By
KAY WILLIAM DUNDAS
Bachelor of Science
Fort Hays Kansas State College
Hays, Kansas 1960
Master of Arts
Fort Hays Kansas State College
Hays, Kansas
1961

Submitted to the Faculty of the Graduate College
of Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
DOCTOR OF EDUCATION
July, 1972

P-ADIC NUMBERS AND DIOPHANTINE EQUATIONS

Thesis Approved:

ACKNOWLEDGMENTS

I would like to acknowledge the following people for the roles they played in the preparation of this thesis. To my thesis adviser, Dr. Jeanne Agnew, goes a special thank you for her inspirational teaching as well as her understanding guidance. I would also like to thank Dr. John Jewett, Dr. Vernon Troxel, and Dr. Robert Alciatore for serving on my advisory committee. For particular contributions to my mathematics training, I thank Wilmont Toalson, Dr。Hiroshi Uehara, Dr. Forrest Whitfield, and Dr. John Jobe.

The thesis was typed by Velda Davis. I appreciate the excellent work she has done, especially with the difficult notation.

Finally, I thank my family. The constant encouragement provided by my parents, Mr. and Mrs. W. L. Dundas, and my wife's parents, Mr. and Mrs. Ralph Peterson, was a great help. The most important factor to the success of this endeavor was the cooperation and support of my wife, Mildred, and sons, Barry and Rodger.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
II. POWERS OF P-ADIC NUMBERS 5
III. WARING'S PROBLEM 18
IV. ARTIN'S CONJECTURE 28
SELECTED BIBLIOGRAPHY 72

CHAPTER I

INTRODUCTION

The field of number theory is known for having problems that are easy to state but difficult to solve. Problems that have traditionally been referred to as diophantine problems are good examples of this phenomenon. The essential ingredient of a diophantine problem is proving the existence of integral solutions of a set of equations or inequalities. A beginning number theory student can understand the statement of such problems and soon discovers why they have intrigued mathematicians for centuries. As the student acquires the basic techniques in number theory, he discovers that a primary factor in solving diophantine problems is his own ingenuity and the ingenuity of those who have preceded him. Methods that have been devised, while frequently elementary in nature, display a creativity that appears to be unending.

Attempts to devise methods for solving certain types of diophantine problems contributed to the development of the field known as the p-adic numbers. The basic idea behind these methods is the following. If $f\left(x_{1}, x_{2}, \ldots, x_{s}\right)=0$ is to have a solution in integers, the congruence $f\left(x_{1}, x_{2}, \ldots, x_{s}\right) \equiv 0 \bmod p^{n+1}$ must have a solution in integers for every $n \geq 0$. It would be very convenient if the converse of this statement were true. However, as the following example demonstrates, this is not the case when $p=3$. Similar examples can be cited for any p.

Example 1.1 The equation $x^{2}=7$ obviously has no solution in integers. However, consider the congruence $x^{2}-7 \equiv 0 \bmod 3^{n+1}$ where $n \geq 0$. The following congruences can easily be verified.
$2^{2}-7 \equiv 0 \bmod 3,5^{2}-7 \equiv 0 \bmod 3^{2}, 14^{2}-7 \equiv 0 \bmod 3^{3}$, $68^{2}-7 \equiv 0 \bmod 3^{4}, 68^{2}-7 \equiv 0 \bmod 3^{5}$. The values $\{2,5,14,68,68\}$ can be considered as the first five elements of a sequence $\left\{A_{n}\right\}$ where $A_{n}^{2}-7 \equiv 0 \bmod 3^{n+1}$. To show that the remainder of the sequence can be constructed, suppose $A_{i}^{2}-7 \equiv 0 \bmod 3^{i+1}$ for some $i \geq 0$. Then $A_{i}^{2}-7=3^{i+1} t$ for some integer t. In order to construct A_{i+1}, consider the following:

$$
\begin{aligned}
\left(A_{i}+3^{i+1} x\right)^{2}-7 & =A_{i}^{2}+2 A_{i} 3^{i+1} x+3^{2 i+2} x^{2}-7 \\
& =3^{i+1} t+2 A_{i} 3^{i+1} x+3^{2 i+2} x^{2} \\
& =3^{i+1}\left(t+2 A_{i} x\right)+3^{2 i+2} x^{2}
\end{aligned}
$$

Since $\left(2 A_{i}, 3\right)=1$, there exists an integer a_{i+1} such that $t+2 A_{i}{ }^{\mathbf{a}}{ }_{i+1} \equiv 0 \bmod 3$. This implies that

$$
\left(A_{i}+3^{i+1} a_{i+1}\right)^{2}-7 \equiv 0 \bmod 3^{i+2}
$$

Therefore, A_{i+1} can be defined as $A_{i}+3^{i+1} a_{i+1}$

From this example, it is apparent that a sequence $\left\{A_{n}\right\}$ can be constructed where $A_{n}=\sum_{i=0}^{n} 3^{i} a_{i}$ and $A_{n}^{2}-7=0 \bmod 3^{n+1}$ for every $n \geq 0$. Each a_{i} is obtained by solving a congruence mod 3 so the condition $0 \leq a_{i} \leq 2$ can be imposed. In the example, the values of
the first five a_{i} are $a_{0}=a_{3}=2, a_{1}=a_{2}=1$, and $a_{4}=0$. Note that a solution to the congruence $x^{2} \equiv 7 \bmod 3$ is essential to the construction. That is, 7 must be a quadratic residue mod 3.

The following definitions are a more formal presentation of the ideas suggested by the example. No further attempt is made to justify the definitions. For a complete development of the p-adic numbers, see Agnew (1).

Definition 1.1 Let p be a prime and let A_{i} and a_{i} represent nonnegative integers:
(1) A sequence $\left\{A_{n}\right\}$ is a p-adic sequence if $A_{n} \equiv A_{n-1} \bmod p^{n}$ for every $n \geq 1$.
(2) A p-adic sequence is in canonical form if
$A_{n}=\sum_{i=0}^{n} a_{i} p^{i}$ where $0 \leq a_{i} \leq p-1$.
(3) A p-adic number α is defined by $\alpha=p^{m} \sum_{i=0}^{\infty} a_{i} p^{i}$ where $0 \leq a_{i} \leq p-1$. The field of p-adic numbers is denoted by Q_{p}.
(4) A p-adic number α is a p-adic integer if $m=0$. The ring of p-adic integers is denoted by O_{p}.
(5) A p-adic integer α is a unit in o_{p} if $a_{0} \neq 0$.

With these definitions, the equation $x^{2}=7$: from example 1.1 has a solution in O_{3}. Since the congruence $x^{2}-7 \equiv 0 \bmod 5$ has no solution in integers, the equation $x^{2}=7$ cannot be solved in O_{5}. One might conjecture that a solution in integers for the equation $f\left(x_{1}, x_{2}, \ldots, x_{s}\right)=0$ exists whenever solutions exist in O_{p} for every prime p. This conjecture is much more difficult to disprove, but the
equation $3 x^{3}+4 y^{3}+5 z^{3}=0$ can be used to show that it is indeed false.

As suggested by the previous discussion, the main value of the p-adic integers as a tool in diophantine problems is for showing when solutions in integers do not exist. That is, when an equation has no solution in O_{p} for some p it has no solution in integers. In this thesis, a more positive approach is taken. The problems that are considered are posed in a p-adic setting and the solutions are p-adic. No attempt is made to relate the solutions to problems involving integers. One value of working with the p-adic numbers in this way is that they provide an unfamiliar system that is simple enough for a developing mathematician to make discoveries on his own.

The necessary background for reading the thesis is provided by a basic number theory course plus a course in which the p-adic numbers have been developed. Much of the material is a generalization of results found in the first chapter of Borevich and Shafarevich (3) so familiarity with this book would be most helpful.

The characterization of squares that appears in (3) was the motivation for Chapter II. This chapter, which is basic to the other two, is devoted to a development of a characterization of nth powers in O_{p}. Chapter III is an investigation of Waring's problem in a p-adic setting. This problem is easier to solve in the p-adic setting and the investigation produces some rather surprising results. Chapter IV is a study of Artin's conjecture for homogeneous forms in Q_{p}. The original conjecture is shown to be false and a weakened conjecture for diagonal forms is substituted. The remainder of the chapter provides a complete proof of the weakened conjecture.

CHAPTER II

POWERS OF P-ADIC NUMBERS

Several interesting diophantine problems in the field of number theory involve integral powers. One such problem is Waring's problem which is to be investigated in a p-adic setting in Chapter III. Basic to such an investigation is a usable characterization of the integral powers in O_{p}. The main objective of this chapter is to develop such a characterization. The first three theorems are essential to the development and suggestive of the primary ingredients of the characterization.

Theorem 2.1 Let p be a prime and $n=m p$. Then if a and α are p-adic integers, $(a+\alpha p)^{n} \equiv a^{n} \bmod p^{k+1}$.

Proof: Using the binomial expansion

$$
(a+\alpha p)^{n}=a^{n}+n a^{n-1}(\alpha p)+\frac{n(n-1) a^{n-2}(\alpha p)^{2}}{2}+\cdots+(\alpha p)^{n}
$$

Since $n=m p$ every term in the expansion except a^{n} contains the factor p^{k+1}. It follows that $(a+\alpha p)^{n} \equiv a^{n} \bmod p^{k+1}$.

Theorem 2.2 Let $n=2^{k} m$ where $k>0$. Then for any 2-adic integer $\alpha, \quad(1+2 \alpha)^{n} \equiv 1 \bmod 2^{k+2}$.

Proof: Consider first $(1+2 \alpha)^{2}=1+4 \alpha+4 \alpha^{2}=1+4 \alpha(\alpha+1)$. Since either α or $\alpha+1$ is divisible by 2 , it follows that $(1+2 \alpha)^{2}=1+8 \beta$ for some β in O_{p}. Now let $n=2 t$ and consider

$$
(1+2 \alpha)^{n}=\left[(1+2 \alpha)^{2}\right]^{t}=(1+8 \beta)^{t}
$$

$$
=1+t(8 \beta)+\frac{t(t-1)(8 \beta)^{2}}{2}+\cdots+(8 \beta)^{t} .
$$

Since $t=2^{k-1} m$, each term in the expansion except 1 contains the factor 2^{k+2}. It follows that $(1+2 \alpha)^{n} \equiv 1 \bmod 2^{k+2}$.

Theorem 2.3 Let a be an integer and p be a prime. Then $\mathrm{a}^{\mathrm{p}^{\mathrm{k}}} \equiv \mathrm{a} \bmod \mathrm{p}$.

Proof: The proof is by induction on k. If $k=1$, then $a^{p} \equiv a \bmod p$ by Fermat's theorem. Assume then that $a^{p^{k-1}} \equiv \mathrm{a} \bmod \mathrm{p}$.. Therefore, $a^{p^{k}}=\left(a^{p^{k-1}}\right)^{p} \equiv a^{p^{k-1}} \equiv a \bmod \ddot{p}$.

$$
\begin{array}{r}
\text { Suppose that } \varepsilon=\sum_{i=0}^{\infty} a_{i} p^{i} \text { is a unit in } o_{p}, p \neq 2 \text {. Then } \\
\varepsilon=a_{0}+\alpha p \text { where } \alpha=\sum_{i=1}^{\infty} a_{i} p^{i-1} \text {. According to theorem 2.1, }
\end{array}
$$

$$
\varepsilon^{n}=\left(a_{0}+\alpha p\right)^{n} \equiv a_{0}^{n} \bmod p^{k+1}
$$

where $n=m p$ and theorem 2.3 implies

$$
a_{0}^{n}=\left(a_{0}^{m}\right)^{k} \equiv a_{0}^{m} \bmod p .
$$

From these two observations, we can conclude that $\varepsilon^{n}=\sum_{i=0}^{\infty} b_{i} p^{i}$ implies $b_{0} \equiv a_{0}^{m} \bmod p$. That is, b_{0} must be an mth power residue $\bmod p$. This in turn implies that $a_{0}^{m}=b_{0}+\beta p$ for some β in o_{p}. Therefore,

$$
\varepsilon^{n} \equiv a_{0}^{n}=\left(a_{0}^{m}\right)^{p^{k}}=\left(b_{0}+\beta p\right)^{p^{k}} \equiv b_{0}^{p^{k}} \bmod p^{k+1}
$$

This development shows that when $p \neq 2$ necessary conditions for a unit $\varepsilon=\sum_{i=0}^{\infty} b_{i} p^{i}$ in O_{p} to be an nth power are the following. If $n=m p$ where $(m, p)=1, b_{o}$ must be an mth power residue mod p and the congruence $\varepsilon \equiv b_{0}^{p^{k}} \bmod p^{k+1}$ must hold. The following characterization states that these conditions are also sufficient and provides similar conditions for units in O_{2}.

Characterization of nth powers in ρ_{p}. Let $n=m p{ }^{k}$ where $(m, p)=1$. Then the following conditions are necessary and sufficient for a unit $\varepsilon=\sum_{i=0}^{\infty} a_{i} p^{i}$ to be an nth power in O_{p}.
(1) The integer a_{0} is an mth power residue mod p.
(2) If $p=2$ and $k>0$ then $\varepsilon \equiv 1 \bmod 2^{k+2}$.
(2') If $p \neq 2$ then $\varepsilon \equiv a_{0}^{p^{k}} \bmod p^{k+1}$.

This characterization will be verified in several steps which are undertaken in the following theorems. The overall plan is to consider mth powers where $(m, p)=1$, then $p^{k} t h$ powers, and finally mp^{k} th powers.

Theorem 2.4 Let $f\left(x_{1}, x_{2}, \ldots, x_{s}\right)$ be a polynomial whose coefficients are p-adic integers. Suppose $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}$ are p-adic integers such that for some $i, \quad 1 \leq i \leq s$,

$$
\begin{aligned}
& f\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}\right) \equiv 0 \bmod p^{2 e+1} \\
& \frac{\partial f}{\partial x_{i}}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}\right) \equiv 0 \bmod p^{e} \\
& \frac{\partial f}{\partial x_{i}}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}\right) \neq 0 \bmod p^{e+1}
\end{aligned}
$$

where e is a nonnegative integer. Then there exist p-adic integers $\theta_{1}, \theta_{2}, \ldots, \theta_{s}$ such that $f\left(\theta_{1}, \theta_{2}, \ldots, \theta_{s}\right)=0$ and $\theta_{i} \equiv \alpha_{i} \bmod p^{e+1}$ for every $i, \quad 1 \leq i \leq s$.

Proof: See Borevich and Shafarevich (3, p. 42).

Theorem 2.5 If p is a prime and $(a, p)=1$, then the congruence $x^{n} \equiv a \bmod p$ has $(n, p-1)$ solutions or no solutions according as $a^{(p-1) /(n, p-1)} \equiv 1 \bmod p$ or $a^{(p-1) /(n, p-1)} \not \equiv 1 \bmod p$.

Proof: See Niven and Zuckerman (11, p. 54).

Theorem 2.6 Let $\varepsilon=\sum_{i=0}^{\infty} a_{i} p^{i}$ be a unit in O_{p} and (m, p) $=1$. Then ε is an mth power in O_{p} if and only if a_{0} is an mth power residue $\bmod \mathrm{p}$.

Proof: Suppose first that E is an mth power in O_{p}. Then there exists a $\delta=\sum_{i=0}^{\infty} b_{i} p^{i}$ in O_{p} for which $\delta^{m}=\varepsilon$. Now $\delta=b_{0}+\beta p$ for some β in O_{p} and by theorem.2.1, $\delta^{m}=\left(b_{0}+\beta_{p}\right)^{m} \equiv b_{0}^{m} \bmod p$. Since $\varepsilon \equiv a_{0} \bmod p$ and $\varepsilon=\delta^{m}$, it follows that $a_{0} \equiv b_{0}^{m} \bmod p$. Hence, a_{0} is an mth power residue mod p.

Now, suppose that a_{0} is an mth power residue mod p. The proof that ε is an mth power will be accomplished when the equation $x^{m}-\varepsilon=0$ is shown to have a solution in O_{p}. If $d=(m, p-1)$, there exist integers r and $s, s<0$, such that $d=r m+s(p-1)$. Since d divides m, a_{0} is a dth power residue so there exists an integer c such that $c^{d} \equiv a_{0}$ mod p. Now in order to apply theorem 2.4, let $f(x)=x^{m}-\varepsilon$. Then

$$
f\left(c^{r}\right)=c^{r m}-\varepsilon=c^{d-s(p-1)}-\varepsilon=\left(c^{d}\right)^{1-s(p-1) / d}-\varepsilon
$$

or

$$
f\left(c^{r}\right) \equiv\left(a_{0}\right)^{1-s(p-1) / d}-E \bmod p
$$

Since a_{0} is an mth power residue $\bmod p$, theorem 2.5 implies $a_{0}^{(p-1) / d} \equiv 1 \bmod p$. It follows that $f\left(c^{r}\right) \equiv a_{0}-\varepsilon \bmod p$ or $f\left(c^{r}\right) \equiv 0 \bmod p . \quad$ On the other hand, $f^{\prime}(x)=m x^{m-1}$ so $f^{\prime}\left(c^{r}\right)=m\left(c^{r}\right)^{m-1} \neq 0$ mod p. Therefore, theorem 2.4 implies the existence of a δ in O_{p} for which $f(\delta)=0$. It follows that $E=\delta^{m}$ and the proof is complete.

Theorem 2.7 Let ε be a unit in $O_{p}, p \neq 2$, such that $\varepsilon \equiv 1 \bmod p^{k+1}$. Then ε is a p^{k} th power in O_{p}.

Proof: The method of proof will be to construct a p-adic sequence $\left\{B_{n}\right\}$, $B_{n}=\sum_{i=0}^{n} b_{i} p^{i}$, with the property that $B_{n}^{p^{k}} \equiv \varepsilon \bmod p^{n+1}$ for every n. Then, if $\delta=\sum_{i=0}^{\infty} b_{i} p^{i}, \quad \delta^{p^{k}} \equiv \varepsilon \bmod p^{n+1} \quad$ for every n and hence $\delta^{\mathrm{p}^{\mathrm{k}}}=\varepsilon$. Actually, we will prove the slightly stronger result that $B_{n}^{p^{k}}=\varepsilon \bmod p^{n+k+1}$ for every n. The construction is by induction on n. If $n=0$, then $1^{p^{k}} \equiv 1 \bmod p^{k+1}$ so $B_{O}=b_{0}=1$. Now, suppose $B_{n-1}=\sum_{i=0}^{n-1} b_{i} p^{i}$ has been determined so that $\left(B_{n-1}\right)^{p^{k}} \equiv \varepsilon \bmod p^{n+k}$. This implies that $\left(B_{n-1}\right)^{p^{k}}=\varepsilon+\alpha p^{n+k}$ for some α in O_{p}. Now, $\left(B_{n-1}, p\right)=1$ so there exists an integer b_{n} where $0 \leq b_{n}<p$ and $\alpha+b_{n}\left(B_{n-1}\right)^{p^{k}-1} \equiv 0 \bmod p$. With this choice for b_{n}, $B_{n}=B_{n-1}+b_{n} p^{n}=\sum_{i=0}^{n} b_{i} p^{i}$. When $\left(B_{n-1}+b_{n} p^{n}\right)^{p^{k}}$ is expanded the first two terms are

$$
\left(B_{n-1}\right)^{p^{k}}+p^{k}\left(B_{n-1}\right)^{p^{k}-1}\left(b_{n} p^{n}\right)
$$

The third term $p^{k}\left(p^{k}-1\right)\left(B_{n-1}\right)^{p^{k}-2}\left(b_{n} p^{n}\right)^{2} / 2$ and all remaining terms
contain the factor p^{n+k+1}. This implies that

$$
\begin{aligned}
{ }_{B}^{p^{p}}{ }_{n}^{k} & \equiv\left(B_{n-1}\right)^{p^{k}}-\left[b_{n}\left(B_{n-1}\right)^{p^{k}-1}\right] p^{n+k} \bmod p^{n+k+1} \\
& =\varepsilon+\alpha p^{n+k}+\left[b_{n}\left(B_{n-1}\right)^{p^{k}-1}\right] p^{n+k} \\
& =\varepsilon+\left[\alpha+b_{n}\left(B_{n-1}\right)^{p^{k}-1}\right] p^{n+k} \\
& \equiv \varepsilon \bmod p^{n+k+1} .
\end{aligned}
$$

Therefore, $\left\{B_{n}^{\prime}\right\}$ is defined by induction and $\delta^{p^{k}}=\varepsilon$ where $\delta=\lim _{n \rightarrow \infty} B_{n}$.

Theorem 2.8 Let $\varepsilon=\sum_{i=0}^{\infty} a_{i} p^{i}$ be a unit in o_{p} where $p \neq 2$. Then, ε is a p^{k} th power in 0_{p} if and only if $\varepsilon \equiv a_{0}^{p^{k}} \bmod p^{k+1}$.

Proof: Suppose first that ε is a p^{k} th power in O_{p} and let $\delta^{p^{k}}=\varepsilon$ where $\delta=\sum_{i=0}^{\infty} b_{i} p^{i}$. By theorem 2.3, $b_{0}^{p^{k}} \equiv b_{0} \bmod p$. If $\delta=b_{0}+\beta p, \quad$ by theorem 2.1,

$$
\varepsilon=\delta^{p^{k}}=\left(b_{0}+\beta p\right)^{p^{k}} \equiv b_{0}^{p^{k}} \bmod p^{k+1}
$$

It follows that $b_{0} \equiv \varepsilon \equiv a_{0}$ mod p which implies that $a_{0}=b_{0}$. Therefore, $\varepsilon \equiv a_{0}^{p^{k}} \bmod p^{k+1}$ completing the proof.

Now suppose $\varepsilon=\sum_{i=0}^{\infty} a_{i} p^{i}$ is a unit in O_{p} and $\varepsilon \equiv a_{0}^{p^{k}} \bmod p^{k+1}$. In order to apply theorem 2.4, consider the function $f(x, y)=p^{k}\left(x^{p^{k}}-\varepsilon y\right)$. Observe first that $f\left(a_{0}, 1\right)=p^{k}\left(a_{0} p^{k}-\varepsilon\right) \equiv 0 \bmod p^{2 k+1}$. Also, $\frac{\partial f}{\partial y}=-p^{k} \varepsilon$ so $\frac{\partial f}{\partial y}\left(a_{0}, 1\right)=-p^{k} \varepsilon \equiv 0 \bmod p^{k}$ while $\frac{\partial f}{\partial y}\left(a_{0}, 1\right) \not \equiv 0 \bmod p^{k+1}$. Therefore, by theorem 2.4 , there exist μ and δ in O_{p} such that $f(\mu, \delta)=0$ where $\mu \equiv a_{0} \bmod p^{k+1}$ and
$\delta \equiv 1 \bmod \mathbf{p}^{\mathbf{k + 1}}$. This implies that $f(\mu, \delta)=p^{k}\left(\mu^{p^{k}}-\varepsilon \delta\right)=0$ or $\mu^{p^{k}}=\varepsilon \delta$. Now, by theorem 2.7, $\delta \equiv 1 \bmod p^{k+1}$ implies that δ is a p^{k} th power in O_{p}. It follows, since $\varepsilon:=\delta^{-1} \mu^{k}$, that ε is a p^{k} th power in O_{p} also.

Theorem 2.9 Let ε be a unit in O_{2} and $k>0$. Then ε is a 2^{k} th power in O_{2} if and only if $\varepsilon \equiv 1 \bmod 2^{k+2}$.

Proof: If ε is a 2^{k} power in σ_{2}, there exists a δ in O_{2} for which $\delta^{2^{k}}=\varepsilon$. Since ε is a unit in O_{2}, δ must be a unit also, so let $\delta=1+2 \alpha$. Theorem 2.2 implies that $\delta^{p^{k}}=(1+2 \alpha)^{2^{k}} \equiv 1 \bmod 2^{k+2}$. Therefore, $\varepsilon \equiv 1 \bmod 2^{k+2}$.

Now, suppose $\varepsilon \equiv 1 \bmod 2^{k+2}$. The proof that ε is a 2^{k} th power is the same as the proof in theorem 2.7 with two alterations. In the first place, $p=2$. The other difference is that when the sequence $\left\{B_{n}\right\}$ is constructed so that $B_{n}^{2^{k}} \equiv \varepsilon \bmod 2^{n+k+1}$ there are two choices for B_{1}. Since $1^{2^{k}} \equiv 1 \bmod 2^{k+1}, B_{0}=b_{0}=1$. It is also true that $1^{2^{k}} \equiv(1+2)^{2^{k}} \equiv 1 \bmod 2^{k+2}$ so B_{1} can be chosen as either 1 or 3 . Once B_{1} is chosen, the construction proceeds exactly as in theorem 2.7. The result is that $\left\{B_{n}\right\}$ is constructed by induction so that $\delta=\lim _{n \rightarrow \infty} B_{n}$ and $\delta^{p^{k}}=E$.

The fact that two values of δ can be constructed so that $\delta^{2^{k}}=\varepsilon$ is natural since 2^{k} is an even number. Suppose $\delta=\sum_{i=0}^{\infty} a_{i} 2^{i}$ is one 2-adic unit for which $\delta^{2^{k}}=\varepsilon$. Then,

$$
\delta=1+\sum_{i=1}^{\infty} a_{i} 2^{i} \text { and }-\delta=1+\sum_{i=1}^{\infty}\left(1-a_{i}\right) 2^{i}
$$

Now, $(-\delta)^{2^{k}}=\varepsilon$ so $\left\{1+\sum_{i=1}^{n}\left(1-a_{i}\right) 2^{i}\right\}$ must be the other 2 -adic
sequence that can be constructed in theorem 2.9.
The characterization has now been established for mth powers with $(m, p)=1$ and for p^{k} th powers. When ε is an $m p^{k}$ th power in o_{p}, it is obvious that ε is both an mth power and a p^{k} th power in O_{p}. In terms of the characterization, this statement reads, when ε is an nth power, conditions (1) and (2 or 2^{\prime}) are satisfied. It is now necessary to show that when conditions (1) and (2 or 2^{\prime}) are satisfied ε is an nth power. That is, when ε is both an mth and a p^{k} th power, it must also be an $m p^{k} t h$ power in O_{p}. This is shown to be the case by theorem 2.10 due to the fact that $\left(m, p^{k}\right)=1$. With this theorem, the proof of the characterization of nth powers of units in O_{p} is complete. Theorem 2.10 Let ε be a unit in O_{p} such that ε is both an mth power and an nth power in O_{p} where $(m, n)=1$. Then ε is an mnth power in O_{p}.

Proof: Let $\varepsilon=\delta^{m}$ and $\varepsilon=\mu^{n}$ where δ and μ are units in O_{p}. Because $(m, n)=1$, there exist integers r and s such that $1=\mathrm{rm}+\mathrm{sn} . \quad$ Therefore,

$$
\varepsilon=\varepsilon^{\mathrm{rm}+\mathrm{sn}}=\left(\varepsilon^{r}\right)^{m}\left(\varepsilon^{s}\right)^{n}=\left(\mu^{\mathrm{nr}}\right)^{m}\left(\delta^{m s}\right)^{\mathrm{n}}=\left(\mu^{r} \delta^{s}\right)^{m n}
$$

Since μ and δ are units in $O_{p}, \mu^{r} \delta^{s}$ is an element in O_{p} for any integers r and s. It follows that ε is an mnth power in O_{p}.

Given a specific unit in O_{p}, one could determine whether or not it is an nth power by checking the two conditions of the characterization that has just been established. However, for application purposes, the criterion in the following theorem is much more practical.

Theorem 2.11 Let $n=m p{ }^{k}$ where $(m, p)=1$ and let $\varepsilon=\sum_{i=0}^{\infty} a_{i} p^{i}$ be a unit in O_{p}. Define t as $k+1$ if $p \neq 2$ and $k+2$ if $p=2$. Then ε is an nth power in O_{p} if and only if $\varepsilon \equiv \delta^{n} \bmod p^{t}$ for some δ in O_{p}.

Proof: If ε is an nth power in O_{p}, then $\varepsilon=\delta^{n}$ for some δ in O_{p}. Consequently, $\varepsilon \equiv \delta^{n} \bmod p^{k+2}$ which verifies the only if statement for all p.

Now suppose $\varepsilon \equiv \delta^{n} \bmod p^{k+1}$ where $p \neq 2$. Then if $\delta^{n}=\sum_{i=0}^{\infty} c_{i} p^{i}, \quad c_{i}=a_{i}$ for $0 \leq i \leq k . \quad$ Since δ^{n} is an nth power, the characterization states that c_{O} is an mth power residue mod p and $\delta^{n} \equiv c_{0}^{p^{k}} \bmod p^{k+1}$. Now $c_{0}=a_{0}$ and $\varepsilon \equiv \delta^{n} \bmod p^{k+1}$ so a_{0} is an mth power residue mod p and $\varepsilon \equiv a_{0}^{p^{k}} \bmod p^{k+1}$. It follows that ε is an n power in O_{p}. The same argument holds for $p=2$ except $\varepsilon \equiv \delta^{n} \bmod 2^{k+2}$ so $c_{i}=a_{i}$ for $0 \leq i \leq k+1$.

The next theorem is included here because its proof makes use of the first condition in the characterization of nth powers and its conclusions are important to the developments in Chapters III and IV.

Theorem 2.12 Let $n=m p^{k}, \quad(m, p)=1, \quad d=(m, p-1)$, and let α, β, and ε be units in O_{p}. Then
(1) $\alpha x^{n} \equiv \beta \bmod p$ has a solution n integers if and only if $\alpha y^{d} \equiv \beta \bmod p$ has a solution in integers.
(2) ε is an mth power in O_{p} if and only if ε is a dth power in O_{p}.

Proof: To prove (1), suppose first that θ is a solution for $\alpha x^{n} \equiv \beta \bmod p . \quad$ By definition, $d=(m, p-1)=(n, p-1)$ so $n=d s$ for
some integer s. This implies that $\alpha x^{n}=\alpha\left(x^{s}\right)^{d} \equiv \beta$ mod p. It follows that θ^{s} is a solution of $\alpha y^{d} \equiv \beta$ mod p. Now suppose θ is a solution of $\alpha y^{d} \equiv \beta \bmod p$. Since $d=(n, p-1)$, there exist integers r and s for which $d=n r+(p-1) s$. This gives

$$
\alpha y^{d}=\alpha y^{n r+(p-1) s}=\alpha\left(y^{r}\right)^{n}\left(y^{p-1}\right)^{s} \equiv \beta \bmod p .
$$

Since both α and β are units and θ is a solution of $\alpha y^{d} \equiv \beta \bmod p$, θ must be a unit also. Therefore, $\theta^{p-1} \equiv 1$ mod p and it follows that θ^{r} is a solution of $\alpha x^{n} \equiv \beta \bmod p$.

To prove (2), let $\varepsilon=\sum_{i=0}^{\infty} a_{i} p^{i}$. Since (m,p) $=1, \quad \varepsilon$ is an mth power in o_{p} if and only if a_{o} is an mth power residue mod p. Likewise, $(d, p)=1$ so ε is a dth power in o_{p} if and only if a_{o} is a dth power residue mod p. Therefore, to prove (2), it suffices to show that a_{0} is an mth power residue mod p if and only if a_{0} is a dth power residue mod p. This is true since $x^{m} \equiv a_{0} \bmod p$ has a solution in integers if and only if $y^{d} \equiv a_{0} \bmod p$ has a solution in integers, which is a special case of (1).

Having established a characterization for nth powers of units in o_{p}, one might consider nth powers of all p-adic integers or even all p-adic numbers. Actually, the extension to include all p-adic numbers is a very small one. All non-zero p-adic numbers can be represented uniquely as εp^{t} where ε is a unit in O_{p} and t is an integer. A p-adic number in this form is an nth power if and only if ε is an nth power in o_{p} and t is a multiple of n.

This chapter is concluded with an interesting result that developed from considering the significance of the second condition of the nth power criteria.

The condition for a unit ε to be an mth power where $(m, p)=1$ is very direct. If $\varepsilon=\sum_{i=0}^{\infty} a_{i} p^{i}$, then a_{0} is either an mth power residue or nonresidue $: \bmod p$ and ε is classified immediately. The condition for p^{k} th powers is less direct. For example, in 0_{5}, if $a_{0}=2$ what values of ε, iif any, are $5 t h, 5^{2} t h, 5^{3} t h, \ldots$ powers? A little arithmetic shows that $2^{5} \equiv 7 \bmod 5^{2}, 2^{25} \equiv 57 \bmod 5^{3}$, and $2^{125} \equiv 182 \bmod 5^{4}$. So 7,57 , and 182 are respectively 5 th, 5^{2} th, and $5^{3} t h$ powers in 0_{5}. Also, $\varepsilon_{1}=2+1 \cdot 5+5^{2} \alpha$, $\varepsilon_{2}=2+1 \cdot 5+2 \cdot 5^{2}+5^{3} \alpha, \quad$ and $\varepsilon_{3}=2+1 \cdot 5+2 \cdot 5^{2}+1 \cdot 5^{3}+5^{4} \alpha$ are respectively 5 th , $5^{2} \mathrm{th}$, and $5^{3} \mathrm{th}$ powers for any α in 0_{5}. When the ε_{i} are written in this way, the coefficients suggest two possible conjectures regarding the further coefficients. One is that the first i+1 coefficients of ε_{i} and ε_{i+1} agree. This conjecture is verified when the sequence $\left\{2^{5^{n}}.\right\}$ is shown, in the next theorem, to be a 5-adic sequence. The other possible conjecture is that the pattern $2,1,2,1$ of the first coefficients is repeated. That this is incorrect is seen by direct computation since the next coefficient is a 3 instead of a 2. An indirect argument which shows that no such pattern could continue is the following. The 5-adic integer $2+1 \cdot 5+2 \cdot 5^{2}+1 \cdot 5^{3}+\cdots$ corresponds to the rational number -7/24. However, the 5-adic integer that corresponds to the sequence $\left\{2^{5^{n}}\right\}$ is an element of the set g_{5} in the next theorem. As the theorem develops, it will be obvious since $(-7 / 24)^{5} \neq-7 / 24$ that $-7 / 24$ is not an element of δ_{5}.

Theorem 2.13 Let p be any prime. Then there exists a set \mathcal{S}_{p} in O_{p} with exactly p elements ($p-1$ units and zero) with the property that for every α in $g_{p}, \alpha^{p^{k}}=\alpha$ for every integer k.

Proof: To prove the existence of the p-1 units in \mathcal{S}_{p}, it is sufficient to show that for each $a_{0}, 1 \leq a_{0} \leq p-1$, exactly one unit ε exists with the property that $\varepsilon \equiv a_{o} \bmod p$ and $\varepsilon^{p^{k}}=\varepsilon$ for every k. If $p=2$, one is the only unit with this property, so $\mathcal{S}_{2}=\{0,1\}$. If $\mathrm{p} \neq 2$ for a given $\mathrm{a}_{\mathrm{O}}, 1 \leq \mathrm{a}_{\mathrm{O}} \leq \mathrm{p}-1, \quad \varepsilon$ can be constructed as follows. For each $i \geq 0$, define A_{i} by $A_{i} \equiv a_{0}^{p_{0}^{1}} \bmod p^{i+1}$ and $1 \leq A_{i} \leq p^{i+1}-1$. As defined, $A_{i} \equiv a_{0} \bmod p$ for every i and

$$
A_{i}-A_{i-1} \equiv a_{0}^{p^{1}}-a_{0}^{p^{1-1}}=a_{0}^{p^{1-1}}\left(a_{0}^{p^{1}-p^{1-i}}-1\right) \equiv 0 \bmod p^{i}
$$

The final congruence is true because $p^{i}-p^{i-1}=\varphi\left(p^{i}\right)$ where φ is Euler's function. Therefore, $A_{i} \equiv A_{i-1} \bmod p^{i}$ for $i \geq 1$ which implies that $\left\{A_{i}\right\}$ is a p-adic sequence. The condition that * $1 \leq A_{i} \leq p^{i+1}-1$ is not needed to obtain this result, but it gives the sequence $\left\{A_{i}\right\}$ canonical form. Now, if ε is defined by $\varepsilon=\lim _{n \rightarrow \infty} A_{n}, \quad \varepsilon=\sum_{i=0}^{\infty} a_{i} p^{i} \quad$ where $A_{n}=\sum_{i=0}^{n} a_{i} p^{i} . \quad$ By definition $\varepsilon \equiv a_{0}^{p^{k}} \bmod p^{k+1}$ for every k so ε is a. p^{k} th power in o_{p} for every k. To show that for a given a_{0} only one such ε exists, suppose ε and ε^{\prime} exist such that $E \equiv a_{0} \equiv \varepsilon^{\prime} \bmod p$ and both ε and ε^{\prime} are p^{k} th powers for every k. Then $\varepsilon \equiv a_{0}^{p^{k}} \equiv \varepsilon^{\prime} \bmod p^{k+1}$ for every k and $\varepsilon \equiv \varepsilon^{\prime} \bmod p^{k+1}$ for every k implies that $\varepsilon=\varepsilon^{\prime}$. To show that $\varepsilon^{p^{k}}=\varepsilon$ for every k let i be a fixed positive integer and consider $\varepsilon^{p^{1}}$. Since ε is a p^{k} th power for every k, $\varepsilon^{p^{1}}$ is a $p^{k} t h$ power for every k. Also since $a_{0}^{p^{1}} \equiv a_{o} \bmod p, \quad \varepsilon^{p^{1}} \equiv a_{0} \bmod p$. We have just shown that ε is the only element in O_{p} that satisfies these two conditions, therefore $\varepsilon^{p^{1}}=\varepsilon$ 。 This argument is valid for any i so $\varepsilon^{p^{k}}=\varepsilon$ for every k.

To show that zero is the only non-unit in \mathcal{S}_{p}, consider any nonunit β where $\beta \neq 0$. Represent β as $\varepsilon \mathrm{p}^{r}$ where ε is a unit in O_{p} and r is an integer greater than one. This representation shows that β cannot be a power higher than the r th power. Hence, β cannot be a p^{k} th power for every k, so β cannot be an element of \mathcal{S}_{p}. This completes the proof of the theorem.

The set δ_{p} has several interesting properties. If g is a primitive root mod p and ε is the element of \mathcal{S}_{p} that corresponds to the sequence $\left\{g^{p^{n}}\right\}$, then each element of the set $\left\{\varepsilon, \varepsilon^{2}, \ldots, \varepsilon^{p-1}\right\}$ is a distinct element in S_{p}. Therefore, $\delta_{p}-\{o\}=\left\{\varepsilon, \varepsilon^{2}, \ldots, \varepsilon^{p-1}\right\}$ which is a cyclic group under multiplication. Also, since 1 is in δ_{p} and $\varepsilon^{p-1} \equiv 1 \bmod p$, it follows that $\alpha^{p-1}=1$ for every α in $S_{p}-\{0\}$. This implies one more property, that S_{p} contains the p distinct p-adic roots of the equation $x^{p}-x=0$.

CHAPTER III

WARING'S PROBLEM

The problem referred to as Waring's problem is the following. Given a positive integer n, find a positive integer $g(n)$ such that each positive integer is the sum of $g(n)$ nth powers of nonnegative integers. Since criteria have been established in Chapter II for determining nth powers in Q_{p} the groundwork has been done for considering Waring's problem in a p-adic setting. The objective of this chapter is to investigate the number of nth powers needed to represent any p-adic integer.

Suppose α is a non-unit in O_{p}. Then $\alpha=1+(\alpha-1)$ and $\alpha-1$ is a unit in O_{p}. Since 1 is an nth power in O_{p}, it follows that if any unit in O_{p} can be represented as the sum of $g(n)$ nth powers, any p-adic integer can be represented as the sum of $g(n)+1$ nth powers. This observation indicates that an investigation of the units in O_{p} will supply information about all p-adic integers. The theorems of this chapter are, therefore, designed to investigate the following problem.

Waring's problem for p-adic integers. Given a positive integer n and a prime p, determine the smallest positive integer $g(n)$ such that every unit in O_{p} can be represented as the sum of $g(n)$ nth powers in O_{p}.

Theorem 3.1 Let $n=m p^{k}$ where $(m, p)=1$. Then any unit in o_{p} can be represented as the sum of fewer than p^{k+1} nth powers in o_{p} if $p \neq 2$ and fewer than 2^{k+2} nth powers in o_{2} if $p=2$.

Proof: Let $\varepsilon=\sum_{i=0}^{\infty} a_{i} p^{i}$ be a unit in O_{p} where $p \neq 2$. Then

$$
\varepsilon=\sum_{i=0}^{k} a_{i} p^{i}+\sum_{i=k+1}^{\infty} a_{i} p^{i} .
$$

Now, let $N=\sum_{i=0}^{k} a_{i} p^{i}$ and $\alpha p^{k+1}=\sum_{i=k+1}^{\infty} a_{i} p^{i}$. Then

$$
\varepsilon=N+\alpha p^{k+1}=\sum_{j=1}^{N} 1+\alpha p^{k+1}=\sum_{j=1}^{N-1} 1+\left(1+\alpha p^{k+1}\right)
$$

By theorem 2.11, $1+\alpha p^{k+1}$ is an nth power in O_{p} so ε is expressed as the sum of N nth powers. Since $0 \leq a_{i} \leq p-1$ for every i, by definition $N<p^{k+1}$. Similarly, when $p=2$,

$$
\varepsilon=\sum_{i=0}^{\infty} a_{i} 2^{i}=\sum_{i=0}^{k+1} a_{i} 2^{i}+\sum_{i=k+2}^{\infty} a_{i} 2^{i}=\sum_{j=1}^{N-1} 1+\left(1+\alpha 2^{k+2}\right)
$$

where $N=\sum_{i=0}^{k+1} a_{i} 2^{i}<2^{k+2}$.

This theorem shows that an upper bound for $g(n)$ is available for any n. The interesting part of the problem is to investigate special cases to determine if and when this upper bound can be lowered. Theorem 3.2 shows that for every p there exist values of n for which the upper bound of theorem 3.1 cannot be lowered.

Theorem 3.2 Let p be a prime and $n=(p-1) p^{k}, k \geq 0$. Then there
exists a unit in O_{p} that cannot be written as the sum of fewer than $p^{k+1}-1$ nth powers if $p \neq 2$ or $2^{k+2}-1$ nth powers if $p=2$.

Proof: Let $\varepsilon=\sum_{i=0}^{k}(p-1) p^{i}$ where $p \neq 2$. Note that ε is a unit and $\varepsilon=p^{k+1}-1$. Suppose $\alpha_{1}^{n}+\alpha_{2}^{n}+\cdots+\alpha_{s}^{n}$ is any sum of nth powers of p-adic integers where $s<p^{k+1}-1$. Since $n=(p-1) p^{k}=\varphi\left(p^{k+1}\right)$, $\alpha_{i}^{n} \equiv 1 \bmod p^{k+1}$ when α_{i} is a unit in O_{p}. on the other hand, if α_{i} is a non-unit, $\alpha_{i}^{n} \equiv 0 \bmod p^{k+1}$. Therefore, each α_{i}^{n} is congruent to 1 or $0 \bmod p^{k+1}$. It follows that there exists an integer a such that $0 \leq a \leq s<p^{k+1}-1$ and $\alpha_{1}^{n}+\alpha_{2}^{n}+\cdots+\alpha_{s}^{n} \equiv a \bmod p^{k+1}$. Now, $p^{k+1}-1 \not \equiv a \bmod p^{k+1} \quad$ since $0 \leq a<p^{k+1}-1$. Therefore, $\varepsilon \neq \alpha_{1}^{n}+\alpha^{n}+\cdots+\alpha_{s}^{n}$ when $s<p^{k+1}-1$.

When $p=2$ the argument is identical except $n=2^{k}$ and the conclusion is that $\varepsilon=\sum_{i=0}^{k+1} 2^{i}=2^{k+2}-1$ cannot be represented as the sum of fewer than $2^{k+2}-1$ nth powers in O_{2}.

Now, return to the case $n=m p^{k}$ where $(m, p)=1$. It has just been shown that when $m=p-1, g(n)$ attains the maximum value of $p^{k+1}-1$ if $p \neq 2$ and $2^{k+2}-1$ if $p=2$. The next theorem shows that $g(n)$ attains the minimum value when $n=m$ and $(m, p-1)=1$. In this case, every unit is an nth power, in O_{p}; that is, $g(n)=1$.

Theorem 3.3 Let $(n, p)=1$ and ε be a unit in O_{p}. Then ε can be represented as the sum of $d=(n, p-1)$ nth powers in O_{p}.

Proof: If $\varepsilon=\sum_{i=0}^{\infty} a_{i} 2^{i}$ is a unit in o_{2} then $a_{0}=1$. Therefore, a_{0} is an nth power residue mod 2 and by theorem 2.6ε is an nth power in O_{2}. It follows that ε can be written as the sum of $(\mathrm{n}, 2-1)=1$ nth power in O_{2}.

When $p \neq 2$ theorem 2.12 states that when $(n, p)=1$ a unit in O_{p} is an nth power if and only if it is a dth power in O_{p}. Therefore, to prove the theorem in this case, it suffices to show that ε can be represented as the sum of d dth powers of units in O_{p}. First let $\varepsilon=\sum_{i=0}^{\infty} a_{i} p^{i}$ and show that the congruence $x_{1}^{d}+x_{2}^{d}+\cdots+x_{d}^{d} \equiv a_{0} \bmod p$ has a solution in integers. This problem can be stated as follows. Let Z_{p} be the finite field of integers mod p, and let G be the multiplicative group $Z_{p}-\{0\}$. Then, given any element a_{0} of G show that $x_{1}^{d}+x_{2}^{d}+\cdots+x_{d}^{d}=a_{0}$ has a solution in Z_{p}. Define the subgroup H by $H=\left\{x^{d} \mid x \in G\right\}$ and K_{r} as the set of elements in G that can be represented as a sum of r dth powers of elements in Z_{p}. As a set, G consists of the elements $\{1,2, \ldots, p-1\}$. Therefore, every element g in G can be written as $\sum_{i=1}^{g} 1$ which implies that $K_{p-1}=G$. Let $t=\min \left\{r \mid K_{r}=G\right\} \quad$ and consider the set difference $K_{t}-K_{t-1}$. By the definition of t this difference is not empty, so let $\mathbf{x} \in K_{t}-K_{t-1}$. Since $x \in K_{t}$, there exist $x_{1}, x_{2}, \ldots, x_{t}$ in Z_{p} for which $x=\sum_{i=1}^{t} x_{i}^{d}$. In order to show that $K_{t-1}-K_{t-2}$ is not empty, define x^{\prime} in K_{t-1} by $x^{\prime}=\sum_{i=1}^{t-1} x_{i}^{d}$. Suppose that $x^{\prime} \in K_{t-2}$. Then,

$$
x^{\prime}=\sum_{i=1}^{t-2} y_{i}^{d} \text { for some } y_{1}, y_{2}, \ldots, y_{t-2} \text { in } z_{p}
$$

It follows that

$$
\mathbf{x}=\mathbf{x}^{\prime}+\mathbf{x}_{t}^{d}=\sum_{i=1}^{t-2} y_{i}^{d}+x_{t}^{d}
$$

which implies that $x \in K_{t-1}$. This is a contradiction since $x \in K_{t}-K_{t-1}$. Therefore, $x^{\prime} \not \|_{t-2}$ and it follows that $x^{\prime} \in K_{t-1}-K_{t-2}$. By a similar argument, if $x^{\prime \prime}=\sum_{i=1}^{t-2} x_{i}^{d}$, then
$x^{\prime \prime} \in K_{t-2}-K_{t-3} . \quad$ In general

$$
\sum_{i=1}^{s} x_{i}^{d} \in K_{s}-K_{s-1} \text { for } 2 \leq s \leq t
$$

Thus, in the sequence of inclusions $K_{1} \subset K_{2} \subset \cdots \subset K_{t}$ each inclusion has been shown to be proper.

The next objective is to show that not only is $K_{s}-K_{s-1}$ non-empty for every $s, 2 \leq s<t$, but that each such set contains a coset of H. This follows if $x \in K_{s}-K_{s-1}$ implies $x H \subset K_{s}-K_{s-1}$. Suppose $y \in x H$; that is, $y=x z^{d}$ for some $z^{d} \in H$. Since $x \in K$, x can be represented as $\sum_{i=1}^{S} x_{i}^{d}$ and $y=x z^{d}=\sum_{i=1}^{S}\left(x_{i} z^{d}\right.$. This implies that $y \in K_{s}$. To show that $y \& K_{s-1}$, assume the contrary that $y=\sum_{i=1}^{s-1} y_{i}^{d}$. Thus, $y=x z^{d}=\sum_{i=1}^{s-1} y_{i}^{d}$ which implies that $x=\sum_{i=1}^{s-1}\left(y_{i} / z\right)^{d}$. This is a contradiction since $x \notin \mathrm{~K}_{\mathrm{s}-1}$. This contradiction shows that $y \& \mathrm{~K}_{\mathrm{s}-1}$ completing the proof that $y \in K_{S}-K_{S-1}$. Since y is an arbitrary element of xH , it follows that $\mathrm{xH} \subset \mathrm{K}_{\mathrm{s}}-\mathrm{K}_{\mathrm{s}-1}$.

Recalling the sequence $K_{1} \subset K_{2} \subset \cdots \subset K_{t}$, by definition $K_{1}=H$ and : $K_{t}=G$. It has been shown that each $K_{S}-K_{S-1}$ contains at least one coset of H. Therefore, G must contain at least t different cosets of H. If $O(X)$ denotes the number of elements in X, this conclusion is written $O(H) \cdot t \leq \theta(G)$. Therefore, $t \leq 0(G) / O(H)$ or t is less than or equal to the index of H in G. Since $H=\left\{x^{d} \mid x \in G\right\}$ is a subgroup of G, the index of H in G can be computed as the number of distinct values of x in G for which $\mathbf{x}^{d}=1$. By Lagrange's theorem, $x^{d}=1$ has at most d incongruent solutions mod p. Therefore, the index of H is not more than d. It follows that $t \leq 0(G) / O(H) \leq d$. Originally, t was defined as the smallest number
such that every element of G can be represented as a sum of t dth power of elements in Z_{p}. Thus, since $a_{0} \in G$ and $t \leq d$, there exists a solution in Z_{p} of the equation $x_{1}^{d}+x_{2}^{d}+\cdots+x_{d}^{d}=a_{0}$. Furthermore, since $a_{0} \neq 0$, at least one x_{i} must be non-zero. Let $\left(b_{1}, b_{2}, \ldots, b_{d}\right)$ be a solution to the above equation and assume, without loss of generality, that $b_{d} \neq 0$. Therefore, $b_{1}^{d}+b_{2}^{d}+\cdots+b_{d}^{d} \equiv a_{0} \equiv \varepsilon \bmod p \quad$ or $\varepsilon=b_{1}^{d}+b_{2}^{d}+\cdots+b_{d}^{d}+\beta p$ for some β in O_{p}. By definition of $Z_{p}, b_{d} \neq 0$ implies that b_{d} is a unit in O_{p}, so theorem 2.11 implies that $b_{d}^{d}+\beta p$ is a dth power in O_{p}. Therefore, ε is represented as the sum of d dth powers in O_{p} which completes the proof of the theorem.

After a proof of this length, one would hope for a significant improvement over previous results. With the condition $(n, p)=1$, theorem 3.1 implies that $g(n) \leq p-1$. Theorem 3.2, under the same condition, provides the specific case $n=p-1$ for which $g(n)=p-1$. In this case, since $(n, p-1)=p-1$, theorem 3.3 offers no improvement. However, since ($n, p-1$) is a divisor of $p-1$, the conclusion that $\mathrm{g}(\mathrm{n}) \leq(\mathrm{n}, \mathrm{p}-1)$ is an improvement whenever $(\mathrm{n}, \mathrm{p}-1) \neq \mathrm{p}-1$. For example, in 0_{71}, suppose $(n, 71)=1$. The possible values of ($n, 70$) are $1,2,5,7,10,14,35$, and 70. The value of $g(n)$ will be 70 only if n is a multiple of 70. If n does not contain one of the factors 2,5 , or 7 , then $g(n)=1$. That is, every unit in 0_{71} is an nth power.

After the case where $(n, p)=1$, it seems natural to investigate the opposite situation when $n=p^{k}$ with $k \geq 1$. The investigation of this case begins with the following lemma.

Lemma 3.1 Let p be an odd prime and $k \geq 1$. Then the congruence $x^{p^{k}}+y^{p^{k}}+z^{p^{k}} \equiv 0 \bmod p$ has a solution (a, b, c) in integers such that $a^{p^{k}}+b^{p^{k}}+c^{p^{k}} \not \equiv 0 \bmod p^{2}$ 。

Proof: The binomial expansion of $(p-1)^{p^{k}}$ shows that $(\mathrm{p}-1)^{\mathrm{p}^{k}} \equiv-1 \bmod \mathrm{p}^{2}$ which implies that $(\mathrm{p}-1)^{)^{k}} \not \equiv \mathrm{p}-1 \bmod \mathrm{p}^{2}$. This along with the fact that $1^{p^{k}} \equiv 1$ mod p^{2} makes the following definition possible. Let $t=\min \left\{r \mid r\right.$ is a positive integer and $\left.r^{p^{k}} \neq r \bmod p^{2}\right\}$. With this definition, since $t-1<t,(t-1)^{p^{k}} \equiv t-1 \bmod p^{2}$. Therefore, $1^{p^{k}}+(-t)^{p^{k}}+(t-1)^{p^{k}} \equiv 1-t^{p^{k}}+t-1 \bmod p^{2}$. Because of the definition of t, the right side of this congruence, $t-t^{p^{k}}$, cannot be congruent to zero mod p^{2}. On the other hand, since $a^{p^{k}} \equiv a \bmod p$ for every integer a, it follows that

$$
1^{p^{k}}+(-t)^{p^{k}}+(t-1)^{p^{k}} \equiv 1-t+t-1 \equiv 0 \bmod p
$$

Therefore, ($1,-t, t-1$) is a suitable solution, completing the proof of the lemma.

In terms of p-adic integers, this lemma can be stated as follows. For any odd prime p and any positive integer k there exist p-adic
 ${ }^{0}{ }_{p}$.

Theorem 3.4 Let a be a unit in o_{p} where $p \neq 2$. Then a can be represented as the sum of $\left(3^{k+1}-1\right) / 2 p^{k}$ th powers in o_{p}.

Proof: Note first that for every p-adic integer β, there exist p-adic integers x and μ such that $\beta=x^{p^{k}}+\mu p$. To see this, let $\beta=\sum_{i=0}^{\infty} b_{i} p^{i}$. Then $\beta \equiv b_{0} \equiv b_{0}^{p^{k}} \bmod p$ and it follows that
$\beta=b_{0}^{p^{k}}+\mu \mathrm{p}$ for some μ in o_{p}. Now, let (x, y, z) be p-adic integers
 in O_{p}. The following construction shows how to represent α as a sum of $\left(3^{k+1}-1\right) / 2 p^{k}$ th powers. First, determine p-adic integers x_{0} and μ_{1} so that $\alpha=x_{0}^{p^{k}}+\mu_{1} p$. Note that x_{0} must be a unit in o_{p} since α is a unit in O_{p}. Now, determine x_{1} and μ_{2} so that $\mu_{1} \varepsilon^{-1}=x_{1}^{p^{k}}+\mu_{2} p$. This gives

$$
\alpha=x_{0}^{p^{k}}+\left(x_{1}^{p^{k}}+\mu_{2} p\right) \varepsilon p=x_{0}^{p^{k}}+x_{1}^{p^{k}} \varepsilon_{p}+\mu_{2} \varepsilon_{p}^{2}
$$

Next, determine x_{2} and μ_{3} so that $\mu_{2} \varepsilon^{-1}=x_{2}^{p^{k}}+\mu_{3} p$. This gives

$$
\begin{aligned}
\alpha & =x_{0}^{p^{k}}+x_{1}^{p^{k}} \varepsilon p+\mu_{2} \varepsilon^{-1}\left(\varepsilon_{p}\right)^{2} \\
& =x_{0}^{p^{k}}+x_{1}^{p^{k}} \varepsilon p+\left(x_{2}^{p^{k}}+\mu_{3} p\right)\left(\varepsilon_{p}\right)^{2} \\
& =x_{0}^{p^{k}}+x_{1}^{p^{k}} \varepsilon p+x_{2}^{p^{k}}(\varepsilon p)^{2}+\mu_{3} \varepsilon^{2} p^{3} .
\end{aligned}
$$

Repeating this process $k+1$ times produces the result

$$
\begin{aligned}
\alpha= & x_{0}^{p^{k}}+x_{1}^{p^{k}}(\varepsilon p)+x_{2}^{p^{k}}(\varepsilon p)^{2}+\cdots+x_{k}^{p^{k}}(\varepsilon p)^{k}+\mu_{k+1} \varepsilon^{k} p^{k+1} \\
\alpha & =\left(x_{0}^{p^{k}}+\mu_{k+1} \varepsilon^{k} p^{k+1}\right)+\sum_{i=1}^{k} x_{i}^{p^{k}}(\varepsilon p)^{i} \\
& =\left(x_{0}^{p^{k}}+\mu_{k+1} \varepsilon^{k} p^{k+1}\right)+\sum_{i=1}^{k} x_{i}^{p^{k}}\left(x^{p^{k}}+y^{p^{k}}+z^{p^{k}}\right)^{i}
\end{aligned}
$$

Thus,

Since x_{0} is a unit in o_{p}, theorem 2.11 implies that $x_{0}^{p^{k}}+\mu_{k+1} \varepsilon^{k} p^{k+1}$ is a p^{k} th power in o_{p}. When expanded
$x_{i}^{p^{k}}\left(x^{p^{k}}+y^{p^{k}}+z^{p^{k}}\right)^{i}$ produces 3^{i} terms, each of which is a p^{k} th power in O_{p}. For example, when $x_{2} p^{k}\left(x^{p^{k}}+y^{p^{k}}+z^{p^{k}}\right)^{2}$ is expanded, the result is $\left(x_{2} x^{2}\right)^{p^{k}}+\left(x_{2} y^{2}\right)^{p^{k}}+\left(x_{2} z^{2}\right)^{p^{k}}+\left(x_{2} x y\right)^{p^{k}}+\left(x_{2} x y\right)^{p^{k}}+\left(x_{2} x z\right)^{p^{k}}+\left(x_{2} x z\right)^{p^{k}}$ $+\left(x_{2} y z\right)^{p^{k}}+\left(x_{2} y z\right)^{p^{k}}$. The net result is that α is expressed as the sum of $\sum_{i=0}^{k} 3^{i}=\left(3^{k+1}-1\right) / 2 p^{k}$ th powers in O_{p}.

The number of terms predicted in this theorem is considerably smaller than in theorem 3.1. The value of $\left(3^{k+1}-1\right) / 2$ is half as large as the $p^{k+1}-1$ value in theorem 3.1 even when $p=3$. As p becomes large, the improvement is considerably better. The next theorem is an example showing that, in general, the value $\left(3^{k+1}-1\right) / 2$ in theorem 3.3 cannot be lowered.

Theorem 3.4 For every k, there exists a unit in O_{3} that cannot be represented as the sum of fewer than $\left(3^{k+1}-1\right) / 2, \quad 3^{k}$ th powers in 0_{3}.

Proof: Let $\varepsilon=\sum_{i=0}^{k} 3^{i}$. Note that ε is a unit in O_{3} and $\varepsilon=\left(3^{k+1}-1\right) / 2$. Suppose $\alpha_{1}^{3^{k}}+\alpha_{2}^{3^{k}}+\cdots+\alpha_{s}^{3^{k}}$ is any sum of 3^{k} th powers in O_{3} where $s<\left(3^{k+1}-1\right) / 2$. If α_{i} is a unit in O_{3}, then $\alpha_{i}= \pm 1+3 \beta$ for some β in O_{3}. The binomial expansion shows that $\alpha_{i}^{3^{k}}=(\pm 1+3 \beta)^{3^{k}} \equiv \pm 1 \bmod 3^{k+1}$. However, if α_{i} is a non-unit in o_{3}, $\alpha_{i}=3 \beta$ for some β in O_{3} and $a_{i}^{3^{k}}=(3 \beta)^{3^{k}} \equiv 0 \bmod 3^{k+1}$. Therefore, the value of each element in the sum $\alpha_{1}^{3^{k}}+\alpha_{2}^{3^{k}}+\cdots+\alpha_{s}^{3^{k}}$ is either 1, -1 , or $0 \bmod 3^{k+1}$. It follows that there exists an integer a such that $|a| \leq s$ and $\alpha_{1}^{3^{k}}+\alpha_{2}^{3^{k}}+\cdots+\alpha_{s}^{3^{k}} \equiv \operatorname{a\operatorname {mod}3^{k+1}}$. Now $|a| \leq s$ and $s<\left(3^{k+1}-1\right) / 2$ imply that $-\left(3^{k+1}-1\right) / 2<a<\left(3^{k+1}-1\right) / 2$. Since the set of integers $\left\{r \mid-\left(3^{k+1}-1\right) / 2 \leq r \leq\left(3^{k+1}-1\right) / 2\right\}$ constitutes a complete residue system $\bmod 3^{k+1}$, it follows that $a \neq\left(3^{k+1}-1\right) / 2 \bmod 3^{k+1}$.

That is, $\varepsilon \not \equiv$ a mod 3^{k+1} which implies $\varepsilon \neq a_{1}^{3^{k}}+\alpha_{2}^{3^{k}}+\cdots+\alpha_{s}^{3^{k}}$. Therefore, the unit $\varepsilon=\left(3^{k+1}-1\right) / 2$ cannot be represented as the sum of fewer than $\left(3^{k+1}-1\right) / 2 \quad 3^{k}$ th powers completing the proof.

In terms of the function $g(n)$, theorem 3.4 shows that for odd primes, $g(n) \leq\left(3^{k+1}-1\right) / 2$ when $n=p^{k}$. Equality holds when $p=3$ according to theorem 3.5.

As previously noted, the results of this chapter can be extended to include all p-adic integers due to the fact that any non-unit α can be represented as the nth power 1 plus the p-adic unit $\alpha-1$. The results can also be extended to include all p-adic numbers as follows. Let εp^{t} be any non-zero p-adic number. Determine integers r and s so that $t=r n+s$ where $s>0$. Then $\varepsilon p^{t}=\varepsilon p^{s}\left(p^{r}\right)^{n}$ and εp^{s} is a p-adic integer. As indicated above, $\varepsilon \mathrm{p}^{5}$ can be represented as $\mathrm{x}_{1}^{\mathrm{n}}+\mathrm{x}_{2}^{\mathrm{n}}+\cdots+\mathrm{x}_{\mathrm{h}(\mathrm{n})}^{\mathrm{n}}$ where $\mathrm{h}(\mathrm{n})=\mathrm{g}(\mathrm{n})+1$. It follows that $\varepsilon p^{t}=y_{1}^{n}+y_{2}^{n}+\cdots+y_{h(n)}^{n}$ where $y_{i}=x_{i} p^{r}$ for every i, $1 \leq i \leq h(n)$.

CHAPTER IV

ART'IN'S CONJECTURE

The original conjecture made by Artin, as it pertains to p-adic numbers, was the following. If a homogeneous form of degree n with coefficients in Q_{p} contains more than n^{2} variables, it must have a non-trivial zero in O_{p}. The definition of a homogeneous form requires only that each term be of the same degree and, in general, such a form is difficult to work with. In this respect, it is fortunate that Artin's conjecture in its original form has been proven false. The most famous counterexample was given by Terjanian (12).

Terjanian observed that the function $g(x)=g\left(x_{1}, x_{2}, x_{3}\right)$ defined by

$$
g(x)=x_{1}^{4}+x_{2}^{4}+x_{3}^{4}-x_{1}^{2} x_{2}^{2}-x_{2}^{2} x_{3}^{2}-x_{1}^{2} x_{3}^{2}-\left(x_{1}+x_{2}+x_{3}\right)\left(x_{1} x_{2} x_{3}\right)
$$

has the following properties: $g(x) \equiv 1 \bmod 4$ if some x_{i} is odd and $g(x) \equiv 0 \bmod 16$ if every x_{i} is even. He then constructed the form

$$
f=g(x)+g(y)+g(z)+4 g(u)+4 g(v)+4 g(w)
$$

This form is homogeneous of degree 4 with 18 variables. According to the conjecture, it should have a non-trivial zero in O_{2}. The fact that $f \equiv 0$ mod 16 only if each of the variables is even means that for any zero $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{18}\right)$ each θ_{i} must be even. Suppose $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{18}\right)$ is a non-trivial zero of f in O_{2}. Each of the
non-zero θ_{i} has the form $\varepsilon_{i} 2^{k_{1}}$ where ε_{i} is a unit in o_{2}. If k be the minimum k_{i}, then $\left(2^{-k_{\theta}}, 2^{-k_{\theta}}{ }_{2}, \ldots, 2^{-k_{\theta}} 18\right.$) is another zero of f. However, at least one $2^{-k} \theta_{i}$ is not even so this cannot be a zero of f. We must conclude that f has no non-trivial zeros in O_{2}.

A paper by Browkin (4) gives an even more dramatic counterexample. By using a tremendous construction, he demonstrates that for any prime the number of variables needed to insure non-trivial zeros for forms of degree n is not less than n^{3}.

In view of these counterexamples, the conjecture must be weakened in order to present an interesting problem. The objective of this chapter will be to investigate and eventually prove such a weakened conjecture.

Definition 4.1 A diagonal form is an expression of the form

$$
\alpha_{1} x_{1}^{n}+\alpha_{2} x_{2}^{n}+\cdots+\alpha_{s} x_{s}^{n}
$$

This is also referred to in the literature as an additive form or simply as a linear combination of nth powers. When the α_{i} are p-adic numbers, this expression is called a diagonal form in Q_{p}. If the α_{i} are all units in O_{p}, the form is referred to as a unit diagonal form in O_{p}.

Artin's conjecture for diagonal forms. If a diagonal form

in Q_{p} of degree n contains more than n^{2} variables, it must have a non-trivial zero in 0_{p}.

Since a diagonal form is homogeneous, this conjecture is a special case of Artin's original conjecture.

A particularly interesting aspect of this conjecture is that it can
be shown to be the best possible. That is, for a given prime p, there exists a diagonal form in Q_{p} of some degree n which contains n^{2} variables, but has only the trivial zero in O_{p}. The proper degree for such a form is not difficult to guess. As noted in theorem 3.2 , since $\varphi\left(p^{k+1}\right)=(p-1) p^{k}, \quad \varepsilon^{n} \equiv 1 \bmod p^{k+1}$ when $n=(p-1) p^{k}$ and ε is a unit in O_{p}. For $p=2$ the slightly stronger result, $\varepsilon^{n} \equiv 1 \bmod 2^{k+2}$ can be stated. This does not improve the result of the next theorem so $p=2$ will not be considered as a special case here. For any non-unit α, it is trivially true that $\alpha^{n} \equiv 0 \bmod p^{k+1}$. This along with $\varepsilon^{n} \equiv 1 \bmod p^{k+1}$ for any unit ε implies that the form

$$
g_{0}=x_{1}^{n}+x_{2}^{n}+\cdots+x_{s}^{n}, \quad s<p^{k+1}
$$

has the property that $g_{0} \equiv 0 \bmod p^{k+1}$ only when every x_{i} is a nonunit. Extend this idea to consider $g_{0}+p^{k+1} g_{1}$ where

$$
g_{1}=y_{1}^{n}+y_{2}^{n}+\cdots+y_{t}^{n}, \quad t<p^{k+1}
$$

It follows that $g_{0}+p^{k+1} g_{1} \equiv 0 \bmod p^{2(k+1)}$ only if each x_{i} and each y_{i} is a non-unit in O_{p}. This construction suggests that the form

$$
g=g_{0}+p^{k+1} g_{1}+p^{2(k+1)} g_{2}+\cdots+p^{q(k+1)} g_{q}
$$

would have a relatively large number of variables and still have only the trivial zero.

The value of q depends on k and must be chosen correctly in order to allow g to contain the maximum number of variables. The following lemma determines the correct choice for q. To get an idea of the relationship between the lemma and g note that when any non-zero
p-adic number $E p^{t}$ is substituted in a form g_{r}, the contribution to the sum g is a term of the form $\varepsilon^{n} p^{\operatorname{tn}+r(k+1)}$.
 k are integers, $0 \leq r_{i} \leq q$ and $k \geq 0 ;[x]$ denotes the greatest integer less than or equal to x. Then
(1) $\quad s_{i}=s_{j}$ implies $t_{i}=t_{j}$ and $r_{i}=r_{j}$ and
(2) $\quad s_{i} \neq s_{j} \quad$ implies $\quad\left|s_{i}-s_{j}\right| \geq k+1$.

Proof: To prove (1), suppose $s_{i}=s_{j}$ or $t_{i} n^{n+r_{i}}(k+1)=t_{j} n^{n}+r_{j}(k+1)$. This gives $\left(t_{i}-t_{j}\right) n=\left(r_{j}-r_{i}\right)(k+1)$ which implies that either $t_{i}=t_{j}$ and $r_{i}=r_{j}$ or n divides $\left|r_{j}-r_{i}\right|(k+1)$. However, by definition $\left|r_{j}-r_{i}\right| \leq q<n /(k+1)$ so $\left|r_{j}-r_{i}\right|(k+1)<n$. Therefore, n can divide $\left|r_{j}-r_{i}\right|(k+1)$ only if $\left|r_{j}-r_{i}\right|=0$. This gives the desired result $r_{i}=r_{j}$, and $t_{i}=t_{j}$ follows immediately.

To prove (2) suppose, without loss of generality, $\mathbf{s}_{\mathbf{i}}>\mathbf{s}_{j}$ or $t_{i}{ }^{n}+r_{i}(k+1)>t_{j}{ }^{n}+r_{j}(k+1)$. There are two cases to consider: $t_{i}=t_{j}$ and $t_{i} \neq t_{j}$. If $t_{i}=t_{j}$, then $r_{i}>r_{j}$ so that

$$
\mathbf{s}_{\mathbf{i}}-\mathbf{s}_{\mathbf{j}}=\left(\mathbf{r}_{\mathbf{i}}-\mathbf{r}_{\mathbf{j}}\right)(\mathbf{k}+1) \geq \mathbf{k}+1
$$

If $t_{i} \neq t_{j}$, let $t_{i}>t_{j}$. It follows that

$$
\left(t_{i}-t_{j}\right) n \geq n \geq(q+1)(k+1) \geq\left(r_{j}-r_{i}+1\right)(k+1)
$$

which gives

$$
\left(t_{i}-t_{j}\right) n+\left(r_{i}-r_{j}\right)(k+1) \geq k+1
$$

This is the same as $\mathbf{s}_{\mathbf{i}} \mathbf{-} \mathbf{s}_{\mathbf{j}}>\mathbf{k}+1$. A similar argument holds for
$t_{i}<t_{j}$ giving $s_{j}-s_{i} \geq k+1$. The net result is $\left|s_{i}-s_{j}\right| \geq k+1$.

The following definitions will be useful in the next theorem. Let

$$
G_{k}=g_{0}+p^{k+1} g_{1}+p^{2(k+1)} g_{2}+\cdots+p^{q(k+1)} g_{q} .
$$

Each g_{r} has the form $x_{1}^{n}+x_{2}^{n}+\cdots+x_{s}^{n}$ where $n=(p-1) p^{k}$ and $s=p^{k+1}-1$. The sets of variables contained in the g_{r} are pairwise disjoint and $q=[n /(k+1)]-1$. If we denote the number of variables in G_{k} as N_{k}, then

$$
N_{k}=(q+1) s=[n /(k+1)]\left(p^{k+1}-1\right)
$$

Theorem 4.1 The form G_{k} described in the previous paragraph has the following properties:
(1) For any $k \geq 0, G$ has only the trivial zero.
(2) Given any $\in>0$, there exist infinitely many k for which $N_{k}>n^{2-\epsilon}$.
(3) When $p \neq 2, \quad N_{0}=n^{2}$.

Proof: To prove (1), suppose the contrary; that is, G_{k} has a nontrivial zero $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{N_{k}}\right)$. Then each non-zero θ_{i} can be written as $\varepsilon_{i} p^{t_{i}}$ and

$$
G_{k}\left(\theta_{1}, \theta_{2}, \ldots, \theta_{N_{k}}\right)=\sum_{\theta_{i} \neq 0} \varepsilon_{i}^{n_{i} s_{1}}
$$

where $s_{i}=t_{i} n+r_{i}(k+1)$ and $0 \leq r_{i} \leq q$. Then let s be defined as $\min \left\{\mathbf{s}_{i} \mid 0 \leq i \leq N_{k}, \theta_{i} \neq 0\right\}$ and write

$$
G_{k}=p^{s} \sum_{\theta_{i} \neq 0} \varepsilon_{i}^{n_{i} p_{i}-s}
$$

This implies that

$$
\sum_{\theta_{i} \neq 0} \varepsilon_{i}^{n_{i} p_{i}-s}=0
$$

In order to analyze this result, let f be the sum of the terms where $s_{i}=s$ and h be the sum of the terms where $s_{i}>s$. Thus,

$$
\sum_{\theta_{i} \neq 0} \varepsilon_{i}^{n} p^{s_{i}-s}=f+h=0
$$

Now, as a result of lemma $4.1, \quad s_{i}=s_{j}$ implies $\quad r_{i}=r_{j}$ so all terms in f are from the same g_{r}. The second statement in lemma 4.1 shows that $s_{i}-s \geq k+1$ when $s_{i} \neq s$. Therefore, h has a factor of p^{k+1}. Now, since $f+h=0$, it follows that $f \equiv 0 \bmod p^{k+1}$. However, this is impossible since f contains at most $p^{k+1}-1$ terms of the form ε_{i}^{n} each of which is congruent to $1 \bmod p^{k+1}$. This contradiction completes the proof of (1).

To prove (2) it will suffice to show $\lim _{k \rightarrow \infty} \log _{\mathrm{n}} \mathrm{N}_{\mathrm{k}}=2$. This will be accomplished by showing that $\log _{n} N_{k}$ is bounded on one side by 2 and on the other side by a function whose limit is 2 . The following inequalities are used without proof. Each can be shown to be true when $k>4$ using elementary methods.

$$
\frac{p^{k}}{k^{2}}<\frac{p^{k}}{k+1}-1 \quad, \quad p^{k}<p^{k+1}-1 \quad, \quad p^{\sqrt{k}}>k
$$

First consider the following:

$$
N_{k}=\left[\frac{(p-1) p^{k}}{k+1}\right]\left(p^{k+1}-1\right)<\frac{(p-1) p^{k}}{k+1}\left(p^{k+1}\right)=\frac{(p-1)^{2} p^{2 k} p}{(p-1)(k+1)} .
$$

So $\quad N_{k}<\frac{n^{2} p}{(p-1)(k+1)}<n^{2}$. This can be written

$$
\begin{equation*}
\log _{n} N_{k}<2 . \tag{4.1}
\end{equation*}
$$

To find a function that bounds $\log _{n} N_{k}$ on the other side, observe first that

$$
\frac{p^{k}}{k^{2}}<\frac{p^{k}}{k+1}-1 \leq\left[\frac{(p-1) p^{k}}{k+1}\right] .
$$

Combining this with $\mathrm{p}^{\mathrm{k}}<\mathrm{p}^{\mathrm{k}+1}-1$ gives

$$
\frac{p^{k}}{k^{2}}\left(p^{k}\right)<\left[\frac{(p-1) p^{k}}{k+1}\right]\left(p^{k+1}-1\right)=N_{k} .
$$

The resulting inequality $\mathrm{p}^{2 \mathrm{k}} / \mathrm{k}^{2}<\mathrm{N}_{\mathrm{k}}$ can be written

$$
\begin{equation*}
2 k \log _{n} p-2 \log _{n} k<\log _{n} N_{k} . \tag{4.2}
\end{equation*}
$$

The functions on the left side of (4.2) can be replaced by more familiar functions. The fact that $n=(p-1) p^{k}$ gives us the inequality $\mathrm{p}^{\mathrm{k}} \leq \mathrm{n}<\mathrm{p}^{\mathrm{k}+1}$. The right portion $\mathrm{n}<\mathrm{p}^{\mathrm{k}+1}$ can be written

$$
\begin{equation*}
\log _{\mathrm{n}} \mathrm{p}<\frac{1}{\mathrm{k}+1} . \tag{4.3}
\end{equation*}
$$

The left portion $p^{k} \leq n$ implies $n^{1 / \sqrt{k}} \geq p^{\sqrt{k}}>k$ which implies

$$
\begin{equation*}
\frac{1}{\sqrt{k}}>\log _{n} k \tag{4.4}
\end{equation*}
$$

Now, the four inequalities (4.1), (4.2), (4.3), and (4.4), give

$$
\frac{2 k}{k+1}-\frac{2}{\sqrt{k}}<2 k \log _{n} p-2 \log _{n} k<\log _{n} N_{k}<2
$$

From this it follows immediately that $\lim _{k \rightarrow \infty} \log _{n} N_{k}=2$.

Statement (3) follows from the definition of N_{k} since by direct substitution $\mathrm{N}_{\mathrm{O}}=(\mathrm{p}-1)^{2}=\mathrm{n}^{2}$.

The results of this theorem have some interesting aspects. Conclusion (3) shows that when $p \neq 2$, the n^{2} in the conjecture cannot be reduced. Conclusion (2) shows that if n^{2} were replaced by n^{s} where $s<2$, then for any prime p infinitely many forms can be constructed for which the conjecture is false. It is interesting to note that the number of variables in the construction exceeds $n^{2-\epsilon}$ as k becomes large while the power where G_{k} actually contains n^{2} variables occurs when $k=0$.

The prime $p=2$ is conspicious by its absence in conclusion (3). Including 2 here produces the uninteresting conclusion that a form consisting of one first power has only the trivial zero. In order to fill this gap, consider the form g defined by

$$
g=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}
$$

This form has only the trivial zero in O_{2}. To. see this first note that $x_{i}^{2} \equiv 1 \bmod 8$ when x_{i} is odd and $x_{i}^{2} \equiv 0 \bmod 4$ when x_{i} is even. The argument is then similar to the Terjanian counterexample, $g \equiv 0 \bmod 8$ only if every x_{i} is even so any non-trivial zero must contain all even values. However, any such zero would produce another
non-trivial zero whose values are not all even which is a contradiction.

Having established that the conjecture is in some sense the best possible, we turn our attention to proving that it is true. Consider what must be accomplished. Given a diagonal form

$$
f=a_{1} x_{1}^{n}+a_{2} x_{2}^{n}+\cdots+\alpha_{s} x_{s}^{n}
$$

we must show that $s>n^{2}$ implies that non-trivial zeros of f exist. In general, the α_{i} are p-adic numbers which have the form εp^{t} where t could be any integer either positive or negative. If the values of the t 's could be limited to relatively small positive integers, f would be easier to work with. The following example demonstrates how this can be done.

Example 4.1 Let f be the following form with coefficients in Q_{2}.

$$
\begin{aligned}
x_{1}^{6} & +2^{-5} x_{2}^{6}+3 \cdot 2^{6} x_{3}^{6}+2^{14} x_{4}^{6}+5 \cdot 2^{-18} x_{5}^{6}+3 \cdot 2^{-11} x_{6}^{6}+7 \cdot 2^{2} x_{7}^{6} \\
& +2^{9} x_{8}^{6}+17 \cdot 2^{-1} x_{9}^{6}
\end{aligned}
$$

This form can be written as

$$
\begin{aligned}
& \left(x_{1}\right)^{6}+2\left(2^{-1} x_{2}\right)^{6}+3\left(2 x_{3}\right)^{6}+2^{2}\left(2^{2} x_{4}\right)^{6}+5\left(2^{-3} x_{5}\right)^{6}+3 \cdot 2\left(2^{-2} x_{6}\right)^{6} \\
& \quad+7 \cdot 2^{2}\left(x_{7}\right)^{6}+2^{3}\left(2 x_{8}\right)^{6}+17 \cdot 2^{5}\left(2^{-1} x_{9}\right)^{6}
\end{aligned}
$$

When y_{i} is substituted for each of the corresponding expressions in parenthesis f is written

$$
y_{1}^{6}+2 y_{2}^{6}+3 y_{3}^{6}+2^{2} y_{4}^{6}+5 y_{5}^{6}+3 \cdot 2 y_{6}^{6}+7 \cdot 2^{2} y_{7}^{6}+2^{3} y_{8}^{6}+17 \cdot 2^{5} y_{9}^{6}
$$

After this substitution, the powers of 2 in the coefficients are limited to the integers from 0 to 5. Any zero that is found in terms of the y_{i} will produce a zero in terms of the X_{i} by simply reversing the substitution. Another transformation that will prove helpful is the following grouping of f.

$$
\left(y_{1}^{6}+3 y_{3}^{6}+5 y_{5}^{6}\right)+2\left(y_{2}^{6}+3 y_{6}^{6}\right)+2^{2}\left(y_{4}^{6}+7 y_{7}^{6}\right)+2^{3}\left(y_{8}^{6}\right)+2^{5}\left(17 y_{9}^{6}\right)
$$

This puts f in the form $f_{0}+2 f_{1}+2^{2} f_{2}+2^{3} f_{3}+2^{4} f_{4}+2^{5} f_{5}$ where $f_{0}=y_{1}^{6}+3 y_{3}^{6}+5 y_{5}^{6}, \quad f_{1}=y_{2}^{6}+3 y_{6}^{6}, \quad f_{2}=y_{4}^{6}+7 y_{7}^{6}, \quad f_{3}=y_{8}^{6}$, $f_{4}=0$, and $f_{5}=17 y_{9}^{6}$.

The significant feature of this grouping is that each f_{i} has coefficients which are units in O_{2}; that is, each f_{i} is a unit diagonal form in O_{2}. The following theorem formalizes this transformation and shows that it can always be accomplished.

Theorem 4.2 Let f be a diagonal form of degree n with coefficients in Q_{p}. For the purpose of determining zeros, f can be assumed to be of the form $f_{O}+p f_{1}+p^{2} f_{2}+\cdots+p^{n-1} f_{n-1}$ where each f_{i} is either zero or a unit diagonal form in O_{p} of degree n.

Proof: Let $f=\alpha_{1} x_{1}^{n}+\alpha_{2} x_{2}^{n}+\cdots+\alpha_{s} x_{s}^{n}$ where each α_{i} is a non-zero p-adic number. Each α_{i} can be uniquely represented as $\varepsilon_{i} p^{t_{1}}$ where ε_{i} is a unit in O_{p} and t_{i} is an integer. Now, for each t_{i} there exist integers a_{i} and b_{i} so that $t_{i}=a_{i} n^{n+b_{i}}$ and $0 \leq b_{i}<n$.

These values can be used as follows:

$$
\alpha_{i} x_{i}^{n}=\varepsilon_{i} p^{t_{1}} x_{i}^{n}=\varepsilon_{i} p^{a_{1} n+b_{1}} x_{i}^{n}=\varepsilon_{i} p^{b_{1}}\left(p^{a_{1}} x_{i}\right)^{n}
$$

This indicates that the substitution $y_{i}=p^{a_{i}} x_{i}$ gives

$$
f=\varepsilon_{1} p^{b_{1}} y_{1}^{n}+\varepsilon_{2} p^{b_{2}} y_{2}^{n}+\cdots+\varepsilon_{s} p^{b_{s}} y_{s}^{n}
$$

where $0 \leq b_{i} \leq n-1$. To obtain the desired representation of f, group the terms by ascending powers of p and factor out the $p^{b_{1}}$. In this way f is written as a function of the y_{i} and if

$$
\left(y_{1}, y_{2}, \ldots, y_{s}\right)=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{s}\right)
$$

is a zero of f, then

$$
\left(x_{1}, x_{2}, \ldots, x_{s}\right)=\left(\theta_{1} p^{-a_{1}}, \theta_{2} p^{-a_{2}}, \ldots, \theta_{s} p^{-a_{1}}\right)
$$

also is a zero of f.

In theorem 4.2, the zeros of f were not stated to be in O_{p}. This does not lessen the value of the theorem because any zero of f can be used to produce a zero in O_{p} by multiplying each component of the zero by one sufficiently large power of p. Having established that this transformation is always possible, it can be assumed, when convenient, that diagonal forms in Q_{p} have this representation.

To appreciate the advantage of this representation for f, consider example 4.1 again. In this example $f_{0}=y_{1}^{6}+3 y_{3}^{6}+5 y_{5}^{6}$. Now take $y_{1}=0, y_{3}=1$, and $y_{5}=1$; then $f_{0}(0,1,1)=8$. In view of the result of theorem 2.11 , the fact $6=3 \cdot 2$ implies that a 2 -adic unit ε
is a 6 th power if $E \equiv 1 \bmod 8$. Also 3 is a unit in O_{2} which means that $1 / 3$ is a unit in O_{2}. These facts imply that $1-8 / 3$ is a 6 th power in O_{2}. Now let $\delta^{6}=1-8 / 3$ so that $\mathrm{f}_{0}(0, \delta, 1)=0$. The net result is that a non-trivial zero of f_{0} has been constructed. If all other variables in $f_{1}, f_{2}, f_{3}, f_{4}$, and f_{5} are assigned the value zero, a non-trivial zero of f is produced. This zero is in terms of the y_{i}, but can be written in terms of the x_{i} by letting $x_{3}=\delta / 2, x_{5}=2^{3}(1)$ and all other \mathbf{x}_{i} by zero.

The advantages of this representation are further demonstrated by the following theorems.

Theorem 4.3 Let $n=m p^{k},(m, p)=1$ and $g=\varepsilon_{1} x_{1}^{n}+\varepsilon_{2} x_{2}^{n}+\cdots+\varepsilon_{s} x_{s}^{n}$ where g is a unit diagonal form in O_{p}. Suppose the congruence $g \equiv 0 \bmod p^{k+1}\left(p^{k+2}\right.$ when $\left.p=2\right)$ has a solution $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{s}\right)$ in O_{p} where $\theta_{i} \not \equiv 0 \bmod p$ for some i. Then g has a non-trivial zero in O_{p}.

Proof: When $p \neq 2, g\left(\theta_{1}, \theta_{2}, \ldots, \theta_{s}\right) \equiv 0 \bmod p^{k+1} \quad$ implies that for some α in O_{p}

$$
\varepsilon_{1} \theta_{1}^{n}+\varepsilon_{2} \theta_{2}^{n}+\cdots+\varepsilon_{s} \theta_{s}^{n}=\alpha p^{k+1}
$$

Now assume, with no loss of generality, that $\theta_{1} \not \equiv 0 \bmod p$ and consider the fact that

$$
\varepsilon_{1}\left(\theta_{1}^{n}-\varepsilon_{1}^{-1} \alpha p^{k+1}\right)+\varepsilon_{2} \theta_{2}^{n}+\cdots+\varepsilon_{s} \theta_{s}^{n}=0
$$

Using the criteria established in theorem 2.11, $\theta_{1}^{n}-\varepsilon_{1}^{-1} \alpha p^{k+1}$ is an nth power in O_{p} because it is congruent to the nth power $\theta_{1}^{n} \bmod p^{k+1}$.

Therefore, there is a δ in o_{p} such that $\delta^{n}=\theta_{1}^{n}-\varepsilon_{1}^{-1} \alpha p^{k+1}$. It follows that $\left(\delta, \theta_{2}, \theta_{3}, \ldots, \theta_{s}\right)$ is a non-trivial zero of g. The argument for $p=2$ is exactly the same except p^{k+1} is replaced by 2^{k+2} in the appropriate places.

Theorem 4.4 Suppose every unit diagonal form in O_{p} of degree n with more than s variables has a non-trivial zero in O_{p}. Then every diagonal form in Q_{p} of degree n with more than $n s$ variables has a non-trivial zero in O_{p}.

Proof: Let $f=f_{0}+p f_{1}+\cdots+p^{n-1} f_{n-1}$ where each f_{i} is a unit diagonal form in O_{p} of degree n. If f has more than ns variables, some f_{i} must have more than s variables. Let f_{r} denote an f_{i} with more than s variables. By hypothesis, f_{r} must have a nontrivial zero in O_{p}. Assigning the values from this non-trivial zero of f_{r} and zero to each of the variables in $f_{0}, f_{1}, \ldots, f_{r-1}, f_{r+1}, \ldots, f_{s}$ produces a non-trivial zero of f.

These three theorems provide a method for finding non-trivial zeros for diagonal forms in Q_{p}. Given a diagonal form f of degree n first write f in the form $f_{0}+p f_{1}+\cdots+p^{n-1} f_{n-1}$. Next, find an i for which $f_{i} \equiv 0 \bmod p^{k+1}\left(p^{k+2}\right.$ if $\left.p=2\right)$ has a solution in O_{p}. The k is determined by $n=m p,(m, p)=1$ and at least one value in the solution must be a unit in O_{p}. Using theorem 4.3, this solution produces a non-trivial zero of f_{i}. As indicated in theorem 4.4, a non-trivial zero of any f_{i} will produce a non-trivial zero of f.

The theorems also provide a method for proving the conjecture in some important special cases. The first cases investigated are diagonal
forms in Q_{p} of degree m where $(m, p)=1$ and diagonal forms of degree $p^{k}, p \neq 2$. In view of the nature of nth powers as established in Chapter II, these seem like natural cases to consider. Solving the form of degree m involves a congruence mod p while the form of degree p^{k} requires a congruence $\bmod p^{k+1}$. In view of this, it seems surprising that the conjecture is easier to prove in the latter case. However, in the course of the investigation of forms of degree $m,(m, p)=1$, several results are demonstrated which are necessary in the later work. The next few theorems provide a method for proving the conjecture for diagonal forms in Q_{p} of degree $m,(m, p)=1$.

Theorem 4.5 (Lagrange's theorem) Let p be a prime and $f(x)$ be a polynomial of degree n whose coefficients are integers. The congruence $f(x) \equiv 0 \bmod p$ has at most n incongruent solutions mod p unless each coefficient of $f(x)$ is congruent to zero mod p.

Proof: See Niven and Zuckerman (11, p. 44).

Theorem 4.6 Let $f\left(x_{1}, x_{2}, \ldots, x_{s}\right)$ be a polynomial of degree less than p in each x_{i}. Suppose $f\left(\theta_{1}, \theta_{2}, \ldots, \theta_{s}\right) \equiv 0 \bmod p$ for every $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{s}\right)$ where $\theta_{i}=0,1,2, \ldots, p-1$ for each i. Then the coefficients of f must all be congruent to zero mod p.

Proof: Consider f as a polynomial f_{1} in x_{1} having coefficients which are polynomials in $x_{2}, x_{3}, \ldots, x_{s}$. This polynomial $f_{1}\left(x_{1}\right)$ has degree less than p and $f_{1}\left(x_{1}\right) \equiv 0 \bmod p$ has p incongruent solutions mod p. Therefore, Lagrange's theorem implies that each of its coefficients, the polynomials in $x_{2}, x_{3}, \ldots, x_{s}$, must be congruent to zero mod p for every $\left(\theta_{2}, \theta_{3}, \ldots, \theta_{s}\right)$. Now each of these coefficient
polynomials can be considered as a polynomial in x_{2} whose coefficients are polynomials in $x_{3}, x_{4}, \ldots, x_{s}$. Again, from Lagrange's theorem, the coefficient polynomials in $x_{3}, x_{4}, \ldots, x_{s}$ must all be congruent to zero mod p for every $\left(\theta_{3}, \theta_{4}, \ldots, \theta_{s}\right)$. This process can be repeated until the step where polynomials in $\mathbf{x}_{\mathbf{s}}$ are obtained whose coefficients are the original integer coefficients of f. These polynomials are of degree less than p in x_{s} and are all congruent to zero mod p for $x_{s}=0,1, \ldots, p-1$. Therefore, their coefficients and, hence, all coefficients of f must be congruent to zero mod p.

An example will help to clarify the argument in theorem 4.6.

Example 4.2 Let $f(x, y)=a_{1} x^{4} y^{3}+a_{2} x^{4} y^{2}+a_{3} x^{2} y^{2}+a_{4} x^{2} y+a_{5} y^{4}+a_{6}$. Suppose $f\left(\theta_{1}, \theta_{2}\right) \equiv 0 \bmod 5$ for every $\left(\theta_{1}, \theta_{2}\right)$. Write

$$
f(x, y)=\left(a_{1} y^{3}+a_{2} y^{2}\right) x^{4}+\left(a_{3} y^{2}+a_{4} y\right) x^{2}+\left(a_{5} y^{4}+a_{6}\right)
$$

Then, f can be considered as a polynomial in x whose coefficients are polynomials in y. Now consider a fixed value of θ_{2} for y so $f\left(\theta_{1}, \theta_{2}\right) \equiv 0 \bmod 5$ for $\theta_{1}=0,1,2,3,4$. This implies that each coefficient polynomial must be congruent to zero mod 5 for the fixed θ_{2}. We can use this argument for 5 different values of θ_{2}, so we have $a_{1} y^{3}+a_{2} y^{2}, a_{3} y^{2}+a_{4} y$, and $a_{5} y^{4}+a_{6}$ all congruent to zero mod 5 for 5 incongruent values of y. The conclusion follows that each a_{i}, the original coefficients of f, must be congruent to zero mod 5 .

An important consequence of this theorem is the following. Let $f\left(x_{1}, x_{2}, \ldots, x_{s}\right) \equiv g\left(x_{1}, x_{2}, \ldots, x_{s}\right) \bmod p$ where f and g are both of degree less than p for each x_{i}. Then if the congruence holds for
every $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{s}\right)$, the polynomials f and g must be identical mod p. That is, all corresponding coefficients must be congruent mod p.

Theorem 4.7 (Chevalley's theorem) Let $f\left(x_{1}, x_{2}, \ldots, x_{s}\right)$ be a polynomial of degree less than s with integral coefficients and whose constant term is zero. Then $f \equiv 0 \bmod p$ has a solution $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{s}\right)$ where $\theta_{i} \neq 0 \bmod p$ for some i.

Proof: By Fermat's theorem $x^{p} \equiv x \bmod p$ so each exponent in each term of f can be reduced to one of the values $0,1, \ldots, p-1$ without affecting the solution set of the congruence. Therefore, f can be assumed to have degree less than p in each X_{i}. In order to prove the theorem, assume the contrary, for every $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{2}\right)$ where $\theta_{i} \not \equiv 0 \bmod p$ for some $i, f\left(\theta_{1}, \theta_{2}, \ldots, \theta_{s}\right) \not \equiv 0 \bmod p$. With this assumption in mind, consider the following congruence:

$$
1-\left[f\left(x_{1}, x_{2}, \ldots, x_{s}\right)\right]^{p-1} \equiv\left(1-x_{1}^{p-1}\right)\left(1-x_{2}^{p-1}\right) \ldots\left(1-x_{s}^{p-1}\right) \bmod p
$$

This congruence holds for all $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{s}\right)$. To see this, first let every θ_{i} be congruent to zero mod p. By hypothesis, f has no constant term so $f\left(\theta_{1}, \theta_{2}, \ldots, \theta_{s}\right) \equiv 0 \bmod p$ and it follows that both sides are congruent to one mod p. Now consider the other possibility that some θ_{i} is not congruent to zero mod p. By assumption $f\left(\theta_{1}, \theta_{2}, \cdots, \theta_{s}\right) \not \equiv 0 \bmod p$ so the left side is congruent to zero modp. The right side is also congruent to zero mod p since one of its factors is congruent to zero mod p. So the congruence holds for all $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{S}\right)$. Applying the previous theorem, the polynomials on the right and left sides must be identical mod p. However, when the right side is expanded, it contains the term

$$
(-1)^{s} x_{1}^{p-1} x_{2}^{p-1} \ldots x_{s}^{p-1}
$$

which is of degree $s(p-1)$. On the left side, the fact that f has degree less than s means that no term can have degree as great as $s(p-1)$. This contradiction completes the proof of the theorem.

This theorem and the previous one are also true if the coefficients of the given polynomials are p-adic integers. To see this for Chevalley's theorem, let α be any p-adic integer that is a coefficient of f. If $\alpha=\sum_{i=0}^{\infty} a_{i} p^{i}$, then $\alpha \equiv a_{0} \bmod p$. Now, if each p-adic coefficient is replaced by its corresponding a_{0} a new polynomial, say $f_{1}\left(x_{1}, x_{2}, \ldots, x_{s}\right)$, with integer coefficients is produced. Chevalley's theorem gives a solution $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{s}\right)$ in integers for $f_{1}\left(x_{1}, x_{2}, \ldots, x_{s}\right) \equiv 0 \bmod p \quad$ where for some $i, \quad \theta_{i} \not \equiv 0 \bmod p$. If each a_{0} coefficient in f_{1} is now replaced by the corresponding p-adic value the congruence still holds since only a multiple of p is added. Therefore, $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{s}\right)$ is a solution for $f \equiv 0 \bmod p$. The θ_{i} that is not congruent to zero mod p can be considered as a unit in O_{p}.

Chevalley's theorem is strong enough to use in proving the conjecture for m th powers where $(m, p)=1$. However, a stronger result can be established for diagonal forms and since this result will be needed later, the following theorem is included here.

Theorem 4.8 Let $g=\varepsilon_{1} x_{1}^{n}+\varepsilon_{2} x_{2}^{n}+\cdots+\varepsilon_{d+1} x_{d+1}^{n}$ be a unit diagonal form in O_{p} where $n=m p^{k},(m, p)=1$, and $d=(m, p-1)$. Then, the congruence $g \equiv 0 \bmod p$ has a solution in integers where $x_{1}=1$.

Proof: Recall from theorem 2.12 that the congruence $\varepsilon x^{n} \equiv$ a mod p has
a solution in integers if and only if the congruence $\varepsilon x^{d} \equiv a \bmod p$ has a solution in integers. Therefore, the congruence

$$
\varepsilon_{1} x_{1}^{d}+\varepsilon_{2} x_{2}^{d}+\cdots+\varepsilon_{d+1} x_{d+1}^{d} \equiv 0 \bmod p
$$

has a solution in integers with $x_{1}=1$ if and only if $g \equiv 0 \bmod p$ has a solution in integers with $\mathbf{x}_{1}=1$. In order to prove the theorem, assume the contrary, for every choice of integers $x_{2}, x_{3}, \ldots, x_{d+1}$, it is true that

$$
\varepsilon_{1}+\varepsilon_{2} x_{2}^{d}+\cdots+\varepsilon_{d+1} x_{d+1}^{d} \not \equiv 0 \bmod p
$$

It then follows from Fermat's theorem that the congruence

$$
\left(\varepsilon_{1}+\varepsilon_{2} x_{2}^{d}+\cdots+\varepsilon_{d+1} x_{d+1}^{d}\right)^{p-1}-1 \equiv 0 \bmod p
$$

holds for every choice of $x_{2}, x_{3}, \ldots, x_{d+1}$. When the left side is expanded and each exponent is reduced to a value less than p, we can apply theorem 4.6 and conclude that each coefficient must be congruent to zero mod p. This expansion can be accomplished using the multinomial formula with the following result:

$$
\sum \frac{(p-1)!}{a_{1}!a_{2}^{!} \cdots a_{d+1}!}\left(\varepsilon_{1}\right)^{a_{1}}\left(\varepsilon_{2} x_{2}^{d}\right)^{a_{2}} \cdots\left(\varepsilon_{d+1} x_{d+1}^{d}\right)^{a_{d+1}-1}
$$

The sum is taken over all combinations for which $0 \leq a_{i} \leq p-1$ and $a_{1}+a_{2}+\cdots+a_{d+1}=p-1$. Each of these combinations occurs in exactly one of the following cases:
(1) $a_{1}=0$ and $a_{i}=(p-1) / d$ for all $i, 2 \leq i<d+1$.
(2) $a_{1}=0$ and $0 \leq a_{i}<(p-1) / d$ for some $i, 2 \leq i \leq d+1$.

$$
\text { (3) } \quad a_{1}>0 .
$$

In case (1), the resulting term is

$$
\left[\left(\frac{p-1}{d}\right) \|\right]^{-d}(p-1)!\left(\varepsilon_{2} \varepsilon_{3} \ldots \varepsilon_{d+1}\right)^{\frac{p-1}{d}} x_{2}^{p-1} x_{3}^{p-1} \ldots x_{d+1}^{p-1} .
$$

Note that the coefficient of this term is not congruent to zero mod p. Each term in case (2) has at least one exponent that is less than p-1 since $0 \leq d a_{i}<p-1$ for some i and $d a_{i}$ is the exponent of x_{i}. This means that none of the terms from case (2) can be combined with the term from case (1). In case (3), the fact that $a_{1}>0$ means that $a_{2}+a_{3}+\cdots+a_{d+1}=p-1-a_{1}<p-1$. The sum has d terms so for some $i, 0 \leq a_{i}<(p-1) / d$. Therefore, as in case (2), each term in case (3) has at least one exponent that is less than p-1. Since none of the terms from cases (2) or (3) combine with the term (4.5) above, this term must occur in the sum exactly as written. However, its coefficient is not congruent to zero mod p which is a contradiction to theorem 4.6. Hence, the assumption that

$$
\varepsilon_{1}+\varepsilon_{2} x_{2}^{d}+\cdots+\varepsilon_{d+1} x_{d+1}^{d} \equiv 0 \bmod p
$$

had no solution must be false. It follows that a solution exists for $\mathrm{g} \equiv 0 \bmod \mathrm{p}$ with $\mathrm{x}_{1}=1$.

We now return to the task of proving the conjecture that diagonal forms in Q_{p} of degree n containing more than n^{2} variables have non-trivial zeros in O_{p}. As a result of theorem 4.4, we need only show that any unit diagonal form in o_{p} of degree n with more than n variables has a non-trivial zero in O_{p}.

Theorem 4.9 Let $g=\varepsilon_{1} \mathrm{x}_{1}^{m}+\varepsilon_{2} \mathrm{x}_{2}^{m}+\cdots+\varepsilon_{\mathrm{S}} \mathrm{x}_{\mathrm{s}}^{\mathrm{m}}$ be a unit diagonal form in o_{p} where $s>m$ and $(m, p)=1$. Then g has a non-trivial zero in O_{p}.

Proof: Chevalley's theorem implies that the congruence $g \equiv 0$ mod p has an integral solution $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{s}\right)$ where $\theta_{i} \not \equiv 0 \bmod p$ for some. i. Without loss of generality, suppose $\theta_{1} \neq 0 \bmod p$. Then

$$
\varepsilon_{1} \theta_{1}^{m}+\varepsilon_{2} \theta_{2}^{m}+\cdots+\varepsilon_{s} \theta_{s}^{m}=\alpha p
$$

for some α in o_{p}. This can be written as

$$
\varepsilon_{1}\left(\theta_{1}^{m}-\varepsilon_{1}^{-1} \alpha p\right)+\varepsilon_{2} \theta_{2}^{m}+\cdots+\varepsilon_{s} \theta_{s}^{m}=0
$$

Now from theorem 2.11, $\theta_{1}^{m}-\varepsilon_{1}^{-1} \alpha p$ is an mth power in o_{p} so there is a δ in o_{p} for which $\delta^{m}=\theta_{1}^{m}-\varepsilon_{1}^{-1} \alpha p$. It follows that $\left(\delta, \theta_{2}, \theta_{3}, \ldots, \theta_{s}\right)$ is a non-trivial zero of g.

Note that this theorem can be strengthened using theorem 4.8. We can use $s>d$ where $d=(m, p-1)$ instead of $s>m$. The two conditions are the same only when $m=p-1$. This is similar to the result of theorem 4.1 in which $p-1$ was the degree of the form containing n^{2} variables and having only the trivial zero.

Theorem 4.10 Let $\mathrm{g}=\varepsilon_{1} \mathrm{x}_{1}^{\mathrm{p}^{k}}+\varepsilon_{2} \mathrm{x}_{2}^{\mathrm{p}^{k}}+\cdots+\varepsilon_{\mathrm{s}} \mathrm{x}_{\mathrm{s}}^{\mathrm{p}^{k}} \quad$ be a unit diagonal form in o_{p} where $p \neq 2$ and $s>p^{k}$. Then g has a non-trivial zero in o_{p}. Proof: Consider the set \mathcal{S} of integers defined by

$$
\mathscr{S}=\left\{a \mid a \equiv \varepsilon_{i}^{p-1} \bmod p^{k+1}, 0<a<p^{k+1}, 1 \leq i \leq s\right\} .
$$

Since each ε_{i} is a unit in o_{p}, we have $\varepsilon_{i}^{p-1} \equiv 1 \bmod p$ for every i. This implies that δ contains at most p^{k} elements since there are exactly p^{k} integers between 1 and p^{k+1} which are congruent to $1 \bmod p$. By hypothesis, $s>p^{k}$ so for some $i \neq j$ we must have

$$
\varepsilon_{i}^{p-1} \equiv \varepsilon_{j}^{p-1} \bmod p^{k+1}
$$

Without loss of generality, let $\varepsilon_{i}=\varepsilon_{1}$ and $\varepsilon_{j}=\varepsilon_{2}$. Raising each side of the congruence to the power $\left(p^{k-1}+p^{k-2}+\cdots+p+1\right)$ and using the identity $(p-1)\left(p^{k-1}+p^{k-2}+\cdots+1\right)=p^{k}-1$ gives

$$
\varepsilon_{1}^{p^{k}-1} \equiv \varepsilon_{2}^{p^{k}-1} \bmod p^{k+1} \text { or } \varepsilon_{1} \varepsilon_{2}^{p^{k}} \equiv \varepsilon_{2} \varepsilon_{1}^{p^{k}} \bmod p^{k+1}
$$

This implies that for some α in O_{p}

$$
\varepsilon_{1} \varepsilon_{2}^{p^{k}}-\varepsilon_{2} \varepsilon_{1}^{p^{k}}=\alpha p^{k+1} \text { or } \varepsilon_{1}\left(\varepsilon_{2}^{p^{k}}-\varepsilon_{1}^{-1} \alpha p^{k+1}\right)+\varepsilon_{2}\left(-\varepsilon_{1}\right)^{p^{k}}=0
$$

Now $\varepsilon_{2}^{p^{k}}-\varepsilon_{1}^{-1} \alpha p^{k+1}$ is a $p^{k} t h$. power in O_{p} so there exists a δ in O_{p} for which

$$
{ }_{\delta}^{p^{k}}=\varepsilon_{2}^{p^{k}}-\varepsilon_{1}^{-1}{ }_{\alpha}^{k^{+1}}
$$

It follows that $\left(\delta,-\varepsilon_{1}, 0, \ldots, 0\right)$ is a non-trivial zero of g.

Corollary 4.1 Let f be a diagonal form in Q_{p} of degree n and containing more than n^{2} variables. If $n=m,(m, p)=1$ or if $n=p^{k}, p, \neq 2$, then f has a non-trivial zero in O_{p}.

Proof: The proof follows directly from theorems 4.4, 4.9, and 4.10.

In theorem 4.10, the result depended strongly on the fact that when
$p \neq 2, p^{k}$ is odd. The next theorem shows that the restriction to odd powers produces a result that is often considerably better than the conjecture suggests. Note that $(p-1) p^{k}$ is excluded by this restriction when p is odd.

Theorem 4.11 Let $g=\varepsilon_{1} x_{1}^{n}+\varepsilon_{2} x_{2}^{n}+\cdots+\varepsilon_{s} x_{s}^{n}$ be a unit diagonal form in O_{p} of odd degree $n=m p^{k},(m, p)=1, p \neq 2$. Then if $s>(k+1) \log _{2} p, g$ must have a non-trivial zero in O_{p}.

Proof: Consider the set δ defined by

$$
g=\left\{a_{1} \varepsilon_{1}+a_{2} \varepsilon_{2}+\cdots a_{s} \varepsilon_{s} \mid a_{i}=1 \text { or } 0,1 \leq i \leq s\right\}
$$

This set S contains at most 2^{s} elements. Now, since $s>(k+1) \log _{2} p$ implies $2^{s}>p^{k+1}$, there must be at least two elements of S which are congruent $\bmod p^{k+1}$. This gives

$$
a_{1} \varepsilon_{1}+a_{2} \varepsilon_{2}+\cdots+a_{s} \varepsilon_{s} \equiv a_{1}^{\prime} \varepsilon_{1}+a_{2}^{\prime} \varepsilon_{2}+\cdots+a_{s}^{\prime} \varepsilon_{s} \bmod p^{k+1}
$$

where each a_{i} and a_{i}^{\prime} is either 1 or 0 and for at least one i, $a_{i} \neq a_{i}^{\prime}$. This result can be written as

$$
\left(a_{1}-a_{1}^{\prime}\right) \varepsilon_{1}+\left(a_{2}-a_{2}^{\prime}\right) \varepsilon_{2}+\cdots+\left(a_{s}+a_{s}^{\prime}\right) \varepsilon_{s}=\alpha p^{k+1}
$$

for some α in O_{p} where each $a_{i}-a_{i}^{\prime}$ is either $1,-1$, or 0 and at least one $a_{i}-a_{i}^{\prime}$ is not zero. Since n is odd and each $a_{i}-a_{i}^{\prime}$ has one of the values $1,-1$, and 0 , we have $\left(a_{i}-a_{i}^{\prime}\right)^{n}=a_{i}-a_{i}^{\prime}$ for every i. Assume, without loss of generality, that $a_{1}-a_{1}^{\prime}$ is not zero. Then $\left(a_{1}-a_{1}^{\prime}\right)^{n}-\varepsilon_{1}^{-1} \alpha p^{k+1}$ is an nth power in o_{p}. Therefore, for some δ in $O_{p}, \delta^{n}=\left(a-a^{\prime}\right)^{n}-\varepsilon_{1}^{-1} \alpha p^{k+1}$ and it follows that
$\left(\delta, a_{2}-a_{2}^{\prime}, \ldots, a_{s}-a_{s}^{\prime}\right)$ is a non-trivial zero of g.

It is interesting to see the conditions under which this result improves on the conjecture and how much improvement is made. Combining the result of theorem 4.4 with the result of this theorem we have that any diagonal form in Q_{p} of odd degree $n=m p k$ and more than $n(k+1) \log _{2} p$ variables must have a non-trivial zero in o_{p}. This value $n(k+1) \log _{2} p$ will be less than the n^{2} in the conjecture whenever $(k+1) \log _{2} p<n$. If $k=0$, this compares m and $\log _{2} p$ and $m>\log _{2} p$ provided $p<2^{m}$. If $k>0$ it is not difficult to show that $n>(k+1) \log _{2} p$ except when $m=1, p=3$, and $k=1$. In general, when $k>0$ the comparison of n and $(k+1) \log _{2} p$ is similar to the comparison of n and $\log _{2} n$ which are significantly different, especially for large n.

In theorem 4.10 diagonal forms in O_{2} of degree 2^{k} were excluded because the method of proof required that p^{k} be odd for every k. This case is more difficult because 2^{k} is even. However, as we will show later, the proof of the conjecture for diagonal forms in Q_{2} of degree 2^{k} provides a proof for all diagonal forms in Q_{2}. Also, the methods that are devised for proving the conjecture in this case suggest methods for proving the conjecture for odd primes. We begin devising these methods by considering the following example.

Example 4.3 Let $f=f_{0}+2 f_{1}+4 f_{2}+8 f_{3}$ where

$$
\begin{aligned}
& f_{0}=x_{1}^{4}+9 x_{2}^{4}+17 \dot{\mathbf{x}}_{3}^{4}+25 x_{4}^{4}+33 x_{5}^{4} \quad, \quad f_{1}=x_{6}^{4}+5 x_{7}^{4} \\
& f_{2}=x_{8}^{4}+9 x_{9}^{4}, \text { and } f_{3}=x_{10}^{4} .
\end{aligned}
$$

Note that f_{0} has more than 4 terms, but $f_{0} \equiv 0 \bmod 16$ only if $\mathbf{x}_{i} \equiv 0 \bmod 2$ for each $i, 1 \leq i \leq 5$. Therefore, f_{0} cannot be used to construct a zero of f as has been the case in previous examples and theorems. However, if $x_{i}=1$ for $i=1,2,7,8,10$ and $x_{i}=0$ for $i=3,4,5,6,9$ the result is $f_{0}=10,2 f_{1}=10,4 f_{2}=4$, and $8 f_{3}=8$. This gives $f=32$. Now, since $1-32 \equiv 1 \bmod 2^{4},-31$ is a 2^{2} th power in O_{2}. Therefore, for some δ in $O_{2}, \delta^{4}=-31$ and when $x_{1}=6$, $x_{i}=1$ for $i=2,7,8,10$ and $x_{i}=0$ for $i=3,4,5,6,9$, this is a non-trivial zero of f. Another non-trivial zero could be constructed using x_{2} instead of x_{1}. Since 9 is a unit in $O_{2}, 1 / 9$ also is a unit in O_{2} and $1-32 / 9 \equiv 1 \bmod 2^{4}$. Therefore, $1-32 / 9=-23 / 9$ is a 4 th power in O_{2} and if $\delta^{4}=-23 / 9, x_{2}=\delta, x_{i}=1$ for $i=1,7,8,10$ and $\mathbf{x}_{\mathrm{i}}=0$ for $\mathrm{i}=3,4,5,6,9$ is a non-trivial zero of f . It is important to note that the x_{i} from f_{1}, f_{2}, and f_{3} cannot be used as the x_{1} and x_{2} were used to construct a non-trivial zero because as variables in f their coefficients are not units in O_{2}.

This example demonstrates a method that will be used in constructing all non-trivial zeros in the remainder of this chapter. First a solution in integers to an appropriate congruence will be constructed. Then, this solution will be used to construct a zero of f. This method can succeed only if the integral solution assigns a value to some variable in f_{0} which is not congruent to zero mod p. If f_{0} does not contain a sufficient number of variables the method fails. The following example shows how such a problem can be overcome.

Example 4.4 Let f be the form

$$
\left(x_{1}^{4}+9 x_{2}^{4}\right)+2\left(x_{3}^{4}\right)+4\left(x_{4}^{4}+9 x_{5}^{4}+17 \dot{x}_{6}^{4}+25 x_{7}^{4}+33 x_{8}^{4}\right)+8\left(x_{9}^{4}+5 x_{10}^{4}\right)
$$

Suppose the x_{i} are replaced by $2 y_{i}$ for $i=1,2,3$. The first three terms of f then become $16\left(y_{1}^{4}+9 y_{2}^{4}\right)+32\left(y_{3}^{4}\right)$. After rearranging the terms, f can be written as

$$
4\left[\left(x_{4}^{4}+9 x_{5}^{4}+17 x_{6}^{4}+25 x_{7}^{4}+33 x_{8}^{4}\right)+2\left(x_{9}^{4}+5 x_{10}^{4}\right)+4\left(y_{1}^{4}+9 y_{2}^{4}\right)+8\left(y_{3}^{4}\right)\right]
$$

This form is essentially 4 times the form in example 4.3. The nontrivial zero of that form, adapted to the proper variables here, gives $\mathbf{x}_{4}=\delta, x_{5}=x_{10}=y_{1}=y_{3}=1$ and $x_{6}=x_{7}=x_{8}=x_{9}=y_{2}=0$. This produces a non-trivial zero of f in terms of x_{i} when $x_{1}=2 y_{1}=2$, $x_{2}=2 y_{2}=0$, and $x_{3}=2$.

The following theorem uses this type of substitution to effect a cyclic permutation of the f_{i} so that any f_{i} can be placed in the first position.

Theorem 4.12 Let $f=f_{0}+p f_{1}+\cdots+p^{n-1} f_{n-1}$ where each f_{i} is a unit diagonal form in O_{p} of degree n. Then f has a non-trivial zero in O_{p} if and only if the form

$$
g_{r}=f_{r}+p f_{r+1}+\cdots+p^{n-1-r_{f-1}} f^{n-r^{n}} f_{0}+\cdots+p^{n-1} f_{r-1}
$$

$0 \leq r \leq n-1$, has a non-trivial zero in O_{p}
Proof: Let $h_{1}\left(x_{1}, x_{2}, \ldots, x_{t}\right)=f_{0}+p f_{1}+\cdots+p^{r-1} f_{r-1}$ and $h_{2}=p^{r_{f}}{ }_{r} p^{r+1} f_{r+1}+\cdots+p^{n-1} f_{n-1}$. It follows that $f=h_{1}+h_{2}$ and $g_{r}=p^{n-r} h_{1}+p^{-r} h_{2}$. If $\alpha_{1} x_{1}^{n}+\alpha_{2} x_{2}^{n}+\cdots+\alpha_{t} x_{t}^{n}$ represents h_{1}, then by direct substitution

$$
\left.h_{1}\left(p x_{1}, p x_{2}, \ldots, p x_{t}\right)=p^{n_{n}} h_{1} x_{2}, x_{2}, \ldots, x_{t}\right)
$$

A similar statement can be made about h_{2}. Now suppose $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{s}\right)$ is a non-trivial zero of f. It follows that

$$
\begin{aligned}
& g_{r}\left(\theta_{1}, \theta_{2}, \ldots, \theta_{t}, p \theta_{t+1}, \cdots, p \theta_{s}\right) \\
= & p^{n-r_{h_{1}}}\left(\theta_{1}, \theta_{2}, \cdots, \theta_{t}\right)+p^{-r_{h_{2}}\left(p \theta_{t+1}, p \theta_{t+2}, \cdots, p \theta_{s}\right)} \\
= & p^{n-r} h_{1}\left(\theta_{1}, \theta_{2}, \cdots, \theta_{t}\right)+p^{n-r_{h_{2}}\left(\theta_{t+1}, \theta_{t+2}, \cdots, \theta_{s}\right)} \\
= & p^{n-r}\left[h_{1}\left(\theta_{1}, \theta_{2}, \cdots, \theta_{t}\right)+h_{2}\left(\theta_{t+1}, \theta_{t+2}, \cdots, \theta_{s}\right)\right] \\
= & p^{n-r_{f}\left(\theta_{1}, \theta_{2}, \cdots, \theta_{t}\right)=0 .}
\end{aligned}
$$

Therefore, $\left(\theta_{1}, \theta_{2}, \cdots, \theta_{t}, p \theta_{t+1}, \cdots, p \theta_{s}\right)$ is a non-trivial zero of g_{r}. Now suppose $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{s}\right)$ is a non-trivial zero of g_{r}. In this case $\left(p \theta_{1}, p \theta_{2}, \ldots, p \theta_{t}, \theta_{t+1}, \ldots, \theta_{s}\right)$ is shown to be a nontrivial zero of f by the following:

$$
\begin{aligned}
& f\left(p \theta_{1}, p \theta_{2}, \cdots, p \theta_{t}, \theta_{t+1}, \cdots, \theta_{s}\right) \\
= & h_{1}\left(p \theta_{1}, p \theta_{2}, \ldots, p \theta_{t}\right)+h_{2}\left(\theta_{t+1}, \theta_{t+2}, \cdots, \theta_{s}\right) \\
= & p^{n} h_{1}\left(\theta_{1}, \theta_{2}, \ldots, \theta_{t}\right)+h_{2}\left(\theta_{t+1}, \theta_{t+2}, \cdots, \theta_{s}\right) \\
= & p^{r}\left[p^{n-r_{h_{1}}}\left(\theta_{1}, \theta_{2}, \ldots, \theta_{t}\right)+p^{-r_{h_{2}}}\left(\theta_{t+1}, \theta_{t+2}, \ldots, \theta_{s}\right)\right] \\
= & p^{r} g_{r}\left(\theta_{1}, \theta_{2}, \ldots, \theta_{s}\right)=0 .
\end{aligned}
$$

In previous problems, we have used the fact that when f contains more than s variables, the average number of variables in the f_{i} is more than s / n. It was natural to observe that this implies some f_{i} must contain more than s / n variables. As a result of theorem 4.12, we may assume without loss of generality that f_{0} itself contains more
than s / n variables. The observation about the f_{i} can be extended to consider all consecutive pairs $\left\{f_{i}, f_{i+1}\right\}$. Since there are n pairs and each variable is included in exactly 2 pairs the average number of variables contained in each pair is greater than $2 s / n$. Therefore, some pair must contain more than $2 s / n$ variables. Continuing this concept we can consider all sets $\left\{f_{i}, f_{i+1}, \cdots, f_{i+j-1}\right\}$ of j consecutive forms. Some such set should contain more than $j s / n$ variables. Theorem 4.13 from a paper by Lewis and Davenport (8) shows that such a result is not only possible but that an even stronger result can be obtained.

Theorem 4.13 Let $f=f_{O}+p f_{1}+\cdots+p^{n-1} f_{n-1}$ be a diagonal form with s variables where each f_{i} is a unit diagonal form in O_{p} of degree n. Then there exists a diagonal form $g=g_{0}+p g_{1}+\cdots+p^{n-1} g_{n-1}$ with the following properties:
(1) g has a non-trivial zero in O_{p} if and only if f has a non-trivial zero in O_{p}.
(2) If M_{i} denotes the number of variables in g_{i} then $M_{0} \geq \frac{s}{n}, M_{0}+M_{1} \geq \frac{2 s}{n}, \ldots, \quad M_{0}+M_{1}+\cdots+M_{n-2} \geq \frac{(n-1)_{s}}{n}$, and $M_{0}+M_{1}+\cdots+M_{n-1}=s$.

Proof: To prove this theorem, it will be shown that there exists an r for which g_{r} in theorem 4.12 has property (2). Denote the number of variables in each f_{i} as N_{i} and consider the infinite periodic sequence $\left\{N_{i}\right\}$ where $N_{i}=N_{n+i}$. In this sequence, any segment $\left\{N_{t}, N_{t+1}, \ldots, N_{t+n-1}\right\}$ has the property that the N_{i} denote exactly the number of variables in the unit diagonal forms in g_{r} where
$r \equiv t \bmod n$ and $0 \leq r \leq n-1$. The proof of the theorem will be complete when the existence of an r is demonstrated for which

$$
N_{r}+N_{r+1}+\cdots+N_{r+t-1} \geq \frac{t s}{n}
$$

for all $t, 1 \leq t \leq n$. To prove that such an r exists, assume the contrary that for every r there exists $a t, 1 \leq t \leq n$, for which

$$
N_{r}+N_{r+1}+\cdots+N_{r+t-1}<\frac{t s}{n}
$$

First define $u_{i}=N_{i}-s / n$. By the definitions of N_{i} and u_{i}, $u_{0}+u_{1}+\cdots+u_{n-1}=0$. By assumption, for every integer a there exists another integer $b>a$ for which

$$
N_{a}+N_{a+1}+\cdots+N_{b}<\frac{(b-a+1) s}{n}
$$

This can be written as

$$
\left(N_{a}-\frac{s}{n}\right)+\left(N_{a+1}-\frac{s}{n}\right)+\cdots+\left(N_{b}-\frac{s}{n}\right)<0
$$

and in terms of the u_{i} as $u_{a}+u_{a+1}+\cdots+u_{b}<0$. Now consider the following sequence of ordered pairs. Let a_{1} be any integer and determine b_{1} so that

$$
u_{a_{1}}+u_{a_{1}+1}+\cdots+u_{b_{1}}<0
$$

Now let $a_{2}=b_{1}+1$ and determine b_{2} so that

$$
u_{a_{2}}+u_{a_{2}+1}+\cdots+u_{b_{2}}<0
$$

Continuing this process, there must eventually be some $i<j$ such that $a_{i} \equiv a_{j} \bmod n$. This result allows us to establish a contradiction. Consider the sum

$$
u_{a_{1}}+u_{a_{1}+1}+\cdots+u_{a_{y}-1}
$$

This sum can be considered as segments of the form

$$
u_{a_{s}}+u_{a_{s}}+\cdots+u_{b_{s}}, \quad i \leq s \leq j-1
$$

The sum of each segment is less than zero so the entire sum must be less than zero. This sum can also be considered as segments, each of length n, and each containing a complete set of the original u_{i}. Each of these segments has the sum zero so the entire sum must be zero. This contradiction proves that the assumption is false and completes the proof ot the theorem.

The two previous theorems have applications for odd primes as well as for $p=2$. The next section concentrates on proving the conjecture in the 2-adic case. Recall from example 4.3 that the zero of f was obtained by first assigning values of one or zero to each $\mathbf{x}_{\mathbf{i}}$. The result of this assignment was $f_{0}=10,2 f_{1}=10,4 f_{2}=4$, and $8 f_{3}=8$. Now consider the progressive sums $f_{0}=10=5 \cdot 2, f_{0}+2 f_{1}=20=5 \cdot 2^{2}$, $f_{O}+2 f_{1}+4 f_{2}=24=3 \cdot 2^{3}$, and $f_{O}+2 f_{1}+4 f_{2}+8 f_{3}=32=2^{5}$. An important observation is that the value of each sum contains at least one more factor of 2 than the value of the previous sum. This is necessary in order to obtain the result of $f \equiv 0 \bmod 2^{4}$ using variables from f_{0}. A second observation that can be made from this example is that when an x_{i} is assigned the value one this has the
effect of picking the coefficient of the $\mathbf{x}_{\mathbf{i}}$ to be retained in the sum while assigning the value zero to an $\mathbf{x}_{\mathbf{i}}$ has the effect of deleting its coefficient from the sum. In constructing a zero for f we will be concerned with obtaining a sum whose value contains a certain power of 2. This construction will be accomplished by retaining or deleting the coefficients of f. We begin with the following definition. The use of β and ε in the definition is consistent with the usual convention of letting β denote a p-adic integer and ε denote a unit in O_{2}.

Definition 4.2 A 2-adic integer that is divisible by 2^{i} will be said to be of the $2^{i} \beta$ type. A 2-adic integer of the $2^{i} \beta$ type that is not of the $2^{i+1} \beta$ type will be said to be of the $2^{i} \varepsilon$ type.

Lemma 4.2 Given 2^{i} terms of the $2^{j} \beta$ type one can construct 2^{i-n} terms of the $2^{j+n} \beta$ type where $0 \leq n \leq i$.

Proof: First partition the 2^{i} terms of the $2^{j} \beta$ type into 2^{i-1} pairs. If $\left\{2^{j} \beta_{1}, 2^{j_{\beta_{2}}}\right\}$ is one such pair, then β_{1}, β_{2}, or $\beta_{1}+\beta_{2}$ is even. Therefore, $2^{j} \beta_{1}, 2^{j_{\beta}}{ }_{2}$, or $2^{j}\left(\beta_{1}+\beta_{2}\right)$ is of the $2^{j+1} \beta$ type. It follows that from the 2^{i-1} pairs 2^{i-1} terms of the $2^{j+1} \beta$ type can be constructed. Similarly from 2^{i-2} pairs of these $2^{j+1} \beta$ terms 2^{i-2} terms of the $2^{j+2} \beta$ type can be constructed. Proceeding in this fashion in general 2^{i-n} terms of the $2^{j+n_{\beta}}$ type can be constructed. Lemma 4.3 Let $2^{j} \varepsilon_{1}$ and $2^{j} \varepsilon_{2}$ be terms of the $2^{j} \varepsilon$ type with $\varepsilon_{1} \equiv \varepsilon_{2} \bmod 4$. Then, $2^{j}\left(\varepsilon_{1}+\varepsilon_{2}\right)$ is of the $2^{j+1} \varepsilon$ type.

Proof: Since ε_{1} and ε_{2} are both congruent to one mod 2 either $\varepsilon_{1} \equiv \varepsilon_{2} \equiv 1 \bmod 4$ or $\varepsilon_{1} \equiv \varepsilon_{2} \equiv 3 \bmod 4$. In either case,
$\varepsilon_{1}+\varepsilon_{2} \equiv 2 \bmod 4$. Therefore, $\varepsilon_{1}+\varepsilon_{2}$ is of the 2β type, but not of the $2^{2} \beta$ type. It follows that $\varepsilon_{1}+\varepsilon_{2}$ is of the 2ε type and that $2^{j}\left(\varepsilon_{1}+\varepsilon_{2}\right)$ is of the $2^{j+1} \varepsilon$ type.

Lemma 4.4 Given 2^{i} terms of the $2^{j} \varepsilon$ type, one can construct $2^{i-n}-1$ terms of the $2^{j+n} \varepsilon$ type where $0 \leq n \leq i$.

Proof: First partition the 2^{i} terms into two sets, one set containing the $2^{j} \varepsilon$ terms where $\varepsilon \equiv 1 \bmod 4$ and the other set containing those where $\varepsilon \equiv 3 \bmod 4$. Now each set can be partitioned into pairs with at most one term in each set left over. Using lemma 4.3, each pair can be used to construct a term of the $2^{j+1} \varepsilon$ type. In all, there will be at least $\left(2^{i}-2\right) / 2=2^{i-1}-1$ terms of the $2^{j+1} \varepsilon$ type constructed. For the next step, and all succeeding steps, the number of terms at the beginning is odd so exactly one term will not be used in pairing the terms whose ε values are congruent mod 4. Therefore, $\left[\left(2^{i-1}-1\right)-1\right] / 2=2^{j-2}-1$ terms of the $2^{j+2} \varepsilon$ type can be constructed. Continuing this process, $2^{j-n}-1$ terms of the $2^{j+n} \varepsilon$ type can be constructed where $0 \leq n \leq i$.

Lemma 4.5 Given one term of the $2^{j} \beta$ type and $2^{i}-1$ terms of the $2^{j} \varepsilon$ type, one can construct one term of the $2^{i+j_{\beta}}$ type. Furthermore, the original $2^{j} \beta$ term can be retained as one of the terms used in constructing the $2^{i+j} \beta$ term.

Proof: Using the technique of lemma 4.4 , the $2^{i}-1$ terms of the $2^{j} E$ type can be used to construct $2^{i-1}-1$ terms of the $2^{j+1} \varepsilon$ type where exactly one term of the $2^{j} \varepsilon$ type is not used. This remainitg term can be paired with the term of the $2^{j} \beta$ type. For this final pair, if
$\beta \equiv 1 \bmod 2$, then $2^{j}(\beta+\varepsilon)$ is of the $2^{j+1} \beta$ type. If $\beta \equiv 0 \bmod 2$, then the $2^{j} \beta$ term is of the $2^{j+1} \beta$ type. The net result is that the final pair produces a term of the $2^{j+1} \beta$ type which is constructed using the original $2^{j} \beta$ term. By exactly the same technique, the $2^{i-1}-1$ terms of the $2^{j+1} \varepsilon$ type and the one term of the $2^{j+1} \beta$ type can be used to construct $2^{j-2}-1$ terms of the $2^{j+2} \varepsilon$ type and one term of the $2^{j+2} \beta$ type. As in the first step, the $2^{j+1} \beta$ term and, hence, the original $2^{j} \beta$ term is retained in constructing the $2^{j+2} \beta$ term. In general, this process will produce $2^{i-n}-1$ terms of the $2^{j+n} \varepsilon$ type plus one term of the $2^{j+n_{\beta}}$ type. When the step where $n=i$ is reached, there are $2^{0}-1$ or zero terms of the $2^{j+i} \varepsilon$ type and one term of the $2^{j+i} \beta$ type. The original $2^{j} \beta$ term is retained in constructing the $2^{j+i} \beta$ term.

Theorem 4.14 Let f be a diagonal form in Q_{2} of degree $n=2^{k}$ where $(m, 2)=1$ and $k \geq 4$. Then if f contains at least $n^{2}+1$ variables f has a non-trivial zero in O_{2}.

Proof: As a result of theorems 4.2, 4.12, and 4.13, the following assumptions can be made:
(1) $f=f_{0}+2 f_{1}+\cdots+2^{n-1} f_{n-1}$ where each f_{i} is a unit diagonal form in O_{2}.
(2) If N_{i} denotes the number of variables in each f_{i}, then

$$
N_{0} \geq \frac{n^{2}+1}{\cdot n}>n, N_{0}+N_{1}>2 n, \ldots, N_{0}+N_{1}+\cdots+N_{n-1}>n^{2}
$$

The proof of the theorem will follow if it is possible to construct a term of the $2^{k+2} \beta$ type using a sum of coefficients from f provided
some of the coefficients come from f_{0}. To construct this $2^{k+2} \beta$ term, consider two cases, one when $N_{0} \geq 2^{k+2}$ and the other when $N_{0}<2^{k+2}$. If $N_{0} \geq 2^{k+2}$ using lemma 4.2, a term of the $2^{k+2} \beta$ type can be constructed using only coefficients from f_{0}. If $N_{0}<2^{k+2}$, the result is not so immediate. Note first that since $n=2^{k} m$ and $k \geq 4$ by assumption (2), $N_{0}>n \geq 2^{k} \geq 2^{4}$. Also by assumption (2),

$$
N_{0}+N_{1}+N_{2}+N_{3}+N_{4}>5 n \geq 5 \cdot 2^{k}=2^{k+2}+2^{k}
$$

This inequality and $N_{0}<2^{k+2}$ imply that $N_{1}+N_{2}+N_{3}+N_{4}>2^{k}$. Using 2^{4} of the coefficients from f_{0}, by lemma 4.2 , one term of the $2^{4} \beta$ type can be constructed. Now, in order to apply lemma 4.5, $2^{k+2}-1$ terms of the $2^{4} \varepsilon$ type need to be constructed using the remaining terms from $f_{0}, f_{1}, f_{2}, f_{3}$, and f_{4}. To do this, begin with the $N_{0}-16$ terms that remain in f_{0}. As demonstrated in lemma 4.4, these $N_{0}-16$ terms can be used to construct at least $\left(N_{0}-16\right) / 2-1$ terms of the 2ε type. The terms from f_{1} are already of the 2ε type so at least $\left(N_{0}-16\right) / 2-1+N_{1}, 2 \varepsilon$ terms are available using f_{0} and f_{1}. Applying the same argument to this set of 2ε terms at least $\left[\left(N_{0}-16\right) / 2-1+N_{1}\right] / 2-1$ terms of the $2^{2} \varepsilon$ type can be constructed. The terms from f_{2} will add N_{2} terms of the $2^{2} E$ type. The following expression represents the number of terms of the $2^{4} \varepsilon$ type that result from applying this process four times.

$$
\frac{\frac{\frac{N_{0}-16}{2}-1+N_{1}}{2}-1+N_{2}-1+N_{3}}{2}-1+N_{4}
$$

This expression is equal to $N_{0} / 16+N_{1} / 8+N_{2} / 4+N_{3} / 2+N_{4}-23 / 8$ which is greater than

$$
\begin{aligned}
& {\left[\left(N_{0}+N_{1}+N_{2}+N_{3}+N_{4}\right)+\left(N_{1}+N_{2}+N_{3}+N_{4}\right)\right] / 16-3 } \\
> & {\left[\left(2^{k+2}+2^{k}\right)+\left(2^{k}\right)\right] / 16-3=2^{k-2}+2^{k-3}-3 \geq 2^{k-2}-1 }
\end{aligned}
$$

Thus, when $N_{O}<2^{k+2}$, the construction of one term of the $2^{4} \beta$ type using coefficients from f_{0} and $2^{k-2}-1$ terms of the $2^{4} \varepsilon$ type using the remaining coefficients from $f_{0}, f_{1}, f_{2}, f_{3}$, and f_{4} can be accomplished. Applying lemma 4.5, one term of the $2^{k+2} \beta$ type can be constructed which retains the $2^{4} \beta$ term and, hence, uses coefficients from \mathbf{f}_{O}.

In the following, the two cases no longer need to be considered separately. In each case, the construction of a $2^{k+2} \beta$ term means that by assigning values of one and zero to the variables in the f_{i} result.

$$
f_{0}+2 f_{1}+2^{2} f_{2}+2^{3} f_{3}+2^{4} f_{4}=2^{k+2} \beta
$$

is obtained. In this construction, at least one variable in f_{O} has been assigned the value one. Denote $E x^{n}$ as a term in f_{O} for which $x=1$ and note as in previous similar situations that $1-\varepsilon^{-1} 2^{k+2} \beta$ is an nth power in O_{2}. Therefore, for some δ in $\mathrm{O}_{2}, \delta^{n}=1-\varepsilon^{-1} 2^{k+2} \beta$. Now, let $x=\delta$, assign values to the remaining variables in $f_{0}, f_{1}, \ldots, f_{4}$ from the previous construction and assign all variables in $f_{i}, i>4$, the value zero. This produces a non-trivial zero of f.

This theorem proves the conjecture for diagonal forms in Q_{2} of degree $n=2^{k} m$ when $k \geq 4$. When $k=0, n=m$, and since $(m, 2)=1$, the conjecture is proved in corollary 4.1. This leaves the cases where
$k=1,2$, and 3. Techniques similar to those used in theorem 4.14 also work in these cases. One approach to constructing the different solutions of $f \equiv 0 \bmod 2^{k+2}$ is the following. When $k=1$ consider two cases, $m=1$ and $m \geq 3$. When $m=1$ the proof can be found in Borevich and Shafarevich (3, p. 51). When $k=2$ consider four cases, $\mathrm{N}_{\mathrm{O}} \geq 16,12 \leq \mathrm{N}_{\mathrm{O}} \leq 15,8 \leq \mathrm{N}_{\mathrm{O}} \leq 11, \quad$ and $5 \leq \mathrm{N}_{\mathrm{O}} \leq 7$. When $\mathrm{k}=3$ consider three cases, $N_{0} \geq 32,16 \leq N_{0} \leq 31$, and $8<N_{0} \leq 15$. The following example is representative of these cases.

Example 4.5 Consider the case where $k=3$ and $8<N_{0} \leq 15$. Under assumption (1) of theorem 4.14, f can be represented as $f_{0}+2 f+\cdots+2^{n-1} f_{n-1}$ where each f_{i} is a unit diagonal form in o_{2} of degree $8 \mathrm{~m},(\mathrm{~m}, 2)=1$. With assumption (2) of theorem 4.14, $\mathrm{N}_{\mathrm{O}}+\mathrm{N}_{1}+\mathrm{N}_{2}+\mathrm{N}_{3}>4 \mathrm{n}=4(8 \mathrm{~m}) \geq 32$. This and the condition $\mathrm{N}_{\mathrm{O}} \leq 15$ implies that $N_{1}+N_{2}+N_{3} \geq 18$. Now lemma 4.2 implies that one term of the $2^{3} \beta$ type can be constructed using 8 of the coefficients of f_{0}. From the remaining coefficients of f_{0}, f_{1}, f_{2}, and f_{3}, at least

terms of the $2^{3} \varepsilon$ type can be constructed. The value of this expression is not less than

$$
\left(N_{0}+N_{1}+N_{2}+N_{3}\right) / 8+\left(N_{1}+N_{2}+N_{3}\right) / 8-11 / 4 \geq 33 / 8+18 / 8-11 / 4>3
$$

Therefore, three terms of the $2^{3} \varepsilon$ type can be constructed to combine with the one term of the $2^{3} \beta$ type that came from f_{0}. Using lemma 4.5 these four terms will produce one term of the $2^{5} \beta$ type that retains
the $2^{3} \beta$ term. Hence, a suitable solution for $f \equiv 0 \bmod 2^{5}$ has been constructed and the non-trivial zero follows.

The objective of the final section of this chapter is to prove Artin's conjecture for diagonal forms in Q_{p} when $p \neq 2$. This has been accomplished in corollary 4.1 for forms of degree n where $(n, p)=1$ or $n=p^{k}$. This section deals with forms of degree $n=m p k$ where $(m, p)=1, k>0$, and $m>1$. The methods are similar to those used previously, however a few additional factors need to be considered.

Given a diagonal form f of degree $n=m p^{k}$, f is represented as $f_{O}+\mathrm{pf}_{1}+\cdots+\mathrm{p}^{\mathrm{n}-1} \mathrm{f}_{\mathrm{n}-1}$ and a solution for $\mathrm{f} \equiv 0 \bmod \mathrm{p}^{\mathrm{k}+1}$ is constructed. As before, it is essential that this solution assign to some variable in f_{O} a value that is not congruent to zero mod p. The following development describes a procedure for constructing this solution.

Suppose a form $g=\varepsilon_{1} x_{1}^{n}+\varepsilon_{2} x_{2}^{n}+\cdots+\varepsilon_{d+1} x_{d+1}^{n}$ where $d=(m, p-1)$ is a portion of some unit diagonal form f_{i} of f. As shown in theorem 4.8, there exists a solution $\left(1, \theta_{2}, \theta_{3}, \ldots, \theta_{d+1}\right)$ for the congruence $g \equiv 0 \bmod p$. Therefore,

$$
\varepsilon_{1}+\varepsilon_{2} \theta_{2}^{n}+\cdots+\varepsilon_{d+1} \theta_{d+1}^{n}=p^{t} \varepsilon
$$

for some $t>0$ and some unit ε. Now substitute $\theta_{i} y$ for each x_{i} :

$$
\begin{aligned}
g & =\varepsilon_{1} y^{n}+\varepsilon_{2} \theta_{2}^{n} y^{n}+\cdots+\varepsilon_{d+1} \theta_{d+1}^{n} y^{n} \\
& =\left(\varepsilon_{1}+\varepsilon_{2} \theta_{2}^{n}+\cdots+\varepsilon_{d+1} \theta_{d+1}^{n}\right) y^{n}=p^{t} \varepsilon y^{n} .
\end{aligned}
$$

With reference to the entire form f, the term $p^{t} \varepsilon y^{n}$ produced from terms of f_{i} can be considered as the term εy^{n} in f_{i+t}. This
operation of constructing one term from $d+1$ terms is called a contraction. In each partial form g the first variable is always assigned the value one and is called the distinguished variable. Variables that are produced by the contraction operation are called derived variables. The contraction operation will be applied repeatedly to f as described by the following steps.

Step 1 Divide f_{o} into $\left[N_{0} /(d+1)\right]$ partial forms each containing $d+1$ terms and assign any remaining variables of f_{0} the value zero. Apply the contraction operation to each of the partial forms. With the resulting derived variables, f can now be represented as

$$
p f_{1}^{1}+p_{2} f_{2}^{1}+\cdots+p_{f_{i}}^{i_{i}}+\cdots
$$

where f_{i}^{1} denotes the original f_{i} combined with any derived terms of the form $p^{i} \varepsilon y^{n}$.

Step 2 This step is similar to step 1 applied to f_{1}^{1} instead of f_{0}. The only difference is that f_{1}^{1} is divided into partial forms whose first, or distinguished, variable is a derived variable. Any variables in f_{1}^{1} that cannot be used in this way are assigned the value zero. After applying the contraction operation to all such partial forms, f can be represented as $p^{2} f_{2}^{2}+p^{3} f_{3}^{2}+\cdots+p^{i} f_{i}^{2}+\cdots$ with f_{i}^{2} denoting the original f_{i} combined with any qualified derived variables produced in steps 1 and 2.

Step $t, t>1$ This step is exactly the same as step 2 applied to f_{t-1}^{t-1} and after t steps, f can be represented as

$$
p^{t} f_{t}^{t}+p^{t+1} f_{t+1}^{t}+\cdots+p^{i} f_{i}^{t}+\cdots
$$

where f_{i}^{t} contains the original f_{i} and any qualified derived variables produced in steps 1 through t.

Any f_{i}^{t} where $i \geq n$ contains only derived variables since originally $f=f_{0}+p f_{1}+\cdots+p^{n-1} f_{n-1}$. A more important observation is that if $i \geq k+1, p^{i} f_{i}^{t} \equiv 0 \bmod p^{k+1}$ must have a non-trivial solution. Furthermore, if f_{i}^{t} contains a derived variable some nontrivial zero of $p^{i} f_{i}^{t} \equiv 0 \bmod p^{k+1}$ yields a non-trivial zero of f. This zero is obtained by setting the derived variable in f_{i}^{t} equal to one and assigning corresponding values to the ancestors of this derived variable in $f_{0}, f_{1}, \ldots, f_{k}$. All other variables are assigned the value zero. It is important to see that when a derived variable in f_{i}^{t} is assigned the value one all distinguished variables that are ancestors of this derived variable also have the value one. Therefore, when the ancestry is traced back to an original distinguished variable in f_{0} this variable will have been assigned the value one. This value in f_{0} allows us to construct a non-trivial zero of f from the solution of $f \equiv 0 \bmod p^{k+1}$. The main task of the next theorem is to show that some f_{i}^{t} where $i>k+1$ must contain a derived variable whenever f contains more than n^{2} variables.

The following example will help to clarify these ideas and make the following theorem more understandable.

Example 4.5 Consider the following diagonal form in 0_{5} :

$$
\begin{aligned}
\mathrm{f} & =2 \mathrm{x}_{1}^{50}+\mathrm{x}_{2}^{50}+3 \mathrm{x}_{3}^{50}+20 \mathrm{x}_{4}^{50}+65 \mathrm{x}_{5}^{50}+150 \mathrm{x}_{6}^{50}+175 \mathrm{x}_{7}^{50} \\
& =\left(2 \mathrm{x}_{1}^{50}+\mathrm{x}_{2}^{50}+3 \mathrm{x}_{3}^{50}\right)+5\left(4 \mathrm{x}_{4}^{50}+13 \mathrm{x}_{5}^{50}\right)+25\left(6 \mathrm{x}_{6}^{50}+7 \mathrm{x}_{7}^{50}\right) .
\end{aligned}
$$

Therefore,

$$
f_{0}=2 x_{1}^{50}+x_{2}^{50}+3 x_{3}^{50}, f_{1}=4 x_{4}^{50}+13 x_{5}^{50}, \text { and } f_{2}=6 x_{6}^{50}+7 x_{7}^{50} .
$$

Since $50=2 \cdot 5^{2}$ and $(2,5-1)=2$, according to theorem 4.8 the contraction operation can be applied to any three terms from any f_{i}. In f_{0} if \mathbf{x}_{1} is considered as the distinguished variable, $x_{1}=1$, $x_{2}=0$, and $x_{3}=1$ yields $f_{0}=5$. Therefore, the substitution $x_{1}=1 \cdot y_{1}, x_{2}=0 \cdot y_{1}$, and $x_{3}=1 \cdot y_{1}$ yields $2 x_{1}^{50}+x_{2}^{50}+3 x_{3}^{50}=5 y_{1}^{50}$. The resulting term, $5 y_{1}^{50}$, can be considered as the derived term y_{1}^{50} in f_{1}^{1}. That is, f can be represented as

$$
5\left(y_{1}^{50}+4 x_{4}^{50}+13 x_{5}^{50}\right)+25\left(6 x_{6}^{50}+7 x_{7}^{50}\right)
$$

Now the derived variable y_{1} must be considered as the distinguished variable when a solution for $y_{1}^{50}+4 x_{4}^{50}+13 x_{5}^{50} \equiv 0 \bmod 5$ is sought. Using only ones and zeros will not produce a solution to this congruence. However, a little arithmetic shows that when $x \equiv \pm 1 \bmod 5$, $x^{50} \equiv 1 \bmod 125$ and when $x \equiv \pm 2 \bmod 5, x^{50} \equiv-1 \bmod 125$. Since we are attempting to solve a congruence mod 125, knowing the value of $\mathrm{x}^{50} \bmod 125$ is as useful as knowing the actual value of x^{50}. Considering the size of 2^{50}, the value mod 125 is more useful. Therefore, $y_{1}=1, x_{4}=2$, and $x_{5}=1$ yields $f_{1}^{1}=y_{1}^{50}+4 x_{4}^{50}+13 x_{5}^{50} \equiv 10 \bmod 125$ and the substitution $y_{1}=1 \cdot y_{2}, x_{4}=2 y_{2}, x_{5}=1 \cdot y_{2}$ yields $\mathrm{y}_{1}^{50}+4 \mathrm{x}_{4}^{50}+13 \mathrm{x}_{5}^{50} \equiv 5 \cdot 2 \mathrm{y}_{2}^{50}$ mod 125 . Thus, the second derived variable y_{2} produces the term $2 y_{2}^{50}$ in f_{2}^{2} and the representation of f is now $f=25 f_{2}^{2}=25\left(2 y_{2}^{50}+6 x_{6}^{50}+7 x_{7}^{50}\right)$. The derived variable y_{2} must now be the distinguished variable. Now set $y_{2}=y_{3}, x_{6}=0$, and $x_{7}=2 y_{3}$
to obtain $f_{2}^{2} \equiv 2 y_{3}^{50}+0-7 y_{3}^{50} \equiv-5 y_{3}^{50} \bmod 125$. It follows that $f_{3}^{3}=-y_{3}^{50}$ and $f \equiv 125 f_{3}^{3} \equiv 0 \bmod 125$ for any value of y_{3}. If $y_{3}=1$, then $y_{2}=y_{1}=1$ and the resulting assignment for the x_{i} is $x_{1}=x_{3}=x_{5}=1, \quad x_{2}=x_{6}=0$, and $x_{4}=x_{7}=2$. Therefore, $f(1,0,1,2,1,0,2)=125$ a for some integer a. As in previous examples, theorem 2.11 implies that $1-2^{-1} 125 a$ is a 50 th power in O_{5} and $(\delta, 0,1,2,1,0,2)$ is a non-trivial zero of f where $\delta^{50}=1-2^{-1} 125 a$.

This example and the preceding discussion indicate the importance of having a derived variable in some f_{i}^{t} where $i \geq k+1$. This situation will have to exist if f contains at least one derived variable after $k+1$ of the previously described steps. Lemma 4.6 establishes a usable lower bound for the number of derived variables in f after t steps.

Lemma 4.6 Let $f=f_{0}+p f_{1}+\cdots+p^{n-1} f_{n-1} \quad$ where each f_{i} is a unit diagonal form in O_{p} of degree $n=m p, \quad p \neq 2$. As usual, $(m, p)=1$, $d=(m, p-1)$, and N_{i} denotes the number of variables in f_{i}. Define S_{t} to be the number of derived variables in

$$
p^{t} f_{t}^{t}+p^{t+1} f_{t+1}^{t}+\cdots+p^{i} f_{i}^{t}+\cdots
$$

after t steps as outlined in the discussion prior to example 4.5.
Then $S_{t} \geq \min \left\{c_{t}, D_{t}\right\}$ where

$$
c_{t}=\frac{N_{0}}{(d+1)^{t-1}}-1 \quad \text { and } \quad D_{t}=\frac{N_{0}}{(d+1)^{t}}+\frac{N_{1}}{(d+1)^{t-1}}+\cdots+\frac{N_{t-1}}{d+1}-1
$$

Proof: The proof is by induction on t. Step one produces
$\left[N_{0} /(d+1)\right]$ derived variables so $S_{1}=\left[N_{0} /(d+1)\right] \geq N_{0} /(d+1)-1=D_{1}$. Therefore, $S_{1} \geq \min \left\{C_{1}, D_{1}\right\}$. Now assume that $S_{r} \geq \min \left\{C_{r}, D_{r}\right\}$ and consider S_{r+1}. After r steps, f has the form

$$
p^{r} f_{r}^{r}+p^{r+1} f_{r+1}^{r}+\cdots+p^{i} f_{i}^{r}+\cdots
$$

Let w denote the number of derived variables in f_{r}^{r} and $S_{r}-w$ the number of derived variables in $f_{r+1}^{r}, f_{r+2}^{r}, \ldots$. For the $(r+1)$ st step, the $N_{r}+w$ terms of f_{r} are partitioned into partial forms each with $d+1$ terms subject to the condition that the distinguished variable in each is one of the w derived variables. If $N_{r} \geq d w, w$ partial forms can be constructed each containing d terms from f_{r} plus one derived variable. If $N_{r}<d w,\left[\left(N_{r}+w\right) /(d+1)\right]$ partial forms can be constructed. Thus, two cases need to be considered:
(1) $N_{r} \geq d w$ with $S_{r+1}=\left(S_{r}-w\right)+w=S_{r}$ and
(2) $N_{r}<d w$ with $S_{r+1}=\left(S_{r}-w\right)+\left[\left(N_{r}+w\right) /(d+1)\right]$.

Case (1). Consider the $\min \left\{C_{r}, D_{r}\right\}$. If $C_{r} \leq D_{r}$, the minimum is attained at C_{r} and

$$
c_{r}=\frac{N_{0}}{(d+1)^{r-1}}-1>\frac{N_{0}}{(d+1)^{r}}-1=c_{r+1}
$$

If $C_{r}>D_{r}$, the minimum is attained at D_{r} and

$$
D_{r}=\frac{N_{0}}{(d+1)^{r}}+\frac{N_{1}}{(d+1)^{r-1}}+\cdots+\frac{N_{r-1}}{d+1}-1 \geq \frac{N_{0}}{(d+1)^{r}}-1=C_{r+1} .
$$

Therefore $\min \left\{C_{r}, D_{r}\right\} \geq C_{r+1}$. Since $S_{r+1}=S_{r}$ and $S_{r} \geq \min \left\{C_{r}, D_{r}\right\}$, it follows that $S_{r+1} \geq \min \left\{c_{r}, D_{r}\right\} \geq c_{r+1} \geq \min \left\{c_{r+1}, D_{r+1}\right\}$.

Case (2) First observe that

$$
\begin{aligned}
S_{r+1} & =S_{r}-w+\left[\frac{N_{r}+w}{d+1}\right] \geq S_{r}-w+\frac{N_{r}+w-d}{d+1} \\
& =\frac{S_{r}+d\left(S_{r}-w\right)+N_{r}-d}{d+1} \geq \frac{S_{r}}{d+1}+\frac{N_{r}-d}{d+1} .
\end{aligned}
$$

Now, if $C_{r} \leq D_{r}$, then $S_{r} \geq C_{r}$ and

$$
\begin{aligned}
S_{r+1} & \geq \frac{C_{r}}{d+1}+\frac{N_{r}-d}{d+1}=\left(\frac{N_{0}}{(d+1)^{r-1}}-1\right)\left(\frac{1}{d+1}\right)+\frac{N_{r}-d}{d+1} \\
& =\frac{N_{0}}{(d+1)^{r}}+\frac{N_{r}}{d+1}-1 \geq \frac{N_{0}}{(d+1)^{r}}-1=C_{r+1} .
\end{aligned}
$$

If $C_{r}>D_{r}$, then $S_{r}>D_{r}$ and

$$
\begin{aligned}
S_{r+1} & \geq \frac{D_{r}}{d+1}+\frac{N_{r}-d}{d+1}=\left(\frac{N_{0}}{(d+1)^{r}}+\cdots+\frac{N_{r-1}}{d+1}-1\right)\left(\frac{1}{d+1}\right)+\frac{N_{r}-d}{d+1} \\
& =\frac{N_{0}}{(d+1)^{r+1}}+\frac{N_{1}}{(d+1)^{r}}+\cdots+\frac{N_{r}}{d+1}-1=D_{r+1} .
\end{aligned}
$$

Again, the conclusion $S_{r+1} \geq \min \left\{C_{r+1}, D_{r+1}\right\}$ follows completing the proof of the lemma.

Theorem 4.15 Let f be a diagonal form in $Q_{p}, p \neq 2$, of degree $\mathrm{n}=\mathrm{mp}^{\mathrm{k}},(\mathrm{m}, \mathrm{p})=1, \mathrm{k} \geq 1$. Then, if f contains at least $\mathrm{n}^{2}+1$ variables it must have a non-trivial zero in O_{p}.

Proof: As in theorem 4.14 the following assumptions can be made:

$$
\begin{align*}
& f=f_{0}+p f_{1}+\cdots+p^{n-1} f_{n-1} \text { where each } f_{i} \text { is a } \tag{1}\\
& \text { unit diagonal form in } O_{p} .
\end{align*}
$$

(2) If N_{i} denotes the number of variables in f_{i}, then $N_{0}+N_{1}+\cdots+N_{j}>(j+1) n$ for $0 \leq j \leq n-1$.

The proof of the theorem will follow when the existence of a derived variable in some $f_{t}^{k+1}, \quad t \geq k+1$, is demonstrated. That is, in the notation of lemma 4.6 , it is necessary to prove that $S_{k+1}>0$. Since $S_{k+1} \geq \min \left\{C_{k+1}, D_{k+1}\right\}$, we need only establish that $C_{k+1}>0$ and $D_{k+1}>0$. By assumption (2), $N_{o}>n=m p^{k} \geq p^{k} \geq(d+1)^{k}$. Therefore, $\mathrm{N}_{\mathrm{O}} /(\mathrm{d}+1)^{\mathrm{k}}>1$ or

$$
c_{k+1}=N_{0} /(d+1)^{k}-1>0
$$

Also, by assumption (2), $N_{o}+N_{1}+\cdots+N_{k}>(k+1) n$ while

$$
(k+1) n \geq 2 n=2 m p^{k} \geq(m+1) p^{k} \geq(d+1)^{k+1}
$$

The final inequality is true since $m+1 \geq d+1$ and $p \geq d+1$ are implied by $d=(m, p-1)$. Now

$$
\begin{aligned}
D_{k+1} & =\frac{N_{0}}{(d+1)^{k+1}}+\frac{N_{1}}{(d+1)^{k}}+\cdots+\frac{N_{k}}{d+1}-1 \\
& \geq \frac{N_{0}+N_{2}+\cdots+N_{k}}{(d+1)^{k+1}}-1>0
\end{aligned}
$$

so it follows that $D_{k+1}>0$.

In terms of f the result $S_{k+1}>0$ means that after $k+1$ steps f can be represented as

$$
p^{k+1} f_{k+1}^{k+1}+p^{k+2} f_{k+2}^{k+1}+\cdots+p^{i} f_{i}^{k+1}+\cdots
$$

and that some f_{i}^{k+1} contains a derived variable. Let z denote such a derived variable. Now, assign z the value one thereby assigning a corresponding value to each ancestor of z. When each variable that is not an ancestor of z is assigned the value zero the result is that $f=\alpha p^{k+1}$ for some α in O_{p}. In this process, each distinguished variable that is an ancestor of z will be assigned the value one. In particular, some distinguished variable in f_{0} will be assigned the value one. Let $E x^{n}$ be a term in f_{O} in which x has been assigned the value one. Since $1-\varepsilon^{-1} \alpha_{p}^{k+1}$ is an $n t h$ power in o_{p}, $\delta^{n}=1-\varepsilon^{-1} \alpha p^{k+1}$ for some δ in o_{p}. When x is assigned the value δ and the other variables in f are assigned the values indicated above, the result is a non-trivial zero of f.

SELECTED BIBLIOGRAPHY

1. Agnew, Jeanne. Explorations in Number Theory. Monterey, Calif.: Brooks Cole, 1972.
2. Bhaskaran, M. "Sums of p-th Powers in a P-adic Ring." Acta Arithmetica, 15 (1969), 217-219.
3. Borevich, Z. I., and I. R. Shafarevich. Number Theory. trans. Newcomb Greenleaf. New York: Academic Press, 1966.
4. Browkin, J. "On Forms Over p-adic Fields." Bulletin de l'Academic Polonaise des Sciences, Series des Sciences Math. Astro., et Phys., 14 (1966); 489-492.
5. Chevalley, C. "Demonstration; d'une Hypothesis de M. Artin." Hamburg Mathematisches Seminar, Abhandlungen, 11 (1935), 73-75.
6. Chowla, S., and G. Shimura. "On the Representation of Zero by a Liniar Combination of k-th Powers." Det Kongelige Norske Videnskabers Selokabs Forhandlinger, 36 (1963), 169-176.
7. Davenport, H. The Higher Arithmetic. 3rd ed. London: Hutchinson and Company, 1968.
8. Davenport, H., and D. J. Lewis. "Homogeneous Additive Equations." Proceedings of the Royal Society, Series A, 274 (1963), 443460 .
9. LeVeque, William J., ed. Studies in Number Theory, MAA Studies in Mathematics, The Mathematics Association of America, 6 (1969).
10. Maxwell, George. "A Note on Artin's Diophantine Conjecture." Candadian Mathematical Bulletin, 13 (1970), 119-120.
11. Niven, Ivan, and Herbert S. Zuckerman. An Introduction to the Theory of Numbers. New York: John Wiley and Sons, Inc., 1966.
12. Terjanian, Guy. "Un Contre-example a une Conjecture d'Artin。" $\frac{\text { Comptes }}{(1966),} \frac{\text { Rendus }}{612 .}$ de 1'Academie des Sciences, Series A, 262
13. Tornheim, Leonard. "Sums of n-th Powers in Fields of Prime Characteristic." Duke Mathematical Journal, 4 (1938), 359-362.

VITA

Kay William Dundas
Candidate for the Degree of
Doctor of Education

Thesis: P-adIC NUMBERS AND DIOPHANTINE EQUATIONS

Major Field: Higher Education

Biographical:
Personal Data: Born in Windsor, Missouri, October 19, 1938, the son of William L. and Ruth O. Dundas.

Education: Graduated from Arnold High School, Arnold, Kansas in 1956; received the Bachelor of Science degree from Fort Hays Kansas State College, Hays, Kansas, in May, 1960; received the Master of Arts degree from Fort Hays Kansas State College, Hays, Kansas, in August, 1961; attended Rutgers, The State University, New Brunswick, New Jersey, summers of 1963 and 1964; attended the University of Arkansas, summer of 1967; completed requirements for the Doctor of Education degree at Oklahoma State University in July, 1972.

Professional Experience: Instructor of Mathematics, Fort Hays Kansas State College, Hays, Kansas, 1961-62; Instructor of Mathematics, Hutchinson Community Junior College, Hutchinson, Kansas, 1962-69; graduate teaching assistant, Department of Mathematics and Statistics, Oklahoma State University, 1969-72.

