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CHAPTER I
INTRODUCTION

The field of number tﬁeory is known for having problems that are
easy to state but difficult to selve. Problems tﬁat have traditionally
been referred to as diophantine problems are good examples of this phe-
nomenon. The essential ingredient Qf a diophéntine problem is preving
the existence of integral solutions of a set of equations or inequal-
ities. A beginning number theory:student can understand the statement
of such problems and soon discovers why they have intrigued mathemati-
cians for centuries. As the student acquires the basic techniques in
number theory, he discovers that a primary factor in solving diophantine
problems is his own ingenuity and the ingenuity of those who have pre-
ceded him. Methods that have been devised, while frequently elementary
in nature, display a creativity that appears to be unending.

Attempts to devise methods for solving certain types of diophantine
problems contributed to the development of the field known as the p-adic
numbers. The basic idea behind these methods is the following. If

0 1is to have a solution in integers, the congruence

]
1

fx, ,x

172! s

f(xl,x = 0 mod pn+1 must have a solution in integers for

.
.
w

0]
S

!

2,

every n > 0. It would be very convenient if the converse of this state-
ment were true. However, as the following example demonstrates, this is

not the case when p=3. Similar examples can be cited for any p.



Example 1.1 The equation x2 = 7 obviously has no solution in
. . 2 - n+1
integers. However, consider the congruence x -7 = 0 mod 3 where

n > 0. The following congruences can easily be verified.

22 - 7=0mod 3, 52 -7=0mod 32, 142 - 7 =0 mod 37,

682 - 7 0 mod 34, 682 - 7 = 0 mod 35. The values {2,5,14,68,68}
can be considered as the first five elements of a sequence {An} where

Ai - 7 £ 0 mod 3n+1. To show that the remainder of the sequence can be

constructed, suppose A? - 7 0 mod 31+1 for seme i Z.O. Then

A? -7 = 31+1t for some integer t. 1In order to construct Ai+

41 con-

sider the following:

(A, + 31+1x)2 -7 = A% + 2A.31+1x N 321+2x2 _ 7
i i i
- 31+1t + 2Ai31+1x + 321+2x2
4 .
= 37 4 2A,%) + 32i+2.2
Since (zAi,B) = 1, there exists an integer a:.1 such that
t-+2Aiai+1 =Z 0 mod 3. This implies that
(Ai + 31+1ai+1)2 - 7 £ 0 mod 31+2 .
Therefore, A, can be .defined as A.-+31+1a. .
i+l : i ) i+l

From this example, it is apparent that a sequence {An} can be

n i 2 n+1
constructed where An = X 3 a, and An-7 = O mod 3 for every

i=0 i

n > 0. Each a; is obtained by solving a congruence mod 3 so the

condition O s_ai < 2 can be imposed. In the example, the values of



the first five a, are a, = a3 = 2, a, =a, = 1, and a, = 0. Note
that a selution te the congruence xz = 7 mod 3 1is essential to the

construction. That is, 7 must be a quadratic residue mod 3.

The follewing definitiens are a more formal presentation of the
ideas suggested by the example. No further attempt is made to justify
the definitions. For a complete development of the p-adic numbers, see

Agnew (1).

Definition 1.1 Let p be a prime and let Ai and ai represent non-

negative integers:
(1) A sequence {An} is a p-adic sequence if

n
A =EA d f > 1.
n o1 M4 P or every n 2>

(2) A p-adic sequence is in canonical form if

n .
A = X a.p1 where 0 < a. < p-1.
n  jo i = i =

o .
(3) A p-adic number ¢ is defined by Q = pm z aip1

.

l:o
where O < a. < p-1. The field of p-adic numbers

i
is denoted by Qp.
(4) A p-adic number ¢ is a p-adic integer if m=0. The

ring of p-adic integers is denoted by Op.

(5) A p-adic integer ¢ is a unit in Op if ao;éo.

With these definitions, the equatien x2==7 : from example 1.1 has a

solution in O,. Since the congruence xz-’7 = 0 mod 5 has no solution

3

in integers, the equation xz:'7 cannot be solved in 05. One might
conjecture that a selution in integers for the equation

f(xi,xz, cee ,xs) = 0 exists whenever solutions exist in Op for every

prime p. This conjecture is much more difficult to disprove, but the
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equation 3x  +4y” +5z° =0 can be used to show that it is indeed

false.

As suggested by the previous discussion, the main value of the
p-adic integers as a tool in diophantine problems is for showing when
solutions in integers do not exist. That‘is, when an equation has no
solution in 0p for some p it has no solution in integers. 1In this
thesis, a more positive approach is taken. The problems that are con-
sidered are posgd'in a p-adic setting and the solutions are p-adic. No
attempt is made to relate the solutiens to problems involving integers.
One value of working with the p-adic numbers in this way is that they
provide an unfamiliar system that is simple enough for a developing
mathematician te make discoveries on his own.

The necessary background for reading the thesis is provided by a
basic number theory course plus a course in which the p-adic numbers
have been developed. Much of the material is a generalization of
results foeund in the first chapter of Borevich and Shafarevich (3) so
familiarity with this book would be most helpful.

The characterization of squares that appears in (3) was the motiva-
tion for Chapter II. This chapter, which is basic to the other two, is
devoted to a development of a characterization of nth powers in Op.
Chapter IIT is an investigation of Waring's problem ih‘a p-adic setting.
This problem is easier to solve in the p-adic setting and the investiga-
tion produces some rather surprising results. Chapter IV is a study of
Artin's conjecture for homogeneous forms in Qp. The original conjec-
ture is shown to be false and a weakened conjecture for diagenal forms

is substituted. The remainder of the chapter provides a complete proof

of the weakened conjecture.



CHAPTER II
POWERS OF P-ADIC NUMBERS

Several interesting diophantine problems in the field of number
theory inveolve integral powers. One such problem is Warihg's problem
which is to be investigated in a p-adic setting in Chapter III. Basic
to such an investigation is a usable characterizatioen of the integral
powers in Op. The main objective of this chapter is to develop such a
characterization. The first three theorems are essential to the develop-

ment and suggestive of the primary ingredients of the characterization.

Theorem 2.1 Let p be a prime and n==mpk. Then if a and Q are

s . = k+1
p-adic integers, (a-kap)n = an mod p .

Proof: Using the binomial expansion

n(n-1)a""2(ap)>
+ D) +

n

(a+ap)” = a + nan-i(ap) cer 4 (ap)” .

Since n==mpk every term in the éxpansion except a” contains the fac-

tor P 1, It follows that (a+ap)” = a® mod p< 1. ,

1

Theorem 2.2 Let n==2km where k > O. Then for any 2-adic integer

o, (1-+2a)n = 1 mod 2k+2.

Proof: Consider first (1:*2&)2 =1 + 4o + 4&2 =1 + ho(a+1). Since
either & or a+1 is divisible by 2, it follows that

(1-+2a)2 =1 + 88 for some B in Op. Now let n=2t and consider



(1+20)" = [(1+2a)2]f° = (1+88))c

2
t(t -
- 1+t(8g) + 22 1;(88) e e s (8R)F .
. k-1 . . .
Since t = 2 m, each term in the expansion except 1 contains the
factor 2k+2} It follows that (1-+2a)n = 1 mod 2k+2.

Theorem 2.3 Let a be an integer and p be a prime. Then

k
ap = a mod p.

Proof: The proof is by induction en k. If k=1, then a® = a mod p

k-1 - . iy

by Fermat's theorem. Assume then that ap = a mod p.. Therefore,

ok o k-1 k=1 :

a? 2 (P P =P = a mod p.
® i

Suppose that € = X a;p is a unit in Op, P#2. Then
i=0 '
.- B o * i-i .

E=a, +ap where O = X a,p” . According to theorem 2.1,

i=1

e” = (a_+ap)” = a" mod k+1
= ‘8 *ap; = a5 mod p

where n::mpk and theorem 2.3 implies

am mod p.

"
n _ .. mp
- a_ = (ao)

¢} 0
. n 3 i
From these two observations, we can conclude that & = X bip
i=0
implies bo = ag mod p. That is, bo must be an mth power residue

mod p. This in turn implies that ag = bo + Bp for some B in Op.

Therefore,

V4 k
n_ n_ . mp" p
e = a = (ao) = (bo-+BP)

o b mod pk .



This development shows that when p#2 necessary conditions for a

]
unit € = 'ZO bip1 in 0p to be an nth power are the follewing. If
1=

n==mpk where (m,p) = 1, by, must be an mth power residue mod P

% :
and the congruence € = bg mod pk+1 must hold. The following charac-

terization states that these conditions are also sufficient and pro-

vides similar cenditions for units in 02.

Characterization of nth pewers in 0O _. Let n==mpk where

(m,p) =1. Then the following conditions are necessary and

[~ .
sufficient for a unit g£= I aip1 to be an nth power in
i=0

o .
p

(1) The integer a, is an mth power residue mod p.

(2) If p=2 and k> O then €= 1 mod 2° 2.

vk _
(2) If p#£2 then EEag mod pk+1,

This characterization will be verified in several steps which are
undertaken in the following theorems. The overall plan is to consider

mth powers where (m,p) = 1, then pkth powers, and finally mpkth

powers.

Theorem 2.4 Let f(x, ,x., ... ,X ) be a polynomial whose coefficients
——— 172 s
are p-adic integers. Suppose ai,az, cee ,as are p-adic integers such

that for some i, 1< 1i<s,

- 2e+1
f(al,az, cee ,as) Z 0 mod p

of = e
g;; (al,az, cee ,Gs) = Omodp
of e+l
S;T (al,az, eee ,as) # 0 mod P



where e 1is a nonnegative integer. Then there exist p-adic integers

8,58,y eo- ,es .suChfthat.ﬁf(el,ez, cee ,es) = 0 and

1’727

ei = a, mod pe+1 for every i, 1< 1ic<s.
Proof: See Borevich and Shafarevich (3, p. 42). A

Theorem 2.5 If p is a prime and (a,p) = 1, then the congruence

x' = a mod p has (n,p-1) solutions or neo solutiens according as

a(p—1)/(n,p—1) - a(p-'l)/(n,p-l) < 1m

= 1 mod p or od p.

Proof: See Niven and Zuckerman (11, p. 54). A

” .
Theorem 2.6 Let g= 2 aip1 be a unit in Op and (m,p) = 1. Then
i=0 _

£ is an mth power in Op if and oenly if a is an mth power residue

(o]
mod p.

Proof: Suppose first that g 1is an mth power in Op. Then there

[--] 3 .
exists a § = .Z b.p1 in Op for which ém = g€ Now 6==bo-+Bp for

i=0 1 .
. . m m_ .m )
some B in Op and by theorem.2.1, § = (bo4-ﬁp) = bO mod p. Since
€= ao mod p and € = 5m, it foilows that a, = bg mod p. Hence, ao

is an mth power residue mod p.

Now, suppose that a is an mth power residue mod p. The proof

o}
that € is an mth power will be accomplished when the equation
X -E=0 1is shown to have a éolution in Op. If ‘d= (m,p~1), “there
exist integers r and s, s < 0, such that d=rm+s(p~-1). Since d
divides m, a, is a dth power residue so there exists an integer c¢

d
such that ¢

ao mod p. Now in order to apply theorem 2.4, let

f(x) =x"-g. Then

£(F) = Mo g - cd—s(p—'l) _e - (cd)l—s(p—l)/d - e



or
£(ch) = (ao)l—S(p_l)/d - € mod p.

Since ao is an mth power residue mod p, theorem 2.5 implies

ac()p-l)/d £ 1 mod p. It follews that f(cr) = ao -& mod p or
r., _ ) ’ m=1"
f(c') = 0 mod p. On the other hand, £ (x) = mx . so "
/, T rm-1 . . . .
f(c)=m(c) # 0 mod p. Therefore, theorem 2.4 implies the existence

of a § in Op for which f£(§) = 0. It follows that € = §" and the

proof is complete. ‘ A

Theorem 2.7 Let .€ be a unit in Op, p £ 2, such that

€ = 1 mod pk+1. Then € is a pkth power in Op.

Proof: The method of proof will be to construct a p-adic sequence {Bn],

. ¥
Bn = E bipl, with the property that BE = £ mod pn+1 for every n.
i=0 '

o i s
T b.p, 6&°

+
5 Pi £ £ mod pn 1 for every n and hence
1= -

Then, if & =

\'3 .
ép #:€. Actually, we will prove the slightly stronger result that

k
Bfl =:£€ mod pn+k+1 for every n. The construction is by induction on n.

¥
If n=0, then 1* =1 mod p*'1 so B, = b, = 1. Now, suppose
n-1 ; k +k
B = X b.pl has been determined so that (B )p = € mod pn .
n-1 i=o 1 n-1

)P

. . B
This implies that ( 1

= €+ 0.pn+k for some @ in Op. Now,

(Bn-l’p) = 1 'so there exists an integer bn where 0O < bn < p and
)p"- 1_
1

o+b (B =0 mod p. With this choice for b ,
n  n- n

n i n\p*¥ .
z bip . When (B + bnp ) is expanded the

i=0 n-1

first two terms are

n
= B
n n-1 +bnp

K "
p k pt-1 n
(Bn-l) +P (Bn—l) (bnp ) .

k.
The third term pk(pk- 1)(Bn 1)p 2(bnpn)‘?'/z and all remaining terms
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n+k+1

contain the factor p . This implies that
% 13 X
P = W -[b@ )P 1]pn+k mod pm-k""l
n n-1 n n-1

n+k pk—i n+k
e+ap  +lp (B )7 lp

k
-1+ n+k
PR

1]

€+ [a + Db (B
n n

n+k+1
g mod p .

: . 3
Therefore, {B } is defined by inductien and ép =-E where § = 1lim B .
n n—e N

A

I~ .
Theorem 2.8 Let €= 2 aipl be a unit in O_ where p#2. Then, E

Kk i=o k k+1
is a p th power in Op if and only if €% a mod p .

o 9

Proof: Suppose first that g 1is a pkth power in Op and let

pk * i pk
8 =gwhere § = 2 b.p . By theorem 2.3, b. =b_ med p. If

5=bo+ Bp, by theorem 2.1,

g = &° =(bo+Bp)p Ebg modp+ .

It follows that bo =€ = a, mod p which impligé that a, = bo.

p* k+1 ]
Therefore, € = ao mod p completing the proof.

® i ¥ k+1
Now suppose €= & a.p1 is a unit in O and €= a® mod P .
i=0 1 p (0]

In order to apply theorem 2.4, consider the function

f(x,y) = pk(xp - gy). Observe first'that ‘;f(ad,i) &pk:(ag. - €) =0 mod p2k+.;‘
of k of N k_ _ k .

Also, Sy - " P € so Sy (ao,i) =-p EZ 0 mod p while

9 ' , .

% (ao,l) # 0 mod pk+1. Therefore, by theorem 2.4, there exist | and

8 in Op such that f(4,8) =0 where LJ.'=‘aO mod pk""'l and
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k
= 1 mod pk+1. " This implies that f(u,8) = pk(|..lp ~g88) = 0 or

o
I

1 mod pk""l implies that § is a

k . . -1 p¥ . k
p th power in Op. It follows, since g= 8§ W , that g 1is a p th

U =gd. Now, by theorem 2.7, §

power in- Op also. A

Theorem 2.9 Let € be a unit in O and k > 0. Then £ 1is a 2kth

2
R . . - k+2
power in O if and enly if £ = 1 mod 2 .

>

there exists,\,a. § in O for

2

Proof: If g 1is a 2k power in 02,

K

which 62 =g.: Since g is a unit in O § must be a unit also, so

2,
. % "
let §=1+20. Theorem 2.2 implies that &° = (1+20)% =1 mod 252,

Therefore, €= 1 mod 2k+2.

Now, suppose € = 1 mod 2k+2:. The proof that € 1is a ‘zkth power

is the same as thé‘ proof in theorem 2.7 with two alteratiens. In the

first place, p=2. The other difference is that when the sequence

'3
{Bn} is constructed so that B: = € mod 2n+k+1 there are two choices
. 2k _ k+1 .
for B1. Since 1° =1 mod 2 ,*Bo = bo = 1. It is also true that
k K
12 = (1+2)2 =1 mod 2k+2 so B1 can be chosen as either 1 or 3.
Once 31 is chosen, the construction proceeds exactly as in theorem
2.7. The result is that {Bn} is constructed by induction so that
pk .
6=limBrl and § = ge. C A

n—eo

The fact that two values of § can be constructed so that

k .
62 = g 1is natural since 2k is an even number. Suppose

- ) - k
8§ = ‘20 aizl is one 2-adic unit for which 62 = g. Then,
1=

(1-a. )2t .
1

n .
Now, (-8) =g so {1+ 121 (1-ai)21} must be the other 2-adic
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sequence that can be constructed in theorem 2.9.

The characterization has now been established for mth powers with
(m,p) = 1 ard for pkth powers. When € is an mpkth power in Op,
it is obviéus that: € 1is both an mth power and a pkth power in Op.
In terms of the characteriza£ion, this statement reads, when € 1is an
nth power, conditions (1) and (2 or 2') ‘are satisfied. It is now neces-
sary to show that when conditions (1) and (2 or 2') are satisfied € is
an nth power. That is, when € 1is both an mth aﬁd a pkth power, it
must also be ;n. mpkth power in Op. This is shown to be the case by
theorem 2.10 due to the fact that (m,pk)==1. With this theorem, the

proof of the characterization of nth powers of units in 0p is complete.

Theorem 2.10 Lef E be a unit in 0p such that £ is both an mth

power and an nth power in 0p where (myn) = 1. Then € is an mnth

power in O .
P

Proof: Let £=§" and €= un where & and | are units in Op.
Because (m,n) = 1, there exist integers r and s such that
1=rm+ sn. Therefore,

Arm+sh - (sr)m(ss)n - (unr)m(émé)n

£ =g 6s)mn

r
= (4
Since U and § are units in Oé,’ uras is an element in 0p for any

integers r and s. It follbws that € 1is an mnth power in Op. A

Given a specific unit in Op’ one could determine whether or net it
is an nth power by checking the two conditions of the characterization
that has just been established. However, for application purposes, the

criterion in the following theorem is much more practical.
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" .
Theorem 2.11 Let n::mpk where (m,p)=1 and let €= Z aip1 be a
i=0

unit in Op. Define t as k+1 if p#2 and k+2 if p=2. Then

£ 1is an nth power in Op if and only if g = 6n mod pt for some §

in O .
p

Proof: If € is an nth power in Op, then € = 6n for some § in

Op. Consequently, € E-bp mod pk+2 which verifies the only if state-

ment for all - p.
Now suppese E = 5n mod pk+1 where p‘;é 2. Then if
87 = ¥ c.p , ¢. =a, for 0< i< k. Since 8" is an nth power,
j=0 1 i i - =
the characterization states that s is an mth power residue mod p
pk k+1 )

n _
and § = cO mod p « Now cQ‘_ aO
a

and € = 6n mod pk+1 so a is

o
p* k+1

an mth power residue mod p and € = 0 mod p . It follows that g

is an nth power in‘ Op. The same argument holds for p=2 except
k+2

€= 6n mod 2 * so c, =a, for 0< i< k+1. A
i i - =

The next theorem is included here because its proof makes use of
the first condition in the characterization of nth powers and its con-

clusions are important te the developments in Chapters III and IV.

Theorem 2.12 Let n=m;2 ‘(m,p)=1, d=(m,p-1), and let a, B8,

and g be units in Op. Thén
(1) ox = B mod p has a solution n integers if and
only if ayd = B mod p has a solution in integers.
(2)‘ € is an mth power in Op if and only if € is a dth

power in O .
p

Proof: To prove (1), suppese first that 6 is a selution for

ox' = B mod p. By definition, d=(m,p-1) = (n,p-1) se n=ds for
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some integer s. This implies that ox" = a(xs)d = B mod p. It follows

that Gs is a solution of ayd = B mod p. Now suppose . 8 is a solution
d . . .

of ay = B mod p. Since d = (n,p-1), there exist integers r and

s for which d = nr+ (p-1)s. :This gives

nr+(p~-1)s _ 0‘(yr)n(yp-i)s

d .
oy = oy B mod p .

Since both 0 and B are units and 6 is a solution of ayd = B modp,

8 must be a unit alse. Therefore, ep-1 = 1 mod-p and it follows that

8" is a solution of 6x" = B mod p.
® .
To prove (2), let €= X .aipl. Since (m,p) = 1, g€ is an mth
i=0
power in Op if and only if a, is an mth power residue mod p. Like-

wise, (d,p) =1 se g€ is a dth power in 0p if and only if a, is a

dth power residue mod p. Therefore, to prove (2), it suffices to show
that a, is an mth power residue mod p if and only if a, is a dth

power residue mod p. This is true since X" = a, mod p has a solution
in integers if and only if yd = a, mod p has a solution in integers,
which is a special case of (1). | A

Héving established a characterization for nth powers of units in
Op, one might consider nth powers gf all p-adic integers or even all
p-adic numbers. Actually, the extehsion to‘inélude all p-adic numbers
is a very small one. All non-zero p-adic numbers can be represented
uniquely as EZpt where € °~ is a unit in Op and t is an integer. A
p-adic number in this form is an nth power if and only if € is an nth
power in Op and t 1is a multiple of n.

This chapter is concluded with an interesting result that developed

from considering the significance of the second condition of the nth

power criteria.
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The condition for a unit € to be an mth power where (m,p)=1 is
® .
i . R
very direct. If €= % aip s then ao is either an mth power
i=0
residue or nonresidue mod p and £ is classified immediately. The

condition for pkth powers is .less direct. For example, in 05, if
a., = 2 what values of &,  if any, are 5th, 52th, 53th, e« powers? A

(0}
. . . 5 - 2 25 _ 3
little arithmetic shows that 2 = 7 med 5, 2 = 57 mod 57, and

2125 = 182 mod 54. Se 7, 57, and 182 are respectively 5th, 52th,

3th powers in 05.
52=2+1-5+2-52+53@c, and E:3=2+1-5+2-52+1-53 +54a are respec-~
tively 5th, 52th, and 53th powers for any o in 05. When the Ei

are written in this way, the coefficients suggest two possible conjec-

and 5 Also,. 81=2+1-5+52a,

tures regarding the further coefficients. One is that the first i+1

coefficients of Ei and E&+ agree. This conjecture is verified when

1
the sequence {257} is shown, in the next theorem, to be a 5-adic
sequence. The other possible conjecture is that the pattern 2,1,2,1

of the first coeefficients is repeated. That this is incoerrect is seen
by direct computation since the next coefficient is a 3 instead of a
2. An indirect argument which shows that no such pattern could continue
is the following. The 5-adic integer 2-+1-5-+2-52-+1-53-+--- corre-
sponds te the rational number -7/24. waever, the Séadic integer that
correspohds to the sequence {25n} is an element of the set 85 in the

next theorem. As the theorem develops, it will be obvious since

(-7/24)5 # -7/2k that ~7/24 is not an element of SS.

Theorem 2.13 Let p be any prime. Then there exists a set Sp in Op

with exactly p elements (p~- 1 units and zero) with the property that

k
for every @ 1in Sb,GP = @& for every integer k.
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Proof: To prove the existence of the p-1 units in Sp, it is suffi-

cient to show that for each a

0 1< a, < p-1, exactly one unit €

., Kk
exists with the property that £ = a, mod p and e’ - € for every k.
If p=2, one is the only unit with this property, so 82 = {0,1}. If

P#2 for a given a 1< ao <p-1, €& can be constructed as fol-

0’
; defi p! i+l
lows. For each 1i z 0, define Ai by Ai = ao med p = and
i+l . = : .
1< Ai <p  "=-1. As defined, Ai = a, med p fer every i and
i i-1 1-1 1 1-1 s
= P b b P -p = 1
A, - A = - = - = .
i ic1 - 2% "% 2y (ao 1) = 0 mod p

The final cengruence is true because pl,— pl-1 = cp(pl) where @ is
Euler's function. Therefore, Ai = Ai 1 mod p1 for i > 1 which
implies that {Ai} is a p-adic sequence. The condition that o

1< Ai < p1+1- 1 is not needed to obtain this result, but it gives the

sequence {Ai} canonical form. Now, if & 1is defined by

(-] 3 .
€E=1im A, €= L a.pl where A = a.pl. By definitien
n—e n i=0 1 n i=0 1 )
pk k+1 ' . . k .
E= ao mod p for every k. so € 1is a p th power in Op for

every k. To show that for a given a, only one such E exists,

]

£ mod p and both € and

k
ag = sl mod pk-*'1 for

suppose E and sl exist such that g = ao

sl are pkth powers for every k. Then &g

every k and g = sl mod pk-*'1 for every -k implies that € =€I. To
k

show that E:p = € for every k 1let i be a fixed positive integer and
. p! . . k pt

consider € . Since € is a p th pewer for-every k, € is a

p th pewer for every k. Also since a, =a, mod p, E° = a, mod p.

We have just shown that € 1is the only element in Op that satisfies
1
these two conditions, therefore Ep= E. This argument is valid for any

k
i so z-:p = g for every k.
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To show that zero is the only non-unit in Sp, consider any non-
unit B where PB#0O. Represent B as Epr where € is a unit in
Op and r 1is an integer greater than one. . This representation shows
that B8 cannet be a power higher than the rth power. Hence, B cannot
be a pkth power for every k, se B cannot be an element of Sp;

This completes the proof of the theorem. A

The set Sp has several interesting properties. If g 1is a
primitive root mod p and £ is the element of Sp that corresponds
n -
to the sequence '[gp }, then each element of the set {8,82, cee ,Sp 1}
-1
is a distinct element in Sp. Therefore, sp - {o} = {8,82, e ,Sp }
which is a cyclic group under multiplicatien. Also, since 1 is in
p-1 _ . p-1 .
Sp and € Z 1 med p, it follows that « = 1 for every @& in

Sp - {0}. This implies one more property, that Sp contains the p

distinct p-adic roots of the equation &£ -x = 0.



CHAPTER III
WARING'S PROBLEM

The problem referred to as Waring's pfoblem is the following.
Given a positive integer n, find a positive integer g{(n) such that
each positive integer is the sum of g(n) nth powers of nonnegative
integers. Since criteria have been established in Chapter II for deter-
mining nth powers in Qp the groundwork has been done for considering
Waring's problem in a p-adic setting. The objective of this chapter is
to investigate the number of nth powers needed to represent any p-adic
integer.

Suppese @ is a non-unit in Op. Then a=1+(a-1) and a-1
is a unit in Op. Since 1 1is an nth power in Op, it follows that
if any unit in O  can be represented as the sum of g(n) nth powers,
any p-adic integer can be represented as the sum of g(n) +1 nth
powers. This observation indicates that an investigation of the units
in 0p will supply information about all p-adic integers. The theorems
of this chapter are, therefore, designed to investigate the following

problem.

Waring's problem for p-adic integers. Given a positive

integer n and a prime p, determine the smallest posi-
tive integer g{(n) such that every unit in 0p can be

represented as the sum of g{(n) nth powers in Op.

1R
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k
Theorem 3.1 Let n=mp where (m,p)=1. Then any unit in Op can be

represented as the sum of fewer than pk+1 nth powers in Op if p#2

and fewer than 2k+2 nth powers in O if p=2.

2

o

Proof: Let € = a.p- be a unit in Op " where

i=0 1

k . © .
€E= Y ap + X a.p
i=0 i=k+1 1
k : )
Now, let N = T a.p1 and apk+1 = 2 a.p
i=0 1 i=k+1 1
N N-1 .
€= N + ka+1 = L1+ apk+1 = X1+ (1 + @pk
J=1 J=1
k+1 . .
By theorem 2.11, 1 + Cp is an nth power in O

1,

p#£2. Then

€ 1is expressed

as the sum of N nth pewers. Since O Slai <p-1 for every i, by

definition N < pk+1. Similarly, when p=2,

[--3 i k+1 i o] i -
€= 2 a,27= ¥ a,2° + & a.,2° = %
i=0 1 i=0 1 i=k+2 1 J=
k+1 s
where N = ¥ a,2' < 2k+2 .
i=0 1

1
1+ (1 + a2

k+2)

This theorem shows that an upper bound for g(n) is available for

any n. The interesting part of the preoblem is to investigate special

cases to determine if and when this upper bound can be lowered. Theorem

3.2 shows that for every p there exist values of n for which the

upper bound of theorem 3.1 cannot be lowered.

Theorem 3.2 Let p be a prime and 11=(p-1)pk, k > 0. Then there
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exists a unit in Op that cannot be written as the sum of fewer than

k+1

P -1 nth powers if p#£2 or 2k+2

-1 nth powers if p=2.

k .
Proof: Let £€= % (p-1)p’ where p#2. Note that € is a unit and

i=0
€ = pk+1— 1. Suppose 0.1; + ag + e 4 a: is any sum of nth powers of
+
p-adic integers where s < pk+1- 1. Since n=(p= 1)pk = Cp(pk 1),
n _ k+1 R s s .
O.i = 1 mod p when o.i is a unit in Op. On the other hand, if oni

is a non-unit, eril = 0 mod pk+1

1 or O mod pk+1. It follows that there exists an integer a such

. Therefore, each O.rl.l is congruent to

that OSa_<_s<pk*1—1 “and 0.1;+0.2'+ s +0.25amodpk+1. Now,
pk+1— 1 # a mod pk+1 since 0< a< pk+1 - 1. Therefore,
e;éonr11+an+~--+a2 when s<pk+1-1. ’

When p=2 the argument is identical except n=2k and the con-

R . kil 4 k+2
clusioen is that €= X 27 = 2 - 1 cannot be represented as the sum

i=0
of fewer than 2k+2 - 1 nth powers in 02. ‘ A

Now, return to the case n=mpk where (m,p)=1. It has just been

shown that when m=p-1, g(n) attains the maximum value of

k+1 k+2
p -

-1 if p#£2 and 2 1 if p=2. The next theorem shows that
g(n) attains the minimum value when n=m and (m,p-1)=1. In this

case, every unit is an nth power. in Op; that is, g(n)=1.

Theorem 3.3. Let (n,p)=1 and € be a unit in Op. Then €& can be

represented as the sum of d= (n,p~1) nth powers in Op.

» .
Proof: If €= % a.2° 4is a unit in O, then a. =1. Therefore, a
i=0 i 2 0o

is an nth power residue mod 2 and by theorem 2.6 € is an nth power

(¢]

in 02. It follows that € can be written as the sum of (n,2-1)=1

nth power in 02.
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When p#2 theorem 2.12 states that when (n,p)=1 a unit in Op
is an nth power if and only if it is a dth power in Op. Therefore, to
prove the theerem in this case, it suffices to show that €& can be
represented as the sum of d dth powers of units in Op. First let

] i - d d d _
E= X aip and shoew that the congruence x_ +x_ +°***+x, S a_ mod p

120 17 %2 a %o

has a selutien in integers. This problem can be stated as follows. Let
Zp be the finite field of integers med p, and let G be the multipli-~

cative group Zp-—{O}. Then, given any element a, of G show that
d _d a__ o .
x1-+x2-+----+xd==ao has a solutioen in Zp. Define the subgroup H by

d
H = {x | x € G} - and Kr as the set of elements in G that can be rep-
resented as a sum of r dth powers of elements in Zp. As a set, G
consists of the elements {1,2, cee ,p—1}. Therefore, every element g

in G can be written as g 1 which implies that Kp 1= G. Let
i=1 . -

t =min{r IKr:=G} and consider the set difference Kt-Kt_i. By the

definition of t this difference is not empty, so let

€ K, - . Si € i coe i f

x Kt Kt-i Since x Kt’ there exist X 1%5s X, 1n Zp or
£ ’ A

which x = Z x?. In order to show that K -K is not empty,
j=1 4 o1 t-1 “t-2

. ., / - d re
define x in Kt-i by xv = 151 xi. Suppose that x Kt-z' Then,
‘ t-2 d

X = i§1 4 for some yi,yz, eee 3Yy o in Zp .

It follows that

t—i=1yi t

which implies that x € Kt- This is a contradiction since

1
/ ]

x € K, - K,_,- Therefore, x 4 K, o  and it follows that

'€ K K By a simil ¢, 1t ¥ = 70 %9, tn

x t-1 - Ki_p- By a similar argument, if x = B x;, then
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Thus, in the sequence of inclusiens K1 c K2 C e C Kt each inclusion

has been shown to be proper.

The next oebjective is to show that not only is Ks-K non-empty

s-1

for every s, 2 < s < t, but that each such set contains a coset of H.

This follows if x € K, -K_ 1 implies xHC K_ - K Suppose

s-1°

y € xH; that is, y::xzd for some z° € H. Since x € K., X can be
S .4 a_ & . .d

represented as . x, and y=xz = 2 (x.z) . This implies that
i=1 1 i=1 1

y € K_. To show that vy 4 K _
s-1 S—

- 1
Thus, yw:xzd==_21 yg which impliés that x = _21 (yi/z)d. This is a
1= 1=

s=1
, assume the contrary that y = I y?.
1 j=1 1

contradiction since x ¢ Ks . This contradiction shows that y ¢ Ks—

1 1

completing the proof that 7y € Ks-K . Since y 1is an arbitrary ele-

s=1

ment of xH, it follews that xH C Ks--Ks 1

by definition K_ =H

Recalling the sequence K 1

. C eee
1 < KZ < Kt’

and LKt==G. It‘has been shown that each KS--KS_1 contains at least
one coset of H. Therefore, G must contain at least t different
cosets of H. If 0(X) denotes the number of elements in X, this
cenclusion is written o(H).t < 0(G). Therefore, t < 0(G)/o(H) or t
is less than or equal to the index of H in G. Since H::{xdl x € G]
is a subgreup of G, the index of H in G can be computed as the
number of distinct values of x in G for which xd==1. By Lagrange's
theorem, xd==1 has at most d incengruent solutions mod p. There-

fore, the index of H is not mere than d. It fellows that

t <0(G)/o(H) < d. Originally, t was defined as the smallest number
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such that every element of G can be represented as a sum of t dth
power of elements in Zp' Thus, since a, €G and t < d, there

exists a solution in Z of the equation xd-kxd-+°---+xd = a

p q 1% a - %-°

Furthermore, since a, # 0, at least one x; must be noen-zere. Let
(bi’bz’ cee ,bd) be a solution to the above equation and assume, with-
out less of generality, that bd;!o. Therefore,

d d d _ = . _ .d d .. d
b1-+b2-+ +bd = a, £ mod p or €= b1-+b2-+ +bd-+Bp for some B
in Op. By definition of Zp, bd;!O implies that b, is a unit in Op,
so theorem 2.11 implies that bg-kBp is a dth power in Op. Therefore,

€ 1is represented as the sum of d dth powers in 0p which completes

the proof of the theorem. » ' A

After a proof of this length, one would hope for a significant
improvement over previous results. With the condition (n,p) =1,
theorem 3.1 implies that g(n) < p-1. Theorem 3.2, under the same
condition, provides the specific case n=p-1 for which g(n)=p-1.
In this case, since (n,p~1) = p-1, theorem 3.3 offers no imprevement.
However, since (n,p-1) 1is a diviser of p-1, the conclusien that
g(n) < (n,p-1) is an improvement whenever (n,p-1) # p-1. For
example, in O

71’
are 1,2,5,7,10,14,35, and 70. The value of g(n) will be 70 only if

suppose (n,71) = 1. The possible values of (n,70)

n 1is a multiple of 70. If n does not contain one of the factors
2,5, eor 7, then g(n) = 1. That is, every unit in 071 is an nth
power.

After the case where (n,p) = 1, it seems natural to investigate

the opposite situation when n = pk with k > 1. The investigatien of

this case begins with the following lemma.
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Lemma 3.1 Llet p be an odd prime and k > 1. Then the congruence

k k pk .
¥ + 3y + 2’ =0 mod p has a solution (a,b,c) in integers such that
'3 '3

k ...
ap+bp+cp F0) modpz.

' %
Proof: The binemial expansion of (p-~- 1)p shows that
p* 2 o* o
(p~1)" = -1 mod p° which implies that (p-1)" # p-1 mod p-. This

k
along with the fact that 1p = 1 mod p2 makes the following definition

X

possible. Let t = min {r | r is a positive integer and e Zr mod pz].

¥
With this definition, since t-1<1t, (t- 1)? =t -1 mod pz. There-

¥ k k k
fore, 1% + ()P + (t-1)P =1-tP + t-1 mod p2. Because of the

k
definition of t, the right side of this cengruence, t- P , cannot

K
be congruent to zero mod pz. On the other hand, since ap = a mod p

for every integer a, it followé that

k k k
P ()P 4 (£-1)P =1-t+t-1Z0 mod p .

Therefore, (1,-t,t~-1) is a suitable solution, completing the proof

of the lemma. 'y

In terms of p~adic integers, .this lemma can be stated as follows.

For any odd prime p and any positive integer k there exist p-adic

. pk K pk
integers (x,y,z) such that x +yp + z° =€p where € 1is a unit in

o _.
b

Theorem 3.4 Let @ be a unit in Op where p#£2. Then @& can be

k+1

represented as the sum of (3 -1)/2 pkth powers in Op.

Proof: Note first that for every p-adic integer B, there exist p-adic

k
integers x and | such that B = & + Mp. To see this, let

X

o bg mod p and it follows that

4 i —
B= 2 b.p. Then BE=0b
ico 1
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']
B = bg + Up for some [ in Op. Now, let (x,y,z) be p-adic integers
pk k pk
provided by lemma 3.1 such that x + yp + 2z =Ep where £ 1is a unit

in Op. The following construction shows how to represent @ as a sum

of (3k+1- 1)/2 pkth powers. First, determine p-adic integers x, and

“1 so that @ = x% + uip. Note that xo must be a unit in Op since

o is a unit in Op. Now, determine x, and uz 'so that

1
6-1-xpk+ This gives
p'i = 1 Hzp' g
k 2 & % "
p b p : 2
= Ep = € £ .
a=x)+ (x, +up)EP xg+x1p+}.12p
. -1 p* . .
Next, determine x2 and HB so that uzs = xz + u3p. This gives
% ]
_ <P p -1 2
a = Xy * Xy SP + uzs (ep)

X §
= xg + xli) Ep -+ (xg +p.3p)(8p)2

k
ok .2 2 3
Ep + X, E&p) +H38p .

Repeating this process k +1 times produces the result

k K K K
B _ 2 ... . .p k k k+1
onnxg+x?(s_p)+x§(sp) + +x_ [Ep)" + | ED .
' K ok .
_ P k k+1 1
Thus, a = (xo * M 4E P } o+ i§1 X? (ep)
" k kK ok K K s
_ k k+1 P o) Pt N1
-(xg+'p.k+18p )+i§.1x1.1)(x +y +z ).

Since X, is a unit in Op’ theorem 2.11 implies that

i
p k k+1 . k ] .
X5 + Hk+18 P is a p th power in Op. When expanded
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p*  pKi i . k
x, (x* + vy + 2 ) produces 3 terms, each of which is a p th power

k k K k
in Op. For example, when xg (xp + yp + 2P fz is expanded, the result

k k X k X k k
is (x2x2)p + (x2y2)p + (xzzz)p + (xzxy)p + (xzxy)p + (xzxz)p + (xzxz)p

k k
+ (xzyz)p + (xzyz)p . The net result is that @ is expressed as the

k .
sum of - 31 = (3k+1

~-1)/2 pkth powers in O . A
i=0 p

The number of terms predicted in this theorem is considerably

smaller than in theorem 3.1. The value of (3k+1- 1)/2 is half as

large as the pk+1— 1 value in theorem 3.1 even when p=3. As p

becomes large, the imprevement is coensiderably better. The next theoerem

k+1

is an example showing that, in general, the value (3 -1)/2 1in

theorem 3.3 cannot be lowered.

Theorem 3.4 For every k, there exists a unit in O that cannot be

3

kel 1)/2, Bkth powers in O

represented as the sum of fewer than (3

3

k .
Proof: Let €= X 3'. Note that € is a unit in O3 and
1=0 ko gk 3K K
1‘+ Gé + ese 4 as is any sum of 3 th
1 1)/, 1t @, is a unit in O

£ = (3k+1— 1)/2. Suppose @

powers in O where s < (3 then

3 3’
@, = £ 1 + 38 for some B in 03. The binomial expansion shows that
k k
ag = (£ 1+ BB)3 = £ 1 mod 3k+1. However, if ai is 'a non-unit in O

37
3k . 3F - k+1
a, = 38 for some B in O, and a; = (3B8)” = 0 mod 3 . Therefore,

3
’ 3k 3k 3¥
the value of each elément in the sum ai + az + e+ as is either
1, -1, or O mod 3k+1. It follows that there exists an integer a such
k nk : k :
3 . d31+ ey G3 = 2 mod 3k+1
1 2 s

-1)/2 imply that —(3k+1-1)/2 < a< (3

. Now lal < s and

k+1

that lalis:s and O

k+1

s < (3 -1)/2. Since the

k+1-»1)/2} constitutes a com-

k+1

set of integers {r | —(3k+1-1)/2 <r< (3

k+1

k+1
plete residue system mod 3 , it follows that a 7 (3 - 1)/2 mod 3 * .
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k k K
That is, € ¥ a mod 3k+1 which implies € # ai + ag + e 4 az .

k+1

Therefore, the unit €= (3 - 1)/2 cannot be represented as the sum

k+1

of fewer than (3 -1)/2 Bkth powers completing the proof. A

In terms of the function g(n), theorem 3.4 shows that for odd

k+1

primes, g(n) < (3 ~1)/2 when n=pk. Equality holds when p-=3

according to theorem 3.5.

As previously noted, the results of this chapter can be extended to
include all p-adic integers due te the fact that any non~unit @ can be
represented as the nth power 1 plus the p-adic unit &-1. The
results can also be extended to include all p-adic numbers as follows.

t

Let €p be any non-zero p-adic number. Determine integers r and s
so that t=rn+s where s > 0. Then E:pt = E:ps(pr)n and €p° is a
p-adic integer. As indicated above, Sps can be represented as
X b X 4 eee 4 X where h(n) = g(n) + 1. It follows that

1 2 h(n)
€ = + i where = X v for ever i

P =Y 7Y, Yh(n) Yy = %P yois

1< i< h(n).



CHAPTER IV
ARTIN'S CONJECTURE

The original conjecture made by Artin, as it pertains to p-adic
numbers, was the following. If a hemegeneeous form of dégree n with
coefficients in Qp contains more than n2 variables, it must have a
non-trivial zero in Op. The definition of a homogeneous form requires
only that each term be of the same degree and, in general, such a form
is difficult teo work with. 1In this respect, it is fortunate that
Artin's conjecture in its original form has been proven false. The most
famous counterexample was given by Terjanian (12).

Terjanian observed that the function g(x) = g(xi’XZ’XB) defined by

b 4L Lk 22 2
g(x) = Xyt X, P Xy = XX = XX

2—xzxz-(x +x +x )(x.x x)
3 13 1 2 3 1723

has fhe following properties: g(x) = 1 mod &4 if some x; is odd and

g(x) = 0 mod 16 if every x, is even. He then constructed the form
f = g(x) +g(y) +g(z) +bg(u) + kg(v) + bglw) .

This form is homogeneous of degree 4 with 18 variables. According to

the conjecture, it should have a non-trivial zere in O The fact that

2.
f = 0 mod 16 only if each of the variables is even means that for any

8

zero (8 .ee ’618) each ei must be even. Suppose

1°'72°

(8,,6

12850 cet ’618) is a nen-trivial zero of f in 0,- Each of the

oR
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nen-zero ei has the form E:izki where Si is a unit in 02. If k
be the minimum k., then (z'kei,z'kez, ces ,2_k918) is another zero
of f. However, at least one z'kei is not even so this cannot be a
zero of f. We must conclude that f has no non~trivial zeros in 02.

A papér by Browkin (4) gives anveven mere dramatic counterexample.
By using a tremendous construction, he demonstrates that for any prime
the number of variables needed to insure nen-trivial zeros for forms of
degree n 1is not less than n3.

In view of“these counterexamples, the cenjecture must be weakened
in order to present an interesting problem. The objective of this

chapter will be to investigate and eventually prove such a weakened

conjecture.

Definition 4.1 A diagonal form is an expression of the form

n n n
a1x1+a2x2+ .o +G,SxS .

This is also referred to ih the literature as an additive form or simply
as a linear combination of nth powers. When the ai are p-adic numbers,
this expression is called a diagonal form in Qp. If the ai are all

units in Op, the form is ‘referred to as a unit diagenal form in Op.

Artin's conjecture for diagonal forms. If a diagenal form
in Qp of degree n contains more than n2 variables, it

must have a nen-trivial zero in Op.

Since a diagonal form is homogeneous, this conjecture is a special
case of Artin's original cenjecture.

A particularly interesting aspect of this conjecture is that it can
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be shown to be the best possible. That is, for a given prime p, there
exists a diagonal form in Qp of some degree n which contains n2
variables, but has only the trivial zero in Op. The proper degree for

such a form is not difficult te guess{ As noted in theorem 3.2, since

pk+1) = (p-1)pk, " = 1 mod pg+i when n = (p--1)pk and € is a

unit in Op.. For p=2 the slightly stronger result, €’ = 1 mod 2k+2

o(

can be stated. This does net improve the result of fhe next theorem so

Pp=2 will not be considered as a special case here. For any non-unit
el s N n _ k+1 . .

&, it is trivially true that & = O mod p . This along with

En = 1 mod pk+1 for any unit € implies that the form

—xn+xn+ +Xn s <L k+1
9 = ¥4 7% s? P

has the property that go = 0 mod pk+1 only when every X, is a non-

k+1

unit. Extend this idea to consider +Pp 9, where

%

_ n+ n+ ’ . n £ < k+1
91 - y1 yz yt’ p hd

It follows that go+pk_+1g1 = 0 mod p2(k+1) only if each x, and each

Y is a non-unit in Op. This construction suggests that the form

k+1 2(k+1)g

. D e +pq(k+1)g
g 9% P 94

2 q

would have a relatively 1érge‘number of variables and still have only
the trivial zero.

The value of q depends on k aﬁd must be chosen correctly in
order to allew g to contain the maximum number of variables. The fol-
lowing lemma determines the correct choice for q. To get an idea of

the relationship between the lemma and g note that when any non=zero
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p-adic number E;pt is substituted in a form 9. the contribution to

the sum g 1is a term of the form Enptn+r(k+1).

Lemma 4.1 Let q = [n/(k+1)]-1 and s, = tin+ri(k+1) where ri,ti,
k are integers, 0 < r, < q and k > 0; [x] denotes the greatest inte-
ger less than or equal to x. Then

(1) s, = S5 implies t, = tJ. and r.=r, and

1

o _ S .
(2) s; £ S5 implies |s; sJ.l >k + 1

Proof: To prove (1), suppose s; = s or tim+ ri(k +1) = tJ_n + r‘J. (k +1).

This gives (ti— tJ.)n = (rJ.- ri)(k'+ 1) which implies that either

t,=t., and r,=r, or n divides lr.-r.l(k+1). However, by defini-
1 J 1 J J 1

tion |rj-—ril <q<n/k+1) so lrj-ril(k+1) < n. Therefore, n

can divide lrJ.— ril (k +1) only if lrJ,— ril = 0. This gives the

desired result r, = rJ., and ti = tJ. follows immediately.

To prove (2) suppose, without loss of generality, Si > sJ. or

tin+ ri(k+ 1) > tJ.n+ rj(k+ 1). There are two cases to consider:

t.,=t., and t.#t.. If t.,=t., then r, >r. so that
1 J i J i J i J

s,-s8, = (r,-r J)(k+1) >k+1.
1 J 1 J -

If t, £#t., let t, >t.. It follows that
1 J 1 J :

(t;-t)n 2 n> (q+1)(k+1) > (r -r; 1) (kv 1)
which gives

(ti-tj)n +ry=rdc+1) 2k+1 .

This is the same as s, - sj >k+1. A similar argument holds for
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t. < t., giving s.-s, > k+1. The net result is |s.— 5. 2 k+1. A
i J J i-— i 3 -

The following definitions will be useful in the next theorem. Let

k+1 2(k+1) q(k+1)
Gk = go +D g1 + P gz + + p gq .
Each 9, has the form x2-+x;.+... +x§ where n = (p-i)bk and
k+1 . ] ) o
s =p - 1. The sets of variables contained in the g, are pairwise

disjoint and q = [n/(k+1)]-1. If we denote the number of variables

in G as N

" K’ then

k+1

N = (g+1)s = [n/k+1)](p ~-1) .

k

Theorem 4.1 The form Gk described in the previous paragraph has the
folloewing properties:
(1) For any k > O, G has only the trivial zero.
(2) Given any € > 0, there exist infinitely many k
for which Nk > nZ-E.

(3) When p-¥£ 2, N0 =n".

Proof: To prove (1), suppose the contrary; that is, G_ has a non-

trivial zero (91,92, aes ,GN). Then each non-zero Gi can be written
’ k
as vEEpti and
= n_ Sy

ei;!o

where si = t.n + ri(k-+1) and O S.ri S_q. Then let s be defined as

min {si | o < i< N, ei # 0} and write
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_ .5 n_s;-s
Gk = p E: E.p .

i
ei';!O

This implies that

nsi-s _
z sip =0 .

6,#0

In order to analyze this result, let f be the sum of the terms where

s, =s and h be the sum of the terms where sS4 > s. Thus,

Z e‘;psi's =f+h=0.
ei;!o

Now, as a result of lemma 4.1, si==sj implies ri==rj so all terms in

f are from the same gr. The second statement in lemma 4.1 shows that

s,-s > k+1 when si;!s. Therefore, h has a facter of pk+1. Now,
since f+h=0, it follows that f = O mod pk+1. However, this is

. . . . k+1 R
impossible since f contains at most p -1 terms of the form si

each of which is congruent to ' 1 mod pk+1. This contradic¢tion completes
the proof of (1).

. To prove (2) it will suffice to show li_l’l: log N =2. This will be
accomplished by showing that 'lognVNk,mis bourided on oﬁe side by 2 and
on the other side by a function whose limit is 2. The following

inequalities are used without proof. Each can be shown to be true when

k > 4 using elementary methods.

’

P_.2._<_L__1 P <t g p/E_>k-
k



3k

First consider the following:

k k 2 2k
_[p-1)p ]  k+1_ (p-1)p k+l, (p-1)"p"p
Nk_[ k+1 (p V<S5 @ )'Fp-i)(luﬂ'
n2 2
P < n . This can be written

So N <GB D&E-D

log N <2. (k.1)

To find a function that bounds 'logrl Nk on the other side, observe

first that

k k k
P B _4¢ ———(p'i)P]
k2 k+1 - k+1 :

k+1

Combining this with pk <p -1 gives

k k
p_ .k (p=1)p k+1 _
k2(p)<[k+1](p -1)—Nk.

The resulting inequality p2k/k2 < Nk can be written

2k lognp - 210gnk < 1ogn N - (k.2)

The functions on the left side of (4.2) can be replaced by more familiar

functions. The fact that n = (p- 1)pk gives us the inequality

pk <n< pk+1. The right portion n < p i can be written

(4.3)

lo < E
9, P k+1 °

The left portion pk < n implies ni/‘/l? > p‘/E > k which implies

N log k . (L)
n

/K
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Now, the four inequalities (4.1), (4.2), (4.3), and (4.4), give

2k 2
—_ . A - k < .
K+l /k 2k lognp 2 logn logn Nk < 2

From this it follows immediately that 1lim log N = 2.
ke n k

Statement (3) follows from the definition of Nk since by direct

substitution N, = (p—‘1)2 - n°. A

The results of tﬁis theorem have some interesting aspects. Conclu-
sion (3) shows tHat when p#2, the n? in the conjecture cannot be
reduced. Conclusion (2) shows that if n2 were replaced by n° where
s < 2, then for any prime p infinitely many forms can be constructed
for which the conjecture is false. - It is interesting to note that the
number of variables in the construction exceeds n2—€ as k Dbecomes
large while the power where Gk actually contains n2 varidbles
occurs when k=0.

The prime p=2 is'conSpicious.by its absence in conclusion (3).
Including 2 here produces tﬁé_uﬁinteresting conclusion that a form

consisting of one first power’has only the trivial zero. In order to

fill this gap, consider the form ¢g defined by
~ x2+x2+x2+x2
9= X TXyTXgTE, -

This form has only the trivial zere in O_. To.see this first note that

2
2 _ . 2 _ . ]

xi = 1 mod 8 when xi is odd and xi = 0 mod & when xi is even.

‘The argument is then similar toe the Terjanian counterexample,

g = O mod 8 only if every x; is even so any non-trivial zero must

contain all even values. However, any such zero weuld produce another
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non-trivial zero whose values are not all even which is a
contradiction.

Having established that the conjecture is in some sense the best
possible, we turn our attentien teo proving that it is true. Consider

what must be accomplished. Given a diagonal form

n n n
f = a1x1+&2x2+--° +Cx.sxs,

we must show that s > n2 implies that,non—trivial zeros of f exist.
In general, the ai are p-adic numbers which have the form Ept where
t could be any integer either positive or negative. If the values of
the t's could be limited to relatively small pesitive integers, f

would be easier to work with. The follewing example demonstrates how.-

this can be done.
Example 4.1 Let f be the following form with coefficients in Q2'

6 56 66 146 18 6 -11 6 26

x1-+2 x2-+3-2 x3-+2 x4-+5-2 x5-+3-2 x6-+7-2 x7
9 6 -1 6
+2 x8-+17-2 x9 .

This form can be written as

(x1)6-+2(2-1x2)6-+3(2x3)6-+22(22x4)6-+5(2-3x5)6-+3-2(2-2x6)6

2,046 .3 6 5,,-1. 16
+7g (x7) + 2 (2x8) +17.-27(2 xg). .

When v is substituted for each of the corresponding expressions in

parenthesis f 1is written
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6 6 6 2 6 6 . 6 .52 6 36 LoD 6
y1-+2y2-+3y3-+2 y4-+5y5-+3 2y6-+7 2 y7-+2 y8-+17 2 y9

After this substitution, the powers of 2 in the coefficients are
limited to the integers from O to 5. Any zero that is found in
terms of the ¥; will produce a zero in terms of the X, by simply
reversing the substitution. Another transfermation that will prove

helpful is the following grouping of f.

(yi +3y§ + Syg) + 2(yg + Byg) + 2.2(y2 + 7yg) + 23(yg) + 25(17yg) .
This puts f 1in the form f_+ 2f -+22f ¢+23f -+24f -+25f where
0 1 2 3 4 5
fo=yi+3yg+5yg ) f1=yg+3yg ) f2=y2+7yg ) f3=yg )
£,=0 , and £ = 17yg.

The significant feature of this grouping is that each fi has

coefficients which are units in 02; that is, each fi is a unit

diagonal form in 02. The following theorem formalizes this transforma-

tion and shows that it can always be accomplished.

_Theorem 4.2 Let f be a diagonal form of degree n with coefficients

in Qp. For the purpose of determining zeros, f can be assumed to be

2 n-1 . .
of the form foj-pfl-kp f2-+----+p fn_1 where each fi is either

zero or a unit diagonal form in Op of degree n.

Proof: Let f = OLX. +0, X . +---+0 X  where each @, is a non-zero
11 22 s s i
p-adic number. Each ai can be uniquely represented as sipti where

€; is a unit in Op and ti is an integer. Now, for each ti there

exist integers a., and b, so that t, = a.n+b. and 0 < b, < n.
i i i i i - i
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These values can be used as follews:

X, . , = E,
1 1 1 1 lp

agn+b, n o by a; . \h
x; = €p '(pix,)

This indicates that the substitution ¥ = paixi gives

by_.n bé n b, 1
- ees + E 8
f €1p y1 + Szp yz + + sp Ys

where O < bi < n-1. To obtain the desired representatien of f,
group the terms by ascending powers of p and factor out the pbi. In

this way f is written as a function of the Yi and if

is a zero of f, then

o™ g o -a
(xl,x cee ,xs) = (61p 1,92p 2, eee ,Gsp ’)

21
also is a zero of f. A

In theorem 4.2, the zeros of f were not stated to be in Op.
This does not lessen the Valué»of the theorem because any zero of f
can be used to produce a zero in Op by multiplying each component of
the zero by one sufficiently large power of p. Having established that
this transformation is élways péssible, it can be assumed, when conven-
ient, that diagonal forms in Qp have this representation.

To appreciate the advantage of this representation for f, con-

0

. 6 6 6
sider example 4.1 again. In this example f _ = y1-+3y3-+5y5. Now take

8. In view of the

Il

¥, = 0, Vg = 1, and Vs = 1; then f0(0,1,1)

result of theorem 2.11, the fact 6-= 3-2 implies that a 2-adic unit ¢
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is a 6th power if E = 1 mod 8. Also 3 is a unit in O2 which means

that '1/3 is a unit in 02. These facts imply that 1-8/3 is a 6th

power in O Now let 56 = 1-8/3 so that fo(0,6,1) = 0. The net

o

result is that a non-trivial zero of fo has been constructed. If all

other variables in f_,f_,f fé; and f are assigned:the value zero, a

1772737 5

non-trivial zero of f 1is produced. This zero is in terms of the Yio

= 5/2, x5 = 23(1)

but can be written in terms of the x, by letting x

3

and all other x; by zero.
The advantages of this representation are further demonstrated by

the following theorems.

k n n
Theorem 4.3 Let n =mp , (m,p) = 1 and g = 1x1+82x2+--- +EX

where g 1is a unit diagonal form .in Op. Suppose the congruence

k+1, k+2
(p

g = 0 mod p when p = 2) has a solution (6,,6., ..., 8 ) 1in

1*'72? s

Op where ei £ Omodp for some i. Then g has a non-trivial zero

in 0_.
p
= k+1 . .
Proof: When p ¥ 2, g(ei,e cee ,Gs) = 0 mod p implies that for
some & in O
n n n k+1
€8, + 8,8, + tES = .

Now assume, with no loss of generality, that 61 # 0 mod p and consider

the fact that

s! 1 k+1 ‘ n
si(e1 - 81 )+ €, e + + €6 =0 .
. . . . . n -1 k+1 .
Using the criteria established in theorem 2.11, 91 - 81 ap is an

. k+1
nth power in Op because it is congruent to the nth power 62 mod p .
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Therefore, there is a § in Op such that §" = eq - sziqu+1_ It

follows that (6,62,93, ces ,Gs) is a non-trivial zero of g. The

argument for p=2 1is exactly the same except pk+1 is replaced by

2k+2 in the appropriate places. A

Theorem k.4 Suppose every unit diagonal form in Op of degree n with
more than s variables has a non-trivial zero in Op. Then every
diagonal ferm in Qp of degree n with more than ns variables has a

non-trivial zero in Op.

, n~1 . .
Proof: Let f==f0-+pf1-+--- +p fn—i where each fi is a unit

aiagonal form in Op of degree n. If f has more than ns variables,
some fi must have more than s variables. Let fr denote an fi
with more than s variables. By hypothesis, fr must have a non-
trivial zero in Op. Assigning the values from this non-trivial zero of

cee o

T and zero to each of the variables in f_,f ,f ,f ’
r r-1""r+1 s

0’ 1’

produces a non~-trivial zero of f. A

These three theorems provide a method for finding non-trivial zeros

for diagonal forms in Qp. Given a diagonal form f of degree n

n-1

first write f in the form f_ +pf_ + ... +p f Next, find an i

(0] 1
k+1, k+2
(p

n-1°
for which £, = 0 mod p if p=2) has a solution in Op. The k
is determined by n==mpk, (m,p) =1 and at least one value in the solu-
tion must be a unit in Op. Using theorem 4.3, this solution produces a
non-trivial zero of fi' As indicated in theorem 4.4, a non-trivial
zero of any fi will produce a non-trivial zero of f.

The theorems also provide a method for proving the conjecture in

some important special cases. The first cases investigated are diagonal
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forms in Qp of degree m where (m,p) =1 and diagonal forms of

degree pk, P#2. In view of the nature of nth powers as established

in Chapter 1I, these seem like natural cases to consider. Solving the
form of degree m involves a congruence mod p while the form of
degree pk requires a congruence mod pk+1. In view of this, it seems
surprising that the conjecture is easier to prove in the latter case.
However, in the course of the investigation of forms of degree

m,(m,p) =1, several results are demonstrated which are necessary in the
later work. The next few theorems provide a method for proving the

conjecture for diagonal forms in Qp of degree m,(m,p) =1.

Theorem 4.5 (Lagrange's theorem) Let p be a prime and f(x) be a
polynomial of degree n whose coefficients are integers. The congru-
ence f(x) = 0O mod p has at most n incongruent solutions mod p

unless each coefficient of f(x) is congruent to zero mod p.
Proof: See Niven and Zuckerman (11, p. 4k4). A

Theorem 4.6 Let f(xi,xz, ees ,xs) be a polynomial of degree less than

P in each x,. Suppose f(ei,ez, ces ,es) = O mod p for every

(0,,0,, ««s ,es) where Gi = 0,1,2, ... ,p=1 for each i. Then the

172!

coefficients of f must all be congruent to zero mod p.

Proof: Consider f as a polynomial f1 in x, having coefficients

which are polynomials in STERE 2 This polynomial fi(xi) has

x2,x3, .
degree less than p and fi(xi) = Omod p has p incongruent solu-

tions mod p. Therefore, Lagrange's theorem implies that each of its

coefficients, the polynomials in X, 9% cee Xy must be congruent to

3,

zero mod p for every (92,93, aee ,Gs). Now each of these coefficient
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polynomials can be considered as a polynomial in x2 whose coefficients
are polynomials in x3,x4, cee 4X . Again, from Lagrange's theorem, the
coefficient polynomials in x3,x4, cee 9 X must all be congruent to

zero mod p for every (8 94, . ,95). This process can be repeated

31
until the step where polynomials in x, are obtained whose coefficients
are the original integer coefficients of f. These polynomials are of
degree less than p in X and are all congruent to zero mod p for
xs==0,1, see 4p=1. Eherefore, their coefficients and, hence, all

coefficients of f must be congruent to zero mod p. A

An example will help to clarify the argument in theorem 4.6.

L 3 b 2 2 2 2 [
Example 4.2 Let f(x,y)==a1x Yy tax’y -kajx Y +a,x y-kasy tag.

Suppose f(91,92) = 0 mod 5 for every (61,92). Write

fx,y) = (a1y3 + azyz)x4 + (a3y2 + alky)x2 + (a5y4 + a6) .
Then, f can be considered as a polynomial in x whose coefficients
are polynomials in y. Now consider a fixed value of 92 for y so

f(ei,ez) Z=0mod 5 for 6, =0,1,2,3,4. This implies that each coeffi-

1
cient polynomial must be congruent to zero mod 5 for the fixed 62.

We can use this argument for 5 different values of 62, so we have

a 3-+a 2 a 24—a and a 4-+a all congruent to zero mod 5 for
1y Zy ’ 3y 4Y1 5Y 6 g

5 inceongruent values of y. The conclusion follows that each ai, the

original coefficients of f, must be congruent to zero mod 5.

An important consequence of this theorem is the following. Let
f(xi,xz, - ,xs) = g(xi,xz, . ,xs) mod p where f and g are both

of degree less than p for each xi. Then if the congruence holds for
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)

every (8 - ,Gs), the polynomials f and ¢ must be identical

1'72?

mod p. That is, all corresponding coefficients must be congruent mod p.

Theorem 4.7 (Chevalley's theorem) Let f(xl,x cee ,xs) be a poly-

29
nomial of degree less than s with integral coefficients and whose

constant term is zero. Then f = 0 mod p has a solution

(6,,6

41850 -ee ,Ss) where ei ZOmod p for some i.

Proof: By Fermat's theorem xp Z x mod p so each exponent in each term

of f can be reduced to one of the values 0,1, ... ,p-1 without
affecting the solution set of the congruence. Therefore, f can be

assumed to have degree less than p in each xi. In order to prove the

0

theorem, assume the contrary, for every (8 eee ,8.) where

172 2

Oi #Z 0O mod p for some i, f(61,62, ces ,es) # 0 mod p. With this

assumption in mind, censider the following congruence:

1- [f(xl,x

2’

,xs)]P"is(1-x11"1)(1-x§‘1) (1_{‘1) mod p -

This congruence holds for all (91,62, aee ,Ss). To see this, first let

every Gi be congruent to zero mod p. By hypothesis, f has no con-

stant term so f(_el,ez, ,es) O mod p and it follows that both
sides are congruent to one mod p. Now consider the other possibility
that some Gi is not congruent to zero mod p. By assumption

f(el,ez, cee ,es) Z O mod p so the left side is congruent to zero modp.
The right side is also congruent to zero mod p since one of its fac-
tors is congruent to zero mod p. So the congruence holds for all
(91,92, e ,es). Applying the previous theorem, the polynomials on the
right and left sides must be identical mod p. However, when the right

side is expanded, it contains the term
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s p-1 p-1 -1
(-1) X, Xy e xz

which is of degree s(p-1). On the left side, the fact that f has
degree less than s means that no term can have degree as great as

s(p=-1). This contradiction completes the proof of the theorem. A

This theorem and the previous one are also true if the coefficients
of the given polynemials are p-adic integers. To see this for
Chevalley's theorem, let @ be any p-adic integer that is a coefficient

o .
of f. If a = 'EO aipl, then @ = ag mod p. Now, if each p-adic
1=

coefficient is replaced by its corresponding a, a new polynomial, say

f1(x1,x2, e ,xs), with integer coefficients is produced. Chevalley's

theorem gives a solution (61,92, . ,es) in integers for

fl(x

11%gy oo ,xs) = 0 mod p where for some 1, ei # 0 mod p. If each

a, coefficient in f1 is now replaced by the corresponding p-adic

value the congruence still holds since only a multiple of p is added.

Therefore, (61,92, cee ,es) is a solution for f = O mod p. The ei

that is not congruent to zero moed p can be considered as a unit in

0o .
p

Chevalley's theorem is strong enough to use in proving the conjec~
ture for mth powers where (m,p)=1. However, a stronger result can be

established for diagenal forms and since this result will be needed

later, the following theorem is included here.

Theorem 4.8 Let g = Eﬁxq + ngg + see 1+ g be a unit diagonal

kn
d+1 d+1

form in Op where n=mpk, (m,p)=1, and d= (m,p-1). Then, the con-

gruence g = O mod p has a solution in integers where x = 1.

1

Proof: Recall from theorem 2.12 that the congruence EX = a mod P has
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a solution in integers if and only if the congruence Exd = a mod p has
a solution in integers. Therefore, the congruence

E xd4-E xd-+--- + € d

1%1 7 S¥g a+1¥d+1 - O med p

has a solution in integers with x1=1 if and only if g=0 mod p has

a solution in integers with x_ =1. In order to prove the theorem,

1
assume the contrary, for every choice of integers xz,x3, cee aXgq0 it
is true that
d d
£y +EX, * Sl NP S ZOmodp .
It then follows from Fermat's theorem that the congruence
d d ,p-1 =
(514-€2x2 + + 8d+1xd+1) ~1 =0 mod p
holds for every choice of Xy x3, cee X4 4t When the left side is
expanded and each exponent is reduced to a value less than p, we can
apply theorem 4.6 and conclude that each coefficient must be congruent
to zero mod p. This expansion can be accomplished using the multi-
nomial formula with the following result:
(p~1)! a d.a d ,a
(e,) (g x )2 e (g, x_ )0t 1 1,
afay ”.awll 1 22 d+1 d+1
The sum is taken over all combinations for which O S'ai <p-1 and
a +a_+-+-«+a = p-1. Each of these combinations occurs in exactly

1 2 d+1

one of the following cases:

(1) =0 and a, = (p-1)/d for all i, 2< i< d+1.

24

(2) =0 and Osai<(p-1)/d for some i, 2< i< d+1.

a4



46

(3) a, > 0.

In case (1), the resulting term is

. P
2_1 -d 1 p~1 p-1 p-1
[( d ) !] (p-1)1(62€3 b €d+1) X X a6 xd+1- (405)

Note that the coefficient of this term is not congruent to zere mod p.
Each term in case (2) has at least one exponent that is less than p- 1
since O S.dai < p-1 for some i and dai is the exponent of X;.
This means that none of the terms from case (2) can be combined with the
term from case (1). In case (3), the fact that a, > O means that

1

a2-+a3-+----+ad+1 =p=-1- a1 < p-1. The sum has d terms so for some
i, 0<a, < (p=-1)/d. Therefore, as in case (2), each term in case (3)
has at least one exponent that is less than p- 1. Since none of the
terms from cases (2) or (3) combine with the term (4.5) above, this

term must occur in the sum exactly as written. However, its coefficient
is not congruent to zero mod p which is a contradiction to theorem
4,6. Hence, the assumption that

£, +E xd‘+--- + € xd =
1 272 d+1 d+1

had no solution must be false. It follows that a solution exists for

g T Omod p with X, = 1. A

We now return to the task of proving the conjecture that diagonal
forms in Qp of degree n containing more than n2 variables have
non-trivial zeros in Op. As a result of theorem 4.4, we need only show
that any unit diagonal form in Op of degree n with more than n

variables has a non-trivial zero in Op.
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m m m
T . = oo i i i
heorem 4.9 Let g €1x1-+€2x2-+ + ngs be a unit diagonal form in

0p where s >m and (m,p)=1. Then g has a non-trivial zero in

o .
Y

Proof: Chevalley's theorem implies that the congruence g = O mod p

0

has an integral solution (8 - ,95) where ei Z O mod p for

1%

some i. Without loss of generality, suppose 61 Z 0 mod p. Then
m _ am m
€8+ 88+ oer 4 B8 = ap

for some ¢ in Op. This can be written as

g (g"-g !

m m
18- 8, 0p) +EH, +eer vEB =0

Now from theorem 2.11, 9?-—&;1ap is an mth power in 0p so there is a
1

§ in 0p for which 8" = 8"~ ¢

1”& 8.)

3,..., s

is a non-trivial zero of g. A

op. It follows that (5,62,9

Note that this theorem can be strengthened using theorem L4.8. We
can use s > d where d = (m,p-1) instead of s > m. The two condi-
tions are the same only when m = p- 1. This is similar to the result
of theorem 4.1 in which p-1 was the degree of the form containing n

variables and having only the trivial zero.

pk pk k
Theorem 4.10 Let g = gXx, +E.X -+----+€sz be a unit diagonal form

in 0p where p#2 and s > pk. Then g has a non-trivial zero in Op.

Proof: Consider the set 8 of integers defined by

p-1 k+1 k+1

S:{alafgi mod p ,0< a<p ,15155}.



48

Since each €4 is a unit in Op, we have g?_i = 1 mod p for every

i. This implies that 8 contains at most pk elements since there
k . k+1 .
are exactly »p integers between 1 and p which are congruent to

1 mod p. By hypothesis, s > pk so for some i#j we must have

-1 _ -1
Eri’ = e? mod pk"':l .

Without loss of generality, let €; = € and E;J. = g,. Raising each

=2
. ' k-1 k-2
side of the congruence to the power (p + p + eee + p+1) and
using the identity (p- 1)(pk'-1 + pk"2 + oeee 3 1) = pk - 1 gives
k 1 k k k
-1 _.p-1 k P _ . _P 1
e:? gy " mod p or g€ SEE- modp .
This implies that for some @ in O
k k : k ¥
P P k+1 P -1 k+1 P
e -£ € = € ~ £ £ _(-E = .
€, p o€ op or 1(82 , op ) + 2( 1) 0

k -
Now 812) -811Ctpk+1 is a pkthv power in Op so there exists a § in
o] for which
b

k K k+1
p p -1 .
o) _82 81 op

It follows that (6,—81, 0, ... ,0) is a non-trivial zero of g. A

Corollary 4.1 Let f ©be a diagonal form in Qp of degree n and con-
taining more than n2' variables. If n=m, (ni,p):i or if

n=pk, p#2, then f has a non-trivial zero in Op.
Proof: The proef follows directly from theorems 4.4, 4.9, and 4.10. A

In theorem L4.10, the result depended strongly on the fact that when
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P#2, pk is odd. The next theorem shows that the restriction to odd
powers produces a result that is often considerably better than the con-
jecture suggests. Note that (p- 1)pk is excluded by this restriction

when p 1is odd.

' n n n . .
Theorem 4.11 Let g = €1x1 + €2x2 + -+ Esxs be a unit diagonal form

in Op of odd degree n = mpk,(m',p) =1, p#2. Then if

s > (k+ 1)1092 P, g must have a non-trivial zero in Op.
Proof: Consider the set 8 defined by

g::{a1€1+a2£:2+-..asss ai=1or0,1siss}.

This set & contains at most 2%  elements. Now, since

s > (k+1)log, p implies 2% > "1 there must be at least two ele-

ments of & which are congruent mod pk+1. This gives

7 ’ / k+1
a1€1+a2€2+ +atSE:S = a1€1+a2€2+ +as€s mod p

where each ai and a/i is either 1 or O and for at least one

. / . .
i, ai;!ai. This result can be written as

7 4 ’ k+1
(ai-a1)51+(a2—a2)32+ +(as+as)e_:s = Op

for some @ in Op where each ai—ali is either "1, =1, or O and at

/ . . . /
least one a,-a. 1is not zero. Since n 1is odd and each ai- ai has
i i

one of the values 1, -1, and 0, we have (ai- a/i)n = a; - ali for every

i. Assume, without loss of generality, that a.1—al1 is not zero. Then

(ai—all)n- aziapk+1 is an nth power in Op. Therefore, for some §
R -1
in 0O_, 5n = (a-a’ - € Gipk+1

o 3 and it follows that
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/ / » » o
(s, 8y~ 8ny oo ,as-as) is a non-trivial zero of g. A

It is interesting to see the conditions under which this result
improves on the conjecture and how much improvement is made. Combining
the result of theorem 4.4 with the result of this theorem we have that
any diagonal form in Qp of odd degree 'n:=m§k and more than
n(k-+1)1092 p variables must have a non-trivial zero in Op. This
value n(k+1)log2 P will be less than the n2 in the conjecture when-
ever (k-+1)1092 p<n. If k=0, this compares m and 1og2 P and
m > 1og2 P provided p < 2. If k>0 it is not difficult to show
that n > (k-+1)1092 P except when m=1, p=3, and k=1. 1In general,
when k > O the comparison of n and (k+1)log2 p is similar to the
comparison of n and log2 n which are significantly diffe?ent,
especially for large n.

In theorem 4,10 diagonal forms in O of degree 2k were excluded

2
because the method of proof required that pk be odd for every Kk.

This case is more difficult because 2k is even. However, as we will
show later, the proof of the conjecture for diagonal forms in Q2 of
degree 2k provides a proof for all diagonal forms in Q2. Also, the
methods that are devised for proving the conjecture in this case suggest

methods for proving the conjecture for odd primes. We begin devising

these methods by considering the folleowing example.

Example 4.3 Let f=f -+2f1-+4f2-+8f where

0 3

Hy
it

xl;+9xl;+ 17§§+25x2+33xl; , f1 = xg+5x;*

£ = x84-9x4, and f_ = x4 .

9 3 10
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Note that fo has more than 4 terms, but fo = 0 mod 16 only if

|

X

i O mod 2 for each i, 1 S_i < 5. Therefore, f cannot be used

0

to construct a zero of f as has been the case in previous examples and

theorems. However, if X, = 1 for i=1,2,7,8,10 and x, = 0 for

i=3,4,5,6,9 the result is fo‘= 10, 2f, = 10, 4f, = 4, and 8f3 = 8.
This gives f = 32, Now, since 1-32 = 1 mod 24, -31 is a Zzth power
in 02. Therefore, for some § in 02, 64 = ~-31 and when x, = 5,

x, =1 for i = 2,7,8,10 and X, = 0 for i= 3,4,5,6,9, this is a
non-trivial zero of f. Another non-trivial zero could be constructed

using X, instead of X . Since 9 is a unit in O 1/9 also is a

2’
unit in O2 and 1-32/9 = 1 mod 24. Therefore, 1~ 32/9=-23/9 is a

Lth power in O and if 54==-23/9, x2==5, x, = 1 for i=1,7,8,10 and

2

xi==0 for i=3,4,5,6,9 is a non-trivial zero of f. It is important

to note that the X, from f1,f2, and f3 cannot be used as the Xy

and x2 were used to construct a non-trivial zero because as variables

in f their coefficients are not units in 02.

This example demonstrates a method that will be used in construct-
ing all non-trivial zeros in the remainder of this chapter. First a
solution in integers to an appropriate congruence will be constructed.
Then, this solution will be used to construct a zero of f. This method
can succeed oniy if the integral solution assigns a value to some vari-
able in fo which is not congruent to zero mod p. If fo does not

contain a sufficient number of variables the method fails. The follow-

ing example shows how such a problem can be overcome.

Example 4.4 Let f be the form

(xﬁ + 9x§) + z(xg) . 4(xZ-¥9x§j-17xg-b25xgﬁk3?xg) + 8(xg-+5xﬁo) .



52

Suppose the x, are replaced by 2yi for i=1,2,3. The first three
terms of f then become 16(y§-+9yg) + 32(y§). After rearranging the

terms, f can be written as

L

4[(xﬁ+9x4+ 17X2+25xl7*+33xg) + 2(xg+5x10) + 4(y§+9y§) + 8(y§)] .

5

This form is essentially 4 times the form in example 4.3. The non-

trivial zero of that form, adapted to the proper variables here, gives

= r= X = = = = = = = = . Thi
X, 8, x57_310v_ y1 _ y3 = 1 and Xg x7 Xg x9 Yo o] his
produces a non-trivial zero of f in terms of ki when X, = 2y1 = 2,
X2 = 2}’2 = 0, and x3 = 2.

The following theorem uses this type of substitution to effect a
cyclic permutation of the fi so that any fi can be placed in the

first position.

Theorem 4.12 Let £ = f + pf  + ++» + p °f

where each f., 1is a
0 i

1 n-1

unit diagonal form in Op of degree n. Then f has a non-trivial

zero in Op if and only if the form

n-1-r n-r n-1

9 = fr+pfr+1+ TP f‘n—1+p fO+ TP fr-1
0<r<n-1, has a non-trivial zero in Op.
Proof: Let h,(X,,X., oo 4%,) = f + pf -+----+pr—1f and

171727 Tt 0 1 r-1

r r+1 n-1
h2 = p fr-+p fr+1-+.---+p fn-1' It follows that f = h1+h2 and

n-r -r n n n
gr =p h14-p hz. If a1x14-a2x2-+ +0,txt represents h1, then by

direct substitution

n
hl(pxl,pxz, cee ,pxt) =p hl(xz,xz, .o ,xt) .
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A similar statement can be made about h_. Now suppose

2
(91,92, cee ,es) is a non-trivial zero of f. It follows that
gr(ei,ez, . ,et,p9t+1, .o ,pes)

n-r

er
= h1(91,92, cee ,et) +p hz(p9t+1,pet+2, cee ,pes)
= P Thy(8,48,, wer 48,) + B hy(8, 48 o, -er ,6)
n-r
=p [h(8,,8,, oo 48) + hy(8, 4,0 ) «or ,8))]

n-r
p f(ei,ez, ces ,et) =0 .

Therefore, (6,,6_, ... ,8

cee ,pes) is a non-trivial zero of

12927 LA

9. Now suppose (91,92, .o ’es) is a non-trivial zero of g . In

@

this case (pei,pez, .o ,pet 8

10,40 oo ,es) is shown to be a non-

trivial zero of f by the following:

f(pel,pez, .o ,pet,e ees ,8)

t+1’ s
= h1(p91,p92, - pe ) + h (9t+1 PTIRTE ,es)
= p“hi(ei,ez, cee 48.) + By (8 0B oy ees 4B))
= [P "h (8,,8,, «ov 48) + D hy(8, 8, s -er 48]
= p'g.(6,,8,, .- ,6) =0 . A

In previous problems, we have used the fact that when f .contains
more than s variables, the average number of variables in the fi is
more than s/n. It was natural to observe that this iﬁplies some fi
must contain more than s/n variables. As a result of theorem 4.12, we

may assume without loss of generality that fo itself contains more
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than s/n variables. The observation about the fi can be extended to

consider all consecutive pairs {fi’fi+1}' Since there are n pairs

and each variable is included in exactly 2 pairs the average number of
variables contained in each pair is greater than 2s/n. Therefore, some
pair must contain more than 2s/n variables. Continuing this concept

cee Hf } of Jj consecutive

we can consider all sets {f.,f. .
i1 i+j=-1

+1?

forms. Some such set should contain more than js/n variables.
Theorem 4.13 from a paper by Lewis and Davenport (8) shows that such a
result is not only possible but that an even stronger result can be

obtained.

+ oo +pn—1f be a diagonal form with s

Theorem 4.13 Let f=f_+pf et

(0] 1

variables where each fi is a unit diagonal form in Op of degree n.

Then there exists a diagonal form g::go~+pgi-+o-. +pn"1gn 1 with the
following properties:
(1) g has a non-trivial zero in 0p if and only if f has

a non-trivial zero in Op.

(2) 1f Mi denotes the number of variables in 9 then

s 2s (n-1)s
> = >2= .. cee p LA
MO--n’ MO+M1--n’ , MO+M1+ +Mn—2— o ,
M c*- +M = S.
and M_+ 1+ + 1 s

Proof: To prove this theorem, it will be shown that there exists an r
for which 9. in theorem 4.12 has property (2). Denote the number of
variables in each fi as Ni and consider the infinite periodic

sequence {Ni} where Ni = Nn+i' In this sequence, any segment

{Nt,N 1} has the property that the Ni denote exactly

t+1? ’Nt+n—

the number of variables in the unit diagonal forms in 9. where
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r=tmodn and O fr<n-1. The proof of the theorem will be com-

Plete when the existence of an r is demonstrated for which

ts
] D m——
Nr - Nr+1 * * Nr+t-1 - n

for all t, 1<t <n. To prove that such an r exists, assume the

contrary that for every r there exists a t, 1<t <n, for which

-Ni! L . L o Ei
Nr * N}"q-:l. e A Nr+"t';1’<" n

First define ui=Ni-s/n. By the definitions of Ni and U,

u, + uy + e + u 4= O. By assumption, for every integer a there

exists another integer b > a for which

N 4N +ees s < bmarlls
a a+1 b n

This can be written as
(N -2)+ (N
a n a

] S
+1-;)+ +(Nb_n)<o

and in terms of the u, as u +u ++ee +u. < 0. Now consider the
i a a+1 b
following sequence of ordered pairs. Let ay be any integer and de-
termine b1 so that
u + u +ereru, <O .
a, a1+1 by

Now let a2=b1+ 1 and determine b2 so that

u + u +eee+u <O .
a a2+1 by
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Continuing this process, there must eventually be some i < j such that
a; = aj mod n. This result allows us to establish a contradiction.

Consider the sum

u +u + see + 1 .
a; a1+1 aj-1

This sum can be considered as segments of the form
i<s<j-1.

The sum of each segment is less than zero so the entire sum must be less
than zero. This sum can also be considered as segments, each of length
n, and each containing a complete set of the original u, . Each of
these segments has the sum zero so the entire sum must be zero. This
contradiction proves that the assumption is false and completes the

proof ot the theorem. A

The two previous theorems have applications for odd primes as well
as for p=2. The next section concentrates on proving the conjecture
in the 2-adic case. Recall from example 4.3 that the zero of f was
obtained by first assigning values of one or zero to each X, . The

result of this assignment was f_ = 10, 2f,6 = 10, 4f2 = 4, and 8f,_ = 8.

0 1 3
2
Now consider the progressive sums fo = 10 = 5-2, fo + 2f1 =20 = 527,
_ .03 _ )
fo + 2f1+ 4f2 =24 = 3-27, and fo + 2f1 + 4f2 + 8f3 = 32 = 27. An

important observation is that the value of each sum contains at least
one more factor of 2 than the value of the previous sum. This is
necessary in order to obtain the result of f = O mod 24 using vari-
ables from fo. A second observation that can be made from this

example is that when an x; is assigned the value one this has the
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effect of picking the coefficient of the X, to be retained in the sum
while assigning the value zero to an x; has the effect of deleting its
coefficient from the sum. In constructing a zero for f we will be
concerned with obtaining a sum whose value contains a certain power of
2. Thisiconstruction will be accomplished by retaining or deleting the
coefficients of f. We begin with the following definition. The use

of B and € in the definition is consistent with the usual convention

of letting B denote a p-adic integer and € denote a unit in O2

Definition 4.2 - A 2-adic integer that is divisible by 2’ will be said

to be of the 2B type. A 2-adic integer of the 2'B type that is not

of the 21+1B type will be said to be of the 218 type.

Lemma 4.2 Given 2l terms of the ZJB type one can construct 21—n

terms of the 2J+nB type where 0 < n < i.

. . ' i1
Proof: First partition the 2’ terms of the ZJB type inte 2l

+ Bz is

. : - . . . 1
even. Therefore, 2JB1,2J82, or 23(51-+82) is of the 297°B type.

;- . 1
It follows that from the 2% 1 pairs ot 1 terms of the 297 B type

pairs. If {2381,2J82} is one such pair, then 81,82, or 81

- i-2 . j+1
can be constructed. ~ Similarly from 21 pairs of these ZJ B terms

2i_2 terms of the 2j+28 type can be constructed. Proceeding in this
~ fashion in general 2i_n terms of the 2j+nB type can be constructed.
A
Lemma 4.3 Let 2js1 and 2j be terms of the 2js type with
g, = €, mod k. Then, 2j(81-+52) is of the 2%l type.

Proof: Since 81 and 82 are both congruent to one mod 2 either

€, T g, = 1 mod & or € =€, = 3 mod 4. In either case,



58

€ + &, = 2 mod 4. Therefore, € +E, is of the 2B type, but not of

2
the 2B type. It follows that €, +E, is of the 2g type and that
23(31+sz) is of the 2971 type. A

J

Lemma 4.k Given 2% terms of the 2% type, one can construct

Zl_n-i terms of the 23+n€ type where 0 < n < i.

Proof: First partition the o' terms into two sets, one set containing
the ZJE terms where £ = 1 mod & and the other set containing those
where € = 3 mod 4. Now each set can be partitioned into pairs with at

most one term in each set left over. Using lemma 4.3, each pair can be

used to construct a term of the 2J+1s type. In all, there will be at

least (21-2)/2=:21-1— 1 terms of the 2J+15 type constructed. For
the next step, and all succeeding steps, the number of terms at the

beginning is odd so exactly one term will not be used in pairing the

terms whose € values are congruent mod 4. Therefore,

(2t o 1) - 1]/2 = 29721 terms of the 27%2

€ type can be con-

structed. Continuing this process, 23—n_ 1 terms of the 23+n€ type

can be constructed where O <ng< i. A

Lemma 4.5 Given one term of the. ZJB type and o'~ 1 terms of the

JE type, one can construct one term of the 21+JB type. Furthermore,

2
the original ZJB term can be retained as one of the terms used in

constructing the 21+JB term.

Proof: Using the technique of lemma 4.4, the 2' -1 terms of the 29

type can be used to construct 21_1— 1 terms of the 2J+1€ type where
exactly one term of the 27g type is not used. This remainiﬁg term

can be paired with the term of the ZJB type. For this final pair, if
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8= 1mod2, then 29(B+g) is of the 29718 type. If B = 0 mod 2,

then the 298 term is of the 2718 type. The net result is that the

final pair produces a term of the 2J+1B type which is constructed

using the original 2JB term. By exactly the same technique, the

21_1- 1 terms of the 2J+1€ type and the one term of the 2J+1B type

can be used to construct ZJ_Z— 1 terms of the 2J+2€ type and one

term of the ZJ+ZB type. As in the first step, the 2J+1B term and,

hence, the original ZJB term is retained in constructing the ZJ+ZB

term. In general, this process will produce 2™ _ 1 terms of the

23+n€ type plus one term of the 23+nB type. When the step where

n=1 is reached, there are 20— 1 or zero terms of the 2J+18 type

and one term of the 2J+1B type. The original 2JB term is retained

in constructing the 27778 term.- A

Theorem 4.14 Let f be a diagonal form in Q2 of degree n==2km
where (m,2)=1 and k > 4. Then if f contains at least n®+1

variables f has a non-trivial zero in 02.

Proof: As a result of theorems 4.2, 4.12, and 4.13, the following

assumptions can be made:

(1) £ =f_ + 2f, + =oo + Zn_if where each f, is a unit
0] 1 n-1 E i

diagonal form in 02.

(2) 1f N, denotes the. number of variables in each f,

then

gz-ki 2
>n , N +N, >2n , ..., N + N + c°° + Nn > n.

Ny 2 ot M 1

O~ «on o 1

The proof of the theorem will follow if it is possible to construct a

term of the 2k+25 type using a sum of coefficients from f provided
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some of the coefficients come from fo. To construct this 2k+25 term,

k+2

consider two cases, one when No > 2 and the other when No < 2k+2.

k .
If NO'z 2 2 using lemma 4.2, a term of the 2k+28 type can be con-

structed using only coefficients from fo. If NO < 2k+2, the result

is not so immediate. Note first that since n = 2km and k > L py

. L .
assumption (2), Ny > n zlzk > 2°. Also by assumption (2),

k k+2 k
NO+N1+N2+N3+N4>5n252 =2 +2 .

. . . k+2 . k .
This inequality and NO < 2 imply that N1+N2+N3+N4 > 2. Using
24 of the coefficients from fo, by lemma 4.2, one term of the 245

. k+2
type can be constructed. Now, in order to apply lemma 4.5, 2 -1

terms of the 248 type need to be constructed using the remaining terms

froem fO’fl’fz’fB’ and f4. To do this, begin with the No-16 terms

that remain in fo. As demonstrated in lemma 4.4, these No-16 terms

can be used to construct at least (NO— 16)/2-1 terms of the 2€&

type. The terms from f1 are already of the 2€ type so at least

(NO— 16)/2-1 + N1,2€ terms are available using f, and f1. Applying

the same argument to this set of 2g& terms at least

[(NO-16)/2- 1 + N1]/2-»1 terms of the 228 type can be constructed.
The terms from f2 will add N2 terms of the 226 type. The follow-
ing expression represents the number of terms of the 246 type that
result from applying this process four times.

N - 16

0
e N

- 1+ N

-1+ N
2 314N
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This expression is equal to NO/16 + N1/8 + N2/4 + N3/2 + NQ - 23/8

which is greater than

[(NO+N1+N2+N3+N4) + (N1+N2+N3+N4):|/16-3

k+2 k-2 k-3 k-2

>[4 2% + (297163 = K2 K3 -1 .

Thus, when NO < 2k+2, the construction of one term of the 248 type

using coefficients from fo and 2k—2— 1 terms of the 248 type using

the remaining coefficients from f_,f_ ,f_,f

0't1'ta 130 and f4 can be accon-

plished. Applying lemma 4.5, one term of the 2k+28 type can be con-

structed which retains the 248 term and, hence, uses coefficients
f .
rom fo
In the following, the two cases no longer need to be considered
k+2

separately. 1In each case, the construction of a 2 B term means that

by assigning values of one and zero to the variables in the fi result.

2 3 b k+2
f0+2f1+2f2+2f3+2f4_2 B

is obtained. In this construction, at least one variable in fo has

been assigned the value one. Denote Exn as a term in f for which

0
. . .. . . -1 k+2 .
x=1 and note as in previous similar situations that 1-g 2 B is
. . . -1 _k+2
an nth power in 02. Therefore, for some § 1in 02, én:=1-8 2 B.

Now, let x=8, assign values to the remaining variables in
fo,f1, ce- ,f4 from the previous censtruction and assign all variables

in fi, i>4k, the value zero. This produces a non-trivial zero of f.

A
This theorem proves the conjecture for diagonal forms in Qz of
degree n=2m when k > 4. When k=0, n=m, and since (m,2)=1,

the conjecture is proved in corollary 4.1. This leaves the cases where
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k=1,2, and 3. Techniques similar to those used in theorem 4.14 also

work in these cases. One approach to constructing the different solu-

tions of f = O mod 2k+2 ig the following. When k=1 consider two

cases, m=1 and m > 3. When m=1 the proof can be found in
Borevich and Shafarevich (3, p. 51). When k=2 consider four cases,

Ny 216, 12 < N; <15, 8 <N

0 < 11, and 55N057. When k=3 con-

0

sider three cases, NO > 32, 16 < NO <31, and 8< NO < 15. The fol-

lowing example is representative of these cases.

Example 4.5 Consider the case where k=3 and 8 < NO < 15. Under

assumption (1) of theorem L4.14, f can be represented as

f -F2f-+°°--F2n_1f where each f. 1is a unit diagonal form in O
0 n-1 i 2

of degree 8m, (m,2) =1. With assumption (2) of theorem 4.1k,

NO-+N -+N2-+N > 4n=4(8m) > 32. This and the condition N_ < 15

1 0o

3

implies that N -+N2-+N > 18. Now lemma 4.2 implies that one term of

1 3

the 238 type can be constructed using 8 of the coefficients of fo.

From the remaining coefficients of fo’f1’f2’ and f at least

31

N. -8
0 -1+ N

2 1. 1+ N

2 : 2
5 1+ N3

3

terms of the 27¢ type can be constructed. The value of this expres-
sion is not less than

(NO-FNi-FN

2_+N3)/8 +. (N1 fN2+N3)/8‘- 11/4 > 33/8 + 18/8 - 11/4 > 3.

3

Therefore, three terms of fhe 2°g type can be constructed to combine
with the one term of the 235 type that came from fo. Using lemma 4.5

these four terms will preoduce one term of the 258 type that retains
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5

the 238 term. Hence, a suitable solution for f = O mod 2° has been

constructed and the non-trivial zero follows.

The objective of the final section of this chapter is to prove
Artin's conjecture for diagonal forms in Qp when p#2. This has been
accomplished in corollary 4.1 for forms of degree n where
(n,p) =1 or n = pk. This section deals with forms of degree n = mp
where (m,p) = 1, k > 0, and m > 1. The methods are similar to those
used previously, however a few additional factors need te be considered.

Given a diagonal form f of degree n==mpk, f 1is represented as
fo-+pf1.+--..+pn_1fn_1 and a solution for f = O mod pk+1 is con-
structed. As before, it is essential that this solution assign to some
variable in fo a value that is not congruent to zero mod p. The fol-
lowing development describes a procedure for constructing this solution.

Suppose a form g = § xn + g xn + eee + & where

n
1%1 2%s a+17a+1

d=(m,p-1) is a portion of some unit diagonal form f. of f. As
shown in theorem 4.8, there exists a solution (1,92,93, cee ,Gd+1) for

the congruence g = O mod p. Therefore,

n n t
€ *EL8, * * €3,18%3:4 =P €

for some t > 0 and some unit €. Now substitute eiy for each xi:

n

n
+1 LI ) +
ezy ()

n+ en n
= &Y € a+1°a+17

(o}
|

2

n n t n
04,1’y =PEY .

(€, +€,8, + *+* + €
1 272 d+1

. . t
With reference to the entire form f, the term p Syn produced froem

terms of fi can be considered as the term Ety'n in fi+t' This
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operation of coenstructing one term from d+1 terms is called a
contraction. In each partial form g the first variable is always

assigned the value one and is called the distinguished variable.

Variables that are produced by the contraction operation are called
derived variables. The contractien operation will be applied repeatedly

to f as described by the following steps.

Step 1 Divide fo inte [NO/(d-+1)] partial ferms each containing

d+1 terms and assign any remaining variables of fo the value zero.

Apply the contraction operation to each of the partial forms. With the

resulting derived variables, f can now be represented as
1 1 i1l
f f e T, ces
pf, + pyf, + +pf 4

where f; denotes the original fi combined with any derived terms of

the form plsyn.

Step 2 This step is similar to step 1 applied to fi instead of fo.

The only difference is that fi

is divided into partial forms whose
first, or distinguished, variable is a derived variable. Any variables

in fi that cannot be used in this way are assigned the value zero.

After applying the contraction operation to all such partial forms, f

can be represented as pzfg + p3f§ + eee 4+ plf? + e« with f?

denoting the original fi combined with any qualified derived variables

produced in steps 1 and 2.

t-1

Step t, t > 1 This step is exactly the same as step 2 applied to f‘t_1

and after t steps, f can be represented as

t_t t+1_t it
P ft + p ft+1 + =+ 4+ D fi +
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where f: contains the original fi and any qualified derived vari-

ables produced in steps 1 through t.

t . . . . .
Any fi where i > n contains only derived variables since

n-1

originally f = fo + pf1 + eee + D fn 1° A more important observation
. e s it o k+1 .
is that if i >k+1, p fi = 0O mod p must have a non-trivial solu-

. . t . . .
tion. Furthermore, if fi contains a derived variable some non-

t

i 0 mod pk+1 vields a non-trivial zero of f.

trivial zero of plf
This zero is obtained by setting the derived variable in f: equal to
one and assigning corresponding values to the ancestors of this derived

variable in f_,f

o'fqs +-- ,fk. All other variables are assigned the value

zero. It is important to see that when a derived variable in f: is

assigned the value one all distinguished variables that are ancestors of
this derived variable also have the value one. Therefore, when the
ancestry is traced back to an original distinguished variable inA f

o

this variable will have been assigned the value one. This value in fo

allows us to construct a non-trivial zero of f from the solution of

f = 0 mod pk+1. The main task of the next theorem is to show that some
f: where 1 > k+1 must contain a derived variable whenever f con-
tains more than n2 variables.

The following example will help to clarify these ideas and make the

following theorem more understandable.

Example 4.5 Consider the fellowing diagoenal form in 05:

5 50

f = 2x7 +x O-+3xgo-+20x40-+65x5 50

6

50

+150x7 + 175%;

50 5

x O-+3xgo)-+5(4xzo-+13xgo)-+25(6x20-+7x50)

7

It
~~
[\]
»
+
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Therefore,

O 5 o] (6] O
f = 2x7 +x +3x3 , £ = 4xZ + 13xg , and fz = 6x2 +7X
Since 50 = 2-52 and (2,5-1) = 2, according te theorem 4.8 the

contraction operation can be applied to any three terms from any f..

i
In fo if x1 is considered as the distinguished variable, Xy = 1,

)

0, and x3 =1 vyields fo = 5. Therefore, the substitution
50 50 50 50

x1 = 1-y1, x2 = Ofyi, and x3 = 1°y1 ylelds- 2x1'=+x2 -+3x3 = 5y1 .
The resulting term, Syio, can be considered as the derived term yio
in fi. That is, f can be represented as

5

5,(y§° +lop o0

(0] 50 50
+ 13x5‘ ) + 25(6x6 +'7x,7

Now the derived variable ¥4 must be considered as the distinguished

50 50 50
1 +4x4 +13x5

Using only ones and zeros will not produce a solution to this congru-

variable when a solution for vy = Omod 5 is sought.

ence. However, a little arithmetic shows that when x = £1 mod 5,

x50 1 mod 125 and wheh x £ %2 mod 5, x50 = -1 mod 125. Since we

are attempting to solve a congruence mod 125, knowing the value of

50

mod 125 is as useful as knowing the actual value of x” . Consid-

x50

ering the size of 250, the value mod 125 is more useful. Therefore,
¥y = 1, X, = 2, and Xy = 1 yields fi::y?o-+4x20-+13xgo = 10 mod 125
énd the substitution ¥y = 1-y2, X, = 2y2, x5 = 1-y2 vields
yio-+4xzo-+13xgo = S'Zygo mod 125. Thus, the second derived variable
y2 produces the term ZyZO in fg and the representation of f is
now f = 25f§ = 25(2ygo-+6x20-+7xgo). The derived variable Y, must
now be the distinguished variable. Now set y2==y3, x6==0, and x7==2y3
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+0-7y0 = -5y§°

3
3 _ 50 = 3 =
f3 = -y3 and f = 125f3 = 0 mod 125 for any value of y3. If

y3= 1, " then Yo =¥y = 1 and the resulting assignment for the x, is

50
to obtain f; s 2y mod 125. It follows that

3

X, =x_=x_=1, x2=x6=0, and X, =X = 2. Therefore,

7

f£(1,0,1,2,1,0,2) = 125 a for some integer a. As in previous examples,

theorem 2.11 implies that 1- 2-1125a is a 50th power in O and

5
' . - 50 -1
(6,0,1,2,1,0,2) 1is a non-trivial zero of f where & = 1-2 ~125a.

This example and the preceding discussion indicate the importance
of having a derived variable in some f: where 1 z_ka-i. This situa-
tion will have towexist if f contains at least one derived variable
after k+1 of the previously described steps. Lemma 4.6 establishes a
usable lower bound for the number of derived variables in f after t

steps.

Lemma 4.6 Let f = f_ +pf

0 1*."'+pn-1f

where each f, 1is a unit
n-1 i

diagonal form in Op of degree n = mpk, p#2. As usual, (m,p)=1,
d=(mp-1), and N, denotes the number of variables in f;. Define

St to be the number of derived variables in

t

plf t+1 .t

it
ft+1+ +Pp fi+

o o
+

after t steps as outlined in the discussion prior to example 4.5.

> mi
Then St__ mln{Ct,Dt} where

N N N N

Ct =~-———9—E—I - 1 and Dt = 0 e 1 rowi ...-Fdf:i - 1.
(d+1) (d+1) (d+1)

Proof: The proof is by induction on t. Step one produces
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[No/(d+ 1)] derived variables so S, = [No/(d+ 1)] > NO/(d+ 1) - 1-= D,.
S i . S mi
Therefore, Sl-— min {Cl’Dl} Now assume that Sr 2 min {Cr,Dr} and

consider Sr+1. After r steps, f has the form

r.r r+1fr

ir
pfr+p r+1+...+pfi+..._

Let w denote the number of derived variables in fi and Sr - w the

number of derived variables in fr r eee . For the (r+1)st

r+1' r+2’
step, the Nr-rw terms of f; are partitioned into partial forms each
with d+1 terms subject to the condition that the distinguished vari-~
able in each is one of the w derived variables. If Nr_z dw, w
partial forms can bé constructed each containing d terms from fr

plus one derived variable. If Nr < dw, [(Nr-rw)/(d-ri)] partial

forms can be constructed. Thus, two cases need to be considered:

(1) N > dw with S (S -w) +w=2S and
r = r r

r+1

(2) N_ < dw with S (sr-w) + [(Nr +w)/(a+1)].

r+1

Case (1). Consider the mih{Cr,Dr}. If C <D, the minimum is

attained at Cr and
Ny No

.= — - 1> -
(d+1) (d+1)

1

If Cr > Dr’ the minimum is attained at Dr and

N N N : N
D = 9 + 1 + ees + r-1. 1 >'——J2—— -1=2C .
d+1

r (d+1)r (d+1)r-1 —-(d+1)r r+1

C . Since S

T .
herefore mln{Cr,Dr} rel

v

S. and S_> min{Cr,Dr},

1.

r+1

it follows that S > min{C ,D } >cC _ > min{C
r r r -— r+ -_— r

+1 ~ 1 +1’Dr+1
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Case (2) First observe that

[Nr+w] Nr+w-d
Sr+1=sr_w+ d+ 1 ZSp-wH d+1

S +d(S -w)+N -4 S N -d
_ r r r r Ir

d+1 - d+1 d + 1

Now, if C_< D, then S > C_ and
r—'r r— r

Cc N =-d N N -d
S > r . r _ 0 -1 1 . r
r+1 —d+1 d + 1 (d+1)r—1 d+1 d + 1
N N N
= > r T d-fl -12 > r 1= Cr+1 :
(a+1) (a+1)

If C >D, then S_>D_ and
r r r r

D N -d N N N -d
S > r . r ( 0 oeee 4 r-1 1)( 1 ) . r

r+1 —d+1 d+ 1 (d-bl)r d+1 - d+1 d + 1
NO Ni; N
= r+1 r © Tt T a1 T 1= Dr+1 '
(a+1) (a+1)
. . > mi .
Again, the conclusion Sr+1-— m1n{Cr+1,Dr+1} follows completing the
proof of the lemma. ‘ A

Theorem 4.15 Let f be a diagonal form in Qp, p#2, of degree

n = mpk, (m,p) = 1, k > 1. Then, if f contains at least n?+1 vari-

ables it must have a non-trivial zero in Op.

Proof: As in theorem 4.14 the following assumptions can be made:

n-1 .
(1) £ = fo-bpf1-+--- +p f , where each f, isa

unit diagonal form in Op.
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(2) If Ni denotes the number of variables in fi’ “then

P > j - j - 1.
No + Ny + +NJ. (j#1)n for 0< j<n-1

The proof of the theorem will follow when the existence of a derived

variable in some fl;+1, t >k+1, is demonstrated. That is, in the

notation of lemma 4.6, it is necessary to prove that Sk+1 > 0. Since

}, we need only establish that C > 0 and

S > mi
2 mln{C i1

k+1 k+1’Dk+1

D ., >0. By assumption (2), No >n = mpk > pk > (a+ 1)k. Therefore,

No/(d+ 1)k >1 or

k
= - >
ck+1 NO/(d+ 1) 1>0 .«

++ee+N > (k+1)n while

Also, by assumption (2), No+ N, 5

(k+1)n >2n = 2mp® > (m+1)p* > (a+ 1),

The final inequality is true since m+1 > d+1 and p > d+1 are

implied by d = (m,p-1). Now

No Ny Ne
Dpet = kel AR
(d+1) (a+1)
N +N_+-+++N
> =2 k+1 £ -1>0
(dax 17,

so it follows that D > 0.
k+1

In terms of f +the result Sk+1 > 0O means that after k+ 1 steps

f can be represented as

k+1fk+1 k+2fk+1 i 1f+1

T A R
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and that some f§+1 contains a derived variable. Let =z denote such a
derived variable. Now, assign 2z the value one thereby assigning a
corresponding value to each ancestor of z. When each variable that is
not an ancestor of z 1is assigned the value zero the result is that

k+1

f = 0op for some O in O_. In this process, each distinguished

variable that is an ancestor of 2z will be assigned the value one. .In

particular, some distinguished variable in f_ will be assigned the

0
value one. Let Gxn be a term in fo in which x has been assigned

the value one. Since 1- é-iapk+1 is an nth power in Op,

6n = 1- §1apk+1 for some § in Op. When x 1is assigned the value

§ and the other variables in f are assigned the values indicated

above, the result is a non-trivial zero of f. A
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