarchical

algorithm and SOM. By adopting an update method from SOM, the algorithm avoids

losing identity of genes during the tree growth. A tree structure enables us to obtain

clusters without knowing the number of clusters and to observe a hierarchical relationship

of clusters. The algorithm compares purely heterogeneity of vectors rather than the

number of similar vectors. A disadvantage of this algorithm is that defining the threshold

to terminate the algorithm is time consuming.

[Herrero et al. 01] reports that SOTA can produce high quality clusters; cluster

centers obtained by SOTA were very close to an average values of each sample from

gene-expression vectors in the clusters (less than 0.3% discrepancy). An experiment was

34

done on a yeast cellular cycle data with 800 genes and obtained 40 clusters (cluster set A)

and 174 clusters (cluster set B). The cluster set A had threshold of distance 0.75 and the

cluster set B had threshold of confidence level 5%. The cluster set B was at about four

times higher resolution than the cluster set A, because clusters in A were spliced into

approximately four clusters.

Self-Organizing Tree Algorithm:

Input: a set of gene-expression vectors X = {x1, x2, ••• , X;, ... , Xm}, where 1 <=i <= m,

threshold 8, where {) could be a minimum distance to update terminals or

confidence level.

I . Create a root of tree by taking an average of all n observations of all

gene-expression vectors in X,

Xavg=((L ':= I Xt,s)lm, (I:':= 1 X2,s)lm, ... , (L ':= I Xn,s)lm).

2. Create child nodes and copy Xavg into the nodes as initial cluster centers. The child

nodes are called terminals.

3. Randomly select a gene-expression vector from X and compare distance between

the vector and terminals. Select the nearest terminal that is called a winning cell.

Update the winning cell, its sibling and parent nodes,

35

x,('r+ 1)= x,('t) + rt·(x; - x,('t))

where on t th node vector at 't th iteration, selected vector X; chooses x,('t) as either

winning cell or sibling node or parent node, then updates as x,('t+ 1). rt represents

magnitude of update and decreases winning cell (Ttw), ancestor node (Tta) and

sibling node (Tts) respectively. Typically, the values are 11w=O.Ol, TJa=0.005 and

rts=O.001 [Dopazo 97].

4. The step 3 lasts until every vector in Xis selected and this cycle is counted as one

epoch. In each iteration, heterogeneity of each cell is calculated by:

Rk=(E ,'= 1 D(x;, Yk))lu.

where D(x;, Yk) = II x;- Ykll = [(x;,1- Yk, 1)2+(x;,2- Yk,2)2+ ... +(x;J- YkJ)2]
112

, u is the

number of vectors in cluster k. Rk is called a resource value and the total error eat

v epoch is obtained by ev=l: f = 1 Rte. Relative increase of the error is measured and

when it is below a given threshold 0, the iteration stops:

When it does not converges, the highest resource value Rt of the cell Xk is going to

split into two child nodes. The child nodes have parent node vector as a default.

Then iteration is resumed from step 3.

The threshold using resource value Rk measures a quality of cluster. Another

36

threshold measures confidence level of clusters. A variability Vis used instead of

resource value R. Vis obtained by V = max (dk), where dk = m~ (D (x;, x,)),
k ~

where 1 <= i < I <= m, and x; and x1 belong to the same cluster.

Example of SOTA:

Assuming that the following subset of standardized microarray data are obtained

from an experiment,

x, -0.2105 -0.36441 -0.92235 -0.92663

X2 2.29574 1.93209 1.56843 0.23017

X3 0.03307 -0.32469 -0.40135 1.79631

X4 -0.80204 -0.22714 2.63205 0.3681

X5 -1.38479 -0.03287 0.70618 -0.826

X6 -0.35284 -0.66014 0.06172 -0.65343

we take average of each column and we have the root= [-0.06986, 0.05368, 0.606407,

-0.003681). The root is copied into initial child nodes and a tree is constructed (Figure 7

(a)). A gene is randomly picked and updates either one of terminals (child nodes). The

terminal 1 is updated by x2• based on formula in algorithm explained above. Its sibling

(terminal 2) is also updated (Figure 7 (b)). (The root will not be updated, however,

usually parent node is updated in further generation.) Figure 7 (c) shows updates of tree

after one epoch. We measure error to determine either to grow tree or to terminate the

37

iteration. Since this is the only the first epoch, we continue the iteration and decide which

terminal will grow first. R1 =(D(x2, Yi)+ D(xi, Yi)+ D(xs, Yi))/3 -

(3.17853+ 1.82371 + 1.53517)/3 = 2.17914 and R2 = (D(x4, Yi)+ D(x6, Yi)+ D(x3, Yt))/3 =

(2.20383+1.12484+ 2.11060)/3=1.81309. Ri > R2• So R1 will grow as Figure 7 (d). Error

rate for the first epoch is £1 = Ri + R2 = 3.99223.

(a) (b)

Root [-0.06986 0.05368 0.60640 -0.00368]
Root

Terminal l [-0.06656 0.05258 0.59705 -0.01959]

Terminal I Terminal 2 [-0.06986 0.05368 0.60640 -0.00368]

(c)

Root [-0.06986 0.05368 0.60640 -0.00368]

Terminal 1 [-0.07212 0.05218 0.60645 -0.00211]

Terminal 2 [-0.08919 0.03759 0.59753 -0.00393]

(d)

Root [-0.06986 0.05368 0.60640 -0.00368]

Node l [-0.07212 0.05218 0.60645 -0.00211]

Terminal 2 Terminal 2 [-0.08919 0.03759 0.59753 -0.00393]

Terminal 3 [-0.07212 0.05218 0.60645 -0.00211]

Terminal 3 Terminal 4 [-0.07212 0.05218 0.60645 -0.00211]

Figure 7. Example of SOTA.

3.5.2 Adaptive Quality-Base Clustering

Adaptive quality-based clustering [De Smet et al. 02] can adjust (adapt) the radius

of cluster to obtain quality-guaranteed clusters for the each different cluster. This

38

L

algorithm does not use jackknife correlation, however, uses EM algorithm and likelihood

ratio of gene-expression vectors in a cluster and successfully generate clusters with

highly correlated vectors. Clusters are represented as a sphere in a multi-dimensional

space; we assume that vectors in a cluster exist on the intersection of hyperplane and

hypersphere. The algorithm has two steps: finding a location of cluster in

high-dimensional space and deciding the radius of the sphere.

A sphere is located in a space that contains all vectors initially, then the center of

sphere is considered to be a cluster center. The sphere center that is an average of the

vectors in the cluster is calculated and the sphere is relocated according to obtained

cluster center in each iteration. The radius of cluster decreases in each iteration until the

sphere capture minimum number of vectors. Once the cluster captures the minimum

number of vectors, a likelihood ratio of vectors in the sphere is calculated. Finally, the

cluster only takes the vectors that have certain likelihood ratio (usually 95%), and the

sphere and the vectors are removed from space. Next iteration starts with remaining

vectors and iteration lasts until there are no more clusters to take.

Advantage of this algorithm is that highly quality-guaranteed clusters are obtained

in linear running time that increases with the number of gene-expression vectors. A

flexible radius size can capture clusters without extra computation on data processing

39

such as jack.knife correlation. On the other hand, a convergence of algorithm has not been

proved theoretically, therefore, there may be situations that never converge. Also, the

algorithm can only apply for Euclidean distance measurement, since a likelihood analysis

involves distance to cluster center.

Experiment result [De Smet et al. 02] shows that adaptive quality-based clustering

can successfully generate biologically significant clusters and it outperforms the K-means

clustering; the algorithm could detects some functional genes that the K-means clustering

can not find and the algorithm produces more high density clusters than the K-means

clustering. The software that is implemented by MATLAB and detail experiment results

are available online at http://www.esat.kuleuven.ac.be/-fdesmet/paper/adaptpaper.html.

Adaptive Quality-Based Clustering Model:

Expression vectors are normalized as their mean is zero and variance is one. By

definition, we have mean µ; = l/n (:E : = 1 x;,s) = O, where n is the number of observations

in gene-expression vector and the number of gene-expression vectors is m and i <= m.

Also, a standard deviation <T; = (1/(n-l)L := 1 (x;,s-µ;) 2
)

112 = 1. Solving for L ~= 1 x;,s, we

have (n-1)112• [De Smet et al. 02] assumes that vectors in a cluster exists on the

intersection of hyperplaneµ; and hypersphere with radius of (n-1)112 in an n-dimensional

40

space and model the probability distribution as following.

The probability distribution of vectors with given cluster radius p(rc) =

Pc•p(rclC) + Pa•p(rclB), where Pc is a prior cluster probability distribution and p(rclC) is a

current cluster probability distribution. Pe and p(rclB) denote a prior and a current

background probability distributions and Pc + Pe= 1:

-(2)

where En-2 is a surface area of a unit sphere in n-dimensions. A likelihood of vectors in a

cluster with a given radius re is:

P(q re)= (Pc•p(rclC))/(Pc•p(rclC) + Pe•p(rclB)). -- (3)

We employs EM algorithm (see Section 3.2) to maximize P(CI re) by adjusting re,

where Xis a set of gene-expression vectors, Y is a radius of cluster re and 0 is a prior

standard deviation <J and probability distribution Pc (or Pa).

Adaptive Quality-Based Clustering Algorithm:

Input: a set of gene-expression vectors X = {x1, x2, ••• , x;, ... , Xm}, where I <=i <= m, the

minimum number of vectors in a cluster, the significance level S (95% by

default).

41

1. [Locate Cluster] Map a set of gene-expression vector X and set an initial cluster C

as a sphere in a n-dimensional space, where n is the number of observations in a

vector and C = {x1, x2, ... , x;, ... , Xm} initially. Before iteration starts, initialize an

estimated minimum radius rest= (n-1)1n./2.

2. Relocate cluster by making the cluster center y to be an average of all vectors in

the cluster,y =xavg = (0:Ps==l x1~)/p, (LPs==l x~Yp, ... , (LPs=J Xn.,s)lp), where ICI= p.

If this is the first iteration for cluster C, calculate a delta for radius r 6·

r6 = (D(;xz, y) - rest)/ Tftaction, where Tftaction=30 by default,

2 2 ()2]112 C d D(x;, y) = II x;- yll = [(x;.1- y) +(x;,2- y) + ... + X;,n - y , X;E an

Xz = argmax (D(xc,Y)).
X

Radius re is adjusted by re= re- r6.

3. Calculate a new cluster center and compare with the last cluster center. If it is the

same, the algorithm converges, otherwise return to step 2.

4. Repeat step 2 and 3 until it reaches a maximum iteration times (50 times by

default) or the radius is reduced into rest· If the cluster center has not been fixed or

the algorithm does not converge, then the algorithm will be terminated.

5. [Adjust Radius r] Maximize the likelihood of gene-expression vectors in a cluster

by EM algorithm. Initially, re= rest and calculate a and Pc by measuring distance

42

between a current cluster center and all vectors:

Pc= (I:~= 1 D(xs,Y))/(£ ':'= 1 D(x,,y)) and Pe= 1- Pc,

where XseC, p is the number of genes in a cluster and m is the number of all

vectors in a space. a= ((I: ':'= 1µ-D(x1,y))2l(m-1)) 112 andµ=(I: 'F= 1D(x,,y))lm.

Using equations listed above, we can obtain p(rclC) and p(rclB) by plug-in u, Pc

and Pe into formula (1) and (2). (Estimation Step) Adjust re in formula (3) to

maximizes likelihood of gene-expression vectors with given cluster P(CI re).

(Maximization Step) Alternate two steps until it converges.

6. The iteration also stops when either relocating of a cluster or adjusting radius does

not converge, or the cluster obtained does not meet the minimum number of vectors.

Example of Adaptive Quality-Based Clustering:

We demonstrate the relocation of cluster using algorithm Step 1 to Step 4.

Assuming that the following is a subset of standardized microarray data,

Xm,I Xm,2 Xm,3 D(y,x)

Xt -0.2105 -0.36441 -0.92235 1.59212

X2 2.29574 1.93209 1.56843 3.17005

X3 0.03307 -0.32469 -0.40135 1.08241

X4 -0.80204 -0.22714 2.63205 2.17106

X5 -1.38479 -0.03287 0.70618 1.32111

X6 -0.35284 -0.66014 0.06172 0.94202

43

we estimate the minimum radius as rest= (n-1)11212 = (3-1) 112/2 = 0.7071 and the center

of cluster is set to bey = Xavg = [-0.07023, 0.05381, 0.60745]. The furthest gene from

cluster center x== xi. Then rA = (D(x2, y) - rest)/ rrraction=(3.17005) - 0.7071)/ 30=0.0821.

In the next step, we reduce radius by rAand rc=2.38085. x2 is discarded because D(x2,Ycl))

=3.17005 . New center Y<i>= [-0.45285, -0.26821, 0.34604] is recalculated without x2.

Since D(x4, Y(2)) =2.31289 and rc=2.29875, x4 is discarded. Then YCJ) = [-0.31918,

-0.23035, -0.09263]. At iteration 4, no more genes are discarded from the cluster and

radius is fixed, therefore, the algorithm converges. Figure 8 shows how cluster was

relocated in the process.

Xm,2

o Cluster Center

Xm,1

Figure 8. Relocation of Cluster in Adaptive Quality-Based Algorithm.

44

4. MOTIF FINDING

After clustering and its validation, we look for common subsequences in upstream

of the gene sequences within the same clusters. The common subsequences are called

motifs (or binding sites) that control the expression behaviors and have the same

characteristics in functional genes. Each sequence may have zero or more motifs.

Sometimes a certain pair or multiple motifs tend to occur together; therefore, there is a

possibility that multiple motifs are detected simultaneously [Morequ et al. 02].

Detecting statistically significant motifs is a goal for motif finding. Finding such

motifs from multiple sequences is shown to be NP-complete [Tompa OO][Akutsu

98][Akutsu et al. 00]. There are many algorithms to measure statistical significance of the

motifs, however, this thesis focuses on methods that measure and compare a likelihood

and information content of motifs.

4.1 Information Content

When we analyze motifs, it is important to consider not only the motif patterns

but also the background frequencies. The background is a region in the sequences that the

motifs exclude. If the most frequently occurring sequences are randomly selected from

the set of sequences, they are heavily biased by base frequencies of the set. As a result,

we will fail to detect significantly common motif patterns among the different sequences.

We want the motif pattern frequencies to be different from the background

frequencies. The logarithmic-likelihood is used to measure how unlikely the motifs occur

45

in the multiple sequences. Instead of using the motif probability distribution, we use

information content, that is a product of the motif probability distribution and the motif

likelihood, to adjust the motif probability with its background frequencies. The more the

motif contents are different from the background frequencies, the larger the information

content will be.

Figure 9 shows an example of motif representation of a set of sequence S and { s.,

s2, s3, s4} eS. First, we count the number of each different base with respect to the position

and create an alignment matrix. The number of base r in position i is represented as n;. r

(Figure 9 (a)). Next, we compute the probability distribution P(s;, r), that is also called

Position index I 2 3

St ATCGITCG ATC TITGG A T C

S2 GACC CTG TATATATIT C T G

S3 GGCCGCGCAA ITC AA T T C

S4 TATCAA ATG TCAAGT A T G

A 2 0 0 0.5 0 0

T I 4 0 0.25 I 0

C I 0 2 0.25 0 0.5

G 0 0 2 0 0 0.5

(a) (b)

0.5

0 2 0 0 2 0

0 0 0.5

0.5

(c) (d)

(a) Alignment Matrix, (b) Profile, (c) Position Weight Matrix,
(d) Relative Entropies of Motifs

Figure 9. Example of Motif Candidates of Width 3.

46

profile. P(s;.r) = n;, r I k, where k is the number of sequences in S (Figure 9 (b)).

We will have a position weight matrix of motif (Figure 9 (c)) by obtaining logarithmic­

likelihood ratio on each element that is logi P(s ;, r)IQ(sr). The background model is

represented by a weight matrix of position zero. In Figure 9, background model (Q) is

assumed to be an equal distribution; the same number of bases exists in the background.

So background model is represented as Q(S) = [0.25, 0.25, 0.25, 0.25]T , where S

represents a set of gene sequences.

Finally, information content (Figure 9 (d)) is a product of the probability

distribution and the logarithmic likelihood ratio. We obtain the information content of

motif fseq by weighting likelihood ratio with probability of motif and summing result of

all bases and the position within the motif as

fseq = L ~= 1L re{A,T,C,G} P(s;.r) logi P(s;,,)/Q(sr), where Lis length of motif.

The motif finding is classified into two methods: a string-based method and a

probabilistic method.

4.2 String-Based Methods

String-based method counts, compares a base frequencies and finds motif

patterns. Tompa proposed a string-based method [Tompa 99], which counts all bases,

selects the most frequently occurring strings and estimates their statistical significance

with its background frequencies by z-score, z = (NrNp,) I (Np, (1-p,)) 112
, where tis the

index of all possible candidate motifs, N, is the number of sequences that have a motif

candidate t with at most one substitution of base and p1 is the probability that a randomly

selected sequence have at least one motif t. Then Np, is the number of sequences that

47

have at least one occurrence of a motif candidate t. The z-score measure how unlikely it

is to have N, occurrences of a motif candidate t.

The string-based method demonstrates two advantages. It takes into account of

the absolute number of occurrences. Under the uniform distribution, a perfectly

conserved motif that occurs in only a few sequences will have a greater information

content than an imperfectly conserved motif that occurs in nearly all the sequences. Since

the algorithm uses exhaustive approach, it will not suffer from local optima like other

heuristic methods do.

On the other hand, this method only works well on finding short and simple

motifs. Because of the exhaustive approach, it is too expensive to apply for long

sequences for complicated motifs.

This method is applied to the ribosome binding site problem and [Tompa 99]

concluded this method successfully enumerates short motifs with their exact z-scores.

The experiment is done on 14 prokaryotic genomes to find motifs of width 7. The result

shows lists of 20 high z-score sequences from each sequence. The paper does not validate

the result, however, suggests further analysis of the high z-score sequences and constructs

a weight matrix from the 20 sequences to produce a single motif as an example of such

analysis.

String .. Based Algorithm:

Input: set of sequences S = {s1, s2, ••• , sk}and width of motif L

I . Count and compare strings in the set of sequences and count each string's number

of occurrences N, in the set by Staden's algorithm (Staden 89]; create a dictionary

48

that has all possible motifs of length L and count the number of each motif

occurred in the set of sequence.

2. Calculate p1, that is a probability that single random sequence contains at least one

occurrence of candidate motif t of length L.

I . Construct a deterministic finite automaton (DF A) M that accepts a

sequence with a subsequence that matches with candidate motif t with at

most one base substitution.

2. Construct a Markov chain G that generates a randomly sampled sequence

X ={xi, x2, . .. xi, ... , Xn} with degree of one. G satisfies Pr(xj) = Pr(xi I Xj-J)

= ai-l,i and contains all possible transition probabilities of sequence X such

that, a1,2, a2,3, ... , ai-l,i, ai,i+l,· . . , a1r1, n·

3. Transform M into M' by mapping transition probabilities from Markov

chain G on the edges of DF A M' and calculate the random sequence X s

probability p, by tracing a start state to an accepting state.

3. Calculate the z-score of each candidate motif t and select the significantly large z­

score strings as motifs.

Example of Computingp,:

Consider a subsequence t = { ATC} and a randomly sampled sequence X from a

set of sequence S withX= {AAACCCGTICGAC}. Then Xhas three subsequences oft

with one substitution as the underlines indicate, therefore, X satisfies the condition in step

2.

49

Create a DF A Mas shown in the Figure 10. States qu and q.., contain the prefix and

suffix of matched subsequence in X Then generate a first order Markov chain and

compute the probability transitions aj,J+I, where j is an index in the sequence X and there

are IXl-1 pairs in X, aj,J+ 1 = number of occurrence of pattern (AJ, Aj+ 1) / (IXl-1).

Finally, using the probability transitions as a weight, we transform Minto M' as shown in

the figure. The bold arrows in M' indicate {CGTTCG} of subsequence in.X:

Finally, we have p 1 = Pr(A)aAAaAAaAcaccaccacaaaTarraTcacaaaAaAc

=(5/13)(2/12)(2/12)(2/12)(2/12)(2/12)(2/12)(1/12)(1/12)(1/12)(2/12)(1/12)(2/12)

= l.10431E-11.

M:

0-0)-·······~

M':

8c,G

Figure 10. Transformation from Mto M '.

50

4.3 Probabilistic Methods

4.3.1 Greedy Algorithm

In probabilistic methods, instead of comparing strings, the algorithms measure

and compare the information content of candidate motifs with a greedy approach. Hertz

[Hertz 99] implemented an algorithm to find the highest information contents with a pure

greedy algorithm that tests gene sequences one by one and selects the alignment with the

highest information content from each sequence. This algorithm assumes that exactly one

motif exists in every sequence and the motif length is already known (mononucleotide

model).

An advantage of this algorithm is its efficiency on finding motifs of high

information content over string-based methods. A disadvantage is its lack of flexibility on

finding motifs; a prior knowledge such as motif width is required and the algorithm

cannot apply for any other models such as gapped motifs.

The greedy algorithm generated very successful result in [Hertz 99]. The

experiment is validated and it has 19 out of 24 expected motifs with width of 22. The

three out of five missing motifs are found to be overlapped with one of expected motifs.

Greedy Algorithm:

Input: set of sequences S = {s1, ••• sm,· .. , sk}, where 1 < m <= k and width of motif L.

1. Calculate information content of all possible motif candidates with length of L in

the set of sequences Sincluding a set of motif S' (initially S' is empty):

fseq mJ = L ~=IL re (A,T,C,G) P(sm,J, ;, r) log2 P(sm,j, i, r)IQ(sr),

where j is a starting index of possible motif candidates in sequence Sm.

51

2. Select a motif that has the highest information content,

Remove the sequence Sm from the set Sand add Sm,j to S' as following,

s (t)= s(t-1) -{sm} and S' (l)= s,(H) +{sm,j}.

3. Continue this step 1 and 2 until the setSbecomes empty (ktimes).

Example of Greedy Algorithm:

Figure 11 shows the example of Greedy algorithm with three different sequences.

Matrices in the figure are alignment matrices. In each cycle the largest information

content motif is selected and added into the alignment matrix.

52

CYCLE 1

CYCLE 2

A
C
G
T

CYCLE 3

sequence I

ACTGA
sequence 2

TAGCG
sequence 3

CTTGC

"~

ACTG
TAGC

l 1 0 0
0 1 0 1
0 0 1 1
1 0 1 0

lwq = .us

A
C
G
T

A
C
G
T

ACTG

A 1 0 0 0
C o J O 0
a o o o 1
T O O 1 0

ACTG
ACCG

2 0 0 0 A
0 1 1 0 C
0 l o. 2 G
0 n 1 0 T

lHq = •l.2

I
ACTG
AGCG
CTTG

2 0 0 0
1 1 1 0
0 1 0 3
0 1 2 0

'""I= 3.2

ACTG ACTG
CTTG 1.' ·1· G C ---·-
1 0 0 0 A 1 0 0 0
J 1 0 0 C 0 1 0 l
0 0 0 2 G {) 0 1 1
0 1 2 0 T 1 I 1 0

faeq = ~-2 /Rq = 2.8

ACTG
AGCG
TTGC

A 2 0 0 0
C 0 1 1 l
G 0 1 1 2
T 1 1 1 0

/Mq ==- 2.1

Figure 11. Example of Greedy Algorithm [Hertz 99].

4.3.2 EM Algorithm

EM algorithm [Lawrence et al. 90] optimized a greedy algorithm into two steps:

estimating base frequencies of motif in each position with current set of motif candidates

53

and maximizing likelihood of set of motif by changing the starting position of each motif

candidate so that its base population satisfies the estimated base frequencies. By

considering a set of motif candidates in a group of sequences at once, EM algorithm can

detect correlated motifs.

An advantage of the algorithm is its enhanced capabilities and computational

simplicity that is linear in the number of sequences. EM algorithm (see Section 3.2) is

applied to motif finding; where X is a set of sequences, Y is a starting position of motif

and e is base frequency. This model enhances the motif finding capability by adding the

second variable; adding variable-length gaps in the missing variable Y, we can obtain

gapped motifs. On the other hand, this algorithm requires a prior knowledge such as a

proposed motif set by statistical or biological analysis initially, because initial set of motif

is very important to obtain accurate result.

An experiment [Lawrence et al. 90] shows that EM algorithm can detect motifs

successfully. The experiment is done on 18 sequences with length of 105 and a motif was

expected to have a width of 22. The result identified motifs correctly in 16 out of 18

sequences.

EM Algorithm:

Input: set of sequences S= {s1, ... sm, ... , sk}, where 1< m <= k and width of motif L.

1. Initially, set a motif starting positionj for each sequence sm in S, according to a

proposed motif set.

2. Model the set of sequences with information measurement lseq,

lseq = k"fJ=/i re(A,T,C,G} f(s ;,r)logeP(s i,r) +

54

k(M-L)I re{A.T,C,G}f(s 0, r)logeP(s o. r),

and f(s J,r) = P(s J.r) = nj,rl k, f(so,r) = P(so,r) = no,rl k(M-L), wherej= 0 denotes

background, M is a length of sequence, lJJ. r is the number of bases r at position j,

the function f is observed base frequency and the function P is our parameter.

Calculate population frequencies of each position of motif candidates by summing

probability that is obtained by Bayes fonnula shown below:

P(y mJ-1 I P(s r,iiq>, Sm)= P (Sm I Y mJ=l, P(s r,iiq)) I

(IM-lj= IP (Sm I Y mJ=l, P(s r,;)'q)),

wherey ,,,J-1 ifa motif starts atj,y mj= 0 otherwise and

P(Sm I Y mJ-1, P(s r,lq)) = fl]= 1IT re{A,T,C,G} P(s r,i)Vrj+t,m,,

where j <= t<=j+L , therefore, t is relative index within the motif candidate.

The probability is used as weight and added across the positions to find the

expected number of bases for each position. e1, r(q) = E(n1, r I P(s1, riq-1), S).

(Estimation Step)

3. Now, adjust the number of bases in a set of motif that we obtained from the last

step by changing starting positionj so that we can maximize /seq· (Maximization

Step) By changing the starting positions of motif, P(s1• r) is updated. If P(s1. riq+l) is

different from previous P(s1• r)'q>, go back to Estimation Step.

4. Repeat step 2 and 3 until it converges.

Example of EM Algorithm:

Figure 12 (a) shows a model of motif alignment and background in EM algorithm

with 10 sequences that have 40 bases in length. We look for a motif with width of 8. In

55

L

estimation step, count the number of each base and create alignment matrix. In

maximization step, we sum the probability of each position as Figure 12 (b).

The formulas are given in step 3. As an example, obtain probability of having A at first

sequence of first index at iteration q. The first motif starts from index 12, so we have,

P(S1 I Y 1.12=1, P(s 12,Aiq)) = 07= 1TI re{A,T,C,G} P(s j,,lrJ+t,m

=(# of At 2>110(# ofTi13>110 ... (# ofC)<J>110 ... (# of Ai8>/lo, then

By normalizing probability in Figure 12 (b), we will get expected number of base A at

motif position 1.

Therefore, adjust starting position of motifs so that there is only one A in the first column

of motif set.

s,;,

S12,A, S13,T,• .. , Sj,C,•• ,, Sw,A

r ... _ ----~~:.JS::<··::-~;::-:-•/•J,.:)Ji:;)':"•-••-" <-f-- •-ill

(a)

Motif

1 2 ... j ... 8
A .13 .45
T .33 .33
C .12 .18
G .59 .22

(b)

Figure 12. Example of EM Algorithm.

56

4.3.3 Gibbs Sampling

Gibbs sampling [Lawrence et al. 93] [Liu et al. 95] is similar to EM algorithm,

however, Gibbs sampling only considers one element at a time, rather than summing all

possibilities of each positions in a motif candidate like the EM algorithm does. This

process reduced the time complexity. The algorithm improved performance of the EM

algorithm by drawing a motif from all possible candidate motifs with weighted likelihood

of generating motifs under current motif sets instead of taking a motif that maximizes the

likelihood. As a result, Gibbs sampling is less likely to be trapped in local optima than is

the EM algorithm. Also, the algorithm does not require a prior knowledge of the motif set

as a default but only requires a set of sequences. The algorithm can also detect the width

of motifs by running algorithm with different width on the same input. The algorithm can

also apply to detect gapped motifs by taking account of relative positions with motif

starting position within a sequence in likelihood analysis.

The experiment shows that Gibbs sampling is able to detect a set of motifs

correctly and to handle gapped motifs and widely spread weakly conserved motifs. For

instance, a set of 30 proteins is tested with different width and the algorithm detects

motifs with width of 21 as the highest information content. The detected motifs are very

close to the known motifs with width of 20.

Gibbs Sampling Algorithm:

Input: set of sequences S = {s1, ••• sm, . .. , sk}, where 1 < m <= k.

1. Initially, set a motif starting positionj for each sequence sm in S randomly.

57

2. Select a sequences= and exclude it from the set S. Obtain pattern description P(s;,r)

(also known as profiles in 4.1) and background P(s,) as,

P(s;.,)= L7=j (n;,r+ b;)l(k-l+B) and P(sr)= r,''J= 1 (n,j + bj)l((k-l)(M-L)+B),

where n . is the number of base r at position i, Mis a length of sequence, L is a r.1

width of motif, i is index that is excluded from motif set, bj is a pseudocounts (to

avoid condition log2 0 = oo) at position/ and Bis sum of b1.

(Estimation Step)

3. Let x be a motif that is generated by s= by all possible j. Draw a position j based

on probabilities of generating motif x under the current motif set, Px = Pr(xl Sm,

81,) and probabilities of generating motif x by the background probability of Bo,

Q.,. = Pr(xl Sm, Bo). A weight Ax is calculated by Ax = Pxl QT and normalize the

probability distribution by A.;=Axl IM-L+l ;=1 Ax,i· We use information content,

l scqx ="i,~ = jL re (A.T.C.G} n;, r log2 P(s;, ,)/ P(s,), to obtain Ax. (Maximization Step)

4. Repeat step 2 and 3 until it converges.

Example of Gibbs Sampling:

In this example, we have l O sequences with length 20 and look for motif with

width of 5 (Figure I 3 (a)). In estimation step, a sequence z is selected and we obtain the

number of base at each position in a motif set and the background model (sequence z is

excluded) as Figure I 3 (b). ln maximization step, we calculate all possible information

content of motif set including a motif from z. As an example, we obtain information

content that starts at index 3 in sequence z. Let z be sequence { GCTGTGAACCGT }.

Then we have P(s1,r)=(4+ 1)log2(4+ 1/l 0)/.25=5, P(s2,G)=(3+ 1)log2(3+ 1/10)/.25=2. 75 ,

58

P(s3.T)=(1 + 1)log2(l + 1/10)/.25=-.64, P(s4,a)=(3+ l)log2(3+ 1/10)/.25=2. 75,

P(s3.A)=(O+ 1)log2(0+ 1/10)/.25=-1.32

and information content for motif that includes z with motif starts at index 3 is:

We normalize IC3 over other starting index ICj and obtain probability of having motif

that starts at 3 in sequence s=:

A sampled motif in s= may not always maximize the over all information content,

however, a motif with higher information content is more likely selected.

s.
S2

S3

s=·

Background
S10

(a)

,. 2 3 4 5 Backoround Model

A 1 3 2 2 0 0.25
T 4 0 2 2 0.25
C 2 3 1 2 3 0.25
G 2 3 5 3 4 0.25

(b)

Figure 13. Example of Gibbs Sampling.

59

4.3.4 Gibbs Motif Sampling

Gibbs motif sampling [Neuwald et al. 95] can detect multiple motifs

simultaneously by partitioning motif-encoding regions into different motifs with a prior

knowledge of number of occurrences of each motif. There is a high demand on detecting

widely spread weakly conserved motifs, because it often reveals important structural or

functional roles of motif models. The paper [Neuwald et al. 95] mainly discusses protein

sequences, however, the algorithm can be applied to DNA sequences as well. In this

section, we define different group of motifs to be motif models since we discuss multiple

groups of motifs in the algorithm. Also, we define motif candidates as sites.

The algorithm uses two samplings: motif sampling and column sampling.

Alternatively applying these two sampling methods, we can obtain convergence more

eff ecti vel y. Motif sampling partitions sequences into motif models and background

regions and column sampling adjust width of the site in motif sampling. After the

algorithm converges, we will calculate significance of each motif in the motif models and

rank them for future analysis.

Experiments are done on some protein sequences and show the effectiveness of

algorithm. The algorithm detects highly significant motifs by converging three motif

models with width of 12; 66, 35 and 63 motifs are obtained from 258 sequences. Also,

the algorithm obtained 130 repetitive motifs with width of 11 varying in one to nine

residues (same as bases in DNA sequences) by running on 32 bacterial iomps that past

algorithm (BLAST [Altschul et al. 90]) could not detect any similarity among them.

60

Gibbs Motif Sampling Algorithm:

Input: set of sequences S = {s1, ... Sm, ••• , Sk}, where I< m <= k, the number of motif

models, the width of motifs L; and O <j <= L;, and the expected number of motifs

in each motif model e;.

1. Initially, set e; of sites for each model M; in the Sand Mo denotes background

model.

2. [Motif Sampling] Target probabilities (also known as profiles in 4.1) {Jj, r for each

model M; and the background q, are calculated based on current motif model

alignments. (JJ,r= (n1.,+ b,)l(c +B), where n1,, is a count of baser at positionj, br

is a pseudocounts of baser (to avoid condition logi O = oo), c is the number of

sites in the alignment and Bis the total number of base pseudocounts.

A site x is selected randomly from S (or in a succeeding process, x is succeeding

site in S), if the site is within one of motifs in the motif alignment, remove the site

from the alignment and recalculate the target probability.

3. Sample one of motif models (including background model Mo) proportional to a

likelihood, L(x, M;) that the selected site x is derived from the models and given as,

L(x, M;) = (p;/1- p;)Ilj= 1 (q;, 1, ') / q;,,-), wherep/(1- p;) is a posterior probability

that x belongs to the model M; andp; is obtained initially by e;IC;, where C; is the

total number of possible site in sequences, CFL~ = rmax(O, Um-L;+ 1) and Um is a

length of sm. p; is updated as the iteration goes on; p ',- (c;+ a;)!(C;+ A;), where c; is

the number of motifs in the motif models and a; and A; are psuedocounts and they

are given as, a;= (e;•W)/(1- W) A;= (C;•W)/(1- W) and W= 0.8 by default. q;,J. 'J

61

is a target probability of observed base rj that is in selected site x at positionj of

model M; and q ;, 'J is its background target probability.

4. [Column Sampling] Select a motif y randomly or proportional to how poor the

information content of the motif is in the previously selected motif model M;.

Remove the motif y temporary from the alignment.

5. Select a site z with the largest width that does not belong to any motif models.

Calculate information contents with all possible (Lz-L,+ 1) motif width within z

and sample a site z' proportional to how rich the information content of motif is,

n~ = I [f(n;, 'J + b'J)/ q;, ,), r function is obtained from [Liu et a/. 95].

6. If the selected site z' is subsequence (or the same) of x then replace y with z',

otherwise y is restored in Model i and z' is used as motif x in Motif Sampling in

the next iteration. The step 2 to 6 is repeated until it converges.

Example of Gibbs Motif Sampling:

Figure 14 demonstrates Gibbs Motif Sampling step by step.

62

L

(

...______.I (J
(J

(
J

J

X

(
E:)

J

._________,JI (J

v E3 I I
t _ __ j J

I I X

(
E:)

J I (J
(J E:) E:)

E:) I I
E :)

z

£)

I X
E:)

(J I ()
(J E:) E:)

E::) I I
E 3> I z'J ()

I I X E:)

(1) Initially, motif sets are assigned in a group
of sequences (Step I). In this sample,
rectangulars represent M1, blackests represent
M2 and ovals represent M3 and the background
becomes M0• A site x is selected randomly (or
succeeded from the last iteration) and a motif
model that x belongs the most likely is
selected by Motif Sampling (Step 2 and 3). In
this example, M1 is selected

(2) A site y is randomly selected from M1 and
y is temporary removed from the alignment
(Step 4).

(3) The largest width site that belongs to
background model Mo is selected as z (Step 5).

(4) Within the region z, a higher information
content site with width of M1 is selected as z'
by Column Sampling (Step 5). However, the
site z' is not in the same region with the site x.

Figure 14. Example of Gibbs Motif Sampling (continue).

63

(J __ _____.I (J
(J

y E:) I I
~-··························-.X.-~

; i ·
(J

(J I (y J

(J E:) E)

(J
(J

E_:)z)'

(J
(J

E3 I I
X

(J

E:) I I
X

t
E)

J

E)E)

E3 I I
(

E)
J

(5) The samplings failed. The site y is restored
into M1 and the site z' becomes the next target
site x (Step 6). Since the site x overlaps with
alignment motif model Mi, the site y is
removed from the alignment (Step 1).

(6) Motif sampling detected that x is the most
likely in M2 (Step 2 and 3) and randomly a site
y is selected from M2 (Step 4).

(7) Temporary remove the site y and a site z is
selected as the largest width site from
background model Mo.

(8) By Column Sampling, a site z' is detected
(Step 5) and the site z' shares the same region
with the site x.

Figure 14. Example of Gibbs Motif Sampling (continue).

64

(J
X

(J

E:)I 1
E:) [J (J
I ___,I E)

(9) The site z' is added to Mi (Step 6). y
becomes the next site x and new iteration
begins.

Figure 14. Example of Gibbs Motif Sampling.

65

5. CONCLUSION

To summarize characteristics and differences of the algorithm studied, two tables

are developed as follows: comparisons of algorithms in clustering (Table 2) and motif

finding (Table 3).

In general, the first-generation clustering algorithms: hierarchical clustering,

K-means algorithm and SOM, are popular among erbiologists because they had been

applied in some other fields' data mining before and the implementation is simple

[Moreau et al. 02]. However there are some cases that they cannot handle, such that there

are some vectors in a small range and quality guaranteed clustering is required, datasets

involves some experimental errors etc. The second genation clustering algorithms are

especially developed for clustering over gene expression profiles to manage these cases.

The algorithms are tend to be more computationally expensive as they offer more

flexibility on their performance; however, a priori knowledge on datasets may overcome

the drawback. [Yeung et al. 01] states that the model based clustering can reduce

computational time by customizing methods for well-known or common experiments.

Motif finding algorithms have to handle varieties of motif types: mononucleotide

66

model, multiple motif models, gapped motifs, palindrome motifs and widely spread weak

motif etc.; algorithms were developed to manage each type of motif. [Heiden et al. 98]

states that probabilistic method such as Gibbs sampling is not always efficient. String

method is considered to be narve in terms of its computational efficiency; however,

probabilistic methods may take about the same time, because probabilistic methods tend

to be trapped by local optima and we need to run programs several time with different

initial conditions to validate the result. In spite of its exhaustive approach, string-based

method is pref erred when we detects short motifs.

On the other hand, more and more powerful probabilistic methods are developed.

EM algorithm gave us a prospective approach by alternating estimation and

maximization of the likelihood of motif positions, once the algorithm captures a correct

pattern in a set of motif, next iterations favor further correct patterns [Neuwald et al. 95].

As the iteration goes on, correct patterns dominate the set of motif and improve its

likelihood. A maximization of likelihood is applied to different features of motif sets (not

only positions of motifs but also width of motifs, etc.) and new algorithm such as motif

sampling can detect similarities among sequences that past algorithms could not detect.

Every microarray experiment data has different nature of similarities and

available prior knowledges, therefore, many different types of clusterings and motif

67

finding algorithms are applied. This thesis explored some representative algorithms used

in microarray technology today.

68

r

0)
-.()

User-defined
Parameter

Data Structure

Additional Required
Information

Statistical Definition
of Clusters

Inclusion of All
Genes
Is Algorithm Stable?
Missing Values
Handling
Computational
Comolex itv

Nearest Neigbor Clustering Ae.e.lomerative Clusterine.

K-means SOM Model-based Hierarchical Quality-based

The number of The number of The number of

expected clusters expected clusters expected clusters

and a simple and maximum
geometric shape NIA NIA cluster diameter
of grids for (threshold for
default jackknife

correlation)
n -dimentional n -dimentional multi-dimensional Binary Tree n -dimentional
space (n=the space (n=the space space (n=the
number of number of number of
observations) observations) observations)
Comparison of Internal Biological correlation Biological Internal
result from several parameters and of genes (to correlation of parameters
different runnings. comparison of preprosess data with genes and where

result from several hierarchical to cut the tree to
different runnings. clustering) and

comparison of
obtain clusters.

different models

Likelihood Analysis Likelihood

NIA NIA and Bayesian NIA Analysis
Information Criterion

Yes Yes Yes Yes No

No No Yes No Yes

No No Yes Yes Yes

Linear Linear Quadratic Quadratic Quadratic

Table 2. Comparison of Clustering Algorithms.

Divisive Clusterings

SOTA Adaptive Quality-

based

A threshold that The minimum

indicate minimum number of clusters

cluster diameter

Binary Tree n -dimentional
space (n=the
number of
observations)

Where to cut the Internal
tree to obtain parameters
clusters.

Likelihood

NIA Analysis

Yes No

No Yes

No Yes

Linear Linear

-.:I
0

User-defined
Parameter

Available
Type of Motifs

Computational
Complexity

Probablistic Methods

String Method
Greedy Algorithm EM Algorithm Gibb's Sampling

Motif width and
Motif width Motif width proposed motif NIA

models

Short Motifs Mononucleotide Validating Mononucleotide
model (a sequence proposed motif model, gapped
has only one motif models motifs, widely
and motifs are (mononucleotide spread weak motifs
independent each model, correlated
other) palindromic or

gapped motifs)

Quadratic Quadratic Linear Linear

Table 3. Comparison of Motif Finding Algorithms.

Gibb's Motif
Sampling

Motif width, the
number of motif
models and the
expected number
of motifs in each
model.

Detecting multiple
motif models
simultaneously
(mononucleotide
model, gapped
motifs, widely
spread weak
motifs)

Linear

6. REFERENCES

[Akutsu 98] Akutsu Tetsuya, "Hardness results on gapless local m ultiple sequence
alignment" Technical Report 98-MPS-24-2, Information Processing Society of
Japan, I 998.

[Akutsu et al. 00] T. Akutsu, H. Arimura and S. Shimozono, "On approximation
algorithms for local multiple alignment" In RECOJvJBOO: Proceesings of the
Fourth Annual International Conference on Computational Molecular Biology,
Tokyo, Japan, April 2000.

[Altschul et al. 90] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J. Lipman, "Basic
Local Alignment Search Tool," J. Mo!. Biol. 215 pp. 403-410, 1990.

[Ben-Dor 99] A. Ben-Dor and Z Yakhini , "Clustering Gene Expression Patterns," In
RECOMB99: Proceedings of the Thrid Annual International Conference on
Computational Molecular Biology, Lyon, France, pp. 33-42 1999.

[Bilmes 98] Bilmes, 1 . . A., ~·A gentle tutorial of the EM algorithm and its application to
parameter estimation for Gaussian mixture and hidden Markov models"
International Computer Science Institute, 1998.

[Cho et al. 9~] R. J. Cho, 1· 1· Campbell, E . A. Winzeler, L. Steinmetz, A. Conway, L.
Wodicka, T. G. Wolfsberg, A. E. Gabrielian D. Landsman D J Lockart et al.
Mo!. Cell 2, 65-73, I 998. ' , · · , ,

[De Smet et al. 02] F. D~ Smet, 1: MathYs, K. Marchal G. Thi· B D M d Y.
" I\ lapt1ve qua! ty b d . , J s, . e oor, an

Moreau, c' 1
- ase clustering of gene expression profiles,"

Bloin}ormt/lifS, ypl. 18, no. 5, pp. 735-746, 2002.

[Dempster el al. 77] A. P. DempBt@l', N. M.. Laird, and D . B. Rubin .
"Maximum-likelihood from incomp/c[e data via the em algorithm," J Royal

Statist. Soc. Ser. B., 39, 1977.

[Dopazo 97] J. Dopazo and J. M. Carazo, "Phylogenetic reconstruction using a growing
neural network that adopts the topology of a phylogenetic tree," J Mol. Evol. , 44,
pp. 226-23 3, 1997.

[Efron 82] Efron, B. "T_he Jackknife, the Bootstrap, and Other Resampling Plans,"
CBMS-NSF Regional Conference Series in Applied Mathematics; 38. Society
for Industrial & Applied Mathematics, 1982.

71

[Eisen et al. 98] M.B. Eisen, P. T. Spellman, P. 0. Brown, and D. Botstein, "Cluster
analysis and display of genome-wide expression patterns," in Proc. Nat. Acad
Sci. USA, vol. 95, pp.14863-14868, 1998.

[Ermolaeva et al. 98] 0. Ennolaeva, M. Rastogi, K. D. Pruitt, G D. Schuler, M. L. Bittner,
Y. Chen, R. Simon, P. Meltzer, J. M. Trent, and M. S. Boguski. Data
management and analysis for gene expression arrays. Nature genetics, vol. 20(1),
pp. 19-23, 1998.

[Fraley 99] C. Fraley and E. Rftery, "MCLUST: Software for model-based cluster
analysis," J. Classification, vol. 16, pp. 297-306, 1999.

[Gosh 02] D. Ghosh and A. M. Chinnaiyan, "Mixture modeling of gene expression data
from microaaray experiments," Bioinformatics, vo. 18, pp. 275-286, 2002.

[Heiden et al. 98] J. van Heiden, B. Andre, and L. Collado-Vides, "Extracting regulatory
sites from upstream region of yeast genes by computational analysiss of
oligobase frequencies," J. Mo/. Biol., vol. 281, pp. 827-842, 1998.

[Herrero et al. 01] J. Herrero, A. Valencia, and J. Dopazo, "A hierarchical unsupervised
growing neural network for clustering gene expression patterns," Bioinformatics,
vol. 17, pp. 126-136, 2001.

[Hertz 99] G. Z. Hertz and G D. Stormo, "Identifying DNA and protein patterns with
statistically significant alignments of multiple sequences," Bioinformatics, vol.
15, no. 7/8, pp. 563-577, 1999.

[Heyer et al. 99] L. J. Heyer, S. Kruglyak, and S. Yooseph, "Exploring expression data:
Identification and analysis of coexpressed genes," Genome Res., vol. 9, pp.
1106-1115, 1999.

[Hubert 85] L. Hubert and P. Arabie, "Comparing Partitions," Journal of Classification,
pp. 193-218, 1985.

[HGP 04] Human Genome Project Information "The science behind the human genome
project," creation date: March 2004 (access date: March 2004)
http://www.oml.gov/sci/techresources/Human_Genome/project/info.shtml.

[Kohane et al. 03] I. S. Kohane, A. T. Kho, and A. J. Butte, "Microarrays for an
Integrative Genomics, '' The MIT Press, Cambridge, Massachusetts, 2003.

[Lawrence et al. 90] C. E. Lawrence and A. A. Reilly, "An expectation maximization
(EM) algorithm for the identification and characterization of common sites in
unaligned biopolymer sequences," Proteins, vol. 7, pp. 41-51, 1990.

[Lawrence et al. 93] C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S. Liu, A. F.
Neuwald, and J. C. Wootton, "Detecting subtle sequence signals: A Gibbs
sampling strategy for multiple alignment," Science, vol. 262, pp. 208-214, 1993.

72

[Liu et al. 95] J. S. Liu, A. F. Neuwald, and C. E. Lawrence, "Bayesian models for
multiple local sequence alignment and Gibbs sampling strategies," J Amer.
Statist. Assoc., vol. 90, no. 432, pp. 1156-11 70, 1995.

[Moreau et al. 02] Y. Moreau, F. D. Smet, G Thijs, K. Marchal, B. D. Moor, "Functional
bio informatics of microarray data: from e}o..pression to reg ulation,., Proc. IEEE,
vol. 90, No. I I November, 2002.

[Neuwald et al. 95] A. Neuwald, J. S. Liu and C. E. Lawrence, "Gibbs motif sampling:
Detection of bacterial outer membrane protein repeats," Proteins Science, vol. 4,
pp. 1618-I 632, 1995.

[NOVA O I J NOVA Online, "Science programming on air and on1ine," creation date: April
2001 (access date: March 2004),
http://www.pbs.org/wgbh/nova/genome/program.html.

[Quackenbush O I J Quackenbush, J. "Computational analysis of microarray data," Nat.
Rev, Genetics, vol. 2, pp. 418-427, 2001.

[Schwarz 78J G. Schwarz "Estimating the dimension of a model," Ann. Stat., 6 pp.
461-464, 1978.

[Staden 89] Staden, R. "Methods for discovering novel motifs in nucleic acid sequences,"
Computer Applications in the Biosciences 5(4), pp. 293-298, 1989.

[Sokal 58] Sokal, R.R. and Michener, C. D. Univ. Kans. Sci. Bull. 38, 1409-1438, 1958.

[Tamayo et al. 99] P. Tan1ayo, D. Slonim, J. Mesirov, Q, Zhu, S. Kitareewan, E.
Dmitrovsky, E. S. Lander, and T. R. Golub, "Interpreting patterns of gene
expression with self-organizing maps: methods and application to hematopoietic
differentiation," Proc. Nat. Acad Sci. USA, vol. 96, pp. 2907-2912, 1999.

[Tavzoie et al. 99] S. Tavazoie, J. D Hughe, M.J. Campbell, R J. Cho and G. M. Church,
"Systematic determination of genetic network architecture," Nature Genetics,

22(3): 281-5, 1999, June 1999.

[Tompa 99] M. Tompa, "An exact method for finding short motifs in seiuences, with
application to the ribosome binding site problem," in Proc 7' 1 Intl. Con/
Intelligent Syst. For Mo/. Biol., Heidelberg, Germany, pp. 262-271, August 1999.

[Tompa 00] M. Tompa, "Lecture Notes on Biological Sequence Analysis," creation year:
2000 (access date: February 2004),
http://www.cs.washington.edu/ education/courses/ 52 7 /OOwi/lec t ures/roottr. pdf.

[Yeung et al. 0 l] K. Y Yeung, C. Fraley, A. Murua, A. E. Raftery, and W. L. Ruzzo,
"Model-based clustering and data transformations for gene expression data,"
Bioinformatics, vol. 17, pp. 309-318, 2001.

73

6. APPENDIX: PSEUDOCODES LISTINGS

K-means Clustering

K_means_ Clustering(X, numOfClusters){
/* A set of vectors X and a set of cluster centers Y is represented by an object arrays that has
vectors. Clusters are represented by linked-list array: CLUSTER[].*/
/* Step 1 */
/* randomly partition n-dimensional space---> randomly assign cluster centers*/
for(i = 1; i <= numOfClusters; i++)

for(j = 1; j <= numOfObsetvations ;j++)
Y [i] .set(j, Random_ number _generator());

do { /* until the algorithm has converged */
/* copy and initialize the new cluster centers Y for the convergence test */
oldY = Y;
Y.initialize();
/* for all vectors, assign to the nearest cluster center's cluster * /
for(i = 1; i <= numOfGenes; i++)

CLUSTER(MinEuclideanDistance(X, i, Y)].add(X[i]);
/* Step 2: [Estimation Step] recalculate the cluster*/
ComputeClusterCenter (CLUSTER, Y);
/* Step 3: [Maximization Step] reassign the vectorsXinto clusters corresponding to the new
cluster centers. */
for(i = I; i <= numOfDenes; i++)

CLUSTER[MinEuclideanDistance(X, i, Y)].add(X[i]);
}while(Compare(oldY, Y) =false);/* compare Yif it was the same as last time or not*/
return CLUSTER;
} /* end function K_means_Clustering */

/* return the index of nearest cluster center's cluster Y[k] */
MinEuclideanDistance(X, i, Y){
for(k= I; k <= numOfClusters; k++)

Distance[k]=EucledianDistance(X[i],Y[k]);
if(Distance[min] > Distance[k])

min= k;
return min;
} /* end function MinEuclideanDistance */

/* function EuclideanDistance returns the distance between two points*/
EuclideanDistance(x, y){

forG = I ; j <= numOfObsetvations ; j++)
d =(x[i].get_x(j)+ y[k].get (j))2;
Distance[k]=Distance[k]+d;

d =sqrt(Distance[k]);
return d;

} /* end function EuclideanDistance * /

74

/* function Compares two arrays if they are identical or not, if identical return true*/
Compare(oldY~ Y){

while(oldY[i] !=null)
for(i = 1 ~ j <= numOfObseivation ;j++)

if(oldY[i].get(j) = Y[i].get(j))
i++;

else
return false;

return true;
} /* end function Compare */

ComputeClusterCenter (CLUSTER, Y){
for(i = 1; i <= numOfClusters; i++)

for(i = 1; j <= numOfObseivation ;j++)
while(CLUSTER[i].get_x() != null)

sum_X = sum_X +CLUSTER[i].get_xG);
counter++;/* count the number of vector in a cluster*/
CLUSTER[i].get_next();

Y[i].set(j, sum_X I counter);/* take an average and store in each observation*/
sum_X = O; counter= O; /* initialization for the next obseivation */

return Y;
} /* end function ComputeClusterCenter */

SOM (self-organizing map)

SOM(X, numOfClusters, Y){
/* A set of vectors X and a set of cluster centers initial geometric shape grids Y is represented
by an object array */
counter= 1;
/* Step 2-1 : randomly select one of gene vectors and find the nearest cluster center.
indexOfX[] has flag to tell if the index X[i] has already been selected or not. */
do{ /* until iteration reaches the maximum number of times*/

/* copy and initialize the new cluster centers Yfor the convergence test*/
oldY = Y;
Y.initialize();
i = Random_ number _generator();

while(indexOtX[i] = 1) /* X[i] has already been selected, draw another i *I
i = Random_number.generator()];

indexOfX[i] = 1/* set a flag for already drawn gene X[i] */
/* function MinEuclideanDistance returns index of Ythat is the nearest cluster. */
p = MinEuclideanDistance(X, i, Y);
/* Step 2-2: update cluster centers ¥ proportional to the distance to X; *I
/* functionP decreases (from 3) linearly with some function with respect to counter (the
number of iteration). Other coefficients are given above. */
learn ingRate=O. 02 *MaxNumlteration/ (MaxNumlteration+ I 00 *functionP(counter));
for(j= 1; j <= numOfObservation ; j++)

newLocation=Y[k].getG)+leamingRate*EuclideanDistance(Y[p],Y[k])*
(EuclideanDistance(X[i], Y[k]);

Y[k].set(j, newLocation);
counter++;

75

if(Compare(oldY, Y) =true)/* convergence test*/
return Y;

} while(count < Max.Numlteration);
return Y;

} /* end function SOM*/

Model-based Clustering

Model_ based_ Clustering(X){
/* A set of vectors, X is represented by an object array. result[][] has clustered vectors in
linked list */
/* Step 1: preprocess the data with hierarchical clustering according to logarithmic likelihood
*I
Hierarchical_ Clustering(X);
/* Step 2: try n possible models for different number of clusters 2 to k *I
for(t = 2; t <=k; t++)

result[]][t] = K_means_Clustering(X, k);
result[2][t] =/* try other models*/

result[n][t] =

/* Step 3: calculate BIC (Bayesian Information Criterion) and print them for further analysis
*/
/* BIC compares all possible n models in one time*/
for(t = 2; t <=k; t++) /* for each number of clusters*/

Print(CalculateBIC(t, result[]][t], result[2][t], ... , result[n][t]));
} /* end function Model_based_Clustering */

Hierarchical Algorithm

Hierarchical_ Clustering(X){
/* A set of vectors X is represented by an object array (size in icceil(lgN)+tL I, where
N umOfGenes = N) and stored in biologically related order. Each object has pointers to a
dataset table (DistanceTable) and their child nodes, and a vector x. When the vectors are
merged and their parent node is created, the vectors' obsolete flag becomes true.*/
do{ /* until there is only one gene in a data table*/
/* Step I: Construct Euclidean distance table*/

for(i= I; i <= numOfGenes; i++)
if(X [i].obsolete() !=true)/* if the vector i is not obsolete, compare with other vectors*/

forG= l;j <= numOfGenes ;j++)
if(X [j].obsolete() != true)

if(i!=j)
distanceTable[i][j]= oo;

else
distanceTable[i][j]=EuclideanDistance(X[i], X [j]);

/* Step 2: Merge the shortest distance pair into one gene vector*/
shortestDistance = Distance Table[I][I]; /* initialize the shortest distance value * /

76

for(i= I; i <= numOfGenes; i++)
for(j= 1; j <= numOfGenes ; j++)

if(distanceTable[i] Li] < shortestDistance)
shortestDistance = distanceTable[i][j];

/* merge X[i] and X[j] into new (parent) node X[numOfGenes +l] */
if(i = j) /* case there is only one gene in the distance table */

return X;
else

for(k= 1; k <= numOfDbservation; k++) /* for all observations take an average*/
X [numOfGenes].set_x((X[i].getX(k) + X[j] .getX(k))/2, k);

numOfGenes++; /* new node created */
I * set pointers of parent node to a merged pair X[i] and X[j]. */

X [numOfGenes] .setLCPointTo(X[i]);
X[numOfGenes] .setRCPointTo(X[j]);

/* X[i] and X[j] are obsolete since they are merged.*/
X[i] .setObsolete();
X[j] .setObsolete();

}while(i != j);
} /* end function Hierarchical_ Clustering * /

Quality-based Clustering

Quality _based_Clustering(X, minNumGenes, diameter_d){
/* A set of vectors Xis represented by an object array and cluster centers are stored in array Y.
Clusters are represented by object array CLUSTER[] and it has a gene index and vectors in
the linked-list array. Jackknife correlation is stored in two-dimensional array. When gene is
a lready selected, set oo to avoid being selected by the same cluster center. */
/* Step I : preprocess the data and obtain standardized X *I
for(i = 1; i <= numOfGenes; i++)

sum = O;
forU = I ; j <= numOfObserv~tion;j++)

sum = sum + X(i].get_xU);
mean = sum/ numOfObservation;

sum= O·
for(j = i'; j <= numOfDbservation; j++)

sum = sum + (mean-X[i].get_ xG))1'2;
sigma = sqrt(sum/numOfObservation-1);
/* obta in standard deviations */

forU = J; j <= nurnOfObse~ation; j++)

X[i].set xU, X[iJ .gct_x(1)- mean);
X[i].set=x(j, X[i].get_xU) I slgmu);

/* Step 2: Calculate jackknife correlation */
for(i = I ; i <= numOfGenes; i++)

for(j = 1 ;j <= numOfGenes; j++)
min= EuclideanDistance(X[i].get_x(j)); /* initialize minimum value */
for(k = 1; k <= numOfGenes+l; k-H-)

/* function EuclideanDistance has polymorphism functions and when it has the
second argument, it eliminates term in index k when it calculates distance */

if(i != j)
d = EuclideanDistance(X[i].get_x(j), k);

77

if(d < min)
min= d;

jackknife[i][j] = min;
/* Step 3: find a greatest jackknife correlation gene to every one of genes */
/* find a pair of genes x, and xi that have a minimum jackknife correlation and set the average
as cluster center of cluster C, */
do{ /* until there are no more clusters that meet minimum number of vectors*/

t++; I* increment an index of array CLUSTER */
tempCLUSTER.empty(); /* initialize a temporary cluster set */
for(i = 1; i <= numOfGenes; i++){ /* all genes can be a temporary cluster center i *I

/* use a temporary jackknife for temporary CLUSTER sets*/
/* the same genes can be selected by different index i in temporary CLUSTER[i] */

tempJackknife =jackknife;/* reset tempJackknife to be original jackknife*/
min= tempJackknife[i][l]; /* initialize minimum correlation*/
if(tempJackknife[i][l] <= 1) /* if the gene does not belong to any cluster yet*/

for(p = 2; p <= numOfGenes; p++)
if (min> tempJackknife[i][p] && tempJackknife[p][l]!= oo && diameter d >

tempJackknife[i][p] && i != p) -
min= tempJackknife[i][p];

tempCLUSTER[i].add(X[i]); /* first, add the current cluster center i *I
if(diameter_d > tempJackknife[i][p])

tempCLUSTER[i].add(X[p]); /* second, add selected vector*/
I* set null so that next time it is not selected in next step on current cluster center*/

tempJackknife[p][l] = oo;
ComputeClusterCenter(tempCLUSTER, Y);
cluster_center = Y[i];
/* Step 4 */
do{/* until there are no more vectors that meets threshold d *I

min= EuclideanDistance(tempJackknife[i][l], cluster_center);
for(q = 2; q <= numOfGenes; q++)

if (i!= q && tempJackknife[q][l]!= oo && min>
EuclideanDistance(tempJackknife[i][q], cluster_center))
min= EuclideanDistanceGackknife[i][q], cluster_center);

if(min < diameter d)
tempCLUSTER[i] .add(X[q]);
/* set null so that the next time it is not selected in this for loop*/
tempJackknife[q][l] = oo;
ComputeClusterCenter(tempCLUSTER, Y);
cluster center = Y[i];

}while(min < diameter_d);
} /* end for i * /

/* Step 6*/
max= O; max.NumOfDenes = O;
for(i = I; i<= numOfDenes; i++)/* find the largest cluster*/

if(max.N umOfGenes < tempCLUSTER[i].count()){
maxNumOfDenes = tempCLUSTER[i].count();
max= i;

if(max.NumOfDenes >= minNumGenes)
CLUSTER[t] = tempCLUSTER[max];

/* set to selected genes to be null so that the gene k is not selected in further iteration */
do{

78

jackknife[CLUSTER[t].get_index()][l] = 2;
}while(CLUSTER[t].get_next() != null);
tempJackknife =jackknife;/* renew jackknife correlation table */

/* if there still cluster that satisfies minimum number of genes, continue the loop */
}while(maxNumOfGenes >= minNumGenes);
return CLUSTER;
} /* end function Quality_ based_ Clustering*/

EuclideanDistance(x, y, k){
forU = 1 ; j <= numOtobseivations ; j++)

ifU!=k)
d =(x[i].get_xG)+ y[k].get (j))2;
d =sqrt(Distance[k]);

return d;
}/* end function EuclideanDistance */

SOTA (self-organizing tree algorithm)

SOTA(X, threshold_h){
/* A set of vectors X is represented by an object array and cluster centers are stored in array Y
that forms tree. Y is array object that has vectors X and the index of parent and sibling * /
/* Step 1 : create the root by taking an average of all vectors */
for(i=l; i<= numOfGenes; i++)

CLUSTER[i].add(X[i]);
ComputeClusterCenter(CLUSTER, Y);
/* Step 2: create two child nodes from the root*/

root= Y[l];
copy(Y[1], Y[2]);
copy(Y[1], Y[3]);
Y[2].setParentTo(1)
Y[2].setSiblingTo(3)
Y[3].setParentTo(1)
Y[3] .setSiblingTo(2);

/* Step 3 */
do{ /* until it converges*/

old_e = e; /* initialize error rate for the convergence test*/
counter= I;

do{ /* until all vectors are selected; one epoch*/
/* randomly select X[i] */
i = Random_ number _generator();
while(indexOfX[i] = 1) /* i has already been selected, draw another i *I

i = Random_number.generator();
indexOfX[i] = 1
/* function MinEuclideanDistance returns index of Ythat is the nearest cluster to X[i] */
winning = MinEuclideanDistance(X, i, Y);
/* Update the winning cluster, its parent and sibling with proportional to the distance to
X[i], coefficients are obtained from step 3. */
R[winning] = R[winning] + X[i].get_xG)-Y[winning].get_xG)];
countVectors[winning] ++;/*increment counter of vectors in a cluster*/

79

Y[winning].set(j, Y[winning].get_x(j) + 0.01 *(X[i].get_x(j)-Y[winning].get_x(j)));
node = Y[winning][j].getSibling();
node.set(j, node.get_x(j) + 0.001 *(X[i].get_x(j)- node.get_x(j)));
node= Y[winning][j].getParent();
node.set(j, node.get_x(j) + O.OOS*(X[i].get_x(j)- node.get_x(j)));

} while(counter != numOfGenes); /* one epoch*/
/* Step 4 */
k = 1;
while(k<= numOfGenes && counter[k]>O)

R = R[k]/countVectors[k++];
k = 1;
while(k<= numOfGenes && counter[k]>O)

e = R[k++]+e;
---initialized array Rand counter --­

}while((e-old_e)/ old_e >= threshold_h);
return Y; /* process is converged*/

} /* end function SOTA*/

Adaptive Quality-based Clustering

Adaptive_ Quality _Based_ Clusteimg(X, minNumOfGenes, significance_level_h){
/* A set of vectors X and a set of cluster centers Y is represented by an object arrays that has
vectors. Clusters are represented by linked-list array: CLUSTER[]. */
/* Step 1 */
min_radius = sqrt(numOfObservation -1) /2;
/* Step 2 */
do{ /* until there is cluster that satisfies the minimum number of vectors*/

I terationCounter = 1;
do { /* until locate cluster into proper place*/

for(i=l; i<= numOfGenes; i++)
if(X[i].obsolete() = false)

CLUSTER[j].add(X[i]);
ComputeClusterCenter(CLUSTER, Y);
cluster_center = Yfj];
if(I terationCounter = 1)

delta_radius = (maxEuclideanDistance(Y,j, X)-min_radius)/fraction_radius;
/* shrink the Cluster by delta_radius */
radius= maxEuclideanDistance(Y,j, X)-delta_radius;
/* clear cluster once and pick up vectors that are inside the cluster*/
CLUSTER[j].delete();
for(i=l; i<= numOfGenes; i++)

if(EuclideanDistance(cluster_ center, X[i])<radius)
if(X[i].obsolete() = false)

CLUSTERfj] .add(X[i]);
/* Step 3 */
old_cluster_center = cluster_center;/* keep last cluster center for convergence test*/
ComputeClusterCenter(CLUSTER, Y);
cluster center= Yfj];
/* remove all genes in cluster} from the space*/

80

if(Compare(old_cluster_center, cluster_center) = false)
if(Di stance(cluster_ center, X [i])<radius)

X[i] .set_ obsolete();
}while(Compare(old_cluster_center, cluster_center) = true II IterationCounter <= 50 II

radius> min_radius);
if(CLUSTER[j].empty() = true) /* Step 6 */

return CLUSTER;/* relocating cluster does not converge*/
/* Step 5 *I
radius= min_radius; newRadius=radius; /* initialize radius*/
/* obtain Pc from distribution of distance between cluster center and vectors*/
while(radius != lastRadius){

/* Estimation Step */
/* measure distance between vector i that belongs to the cluster and the cluster center
and, and calculate likelihood.*/
for(i= 1; i<= numOfGenes; i++)

if(Distance(cluster_ center, X[i]}<radius)
if(X[i].obsolete() = false)/* if vector is not taken by other cluster already*/

CenterToVectors = Distance(cluster_center, X[i]) + CenterToVectors;
count Vectors++;

else
if(X[i].obsolete() = false)

CenterToBackground=Distance(cluster_ center,X[i])+
CenterToBackground;

if(countVector < minNumOfVectors) /* cluster does not have enough vectors*/
radius=lastRadius;
break;

else
readus=newRadius;

Pc = CenterTo Vectors/CenterToBackground;
Pb= l - Pc;
mean= Pc_b/numOfGenes;
sum= O;
for(i= l; i<= numOfDenes; i++)

for(j = l; j <= numOfObservation; j++)
sum =sum+ (mean-X[i].get_x(j)}2;

sigma = sqrt(sum/numOfObservation-1);
PrC=Formulal(Pc,sigma);
PrB= Formula2(Pb,sigma);
/* Maximization Step*/
newRadius = Formula3(PrC,PrB,significance_level_h);
lastRadius = newRadius; /* keep the last radius for convergence test * /

} /* end while*/
/* empty cluster once, pick up all vectors within the radius and store them in cluster*/
CLUSTER[j].delete();
CountGenes = O;
if(EucledianDistance(cluster_center, X[i])<radius)

if(X[i].obsolete() = false)
CLUSTER[j].add(X[i]);
/* genes in the cluster are removed from the space for the next iteration * /
X[i] .set_ obsolete();
countGenes++;

81

j++; /* obtain next cluster */
}while(countGenes >= minNumOfGenes);
return CLUSTER; /* Step 6 */
}/* function Adaptive_Quality_Based_Clusteirng */
/* Refer to formulas (I), (2) and (3) above for subfunctions Formula I, Formula2 and
Formula3. */

String Method

String_Method(S, L){
/* A set of sequences S is stored in two-dimensional string array and significant motifs with
length of L is stored in an object array MOTIF that has motif sequences and z-scores */
/* Step 1: By Staden's algorithm count the occurrence of all possible 4L strings N_t [] and the
number of sequences that contain at least one motif candidate t of N_sq []. Assume array
dictionary[] already contains all possible string oflength L with {A,T,C,G} */
t=l;
while(t <= 4L){/* for each possible string t *I

for(m= 1; m<=numOfSequence; m++){ /* for all sequence in S */
forU= I ; j <= lengthOfSequence-(L +I); j++){/* for all location in sequence s * /

for(k=l; k <= L; k++)/* for all indexofstringt */
if(S[m][k+j] = dictionary[t][k])

matched++;
if(matched >= L-1) /* string t found within S[m] and at most one substitution */

N_t[t]++;
flag= true;/* there is at least one string t found in sequence S[m] */

matched= O;
} /* end for j * I

if(flag == true)
N_sq[t]++;

flag = false;
} /* end for m * /
t++; I* go to the next possible string t *I

} /* end while */
/* Step 2: construct DNF and find probability p_t */
do{ /* do for all possible string t */

/* Step 2-1 : construct DNF that accepts string t with sequence m * I
M = ConstructDNF(dictionary, t, S, m);
/* Step 2-2: construct object array A[] [] that has a pattern a; and ak and count of
occurrence, as a first order Markov Chain */
m = Random_nwnber_generator(); /* randomly select a sequence from S */
/* count the number of occurrence of pair a; and ak *I
for(j= I ; j <= lengthOfSequence-1; j++)

for(i=l; i <= 4; i++)
for(k=l; k <= 4; k++)

if(A[i][k].get_a_i() = S[m]U])
if(A[i][k].get_aj() = S[m]U+ I])

A[i][k].incrementO;

82

/* to obtain probability divide the count by length of sequence-I */
for(i= J: i <= 4; i++)

for(k= I; k <= 4; k++)
A[i][k].set_prob(A[i][k].get_ count()/JengthOfSequence-1);

M = TransformM(M,A[i][k]); /* Step 2-3: transform M to M ' */
I* traverse DNF and detennine the probability of occurrence of string tin randomly selected
sequence S[m]. */
p _ t[t]=Traverse(M);
/* Step 3: calcu late z-score */
Z[t) = (N_t[t]-N_sq[t]) / (N_sq[t](l-p_t[t]))112

;

t++:
}while(t <= 4L):

/* create an object array MOTIF for only significant strings*/
s= I :
for(t= I : t <= 4\ t++)

if(Z[t] > I)
M OTIF[s++] = CreateMotif(Z[t], dictionary[t]);

return MOTIF;
}/* function String_Method */
/* pseudocode for subfunctions: ConstructDNF, TransformM and Traverse are omitted, please
refer to an example in the next section. */

Greedy Algorithm

G reedy _ Algorithm(S,L){
/ * A set of sequences S is stored in an object array that has a two-dimensional string array,
starting index and information content of motif candidate in the sequence. Motif is copied into
array MOTIF (S ') as soon as it is considered to be significant. Array M has a motif profile of a
set that has a lready selected as MOTIF and array P has a temporary motif profile and array Q
has the background model. */
/* Step I and 2 */
for(k= 1; k<= numOfSequences; k++)

m= MaxlnfonnationContent(S,L,P)

/* once the highest information content is found in sequence m, it is removed from S *I
S[m] set obsolete();
/* subsequence oflength Lin S[~] is copied into array MOTIF[] */
Copy(MOTIF[k], S[m).get_mot1f())'. . . *
/* count the number of bases ~or next 1terat1on /
,. c·= S[] cl stnrtlndex(); 1<= S[m].get_startlndexQ+L; i++){
,or I rn .g _ . . , , I[){')++·

if(S[m].getBase(1)= ~) tv a .\ ,
if(Slm l .gcrOnsc(i)== '1 ') M(tJ[•)-1 I·;

if(S[mJ.gctBasc(i)==~ 'C') M[_cll1.]++;
if(S[m].getBase(i)= 10 1

) MlsJ[11++;
}/* function Greedy _Algorithm */

/* return array Q that has a background model */
C reateBackgroundModel(S,P){
for(m= J; m <=numOfSequence; m++)

forU= I ; j <=lengthOfSequence; j++)

83

if(S[m].getBaseG)= 'A') Q[a]++;
if(S[m].getBaseG)= 'T') Q[t]++;
if(S[m].getBaseG)= 'C') Q[c]++;
if(S[m].getBaseG)= 'G') Q[g]++;

m = Total(P)/L; /* calculate the number of sequence involved so far */
/* subtract total number of bases in motif from the background*/

for(base=a; basee (a,t,c,g); next base)/* for all different bases*/
Q[base]=(Q[base]-SubTotal(P,base))/(m*(lengthOfSequences-L));

return Q;
} /* end function CreateBackgroundModel */

/* returns object that has maximum information content with its starting index*/
MaxlnformationContent(S,L,P){
/* Array M has the number of bases in the motif set. Array P hold the number of each base
initially, then it has information content of each base*/
for(m=l; m<=numOfSequence; m++)

if(S[m].obsolete() = false)
for(j= I; j<=lengthOfSequence; j++)

Copy(P,M); /* initialize base counter array P */
/* obtain alignment matrix */
for(i=j; i<=j+L; i++) /* index in array P, i is relative index ofj *I

if(S[m].getBase(i)= 'A') P[a][i-j+ I]++;
if(S[m].getBase(i)= 'T') P[t][i-j+l]++;
if(S[m].getBase(i)= 'C') P[c][i-j+l]++;
if(S[m].getBase(i)= 'G') P[g][i-j+l]++;

Q = CreateBackgroundModel(S,P);
/* obtain information contents*/

IC= O;
for(i=j; i<=j+L; i++){ /* index in array P, i is relative index of j *I

for(base=a; basee (a,t,c,g); next base)/* for all different bases*/
P(base][i-j+l]=(P[base][i-j+l]/(numOfMotifFound+l))logi((P[base][i-j+l
]/(numOfMotitFound+ 1))/Q(base]);

IC= IC+ P[a)[i-j+l]+ P[t][i-j+l]+ P[c][i-j+l]+ P[g][i-j+l];

if(max < IC}
max= IC;
maxSeq = m; maxStartlndex = j;

S [m]. set_ start(maxStartlndex);
return m;
} /* end function MaxlnformationContent */

Total(P){
for(base=a; basee (a,t,c,g); next base}

for(k=l; k<=4; k++)
n=n+P(base] [k];

return n;
}/* function Total */

SubTotal(P,base){
for(k=l; k<=4; k++)

n=n+P[base][k];

84

return n;
}/* function Total */

EM Algorithm

EM_Algorithm(S,L){
I* A set of sequences S is stored in array of object that has a rv.:o-dimensional string array, start
index (that is a lready given in itia lly)*/
do {

/* Step 2: Estimation Step */
/* Count each di ffe rent bases of each different position in motif cand idates. Pr[][] contains
base frequency of each position of motif */
P = CalculateMoti fprofile(S,L)
Pr = CalculateFrequency(S,L,P);
/* Step 3: Maximization Step*/
newP = CalculateFunctionP(S,L);
---adj ust) (starting positions) to satisfy estimated base frequency Pr --­

}while(Compare(P, newP)=false); /* if the function P is not the same*/
return S;
} /* function EM_Algorithm */

CalculateFrequency (S,L,P){
Q = C reateBackgroundModel(S,L);
for(m= l ; m<= numOfSequence; m++)

for(i=S[m].get_startlndexO; i<=L; i++)
base = S[m].getBase(i);

/* i- S(m].get_startlndexO+ I is the index that is considered to be starting point in Bayes
formula*/

Pr[base][j] = Pr[base]Li] + Baye'sFormula(S,m,i- S[m].get_startlndexO+ l ,P);

return Pr;
}/* function CalculateFrequency */

CalculateMotifProfile(S,L){
for(m= l ; m<=numOfSequence; m++)

for(j= l ; j <= lengthOfSequence; j ++)
/ * obtain alignment matrix (count the number of each base)*/
for(i=j; i<=L; i++) /* index in array A, ; is relative index with)*/

if(S[m].getBase(i)= 'A') P[a][i- j+ l)++;
if(S[m].getBase(i)= 'T') P[t][i- j+ l]++;
if(S[m].getBase(i)= 'C ') P[c][i- j+ l]++;
if(S[m].getBase(i)= ' G') P[g][i- j+ l]++;

fo1·(base=a; basee (a,t,c,g); next base)
for(i=j ; i<=L; i++)

P[a][i-j+l)= P[a][i-j+ 1)/numOfSequence;
return P;
} /* function CalculateFunctionP */

Bayes Form u la(S,m,k,P) {
ProbOfPositionK = l ;

85

for(i=k; i<=L+k; i++)
probOfPositionK= probOfPositionK*P[S[m].getBase(i)][i];

ProbOfDtherPositions = I;
for(i= 1; i<=lengthOfSequence; i++)

ProbOfDtherPositions = ProbOfOtherPositions*P[S[m].getBase(i)][i];
sum = sum+ ProbOfOtherPositions;

return ProbOfPositionK/ProbOtOtherPositions;
} /* end function BayesFormula */

Gibbs Sampling

GibbsSampling(S){
I* A set of sequences S is represented by an object array that has a two-dimensional string
array. */
/* Step 1 */
for(m= 1; m<=numOfSequence; m++)

S[m].set_startlndex(Random_number_generator());
/* Step 2: Estimation Step*/
do { /* until converges * /

iterationCounter++;
oldS = S; /* store last motif set for convergence test*/
/* once al I sequence has been selected, clear counter and index and start from beginning * /
if(iterationCounter =numOfSeq+ I)

iteration Counter= l;
for(q= l; q<=numOfSequence; q++)

sequencel ndex[q]=O;
/*select a sequence z that has not been selected randomly*/
z = Random_number_generator();
while(sequencelndex[z] = true)

z = Random_ number _generator();
sequencelndex[z]= true;/* set a flag to mark the sequence to be already selected*/
P = ObainProfiles(S,z);
Q = ObtainBackgroundProfile(S,P);
/* Step 3: Maximization Step*/
/* calculate a probability of starting position j by the information contents measurement
and set it in array IC[]*/

forU= 1; j<=lengthOfSequence; j++)
S[z].set_startlndexG);
IC[j] = CalculateIC(S,P,Q,z);

--- draw j proportional to the probability calculated above --­
S [m] .set_ startlndexG);

}while(Compare(oldS, S));
}/* function GibbsSampling */

ObainProfiles(S,z) {
for(m=l; m<=numOfSequence; m++){

if(m !=z) /* exclude S[z] */
/* obtain alignment matrix*/
j= S[m].get_startlndex();

86

for(i=j; i<=j+L; i++){ /* index in array P, i is relative index toj *I
if(S[m].getBase(i)= 'A') P[a][i-j+l]++;
if(S[m].getBase(i)= 'T') P[t][i-j+l]++;
if(S[m].getBase(i)= 'C') P[c][i-j+ 1]++;
if(S[m].getBase(i)= 'G') P[g][i-j+l]++;

for(i=j; i<= j+L; i++)
for(base=a; basee (a,t,c.,g); next base)/* for all different bases*/

P[base][i]=(P[base][i])+pseduoCount)/(numOfSequence-1);
return P:
} /* function ObtainProfile */

ObainBackgroundProfiles(S,z){
for(m= I; m<=numOfSequence; m++)

if(m !=z) /* exclude S[z] */
/* obtain alignment matrix*/
j= S[m].get_startlndex();
for(i= I; i<=lengthOfSequence; i++){

if(i< S[m].get_startlndexO && i> S[m].get_startlndex()+L){
if(S[m].getBase(i)= 'A') P[a][i]++;
if(S[m].getBase(i)= 'T') P[t][i]++;
if(S[m].getBase(i)= 'C') P[c][i]++;
if(S[m].getBase(i)= 'G') P[g][i]++;

for(i= I; i<= lengthOfSequences; i++)
for(base=a; basee (a,t,c,g); next base)/* for all different bases*/

P[base][i]=(P[base][i]+pseduoCount)/lengthOfSequences;
return Q;
} /* function ObtainBackgroundProfile */

CalculateIC(S,P,Q,z){
/* let P be algihtment matrix of motif set */
for{i= 1; i<= lengthOfSequences; i++)

for(base=a; basee (a,t,c,g); next base)/* for all different bases*/
P[base][i]= P[base][i] *(numOfSequences-1) -pseudoCount;

/* obtain alignment matrix including S[z] start atj */
j= S[m].get_startlndex();
for(i= j; i<= j+L; i++)

if(S[z].getBase(i)= 'A') P[a][i-j+ 1]++;
if(S[z] .getBase(i)= 'T') P[t][i-j+ 1]++;
if(S[z].getBase(i)= 'C') P[c][i-j+l]++;
if(S[z].getBase(i)= 'G') P[g][i-j+ l]++;

for{i= 1; i<= L; i++)
for(base=a; basee (a,t,c,g); next base)/* for all different bases*/

IC=IC + (P[base][i])log2((P[base][i]/numOfSequence)/Q[base]);
return IC;
} /* end function CalculateIC */

87

Gibbs Motif Sampling

GibbsMotifSampling(S,numOfModel,width,expectedNumOfMotifs){
/ * A set of sequences Sis stored in an object array that has a two-dimensional string array and
sets of motif is in an object array MOTIF[]. width and expectedNumOfMotifs are stored in
array width[] and expectedNumOfMotifs[] . To avoid overlapping, sequence S has flag that
indicates whether it is included in motif or not by passing start index and its motif width.*/
/* Step I : initially e, numbers of set of motifs are located randomly*/
for(i= I: i<= numOfModels; i++)

for(n= I: n<= expectedNumOfMotifs[i]; n++)
AssignRandomSites(S);

/* Step 2: [Motif Sampling] Estimation Step: obtain probability distributions*/
/* define an initial sampled site x */
seq I ndexX = Random_ number _generator(numOfSequences);
start I ndexX = Random_number _generator(lengthOfSequence);
do {/* until converges*/

/* store current value for next convergence test */
lastSeqX =seqlndexX; lastStartX=startlndexX;

lastSeqZ =seqlndexZ; lastStartZ=startlndeXZ;
/ * if site x is already in the alignment (selected as motif candidates), remove the motif
candidate that overlaps with x from the alignment.*/

if(S[seqlndexX).get_flag(startlndexX,widthX) = true)
S[seqlndexX].reset_flag(start~ndexX,widthX);
for(i= 1; i<= numOfModels; 1++)

P[i] = ObainProfiles(S,0);
Q = Obta inBackgroundProfi le(S ,P);

/* Step 3: [Motif Sampling] Ma~imization Step: draw a motif ~ode! _*/
/ * initialize a posterior probability an~ the total number of possible sites*/

for(i= J; i<= nurnOIMoclcls; 1++){ .
for(i= I ; j <= numOfScq11cnccs; J++)

tota!NumOfPoss ibleSitcs:-lcnglhOfScqucnce[J]- widfb[i]+ 1'

if(max< tota!NumOfPossiblcSites)
max=totalNumOfPossibleSites;

totalNumOfPossibleSites[i]=max;
if(posterirProb[i] =O)

for(i= I; i<= numOfModels; i++)
posterirProb[i] = expectedNumOfMotifs[i]

/totalNumOfPossibleSites[i];
for(i= 1; i<= numOfModels; i++)

L[i]=CalculateLikelihood(S,P,seqlndexX,startTndexX,totalNumOfPossibleSites,
po steriorProb);

--- draw a model i proportional to likelihood calculated above ---
/* update a posterior probability for given selected model i *I
posteriorProb[i] = (numOfMotifs[i)+ pseudocount)/totalNumOfPossibleSites +

sumOfPseudocount)
I* Step 4 : [Column Sampling] Estimation Step: select one of motif candidates in model i *I
seq Index Y =Random_ number _generator(numOfMotifs[i]);
s iteY=MOTIF[i)[seqlndexY);
/* remove site y temporary from alignment*/
numOfMotifs[i] -;
M OTI F[i)[numOfMotifs[i]].remove _ site(seqlndexY,startlndexY);

88

/* Step 5: [Column Sampling] Maximization Step: select a highest information content site
from the largest width site that belongs to background.*/

forG= I; j<= numOtMotifs[O]; j++)
if(max < MOTIF[O]U].get_ width())

max = MOTIF[O][j].get_ width();
z=j; I* select largest width segment z */

seqlndexZ=MOTIF[O][z].get_index();
startindexZ=MOTIF[O][z].get_startindexO;

for(n = O; n<= widthZ; n++)
I C=CalculatelnformationContent(S,P,widthZ,seqlndexZ,startlndexZ +n);
if(max <IC)

max =IC;
maxStartlndexZ= startlndexZ+n;

/* Step 6: merge two samplings; if two samplings selected the same region, replace site x
with site y, otherwise, restore y that previously removed from alignment and use site z as
next site x *I

if(seqlndexX= seqlndexZ)
if(startl ndexX =maxStartlndexZ)

startlndexX = startlndex Y;
seqlndexX= seqlndexY;

else
startlndexX = startlndexZ; seqlndexX seqlndexZ;
numOfMotifs[i]++;
MOTIF[i][numOtMotifs[i]].set_site(seqlndexY,startlndexY);

}while(seqlndexX!= lastSeqX II startlndexX!= lastStartX II seqlndexZ!= lastSeqZ II
start I ndexZ ! = lastStartZ);
return MOTIF;
} /* function GibbsMotifSampling */

AssignRandomSites(S){
m = Random_number_generator(numOfSequences);
startl ndex = Random_ number _generator(lengthOfSequence);
while(S[m].get_flag(startlndex,width[i]) = true)

m = Random_ number _generator(numOfSequences);
startl ndex = Random_ number _generator(lengthOfSequence);

S[m].set_flag(startlndex,width[i]);
S[m].set_MotifModelld(i);
numOtMotifs[i]++;
MOTIF[i][numOfMotifs[i]].set_site(m,startlndex);
} /* AssignRandomSites *I

CalculateLikelihood(S,P,L,m,startlndex,totalNumOfPossibleSites,posterirProb){
/* let P be algihtment matrix of motif set */
for(i=I; i<= lengthOfSequences; i++)

for(base=a; basee (a,t,c,g); next base)/* for all different bases*/
P[base] [i]= P[base] [i] *(numOfSequences-1)-pseudoCount;

/* obtain alignment matrix with site x start*/
for(i= startlndex(); i<= startlndex +L; i++)

if(S[m].getBase(i)= 'A') P[a][i-startlndex + I]++;
if(S[m].getBase(i)= 'T') P[t][i-startlndex +I]++;
if(S[m].getBase(i)= 'C') P[c][i-startlndex +I]++;

89

if(S[m].getBase(i)= ~G') P[g][i-startlndex +I]++;
for(i= startlndex; i<= L; i++)

likelihood=likelihood*(posterirProb[m]/(1-posterirProb[m]))*((P[S[m].getBase(i)][i]/m)/Q
[S[m].getBase(i)]);

return likelihood;
} /* end function CalculateLikelihood */

Calculate In formationContent(S,P,L,seqlndexZ,startlndexZ){
/* let P be algihtment matrix of motif set */
for(i= 1; i<= lengthOfSequences; i++)

for(base=a; basee (a,t,c,g); next base)/* for all different bases*/
P[base][i]= P[base][i]*(numOfSequences-1)-pseudoCount;

/* obtain alignment matrix with site z */
for(i= S[seqlndexZ].get_startlndexQ; i<= startlndexZ +L; i++)

if(S[seqlndexZ].getBase(i)= 'A') P[a][i-startlndexZ+ I]++;
if(S[seqlndexZ].getBase(i)= 'T') P[t][i-startlndexZ+l]++;
if(S[seqlndexZ].getBase(i)= 'C') P[c][i-startlndexZ+l]-H-;
if(S[seqlndexZ].getBase(i)= 'G') P[g][i-startlndexZ+l]-H-;

for(i= I; i<= L; i++)
for(base=a; basee (a,t,c,g); next base)/* for all different bases*/

IC=IC + (P[base][i])log2((P[base][i]/m)/Q[base]);
} /* end function CalculatelnfonnationContent */

90

VITA

Megumi Igarashi

Candidate for the Degree of

Master of Science

Thes is: A SURVEY OF CLUSTERING AND MOTIF FINDING FOR
M ICROARRA Y TECHNOLOGIES

Major Field: Computer Science

Biographical:

Personal Data:Born in Tochigi, Japan, On January 23, 1973, daughter of Takao
Igarashi and Yoko lgarashi.

Education:Graduated from Omiya Koryo High School, Saitama, Japan in 1991;
received Associates of Science from Miles Community College, Montana
in May 1998; received Bachelor of Science from Oklahoma State
Univcrsiry, Oklahoma in May 2002. Completed the requirements for the
Master of Science degree at the Computer Science Department at

Oklahoma State University in July 2004.

Experience:Employed as a desktop publisher at Kurashiki Print,n~ Company,
Tokyo Japan Apri l 1993 through December l 996 and May 1998 through

January 1999.

