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CHAPTER I 

INTRODUCTION 

The field of number theory is known for having problems that are 

easy to state but difficult to salve. Problems that have traditionally 

been referred to as diophantine problems are good examples of this phe-

nomenon. The essential ingredient of a diophantine problem is proving 

the existence of integral solutions of a set of equations or inequal-

ities. A beginning number theory.student can understand the statement 

of such problems and soon discovers why they have intrigued mathemati-

cians for centuries. As the student acquires the basic techniques in 

number theory, he discovers that a primary factor in solving diophantine 

problems is his own ingenuity and the ingenuity of those who have pre-

ceded him. Methods that have been devised, ~hile frequently elementary 

in nature, display a creativity that appears to be unending. 

Attempts to devise methods for solving certain types of diophantine 

problems contributed to the development of the field known as the p-adic 

numbers. The basic idea behind these methods is the following. If 

f(x1 ,x2 , 

f(x1 ,x2 , 

,x ) 
s 

,x ) 
s 

O is to have a solution in integers, the congruence 

n+1 - 0 mod p must have a solution in integers for 

every n > O. It would be very convenient if the converse of this state-

ment were true. However, as the following example demonstrates, this is 

not the case when p = J. Similar examples can be cited for any p. 



Example 1.1 The equation 2 
x = 7 obviously has no solution in 

integers. However, consider the congruence x2 - 7 = 0 mod 3n+1 where 

n > O. The following congruences can easily be verified. 

22 - 7 = Q mod 3, 52 - 7 = 0 mod 32 , 142 - 7 = 0 mod 33 , 

682 - 7 =O mod 34 , 682 - 7 = 0 mod 35 • The values (2,5,14,68,68} 

can be considered as the first five elements of a sequence {A } 
n 

where 

A2 - 7 =- 0 mod -:iP+1 • T h th t th ' d f th b .., o sow a e remain er o e sequence can e 
n 

constructed, suppose A~ - 7 = 0 mod 3i+1 
1 

for some i > o. Then 

2 

A~ - 7 = 3i+1 t for some integer t. In order to construct Ai+1 , con

sider the following: 

'l2i+2 2 + .., x • 

Since (2Ai,3) = 1, there exists an integer ai+1 such that 

t + 2A.a. 1 = 0 mod 3. This implies that 
1 1+ 

+ 3 i+1a. · )2 _ 7 _ ·. . i+2 
O mod 3 • 1+1 

Therefore, can be.defined as 
i+1 

A. + 3 a. 1 • 
1 , 1+ 

From this example, it is apparent that a sequence (A } 
n 

n . 

can be 

constructed where A = 
n 

1 
~ 3 a. and 

2 n+1 
A - 7 = 0 mod 3 for every 

i=O 1 n 

n > O. Each a. is obtained by solving a congruence mod 3 so the 
1 

condition O <a.< 2 can be imposed. In the example, the values of 
1-



3 

the first five a. are ao = a3 = 2, 
1 a1 = a2 = 1, and a4 = o. Note 

that solution to the 
2 

7 mod 3 is essential to the a congruence x -

construction. That is, 7 must be a quadratic residue mod J. 

The following definitions are a more formal presentation of the 

ideas suggested by the example. No further attempt is made to justify 

the definitions. For a complete development of the p-adic numbers, see 

Agnew (1). 

Definition 1.1 Let p be a prime and let A. 
1 

and a. 
1 

represent non-

negative integers: 

(1) A sequence [A} is a p-adic sequence if 
n 

A = A 1 mod pn for every n > 1. 
n n-

(2) A p-adic sequence is in canonical form if 

(3) 

A 
n 

where 

A p-adic number a, 

O<a.<p-1. 
- 1 -

is defined by 

where O < a. < p - 1. The field of p-adic numbers 
- 1 -

is denoted by Q • 
p 

(4) A p-adic number a, is a p-adic integer if m = O. The 

(5) 

ring of p-adic integers is denoted by 

A p-adic integer a, is a unit in O 
p 

0 . 
p 

if a0 ;io. 

With these definitions, the equation 
2 

x = 7 · from example 1.1 has a 

solution in Since the congruence x 2 - 7 = 0 mod 5 has no solution 

cannot be solved in o5• 

conjecture that a solution in integers for the equation 

in integers, the equation 
2 

x = 7 One might 

f(x1 ,x, ••• ,x) = 0 exists whenever solutions exist in O for every 
2 s p 

prime p. This conjecture is much more difficult to disprove, but the 



equation Jx3 + 4:y3 + 5z3 = 0 can be used to show that it is indeed 

false. 

As suggested by the previous discussion, the main value of the 

p-adic integers as a tool in diophantine problems is for showing when 

solutions in integers do not exist. That is, when an equation has no 

solution in O for some p it has no solution in integers. In this 
p 

thesis, a more positive approach is taken. The problems that are con-

sidered are posed in a p-adic setting and the solutions are p-adic. No 

attempt is made ~o relate the solutions to problems involving integers. 

One value of working with the p-adic numbers in this way is that they 

provide an unfamiliar system that is simple'enough for a developing 

mathematician to make discoveries o.n his own. 

The necessary background for reading the thesis is provided by a 

basic number theory course plus a course in which the p-adic numbers 

have been developed. Much of the material is a generalization of 

results found in the first chapter of Borevich and Shafarevich (J) so 

familiarity with this book would be most helpful. 

The characterization of squares that appears in (J) was the motiva-

tion for Chapter II. This chapter, which is basic to the other two, is 

devoted to a development of a characterization of nth powers in 0 . 
p 

Chapter III is an investigation of Waring's problem in a p-adic setting. 

This problem is easier to solve in the p-adic setting and the investiga-

tion produces some rather surprising results. Chapter IV is a study of 

Artin's conjecture for homogeneous forms in Q 
p 

The original conjec-

ture is shown to be false and a weakened conjecture for diagonal forms 

is ,substituted. The remainder of the chapter provides a complete proof 

of the weakened conjecture. 



CHAPTER II 

POWERS OF P-ADIC NUMBERS 

Several interesting diophantine problems in the field of number 

theory involve integral powers. One such problem is Waring's problem 

which is to be investigated in a p-adic setting in Chapter III. Basic 

to such an investigation is a usable characterization of the integral 

powers in 0 . 
p 

The main objective of this chapter is to develop such a 

characterization. The first three theorems are essential to the develop-

ment and guggestive of the primary ingredients of the characterization. 

Theorem 2.1 Let p be a prime and k 
n = mp • Then if a and ex. are 

. . ( )n _ n k+1 p-ad1c integers , a + a.p = a mod p • 

Proof: Using the binomial expans~on 

· n-2 2 
(a+ ,..,, p)n n n-1( ) n(n-1)a (cx.p) 

~ = a + na CX.p + 2 + • • • + ( CX.p ) n • 

Since k n=mp every term in the expansion except n a contains the fac-

k+1 
tor: p • It follows that ( )n _ n k+1 

a + CX.p = a mod p • 

Theorem 2.2 Let k n = 2 m where k > O. Then for any 2-adic integer 

n k+2 
ex., (1+2cx.) = 1 mod 2 • 

Proof: Consider first (1,i, 2a>2 = 1 + 4a. + 4:a.2 = 1 + 4cx.(a.+ 1). Since 

either CL or ex.+ 1 is divisible by 2, it follows that 

(1 + 20.) 2 = 1 + 8~ for some ~ in 0 . 
p 

5 

Now let n = 2t and consider 

' 



2 
= 1 + t(BS) + t(t - 1)(8S) + ••• + (BS)t 

2 

Since k-1 
t = 2 m, each term in the expansion except 1 contains the 

factor 2k+2:. It follows that ( 1 + 2a.)n = 1 mod 2k+2 • 

Theorem 2.J Let a be an integer and p be a prime. Then 

pie 
a = a mod p. 

Proof: The proof is by induction en k. If k = 1, then ap = a mod p 

by Fermat's. theorem~ Assume then that 
le-1 

ap = a: mod ·p •.. Therefore; 
le ' le-1' . le. l 

ap ;,; (a:P )p - ~p - = a mod p. 

Suppose that e: 

e:: = ab + a.p where 

co 
= I: 

i=O 

a. = 

n e: 

co 
I: 

i=1 

i 
aip is 

i-1 
aip 

a unit in 0 p' 

According to 

n k+1 
- ao mod p 

where k 
n=mp and theorem 2.J implies 

m 
- a0 mod p. 

From these two observations, we can conclude that 

p ;I 2. 

theorem 

Then 

2.1, 

i b,p 
1 

implies b = am mod p. 
0 0 

That is, b0 must be an mth power residue 

mod p. This in turn implies that 

Therefore, 

'for some in O. 
p 

6 

' 

' 



This development shows that when p-/ 2 necessary conditions for a 

unit E 
co i 
~ b.p in O to be an nth power are the following. If 

i=O 1 P 
k 

n=mp where (m,p)=1, b0 mustbeanmthpowerresidue modp 
k 

and the congruence e: = b~ mod pk+1 must hold. The following charac-

terization states that these conditions are also sufficient and pro-

vides similar conditions for units in o2 • 

Characterization of nth powers in O. Let 
k 

n = mp where 

(m,p) = 1. Then the following conditions are necessary and 

sufficient for a unit 

0 . 
p 

co i 
e: = ~ a.p to be an nth power in 

i=O 1 

(1) The integer a0 is an mth power residue mod p. 

(2) If P=2 and k>O then e: = 1 mod 
k+2 

2 • 

( 2') 
' k k+1 If pf2 then E= ap niod 

0 
p ' . 

This characterization will be verified in several steps which are 

undertaken in the following theorems. The overall plan is to consider 

mth powers where (m,p) = 1, 

powers. 

then powers, and finally 
k 

mp th 

Theorem 2.4 Let f(x1,x2 , ,x) be a polynomial whose coefficients 
s 

are p-adic integers. Suppose a 1 ,a2 , ••• ,as are p-adic integers such 

that for some i, 1 ~ i ~ s, 

2e+1 
- 0 mod p 

of .J e+1 
~ (a1 ,a.2 , ••• ,cx.s) ;::. 0 mod p· 
ux. 

1 

7 



where e is a nonnegative integer. Then there exist p-adic integers 

. . . , e 
s 

and 

e _ ,.. d pe+1 
• y,, mo 
1 1 

for every i, 1 < i < s. 

Proof: See Borevich and Shafarevich (J, p. 42). 

Theorem 2.5 If p is a prime and (a,p) = 1, then the congruence 

n - d x = a mo p has (n,p-1) solutions or no solutions according as 

a(p- 1 )/(n,p-1 ) = 1 mod p or (p-1)/(n,p-1) d 1 d 
a r mo p. 

Proof: See Niven and Zuckerman (11, p. 54). 

CIO i 
Theorem 2.6 Let e: = I: aip be a unit in 0 and (m,p) = 1. Then 

i=O p 

e: is an mth power in 0 if and only if ao is an mth power residue 
p 

mod p. 

Proof: 

exists a 

Suppose first that e: 
CIO 

5 = I: 
i=O 

b.p 
1 

i 
in O 

p 

is an mth power in 

for which 
m 6 = e;. 

0 • 
p 

Now 

Then there 

for 

some ~ in 0 and by 
p 

thearem.2.1, 5m = (b0 + ~p)m = b~ mod p. Since 

e: = a 0 mod p and 
m e: = 5 , it follows that a0 - b~ mod p. 

is an mth power residue mod p. 

Hence, 

Now, suppose that a0 is an mth power residue mod p. The proof 

that e; is an mth power will be accomplished when the equation 

m 
x - e; = 0 is shown to have a solution in O • If · d = (m,p - 1), · there 

p 

8 

exist integers r and s, s < 0, such that d = rm + s (p - 1). Since d 

divides m, is a dth power residue so there exists an integer c 

such that a0 mod p. Now in order to apply theorem 2.4, let 

m 
f(x) = x - e;. Then 

d-s (p-1) 
c - e; ( d)1-s(p-1)/d 

c - e; 



or 

Since a 0 

a (p-1)/d = 
0 

f(cr) (a
0

)1-s(p-1)/d - - e; mod p. 

is an mth power residue mod p, theorem 2.5 implies 

1 mod p. It follows that 

f(cr) = 0 mod p. On the other hand, 

f(cr) = a 0 -E mod p or 

f' (x) = mxm...: 1 . so·. 

9 

, ( r) ( r )m-1 =' f c =me rOmodp. Therefore, theorem 2.~ implies the existence 

of a 6 in O for which f(o) = o. 
p 

proof is complete. 

Theorem 2.7 Let .E 

k+1 
E = 1 mod p • Then 

be a unit in O, 
p 

E is a pkth 

. m 
It follows that e; = 6 and the 

p I 2, such that 

power in 0 • 
p 

Proof: The method of proof will be to construct a p-adic sequence [B } ' n 

B = f 
n i=O 

i _pk n+1 
b.p, with the property that tr = E mod p for every n. 

1 n 

Then, if 

pk 

= i pk n+1 
6 = ~ b.p, 6 = E mod p for every n and hence 

i=O 1 · 

0 =:,E. Actually, we will prove the slightly stronger result that 

_pk n+k+1 
tr ==E mod p for every n. 

n 
The construction is by induction on 

If n = o, then 

n-1 i 
= I: b.p 

i=O 1 

k k+1 
1P = 1 mod p so B0 = b0 = 1. Now, suppose 

B 
n-1 

pk n+k 
has been determined so that ( B 1 ) = E mod p • 

n-
pk n+k 

This implies that (B 1 ) = E + O..p 
n-

for some in 0 . 
p 

Now, 

(B 1 ,p) = 1 so there exists an integer b where O < b < p and 
n- n - n 

a..+b (B 1 )pk- 1 =o mod p. With this choice for b, 
n ~ n 

n n i n pk 
Bn = Bn_ 1 + bnp = ~ b .p • When (Bn_ 1 + b p ) is expanded the 

i=O i n 

first two terms are 

The third term and all remaining terms 

n. 



contain the factor 
n+k+1 

p This implies that 

Therefore, 

le le le 1 k "ff = (B )p - [b (B )p - ]pn+ 
n n-1. n n-1 

{B'} 
n 

= e: + [a. + b (B )ple-1] n+k 
n n-1 P 

d n+k+1 - e: mo p 

is defined by induction and 

co 

d n+k+1 
mo p 

k 
5P =-=E: where 6 = 

Theorem 2.8 Let e: = 
i I: aip be a unit in 0 where p 12. p i=o 

pkth 
pie k+1 

is a power in 0 if and only if e: = ao mod p . 
Proof: Suppase 

k 
6P = e: where & 

first 

co 
= I: 

i=O 

p 

that 

i 
b.p . 

1 

& = b O + SP , by theorem 2. 1 , 

: 

e: 

It follows that bo = e: = ao 
1c d k+1 Therefore, e: = a.P mo p - 0 

is a pkth paw er in 0 and p 
pk -

By thearem 2.), b = b mod p. 
0 0 

mod p which impliE:S that ao = 

campleting the proof. 

let 

If 

bo. 

10 

lim B . 
n--= n 

• 
Then, e: 

Now suppase is a unit in O and 
p 

pk k+1 
e: = ao mod p • 

I'n order to apply theorem 2.4, consider the function 

k pie' . k le 
f(x,y) = p (:x- - e:y). Observe first:tnat ::f(a~,~) ,;:'p,,(a~: - e:) =O 

of k of . . k _ k 
Also, oy = - p e: so oy (a0 ,t) = - p e: = 0 mod p while 

of ~ k+t 
oy ( ao, 1) ,= 0 mod p • 

~ in O such that 
p 

Therefore, by theorem 2.4, there exist 

k+1 
f(µ.,5) = 0 where µ. = a0 mod p and 

d. 2k+1 mo p .• 

µ. and 



11 

t. - 1 k+1 T . . . 
~ = mod p • his implies that 

k pk 
f < µ, 6 > = P < µ ... e6) = o or 

pk 
µ =E6· Now, by theorem 2.7, 6 -

k+1 
1 mod p implies that is a 

pkth power in 0 . 
p 

It follows, since 
-1 pk 

g, = 6 µ , that g is a 

power in O also. 
p 

Theorem 2.9 Let E be a unit in o2 and k > O. Then g is a 2kth 

power in o2 if and only if E= 1 mod 2k+2 • 

Proof: If E is a 2k power in 

which 
2k 

Since is unit 6 = E•' E a 

let 6=1+2a.. Theorem 2.2 implies 

Therefore, 
k+2 

E = 1 mod 2 • 

02' there exists .,_a 8 in 02 for 

iri 02' 6 must be a unit also, so 

that 
k 2k 

e,P = ( 1 + 20.) = 1 
k+2 

mod 2 • 

• 

Now, suppose E = 1 mod 2k+2 • The proof that E is a power 

is the same as the proof in theorem 2.7 with two alterations. In the 

first place, p = 2. The other difference is that when the sequence 

[ B } · B2k --- E mod 2n+k+1 · is constructed so that there are two choices 
n n 

f B S · 12k =- 1 k+ 1 B b 1 It ' 1 t th t or 1 • ince mod 2 ,' 0 = 0 = • is a so rue a 

12k = (1 + 2) 2k = 1 mod 2k+2 so B1 can be chosen as either 1 or J. 

Once B1 is chosen, the construction proceeds exactly as in theorem 

The result is that [B} 
n 

is constructed by induction so that 

6 = lim B and 
n-+CD n 

The fact that two values of 8 can be constructed so that 

2k 
8 = E is natural since is an even number. Suppose 

6 = 

Now, 

CD i 
!: a.2 

i=O 1 
is one 2-adic unit for which Then, 

6 = 1 + 
CD i 
I: a.2 

i=1 1 
and -6 = 1 +, 

CD ' 

!: (1-a.)21 

i=1 1 

must be the other 2-adic 

• 
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sequence that can be constructed in theorem 2.9. 

The characterization has now been established for mth powers with 

k (m,p) = 1 · arid for pkth powers. When E is an mp th power in 0 p' 

it is obvious that E is both an mth power and a pkth power in 0 . p 

In terms of .the characterization, this statement reads, when E is an 

nth power, conditions (1) and (2 or 2) are satisfied. It is now neces-

sary to show that when conditions (1) and (2 or 2') are satisfied E is 

an nth power. That is, when E is both an mth and a pkth power, it 

must also be k 
in This is an mp th power 0 . shown to be the case by p 

theorem 2.10 due to the fact that k 
(m,p ) = 1. With this theorem, the 

proof of the characterization of nth powers of units in 0 
p 

is complete. 

Theorem 2.10 Let E be a unit in 0 such that E is both an mth p 

power and an nth power in 0 where 
p 

(m,n) = 1. Then E is an mnth 

power in 0 . p 

Proof: Let E = am and E= µn where 6 and µ are units in 0 . p 

Because (m,n) 1, there exist integers r and s such that 

1 =rm+ sn. Therefore, 

Since µ and are units in is an element in 0 
p 

for any 

integers r and s. It follows that is an mnth power in 0 . 
p • 

Given a specific unit in 0, one could determine whether or not it 
p 

is an nth power by checking the two conditions of the characterization 

that has just been established. However, for application purposes, the 

criterion in the following theorem is much more practical. 
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CIO k i 
Theorem 2.11 Let n =mp where (rn,p) = 1 and let e: = ~ aip be a 

i=O 

unit in 0 . Define t as k+1 if p/2 and k + 2 if p = 2. Then 
p 

is nth in if and only e: an power 0 
p 

in 0 . 
p 

Proof: If e: is an nth power in O, 
p 

if 
n t 

for some 0 e: - o mod p 

then for some in 

0 • Consequently, e: == an mod pk+2 
p 

which verifies the only if state-

ment for all p. 

Now suppose e: = et mod 
k+1 

where p';i 2. Then if p 

an 
CIO i e/ = ~ c.p 

' 
c. = a. for O< i < k. Since is an nth power, 

i=O 1 1 1 

the characterization states that is an mth power residue mod p 

and on= 
pk 

mod 
k+1 

co p 

an mth power residue 

is an nth power in 

_ n k+2 e: = o mod 2 so 

mod 

0 . 
p 

c. 
1 

Now and e: = on mod 
k+1 

co = ao p so ao 
k k+1 

p and e: = ap mod p It follows that 
. 0 

The same argument holds for p=2 except 

a. for O < i < k + 1. 
1 ~ 

The next theorem is included here because its proof makes use of 

is 

e: 

the first condition in the characterization of nth powers and its con-

clusions are important to the developments in Chapters III and IV. 

Theorem 2.12 Let 
k 

n=mp, ·(m,p)=1, d= (m,p-1), .and let a., 

and e: be uni ts in 0 . 
p 

Then 

(1) n - Q d a.x = '-' mo p has a solution n integers if and 

(2) 

only if 
d 

a.y - ~ mod p 

e: is an mth power in 

power in 0 • 
p 

0 
p 

has a solution in integers. 

if and only if is a dth 

Proof: To prove (1), suppose first that 8 is a solution for 

N~n =- Q mod p. B d f. •t• ..,,.... '"' y e 1n1 ion, d = ( m , p - 1 ) = ( n , p - 1 ) so n = ds for 
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some integer s. This implies that O:X.n = a(xs)d =~mod p. It follows 

that 9s is a solution of a.yd=~ mod p. Now suppose 9 is a solution 

of 
d 

ay - S mod p. Since d = (n,p-1), there exist integers r and 

s for which d = nr + (p - 1)s. ;; This gives 

d nr+(p-1)s 
ay = a.y S mod p. 

Since both a. and S are units and 9 is a solution of ayd = S mod p, 

8 must be a -unit also. Therefore, 9P- 1 = 1 mod-p and it follows that 

Sr is a solution of f!J.:x.n = S mod p. 

To prove (2), let E= 

power in 0 if and only if 
p 

wise, (d,p) = 1 so E is 

CIO • 
1 I: a.p. 

i=O 1 

ao is an 

a dth power 

Since (m,p) = 1, is an mth 

mth power residue mod p. Like-

in 0 if and only if ao is 
p 

dth power residue mod p. Therefore, to prove ( 2), it suffices to show 

that is an mth power residue mod p if and only if a0 is a dth 

power residue mod p. This is true since 
m 

x - a 0 mod p has a solution 

in integers if and only if yd= a0 mod p has a solution in integers, 

which is a special case of (1). 

Having established a characterization for nth powers of units in 

0, one might consider nth powers of all p-adic integers or even all 
p 

p-adic numbers. Actually, the extension to include all p-adic numbers 

is a very small one. - All non-zero p-adic numbers can be represented 

a 

uniquely as Ep t where g· is unit in 0 and t is integer. A a an 

p-adic number 

power in 0 
p 

in this 

and t 

form is an nth power 

is a multiple of n. 

p 

if and only if E is an nth 

This chapter is concluded with an interesting result that developed 

from considering the significance of the second condition of the nth 

power criteria. 
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The condition for a unit g to be an mth power where · (m,p) = 1 is 
co i 
I: a.p , then 

i=O 1 
a0 is either an mth power very direct. If e; = 

residue or nonresidue . mod p and e; is classified immediately • The 

condition for pkth pow~rs is .less direct. For example, in o5 , if 

a0 = 2 what values of E, :"if any, are 5th, 

little arithmetic shows that 25 = 7 mod 52 , 

2 3 5th, 5th, ••• powers? A 

225 = 57 mod 53 , and 

2125 = 182 mod 54 . So 7, 57, and 182 are respectively 5th, 52th, 

and 53th powers in o5 • 

2 3 
e:2 = 2 + 1· 5 + 2·5 + 5 <:X., 

. 2 
Also, E 1 =2+1•5+5 ex., 

2 3 4 and € 3 =2+1•5+2•5 +1•5 +5 ex. 

tively 5th, and s3th powers for any ex. in 

are respec-

When the E. 
1 

are written in this way, the coefficients suggest two possible conjec-

tures regarding the further coefficients. One is that the first i + 1 

coefficients of e;i and gi+1 agree. This conjecture is verified when 

( 5n,} 
the sequence 2 . is shown, in the next theorem, to be a 5-adic 

sequence. The other possible conjecture is that the pattern 2,1,2,1 

of the first coefficients is repeated. That this is incorrect is seen 

by direct computation since the next coefficient is a 3 instead of a 

2. An indirect argument which shows that no such pattern could continue 

is the following. The 5-adic integer 2 3 2+1•5+2•5 +1•5 +••• corre-

sponds to the rational number -7/24. However, the 5-adic integer that 

corresponds to the sequence (25n} is an element of the set in the 

next theorem. As the theorem develops, it will be obvious since 

(-7 /24) 5 I -7 /24 that -7 /24 is not an element of g5 • 

Theorem 2.13 Let p be any prime. Then there exists a set gp in Op 

with exactly p elements (p - 1 units and zero) with the property that 

for in 
p'k 

every ex. g ' (l p 
::,: a. for every integer k. 
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Proof: To prove the existence of the p - 1 uni ts in g ' p 
it is suffi-

cient to show that for each 

exists with the.property that 

a0 , 1 < a0 s_ p - 1, exactly one unit e; 

pk 
e: = a mod p and e: e: for every k • 

. 0 

If P= 2, one is the only unit with this property, so g 2 = [0,1}. If 

pf2 for a given . ao, 1 ,:::. a0 < p - 1, e: can 

lows. For each i ~ o, . define A . by A. -
1 1 

1 < A. < 
i+1 

- '1. As defined, A. mod p - ao p - 1- 1 

A. - A. 1 1 1-

The final congruence is true because i i-1 
p - p 

be constructed as 

pi i+1 
and a· mod .P 0 

:(or every i 

i O mod p 

where 

and 

fol-

is 

Euler's function •. Therefore, i A.= A. mod p for i > 1 which 
1 1-1 

implies that [A.} is a p""'.adic sequence. The condition that • 1 

1 < A. < p 
i+1 

- 1 is not needed to obtain this result, but it gives the 
- 1 -

sequence [A.} canonical form. Now, 
1 

CICI i e: = lim A ' e: = ·r: aip where A 
n"""= n i=O n 

k k+1 
E = a~ mod p for every k. so e: 

= 

if e: is defined by 
n i I: aip ,. By definition 

i=O 

is a. pkth power in 0 
p 

for 

every k. To show that for a given a0 only one such e: exists, 

suppose e: and e:' ex:i,st such that e: = ao -
I e: are pkth powet's for every k. Then e: = 

every k and 
_ I k+1 e: =: e: mod p for every -·k 

I 
mod and both e:; p e: 

pk - . I mod 
k+1 for ao = e: p 

implies that 
I 

E=E· 

and 

To 

show that 
pk 

e: for k let e; = every i be a fixed positive integer and 

consider 
pi 

e: • Sin.ce e: 

pkth power for every k. 

is a pkth 

Also since· 

power for·· every k, 
pi 

e; is a 

i 
ap = a mod P, 

0 0 

i 
e:P = a mod p. 

0 

We have just shown that e: is the only element in 0 p 
that satisfies 

these two conditions, therefore 
k 

i so e:? = e: for every k. 

pi 
e:: = Eo This argument is valid for any 
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To show that zero is the only non-unit in s p' consider any non-

unit s where SI o. Represent s r 
where is a unit in as Ep E 

0 and r is an integer greater than one. This representation shows 
p 

that s cannot be a power higher than the rth power. Hence, s cannot 

be a pkth power for every k, so s 
This completes the proof of the theorem. 

cannot be an element of g. 
p 

The set gp has several interesting properties. If g is a 

primitive root mod p and e: is the element of g that corresponds p 

to the sequence . ( gpn}, then 

is a distinct element in g. 
p 

each element 

Therefore, 

of the set [ e:,e:2, ... , e: p-1} 

which is a cyclic group under multiplication. Also, since 1 is in 

S and e:p-i = 1 mod p, it follows that ap-i 
p 

g - [ o}. 
p 

This implies one more property, that 

distinct p-adic roots of the equation ~ - x = O. 

1. for every a in 

g 
p 

contains the p 



CHAPTER III 

WARING'S PROBLEM 

The problem referred to as Waring's problem is the following. 

Given a positive integer n, find a positive integer g(n) such that 

each positive integer is the sum of g(n) nth powers of nonnegative 

integers. Since criteria have been established in Chapter II for deter-

mining nth powers in Q 
p 

the groundwork has been done for considering 

Waring's problem in a p-adic setting. The objective of this chapter is 

to investigate the number of nth powers needed to represent any p-adic 

integer. 

Suppose ex. is a non-unit in O. 
p 

Then ex. = 1 + ( ex. - 1 ) and ex. - 1 

is a unit in 

if any unit in 

0 • 
p 

0 
p 

Since 1 is an nth power in 0 ' p 

can be represented as the sum of 

it follows that 

g(n) nth powers, 

any p-adic integer can be represented as the sum of g(n) + 1 nth 

powers. This observation indicates that an investigation of the units 

in O will supply information about all p-adic integers. The theorems 
p 

of this chapter are, therefore, designed to investigate the following 

problem. 

Waring's problem for p-adic integers. Given a positive 

integer n and a prime p, determine the smallest posi-

tive integer g(n) sµch that every unit in 0 
p 

represented as the sum of g(n) nth powers in 

1A 

can be 

0 . 
p 
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k Theorem 3.1 Let n=mp where (m,p) = 1. Then any unit in 0 can be p 

represented the sum of fewer than k+1 nth powers in 0 if p/2 as p 
p 

and fewer than 2k+2 nth powers in 02 if p = 2. 

00 i Proof: Let e: = r: aip be a unit in 0 where p 12. Then 
i=O p 

k i 00 i e: = r: . aip + t aip 
i=O i=k+1 

k i k+1 llO i Now, let N = r: aip and <itp = r: aip . Then 
i=O i=k+1 

N k+1 :N-"l k+1 e: = N + O.pk+1 = r: 1 + a.p = r; 1 + ( 1 + d.P ) • 
j=1 j=1 

By theorem 2.11, 1 + a. k+1 is an nth power in 0 e; is expressed p so p 

as the sum 

definition 

e: = 

where 

of N nth 

N k+1 < p 

i a.2 
1 

. 

= 

powers. Since 

Similarly, when 

k+1 
r: 

i=O 

i 00 
a.2 + r: 

1 i=k:+2 

O<a.<p-1 for every 
- 1 -

p = 2, 

i a.2 
1 

= N~1 1 + (1 + o.2k+2) 
j=1 

i, by 

This theorem shows that an upper bound for g(n) is available for 

any n. The interesting part of the problem is to investigate special 

cases to determine if and when this upper bound can be lowered. Theorem 

3.2 shows that for every p there exist values of n for which the 

upper bound of theorem 3.1 cannot be lowered. 

Theorem 3.2 Let p be a prime and k 
n = (p - 1)p , k > O. Then there 
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exists a unit in O that cannot be written as the sum of fewer than 
p 

k+1 1 p - nth powers if p/2 or nth powers if p = 2. 

k 
Proof: Let e: = r: (p - 1 )p i where p 12. Note that e: is a unit and 

i=O 
k+1 

- 1. Suppose n n n is any sum of nth powers of e: = p a.1 + a. + ... + a. 2 s 
k+1 k k+1 

p-adic integers where s < p - 1. Since n=(p .... 1)p =Cf)(p ), 

n 1 d k+1 when is a unit in 0 On the other hand, if °'i a.. - mo p a.. . 
1 1 p 

n is a non-unit, a.. 
1 

k+1 = 0 mod p Therefore, each n 
a.. 

1 
is congru.ent to 

'k+1 
1 or O mod p • It.follows that there exists an integer a such 

that 
k:+1 

O<a<s<p -1 and ••• + 

k+1 ~ k+1 p - 1 r a mod p since k+1 0 < a< p - 1. Therefore, 

e: I a.~+ an+ • • • + a: when s < pk+ 1 - 1. 

When P=2 the argument is identical except k 
n=2 

k+1 

Now, 

and the con-

cl us ion is that e: = r: 2i = 2k+2 _ 1 cannot be represented as the sum 
i=O 

of fewer than 2k+2 _ 1 nth powers in 02. • 
Now, return to the case· k n=mp where (m,p) = 1. It has just been 

shown that when m = p - 1, g(n) attains the maximum value of 

pk+i _ 1 if p / 2 and 2k+2 - 1 if p = 2. The next theorem shows that 

g(n) attains the minimum value when n = m and (m,p - 1) = 1. In this 

case, every unit is an nth power.in 0 · that is, p' 
g(n) = 1. 

Theorem J.J Let (n,p) = 1 and e: be a unit in O • 
p 

represented as the sum of d = (n,p - i) nth powers in 

Proof: If e: = 
CID i r: a.2 

i=O 1 
is a unit in then 

Then e: can be 

0 • 
p 

Therefore, 

is an nth power residue . mod 2 and by theorem 2.6 e: is an nth power 

in o2 • It follows that e: can be written as the sum of (n,2 - 1) = 1 

nth power in o2• 



When pf2 theorem 2.12 states that when (n,p) = 1 

is an nth power if and only if it is a dth power in 0 . p 

prove the theorem in this case, it suffices to show that 

represented as the sum of d dth powers of units in 0 • 
p 
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a unit in 0 p 

Therefore, to 

e: can be 

First let 

e: = ~ a.pi 
i=O 1 

and show that the congruence d d d - d x1 + x2 + • • • + x d = a0 mo p 

has a solution in integers. This problem can be stated as follows. Let 

z be the finite field of integers mod p, and let G be the multipli-p 

cative group z - (o}. Then, given any element ao of G show that p 
d d d has solution in z Define the subgroup H by x1 + x2 + • • • + x d = ao a . p 

H = (xd I x E G} · and K as the set of elements in G that can be rep-r 

resented as a sum of r dth powers of elements in z . As a set, G p 

consists of the elements [1,2, ••• ,p-1}. Therefore, every element g 

in G can be written as ~ 1 
i=1 

which implies that K = G. p-1 
Let 

t = min(r I Kr== G} and consider the set difference Kt - Kt_ 1• By the 

definition of t this difference is not empty, so let 

x E Kt - Kt-1° 
t 

which x = r: 
i=1 

I 
define in x 

I 

x = 

It follows that 

Since x E Kt, there 

d 
x .• In order to show 

]. 

Kt-1 by 

t-2 d 
r: y. 

i=1 J. 

x 

t-1 
I r: x == 

i=1 

for some 

I d 
x + xt 

d 
x .• 

]. 

exist x1,x2, 

that Kt-1 - Kt-2 

Suppose that x' E 

in 

,xt in 

is not 

Kt-2° 

z 
p 

which implies that x E Kt_ 1• This is a contradiction since 

xE Kt - Kt-1° Therefore, 
I 

x f Kt-2 and it follows that 

x' E 
II t-2 d 

Kt-1 - Kt-2° By a similar argument, if x = r: xi, then 
i=1 

z p 

empty, 

Then, 

for 
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x E Kt_ 2 - Kt-J. In general 

s d 
t x . E K - K 1 for 2 < s < t • 

i=1 1 s s-

22 

Thus, in the sequence of inclusions K CK C•••CK 
1 2 t each inclusion 

has been shown to be proper. 

The next objective is to show that not only is K - K non-empty 
s s-1 

for every s, 2 < s < t, but that each such set contains a coset of H. 

This fol lows if x E K - K 1 implies xH c K - K 1.• Suppose 
s s- s s-

d d E E y = xz for some z H. Since x K , x 
s 

can be y E xH; that is, 
s 

represented as I: 
i=1 

d 
x. and 

d s 
y = xz = t 

i=1 

d 
(x.z) • 

1 
This implies that 

y E K • 
s 

1 

y ~ K 1 , assume the 
s-

contrary that y 
s-1 
t 

i=1 

d 
y .• 

1 

Thus, 

To show that 

d s-1 d 
y==xz = t y. 

i=1 1 
which implies that 

s-1 d 
x = I: (y./z) • 

i=1 1 
This is a 

contradiction since x ~ K 1 • 
s-

This contradiction shows that yr Ks_ 1 

completing the proof that y E K - K • Since y is an arbitrary ele
s s-1 

ment of xH, it follows that xH c K - K 1 • 
s s-

Recalling the sequence K·CK C•••CK 
1 .2 t' by definition K = H 

1 

and : Kt= G. It has been shown that each K - K 
s s-1 

contains at least 

one coset of H. Therefore, G must contain at least t different 

cosets of H. If o(X) denotes ~he number of elements in x 
' 

this 

conclusion is written o (H) •t :S, e (G). Therefore, t :S, o (G)/o (H) or t 

is less than or equal to the index of H in G. Since H = { xd I x E G} 

is a subgroup of G, the index of H in G can be computed as the 

number of distinct values of x in G for which d x = 1. By Lagrange's 

theorem, 
d 

x = 1 has at most d incongruent solutions mod p. There-

fore, the index of H is not more than d. It follows that 

t :S, o(G)/o (H) < d. Originally, t was defined as the smallest number 
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such that every element of G can be represented as a sum of t dth 

power of elements in 

exists a solution in 

Furthermore, since 

z . 
p Thus, since a0 E G and t ~ d, there 

z 
p 

of the equation 

a0 Io, at least one x. 
1 

must be non-zero. Let 

(b1 ,b2 , ••• ,bd) be a solution to the above equation and assume, with

out loss of generality, that bdfo. Therefore, 

d d d Q 
E:=b +b +•••+b +l"P 

1 2 d 
for some 

in O • By definition of Z , b IO 
p p d implies that bd is a unit in O, 

p 
d 

so theorem 2.11 implies that bd + ~p is a dth power in 0. Therefore, 
p 

is represented as the sum of d 

the proof of the theorem. 

dth powers in O which completes 
p 

After a proof of this length, one would hope for a significant 

improvement over previous results. With the condition (n,p) = 1, 

theorem J .1 implies that g (n) ~ p - 1. Theorem J. 2, under the same 

condition, provides the specific case n = p - 1 for which g(n) = p - 1. 

• 

In this case, since (n,p - 1) = p - 1, theorem J.J offers no improvement. 

However, since (n,p - 1) is a divisor of p - 1, the conclusion that 

g(n) ~ (n,p- 1) is an improvement whenever (n,p..; 1) Ip- 1. For 

example, in 071 , suppose (n,71) = 1. The possible values of (n,70) 

are 1,2,5,7,10,14:,.35, and 70. The value of g(n} will be 70 only if 

n is a multiple of 70. If n does not contain one of the factors 

2,5, or 7, then g(n} = 1. That is, every unit in 071 is an nth 

power • 

. After the case where (n,p) = 1, it seems natural to investigate 

the opposite situation when 
k n = p with k > 1. The investigation of 

this case begins with the following lemma. 



Lemma 3.1 Let p be an odd prime and k > 1. Then the congruence 
k k k 

.Jt' +·? + zp = 0 mod p has a soiution (a,b,c) in integers such that 
k. k k .. 2 ap + bp + cP "F o mod p . 

k 
Proof: The binomial expansion a:f (p - 1)P shows that 

pk - 2 
(p - 1) = -1 mod p which implies that 

pk 2 
(p - 1) F p - 1 mod p • This 

pk - 2 
along with the fact that 1 = 1 mod p makes the following definition 

possible. Let t = min ( r I r is a positive integer and 
pk 2 

r Fr mod p } • 

With this definition, since 
pk - 2 

t - 1 < t, ( t - 1) = t - 1 mod p • There-

fore, 
pk pk pk _ pk 2 

1 + (-t) + ( t - 1) = 1 - t + t - 1 mod p • Because of the 

def-inition of t, the right side of this cangruence, 
pk 

t - t ' cannot 

be congruent to 
2 zero mod p. On the other hand, since 

pk -
a = a mod p 

for every integer a, it follows that 

k k k 
1P + (-t)P + (t-1)P =1-t+t-1=0 mod p. 

Therefore, (1,-t,t - 1) is a suitable solution, completing the proof 

af the lemma. 

In terms of p-adic integers, .. this lemma can be stated as follows. 

For any add prime p and any positive integer k there exist p-adic 

integers (x,y,z) such that .Jt'k + ?k + zpk = e:p where t;; is a unit in 

0 • 
p 

Theorem 3.~ Let a be a unit in O 
p 

t d th f ( '1k+1 _ 1)/2 represen e as e sumo J 

where p I 2. Then 

pkth powers in 0 • 
p 

Proof: Note first that for every p-ad,ic integer ~' there 
k 

integers x and µ such that ~ = .Jt' + µp. To see this, 

co 

can be 

exist p-adic 

let 

i pk 
~ = I: b,p . Then ~ = b = bo mod p and it follows that 

0 i=O 1 
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k 
~ = bp + µp for some µ in O. 

O p 
Now, let (x,y,z) be p-adic integers 

provided by lemma 3.1 such that 
k k k 

xp +? + zp = Ep where e: is a unit 

in O • 
p 

The following construction shows how to represent ~ as a sum 

of (3k+1 ~ 1)/2 

so that ~ = 

ex. is a unit in 

-1 k 
µ1e: = ~ + µ2p. 

ex. = 

k 
p th powers. Fir~t, determine p-adic integers 

k 
~ + µ 1p. Not~ that x0 must be a unit in OP 

0. Now, determine 
p 

This gives 

k k 
xp + <{ + µ2p) Ep 

0 = 

and. µ 2 so that 

x?k + 
k 

. E 2 xp Ep + µ p 
0 1 2 

k 

and 

since 

µ e:-1 Next, determine x2 and µ3 so that = ~ + µ.3p. This gives 
2 

Repeating this process k + 1 times produces the result 

k k k 2 
ex. = ~ + ~ (q>) + ~ (e;p) + • • • + pk k k k+1 

~ (e;p) + ~+1e:p • 

Thus, 
pk k k+1 k k . 

ex.= (:ico + u.+1e: P ) + ~ x!: (e:p) 1 

'k i=1 1 

pk . k k+1 k k k pk pk i 
(x:.o. + u.+1e: P ) + ~. x!: <x? + Y + z ) • 

. K i=1 1 

Since x0 is a unit in OP, theorem 2.11 implies that 

pk k k+1 k 
~ + ~+1e: p is a p th p·ower in 0 • 

p 
When expanded 
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k k k k· . k 
Pi (xp + YP + zp )1 i :,c produces 3 terms, each of which is a p th power 

k pk . pk pk 2 
in OP. For example, when x~ (r + y + z ) is expanded, the result 

2~ 2~ 2~ k ~ ~ ~ is (x2x) + (x2y) + (x2z) + (x2xy)p + (x2xy) + (x2xz) + (x2xz) 

pk pk 
+ (x2yz) + (x2yz) The net result is that a. is expressed as the 

sum of ~ Ji = (Jk+1 - 1)/2 pkth powers in O • A 
i=O p 

The number of terms predicted in this theorem is considerably 

smaller than in theorem J.1. The value of (Jk+1 -1)/2 is half as 

1 th k+1 1 arge as e p - value in theorem J.1 even when p = J. As p 

becomes large, the improvement is considerably better. The next theorem 

is an example showing that, in general, the value (Jk+1 - 1)/2 in 

theorem 3.3 cannot be lowered. 

Theorem J.4 For every k, there exists a unit in that cannot be 

d th f f th (3k+1 _ 1)/2, represente as e sumo ewer an powers in o3 • 

Proof: Let e: = Note that e; is a unit in 03 and 

3k 3k 3k 
is any sum of Jkth a. + C:X. + ... + Gx. 

1 2 s 
k+1 

e; == (3 - 1) /2. Suppose 

(Jk+1 _ 1)/2. If C:X.. is a unit in 03' then 
1 

powers in o3 where s < 

a.. = ± 1 + JS for some s in 03. The binomial expansion shows that 
1 

3k 
( :i: 1 JS)J\. ± 1 mod (!;(,. = + 

1 

3k+1. However, if a.. is a non-unit in 03' 1 

3k k 
3k+1. Gt. = JS for some s in 03 and a,= (JS)J = 0 mod Therefore, 

1 1 

the value of each element in the cx.3k + 3k 
+ c:x/ is either sum ex. + 

1 2 s 

1 1 0 mod 3k+1. , - , or It follows that there exists an integer a such 

that la! <, s and 
3k 

0:.1 + 
3k 

(l2 + ... 3k_ . k+1 
+ a = a mod 3 • 

s 
Now lal < s and 

s < (Jk+1 _ 1)/2 imply that 
k+1 

- ( 3 - 1) /2 < a < (Jk+1 _ 1)/2. Since the 

set of integers [r I -(3k+1 - 1)/2 < r < (Jk+1 - 1)/2} - - constitutes a com-

plete residue system mod Jk+ 1 , . . k+1 .. k+1 
it follows that a 1 (3 - 1)/2 mod 3 • 
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That is, E r a mod Jk+1 which implies • • • + 

Therefore, the unit E = (Jk+1 - 1)/2 cannot be represented as the sum 

of fewer than (Jk+1 - 1)/2 Jkth powers completing the proof. 

In terms of the function g(n), theorem J.4 shows that for odd 

primes, 
k+1 k 

g (n) ~ (J - 1) /2 when n = p • Equality holds when p = 3 

according to theorem J.5. 

As previously noted, the results of this chapter can be extended to 

include all p-adic integers due to the fact that any non-unit a can be 

represented as the nth power 1 plus the p-adic unit a- 1. The 

results can also be extended to include all p-adic numbers as follows. 

Let 
t 

Ep be any non-zero p-adic number. Determine integers r and s 

th t t h > 0 Then c-pt __ c-ps(pr)n and c-ps so a = rn + s w ere s • c.. "" .... 

p-adic integer. As indicated above, Eps can be represented as 

t 
EP 

n n 
Y1 + y2 + 

1 < i < h(n). 

where 

• • • + 

h(n) g(n) + 1. It follows that 

where for every i, 

is a 



CHAPTER IV 

ART'IN 1 S CONJECTURE 

The original conjecture made by Artin, as it pertains to p-adic 

numbers, was ~he following. If a homogeneous farm of degree n with 

coefficients in contains more than 2 
n variables, it must have a 

non-trivial zero in O. The definition of a homogeneous form requires 
p 

only that each term be of the same degree and, in general, such a form 

is difficult to work with. In this respect, it is fortunate that 

Artin's conjecture in its original form has been proven false. The most 

famous counterexample was given by Terjanian (12). 

Terjanian observed that the function g(x) = g(x1 ,x2 ,x3 ) defined by 

g(x) 

has the following properties: g(x) = 1 mod 4 if some x. 
1 

is odd and 

g(x) = 0 mod 16 if every x. 
1 

is even. He then constructed the form 

f = g(x) + g(y) + g(z) + 4g(u) + 4g(v) + 4g(w) 

This form is homogeneous of degree 4 with 18 variables. According to 

the conjecture, it should have a non-trivial zere in o2• The fact that 

f = O mod 16 only if each of the variables is even means that for any 

zero '~\8) each 9. must be even. 
1 

Suppose 

(91 ,92 , ••• ,918 ) is a non-trivial zero of f in o2 • Each of the 



( -k. -k 
be the minimum ki, then 2 81 ,2 82 , is another zero 

-ke of f. However, at least one 2 . is not even so this cannot be a 
1 

29 

zero of f. We must conclude that f has no non-trivial zeros in o2 • 

A paper by Browkin (4) gives an even more dramatic counterexample. 

By using a tremendous construction, he demonstrates that for any prime 

the number of variables needed to insure non-trivial zeros for forms of 

degree n is not less than 3 n • 

In view of these counterexamples, the conjecture must be weakened 

in order to present an interesting problem. The objective of this 

chapter will be to investigate and eventually prove such a weakened 

conjecture. 

Definition 4.1 A diagonal form is an expression of the form 

n n n 
a.x +a.x +···+ax 1 1 2 2 s s 

This is also referred to in the literature as an additive form or simply 

as a linear combination of nth powers. When the a. are p-adic numbers, 
1 

this expression is called a diagonal form in Q • 
p 

If the a.. 
1 

are all 

units in O , 
p 

the form is'referred to as a unit diagonal form in 

Artin's conjecture for diagonal forms. If a diagonal form 

of degree n contains more than 

must have a non-trivial zero in O. 
p 

2 
n variables, it 

0 . 
p 

Since a diagonal form is homogeneous, this conjecture is a special 

case of Artin's original conjecture. 

A particularly interesting aspect of this conjecture is that it can 
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be shown to be the best possible. That is, for a given prime p, there 

exists a diagonal form in Q 
p 

of some degree n which contains 
2 

n 

variables, but has only the trivial zero in 0 . 
p 

The proper degree for 

such a form is not difficult to guess. As noted in theorem 3.2, since 

k+1 k n k+i k 
cp(p ) = (p - 1 )p , e; = 1 mod p. when n = (p - 1 )p and e; is a 

unit in O •.. For p = 2 the slightly stronger result, En = 1 mod 2k+2 
p 

can be stated. This does not improve the result of the next theorem so 

p = 2 will not be considered as a special case here. For any non-unit 

cx.' it is trivially true that 
n k+1 

ex. = 0 mod p This along with 

e;n =- 1 mod pk+1 f "t or any uni e; implies that the form 

n n n k+1 
90 = X1 + X2 + • • • + XS' S < p 

has the property that - 0 d k+1 g = mo· p 
0 

only when every 

unit. Extend this idea to consider where 

n n n 
91 = y 1 + y 2 + • • • + y t' 

x. 
1 

It follows that k+1 - O d. 2(k+1) 
g0 + p . g1 =:= · mo p only if each x. 

1 

is a non-

and each 

y, is a non-unit in O. This construction suggests that the form 
1 p 

k+1 2(k+1) q(k+1) 
g g +p g+p· g+•••+p g 

- O 1 2 q 

would have a relatively large n~mber of variables and still have only 

the trivial zero. 

The value of q depends on k and must be chosen correctly in 

order to allow g to contain the maximum number of variables. The fol-

lowing lemma determines the correct choice for q. To get an idea of 

the relationship between the lemma and g note that when any non~zero 



p-adic number EPt is substituted in a form gr' the contribution to 

n tn+r(k+1) 
the sum g is a term of the form E p • 
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Lemma 4.1 Let q = [n/(k+1)]-1 and s. = t .n + r. (k + 1) 
1 1 1 

where r., t., 
1 1 

k are integers, 0 ~ ri ~ q and k > O; [x] denotes the greatest inte-

ger less than or equal to x. Then 

(1) s. = s. implies t. = t. and r. = r. and 
1 J 1 J 1 J 

(2) s. I s. implies Is. - s. I >k + 1. 
1 J 1 J 

Proof: To prove (1), suppose s. = s. or t'.n+r.(k+1)=t.n+r.(k+1). 
1 J 1.. 1 J J 

This gives (t.-t.)n = (r.-r.)(k+1) which implies that either 
1 J J 1 

t. =t. and r. =r. or n divides lr.-r.l(k+1). However, by defini-
1 J 1 J J 1 

tion lr.-r.l < q<n/(k+i) so lr.-r.l(k+1) < n. Therefore, n 
J 1 - J 1 

can divide Ir. - r. I (k + 1) only if Ir. - r. I = O. This gives the 
J 1 . J 1 

desired result r. = r., and t. = t. follows immediately. 
1 J 1 J 

To prove (2) suppose, without loss of generality, s. > s. or 
1 J 

t.n + r. (k + 1) > t .n + r .(k + 1). There are two cases to consider: 
1 1 J J 

t. = t. and t. It.. If t. = t., then r. > r. so that 
1 J 1 J 1 J 1 J 

s.-s. = (r.-r.)(k+1) >k+1. 
1 J 1 J 

If t. I t . , let t. >- t . • It follows that 
1 J 1 J 

( t. - t . ) n > n > ( q + 1) (k + 1) > ( r . - r. + 1) (k + 1) 
1 J - - J 1 

which gives 

(t.-t.)n + (r.-r.)(k+1) >k+1. 
1 J 1 J 

This is the same as s. - s. > k + 1. A similar argument holds for 
1 J 



t. < t. 
1 J 

giving s. - s. > k + 1. The net result is 
J 1 

ls.-s.l >k+i. 
1 J -
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The following definitions will be useful in the next theorem. Let 

+ • • • + q(k+1) 
p gq 

n n n k Each gr has the form x+x+•••+x where n = (p - 1 )p and 
1 2 s 

k+1 
- 1. The sets of variables contained in the pairwise s = p g are 

r 

disjoint and q = [n/(k + 1)] - 1. If we denote the number of variables 

Nk = (q + 1 )s [ J k+1 
n/(k + 1) (p - 1) • 

Theorem 4.1 The form ~ described in the previous paragraph has the 

following properties: 

(1) For any k ::: o, Gk has only the trivial zero. 

(2) Given any E > o, there exist infinitely many k 

for which Nk > 2-E 
n 

(3) When p-f 2, NO 
2 

= n . 

Proof: To prove (1), suppose the contrary; that is, ~ has a non-

trivial zero 

t 
as e:.p 1 and 

1 

where s. = t. n + r. (k + 1) 
1 1 1 

and 

Then each non-zero 8. 
1 

0 < r. < q. 
- 1 -

Then let 

min [s. IO< i < Nk, e. f o} and write 
1 - - 1 

can be written 

s be defined as 



This implies that 

s = p 

n s 1 -s = e:.p 
]. 

0 . 

In order to analyze this result, let f be the sum of the terms where 

s. = s and h be the sum of the terms where s. > s. Thus, 
]. ]. 

l f+h = 0 . 

e.10 
]. 

33 

Now, as a result of lemma 4.1, s. = s. implies r. = r. so all terms in 
]. J ]. J 

f are from the same g. The second statement in lemma 4.1 shows that 
r 

s . - s > k + 1 when 
]. - s. Is. 

]. 
Therefore, h has a factor of 

k+1 
p Now, 

since f+h=O, .·it follows that 
k+1 

f = 0 mod p • However, this is 

impossible since f contains at most pk+1 - 1 n 
terms of the form 'g, 

]. 

each of which is congruent to 

the proof of (1). 

k+1 
1 mod p • 

To prove (2) it will suffice to show 

This contradiction completes 

lim log • Nk· = 2. 
k->= . n . 

This will be 

accomplished by showing that ·· 1ogn Nk . is bourfded on one side by 2 and 

on the other side by a function whose limit is 2. The following 

inequalities are used without proof. Each can be shown to be true when 

k > 4 using elementary methods. 

k k+1 
p < p - 1 lk > k p • 



First consider the following: 

So 
2 

N < n p < 
k ·(p - 1) (k + 1) 

2 
n • This can. be written 

2 2k. (p .. 1) p p 
(p - 1 )(k + 1) 

To find a function that bounds· log N on the other side, observe 
n k 

first that 

Combining this with pk < pk+1 - 1 · gives 

l_ ( k) [<P·""·1)pk] (pk+1 _ 1 ) = 
k2 p < . k+ 1 .. 

Th lt · ' 1 • t 2k/k2 < N b . tt e resu ing inequa i y p k can e wri en 

2k. log p 
n 2 log k < log Nk • n n 

(4.1) 

(4.2) 

The functions on the left side of (4.2) can be replaced by more familiar 
' 

functions. The fact that n = (p - 1 )pk gives us the inequality 

k k+1 
p ::S,n<p 

The left portion 

. . k+1 'tt The right portion n < p can be wri en 

k 
P ::S. n 

1 
109nP<k+1 

implies n1//k > p/k > k which implies 

l > log k • 
./k n 

(4.J) 

(4.4) 
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Now, the four inequalities (4.1), (4.2), (4.3), and (4.4), give 

From this it follows immediately that lim logn ~ = 2. 
Ic-*ao 

Statement (3) follows from the definition of ~ since by direct 

substitution 2 = n • • 
The results of this theorem have some interesting aspects. Conclu-

sion (3) shows tli:at when p 7' 2, 'the 2 in the conjecture cannot be n 

reduced. Conclusion (2) shows that if 2 replaced by s where n were n 

s < 2, then for any prime p infinitely many forms can be constructed 

for which the conjecture is false. ' It is interesting to note that the 

number of variables in the construction exceeds 2-E 
n as k becomes 

large while the power where ~ actually contains n2 vari~bles 

occurs when k = o. 

The prime p = 2 is· conspicious by its absence in conclusion (3). 

Including . 2 here produces .the uninteresting conclusion that a form 

consisting of one first power has only the trivial zero. In order to 

fill this gap, consider the form g defined by 

This form has only the trivial zero in o2 . To.see this first note that 

2 
x. - 1 mod 8 

1 
when x. 

1 
is odd and 2 - . d ,. x. = 0 mo· '* 

1 
when x. is even. 

1 

:The argument is then similar to the Terjanian counterexample, 

g - 0 mod 8 only if every x. 
1 

is even so any non-trivial zero must 

contain all even values. However, any such zero would produce another 
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non-trivial zero whose values are not all even which is a 

contradiction. 

Having established that the conjecture is in some sense the best 

possible, we turn our attention to proving that it is true. Consider 

what must be accompl.isl}ed. Given a diagonal form 

f = ex. xn + GX. xn + • • • + ex. xn, 
1 1 2 2 s s 

We must Show that S > n2 . 1· th t t .. 1 f f . t imp 1es a .non- r1v1a zeros o exis. 

In general, the 0.. 
1 

are p-adic numbers which have the form t 
e:p where 

t could be any integer either positive or negative. If the values of 

the t•s could be limited to relatively small positive integers, f 

would be easier to work with. The following example demonstrates hhw 

this can be done. 

Example ~.1 Let f be the following form with coefficients in Q2• 

9 6 -1 6 
+ 2 xa + 17 • 2 x9 • 

This form can be written as 

When is substituted for each of the corresponding expressions in 

parenthesis f is written 



After this substitution, the powers of 2 in the coefficients are 

limited to the integers from O to 5. Any zero that is found in 

terms of the y. will produce a zero in terms of the x. by simply 
1 1 

reversing the substitution. Another transformation that will prove 

helpful is the following grouping of f. 

This puts f in the form f 
0 + 2f1 + 22f2 + 23f3 + 24f4 + 25f5 

f = 6 6 6 
f = 6 6 6 6 

y1+Jy3+5y5 Y2 + Jy6 f2 = Y4 + 7Y7 fJ 0 1 

f4 = o and f5 
6 

17y9 • 

The significant feature of this grouping is that each 

where 

6 
Ya 

f. 
1 

has 

coefficients which are units in o2 ; that is, each f. 
1 

is a unit 
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diagonal form in o2 • The following theorem formalizes this transforma-

tion and shows that it can always be accomplished. 

Theorem 4.2 Let f be a diagonal form of degree n with coefficients 

in Q. For the purpose of determining zeros, f can be assumed to be 
p 

of the form 
n-1 

+ P fn-1 where each f. 
1 

is either 

zero or a unit diagonal form in 0 
p 

of degree n. 

Proof: Let f 

p-adic number. 

a: xn + a xn + • • • + a. xn · where each a:. is a non-zero 
1 1 2 2 s s 1 

Each a.. can be uniquely represented as 
1 

t e;,p 1 
1 

where 

e:. 
1 

is a unit in O 
p 

and t. 
1 

is an integer. Now, for each t. 
1 

there 

exist integers a. 
1 

and b. 
1 

so that t. 
1 

a.n + b. 
1 1 

and O < b. < n. 
1 



These values can be used as follows: 

n 
Gl..x. 

1 1 

t 1 n 
= e:.p x. = 

1 1 

""' a 1 n+b1 : n i;.,,p x. 
1 1 

This indicates that the substitution 
a 

p 1 x. 
1 

gives 

where O < b. < n - 1. To obtain the des ired representation of f, 
- 1 -

group the terms by ascending powers of p and factor out the 

this way f is written as a function of the and if 

is a zero of f, then 

also is a zero of f. 

In theorem 4.2, the zeros of f were not stated to be in 0 
p 

This does not lessen the value of the theorem because any zero of 

. 

can be used to produce a zero in 0 by multiplying each component 
p 

the zero by one sufficiently large power of p. Having established 
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In 

f 

of 

that 

this transformation is always possible, it can be assumed, when conven-

ient, that diagonal forms in Q 
p 

have this representation. 

To appreciate the advantage of this representation for f, con-

sider example 4.1 again. In this example f 0 

and Y = 1 ·, then 
5 

Now take 

8. In view of the 

result of theorem 2.11, the fact 6 = 3·2 implies that a 2-adic unit e: 
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is a 6th power if E = 1 mod 8. Also J is a unit in o2 which means 

that 1/J is a unit in o2 • These facts imply that 1- 8/J is a 6th 

power in o2• Now let 66 = 1- 8/J so that f 0 (0,6, 1) = o. The net 

result is that a non-trivial zero of f 0 has been constructed. If all 

other variables in f 1 ,f2 ,f3 ,f4,, and f 5 are ass;i.gned:the value zero, a 

non-trivial zero of f is produced. This zero is in terms of the 

but can be written in terms of the xi by letting x3 = 6/2, x5 = 23 (1) 

and all other x. by zero. 
1 

The advantages of this representation are further demonstrated by 

the following theorems. 

Theorem 4:.J Let n = mpk, (m,p) = 1 and g = e; xn+ e:: xn:+ ••• + e; xn 
1 1 2 2 s s 

where g is a unit diagonal form .in 0 • 
p 

Suppose the congruence 

k+1, k+2 
g = 0 mod p ~p when p = 2) has a solution in 

O where 9. F O mod p for some i. Then g has a non-trivial zero 
p 1 

in O. 
p 

Proof: 

some a in O 
p 

k+1 
- 0 mod p 

+ ••• + k+1 
O.p 

implies that for 

Now assume, with no loss of generality, that 8 F O mod p and consider 
1 

the fact that 

+ • • • + 

Using the criteria established in theorem 2.11, 

nth power in 0 it is congruent to the because p 

E en = 0 • 
s s 

en -
1 

e;-1 k+1 ap 1 

nth power en 
1 

is an 

mod 
k+1 p 



Therefore, there is a & in O such that 
p 

~n =en_ -1 k+1 
u 1 E\ GX.p • It 

follows that (l:),92 ,93 , ••• ,98 ) is a non-trivial zero of g. The 

argument for p = 2 is exactly the same except 

2k+2 in the appropriate places. 

k+1 
p is replaced by 
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Theorem 4.4 Suppose every unit diagonal form in 0 
p 

of degree n with 

more than s variables has a non-trivial zero in O. Then every 
p 

diagonal form in Qp of degree n with more than ns variables has a 

non-trivial zero in O. 
p 

Proof: Let 
n ... 1 

f = f 0 + pf1 + • • • + p fn-i where each f. 
1 

is a unit 

diagonal form in 0 
p 

of degree n. If f has more than ns variables, 

some f. must have more than s variables. Let f denote an f. 
1 r 1 

with more than s variables. By hypothesis, f must have a non
r 

trivial zero in O. Assigning the values from this non-trivial zero of 
p 

f and zero to each of the variables in f f f f ,f 
r O' 1' • • • ' r-1' r+t' s 

produces a non-trivial zero of f. 

These three theorems provide a method for finding non-trivial zeros 

for diagonal forms in Q • 
p 

first write f in the form 

Given a diagonal form f of degree n 

Next, find an i 

for which f. - 0 mod pk+i(pk+2 if p = 2) has a solution in O • The k 
1 p 

is determined by 
k 

n = mp , (m, p) = 1 and at least one value in the solu-

tion must be a unit in O. Using theorem 4.J, this solution produces a 
p 

non-trivial zero of f .• As indicated in theorem 4.4, a non-trivial 
1 

zero of any f. will produce a non-trivial zero of 
1 

f. 

The theorems also provide a method for proving the conjecture in 

some important special cases. The first cases investigated are diagonal 
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forms in Qp of degree m where (m,p) = 1 and diagonal forms of 

degree 
k 

p ' p 12. In view of the nature of nth powers as established 

in Chapter II, these seem like natural cases to consider. Solving the 

form of degree m involves a congruence mod p while the form of 

degree 
k k+1 

p requires a congruence mod p • In view of this, it seems 

surprising that the conjecture is easier to prove in the latter case. 

However, in the course of the investigation of forms of degree 

m, (m ,P) = 1, several results are demonstrated which are necessary in the 

later work. The next few theorems provide a method for proving the 

conjecture for diagonal forms in Q 
p 

of degree m, (m,p) = 1. 

Theorem 4.5 (Lagrange's theorem) Let p be a prime and f(x) be a 

polynomial of degree n whose coefficients are integers. The congru-

ence f(x) = 0 mod p has at most n incongruent solutions mod p 

unless each coefficient of f(x) is congruent to zero mod p. 

Proof: See Niven and Zuckerman (11, p. 44). • 
Tpeorem 4.6 Let f(x1 ,x2 , ... ,x ) be a polynomial of degree less than 

s 

p in each x .• Suppose f(91,92, . .. 
1 

8 , s ) = 0 mod p for every 

(91,92, . . . ,9 ) where 9. = 0,1,2, ... ,P·"" 1 for each i. Then the 
s 1 

coefficients of f must all be congruent to zero mod p. 

Proof: Consider f as a polynomial in having coefficients 

which are polynomials in x 2 ,x3 , 

degree less than p and f 1 (x1 ) = 0 mod p has p incongruent solu-

tions mod p. Therefore, Lagrange's theorem implies that each of its 

coefficients, the polynomials in x 2 ,x3 , ••• ,xs' must be congruent to 

zero mod p for every (92 ,83 , ••• ,9s). Now each of these coefficient 
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polynomials can be considered as a polynomial in whose coefficients 

are polynomials in x3 ,x4 , ••• ,xs. Again, from Lagrange's theorem, the 
I 

coefficient polynomials in x3 ,x4 , ••• ,xs must all be congruent to 

zero mod p for every (93,84, ••• ,9s). This process can be repeated 

until the step where polynomials in x s 
are obtained whose coefficients 

are the original integer coefficients of f. These polynomials are of 

degree less than p in x and are all congruent to zero mod p for 
s 

x =0,1, ••• ,p-1. Therefore, their coefficients and, hence, all 
s 

coefficients of f must be congruent to zero mod p. 

An example will help to clarify the argument in theorem 4.6. 

Example 4.2 Let 

f(x,y) 

Then, f can be considered as a polynomial in x whose coefficients 

are polynomials in y. Now consider a fixed value of 92 for y so 

• 

f(9 1 ,92 ) = 0 mod 5 for 91 = 0,1,2,3,4. This implies that each coeffi-

cient polynomial must be congruent to zero mod 5 for the fixed 92 • 

We can use this argument for 5 different values of 92 , so we have 

and all congruent to zero mod 5 for 

5 incongruent values of y. The conclusion follows that each ai, the 

original coefficients of f, must be congruent to zero mod 5. 

An important consequence of this theorem is the following. Let 

of degree less than p for each x .• 
1 

Then if the congruence holds for 



every (91,92, ••• ,es), the polynomials f and g must be identical 

mod p. That is, all corresponding coefficients must be congruent mod p. 

Theorem ~-7 (Chevalley's theorem) Let f(x1 ,x2 , ••• ,xs) be a poly-

nomial of degree less than s with integral coefficients and whose 

constant term is zero. Then f = 0 mod p has a solution 

e. f O mod p for some 
1 

i. 

Proof: By Fermat's theorem xp - x mod p so each exponent in each term 

of f can be reduced to one of the values 0,1, ••• ,p- 1 without 

affecting the solution set of the congruence. Therefore, f can be 

assumed to have degree less than p in each x .• 
1 

In order to prove the 

theorem, assume the contrary, for every (91 ,92 , ,92 ) where 

ei F O mod p for some i, f(91,92, ••• ,es) F O mod p. With this 

assumption in mind, consider the following congruence: 

This congruence holds for all (91 ,82 , ••• ,9s). To see this, first let 

every e. be congruent to zero mod p. 
1 

By hypothesis, f has no con-

,e) - 0 mod p and it follows that both 
s 

sides are congruent to one mod p. Now consider the other possibility 

that some e. is not congruent to zero mod p. By assumption 
1 

f(9 1 ,e2 , ... e 
' s 

) 
"" 0 

mod p so the left side is congruent to zero modp. 

The right side is also congruent to zero mod p since one of its fac-

tors is congruent to zero mod p. So the congruence holds for all 

(91 ,92 , ••• ,9s). Applying the previous theorem, the polynomials on the 

right and left sides must be identical mod p. However, when the right 

side is expanded, it contains the term 



( )s p-1 p-1 
-1 x1 x2 

p-1 x 
s 

which is of degree s(p-1). On the left side, the fact that f has 

degree less than s means that no term can have degree as great as 

s (p - 1). This contradiction completes the proof of the theorem. 

This theorem and the previous one are also true if the coefficients 

of the given polynomials are p-adic integers. To see this for 

Chevalley's theorem, let Cl be any p-adic integer that is a coefficient 

of f. If 
Cl) i 

Cl= .r a.p , then 
J.=0 J. 

Cl= a 0 mod p. Now, if each p-adic 

coefficient is replaced by its corresponding a0 a new polynomial, say 

f 1 (x1 ,x2 , ••• ,xs), with integer coefficients is produced. Chevalley's 

theorem gives a solution (81 ,82 , ••• ,Ss) in integers for 

8 . .F O mod p. 
J. 

If each 

a0 coefficient in f 1 is now replaced by the corresponding p-adic 

value the congruence still holds since only a multiple of p is added. 

Therefore, is a solution for f = 0 mod p. The 8. 
J. 

that is not congruent to zero mod p can be considered as a unit in 

0 • 
p 

Chevalley's theorem is strong enough to use in proving the conjec-

ture for mth powers where (m,p) = 1. However, a stronger result can be 

established for diagonal forms an~ since this result will be needed 

later, the following theorem is included here. 

Theorem 4.8 Let 
n n :n 

be a unit diagonal g = E1X1 + ~x2 + ... + Ed+1xd+1 

form in 0 where 
k 

(m,p) = 1, and d = (m ,P - 1). Then, the n =mp , con-
p 

gruence g = 0 mod p has a solution in integers where x1 = 1. 

Proof: 
n 

Recall from theorem 2.12 that the congruence Ex - a mod p has 



a solution in integers if and only if the congruence Exd - a mod p has 

a solution in integers. Therefore, the congruence 

has a solution in integers with x = 1 
1 

if and only if g = 0 mod p 

a solution in integers with x 1 = 1. In order to prove the theorem, 

has 

assume the contrary, for every choice of integers x 2 ,x3 , ••• ,xd+1 , "it 

is true that 

It then follows from Fermat's theorem that the congruence 

holds for every choice of x 2 , x3 , • • • ,xd+1 • When the left side is 

expanded and each exponent is reduced to a value less than p, we can 

apply theorem 4.6 and conclude that each coefficient must be congruent 

to zero mod p. This expansion can be accomplished using the multi-

nomial formula with the following result: 

The sum is taken over all combinations for which O < a. < p - 1 and 
- J. -

a + a + • • • + a = p - 1. Each of these combinations occurs in exactly 
1 2 d+1 

one of the following cases: 

(1) a =0 and a.=(p-1)/d for all 
1 J. 

i,2<i<d+1. 

(2) and O<a.<(p-1)/d 
- J. 

for some i, 2 < i < d + 1. 



46 

(J) a 1 >o. 

In case (1), the resulting term is 

p-1 
xd+1 • (4.5) 

Note that the coefficient of this term is not congruent to zero mod p. 

Each term in case (2) has at least one exponent that is less than p - 1 

since O < da. < p - 1 for some i and da. 
1. 

is the exponent of x .• 
- 1. 1. 

This means that none of the terms from case (2) can be combined with the 

term from case (1). In case (J), the fact that a 1 > 0 means that 

a + a + • • • + a = p - 1 - a < p - 1. The sum has d terms so for some 
2 3 d+1 1 

i, o <a.< (p-1)/d. 
1. 

Therefore, as in case (2), each term in case (J) 

has at least one exponent that is less than p - 1. Since none of the 

terms from cases (2) or (J) combine with the term (4.5) above, this 

term must occur in the sum exactly as written. However, its coefficient 

is not congruent to zero mod p which is a contradiction to theorem 

4.6. Hence, the assumption that 

had no solution must be false. It follows that a solution exists for 

g = 0 mod p with x 1 = 1. 

We now return to the task of proving the conjecture that diagonal 

forms in Q 
p 

of degree n containing more than 
2 

n variables have 

non-trivial zeros in O. As a result of theorem 4.4, we need only show 
p 

that any unit diagonal form in 0 
p 

of degree 

variables has a non-trivial zero in O. 
p 

n with more than n 

.. 



Theorem 4. 9 Let 
m m m 

g = e:1x 1 + e:2x 2 + • • • + e;sxs be a unit diagonal form in 

O where s > m and (m ,P) = 1. Then g has a non-trivial zero in 
p 

0 • 
p 

Proof: Chevalley's theorem implies that the congruence g = O mod p 

has an integral solution 8 . J O mod p for 
1 

some i, Without loss of generality, suppose 81 JO mod p. Then 

m m m 
E 9 + E 8 + • • • + E 8 = O'..p 

1 1 2 2 s s 

for some O'.. in O. This can be written as 
p 

Now from theorem 2.11, 
m -1 

81 - E1 O'..p is an mth power 

8 in am m -1 
0 for which = 91 - E1 O'..p. It follows 

p 

is a non-trivial zero of g. 

in 0 so there 
p 

that (8,92,83, ••• 

is 

,9 

Note that this theorem can be strengthened using theorem 4.8. We 

a 

) 
s 

l 

can use s > d where d = (m,p - 1) instead of s > m. The two condi-

tions are the same only when m = p - 1. This is similar to the result 

of theorem 4.1 in which p - 1 was the degree of the form containing 

variables and having only the trivial zero. 

k k k 
Theorem 4.10 Let g = e;xp +e;xp +···+Ex1' be a unit diagonal 

1 1 2 2 s s 

in 0 where p ;I 2 and s > pk . Then g has a non-trivial zero in 
p 

Proof: Consider the set g of integers defined by 

[ I p-1 k+1 k+1 
a a = E . mod p O < a < p 

1 
1 < i < s} . 

2 
n 

form 

0 
p . 
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Since each e:. is a unit in 0 we have p-1 - 1 mod p for every p' e:. = 
1 1 

i. This implies that g contains at most k 
elements since there p 

exactly k 
integers between 1 and 

k+1 
which are congruent are p p to 

1 mod p. By hypothesis, k 
for some i ;I j s > p so we must have 

p-1 k+1 - e:. mod p 
J 

Without loss of generality, let gi = g1 and g. 82· Raising each 

side of the congruence to the power (pk-1 + 

using the identity (p-1)(p k-1 

This implies that for some a; 

k-2 + p 

or 

in O 
p 

+ ... 

J 
.k-2 p + 1) p + ... + 

1) k 1 gives + p -

g (e;Pk - g-1,:-,pk+1) + E (-E )pk = 0 
1 2 1""' 2 1 ° 

O for which 
p 

is a pkth power in 0 
p 

so there exists a 

It follows that (6,-e:1 , O, ••• ,o) is a non-trivial zero of g. 

and 

Corollary 4.1 Let f be a diagonal form in Q of degree n and 
p 

taining more than 2 variables. If (m,p) = 1 if n n = m, or 

k p,;{ 2, then f has a n(l)n-trivial in 0 n=p , zero . p 

in 

con-

Proof: The proof follows directly from theorems 4.4, 4.9, and 4.10. • 

In theorem 4.10, the result depended strongly on the fact that when 



k 
p I 2, p is odd. The next theorem shows that the restriction to odd 

powers produces a result that is often considerably better than the con-

jecture suggests. Note that 
k 

(p - 1)p is excluded by this restriction 

when p is odd. 

Theorem 4.11 Let E 
n n e: xn be a unit diagonal g = x1 + 82x2 + + 

1 s s 

in 0 of odd degree 
k 

,(m,p) 1, p 12. Then if n = mp = p 

s > (k + 1)1092 P, g must have a non-trivial zero in 0 . 
p 

Proof: Consider the set g defined by 

a.= 1 or o, 1 < i < s} • 
1 

This set g contains at most 2s elements. Now, since 

form 

s > (k + 1) log2 p .. 1 . 2s > Pk+1 imp 1'es there must be at least two ele-

ments of g which are congruent 
k+1 

mod p • 

where each a. 
1 

and 
I 

a. 
1 

is either · 1 or 

• _/ I 
1, a,ra .• 

l. 1 
This result can be written as 

This gives 

0 and for at least one 

(a -a')g +(a -a')g +···+(a +a')g 
1 1 1 2 2 2 s s s 

k+1 
CX.p 

for some a in 0 where each 
I 

a. - a. is either 1, .;.;, 1, or 0 and at 
p 1 1 

I 
is not Since is odd and each 

I 
least one a. - a. zero. n a. - a. 

1 1 1 1 

of the values 1, -1, and O, have (a. - a'.)n I for one we a .. - a. 
1 1 1 1 

i. Assume, without loss of generality, that is not zero. 

( I )n -1 k+1 a 1 - a 1 - E1 CX.p is an nth 

n , n -1 k+1 
in Op , 5 = ( a - a ) - e:1 O.p 

power in 0 . 
p 

Therefore, for some 

and it follows that 

has 

every 

Then 
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(5, a 2 - a~, ••• ,a -a') 
s s 

is a non-trivial zero of g. 

It is interesting to see the conditions under which this result 

improves on the conjecture and how much improvement is made. Combining 

the result of theorem 4.4 with the result of this theorem we have that 

any diagonal form in QP of odd degree 
k n-= mp and more'than 

n(k + 1)log2 p variables must have a non-trivial zero in O. 
p 

This 

• 

value n (k + 1) log2 p will be less than the 
2 

n in the conjecture when-

ever (k + 1) log2 p < n. If k = 0, this compares m and log2 p and 

m > log2 p provided p < 2m. If k > 0 it is not difficult to show 

that n > (k + 1) log2 p except when m = 1, p = 3, and k = 1. In general, 

when k > 0 the comparison of n and (k + 1)log2 p is similar to the 

comparison of n and log2 n which are significantly different, 

especially for large n. 

In theorem 4.10 diagonal forms in o2 of degree 2k were excluded 

because the method of proof required that 
k 

p be odd for every k. 

This case is more difficult because 2k is even. However, as we will 

show later, the proof of the conjecture for diagonal forms in Q2 of 

degree 2k provides a proof for all diagonal forms in Q2. Also, the 

methods that are devised for proving the conjecture in this case suggest 

methods for proving the conjecture for odd primes. We begin devising 

these methods by considering the following example. 

Example 4.J Let f = f 0 + 2f1 + 4f2 + 8f3 where 

and 
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Note that f 0 has more than 4 terms, but f 0 = 0 mod 16 only if 

xi - 0 mod 2 for each i, 1 < i :s_ 5. Therefore, f 0 cannot be used 

to construct a zero of f as has been the case in previous examples and 

theorems. However, if x. = 1 
1 

for i = 1 , 2 , 7 , 8 , 10 and x. = 0 
1 

for 

i = 3,4,5,6,9 the result is f 0 ',= 10, 2f1 = 10, 4f2 = 4, and 8f3 = 8. 

This gives f = 32. Now, since 1- 32 = 1 mod 24 , -31 is a 22th power 

in o2• Therefore, for some 6 in o2 , 54 = -31 and when x1 = 6, 

x. = 1 
1 

for i = 2,7,8,10 and x. = 0 
1 

for i = .3,4,5,6,9, this is a 

non-trivial zero of f. Another non-trivial zero could be constructed 

using instead of Since 9 is a unit in o2 , 1/9 also is a 

unit in o2 and 1 - .32/9 - 1 mod 24 • Therefore, 1 - .32/9 = -2.3/9 is a 

4th power in o2 and if 4 
6 = -2.3/9, x2 = 6, x. = 1 

I 1 
for i = 1, 7 ,8, 10 and 

x. = 0 for i = .3 ,4 ,5 ,6 ,9 is a non-trivial zero of f. It is important 
1 

to note that the x. 
1 

from cannot be used as the 

and were used to construct a non-trivial zero because as variables 

in f their coefficients are not units in o2• 

This example demonstrates a method that will be used in construct~ 

ing all non-trivial zeros in the remainder of this chapter. First a 

solution in integers to an appro~riate congruence will be constructed. 

Then, this solution will be used to construct a zero of f. This method 

can succeed only if the integral solution assigns a value to some vari-

able in f 0 which is not congruent to zero mod p. If f 0 does not 

contain a sufficient number of variables the method fails. The follow-

ing example shows how such a problem can be overcome. 

Example 4.4 Let f be the form 
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Suppose the x. are replaced by 2y. 
1 1 

for i = 1,2,3. The first three 

terms of f 4: 4: 
then become 16(y1 + 9y2 ) 

4: 
+ 32(y3 ). After rearranging the 

terms, f can be written as 

This form is essent~ally 4: times the form in example 4:.3. The non-

trivial zero of that form, adapted to the proper variables here, gives 

X4: = &, x = x·, = Y1 = Y3 = 1 and x6 = x7 = xa = x9 = Y2 o. This 
5 · 10. · 

produces a non-trivial zero of f in terms of x. when x1 = 2y1 = 2, 
1 

x2 = 2y2 = o, and x3 = 2. 

The following theorem uses this type of substitution to effect a 

cyclic permutation of the f. 
1 

so that any f. 
1 

can be placed in the 

first position. 

Theorem 4:.12 Let n-1 
f = f 0 + pf1 + ••• + p fn_ 1 where each f. 

1 
is a 

unit diagonal form in 0 
p 

of degree n. Then f has a non-trivfal 

zero in O if and only if the form 
p 

n-1-r n-r n-1 
g f + pf + • • • + p f + p f + • • • + p f 1 r r r+1 n-1 0 r-

O<r;:::n-1, has a non-trivial zero in O. 
p 

Proof: Let 

rf r+1f 
P r + P , r+1 + • • • 

n-r -r 
gr = p h1 + p h2 • If 

direct substitution 

and 

n-1 
+ p fn_ 1 • It follows that f = h 1 + h2 

a xn + a xn + • • • + atxnt represents h 1 , 
1 1 2 2 

and 

then by 



A similar statement can be made about h2 • Now suppose 

(81 ,92 , ••• ,98 ) is a non-trivial zero of f. It follows that 

gr( 91 182 1 ,et,Pet+1' ... ,p8 ) 
s 

n-r 
h1(81,e2, 'et) 

, -r 
,p9 ) = p + P h2(pet+1 1 P 8t+2' ... 

s 

n-r 
h1<e1,e2, ,et) 

n-r , e ) = p + P h2( 9t+1'et+2' ... 
s 

n-rc 
,et) + h2(et+1'et+2' '8 ) J = P h1(e1,e2, . . . ... 

s 

Therefore, ( 91 , 92 , • • • , et ,pet+1 , 

gr. Now suppose (81 ,92 , ••• ,e8 ) 

this case (p81,p82, • • • ,p8t, et+1' 

,Pe ) is a non-trivial zero of 
s 

is a non-trivial zero of g. 
r 

trivial zero of f by the following: 

, 8 ) 
s 

,8 ) is shown to be a non
s 

In 
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In previous problems, we have used the fact that when f contains 

more than s variables, the average number of variables in the 

more than s/n. It was natural to observe that this implies some 

f. 
1 

f. 
1 

is 

must contain more than s/n variables. As a result of theorem 4.12, we 

may assume without loss of generality that f 0 itself contains more 



than s/n variables. The observation about the f. can be extended to 
1 

consider all consecutive pairs [f.,f. 1}. 1 1+ 
Since there are n pairs 

and each variable is included in exactly 2 pairs the average number of 

variables contained in each pair is greater than 2s/n. Therefore, some 

pair must contain more than 2s/n variables. Continuing this concept 

we can consider all sets [f.,f. 1 , ••• ,f .. 1} of j consecutive 
1 1+ 1+J-

forms. Some such set should contain more than js/n variables. 

Theorem 4.13 from a paper by Lewis and Davenport (8) shows that such a 

result is not only possible but that an even stronger result can be 

obtained. 

Theorem 4.13 Let n-1 
f = f 0 + pf 1 + • • • + p fn_ 1 be a diagonal form with s 

variables where each f. is a unit diagonal form in O of degree n. 
1 p 

n-1 
Then there exists a diagonal form g = g + pg + • • • + p g with the 

0 1 n-1 

following properties: 

(1) 

(2) 

g has a non-trivial zero in O 
p 

a non-trivial zero in O. 
p 

if and only if 

If M. 
1 

denotes the number of variables in 

f has 

then 

MO > .:! - n' 
(n-1 )s 

M +M +···+M >---
0 1 n-2 - n 

and M+M+···+M =S. 
O 1 n-1 

Proof: To prove this theorem, it will be shown that there exists an r 

for which in theorem 4.12 has property (2). Denote the number of 

variables in each f. as N. and consider the infinite periodic 
1 1 

sequenc.e [N.} 
1 

where N. 
1 

N .• 
n+1 

In this sequence, any segment 

has the property that the N. 
1 

denote exactly 

the number of variables in the unit diagonal forms in where 



r = t mod n and O < r < n - 1. The proof of the theorem will be com-

plate when the existence of an r is demonstrated for which 

N +N +•••+N >..!!, 
r r+1 r+t-1 - n 

for all t, 1 < t < n. To prove that such an r exists, assume the 

contrary that for every r there exists a t, 1 ~ t ~ n, for which 

First define 

N . Nl .. N . < . :ts 
~ + ;+1 :+ ' •• + ~+t.:.1 · ·~ • 

u. = N. - s/n. 
1 1 

By the definitions of N. 
1 

and 

u0 + u1 + • • • + un-i = 0. By assumption, for every integer a there 

exists another integer b > a for which 

(b-a+1)s 
N +N +•••+N <-----a a+1 b n 

This can be written as 

(N - .!..) + (N - .!..) + • • • + (N - .!..) < 0 
a n a+1 n b n 

and in terms of the u. 
1 

as u + u + ••• 
a a+1 

Now consider the 

following sequence of ordered pairs. Let a 1 be any integer and de-

termine b1 so that 

u +u +•••+u <o. 
al Bi +1 bi 

Now let a 2 = b1 + 1 and determine b 2 so that 
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Continuing this process, there must eventually be some i < j such that 

a.= a. mod n. This result allows us to establish a contradiction. 
1 J 

Consider the sum 

This sum can be considered as segments of the form 

u + u ·+ • • • + u , i ~ s ~ j - 1 • a, a 8 b 1 

The sum of each segment is less than zero so the entire sum must be less 

than zero. This sum can also be considered as segments, each of length 

n, and each containing a complete set of the original u .• 
1 

Each of 

these segments has the sum zero so the entire sum must be zero. This 

contradiction proves that the assumption is false and completes the 

proof ot the theorem. 

The two previous theorems have applications for odd primes as well 

as for p = 2. The next section concentrates on proving the conjecture 

in the 2-adic case. Recall from example 4.J that the zero of f was 

obtained by first assigning values of one or zero to each x .• 
1 

The 

result of this assignment was f 0 = 10, 2f1 = 10, 4f2 = 4, and 8fJ = 8. 

2 
Now consider the progressive sums f 0 = 10 = 5·2, f 0 + 2f1 = 20 = 5•2 , 

f 0 + 2f1+ 4f2 = 24 = J·23 , and f 0 + 2f1 + 4f2 + 8fJ = 32 = 25 • An 

important observation is that the value of each sum contains at least 

one more factor of 2 than the value of the previous sum. This is 

necessary in order to obtain the result of f = 0 mod 24 using vari-

ables from f 0 • A second observation that can be made from this 

example is that when an x. 
1 

is assigned the value one this has the 

• 
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effect of picking the coefficient of the x. to be retained in the sum 
1 

while assigning the value zero to an x. 
1 

has the effect of deleting its 

coefficient from the sum. In constructing a zero for f we will be 

concerned with obtaining a sum whose value contains a certain power of 

2. This construction will be accomplished by retaining or deleting the 

coefficients of f. We begin with the following definition. The use 

of ~ and e in the definition is consistent with the usual convention 

of letting ~ denote a p-adic integer and e; denote a unit in o2 • 

Definition 4.2 A 2-adic integer that is divisible by 2i will be said 

to be of the 2i~ type. A 2-adic integer of the 2i~ type that is not 

2 i+1Q 
of the I-' type will be said to be of the 2iE type. 

Lemma 4.2 Given 2i terms of the 2j~ type one can construct 

terms of the 2j+n~ type where O < n < i. 

Proof: First partition the 2i terms of the 2j~ type into 

pairs. If [2j~1 ,2j~2 } is one such pair, then ~1 ,~2 , 

even. Therefore, 2j~1 ,2j~2 , or 2j(~1 +~2 ) is of the 

or ~1 

2j+1~ 

i-n 
2 

i-1 
2 

+ ~2 

type. 

It follows that from the 
i-1 

2 pairs i-1 
2 terms of the 2j+1~ type 

is 

can be constructed. Similarly from 
i-2 

2 pairs of these 2j+1~ terms 

i-2 2j+2Q 2 terms of the I-' type can be constructed. Proceeding in this 

fashion in general i-n 2 terms of the type can be constructed. 

Lemma 4.J Let 2jE 
1 

and 2jE 
2 

be terms of the 2jE type with 

E1 = E2 mod 4. Then, 2 j(e;1+e;2) is of the 2j+1e: type. 

Proof: Since e: 1 and are both congruent to one mod 2 either 

e:1 = e:2 = 1 mod 4 or e:1 = e:2 = 3 mod 4. In either case, 



e:1 + e::2 - 2 mod 4. Therefore, e: 1 + e:2 is of the 2S type, but not of 

the 22S type. It follows that e::1 + e::2 is of the 2£ type and that 

is of the 
j+1 

2 e: type. 

Lemma 4.4 Given 2i terms of the 2je: type, one can construct 

terms of the type where O<n<i. - -
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Proof: First partition the 2i terms into two sets, one set containing 

the 2j e: terms where e: = 1 mod 4 and the other set containing those 

where e; = 3 mod 4. Now each set can be partitioned into pairs with at 

most one term in each set left over. Using lemma 4.3' each pair can be 

used to construct a term of the 2j+\ type. In all, there will be at 

least (2i - 2)/2 = 2i:..1 - 1 terms of _the 2j+\: type constructed. For 

the next step, and all succeeding steps, the number of terms at the 

beginning is odd so exactly one term will not be used in pairing the 

terms whose e: values are congruent mod 4. Therefore, 

[ (2i-1 _ 1) - 1]/2 = 2j-2 - 1 terms of the 2j+2e: type can be con-

structed. Continuing this process, 
j-n 

2 - 1 terms of the type 

can be constructed where O < n < i. - -
Lemma 4.5 Given one term of the. 2jS type and terms of the 

j . 2i+jQ. 2 e: type, one can construct one term of the ~ type. Furthermore, 

the original 2js term can be retained as one of the terms used in 

2 i+jQ constructing the ~ term. 

Proof: Using the technique of lemma 4.4, the 2i - 1 terms of the 2je: 

type can be used to construct 2i-1 - 1 terms of the 2j+1e:: type where 

exactly one term of the 2je: type is not used. This remai11J~g term 

can be paired with the term of the 2jS type. For this final pair, if 
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Q - 1 d 2 th 2j(Q ) i·s of the 2j+1Q type. i,; = mo , en "' + e: "' If S = 0 mod 2, 

then the 2js term is of the 2 j+1Q t .., ype. The net result is that the 

final pair produces a term of the 2j+1s type which is constructed 

using the original 2js term. By exactly the same technique, the 

2i-1 - 1 terms of the 2j+1e: type and the one term of the 2j+1 s type 

can be used to construct 2j-2 - 1 terms of the 2j+2e: type and one 

term of the 2j+2 s type. 2 j+1Q 
As in the first step, the i,; term and, 

h t . . jQ . . . . 2j+2Q ence, he original 2.., term is retained in constructing the .., 

term. In general, this process will produce 2i-n - 1 terms of the 

j+n 2 J'+nQ 
2 E type plus one term of the i,; type. When the step where 

n=i is reached, there are or zero terms of the 
j+i 

2 e: type 

and One term Of the 2 j+iQ type. Th .. 1 2jQ t . t . d i,; e or1g1na i,; erm is re aine 

. t' 2j+iQ in construe ing the i,; term.·· 

Theorem 4.14 Let f be a diagonal form in Q2 of degree 

where (m,2)=1 and k > 4. Then if f contains at least 

variables f has a non-trivial zero in o2 • 

k 
n = 2 m 

2 
n + 1 

Proof: As a result of theorems 4.2, 4.12, and 4.13, the following 

assumptions can be made: 

(1) n-1 
f = f + 2f1 + ••• + 2 f where each f. is a unit O n-1 1 

diagonal form in o2 • 

(2) If N. denotes the.number of variables in each f., 
1 1 

then 

2 N + N + ••• + N > 
O 1 n-1 n • 

The proof of the theorem will follow if it is possible to construct a 

term Of the 2k+2 Q t · f ff' ' t f f 'd d i,; ype using a sumo coe 1c1en s rom provi e 
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some of the coefficients come from f 0 • To construct this 2k+2 ~ term, 

consider two cases, one when N > 2k+2 
o- and the other when N0 < 2k+2 • 

If N > 2k+2 
o- using lemma 4.2, a term of the type can be con-

t t d · 1 ff' · t f f If N0 < 2k+2 , the result s rue e using on y coe 1c1en s rom 0 . 

is not so immediate. Note first that since n = 2km and k > 4 by 

assumption (2), N0 > n ~ 2k ~ 24 • Also by assumption (2), 

This inequality and N0 < 2k+2 

of the coefficients from 

imply that 
k 

N1 + N2 +NJ+ N4 > 2 • 

by lemma·4.2, one term of the 

Using 

type can be constructed. Now, in order to apply lemma 4. S, 2k+2 - 1 

terms of the 24e: type need to be constructed using the remaining terms 

from To do this, begin with the 

that remain in As demonstrated in lemma 4.4, these 

N - 16 
0 

N - 16 
0 

terms 

terms 

can be used to construct at least (N0 - 16) /2 - 1 terms of the 2 e; 

type. The terms from f 1 are already of the 2 e: type so at least 

(N0 - 16)/2- 1 + N1 ,2e: terms are available using f 0 and f 1 • Applying 

the same argument to this set of 2E terms at least 

[ (N0 - 16) /2 - 1 + N1 ]/2 - 1 terms of the 22e; type can be constructed. 

The terms from f 2 will add N2 terms of the 22 e: type. The follow-

ing expression represents the number of terms of the 

result from applying this process four times. 

N - 16 
0 

2 - 1 + N1 
~~~~~~~~- - 1 + N 

2 2 - 1 + N 
2 3 -------~-------2---- - 1 + N4 

type that 
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which is greater than 

Thus, when NO 
2k+2 < , the construction of one term of the 24s type 

using coefficients from fo and 2k-2 - 1 terms of the 24e type using 

the remaining coefficients from f 0 ,f1 ,f2 ,f3 , and f 4 can be accom~ 

plished. Applying lemma 4.5, one term of the 2k+2 S type can be con

structed which retains the 24S term and, hence, uses coefficients 

from fo. 

In the following, the two cases no longer need to be considered 

separately. . 2k+2Q. In each case, the construction of a ~ term means that 

by assigning values of one and zero to the variables in the f. result 
i 

2 3 4 
f O + 2f 1 + 2 f 2 + 2 f J + 2 f 4 

is obtained. In this construction, at least one variable in f 0 has 

been assigned the value one. Denote 
n 

Ex as a term in 

x = 1 and note as in previous similar situations that 

f 0 for which 

1 - E- 12k+ 2S is 

Now, let x = 6, assign values to the remaining variables in 

f 0 ,f1 , ..• ,f4 from the previous construction and assign all variables 

in f., i > 4, the value zero. 
i 

This produces a non-trivial zero of f. 

• 
This theorem proves the conjecture for diagonal forms in Q2 of 

degree 
k 

n = 2 m when k > 4. When k = 0 , n = m , and since (m,2) = 1, 

the conjecture is proved in corollary 4.1. This leaves the cases where 
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k=1,2, and J. Techniques similar to those used in theorem 4.14 also 

work in these cases. One approach to constructing the different solu-

t · f f =- 0 mod 2k+2 ions o is the following. When k = 1 consider two 

cases, m = 1 and m .:::. 3. When m = 1 the proof can be found in 

Borevich a,nd Shafarevich (J, p. 51). When k = 2 consider four cases, 

N0 ~ 16 , 12 ~ N0 ~ 15 , 8 ~ N0 ~ 11, and 5 ~ N0 ~ 7. When k = J con

sider three cases, N0 .:::. J2, 16 ~ N0 ~ J1, and 8 < N0 ~ 15. The fol-

lowing example is representative of these cases. 

Example 4.5 Consider the case where k = J and 8 < N0 ~ 15. Under 

assumption (1) of theorem 4.14, f can be represented as 

n-1 f + 2f + • • • + 2 f where each f. is a unit diagonal form in o2 O n-1 1 

of degree 8m, (m,2) = 1. With assumption (2) of theorem 4.14, 

N0 + N1 + N2 + NJ > 4n = 4(8m) .:::. 32. This and the condition N0 ~ 15 

implies that N1 + N2 + NJ .:::. 18. Now lemma 4.2 implies that one term of 

the 23s type can be constructed using 8 of the coefficients of f 0 • 

From the remaining coefficients of. f 0 ,f1 ,f2 , and f 3 , at least 

N - 8 
0 

- 1 + N1 
--2------ - 1 + N 

2 . 2 - 1 + N 
2 J 

terms of the 23£ type can be constructed. The value of this expres-

sion is not less than 

Therefore, three terms of the 23e type can be constructed to combine 

with the one term of the 23S type that came from f 0 • Using lemma 4.5 

these four terms will produce one term of the 25S type that retains 
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the 23s term. Hence, a suitable solution for f - 0 mod 25 has been 

constructed and the non-trivial zero follows. 

The objective of the final section of this chapter is to prove 

Artin.'s conjecture for diagonal forms in Q 
p 

when p 12. This has been 

accomplished in corollary 4.1 for forms of degree n where 

(n,p) = 1 
k 

or n = p. This section deals with forms of degree 
k 

n = mp 

where (m,p) = 1, k > O, and m > 1. The methods are similar to those 

used previously, however a few additional factors need to be considered. 

Given a diagonal form f of degree 
k 

n == mp , f is represented as 

n-1 k+1 
f 0 + pf1 + • • • + p fn_ 1 and a solution for f = 0 mod p is con-

structed. As before, it is essential that this solution assign to some 

variable in f 0 a value that is not congruent to zero mod p. The fol

lowing development describes a procedure for constructing this solution. 

Suppose a form • • • + 

d==(m,p-1) is a portion of some unit diagonal form 

where 

f. 
1 

of f. As 

shown in theorem 4.8, there exists a solution (1,92 ,93 , •.• ,9d+1 ) for 

the congruence g = 0 mod p. Therefore, 

en t 
e: =PE: d+1 d+1 

for some t > 0 and some unit e;. Now substitute 9.y for each x.: 
1 1 

g +·1 • • • + 

== ( c- + .,.. 9n + • • • + .,.. 9n . ) yn = pt "'Yn 
v1 v2 2 ~d+1 d+1 v 

With reference to the entire form f, the term 
t n 

p Ey produced from 

terms of f. 
1 

n 
can be considered as the term Ey in f. t" 1+ 

This 
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operation of constructing one term from d + 1 terms is called a 

contraction. In each partial form g the first variable is always 

assigned the value one and is called the distinguished variable. 

Variables that are produced by the contraction operation are called 

derived variables. The contraction operation will be applied repeatedly 

to f as described by the following steps. 

Step 1 Divide f 0 into [N0 /(d + 1)] partial forms each containing 

d + 1 terms and assign any remaining variables of f 0 the value zero. 

Apply the contraction operation to each of the partial forms. With the 

resulting derived variables, f can now be represented as 

+ • • • + + ••• 

where f~ denotes the original f. combined with any derived terms of 
i i 

the form 
i n 

p gy • 

Step 2 This step is similar to step 1 applied to instead of f 0 . 

The only difference is that f1 
1 

is divided into partial forms whose 

first, or distinguished, variable is a derived variable. Any variables 

in that cannot be used in this way are assigned the value zero. 

After applying the contraction operation to all such partial forms, f 

can be represented as 
2 2 3 2 i 2 

p f2 + p f3 + ••• + p fi + ••• with f~ 
i 

denoting the original f. 
i 

combined with any qualified derived variables 

produced in steps 1 and 2. 

Step t, t > 1 This step is exactly the same as step 2 applied to 

and after t steps, f can be represented as 

+ • • • + + ••• 
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where f~ contains the original f. and any qualified derived vari-
1 1 

ables produced in steps 1 through t. 

Any f~ where i > n contains only derived variables since 
1 

originally f fo pf1 
n-1 A important observation = + + + p f 1 • more 

n-

is that if i ~ k + 1, ift p . - 0 d k+1 mo p must have a non-trivial solu-
1 

tion. Furthermore, if f~ contains a derived variable some non-
1 

trivial of ift O mod p 
k+1 

yields non-trivial of f. zero p . - a zero 
1 

This zero is obtained by setting the derived variable in equal to 

one and assigning corresponding values to the ancestors of this derived 

variable in f 0 ,f1 , ••• ,fk. All other variables are assigned the value 

zero. It is important to see that when a derived variable in f~ 
1 

is 

assigned the value one all distinguished variables that are ancestors of 

this derived variable also have the value one. Therefore, when the 

ancestry is traced back to an original distinguished variable in f 0 

this variable will have been assigned the value one. This value in f 0 

allows us to construct a non-trivial zero of f from the solution of 

k+1 
f = 0 mod p The main task of the next theorem is to show that some 

f~ where i > k + 1 must contain a derived variable whenever f con-
1 

tains more than 2 
n variables. 

The following example will help to clarify these ideas and make the 

following theorem more understandable. 

Example ~-5 Consider the following diagonal form in o5 : 

f 



Therefore, 

f 2 50 50 .3 50 f 
0 = x1 + x2 + x., ' 1 = 

Since 
2 

50 = 2•5 and (2,5-1) = 2, according to theorem 4.8 the 

contractidn operation can be applied to any three terms from any 

In if is cons id.ered as the distinguished variable, 

x 2 o, and x3 = 1 yiel~s f 0 = 5. Therefore, the substitution 

x 1 = 1•y1 , x 2 = O·y1 , and x3 = 

50 The resulting term, 5y1 , can 

1·y 
1 

yields 

be considered as the derived term 

in That is, f can be represented as 

5 ( y50 + 4:x50 + 1Jx50) + 25 ( 6x560 + 7x570) • 
1 4: 5 

f .• 
1 

Now the derived variable must be considered as the distinguished 

variable when a solution for y50 + 4x50 + 1Jx50 = 0 mod 5 
1 4 5 is sought. 

Using only ones and zeros ~ill not produce a solution to this congru-

ence. However, a little arithmetic shows that when x - ±1 mod 5, 

x50 - 1 mod 125 and when x = ±2 mod 5, x50 = -1 mod 125. Since we 

are attempting to solve a congruence mod 125, knowing the value of 

66 

x50 mod 125 is as useful as knowing the actual value of 50 x Cons id-

ering the size of the value mod 125 is more useful. Therefore, 

Y 1 X 2 and X · 1 y1· elds f 1
1 = y51° + '·x?0 + 1Jx5

5° = 10 mod 125 1 = ' 4: = ' 5 = ~ ~ 

and the substitution y 1 1·y2 , x4: = 2y2 , x5 = 1·y2 yields 

50 50 50 50 
Y1 + 4:x'-1: + 1Jx5 = 5·2y2 mod 125. Thus, the second derived variable 

y produces the term 2y50 in f 2 and the representation of 
2 2 2 

f is 

2 ( 50 50 50) now f = 25f2 = 25 2y2 + 6x6 + 7x7 • The derived variable y2 must 

now be the distinguished variable. Now set y 2 = y 3 , x6 = 0, and x7 = 2y 3 
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to obtain f2 = 
2 

50 
2y3 + 0 - 7Y50 = -5y50 

3 3 
mod 125. It follows that 

f3 
3 

·= -~o and f = 125f3 
3 

= 0 mod 125 for any value of Y3• If 

and the resulting assignment for the x. 
1 

is 

x1 = x3 = x5 = 1, x2 = x6 = o, ai:id x4 = x7 = 2. Therefore, 

f(1,o,1,2,1,o,2) = 125 a for some integer a. As in previous examples, 

theorem 2.11 implies that -1 1- 2 125a is a 50th power in o5 and 

(6,0,1,2,1,o,2) is a non.,-trivial zero of f where e,50 = 1- 2-1125a. 

This example and the preceding discussion indicate the importance 

of having a derived variable in some f7 where 
1 

i>k+1. This situa-

tion will have to exist if f contains at least one derived variable 

after k + 1 of the previously described steps. Lemma 4.6 establishes a 

usable lower bound. for the number of derived variables in f after t 

steps. 

Lemma 4.6 Let n-1 
f = f + pf1 + • • • + p f 1 0 . n-

where each f. 
1 

diagonal form in O 
p 

k of degree n =mp, p 12. As usual, 

d = (m ,P - 1), and N. 
1 

denotes the number of variables in 

St to be the number of derived variables in 

t t t+1 t it pf +p f +···+pf.+··· t t+1 1 

is a unit 

(m,p) = 1, 

f.. Define 
1 

after t steps as outlined in the discussion prior to example 4.5. 

Then st~ min(ct,Dt} where 

ct 
NO 

1 and Dt 
NO N1 Nt-1 

1 -
( d + 1) t-1 

- = 
(d+1)t 

+ + ... +-- - . 
(d + 1) t-1 d+1 

Proof: The proof is by induction on t. Step one produces 
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Now assume that S > min [c ,D} and 
r - r r 

consider S 1 • After r steps, f has the form 
r+ 

Let w 

rfr r+1fr 
p r + p r+1 + • • • 

i r 
+pf.+···. 

]. 

denote the number of derived variables in fr 
r 

number of derived variables in fr fr 
r+1' r+2' 

For 

and s - w r 

the (r + 1)st 

step, the N +w terms of fr are partitioned into partial forms 
r r 

the 

each 

with d + 1 terms subject to the condition that the distinguished vari-

able in each is one of the w derived variables. If N > dw, w 
r-

partial forms can be constructed each containing d terms from f 
r 

plus one derived variable. If N < dw, [(N +w)/(d+ 1)] partial 
r r 

forms can be constructed. Thus, two cases need to be considered: 

(1) N > dw with S 
r - r+1 

( S - w) + w = S and 
r r 

(2) N < dw with S 
r r+1 

(S -w) + [(N + w)/(d+ 1)]. 
r r 

Case ( 1). Consider the min [ C , D } • If C < D , the minimum is 
r r r - r 

attained at C and 
r 

c 
r 

j~o 
=-----1> 

(d+1)r-1 

NO 

If c > D r' the 
r 

NO 
D + 

r ( d+1)r 

minimum is 

N1 

(d+1)r-1 
+ 

r 
( d+1) 

attained at 

N ... + 
r-1 _ 

d+1 

- 1 = c 1 • r+ 

D and 
r 

NO 
1 > -

(d+1)r 
1 c 

r+1 
. 

Therefore min [c ,D } > C 1 • Since S 1 = S and S > min [c ,D } , 
r r - r+ r+ r r - r r 

it follows that S 1 > min [c ,D } > C · 1 > min (c 1 ,D 1}. 
r+ - r r - r+ - r+ r+ 



Case (2) First observe that 

S + d(S - w) + N - d S N - d 
= 

_r ____ r ____ r __ > ____!,__ + _r __ 

d + 1 - d + 1 d +· 1 

Now, if C < D , 
r - r 

then S > C and 
r - r 

C N ""'d 
S > __ r_ + _r __ 
r+1 d + 1 d + 1 

No Nr 
----+ -- -
(d+ 1 )r d+1 

NO 
1>-----1 

(d+1)r 

If C > D, then S > D and 
r r r r 

D N - d 

cdN+\)" 
N 

s > __ r_ + r -2::.!. -+ ... + 
r+1 - d + 1 d + 1 d+1 

NO N1~. N 
r 

1 = + + ... + --- = 
(d + 1)r+1 (d+1)r d+1 

c 1 • r+ 

1)(d! 1) + 

D 
r+1 

. 

N - d r 
d + 1 

Again, the conclusion S > min [ C 1 , D 1 } 
r+1 - r+ r+ 

follows completing the 

proof of the lemma. 

Theorem 4.15 Let f be a diagonal form in Q' p/2, 
p 

of degree 

k 
n =mp, (m,p) = 1, k _:::: 1. Then, if f contains at least 2 n + 1 vari-

ables it must have a non-trivial zero in O. 
p 

Proof: As in theorem 4.14 the following assumptions can be made: 

(1) n-1 
f = f 0 + pf1 + • • • + p fn_ 1 where each 

unit diagonal form in 0 . 
p 

f. 
1 

is a 
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(2) If N. denotes the number of variables in f.' 'then 
1 1 

NO + N1 + ... + N. > (j :t 1)n for O~j~ n- 1. 
J 

The proof of the theorem will follow when the existence of a derived 

variable in some ;_c+1 
t ' 

t ~ k + 1, is demonstrated. That is, in the 

notation of lemma ~.6, it is necessary to prove that s 
k+1 

> o. Since 

Sk+1 ~ min (ck+1 ,Dk+1}, we need only establish that Ck+1 > O and 

Dk+1 > O. By assumption (2), N0 > n = mpk ~pk> (d + 1)k. Therefore, 

N0 /(d+ 1)k > 1 or 

Also, by assumptfon (2), N0 + N1 + • • • + Nk > (k + 1 )n while 

(k + 1 }n > 2n = 2mpk ~ (m + 1 )pk ~ ( d + 1 )k+1 • 

The final inequality is true since m + 1 > d + 1 and p ~ d + 1 are 

impliedby d=(m,p-1). Now 

NO N1 
Dk+1 = ----- + + • • • 

(d + 1)k+1 (d + 1)k 

N + N + • • • +·N 
> 0 2 · k 
-------- -1 > 0 

. ( . )k+1 d :+ 1: '. .. 

so it follows that Dk+1 > O. 

Nk 
+ -- - 1 d+1 

In terms of f the result Sk+1 > 0 means that after k + 1 steps 

f can be represented as 

k+1fk+1 k+2fk+1 i_k+1 
p k+1 + p k+2 + ••• + p f"i + ••• 
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and that some contains a derived variable. Let z denote such a 

derived variable. Now, assign z the value one thereby assigning a 

corresponding value to each ancestor of z. When each variable that is 

not an ancestor of z is assigned the value zero the result is that 

f -- ,..pk+1 f . 0 ~ or some a in • 
p 

In this process, each distinguished 

variable that is an ancestor of z will be assigned the value one. . In 

particular, some distinguished variable in f 0 will be assigned the 

value one. Let SX.n be a term in fo in which x has been assigned 

the value one. Since 1- -10: k+1 E p is an nth power in 0 p' 

5n = 1- e:1apk+1 for some 5 in 0 . When x is assigned the value p 

5 and the other variables in f are assigned the values indicated 

above, the result is a non-trivial zero of f. 
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