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CHAPTER! 

INTRODUCTION 

In order to investigate the reaction dynamics and spectroscopy of molecular 

systems, knowledge of the potential-energy surface (PES) is needed. For molecules that 

are made up of more than three atoms, the accurate calculation of the PES is very 

difficult because of the dimensionality of the surface. A large dimensionality makes it 

very difficult to obtain high-level electronic structure calculations for a sufficiently large 

number of configurations to be able to obtain a global characterization of the PES. 

The level of difficulty associated with obtaining a global PES has led to several 

attempts to predict reaction mechanisms by using the relative energies of stationary

points, maxima and minima on the surface, without having to explore the whole PES. 1 
•
2 

The number of stationary-points is small which means that their energies can be 

calculated accurately at the fourth-order Moller-Plesset perturbation (MP4) level or 

higher with large basis sets. 3-5 

By assuming that reactions follow the mm1mum-energy path, reaction 

mechanisms can be inferred from the knowledge of stationary-point energies.6
-
16 For 

thermal decompositions, this assumption is quite accurate. This technique yields accurate 

results provided that the reactions occur at energies fairly close to the potential barrier. 

1 



Another approach employed to characterize the global PES is to use 

parameterized functional forms justified chemically and physically to fit the 

them10chemical, spectroscopic, structural and kinetic data. 17
-
23 This technique usually 

yields results that are semiquantitatively accurate as long as the critical potential barriers 

of reactions are accurately estimated from measured activation energies. 24
•
25 

The most successful approach employed to date to obtain a reasonably accurate 

PES is a combination of the above methods.26 In this method, high-level ab initio 

calculations are performed to obtain transition-state geometries, frequencies and energies, 

which are then fitted using ad hoc empirical functional forms. 27
-
30 Although the empirical 

function may have more than one hundred adjustable parameters, this is usually 

insufficient to fit all the ab initio and experimental data. This is why, whenever a PES is 

developed for a polyatomic system, the computed results are open to criticism related to 

the reliability of the surface. Clearly, a more efficient method is needed. 

We intend to carry out sensitivity studies that allow us to determine important 

topographical features of the PES such as reaction pathways, product yields and ratios, 

intramolecular vibrational energy relaxation (NR) rates and reaction rates in an efficient 

and reliable manner. To achieve this goal we will be carefully sampling the potential 

hypersurface and fitting it with a neural network. 

We shall study the gas-phase decomposition reaction of vinyl bromide, a system 

that is sufficiently large to represent a polyatomic system but not so large as to render the 

computations intractable. This system has been studied both experimentally and 

theoretically, which means that enough ab initio and experimental data are available to 

2 



allow for a careful evaluation of the accuracy of the surface and the predicted dynamics 

that we obtain in our investigations. 

The thermal and photolytic unimolecular decomposition reactions of vinyl 

bromide and the reverse bimolecular reaction of HBr with acetylene in the gas phase have 

been studied experimentally and theoretically. Using shock tube methods, Saito et al. 

investigated the gas-phase decomposition of vinyl bromide between 1300 K and 2000 

K.
31

-
33 

It was reported that the reaction proceeds solely via elimination of HBr according 

to the following reaction: 

H2C=CHBr ~ HBr + HC=CH 

However, it was not known whether the HBr elimination occurs via a three-center 

or a four-center elimination reaction. 

The two possible reactions are the following: 

H2C=CHBr ~ HBr + HC=CH 

H2C=CHBr ~ HBr + H2C=C ~ HBr + HC=CH 

Wodtke et al. 34 have photolyzed a molecular beam of vinyl bromide at 193 nm 

and product fragments were determined using mass analysis. Their results indicate that 

the predominant reaction is not molecular HBr elimination but rather Br atom 

dissociation according to the following reaction because the reaction occurs on an 

electronically-excited potential surface: 

H2C=CHBr ~ Br + C2H3 

Johnston and Price35, using xenon-filled lamps that emit between 150 nm and 200 

nm, reported that HBr, not Br, is the main product of the reaction. Neither Johnston and 

Price
35 

nor Wodtke et al. 34 detected any formation of molecular H or bromoacetylene. 
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Photolysis experiments under matrix-isolated conditions reported by Abrash et 

al. 36
'
37 showed that the only primary products are HBr and acetylene formed in either a 

three-center or a four-center elimination. The results showed no Br atom formation but an 

important secondary channel leading to H2 and bromoacetylene is observed. The reaction 

channel is the following: 

H2C=CHBr ~ H2 + HC=CBr 

A possible mechanism, which might explain these results, is the dissociation of 

HBr followed by cage recombination to form excited HBr that adds to acetylene in order 

to give C2HBr and H2. 

Ebert et al. 
38 

investigated the gas-phase collision between HBr and acetylene and 

found that hydrogen exchange is the main reaction channel when both HBr and acetylene 

are in their vibrational ground states. 

Abrash et al. 39 reported classical trajectory studies of the gas-phase 

decomposition of vinyl bromide using a ground state, empirical potential-energy surface. 

The dissociation dynamics were studied between 4.00 eV and 6.44 eV and showed that 

the decomposition dynamics follow a first-order rate law. At E = 6.44 eV, the reaction 

channels are, in order of importance, H2 elimination, HBr elimination, Br atom 

dissociation and C-H bond fission. 

Mains et al. 40 studied the decomposition of vinyl bromide upon single-photon 

excitation at 193 run using classical trajectory methods on an adiabatic excited-state PES. 

Their studies indicate that the only products are the vinyl radical and Br meaning that the 

ab initio excited stated are repulsive. 
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Rahaman and Raft41
•
42 investigated the reaction dynamics of vibrationally excited 

vinyl bromide using classical trajectory methods on a global, analytic potential-energy 

hypersurface. The calculations were carried out at the MP4 level of theory and focus on 

the determination of the dependence of the potential upon the stretching of the 

coordinates for the bonded atoms in vinyl bromide, the C-C-H and C-C-Br bending 

coordinates and the dihedral angles. 

The PES fitted to the total ab initio calculations data base is then modified by 

adjustment of the potential curvatures at equilibrium to provide a better fit to the 

measured IR and Raman vibrational frequencies of vinyl bromide while simultaneously 

holding all other topographical features of the surface constant to the maximum extent 

possible. The fitting process took over 9 months to be completed because as one part of 

the hypersurface was fitted another part of the surface would be affected, which needed 

to be fitted, so on and so forth. This iterative process was the most time consuming one. 

The dissociation dynamics were investigated between 4.50 eV and 6.44 eV. 

The results indicate that small variations in potential-energy curvatures at 

equilibrium and along the reaction coordinates do not exert significant influence upon the 

dissociation dynamics. The computed results for the HBr vibrational energy distributions 

were in excellent accord with experimental measurements. 
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CHAPTER II 

COMPUTATIONAL METHODS FOR OBTAINING AN 

AB INITIO POTENTIAL-ENERGY SURFACE 

A. Ab initio Calculations 

In order to obtain an accurate global potential-energy surface, it is important to 

know exactly how the potential varies due to stretching the bonds, bending the angles and 

twisting the dihedral angles. This requires high-level ab initio calculations for a large 

number of configurations. 

We have carried out a series of ab initio calculations at the MP4(SDQ) level of 

theory using the GAUSSIAN 98W1 package. For C and H atoms, we have used 6-

31 G( d,p) basis sets. Huzinaga's ( 4333/433/4) basis sets2 augmented with split outer s and 

P orbitals ( 43321/4321/4) are used for the Br atom to improve the flexibility of the Br 

electron density. We also added a polarization f orbital with an exponent of 0.5 for a 

more accurate description of the Br atom. 

The average computational time for an ab initio calculation on a 1.87 GHz AMD 

Athlon™ XP 2100+ was 57 seconds. 

The way the atoms in the molecule of vinyl bromide were assigned is shown in 

Figure 2.1. 
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~) 0) 
H H 
~(l) (2~ 

/C=C~ 
H Br 
(5) (6) 

Figure 2.1 

Atom assignment in vinyl bromide 

We have performed a relaxed potential energy scan for all bonds, angles and 

dihedral angles. Each bond was stretched or compressed in increments of 0.1 A from its 

equilibrium value for a reasonable length. The values of the different bond distances, 

angles and dihedral angles in the most stable configuration of vinyl bromide, with an 

MP4(SDQ) equilibrium potential energy of -2647.89414 Hartrees, are shown in Table 

2.1. 

Table 2.1 

Equilibrium configuration of vinyl bromide 

Z-matrix Coordinate GAUSSIAN 98W1 Values Experimental Values3
,4 

c<1)=c<21 bond distance 1.3364 A 1.330 A 
c<2>_tt<3> bond distance 1.0799 A 1.011 A 
c<•>-tt<4> bond distance 1.0830 A 1.083 A 
c< 1>-tt<5> bond distance 1.0816 A 1.085 A 
c<21-Br<6> bond distance 1.9268 A 1.890 A 
c< t >c<2>H<3> angle 124.1297 ° 124.2 ° 
c<2>c< 1 >tt<4> angle 119.6742 ° 118. 7 ° 
c(2)c0 >tt<5> angle 122.2679 ° 121.3 ° 
c< i >c<2>sr<6> angle 123.5391 ° 122.5 ° 
tt<4>tt<3> dihedral angle -0.0088 ° 0.0° 
tt<s>tt<3> dihedral angle -180.0047 ° 180.0 ° 
tt<4>Br<6

> dihedral angle 179.9962 ° 180.0 ° 

10 



At each increment, the energy of the molecule is calculated. Using this technique 

we were able to scan the potential for all bonds one at a time and obtain a potential curve 

with respect to each coordinate of the Z-matrix. 130 of the 600 ab initio potential 

energies "/(" are shown in Tables 2.2 through 2.6. The relative ab initio potential energy 

"KRct" was calculated using the following formula where "Kmax" refers to the maximum 

energy in the potential-energy curve and "Kmin" refers to the minimum energy: 

KRel = ------ - 1 

Using this formula, we made sure that all the calculated relative values would fall 

between the values -1 and + 1. The reason behind using this scaling will be discussed in a 

future section. 

Table 2.2 

Ab initio potential energy at different c<l)=c<2
> bond distances 

c<1>=c<2> Ab initio potential energy Relative ab initio potential 

Bond distance (A) (Hartrees) energy 

1.0364 -264 7. 71040 -0.33289 
1.1364 -2647.82952 -0.76539 
1.2364 -2647.88175 -0.95502 
1.3364 -2647.89414 -1.00000 
1.4364 -2647.88343 -0.96110 
1.5364 -2647.86001 -0.87609 
1.6364 -2647.83035 -0.76839 
1.7364 -2647. 79840 -0.65240 
1.8364 -2647.76654 -0.53671 
1.9364 -2647.73608 -0.42611 
2.0364 -2647.70748 -0.32227 
2.1364 -2647.67915 -0.21942 
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Table 2.3 

Ab initio potential energy at different c<2>-H<3> bond distances 

c<2>_H<J> Ab initio potential energy Relative ab initio potential 

Bond distance (A) (Hartrees) energy 

0.7799 -2647.77704 -0.57485 
0.8799 -2647.85298 -0.85055 
0.9799 -2647 .88596 -0.97031 
1.0799 -2647.89414 -1.00000 
1.1799 -264 7 .88824 -0.97858 
1.2799 -2647.87468 -0.92934 
1.3799 -2647.85730 -0.86622 
1.4799 -2647.83850 -0.79797 
1.5799 -2647.81943 -0.72876 
1.6799 -2647.80123 -0.66266 
1.7799 -2647.78430 -0.60119 
1.8799 -2647.76891 -0.54532 

Table 2.4 

Ab initio potential energy at different c<l)_H<4> bond distances 

c<i>_HC4> Ab initio potential energy Relative ab initio potential 

Bond distance (A) (Hartrees) energy 

0.7830 -264 7. 77933 -0.58317 
0.8830 -2647.85375 -0.85334 
0.9830 -2647.88610 -0.97081 
1.0830 -2647.89414 -1.00000 
1.1830 -2647.88835 -0.97897 
1.2830 -2647.87498 -0.93044 
1.3830 -2647.85780 -0.86804 
1.4830 -2647.83906 -0.80000 
1.5830 -2647.82015 -0.73135 
1.6830 -2647.80193 -0.66519 
1.7830 -2647.78489 -0.60333 
1.8830 -2647.76931 -0.54678 
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Table 2.5 

Ab initio potential energy at different c<1>-if<5> bond distances 

c<I>_Hcs> Ab initio potential energy Relative ab initio potential 

Bond distance (A) (Hartrees) energy 

0.7816 -264 7. 77832 -0.57947 
0.8816 -2647.85337 -0.85199 
0.9816 -2647.88602 -0.97053 
1.0816 -2647.89414 -1.00000 
1.1816 -264 7 .88829 -0.97876 
1.2816 -2647.87478 -0.92971 
1.3816 -2647.85739 -0.86658 
1.4816 -2647.83841 -0.79767 
1.5816 -2647.81924 -0.72807 
1.6816 -2647.80074 -0.66090 
1.7816 -2647.78343 -0.59804 
1.8816 -2647.76759 -0.54051 

Table 2.6 

Ab initio potential energy at different c<2>-Br<6> bond distances 

c<2>-Br<6> Ab initio potential energy Relative ab initio potential 

Bond distance (A) (Hartrees) energy 

1.6268 -2647.84602 -0.82527 
1.7268 -2647.87635 -0.93543 
1.8268 -2647.89051 -0.98682 
1.9268 -2647.89414 -1.00000 
2.0268 -2647.89099 -0.98856 
2.1268 -2647.88357 -0.96164 
2.2268 -2647.87361 -0.92547 
2.3268 -2647.86229 -0.88437 
2.4268 -2647.85044 -0.84133 
2.5268 -2647.83861 -0.79839 
2.6268 -2647.82719 -0.75692 
2.7268 -264 7 .81642 -0.71780 
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In a similar manner, each angle is varied from its equilibrium value in increments 

of 2° and at each increment, the potential energy of the molecule is calculated yielding 

the bending potential. A subset of the results is shown in Tables 2.7 through 2.10. 

Table 2.7 

Ab initio potential energy at different c<1 )c<2)H<3
) angles 

c(l )c(2>H<3> Ab initio potential energy Relative ab initio potential 

Angle (0
) (Hartrees) energy 

118.1297 -2647.89282 -0.99519 
120.1297 -2647.89356 -0.99788 
122.1297 -2647.89400 -0.99948 
124.1297 -2647.89414 -1.00000 
126.1297 -264 7.89398 -0.99943 
128.1297 -2647.89352 -0.99776 
130.1297 -264 7.89276 -0.99498 
132.1297 -2647.89168 -0.99108 
134.1297 -2647.89030 -0.98604 
136.1297 -264 7 .88859 -0.97985 

Table 2.8 

Ab initio potential energy at different C(2)c<1)H<4
) angles 

c(2)c<1>H<4> Ab initio potential energy Relative ab initio potential 

Angle {0
) (Hartrees) energy 

113.6742 -2647.89289 -0.99545 
115.6742 -2647.89358 -0.99797 
117.6742 -264 7 .89400 -0.99949 
119.6742 -2647.89414 -1.00000 
121.6742 -2647.89400 -0.99951 
123.6742 -2647.89360 -0.99803 
125.6742 -2647.89291 -0.99555 
127.6742 -2647.89196 -0.99209 
129.6742 -2647.89074 -0.98764 
131.6742 -2647.88924 -0.98222 
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Table 2.9 

Ab initio potential energy at different c<2>c<1>H<5> angles 

c<2>c<1>H<s> Ab initio potential energy Relative ab initio potential 

Angle (0
) (Hartrees) energy 

116.2679 -2647.89285 -0.99530 
118.2679 -2647.89357 -0.99791 
120.2679 -2647.89400 -0.99947 
122.2679 -264 7 .89414 -1.00000 
124.2679 -2647.89401 -0.99951 
126.2679 -2647.89358 -0.99797 
128.2679 -2647.89288 -0.99543 
130.2679 -2647.89191 -0.99189 
132.2679 -2647.89066 -0.98736 
134.2679 -2647.88914 -0.98183 

Table 2.10 

Ab initio potential energy at different c(l>c<2>Br<6> angles 

c< I >c<2>Br(6) Ab initio potential energy Relative ab initio potential 

Angle (0
) (Hartrees) energy 

117.5391 -2647.89236 -0.99354 
119.5391 -2647.89336 -0.99717 
121.5391 -2647.89395 -0.99931 
123.5391 -2647.89414 -1.00000 
125.5391 -2647.89395 -0.99931 
127.5391 -2647.89337 -0.99720 
129.5391 -2647.89242 -0.99376 
131.5391 -264 7.89109 -0.98893 
133.5391 -2647.88937 -0.98268 
135.5391 -2647.88728 -0.97509 
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We performed the same potential energy scan for the dihedral angles of the vinyl 

bromide molecule in the same manner we performed it for the angles. A subset of the 

results is shown in Tables 2.11 through 2.13. 

Table 2.11 

Ab initio potential energy at different H(4)H(3
) dihedral angles 

H<4>H<3) Ab initio potential energy Relative ab initio potential 

Dihedral angle (0
) (Hartrees) energy 

-6.0088 -2647.89376 -0.99862 
-4.0088 -2647.89397 -0.99938 
-2.0088 -2647.89410 -0.99985 
-0.0088 -2647.89414 -1.00000 
1.9912 -2647.89410 -0.99985 
3.9912 -2647.89397 -0.99938 
5.9912 -2647.89377 -0.99866 
7.9912 -2647.89347 -0.99757 
9.9912 -2647.89309 -0.99619 
11.9912 -2647.89262 -0.99448 

Table 2.12 

Ab initio potential energy at different H<5>H<3> dihedral angles 

Hcs>H<J> Ab initio potential energy Relative ab initio potential 

Dihedral angle (0
) (Hartrees) energy 

-186.0047 -2647.89376 -0.99862 
-184.0047 -2647.89397 -0.99938 
-182.0047 -264 7.89410 -0.99985 
-180.0047 -2647.89414 -1.00000 
-178.0047 -2647.89410 -0.99985 
-176.0047 -264 7.89397 -0.99938 
-174.0047 -2647.89376 -0.99862 
-172.0047 -2647.89346 -0.99753 
-170.0047 -2647.89307 -0.99612 
-168.0047 -2647.89260 -0.99441 
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Table 2.13 

Ab initio potential energy at different H<4>Br<6> dihedral angles 

H<4>sr<6> Ab initio potential energy Relative ab initio potential 

Dihedral angle (0
) (Hartrees) energy 

173.9962 -2647.89370 -0.99840 
175.9962 -2647.89394 -0.99927 
177.9962 -2647.89409 -0.99982 
179.9962 -2647.89414 -1.00000 
181.9962 -2647.89409 -0.99982 
183.9962 -2647.89394 -0.99927 
185.9962 -2647.89370 -0.99840 
187.9962 -2647.89335 -0.99713 
189.9962 -2647.89291 -0.99553 
191.9962 -2647.89236 -0.99354 

In order to visualize the superset of the data found in Tables 2.2 through 2.13, we 

present them graphically in Figures 2.2 through 2.13 where the potential energy is 

calculated in units of eV with GAUSSIAN 98W1 at the MP4(SDQ) perturbation level of 

theory. In Figures 2.2 through 2.13, the ab initio calculated potentials have been 

connected through lines for visual clarity only. 
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The technique we have just described served as a starting point, but the twelve

coordinate space we are using (five bond distances, four angles and three dihedral angles) 

is too large to be described fully. We need a sampling method to selectively represent the 

important regions of the hyperspace, and decided to make use of a molecular dynamics 

code originally developed by Rahaman and Raff3 to accomplish this objective. 

B. Sampling Methods 

In order for us to sample the vast hyperspace with twelve coordinates, we needed 

to restrict the space by making use of the laws of chemistry and physics that govern 

molecular dynamics. 

For this reason, we made use of a FORTRAN molecular dynamics code originally 

developed by Rahaman and Raff3• The code provided us with a means to check the 

different reaction pathways of the dissociation of vibrationally excited vinyl bromide and 

to identify the important channels. The code simulates what would happen to the vinyl 

bromide molecule if 6.44 eV were added to the system and randomly distributed among 

the twelve different vibrational modes of the molecule. We modified the code in such a 

way to have it stop 200 times, with equal time intervals in between the stops, and provide 

us with 200 different molecular configurations for every reaction pathway. 

Now that the hyperspace was sampled by selecting the most prominent reaction 

pathways, we needed to calculate the potential for the different configurations we 

obtained from the molecular dynamics code. This meant that we would use the results 

from the molecular dynamics code as input parameters for GAUSSIAN 98W 
1
• 
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We calculated 600 molecular configurations using the potential scanning method 

described in Section II.A and 800 additional configurations using the molecular dynamics 

code method described in II.B. 

With the 1,400 configurations calculated, we fitted the configurations using a 

neural network and thereby developed a PES for the dissociation of vibrationally-excited 

vinyl bromide. 

An example of one configuration obtained from the molecular dynamics 

calculations and the ab initio potential energy calculated in GAUSSIAN 98W 1 leading to 

a 3-center elimination of HBr is shown in Table 2.14. 

Table 2.14 

Molecular dynamics code results and ab initio potential energy 

Center Cartesian Coordinates Ab initio potential energy 

X y z (Hartrees) 

c<I) +1.20247 -0.00914 -1.96785 -264 7 .87278 
c<2> +1.19247 +0.01682 -0.64294 
tt<J) +1.94066 +0.11671 +0.08637 
H<4> +2.10691 -0.20750 -2.50298 
tt<s> +0.53499 +0.09784 -2.72117 
ar<6> -0.41784 -0.00124 +0.45716 

As mentioned previously in Chapter I, Rahaman and Raff3.4 did fit the PES but it 

took them over 9 months to complete the process, which is why we needed to fit the 

potential in a more accurate, less time consuming manner. The system we chose to 
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employ in order to accomplish this objective was the use of a self-adaptive, well-trained 

neural network. 

C. Neural Network Fitting 

In order to fit the PES, we chose to use neural networks for the following 

important reasons: 

Neural networks are robust when used with many parameters 

Neural networks use self-adaptive algorithms to fit themselves to a set of 

predetermined input and output parameters 

Neural networks are excellent with interpolations where the set of values to be 

predicted lie within a well-defined hyperspace region 

Neural networks employ parallel organization, which permits them to find 

solutions to problems where multiple constraints must be satisfied 

simultaneously 

The last of the four reasons is crucial in our case because more than one 

parameter can affect the potential simultaneously, which in our case translates to a 

contribution to the potential from bond distances, angles, dihedral angels or any 

combination of them as well. 

Before we see how neural networks were used to fit the PES, let us have a look at 

the architecture of neural networks. 

Neural networks are logical entities that accept inputs, produce outputs and are 

made up of neurons and transfer functions. An elementary neuron accepts a set of inputs 
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"PT" and multiplies them by a set of weights "WT"· Each input ''pt is multiplied by a 

given weight "wt and added to a bias "b". The sum of the weighted inputs and the bias 

forms the input to the transfer function "/'. Neurons may use any differentiable transfer 

function "/' to generate their output. 5 A general neuron is shown in Figure 2.14. 

One type of transfer function is the sigmoid function. This function produces 

output values that are always in the range -1 to + 1. We used the "T ANSIG" sigmoid 

transfer function, which is given by the following equation: 

2 
T ANSIG(n) = -- - 1 where n = :E ( Pi * wi + b ) 

T ANSIG takes a matrix of net input vectors and returns a value for each element 

of the input vectors between -1 and + 1. 

Input General Neuron 

~I 
P2 

p3 

p4 
,. f )II 

LJ b 

Figure 2.14 

A general neuron 
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A special type of neural networks is the feedforward neural network that often has 

one or more hidden layers of neurons being transferred by sigmoid functions followed by 

an output layer produced by a linear function. 

Multiple layers of neurons with nonlinear transfer functions allow the network to 

learn nonlinear and linear relationships between input and output vectors. The linear 

function generating the output layer lets the network produce values outside the range -1 

to +I. 6 A typical feedforward network is shown in Figure 2.15. 

Neural networks are adjusted or trained so that a particular input leads to a 

specific target output. The network is trained based on a comparison of the output and the 

target until the network output matches the target. Typically many input and target pairs 

are used in training a neural network. This process is referred to as supervised neural 

network training or learning. 6 

Hidden Layer Output Layer 

-/-

L---___ II.._ __ _ 
Figure 2.15 

A typical feedforward neural network 

Once the neural network is trained, it can be used to predict the output value for 

an input it was not trained with. The neural network can interpolate well whereas it 
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extrapolates poorly.5 This means that the prediction a neural network makes for a certain 

input is only valid if the input lies within a region of the hyperspace in which the neural 

network is well trained. The result of a well-trained neural network is a smoothly fitted 

hypersurface. 
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CHAPTER III 

APPLICATION TO THE VINYL BROMIDE SYSTEM 

As mentioned previously in Section I., we chose vinyl bromide as our system 

because its size is adequate for computational purposes, it is not too small yet not too big, 

and it has been well studied experimentally making it easy for us to carefully evaluate the 

accuracy of our results. In addition, there are six energetically open reaction channels all 

of which must be accurately described to properly investigate the reaction dynamics. As 

described in Section II.A, the potential energy was calculated for 600 molecular 

configurations using GAUSSIAN 98W1 by either stretching a bond distance or bending 

an angle or a dihedral angle of vinyl bromide. 

We fitted the 600 potentials we calculated with a 20-neuron, 2-layer MATLAB 

R122 neural network that we trained using the Levenberg-Marquardt algorithm
2 

and 

compared the neural network results with those of GAUSSIAN 98W1
• We chose to use a 

T ANSIG function as our transfer function, which is why we used the scaling formula 

described in Section II.A. The scaling function ensured that the relative potential-energy 

values would fall in the range -1 to + 1, which matches perfectly with the range of a 

T ANSIG function and produces a better fit. Once we obtained the scaled results, we 

converted them back to their original values using the function: 

K = Kmin + ( KRel + 1 )( Kmax - Kmin ) / 2 
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We found the original potential-energy values, converted the units from "Hartree" 

to "eV" and plotted the results. The results are shown in Figures 3.1 though 3.12. 
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As described in Section II.B, another 800 potential energies were derived from 

using the molecular dynamics code, written by Rahaman and Raff3, to get molecular 

configurations that would serve as input parameters for GAUSSIAN 98W1
• 

We fitted the 1,400 potentials we calculated with a MATLAB R122 neural 

network, into a potential surface and developed a PES for the dissociation of vibrationally 

excited vinyl bromide. The fitting process took approximately 6 minutes. 

To compare the PES we developed using MATLAB R122 with that obtained from 

the ab initio calculations we plotted the scaled results from the neural network versus 

those from GAUSSIAN 98W1
• The results are shown in Figure 3.13. 
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The standard deviation of the results from the neural network and those 

from the ab initio calculations is 9 .5078x 104 suggesting that the fit was near 

identical and the results were highly accurate. 

Figure 3.14 is another representation of the results from the neural 

network and those from the ab initio calculations. It is a distribution histogram of 

the deviation between the ab initio calculations and the neural network results. In 

Figure 3 .14, the points are the results obtained from the neural network and the ab 

initio calculations. The smooth curve is a least-squares fit of the Lorentzian 

function given by the equation: 
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The respective values for a, J3 and cr of the Lorentzian fitting function in 

Figure 3.14 are 8.0lxl0-6
, l.43x10-6 and l.67xl04

• The small size of~ indicates 

that the results from the neural network are highly comparable to the ones from 

the ab initio calculations. 
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CHAPTER IV 

CONCLUSIONS AND FUTURE WORK 

Our work has shown that using neural networks to fit potential energies and 

generate a potential-energy surface yields results that are very close in accuracy to those 

generated using ab initio calculations. 

The main advantage of using neural networks resides in the fact that it takes the 

neural network a very small fraction of the time it takes a human being to generate a 

same or similar potential-energy surface. While it took Rahaman and Raff1 ·2 over 9 

months to generate and fit the PES, it took us less than a month to reach the same goal 

using a feedforward neural network with a sigmoid transfer function. 

The standard deviation of 9 .5078x 10-4 is a good indication of how close the 

MATLAB R 123 neural network results are from those of the ab initio calculations using 

GAUSSIAN 98W4
• 

Future work in this project might include using the neural network as input for the 

molecular dynamics code without having to go through the tedious algebraic work that 

Rahaman and Raff1
•
2 had to go through to fit their potential-energy surface. 

Another project might include using neural networks to fit the forces on each 

atom in vinyl bromide into a force hypersurface then differentiating our potential-energy 

surface to get a force hypersurface and comparing the two force hypersurfaces. 
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A third project might include using neural networks to fit the forces on each atom 

in vinyl bromide into a force hypersurface then integrating the force hypersurface and 

getting a potential-energy surface the results of which we could compare to the ones we 

generated in our investigation. 
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