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CHAPTER I 

PLANT COMMUNITY CHARACTERISTICS AND SOIL NUTRIENT DYNAMICS 
IN HYDROCARBON-CONT AMINA TED SOILS OF A T ALLGRASS PRAIRIE 

Abstract 

In 1999 a study was begun to compare the effects of conventional bioremediation 

methods on ecosystem recovery in soils with differing degrees of crude oil and produced 

brine contamination. Two contaminated sites at the Tallgrass Prairie Preserve in Osage 

County, Oklahoma were divided and tilled with hay or hay plus fertilizer. A control 

section of uncontaminated prairie also was tilled with hay. Total petroleum hydrocarbon 

levels were monitored through spring 2002 and tilling was discontinued in fall 2001. I 

analyzed soils collected from fall 2001 to fall 2003 and estimated percent cover of plant 

species to determine whether differences in nitrogen and phosphorus pools and plant 

growth persisted in the contaminated sites due to the residual contamination and/or 

bioremediation methods. I collected soil samples within the preserve from 20 grassland 

sites in 2002 and 40 grassland sites in 2003 to provide a replicated control. I found that 

soils collected from the tilled and contaminated areas continued to exhibit significant 

differences in nitrogen and phosphorus pools by fall 2003. Plant growth and species 

composition varied as a function of residual salinity and petroleum hydrocarbons. 

Residual hydrocarbons appear to limit plant growth and perturb nutrient cycles due to 

changes in soil permeability and water holding capacity. 



Introduction 

The biogeochemistry of tallgrass prairie soils has become well studied in recent 

decades (Risser and Parton, l 982~ Seastedt, 1988, Hayes and Seastedt, 1989, Groffinan et 

al., 1993, Chaneton et al., 1996, Turner, et al., 1997, Baer et al., 2002). The creation of 

nature preserves dedicated to conservation has facilitated such research. However, 

conservation is potentially threatened by petroleum exploration, and mineral oil 

hydrocarbons are the most frequently occurring environmental contaminants (Margesin et 

al., 2000). Although crude oil is among the Applied Biotreatment Association's list of 

contaminants considered successfully bioremediated in the field (Skladany and Metting, 

1993), little is known about the effects of contamination and subsequent remediation 

processes associated with oil spills on the nutrient dynamics and plant communities of 

natural grasslands. 

Grassland ecosystems can be significantly perturbed through the release of 

petroleum and extracted brine. Crude oil inhibits plant germination and growth 

(Chaineau et al., 2003). Although toxins may play a biological role in the distribution of 

elements in the soil, microbial competition for nutrients and changes in the physical 

properties of soils resulting from petroleum hydrocarbon contamination could produce a 

greater effect on nutrient dynamics and community structure (Xu and Johnson, 1997). 

Because the passive biodegradation of hydrocarbons in soils is often relatively slow, it is 

desirable to decontaminate locations that have had high cumulative loading of petroleum 

(Morgan and Watkinson, 1989). 

Brine should also have a considerable impact on soil nutrients and plant 

community processes in contaminated sites. Salinity may affect the growth of soil 
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organisms through changes in osmotic potentials (Brady and Weil, 1999). Sodium salts 

disperse clay particles, causing disruption of the soil structure (Brady and Weil, 1999). 

This effect may cause the loss of topsoil through erosion and inhibit nutrient and moisture 

uptake by plants and microorganisms. 

Bioremediation 

Bioremediation of chemically contaminated soils involves the transformation of 

complex or simple chemical compounds into nonhazardous forms (Skladany and 

Metting, 1993). A common method for remediating petroleum spill sites involves adding 

nutrients and oxygen to the subsurface soil to stimulate the resident bacteria and fungi, 

which use hydrocarbons as a substrate (Skladany and Metting, 1993, Walworth and 

Reynolds, 1995, Balba et al. 1998, Gogoi et al., 2003). Factors affecting bioremediation 

include microbial toxins, the composition of the microbial populations present, aeration, 

moisture content, temperature, pH, and nutrient levels. Nitrogen and phosphorus are the 

soil nutrients most often found to limit biodegradation (Walworth and Reynolds, 1995). 

C:N and C:P ratios are considered to be especially important for bioremediation (Zhou 

and Crawford, 1995), but optimum ratios are unclear (Line et al., 1996), and the ratios 

can be made both too low and too high for optimum biodegradation rates through 

fertilizing (Dibble and Bartha, 1979). In addition, the forms of N and P must be 

considered when adjusting nutrient ratios due to their differing bioavailability and 

reactivity. Overall, the supply of oxygen is considered to be the major problem of 

bioremediation and is most often increased by repeated tilling of the spill site (Morgan 

and Watkinson, 1989). 
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Direct physical impacts of bioremediation could also influence nutrient dynamics 

and plant communities (Xu and Jolmson, 1997). Because the supply of oxygen is 

essential for the efficient mineralization of organic carbon, tilling is often considered an 

irreplaceable component of remediation. However, tilling is an extreme form of soil 

disturbance that produces almost immediate changes in the community's chemical cycles 

and may have long-lasting effects on the dynamics of plant production (Haddad et al., 

2002). As it is designed to do in bioremediation, tilling generally decreases organic 

carbon in the soil by increasing respiration (Tiessen et al., 1982, Elliot, 1986). Tilling 

also substantially reduces soil nitrogen and labile forms of phosphorus because much of 

the nitrogen and biologically active phosphorus in soils is found in organic compounds 

(Tiessen et al., 1983, Jug et al., 1999). 

In addition to the increased mineralization of organic compounds, tilling may 

affect soil chemistry by increasing erosion and leaching (O'Halloran et al., 1987a, Mehdi 

and Madramootoo, 1999). Erosion can lead to changes in phosphorus fractions 

(O'Halloran et al., 1987a, O'Halloran et al., 1987b). Organic phosphorus and nitrate­

nitrogen are especially susceptible to leaching following removal of plants through tilling 

(Hedley et al., 1982, Frossard et al., 1989). 

Tilling and fertilizing are expected to alter plant species composition by 

increasing resource availability thus permitting coexistence of ruderal species. Fertilizer 

is commonly applied during bioremediation in order to increase microbial degradation of 

petroleum hydrocarbons (Alvarez et al., 1998). Changes in N-mineralization rates caused 

by fertilizing could persist beyond the time of remediation through positive feedback with 

plant species and/or herbivores (Vinton and Burke, 1995, Janssens et al., 1998, Ritchie et 
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al., 1998, Evans et al., 2001, Booth et al., 2003; but see Knops et al., 2002). Added 

phosphorus could enter the more biologically active side of the phosphorus cycle as 

organic matter with the potential to affect the plant community (Janssens et al., 1998), or 

it could become bound in more recalcitrant forms in the geochemical side of the cycle 

(O'Halloran et al., 1987b, Cross and Schlesinger, 1995). Changes in the type or degree 

of spatial heterogeneity in the soil caused by both of these remediation practices may also 

significantly affect community structure during early succession (Robertson et al., 1988). 

Community restoration 

This study provides a starting point for research aimed at understanding the 

relationship between the short-term results of bioremediation and long-term ecosystem 

processes and plant community dynamics. Although bioremediation of crude oil spills 

has met the criteria of success status in previous field studies (Skladany and Metting, 

1993), maintaining or restoring a native species composition was not among the criteria 

of such research. 

Residual soil fertility through positive feedbacks may cause long-term loss of 

diversity or persistence of exotic species without continuous disturbance or nutrient 

additions (Olff et al., 1994, Mountford et al., 1996, Willems and Van Nieuwstadt, 1996). 

Tilling clears space and increases resource availability for invasive species. 

According to Davis et al. (2000), fluctuation in resource availability is the key factor 

controlling the susceptibility of an environment to invasion by non-resident species. For 

instance, nitrogen application has been observed to cause the replacement of warm 

season grasses by non-native cool season grasses (Wedin and Tilman, 1996). 
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In addition, fertilizer application should increase short-term nutrient availability. 

It is generally agreed that nutrient availability in grassland communities can affect 

species diversity (Rajaniemi, 2002). Diversity may decrease in response to increases in 

both nitrogen and phosphorus availability (Janssens et al., 1998), and nitrogen has been 

observed to decrease functional group diversity of microorganisms (Sarathchandra et al., 

2001 ). Efforts to reduce nutrients such as increasing carbon amendments have met only 

short-term success (Morghan and Seastedt, 1999). 

These observations of short-term nutrient dynamics and plant succession will 

begin to provide the necessary data with which the results of conventional bioremediation 

methods may be compared to the long-term success criteria of nature preserves. 

Although community responses observed in the first year of revegetation might not be 

indicative of later trends (Carson and Barrett, 1988), these nutrient and vegetation 

analyses should be valuable to future studies of the long-term effects of bioremediation 

on prairie restoration. 

The objectives of this study are to: I) document the short-term biogeochemical 

processes and community succession during bioremediation in a restored prairie 

ecosystem; 2) compare ex situ results and hypotheses from previous studies to results of 

in situ remediation in a natural setting; and 3) document biogeochemical characteristics 

of native Oklahoma tallgrass prairie soils. 

Methods 

Study area 

The Nature Conservancy's (TNC) 15410 hectare Tallgrass Prairie Preserve (TGPP) 

is located in northeastern Oklahoma. Osage County, between 36.73° and 36.90° N 
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latitude, and 96.32° and 96.49° W longitude. With a rolling topography ranging between 

253m and 366m in elevation, approximately 90% of the TGPP consists of grasslands 

dominated by switchgrass (Panicum virgatum), little bluestem (Schizachyrium 

scoparium ), big bluestem (Andropogon gerardii), tall dropseed (Sporobolus compositus), 

and Indiangrass (Sorghastrum nutans). Mean annual temperature is 15.2° C with a 17.3° 

July mean and a 2. 7° January mean. The annual precipitation is 84 cm with 75% falling 

during the 205-day growing season (Risser and Parton, 1982, Palmer et al., 2003). There 

are over 100 oil producing wells on the Preserve extracting an average of 15-20 bfil)"els of 

crude oil per day and as much as 10 times that volume of brine (K. Sublette, personal 

communication). The TGPP is managed using a randomized burning regime and gradual 

replacement of cattle grazing with bison grazing (Hamilton, 1996, Palmer et al., 2003). 

Remediation treatments 

On the northwestern edge of the TGPP, two spill sites were bioremediated to help 

assess the feasibility and costs of restoring the natural system (Figure I). The first site 

( J 6) consisted of two contaminated areas separated by about I 00 m, which received 

approximately 10 m3 of dewatered crude oil from a spill on January 6, 1999. An area of 

about 900 m
2 

adjacent to the pipeline on a 5% east-facing slope (J6 north) was 

contaminated with an average level of total petroleum hydrocarbons (TPH) of 35,000 mg 

kg·•. At the bottom of an adjacent gully, the second area contained about 450 m2 of 

prairie (J6 south) on a 7.5% south-facing slope, and the contamination resulted in an 

initial TPH level of 8,000 mg kg" 1• In May of 1999, prairie hay was applied to both areas 

at a rate of 1.0 - 1.3 Kg m·2 with tilling to a depth of 20 cm. Each area was divided 

perpendicular to the slope into roughly equal parts with corrugated plastic sheeting, and 
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the down slope sections were fertilized with NtLiN03, P20s, and K20 using 20% of the 

U. S. Environmental Protection Agency (EPA, 1993) recommended application rates of 

100:10:5 (C:N:P) by weight. A control area of 450 m2 was also created east of J6 north 

on a 0-1 % west facing slope and tilled with the same rate of prairie hay addition but with 

no fertilizer. Fertilizer and hay additions were repeated during November 1999, July 

2000, and April 2001. The sites were tilled again without nutrient additions in October 

2001. Tilling was then discontinued due to stabilization in the rate of decrease of TPH in 

the spill sites. The J6 south prairie was burned prior to sampling in fall 2002, and the J6 

north prairie was burned prior to sampling in spring 2003. The tilled sites did not burn 

during either event due to the discontinuity of plant cover. In addition bison were 

frequently observed wallowing in the bare areas of J6 north. Under natural conditions 

bison create and maintain 3-Sm wallows (Knapp et al., 1999). Two areas of bare ground 

in J6 north matching this description persisted throughout the duration of the study. 

The second site (GS) consisted of three parallel areas on a 6.5% west-facing slope 

contaminated with crude oil and brine from separate leaks during the fall of 1999. From 

North to South the three spill areas were designated GSN, GSM, and G5S respectively. 

The approximate dimensions were: 15 m by 60 m for GSS; 7 m by 33 m for GSM; and 8 

m by 80 m for GSN. The longest dimensions extended downslope to the West. The 

initial TPH concentrations were 27,000, 16,000, and 14,000 mg kg-1 in the GSN, G5M, 

and G5S areas respectively. The chloride concentrations in these areas ranged from 

8,300 - 23,000 mg kg- 1
, and sodium concentrations ranged from 1,550 - 10,900 mg kg- 1

• 

Prairie hay was added to improve the soil structure and hydraulic conductivity in order to 

allow the leaching of excessive salts, and GSN and G5S were also fertilized. Prairie hay, 
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fertilizer~ and tilling were applied as with J6. The GS prairie was burned prior to 

sampling in spring 2003, but the tilled sites did not burn due to the discontinuity of plant 

cover. 

Replicated controls 

No nutrient analyses were performed on soils from the contaminated sites prior to 

this study. In order to demonstrate differences between the soils of the weakly replicated 

spill treatments and native prairie, I collected samples from 20 untilled grassland sites in 

the summer of 2002 and 40 untilled grassland sites in the summer of 2003 to serve as 

replicated controls (Oksanen, 2001). In 2002 I collected soils from 20 grassland sites 

(Figure 1) selected randomly from a total of 151 that were located at the intersections of 

the l km x I km UTM grid in the TGPP. In 2002 8 of these sites were still grazed by 

cattle instead of bison. In 2003 I collected soils from 40 grassland sites (Figure 2) in the 

TGPP's oldest bison unit. I limited the locations of these sites to soil complexes similar 

to those found at the J6 and GS spill sites (Coweta-Bates and Steedman-Coweta 

complexes) as shown by the Soil Survey of Osage County, Oklahoma (Bourlier et al., 

1979). 

Field collections 

I gathered soil samples from J6 and GS during spring (late March-early April), 

summer (June), and fall (late September-early October) starting in the fall of 2001. I 

sampled the 2002 and 2003 multiple control sites during the summer only. To overcome 

some of the error associated with spatial heterogeneity of soil nutrients (Robertson et al., 

1988, Jackson and Caldwell, 1993, Davidson et al., 1993), five subsamples were 

composited for laboratory analysis in each whirl-pack sample bag. The soil cores have a 

9 



2.5 cm diameter and a depth of 15 cm. I collected seven groups of five samples from the 

J6 spill site, each composed of five evenly spaced subsamples, during each sampling 

period. The groups were: native prairie adjacent to 16 north (J6NN), 16 north unfertilized 

(J6NNF), J6 north fertilized (J6NF), J6 north tilled control (J6NC), native prairie adjacent 

to J6 south (J6SN), J6 south unfertilized (J6SNF), and 16 south fertilized (16SF). From 

the GS spill site, I collected 9 samples from each of the three spill areas. The samples 

were collected in groups of three spaced 2 m apart from east to west at upper-slope, mid­

s lope, and lower-slope positions within each spill area. The sample groups in GSN were 

located at distances of 8-12 m, 33-37 m, and 60-64 m from the eastern border 

representing the upper, middle and lower groups respectively. The groups from GSM 

were spaced 3-7 m, 14-18 m, and 26-30 m from the eastern border, and the GSS groups 

were spaced 12-16 m, 32-36 m, and 58-62 m from the border. I collected a set of control 

samples (GSC) parallel to GSS from the prairie adjacent to its southern edge using the 

same spacing. Each sample from GS is composed of a mixture of 5 subsamples spaced 

evenly across the width of each spill area from north to south. The control sites making 

up the 2002 and 2003 multiple controls were each represented by one sample composed 

of 4 and 5 subsamples respectively. The airtight whirl-packs were placed in coolers 

immediately after combining the subsamples and were transported to a laboratory freezer 

at Oklahoma State University within 7 hours of sampling. I performed all fresh soil 

analyses within 2 days after collection (Vinton and Burke, 1995). Fresh soils were 

thoroughly mixed, sieved (2 mm) and weighed into subsamples for 3 analyses: water 

content, initial inorganic nitrogen, and incubations to determine the potential net N­

mineralization and nitrification rates. The remaining soils were allowed to air dry before 
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performing all other analyses. I quantified vascular plant species abundance by 

estimating percent cover during the summer sampling in 2003 (Palmer et al., 2002). 

Nomenclature for plant species follows Diggs et al. ( 1999). 

In addition soils were collected for total petroleum hydrocarbon (TPH) and soil 

salinity analyses and transported to the University of Tulsa. One TPH sample was 

collected from each site. The soils were placed in glass jars with Teflon-lined lids. 

Sample jars were placed immediately on ice in the field and later shipped overnight to 

Continental Laboratories in Salina, Kansas for analysis. Soil salinity samples composed 

of four composited subsamples were collected from each slope position at each site at 

GS. Salinity analyses were performed at the University of Tulsa. 

Total C and total N, inorganic N, potential net N -mineralization and nitrification rates 

All samples were analyzed for total C, total N, and inorganic N. Total C and total 

N were measured on a percent weight basis with a LECO CN 2000 combustion analyzer 

(Leco, St. Joseph, Ml) by the Soil, Water & Forage Analytical Laboratory at Oklahoma 

State University. I extracted inorganic N from a 5 g subsample with 50 mL of2 mol/L 

KCl for 1 hour on a reciprocating shaker (Maynard and Kalra, 1993). The extracts were 

centrifuged at 4000 rpm for 1 O min and filtered through a Whatman no. 40 paper filter. I 

refrigerated extracts until they were analyzed for nitrate and ammonium with a Lachat 

(Milwaukee, Wisconsin) autoanalyzer by the Soil, Water & Forage Analytical Laboratory 

(EPA, 1979). 

I determined potential net N-mineralization and net nitrification for all soil 

samples from the summer and fall of 2003. For the measurement of potential net N­

mineralization and net nitrification, fresh soil samples were incubated at 25° for 30 days. 
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For the soil incubation, a 25 g subsample was placed in a vial, brought to the estimated 

field capacity with deionized water, and placed in a closed mason jar with 10 mL of 

deionized water in the bottom to maintain a saturated atmosphere (Schimel, 1986). At 

the end of the incubation, soils were extracted with KCl, filtered, and analyzed for nitrate 

and ammonium as described above. Potential net N-mineralization was calculated as the 

difference between concentrations of initial and final inorganic N of the soil, and 

potential net nitrification was calculated as the difference between the concentrations of 

initial and final nitrate-N of the soil (Vinton and Burke, 1995). 

Phosphorus fractionation and Mehlich Ill phosphorus 

Phosphorus fractionation yields a more complete picture of changes in soil P in 

the short- and long-term than simply measuring total P. I performed phosphorus 

fractionation on all summer soil samples from 2002 and 2003. I analyzed air-dried, 0.5 g 

samples for total P and soil inorganic and organic fractions using a modified sequential 

extraction procedure developed by Hedley et al. ( 1982) and modified by Tiessen and 

Moir ( 1993). This method uses a series of increasingly stronger reagents to separate 

pools of labile and recalcitrant inorganic and organic P, resulting in 9 extracts per sample. 

The sequence of extracts was resin-extractable P (resin-Pi), inorganic and organic 0.5 M 

NaHC03-extractable P (NaHC03-Pi, NaHC03-P0 ), inorganic and organic 0.1 MNaOH­

extractable P (NaOH-Pi, Na0H-P0), 1.0 M HCl-extractable P (IM HCl-Pi), inorganic and 

organic concentrated HCI-extractable P ( cHCl-Pi, cHCl-P o), and H2S04-H202-extractable 

P (residual-P). I analyzed the extracts for phosphate concentrations using the Murphy 

and Riley method ( 1962). The sequential procedure, P-fractions, and proposed properties 

of each fraction in soil are described in figure 3. Total P values calculated from the sum 
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of the individual fractions following Tiessen and Moir ( 1993) averaged 4.3% less than 

total P values for a subset of samples digested for only total P. In addition one composite 

sample was analyzed for soil test P using the Mehlich III extractant for each spill 

treatment for all sampling dates by the Soil, Water & Forage Analytical Laboratory 

(Mehlich, 1984 ). 

Soil texture, pH, moisture and field capacity 

Due to potential correlations between P fractions and soil texture (Tiessen et al., 

1983 ), I performed particle size analysis using the hydrometer method on all samples 

collected during the summer in 2002 and 2003 (Bouyoucos, 1951, Gavlak et al., 2003). 

In contrast, texture may not have a strong relationship with N-mineralization observations 

(Burke et al., 1997). In addition I measured soil pH in water for the 2002 and 2003 

summer samples (Thomas, 1996) and soil moisture gravimetrically (Topp, 1993) for all 

samples. I estimated field capacity for soils collected in the summer of 2003 using the 

centrifuge method (Cassel and Nielsen, 1986). Soil field capacity is the percentage of 

water remaining in a soil two or three days following saturation and after free drainage 

has practically ceased. Field capacity is controlled by soil texture, structure, and organic 

matter content in uncontaminated soils (Brady and Weil, 1999). 

Total Petroleum Hydrocarbons and Soil Salinity 

Total petroleum hydrocarbons were analyzed from one composite sample for each 

treatment at J6 and 05 from the beginning of bioremediation through spring of 2002 

using the EPA 418.1 method by Continental Laboratories in Salina, Kansas (EPA, 1983). 

The GS soil salinity samples were analyzed for exchangeable sodium (Helmke and 
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Sparks, 1996) and exchangeable chloride (Frankenberger et al., 1996) concentrations 

through summer of 2003 at the University of Tulsa. 

Statistical analyses 

I performed 4 separate redundancy analyses (RDA) on the correlation matrix 

(Markarenkov and Legendre. 2002) for J6 summer 2002, J6 summer 2003, GS summer 

2002, and GS summer 2003 using dummy variables for petroleum contamination, brine 

contamination, tilling, and fe11ilizer application as explanatory variables and ¾C, %N, 

NH4-N, N03-N, N-mineralization and nitrification rates, and P fractions as response 

variables with soil textural classes of sand, silt, clay (Table 1) and slope entered as 

covariables. Separate analyses of J6 and GS allowed the effects of tilling independent of 

contamination to be more easily distinguished because tilling, petroleum contamination, 

and brine contamination occur simultaneously at GS. Because GS was analyzed 

separately I also was able to include slope position relative to the pipeline as a covariable 

for GS RDAs. I analyzed 2002 and 2003 data separately because I was able to include % 

plant cover as an explanatory variable in 2003 RDAs, and N-mineralization and 

nitrification were not available as response variables for 2002 RDAs. I log-transformed 

all soil variables. I perfonned a principal components analysis (PCA) (Everitt, 1993, 

Basilevsky, 1994) on the correlation matrix comparing all samples taken during the 

summers of 2002 and 2003 including replicated controls. The comparison was based on 

log-transformed measurements of %C, %N, NH4-N, N03-N, and P fractions. I used 

textural classes as covariables (Table 1; Table 2). All ordinations were performed with 

CANOCO for Windows software (Ter Braak and Smilauer, 1998). I also conducted 

Pearson's correlations comparing field capacity with soil characteristics and comparing 
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the effects of tilling, fertilizing, petroleum contamination, and plant cover on soil N and P 

with SPSS FOR WINDOWS (2001). 

Results 

Total Petroleum Hydrocarbons and Soil Salinity 

Total Petroleum Hydrocarbons decreased rapidly at the contaminated sites during 

the early stages of bioremediation (Figure 4). The rates of decrease stabilized by the 

beginning of 2002. Decreases in sodium and chloride at GS were also greatest during the 

first year (Figure 5). Salinity levels remained relatively high throughout the course of 

this study. By fall of2003 GSN had the lowest levels of sodium and chloride among the 

contaminated sites at GS. 

Carbon, nitrogen, and phosphorus 

Changes in soil nutrients were related to tilling, fertilizing, hydrocarbon and brine 

contaminations, and the subsequent revegetation processes. The PCA showing nutrient 

data from the summers of 2002 and 2003 illustrates the differences in soil C, N, and P 

due to tilling, fertilizer, and contamination and the return towards prairie conditions 

during revegetation (Figures 12a, 12b, 12c, and 12d). The first axis accounted for 41 % of 

the variation in soil C, N, and P, and the second axis accounted for 13% of the variation. 

Inorganic nutrient pools predominate in samples in the upper and left portions of the 

diagram and organic nutrient pools and nutrient characteristics of undisturbed prairie 

predominate in the lower and right portions (Figure l 2e ). Sites experiencing revegetation 

shifted toward the lower right from 2002 to 2003 (Figures 12a, 12b, 12c and 12d). The 

relative sample spread of groups demonstrates soil nutrient heterogeneity within sites, 

which increased from 2002 to 2003 at J6NF, J6NNF, and GSN and decreased at J6SF and 
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J6SNF (Figures 12a, 12b, 12c., and 12d). By summer 2003 J6NC was most similar to the 

prairie controls (Figure 12b). The J6SF and J6SNF sample groups were most similar to 

J6NC and prairie controls (Figure 12b). The J6NF and J6NNF groups shifted toward the 

upper right from 2002 to 2003 due to increases in P pools (Figures 12a and 12b ). 

Unfertilized samples were generally grouped more closely to the controls than fertilized 

samples due to lower nutrient availability (Figures 12a, 12b, 12c, and 12d). However, by 

summer 2003 increased plant cover caused the fertilized GSN samples to group more 

closely with the control samples than the unfertilized GSM samples (Figure 12d). 

I performed separate RDAs for J6 summer 2002, J6 summer 2003, GS summer 

2002, and GS summer 2003 (Figures 13a, 13b, 13c, and 13d) and Pearson's correlations 

for J6 summer 2003 (Table 7) to explore the different effects of tilling, fertilizing, 

petroleum contamination., and revegetation on soil C, N, and P pools. The first RDA axes 

explained a large amount of the variation (30%, 32%, 47%, and 47% respectively) in the 

measured characteristics of soil C, N, and P in all RDAs. Fertilizer application was the 

key environmental variable separating nutrient levels on all second RDA axes, which 

explained 8%, 6%, 7%, and 7% of the variation respectively (Figures 13a, 13b, 13c, and 

13d). RDAs showed that tilling was positively associated with N03-N and inorganic P 

and was negatively associated with o/oN, N-mineralization, organic P, and residual P 

(Figures 13a, 13b, 13c, and 13d). Tilling was significantly positively correlated with 

N03-N, NaHC03-Pi, NaOH-Pi, and 1 M HCl-Pi and negatively correlated with NaHC03-

p o and NaOH-P o (Table 7). RDAs showed that fertilizer was positively associated with 

inorganic P and N03-N (Figures 13a, 13b, 13c, and 13d). Fertilizer was significantly 

positively correlated with resin-P,, NaHC03-Pi, NaOH-Pi, l M HCI-Pi, cHCl-Pi, and 
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cHCl-P O (Table 7). RDAs showed that petroleum contamination was positively 

associated with high C:N ratios and variables associated with tilling (Figures 13a, 13b, 

13c, and 13d). Petroleum contamination was significantly positively correlated with C:N, 

NaHC03-Pi, NaOH-Pi, and lM HCl-Pi (Table 7). RDAs showed that plant cover was 

positively associated with N-mineralization and organic P and was negatively associated 

with N03-N, NH4-N, inorganic P, and high C:N ratios (Figures 13a, 13b, 13c, and 13d). 

Plant cover was significantly positively correlated with cHCl-P o and negatively correlated 

with o/oC, C:N, NaHC03-Pi, NaOH-Pi, and IM HCl-Pi (Table 7) 

Soil C decreased gradually through time on all tilled sites (Figures 6a, 6b, and 6c). 

By fall of 2003 the bioremediation treatments lowered soil Cat all contaminated sites to 

levels common in this ecosystem. (Table 2; Figures 6a, 6b, and 6c ). By fall of 2003 

J6NNF and J6NF still had higher C than J6NN, but all other contaminated sites had C 

levels less than or not substantially different from their respective prairie controls and the 

mean %C of the replicated controls (Table 2; Figures 6a, 6b, and 6c). 

Total N also decreased gradually through time on tilled sites (Figures 7a, 7b, and 

7c). Unfertilized, contaminated sites (J6NNF, J6SNF, GSM) had substantially lower N 

than other sites by fall 2003 (Figures 7a, 7b, and 7c). Mean o/oN was highest at prairie 

controls. However, fertilized spill sites had %N levels that were similar to those of their 

respective prairie controls, suggesting that fertilizer offset N losses (Figures 7a, 7b, and 

7c ). All levels of total N fell within the range represented by the replicated controls 

throughout the study, but J6NNF, J6SNF, and G5M had means of %N that were more 

than 1 standard deviation lower than the mean of the replicated controls by 2003 (Table 

2; Figures 7a, 7b, and 7c). 
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The contaminated sites, J6NNF, J6NF, and GSM, had substantially higher C:N 

ratios than their respective prairie controls throughout the sampling dates (Figures 8a, 8b, 

and 8c). The mean C:N ratio at J6NNF continued to be higher than any sample from the 

replicated control groups through the fall of 2003 (Table 2; Figure 8a). 

Inorganic N decreased significantly during revegetation. Levels of inorganic N at 

tilled and prairie sites converged by summer 2003 at J6 south (Figure 9b) and fall 2003 at 

J6 n01th (Figure 9a). All tilled sites at GS had substantially higher inorganic N than the 

maximum of the replicated controls through fall 2003 (Table 2; Figure 9c ). G5S had the 

highest inorganic N and the fertilized site GSN had the lowest inorganic N of the tilled 

sites at GS by fall 2003 (Figure 9c ). GSN showed the greatest decrease in inorganic N at 

GS during the study period, while GSS and GSM showed little change (Figure 9c). 

All potential net N-mineralization rates fell within the range of rates measured 

from the replicated controls (Table 2; Table 3). The lowest rates were generally found in 

unfertilized, hydrocarbon contaminated soils. In contrast, potential net nitrification rates 

in the tilled sites of J 6 north from summer 2003 exceeded the highest rates of the 

replicated controls (Table 2; Table 3). Nitrification was extremely low compared to the 

replicated controls in soils from the brine contaminated GS sites, especially GSM (Table 

2; Table 3). Sites experiencing recent revegetation had higher N-mineralization in fall 

2003 than poorly vegetated sites and sites with longer establislunent of vegetation (Table 

3). 

In contrast to N, inorganic P remained unusually high in fertilized sites through 

the 2003 sampling seasons regardless of revegetation status. Slope position strongly 

affected P availability and total P (Table 4; Table 5). J6NF, J 6SF, and all tilled sites at 
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GS had substantially higher Mehlich III extractable P than their respective controls 

through fall 2003 (Figures l Oa, l Ob, and 1 Oc ). Fertilized sites generally had higher total 

P than their respective controls, and unfertilized tilled sites had lower total P than 

controls in both 2002 and 2003 (Table 4; Table 5). Total P was substantially higher at 

J6NF and J6NNF in 2003 than 2002; the greatest portions of these increases occurred in 

the NaHC03-Pi, NaOH-Pi, and NaOH-P0 fractions (Table 4; Table 5). J6NF had the 

highest levels of resin-Pi, NaHC03-Pi, NaOH-Pi, and 1 M HCl-Pi in 2002 and 2003 (Table 

4; Table 5). The mean sum (50.6 ± 3.7 mg P ki1 soil) of labile P forms (resin-Pi, 

NaHC03-Pi, NaHC03-P0 ) at J6NF in 2003 still exceeded the maximum observed in the 

replicated controls ( 42.5 mg P kg- 1 soil). All fertilized sites had unusually high levels 

(outside of the range of replicated controls) (Table 2; Table 4; Table 5) ofNaHC03-Pi 

and/or NaOH-Pi in both 2002 and 2003 (Table 6; Table 7). Tilled sites had substantially 

lower NaHC03-P O and NaOH-P O and higher inorganic P in comparison to their respective 

prairie controls (Table 4; Table 5). 

Soil hydrology 

Soil moisture increased as sites became revegetated (Figures 11 a, 11 b, and 11 c ). 

By summer 2003 soil moisture at J6NC was not significantly different from native prairie 

(Figure 11 a). Soil field capacity was significantly correlated with previous TPH 

concentrations (Table 8). However, field capacity showed no significant correlation with 

soil texture or o/oC (Table 8). Petroleum contaminated sites had lower soil field capacities 

than uncontaminated sites (Table l ). J6NC did not have a lower field capacity than 

native prairie (Table l ). Field capacity was lowest with the greatest standard deviations 

at J6NF, J6NNF, and GSM (Table l). In addition I observed surface beading of water 
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and KCl solutions on soils from contaminated sites during extraction procedures 

throughout the course of this study. 

Revegetation and community structure 

At the end of the 2002 growing season, J6NF, J6NNF, and all tilled sites at GS 

had between 70% and 90% bare ground. At the time of vegetation analysis in the 

summer of 2003 the same sites still had substantial areas of bare ground (Table 6). J6SF, 

J6SNF, and J6NC had plant cover greater than 50% by the end of 2002 and were nearly 

completely revegetated by summer 2003 (Table 6). The respective prairie controls were 

dominated by prairie grasses including Andropogon gerardii, Panicum virgatum, 

Sorghastrum nutans, and Festuca arundinacea, and in some areas by the forbs Solidago 

canadensis, He/ianthus mollis, and Gutierrezia dracunculoides (Table 6). Colonization 

of J6SF, J6SNF, and J6NC by plants resulted in a fairly random spatial distribution of 

individuals. The dominant recolonizing species in these plots by summer 2003 continued 

to be ruderal forbs including Ambrosia artemisiifo/ia, Ambrosia psilostachya, G. 

dracunculoides, and Xanthium strumarium with the exotic annual grass Bromus 

japonicus (Table 6). In the more slowly colonized sites (J6NF, J6NNF, GS) colonization 

progressed from the edges through vegetative growth, followed by seedling 

establishment. J 6NF and J 6NNF contained the only remaining bison wallows among the 

tilled treatments by summer 2003. The edges of J6NF and J6NNF contained many of the 

same ruderals found in J6SF, J6SNF, and J6NC (Table 6). However the exotic perennial 

grass Cynodon dacty/on and the creeping forb Polygonum aviculare were most common 

species towards the center of the plots (Table 6). C. dactyl on and P. aviculare were the 
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dominant species in the GS tilled sites (Table 6). C. dactylon was especially important at 

GSN, which had the greatest plant cover of the tilled sites at GS (Table 6). 

Discussion 

Soil carbon, nitrogen. and phosphorus 

Petroleum contamination and bioremediation cause significant changes in nutrient 

dynamics. The changes in soil nutrients observed during this study are similar to those 

observed elsewhere due to petroleum contamination (Chaineau et al., 2003), high salinity 

(Pathak and Rao, 1998, Curtin et al., 1992), tilling (Jug et al., 1999), fertilizing (Richards 

et al., 1995, Motavalli and Miles, 2002), and grazing by large ungulates (Pastor et al., 

1993, Frank and Evans, 1997, Augustine, 2003) in a variety oflaboratory and field 

contexts. It has been acknowledged that field data are necessary for comparison to 

laboratory and modeling results to evaluate the success of bioremediation processes at a 

practical scale (Sturman et al., 1995). In contrast to past research, this study 

demonstrates the occurrence of processes in situ during remediation of a native plant 

community. The trends observed here support some hypotheses based on previous ex situ 

observations. 

Tilling causes mineralization of organic N and P forms over a relatively short 

period of time and reduces plant available nutrient pools through N losses and soil 

adsorption of inorganic P. The decreased N observed in this study following tilling is 

consistent with studies comparing tillage systems (Kandler and Bohm, 1996). Net N­

mineralization following removal of plants through tilling should account for N losses 

because N03-N is susceptible to leaching and denitrification (Kandler and Bohm, 1996, 

Schlesinger, 1997). The organic and inorganic P levels in native tallgrass prairie soils at 
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the TGPP are similar to those found in other grassland soils (Tiessen and Moir, 1993, 

Cross and Schlesinger, 2001, Motavalli and Miles, 2002 ). The relationships between soil 

P, texture, and slope position are consistent with previous studies (Agbenin and Tiessen, 

1995, Leinweber et al., 1997). Also in agreement with other studies, tilling had greater 

effect than fertilization on P0 (Rubrek et al., 1999), and organic P was a larger proportion 

of the total P in native prairie sites compared with the cultivated plots, especially in the 

form ofNaOH-P0 (O'Halloran et al., 1987b, Motavalli and Miles, 2002). Increases in 

NaHC03-Pi due to tilling were consistent with previous findings (Dorrnaar and Willms, 

2000). This suggests that large portions of the organic P pools have been converted to Pi 

during the four years since tilling began. Increases in NaOH-Pi suggest that NaHC03-Pi 

tends to be adsorbed by hydroxide-soluble minerals (Bolin et al., 1983, Ramirez and 

Rose, 1992). Because organic pools are the primary source of plant available P in non­

fertilized systems, these changes may represent a long-term decrease in P availability 

(Beck and Sanchez, 1994, Buresh et al., 1997). In addition the negative association 

between residual-P and tilling observed in this study has been demonstrated in other 

studies by significant differences in soils with prolonged periods of cultivation (Hedley et 

al., 1982, Schoenau et al., 1989). The results of this and other studies suggest that the 

tilling causes slow changes in residual fractions through long-term weathering whereas 

changes in the other P fractions may occur relatively quickly through mineralization of 

organic material in previously untilled grasslands. In addition to increased mineralization 

and weathering, decreases in total P in unfertilized, tilled soils on sloped sites were 

similar to previous studies that suggested that losses were due to erosion and/or leaching 

(Hedley et al., 1982, Frossard et al., 1989) 
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Fertilizer application increases the initial rate of hydrocarbon degradation and 

offsets nutrient losses due to tilling during bioremediation. Total N and Net N­

mineralization rates and the sum of labile P fractions were similar in fertilized and prairie 

sites. In agreement to previous studies resin-Pi, NaHC03-Pi, and NaOH-Pi were more 

strongly correlated with fertilizer application than with tilling alone (Beck and Sanchez, 

1994, Richards et al., 1995, Motavalli and Miles, 2002). However, significant 

correlations between fertilizing and cHCl-Pi and cHCl-P O suggest that some correlations 

are influenced by slope position. The results of this study do not support the hypotheses 

that fertilization will cause locally decreased diversity through site eutrophication or 

persistence of invasive species through positive feedbacks between species composition 

and nutrient availability. 

In addition to P increases through fertilizing, unexpected increases in total Pat 

J6NF and J6NNF may have been caused by bison. Studies have reported that sites 

frequented by livestock and other ungulates experienced enrichments of N and P, in 

which high P persisted while N declined through time (Frank and Evans, 1997, 

Augustine, 2003 ). The presence of bison wallows only at these sites suggests a similar 

relationship in this study. These substantial increases in P resulting in unusually high P 

availability at J 6NF could change community dynamics either directly or through effects 

on N cycling (Janssens et al., 1998). 

High salinity may also have significant effects on soil nutrients. Reduced N­

mineralization and strongly inhibited nitrification were observed in saline soils during 

this and previous studies (Laura, 1977, Pathak and Rao, 1998). Azam and Muller (2003) 

suggested that sites with high inorganic N like GS may continue to experience significant 
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N losses because denitrifying enzyme activity is not strongly inhibited by salinity. 

Although P losses were related to tilling and topography (Hedley et al., 1982), salinity 

may also have contributed by increasing P solubility and the susceptibility of the soil to 

erosion (Curtin et al., 1992). 

Many of the biogeochemical characteristics of prairie soils were partially restored 

through revegetation. Plant species can affect soil chemistry, and native plant growth has 

been observed in previous studies to drive ecosystem processes in the trajectory of the 

original system in restored grasslands (Vinton and Burke, 1997, Baer et al., 2002, K.nops 

et al., 2002). In this study RD As and PCA show that vegetation cover was strongly 

associated with nutrient conditions characteristic of prairie soils. These observations 

support the importance of the plant community in the restoration of ecosystem processes. 

Revegetation 

Factors affecting revegetation at these sites include disturbance by bison, high 

salinity, and residual petroleum hydrocarbons. 

Although bison can play an important role in maintaining the prairie plant 

community (Knapp et al., 1999), they appear to have a negative affect on community 

restoration following bioremediation. The tilled surfaces served as temporary wallowing 

sites, and remaining bare spaces at J 6NNF and J 6NF may be at least partially maintained 

by ongoing disturbance and compaction by the animals. The effects of bison on 

community restoration are also suggested by the revegetation patterns and species 

composition of sites containing wallows. Previous studies have found that trampling is 

an important factor in seedling establishment (Sun, 1991) and that plants with tall growth 

forms are more sensitive to trampling (Sun and Liddle, 1993). In this study the 
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revegetated sites without bison wallows had a relatively random pattern of plant 

propagule establishment. The species in these sites were characterized both by 

reproduction primarily through seed dispersal and erect growth habits. In contrast, 

J6NNF and J6NF were colonized through vegetative growth from the edges followed by 

seedling gennination. The primary species growing into open spaces at J6NNF and J6NF 

(C. dactylon, P. aviculare) were characterized by prostrate growth habits and have been 

described as trampling tolerant (Dan and Liddle, 1991, Parker, 2004). Although the 

communities near bison wallows appear to be adapted to this form of disturbance, the 

complete revegetation of J6NC by annual species with erect growth forms directly 

adjacent to J6NNF and J6NF suggests that the presence of bison cannot be the only factor 

contributing to the difficulty of seedling establishment and revegetation. 

Conventional bioremediation methods did not promote substantial community 

restoration in brine-contaminated soils during the course of this study. GSN had the 

greatest plant cover and a substantially lower salinity than GSS and GSM by fall 2003. 

This implies that there is a relationship between revegetation and salinity at these sites. 

In addition the primary colonizing species at GS (C. dactylon, P. aviculare) are salt 

tolerant (Marcum, I 999, Foderaro and Ungar, 1997, Lee et al., 2000). Significant 

disturbance from bison wallowing was not observed at GS, possibly due to the rockiness 

and steep slopes at this site. However, it is possible that residual hydrocarbons might 

influence the distribution of saline patches and contribute to the inhibition of revegetation 

through mechanisms other than salt stress. Given the success of C. dactylon through the 

fall of 2003 and slow decreases in salinity, C. dactylon will likely remain the dominant 

species at GS throughout the near future. 
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Soils with high initial TPH concentrations had high nutrient availability and 

continued to exhibit poor plant growth 4 years after the beginning of bioremediation. 

Residual hydrocarbons have been hypothesized to limit plant growth through nutrient 

limitation (Amadi et al., 1993, Xu and Johnson, 1997, Rentz et al., 2003), inherent 

toxicity ( deOng et al., 1927 ~ Crafts and Reiber, 1948, Baker, 1970, Chaineau et al., 1997, 

Chaineau et al., 2003), and water stress (Baker, 1970, Udo and Fayemi, 1975, Brown et 

al., 1982, Amakiri and Onofeghara, 1983, Klokk, 1984, Bossert and Bartha, 1985, Li et 

al., 1997). Previous studies have demonstrated that hydrocarbons can limit plant growth 

by stimulating competition for nutrients by microorganisms (Xu and Johnson, 1997). 

The high C:N ratios at contaminated sites might be indicative of some N limitation (Xu 

and Johnson, 1997). However, nutrient limitation seems unlikely at J6 north because 

plant available N and P and net N-mineralization rates remained high throughout the 

study. High N availability could be expected to persist even with high C:N ratios if the 

remaining C is in the form of recalcitrant petroleum hydrocarbons (Brown et al., 1998). 

Thus, the alternative hypotheses that residual hydrocarbons limited revegetation through 

inherent toxicity and/or water stress appear to be better supported in this study. 

My analyses do not test the independent effects of the inherent toxicity of residual 

hydrocarbons on plant growth, but more rigorous tests have shown significant effects in 

other studies. The toxicity of oils is usually attributed to volatile compounds capable of 

rapid or acute injury to plant tissues. Because weathered crude oil has much lower 

concentrations of low-boiling and hydrophilic compounds, it is generally less toxic to 

vegetation than fresh oil (Baker, 1970). However, slow or chronic injury to plants by 

heavy fractions has been previously documented ( deOng et al., 1927, Crafts and Reiber, 
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1 948). In addition, metabolic by-products of hydrocarbon degradation may cause 

perturbations to cellular metabolisms as a result of structural damage to membranes and 

chloroplasts (Chaineau et al.~ 2003). Elimination of acute soil toxicity through 

bioremediation has been reported based on earthworm survival and seed germination 

(Salanitro et al., 1997). However, germination and survival rates are less sensitive 

indicators than measures of plant growth and photosynthesis (Nwachukwu, et al., 2001, 

Chaineau et al., 2003., Suleiman and Bhat, 2003). Chaineau et al. (2003) reported that 4 

out of 5 tested plant species exhibited 100% germination, and mortality of earthworms 

was not increased in crude oil contaminated soils with TPH reduced to residual 

concentrations (76% reduction). However, plant growth was significantly reduced, and a 

25% inhibition of photosynthesis was measured using the Hill reaction (Dicks, 1974, 

Chaineau et al., 2003 ). Because plant growth is both sensitive to residual toxicity and 

crucial for community restoration, further consideration should be given to inherent 

toxicity and the choice of toxicity indicators used to determine remediation endpoints. 

Evidence collected in this study, while not ruling out growth inhibition through 

inherent toxicity, indicates that hydrocarbon related water stress may be the most 

significant factor limiting revegetation. Because the availability of petroleum 

hydrocarbons to microbial degradation is positively correlated with water solubility, 

residual hydrocarbons following bioremediation are extremely hydrophobic (Nocentini et 

al., 2000). Hydrophobic properties resulting from residual hydrocarbons limit the ability 

of soils to absorb and hold water (Morgan and Watkinson, 1989, Fine et al., 1997, Deka 

et al., 1 997, Sawatsky and Li, I 997). As a result, plants growing in these soils may 

experience water stress even when rainfall is high (Ritsema and Dekker, 1994, Sawatsky 
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and Li, 1997). Reduced plant growth has been attributed to water stress in bioremediated 

soils in several studies (Brown et al., 1982, Li et al., 1997, Chaineau et al., 2003). 

In contrast, some researchers have reported minimal effects on plant growth even 

with residual hydrocarbon levels above 8000 mg kg-• (Salanitro et al., 1997). However, 

Li et al. ( 1997) observed that these results were produced with optimal water conditions 

and small homogeneous soil samples. Under natural conditions soil wetting only occurs 

with a prolonged contact period (Li et al., 1997), and water will tend to follow the path of 

least resistance through the soil profile resulting in isolated patches of high moisture 

which may intensify with time (Morgan and Watkinson, 1989, Ritsema and Dekker, 

1994, Sawatsky and Li, 1997). In addition, a soil's water repellency is dependent on its 

water content. As contaminated soils dry, water repellency shifts from being almost 

undetectable to very severe (King, 1981, McNabb et al., 1992, Sawatsky and Li, 1997). 

The moisture level at which this shift occurs has been called the "critical soil water 

content" (Dekker and Ritsema, 1994 ). Infiltration of bioremediated soils has been 

observed to decrease by more than two orders of magnitude as moisture levels dropped 

below this point (Sawatsky and Li, 1997). In contrast, moisture levels above the critical 

content resulted in sorbtivity that approached the control soil (King, 1981, Sawatsky and 

Li, 1997). Due to this phenomenon, nutrient analyses and ecotoxicity assays may not be 

accurate indicators of the ability of bioremediated soils to support plant growth when 

results are not observed at a variety of water conditions (Li et al., 1997). 

I made several observations suggesting that revegetation is limited by water 

stress. Water infiltration patterns were poor in contaminated soils in agreement with 

findings from other studies (Sawatsky and Li, 1997). In addition the significant negative 
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correlation between field capacity and TPH concentrations and the nonsignificant 

correlations between field capacity, soil texture and soil C suggest that residual 

hydrocarbon concentration is the most important soil characteristic controlling water 

availability in contaminated sites. Greatly reduced revegetation in contaminated sites in 

comparison to the tilled control suggests that residual hydrocarbons were a more 

important factor in revegetation than bison wallowing. In addition, C. dactylon and P. 

avicu/are may be favored in contaminated sites more by their tolerance to water stress 

than trampling (Dan and Liddle, 1991, Parker, 2004). The interaction of bison wallowing 

and hydrocarbon-mediated water stress may represent a form of positive feedback in 

which soil compaction by bison inhibits hydrocarbon degradation and plant growth. In 

turn, residual hydrocarbons could inhibit the reclamation of bison wallows by native 

ruderals, thus maintaining a site for repeated visits by bison herds. In addition, I 

observed that soil moisture content increased dramatically in sites experiencing 

revegetation. Such increases in soil moisture beneath vegetation at the edges of 

contaminated sites may explain the pattern of seedling establishment behind the 

advancing front of vegetative growth but not ahead of it. These observations support the 

hypotheses that phytotoxicity is due to petroleum hydrocarbon concentrations (Duncan et 

al., 2003) and that phytotoxicity may persist over a long time following removal of 

degradable compounds through bioremediation (Chaineau et al., 2003). 

Community structure 

This study suggests that restoration of community structure through low-cost in 

situ bioremediation remains a difficult challenge when high levels of contamination 

occur. The initial TPH concentration can be viewed as two parts: a first part that can be 
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depleted quickly and a second one that is not affected by bioremediation at all (Nocentini 

et al., 2000, Allen et al., 1997, Williamson et al., 1997). According to this model of 

hydrocarbon degradation, spills with large initial concentrations of recalcitrant 

compounds may results in long term vegetation shifts due to persisting xeric conditions 

following bioremediation. In addition to the general inhibition of plant growth, there is 

evidence that hydrocarbon contamination may have a strong effect on species 

composition (Cha'ineau et al., 1997, Xu and Johnson, 1997, Suleiman and Bhat, 2003). 

In one study, all of the dominant species (including C. dactylon) growing in crude oil 

contaminated soils exhibited vegetative growth as their primary mode of propagation 

(Baniah and Sanna, 1996). Vegetative growth may be favored in part because the spatial 

variability of water and solute movement in hydrophobic soils is lower below the 

repellent layer (Ritsema et al., 1993). This would give a competitive advantage to 

propagules growing from rhizomes or supplemented by metabolites through clonal 

connections over isolated seedlings. 

In addition to the threat of changes in community structure, bioremediation may 

favor exotic species. Modifications to existing disturbance regimes might have the 

largest influence on invasibility (Hobbs and Huenneke, 1992). Disturbance or changes in 

resource availability may be a prerequisite of establishment of exotic species (Burke and 

Grime, 1996, Smith and Knapp, 1999, Davis et al., 2000). Unfortunately, vegetative 

propagation, which appears to favor dominance following disturbance caused by 

hydrocarbon contamination (Baruah and Sanna, 1996), is also one of the primary 

characteristics associated with invasive of plant species (Kolar and Lodge, 200 l ). 
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It has been suggested that managing for maximum diversity in tallgrass prairie may lead 

to greater establishment and persistence of exotic species over time (Smith and Knapp, 

2001 ). For example, bison and other ungulates are thought to play a role in maintaining 

diversity by increasing spatial heterogeneity through redistribution of soil nutrients and 

behaviors such as preferential grazing and wallowing (Collins and Steinauer, 1998, 

Knapp et al . ., 1999, Augustine, 2003). However, bison wallowing may also favor exotic 

species such as C. dactylon. In the future, managers of restored grasslands may need to 

choose an appropriate balance between practices promoting biological diversity and those 

reducing ecosystem invasibility. 
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Conclusions 

Petroleum contamination and bioremediation cause substantial changes in 

biogeochemical processes and community structure. Tilling causes mineralization of 

organic N and P forms over relatively short period of time and reduces plant available 

nutrient pools by N losses and soil adsorbtion of inorganic P. Conventional 

bioremediation methods did not promote substantial community restoration in brine­

contaminated soils during the course of this study. Soils with high initial TPH 

concentrations had high nutrient availability but continued to exhibit poor plant growth 4 

years after the beginning of bioremediation. These results support the hypothesis that 

phytotoxicity is due changes in the physical properties of soils due to high petroleum 

hydrocarbon concentrations (Duncan et al., 2003), and that phytotoxicity may negatively 

affect community restoration for a long time following removal of degradable 

compounds through bioremediation (Chaineau et al., 2003). 
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Table I. Sand, silt, clay, pH, and field capacity (mean± standard deviation) for J6 and G5 sites in 2002 and 2003. G5 slope positions: (I)= upslope; (2) = mid 
slope~ (3) = downslope. 

Plot Code n 2002 2003 
% Sand % Silt %Clay Soil pH %Sand % Silt %Clay Soil pH Field Capacity(%) 

J6 

North fertilized J6NF 5 27.0±4.1 50.0 ± 6.4 23.0 ± 8.9 6.22 ± 0. J7 29.5 ± 4.5 44.0 ± 1.4 26.5 ± 3.8 5.97 ± 0.38 19.3± 1.6 

North no fertilizer J6NNF 5 31.5 ± 2.9 59.0± 1.4 9.5 ± 2.1 6.42 ± 0.13 31.5 ± 2.2 58.0 ± 3.7 10.5±2.7 6.14 ± 0.16 18.0±1.7 

North tilled control J6NC 5 31.0 ± 1.4 44.5 ± 3.3 24.5 ± 2.1 6.39 ± 0.16 31.0 ± 2.2 44.5 ± 2.7 24.5 ± 1. 1 6.23 ± 0.13 21.3 ± 1. 1 

North prairie J6NN 5 27.5 ± 1.8 46.0 ± 3.4 26.5 ± 2.2 6. 1 I± 0.29 28.0 ± 4.1 45.5 ± 2.7 26.5 ± 3.8 5.77 ± 0.08 19.9 ± 0.8 

South fertilized J6SF 5 26.0 ± 2.2 42.0 ± 4.5 32.0 ± 2.7 6.54 ± 0.30 27.0 ± 3.3 39.5 ± 2.1 33.5 ± 2.2 6.29 ± 0.12 22.1 ± 0.4 

South no fertilizer J6SNF 5 29.0 ± 1.4 36.5 ± 1.4 34.5 ± 2.1 7.46 ± 0.20 31.0 ± 1.4 36.0 ± 1.4 33.0 ± 1. 1 7.16 ± 0.27 21.9± 1.0 

South prairie J6SN 5 28.5 ± 2.2 43.0 ± 2.1 28.5 ± 2.2 6.28 ± 0.08 29.5 ± 2.1 43.0 ± 2.1 27.5 ± 3.5 5.81 ± 0.07 21.9 ± 1.0 
GS 

North (I) G5N 3 34.2± 1.4 42.5± 4.3 23.3 ± 2.9 5.27 ± 0.18 30.0 ± 0.0 44.2 ± 6.3 25.8 ± 6.3 5.49 ± 0.12 16.6 ± 0.9 
North (2) G5N 

.., 
33.3 ± 2.9 40.8±1.4 25.8 ± 1.4 5.64 ± 0.02 28.3 ± 1.4 46.7 ± 3.8 25.0± 4.3 5.77 ± 0.06 20.5 ± 0.7 ,J 

North (3) G5N 3 35.8 ± 1.4 40.8 ± 1.4 23.3 ± 2.9 5.52 ± 0.09 34.2 ± 5.2 40.0 ± 2.5 25.8 ± 7.2 5.46 ± 0.09 20.1 ± 0.7 
Middle (I) G5M 3 34.2 ± 1.4 38.3 ± 1.4 27.5 ± 2.5 5.43 ± 0.05 35.0 ± 5.0 40.8 ± 1.4 24.2 ± 3.8 5.73 ± 0.07 15.3±1.6 
Middle (2) G5M 3 33.3 ± 1.4 40.0 ± 0.0 26.7 ± 1.4 5.18 ± 0.04 31.7 ± 1.4 40.0 ± 2.5 28.3 ± 1.4 5.21 ± 0.06 16.3 ± 1.1 
Middle (3) G5M 3 38.3± 1.4 38.3 ± 3.8 23.3 ± 3.8 5.18±0.02 32.5 ± 3.5 37.5 ± 0.0 30.0 ± 3.5 5.29 ± 0.10 18.8 ± 0.4 
South (I) G5S 3 35.0 ± 0.0 38.3 ± 2.9 26.7 ± 2.9 5.51 ± 0.17 34.2 ± 1.4 39.2 ± 3.8 26.7 ± 5.2 5.72 ± 0.22 16.9 ± 0.4 
South (2) G5S 3 35.8 ± 1.4 37.5 ± 2.5 26.7± 1.4 5.42 ± 0.03 37.5 ± 2.5 40.8 ± 2.9 21.7 ± 5.2 5.46 ± 0. )5 20.5 ± 0.5 
South (3) G5S 3 35.8 ± 1.4 41.7± 1.4 22.5 ± 2.5 5.33 ± 0.04 35.8 ± 5.8 38.3 ± 1.4 25.8 ± 5.2 5.32 ± 0.04 21.5 ± 1.4 
Prairie (I) G5C 3 37.5 ± 2.5 35.8 ± 1.4 26.7 ± 1.4 5.70 ± 0.13 38.3 ± 2.9 36.7 ± 2.9 25.0 ± 5.0 5.81±0.)8 20.3 ± 0.7 
Prairie (2) G5C 3 30.8 ± 1.4 45.8 ± 1.4 23.3 ± 1.4 5.59 ± 0. )4 38.3 ± 1.4 36.7 ± 3.8 25.0 ± 4.3 7.26 ± 0.10 20.5 ± 1.9 
Prairie (3) G5C 3 38.3 ± 1.4 41.7±1.4 20.0 ± 0.0 5.59 ± 0.06 34.2 ± 1.4 38.3 ± ).4 27.5 ± 0.0 6.70 ± 0. 13 20.6 ± 0.8 



Table 2. Total carbon and nitrogen, KCI extractable inorganic N, potential N-cycling rates, inorganic (Pi) 
and organic (Po) sequential P fractions, sand, silt, clay, pH, and field capacity (mean± standard deviation) 
for prairie controls. 

2002 (n = 20) 2003 (n = 40) 

Mean Minimum Maximum Mean Minimum Maximum 

Total C (%) 2.97 ± 0.64 1.35 4.22 3.13 ± 0.54 1.32 4.11 

C:N ratio 14.2 ± 0.7 12.5 15.5 12.3 ± 1.5 8.6 16.2 

Total N (%) 0.21 ± 0.04 0.09 0.31 0.30 ± 0.05 0.13 0.38 

NOrN (mg Kg. 1
) 0.6 ± 0.3 0.1 1.2 0.9 ± 0.8 0.4 5.5 

NH4-N (mg Kg. 1
) 6.7 ± 2.6 3.2 10.9 4.0 ± 2.5 2.0 17.7 

N-mineralization (mg Kg· 1 d" 1
) 0.24±0.17 -0.10 0.69 

Nitrification (mg Kg·' d" 1
) 0.31±0.13 0.02 0.55 

Total P (mg Kg. 1
) 259.l ± 77.6 144.S 489.0 277.2 ± 79.1 164.2 648.1 

Resin P, (mg Kg. 1
) 9.3 ± 2.4 5.6 15.9 7.9 ± 1.9 3.6 14.1 

NaHC0 3 P, (mg Kg. 1
) 5.9 ± 1.3 4.2 10.1 5.5 ± 0.7 3.8 7.6 

NaOH P, (mg Kg. 1
) 15.7±3.8 10.7 26.9 16.6 ± 3.5 10.3 28.8 

1 M HCl Pi (mg Kg- 1
) 15.2 ± 12.1 7.2 57.3 14.0 ± 20.4 2.4 132.6 

cHCI P
1 
(mg Kg. 1

) 37.6 ± 15.0 11.1 76.7 35.3 ± 14.6 19.0 106.6 

NaHC0 3 PO (mg Kg. 1
) 10.2 ± 5.7 1.2 21.4 9.4 ± 6.2 0.6 29.3 

NaOH P
O 

(mg Kg. 1
) 61.0 ± 22.0 33.5 114.2 69.0 ± 22.7 20.7 117.0 

cHCI P
0 

(mg Kg. 1
) 51.5 ± 25.4 12.9 125.0 35.3 ± 14.6 19.0 106.6 

Residual P (mg Kg" 1
) 52.6 ± 14.6 32.8 83.7 52.7 ± 10.3 32.7 79.2 

Sand(%) 25.7 ± 4.8 17.8 36.9 25.9± 11.6 10.0 65.0 

Silt(%) 37.4 ± 4.5 28.3 43.4 42.3 ± 8.0 22.5 57.5 

Clay(%) 36.9 ± 5.0 20.2 43.3 31.8 ± 7.9 12.5 50.0 

Soil pH 6.4 ± 0.5 5.8 7.4 6.6 ± 0.5 6.0 7.9 

Field Capacity(%) 21.5 ± 2.5 13.4 26.0 
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Table 3. Potential N-cycling rates for J6 and GS sites (mean± standard deviation). 

Plot Code n Summer 2003 Fall 2003 
N-mineralization Nitrification rate N-mineralization Nitrification rate 

rate (mg Kg" 1 d" 1
) (mg Kg·1 d"1

) rate (mg Kg·1 d- 1
) (mg Kg·1 d-1

) 

J6 

North fertilized J6NF 5 0.61 ± 0.43 0.60 ± 0.42 0.18 ± 0.09 0.21 ± 0.10 

North no fertilizer J6NNF 5 0.45 ± 0.10 0.54 ± 0.15 0.17 ± 0.12 0.15±0.11 

North tilled control J6NC 5 0.57 ± 0.07 0.57 ± 0.08 0.08 ± 0.17 0.14±0.12 

North prairie J6NN 5 0.63 ± 0.22 0.40 ± 0.12 0.04 ± 0.09 0.08 ± 0.08 

South fertilized J6SF 5 0.52 ± 0.06 0.47 ± 0.06 0.20 ± 0.12 0.13 ± 0.07 

South no fertilizer J6SNF 5 0.46 ± 0.04 0.44 ± 0.04 0.03 ± 0.03 0.01 ± 0.01 

South prairie J6SN 5 0.57 ± 0.07 0.51 ± 0.06 0.07 ± 0.03 0.08 ± 0.04 

GS 

North G5N 9 0.30 ± 0.13 0.03 ± 0.11 0.23 ± 0.10 0.19 ± 0.07 
Middle G5M 9 0.16 ± 0.25 -0.02 ± 0.14 -0.02 ± 0.21 0.00 ± 0.18 

South G5S 9 0.31 ± 0.15 -0.01 ± 0.1 I 0.10 ± 0.09 0.13±0.10 

Prairie G5C 9 0.46 ± 0.11 0.50 ± 0.09 0.14±0.13 0.18 ± 0.14 
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Table 4. Inorganic (Pi) and organic (Po) sequential fractions (mg Kg. 1
) (mean± standard deviation) from 16 and G5 sites (summer 2002). cHCI = concentrated 

hydrochloric acid. GS slope positions: (I)= upslope; (2) = mid slope; (3) = downslope. 

Plot Code n Inorganic P (Pi) Oq~anic P (Po) Residual P Tota) p 

Resin NaHC03 NaOH IM HCI cHCI NaHC03 NaOH cHCI 

J6 

North fertilized J6NF 5 20.3 ± 2.8 17.8±2.7 45.6 ± 8.3 47.0 ± 8.5 27.3 ± 3.8 14.9 ± 6.7 52.6 ± 23.4 42.7 ± 5.6 46.3 ± 7.0 314.5 ± 42.6 

North no fertilizer J6NNF 5 6.5 ± 1.0 9.5 ± 1.0 23.2 ± 2.9 20.4 ± 0.7 20.8 ± 1.9 4.5 ± 0.1 45.4 ± 16.3 37.8 ± 4.8 44.5 ± 3.5 212.6 ± 12.6 
North tilled control J6NC 5 7.9 ± 1.0 8.8 ± 0.4 24.5 ± 4.4 17.7 ± 3.3 28.8 ± 3.6 1.7±0.3 48.5 ± 10.4 46.3 ± 8.8 43.0 ± 8.0 227.2 ± 35.4 
North prairie J6NN 5 9.5± 1.9 7.4 ± 0.8 18.9±1.9 10.7±2.4 25.7 ± 2.8 6.6 ± 2.5 103.1 ± 11.3 43.9 ± 5.4 52.8 ± 1.6 278.6 ± 11.5 
South fertilized J6SF 5 9.9 ± 3.0 9.7 ± 2.0 27.8 ± 4.5 15.7±5.9 33.8 ± 5.3 6.0 ± 2.5 59.7 ± 14.8 52.0 ± 9.5 54.6 ± 8.3 269.1±41.4 
South no fertilizer J6SNF 5 6.0 ± 0.9 7.1 ± l.O 20.0 ± 2.2 14.0 ± 4.4 30.4 ± 2.3 1.9 ± 0.1 37.0 ± 6.5 49.0 ± 4.2 61.7 ± 3.8 227.0 ± 15.6 
South prairie J6SN 5 7.9 ± 1.4 6.8 ± 0.5 19.4 ± 0.9 10.9 ± 3.3 28.2 ± 4.3 2.7 ± l.6 65.8 ± 11.5 52.0 ± 8.4 58.9 ± 3.8 252.4 ± 25.5 

GS 

North ( 1) G5N 3 8.0 ± 3.1 9.0 ± 0.3 25.8 ± 2.5 9.9 ± 3.0 16.5± 1.5 9.2 ± 5.0 61.7±10.1 29.0 ± 3.0 33.7 ± 4.7 202.9 ± 24.0 
North (2) G5N 3 9.9 ± 3.4 9.1±1.6 29.8 ±3.5 10.0 ± 3.0 24.3 ± 3.2 8.1±3.0 63.2 ± 5.3 41.6 ± 6.6 44.9 ± 3.0 240.8± 17.7 
North (3) G5N 3 9.8 ± 2.0 9.9 ± 1.8 30.2 ± 5.1 11.5 ± 3.8 21.8 ± 0.9 8.7 ± 5.8 66.2 ± 9.5 43.0 ± 2.7 41.7 ± 3.2 242.8 ± 20.5 
Middle (1) G5M 3 3.2 ± 0.9 6.7 ± 0.8 17.6 ± 2.0 6.0 ± 1.2 21.2 ± 4.5 6.0 ± 2.5 39.7 ± 0.1 30.5 ± 6.6 37.8 ± 6.8 168.7 ± 16.6 
Middle (2) G5M 3 3.5 ± 0.5 6.6 ± 0.3 16.7 ± 1.3 5.1±0.7 22.7 ± 3.5 5.6 ± 3.6 36.6 ± 6.7 38.5 ± 6.3 38.5 ± 2.8 174. I± 8.4 
Middle (3) G5M 3 5.1 ± 1.0 7.0± 0.5 17.7±0.6 5.5 ± 1.4 22.8 ± 1.1 1.7±0.3 40.5 ± 3.7 47.2 ± 6.2 42.6 ± 1.6 190.1 ± 5.1 
South (I) G5S 3 7.6 ± 2.2 9.4 ± I. 1 28.7 ± 5.2 10.3 ± 3.8 31.0 ± 0.5 6.1 ±2.7 43.0± 5.1 50.8 ± 5.7 39.6 ± 2.0 226.6 ± 24.2 
South (2) G5S 3 8.6 ± 0.7 8.3 ± 0.3 24.5 ± 2.9 8.7 ± 1.4 35.9 ± 9.9 2.8 ± 1.5 46.3 ± 7.3 51.7 ± 6.2 38.5 ± 2.9 225.2 ± 22.9 
South (3) G5S 3 7.0 ± 2.3 7.8 ± 0.3 23.5 ± 0.4 5.5 ± 0.7 26.6 ± 0.2 4.7 ± 3.0 62.0 ± 7.4 49.6 ± 5.2 40.4 ± 1.8 227.2± 15.6 
Prairie (I) G5C 3 7.6 ± 1.4 7.0 ± 1.0 17.1 ± 0.8 12.2 ± 1.3 27.7 ± 7.0 4.1 ±2.2 53.3 ± 10.5 58.0 ± 9.7 36.6 ± 3.7 223.6 ± 33.7 
Prairie (2) G5C 3 6.2 ± 1.5 6.5 ± 0.9 14.5 ± 1.9 4.4 ± 0.7 29.7 ± 0.8 1.8 ± 0.6 47.2 ± 5.3 53.5 ± 8.5 42.6 ± 4.2 206.4±17.1 
Prairie (3) GSC 3 5.3 ± 0.8 6.6 ± 0.3 15.8 ± 2.5 5.5 ± 1.8 26.0 ± 2.6 1.7 ± 0.3 54.1 ± 10.0 51.0 ± 5.0 43.4 ± 3.2 209.4 ± 22. l 



Table 5. Inorganic (Pi) and organic (Po) sequential fractions (mg Kg" 1
) (mean± standard deviation) from J6 and G5 sites (summer 2003). cHCI = concentrated 

hydrochloric acid. G5 slope positions: ( J) = upslope; (2) = mid slope; (3) = downslope. 

Plot Code n Inorganic P (Pi) Or~anic P (Po) Residual P Total P 
Resin NaHC03 NaOH IM HCI cHCI NaHC03 NaOH cHCI 

J6 

North fertilized J6NF 5 17.7±1.8 29.1 ± 3.0 68.0 ± 9.1 38.1 ± 9.2 31.0±2.2 3.9 ± 3.2 83.4 ± 42.0 46.6 ± 9.2 43.5 ± 4.1 361.2 ± 50.9 

North no fertilizer J6NNF 5 7.8 ± 1.2 13.6 ± 1.2 33.9 ± 3.4 23.2 ± 3.0 22.5 ± 2.4 3.0± 1.7 83.1 ± 25.4 31.2 ± 6.8 43.9±1.3 262.3 ± 22.9 

North tilled control J6NC 5 8.7± 1.6 7.5 ± 0.9 21.6± 1.3 12.4 ± 2.0 29.3 ± 1.7 1.5 ± 0.7 62.2 ± 10.8 44.8 ± 3.1 43.4 ± 4.2 231.4 ± 12.9 

North prairie J6NN 5 8.5 ± 1.0 5.2 ± 0.6 17.5 ± 1.5 9.5 ± 0.1 23.7 ± 3.8 7.1±2.4 101.7 ± 32.3 38.3 ± 9.9 48.5 ± 3.0 260.0 ± 31.7 

South fertilized J6SF 5 9.6 ± 2.6 9.6 ± 2.9 30.5 ± 7.8 15.l ± 3.5 37.1 ± 2.2 4.6 ± 2.2 77.0 ± 6.5 57.6 ± 5.0 51.5 ± 4.6 292.6 ± 17.0 

South no fertilizer J6SNF 5 7.0 ± 1.4 4.6 ± I.I 20.8 ± 4.3 13.7 ± 5.7 32.6 ± 2.9 2.7 ± 1 .4 44.4 ± 7.4 48.0 ± 8.8 51.9±4.2 225.7 ± 32.6 

South prairie J6SN 5 7.6 ± 0.9 4.6 ± 1.0 19.0 ± 2.0 7.6 ± 1.0 28.3 ± 3.7 11.5 ± 2.6 92.7 ± 25.3 41.8±10.0 48.7 ± 3.2 261.7 ± 30.7 

GS 

North ( 1) G5N 
.., 

5.6 ± 1.7 7.3 ± 0.3 28.9 ± 3.0 6.8 ± 3.0 20.8 ± 2.4 6.8 ± 3.2 58.5 ± 14.5 31.2 ± 1.2 31.2 ± 5.9 197.1 ± 21.0 ., 
North (2) G5N 3 6.3 ± 2.5 7.3 ± 1.3 27.2 ± 1.6 6.0± 2.6 34.3 ± 4.6 4.8 ± 1.6 64.3 ± 10.5 45.3 ± 5.2 45.0 ± 1.4 240.4 ± 15.9 
North (3) G5N 3 7.4 ± 0.2 8.4 ± 0.6 30.0 ± 1.2 11.6 ± 3.5 31.1 ± 1.3 5.4 ± 0.8 68.2 ± 7.8 44.2 ± 3.3 36.3 ± 1.4 242.4 ± 8.9 
Middle (I) G5M 3 3.3 ± 0.8 6.1 ± 0.8 21.1 ± 3.7 5.6 ± 2.0 21.2 ± 2.3 3.0 ± 0.7 48.8 ± 13.8 30.4 ± 5.2 32.4 ± 2.9 171.8±27.7 
Middle (2) G5M 3 3.0 ± 0.2 4.6 ± 0.3 17.1 ± 2.0 5.5 ± 2.7 32.3 ± 1.6 2.4 ± l.2 32.6 ± 7.9 40.l ± 3.4 38. l ± 13. l )75.7 ± 1.0 
Middle (3) G5M 3 4.2 ± l.l 6.2 ± 0.8 19.8 ± 4.4 5.5 ± 0.8 32.6 ± 1.7 3.2 ± 1.2 46.8 ± 5.5 45.0 ± 1.5 40. l ± 3.0 203.4 ± J 1.2 
South (l) G5S 3 6.3 ± l.7 7.7 ± 1.1 28.2 ± 2.3 l l.6 ± 1.4 41. l ± 2.2 3.3 ± 1.4 42.l ± 9.8 49.7 ± 3.0 32.6 ± 0.3 222.7 ± 14.5 
South (2) G5S 3 6.9 ± 1.0 7.1±0.7 25.2 ± 2.3 6.4 ± 0.1 47.5 ± 10.6 4.6 ± 1.2 41.2 ± 4.0 55.4 ± 7.1 47.1 ± 2.6 241.4 ± 21.7 
South (3) G5S 3 4.6 ± 0.8 7.5 ± 0.9 25.9 ± 1.4 5.2 ± 1.3 34.2 ± 1.8 6.3 ± 2.5 61.2 ± 11.5 49.4± 1.4 38.5 ± 5.5 232.7 ± 7.3 
Prairie (l) G5C 3 4.1 ± l.O 5.0± 0.3 16.1 ± 0.5 4.2 ± 0.9 24.0 ± 5.0 3.3 ± 1.4 56.7 ± 7.7 33.8 ± 1.6 32.5 ± 5.3 179.6 ± 4.9 
Prairie (2) G5C 3 5.0 ± 0.6 5.6 ± 0.6 14.2 ± 1.3 17.2 ± 4.0 41.9± 4.0 3.1 ± 2.4 34.5 ± 1.0 58.4 ± 0.2 47.5 ± 10.6 227.4 ± 11.3 
Prairie (3) G5C 3 8.3 ± 0.5 6.7 ± 0.3 15.3 ± 4.9 10.7 ± 0.8 40.6 ± 3.2 1.5 ±0.3 62.3 ± 5.9 65.5 ± 2.4 40.3 ± 3.5 251.8 ± 5.9 



Table 6. Plant species characteristics and relative percentage canopy cover of most abundant plant species and bare ground during summer 2003. Phenology 
and Life-span : w = warm season, c = cool season, a= annual, p = perennial (Diggs et al. 1999). NF= 16 north fertilized, NNF = 16 north no fertilizer, NC= J6 
tilled control, NN = J6 north prairie, SF= J6 south fertilized, SNF = J6 south no fertilizer, SN= J6 south prairie, N = G5 north fertilized, M = G5 middle no 
fertilizer, S = GS south fertilized, C = G5 prairie. 

Estimated relative canoe~ cover(%) 

Species, phenology, & life-span Growth fonn NF NNF NC NN SF SNF SN N M s C 

Ambrosia artemisiifolia wa erect forb 20 15 20 0.5 0.5 10 0.5 

Ambrosia psilostachya "P erect forb 0.5 I 20 3 40 10 1 

Gutierrezia dracunculoides \l'Q 

erect forb 5 15 0.5 10 20 7 0.5 0.5 
Andropogon gerardii up cespitose/rhizomatous grass 0.5 20 0.5 7 30 
Bromus japonicus ca 

cespitose grass 20 7 10 2 5 15 0.5 0.5 0.5 0.5 
Cynodon dacty/on wp stoloniferous/rhizomatous grass 2 1 0.5 0.5 35 5 
Digitaria sanguina/is "'0 stoloniferous grass 2 0.5 0.5 3 
Elymus virginicus er cespitose grass 0.5 0.5 0.5 0.5 3 
F estuca arundincea ,p cespitose grass 0.5 0.5 3 0.5 0.5 10 5 30 
Helianthus moll is "fl erect/rhizomatous forb 0.5 0.5 0.5 30 
Panicum virgatum "'I' rhizomatous grass 7 0.5 5 0.5 5 
Po/ygonum avicu/are WO 

prostrate forb 15 0.5 0.5 3 2 3 
Polygonum lapathifolium 11'0 

erect forb 2 
Set aria parviflora wp rhizomatous grass 0.5 1 1 0.5 3 
Solidago canadensis "P erect/rhizomatous forb 0.5 0.5 5 0.5 20 0.5 
Sorghastrum nutans "'P rhizomatous grass 3 3 2 
Xanthium strumarium 11'0 

erect forb 3 2 5 0.5 30 50 0.5 1 0.5 
Bare ground 35 50 2 0.5 10 10 10 50 90 80 I 



Table 7. Pearson's correlation coefficients between tilling, fertilizing, petroleum 
contamination,% plant cover, and soil C, N, and P from J6 site during summer 2003. n=35 

Total C 

C:N 

Total N 

NO:;-N 

N-mineralization 

Tilled Fertilized Petroleum % Cover 

-0.014 0.216 0.101 -0.495** 

0.329 0.121 0.506* -0.890** 

-0.303 0.195 -0.317 0.163 
0.489** 0.299 0.307 -0.622** 

-0.056 0.125 -0.021 -0.328 

-0.233 0.034 -0.196 0.162 

Nitrification 0.164 0.138 0.094 -0.161 
Resin P1 0.245 0.688** 0.262 -0.305 

NaHC03 P1 0.525** 0.652** 0.532** -0.712** 

NaOH P1 0.538** 0.715** 0.627** -0.693** 

1 M HCI P1 0.638** 0.555** 0.677** -0.726** 

cHCI Pi 0.378* 0.545** 0.312 0.276 

NaHC03 PO -0.688** -0.014 -0.284 0.166 

NaOH PO -0.377* 0.007 -0.243 -0.018 

cHCl PO 0.227 0.461 ** 0.156 0.347* 

Residual P -0.182 0.008 0.08 I 0.368* 

* * Significant at the 0.01 level (2-tailed) (not corrected for multiple comparisons) 
* Significant at the 0.05 level 
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Table 8. Pearson's correlation coefficients between field capacity, total petroleum hydrocarbons (TPH), 
soil C, and soil texture. Significances not corrected for multiple comparisons. n = 19 

Field capacity 

Significance (2-tailed) 

TPH C Sand Silt 

-0.529 -0.051 -0.211 -0.010 

0.020 0.834 0.385 0.968 
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Clay 

0.141 

0.566 



• • 

• 

• 
Figure 1. 2002 prairie controls in the Nature Conservancy's Tallgrass Prairie 

Preserve. Small circles = Control sites. Triangle = J6 site. Large square = GS site. 
Shaded = bison pastures. 
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Figure 2. 2003 prairie controls in the Nature Conservancy's Tallgrass Prairie 
Preserves' s bison unit 1. Small circles = Control sites. Triangles= J6 north and south 
sites. Large Square= GS site. Shaded= Coweta-Bates and Steedman-Coweta soil 
complexes. 
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Procedure P Fraction Functional P Pool 

0.5 g soil 

l 
Resin strip in water ... Resin P1 I I Available 

l 
0.5 M NaHC03, pH 8.5 ... NaHC03 P1 + Po I I Labile 

• 
0.1 M NaOH .... NaOH P1 + Po I I Slow 

• 
1.0 M HCI ... 1M HCI P1 I I Weatherable mineral 

l 
Concentrated HCI ... cHCI P1 + Po I I Stable 

l 
Concentrated H2S04 + ... Residual P I I Occluded H202 

Figure 3. Sequential P extraction procedure and functional significance of extracted soil P 
fractions (Pi: inorganic P, Po: organic P) (Adapted from Tiessen and Moir, 1993) 
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Figure 4. Soil total petroleum hydrocarbons (1-15 cm depth). (a) 16 site. (b) GS site. 
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Figure 7. Total nitrogen (as percentage of soil by weight) (1-15 cm depth). Values are means of five samples± 1 S. E. Data 
points are staggered to enhance visibility of error bars. (a) 16 north site. (b) 16 south site. (c) GS site. 
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Figure 8. Soil carbon: nitrogen ratios (1-15 cm depth). Values are means of five samples± I S. E. Data points are staggered 
to enhance visibility of error bars. (a) 16 north site. (b) J6 south site. (c) G5 site. 
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Figure 9. Soil inorganic N (1-15 cm depth). Values are means of five samples± 1 S. E. Data points are staggered to enhance 
visibility of error bars. ( a) 16 north site. (b) 16 south site. ( c) GS site. 
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Figure 10. Soil Mehlich III P (1-15 cm depth). (a) J6 north site. (b) J6 south site. (c) GS site. 
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Figure 11. Soil water content (1-15 cm depth). Values are means of five samples± I S. E. Data points are staggered to 
enhance visibility of error bars. (a) J6 north site. (b) 16 south site. (c) 05 site. 
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CHAPTER II 

COMPARING EXPLANATORY VARIABLES IN THE ANALYSIS OF SPECIES 
COMPOSITION OF A T ALLGRASS PRAIRIE 

Abstract 

Although the relationship between soil characteristics and plant species 

composition has been well studied, exploratory analyses have been limited by the cost 

and/or difficulty of soil analyses. In this study I used Canonical Correspondence 

Analysis to dete1mine whether a set of potentially important but difficult to measure (or 

"new'.,) soil variables (total C and N, inorganic N, potential net N-mineralization and net 

nitrification rates, P fractions, and soil textural classes) explain composition of tallgrass 

prairie species beyond that explained by an easier and more routinely collected ( or "old") 

set. Through forward selection I chose five environmental variables (total C (Ct), pH, Fe, 

residual P (Pr), and Zn) that explained a significant (a= .05) portion of variation in 

species composition. Using variance partitioning I found that the "new" variables, Ct and 

Pr, independently accounted for 35.9% of the explained variation in species composition. 

However, when a second forward selection was performed using only the "old" variables, 

soil organic matter (SOM) and slope, were chosen in place of Ct and Pr. The explanatory 

power of the ''new" variables (C., Pr) was not significantly greater than that of SOM and 

slope. In addition, the large number of significant correlations between Ct and Pr and 

essential resources suggest that these variables are only indirectly linked to species 

composition. This study demonstrates that difficult-to-measure variables are superfluous 

in some cases. 
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Introduction 

The relationship between soil characteristics and species composition is useful to 

understand for restoration because the success of maintaining or restoring a specific 

community depends on how management impacts such characteristics (Critchley, 2002). 

Canonical Correspondence Analysis, a form of direct gradient analysis, has proven to be 

a useful tool for comparing plant species composition of communities with many 

environmental gradients (Ter Braak, 1987, Palmer, 1993, Leps and Smilauer, 2003). 

Thus, it is a potentially useful technique for restoration ecology. However, exploratory 

analyses of species composition are limited because soil analysis is often expensive or 

labor intensive. 

Nitrogen and phosphorus are of particular interest as potential explanatory 

variables because they are the two most commonly limiting soil nutrients in grasslands 

(Seastedt et al., 1991, Boeye et al., 1997, Brenner, 2001, Turner, 2003). Nutrient 

limitation is one of the most important factors affecting plant communities (Grime et al., 

1 997). This might be due to competition for the one most limiting nutrient such as 

nitrogen or differential limitation between species by different nutrients (Koersleman and 

Meuleman, 1996). For example, higher phosphorus availability may favor legumes, 

whereas higher nitrogen availability could favor grasses (Janssens et al., 1998). The 

quantity of available nitrogen can have a major influence on species composition and 

diversity (Willems et al. 1993, Mountford et al. 1993), and phosphorus can control 

vegetation type and soil organic matter (Smeck, 1973 ). Ratios of these nutrients with 

organic carbon may also have substantial effects on vegetation (Koerselman and 

Meuleman, 1996). For instance, a C:N ratio of 14 has been observed to cause a N-
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mineralization rate that maximized plant productivity whereas lower ratios caused nitrate 

leaching and higher ratios caused litter accumulation (Alvarez et al. 1998). 

Not all variables are equally useful in explaining plant species composition 

(Palmer et al., 2002). Previous exploratory analyses of tallgrass prairie have included 

nitrogen and phosphorus gradients that correlate well with productivity in agronomic 

systems. However, natural communities occur across a wide range of nutrient regimes, 

and measurements of highly available nutrient pools might not represent the major 

sources of plant available N and P in unfertilized systems with coevolved niche 

differentiation (Critchley, 2002, Schmidt et al., 1996). Such systems may rely heavily on 

the mineralization of organic N and P through microbial activity. Distinctions between 

mineralization processes such as ammonification and nitrification could provide greater 

explanatory value because plant competition is affected by the form of available N 

(Schimel et al., 1989, Jackson et al., 1989, Bloom et al., 2003). There is substantial 

temporal heterogeneity and microbial redistribution of P (Magid and Nielson, 1992, 

Hedley et al., 1982). Although P-mineralization is difficult to measure, the total P in 

soils can be divided into inorganic and organic fractions and quantified based on levels of 

bioavailability (Hedley et al., 1982). Agriculture-based P measurements quantify the 

combined total of immediately soluble P plus portions of the more easily extracted, 

insoluble fractions (Mehlich, 1978a, Mehlich, 1978b, Mehlich, 1984), however, 

biologically active P has been found in several fractions (Sclunidt et al., 1996, Nichols, 

1984 ). Fractionation of total P allows for comparisons of pools of P that may be plant 

available (Abrams and Jarrell, 1992) and recalcitrant P forms that may explain 
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community structure through their correlation to soil weathering (Smeck, 1973, Newman, 

1995). 

It is also important to explore relationships between important environmental 

gradients. Many variables that display high explanatory power in direct gradient analyses 

may in fact be serving as proxies for one or many variables that have a more direct, 

causal relationship with plant species composition. The species composition of the plant 

community is not only controlled by the initial physical environment but also by the 

modifications to the physical environment imposed by community succession (Odum, 

1 969). As a result the causal relationships resulting in simple correlations between 

species composition and environmental variables may be extremely convoluted. For 

example, P availability may be controlled by the chemical characteristics of the soil 

parent material or the chemical characteristics of plant litter (Walker and Adams, 1958, 

Walker et al., 1959, Nichols, 1984). P-availability may affect species composition 

directly by favoring legumes (Walker and Adams, I 958, Janssens et al., 1998), or it could 

exert indirect control by affecting N-fixation, N-mineralization and nitrification (Walker 

and Syers, 1976, McGill and Cole, I 981, Janssens et al., 1998, Hue and Adams, 1984). 

There is strong evidence for control of N-mineralization rates by the C:N ratio (Aulakh et 

al., 2000). Textural classes are strongly correlated with P fractions (O'Halloran et al., 

1987, Day et al., 1987) and soil organic matter (Hook and Burke, 2000) but less so with 

soil N and N-mineralization (Burke et al., 1997, Hook and Burke, 2000). Such 

correlations by proxy may provide useful generalizations, but it is important to 

demonstrate causality in order to apply information provided through direct gradient 

analyses to management. 
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My objectives for this study are: 1) to compare the abilities of several pools of 

soil carbon, nitrogen, and phosphorus and soil texture to explain plant species 

composition in tallgrass prairie; and 2) to examine proxy relationships between variables 

with high explanatory value and other potentially important environmental variables in 

this community. 

Methods 

All vascular plant species were recorded in 20 permanent I Om x I Om plots in the 

Nature Conservancy's Tallgrass Prairie Preserve during June of 2002 (Palmer et al., 

2003 ). The plots were a random sample of grassland plots from a total of 151 that are 

located at the intersections of the 1 km x 1 km UTM grid. These 20 plots have been 

resurveyed annually beginning in I 998. Species abundance was quantified by estimating 

percent cover (Palmer et al., 2002). Each plot is one sample in the species data for use in 

Canonical Correspondence Analysis (CCA) (Ter Braak, 1986). 

For direct gradient analysis I used estimates of percent slope, aspect, height of 

grasses, forbs, and woody plants, and percent cover of rock, bare ground, and woody 

plants. I also collected soil samples from each plot. The samples consisted of four 

combined cores from the top 10 cm of the soil profile (Palmer, 1990). I divided each 

sample into two portions. At Oklahoma State University (OSU), I measured P fractions 

(Figure 5) (Tiessen and Moir, 1993), inorganic N (Maynard and Kalra, 1993), potential 

net N-mineralization and net nitrification rates (Vinton and Burke, 1995), total carbon 

and nitrogen with a LECO CN 2000 combustion analyzer (Leco, St. Joseph, MI), and soil 

texture (Bouyoucos, 1951, Gavlak et al., 2003). The other portions of these samples 

were sent to Brookside Labs in New Knoxville, Ohio to be analyzed for cation exchange 
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capacity (CEC), pH, percent soil organic matter (SOM), estimated N-release, soluble S, 

exchangeable Ca, Mg, K, and Na, and Mehlich III extractable P, Mn, Zn, B, Cu, Fe, and 

Al (Mehlich, 1984). Unlike potential net N-mineralization, estimated N-release is 

calculated as a function of SOM. I log transformed all variables, excluding pH, that were 

derived from these soil analyses (Palmer, 1990). In addition I included easting, northing, 

and sampling date for each plot sampled in the analysis. For the purposes of discussion I 

will refer to total carbon and nitrogen, inorganic nitrogen, mineralization and nitrification 

rates, phosphorus fractions, and soils textural classes as the "new" environmental 

variables. All other environmental data constitute the "old" variables. 

To perform direct gradient analysis (Palmer, 1993) and variance partitioning 

(Borcard et al., 1992, 0kland, 1994, 0kland, 1999) with the environmental variables and 

species data, I used canonical correspondence analysis (CCA) through CANOCO for 

Windows software (Ter Braak and Smilauer, 1998). I chose to square-root transform the 

species data and down weight rare species prior to analysis. Because the number of 

environmental variables collected was greater than the number of samples, I used 

stepwise forward selection to choose the environmental variables from the full set that 

explained the greatest amount of variation in plant species composition within the 

samples (Ter Braak, 1988b, Hallgren et al., 1999). In addition, I used stepwise forward 

selection to choose environmental variables from only the "old" set of variables in order 

to detect those variables that are potentially interchangeable with new variables. I chose 

variables with p values less than 0.05 derived through Monte-Carlo permutations tests 

with 999 permutations. 
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l used variance partitioning (0kland, 2003) to evaluate the redundancy in 

explanatory value of a set of "old" (0) and 2 "new" (N 1 and N2) variables chosen through 

forward selection. The CCA of all selected variables measures the total inertia (Tl) of the 

variation in plant species composition and the inertia explained by the union of the 3 sets 

(N,uN2uO). I divided the TI explained by N 1uN2uO into 2°-1 = 23 
- 1 = 7 

components. I quantified the inertia uniquely explained by each set (N1IN2uO, 

N2IN ,uO, and OIN 1uN2) with 3 partial CCAs in which I entered 1 set as environmental 

variables and the 2 remaining sets as covariables. I quantified the intersections between 

all 3 sets (N,nN2nO) and each pair of sets (N,nN2IO, N1nOIN2, and N2nOIN1) 

indirectly. For example, N 1nN210 is the difference between N 1uN2IO and the sum of 

NtlN2uO and N21N1u0, and N1nN2n0 is the difference between N 1uN2uO and the 

sum ofNtlN2uO, N2IN 1u0, OIN1uN2, N1uN2IO, N2uN1IO, and OuN1IN2. I used 

variance partitioning to test the null hypothesis: the "new" environmental variables do not 

explain variation in plant species beyond that which is explained by the "old" 

environmental variables (Ter Braak, I 986, Ter Braak, 1987, Ter Braak, 1988a, Ter Braak 

and Prentice, 1988). 

In addition to CCA, I compared all environmental variables using Pearson 

correlations with SPSS FOR WINDOWS (200 I). As I display these correlation 

coefficients to assess the strength, rather than the significance of these relationships, I do 

not correct for the multiple correlation (Legendre and Legendre, 1998). 

Results 

Forward selection chose environmental variables in the order: total C (C1) (p = 

0.001 ), Mehlich III extractable Fe (Fe) (p = 0.001), pH (p = 0.002), residual P (Pr) (p = 
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0.031 )~ and Mehlich III extractable Zn (Zn) (p = 0.041). The remaining variation in plant 

species composition could not be significantly explained (a= 0.05) with the available set 

of environmental variables. The selected variables explained 41 % of the total inertia of 

the species data. C1 and Pr were chosen from the "new" set of variables. Forward 

selection from only the ''old" variables set resulted in the selection: soil organic matter 

(SOM) (p = 0.001 ), Fe (p = 0.001), pH (p = 0.001), slope (p = 0.044), and Zn (p = 0.044). 

These variables also explained 41 % of the total inertia of the species data. 

Variance partitioning shows that 37.9% of the variation explained by C1, Fe, pH, 

Pr, and Zn is uniquely explained by the "new" variables C1 and Pr (Figure14). C, uniquely 

accounts for 20.1 % of the explained variation, and Pr accounts for 15.0% of the explained 

variation. The intersection of variation explained by C1 and Pr accounts for 2.8% of the 

explained variation. Together the three "old" variables (Fe, pH, and Zn) accounted for 

53.3% of the explained variation. The intersection of C1 and the "old" variables 

accounted for l .9% of the explained variation, and the intersection of Pr and the "old" 

variables accounted for 0.5% of the explained variation. The intersection of all five 

variables accounted for 6.3% of the explained variation. I do not display variance 

partitioning between the selected "new" variables and the "alternate" "old" variables 

(SOM and slope) because the partial CCAs necessary to produce NIO and OIN had p 

values of 0.16 and 0.21 respectively (a= 0.05). 

Using two-tailed tests of significance C1, Fe, pH, Pr, and Zn were significantly 

correlated (a = 0.05) with 25, 12, I 8, 17, and 4 of the unused environmental variables in 

the data set respectively. Total N was the soil nutrient variable most highly correlated 

with both C, and Pr (Table 9). All variables are significantly correlated with C, except 
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NaHC03 P0 , NaOH P0 , and Na. Most soil nutrients are significantly correlated with Pr 

except the labile forms of N and P, and Na. C1 was significantly correlated with all 

variables associated with biomass and soil type. Pr was significantly correlated with all 

texture variables, soil organic matter, and forb height. Ct was significantly correlated 

with all inorganic fractions of soil P and organic soil P extracted with concentrated HCI. 

Pr was significantly correlated with the other recalcitrant forms of soil P (HCl extractable 

P and NaOH extractable organic P. The correlation coefficient between Pr and slope was 

0.438 (p = 0.053). 

Discussion 

Based on the results of variance partitioning, the "new" environmental variables 

were unable explain variance in species composition beyond that explained by the "old" 

environmental variables. The low level ofredundancy found between C1, Fe, pH, Pr, and 

Zn suggests that C, and Pr could provide additional, significant explanation of species 

composition. However, partial CCAs comparing Ct and Pr to SOM and slope show that 

differences between the '~new" variables and "alternate" "old" variables are non-

signi ficant. 

The lack of significance is primarily due to the strong correlation between C, and 

SOM. C1 represents pools of inorganic C, which may be found in abundance in limestone 

soils, in addition to the organic C represented by SOM. However, organic C also tends to 

be higher in limestone soils. By combining two of the common characteristics of soils 

forming from limestone parent material, high inorganic C and high organic content, C, 

could provide a marginal increase in explanatory power over variables representing 

organic content and Ca content in plant communities that are highly influenced by soil 
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type such as the boundary between cross-timbers and prairie (Francaviglia, 2000). 

Unfortunately the small sample size in this study is inadequate for outlining the 

differences in such highly correlated variables. 

Pr is not so highly correlated with any single variable in the available set, and its 

correlation with slope is only marginally significant. However, interpreting its value in 

explaining plant species composition in problematic. Pr tends to be correlated, although 

weakly, with many of the same environmental variables as C1• This is likely because 

recalcitrant P is also associated with a limestone parent material (Schlesinger, 1997). The 

explanatory value of Pr beyond that of the other selected variables, though statistically 

significant, shows no discemable relationship with the ecological traits of the species 

variables. In addition Pr almost certainly functions as a proxy variable because the pool 

of soi 1 P represented by Pr is not bioavailable without extensive weathering. As a proxy 

variable Pr is likely related to soil type and extent of weathering (Smeck, 1973). A 

stronger causal connection between Pr and species responses is still needed in order to 

interpret the role of Pr in controlling species composition. It is also possible that the 

significant explanatory value of Pr is an artifact of a low sample size. Unfortunately the 

high cost of phosphorus fractionation suggests that Pr is not likely to play a substantial 

role in the future of direct gradient analysis. 

Ct and Pr are strong examples of the use of proxy variables in direct gradient 

analysis. Unlike indirect gradient analysis, direct gradient analyses such as CCA 

constrain the scores of the response variables to be linear combinations of explanatory 

variables. The variation in species composition of the samples is represented in terms of 

the chosen explanatory variables, but a causal relationship cannot be guaranteed. 
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Environmental gradients such as C,, SOM, Ca, and pH tend to be strongly correlated with 

patterns in plant species composition, but it is difficult to unravel the causal relationships 

responsible for this correlation. It is likely that most if not all of these variables serve as 

proxies for environmental conditions contributing to the spatial arrangement of species 

within the prairie community. Resources traditionally recognized to limit plant growth 

include space, light, water, and nutrients. C, and Pr are correlated with environmental 

variables associated with the availability of space, light, and water (Table 2), and C1 is 

correlated with plant available nutrients (Table 1, Table 2). The correlation of C1 and Pr 

with such a large number of potentially influential environmental variables suggests that 

the relationships between C, and Pr and plant species composition are probably not 

directly causal. 

It is not surprising that proxy variables representing multiple factors affecting 

species composition are chosen through stepwise forward selection because we 

intentionally choose variables that explain the greatest amount of variation in the species 

data. Future research intended to identify more direct relationships could focus on more 

homogeneous systems such as only communities within a single soil type. In contrast, 

when studying a more heterogeneous system such as the prairie-crosstimbers continuum, 

proxy variables should become more dominant by explaining differences between forest 

and grassland vegetation. Due to the interdependence of organisms and multiple 

biogeochemical cycles, proxy variables will likely continue to play an important role in 

exploratory analysis. 
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Table 9. Pearson correlation coefficients between total C, 
residual P, and soil nutrients, soil texture, and site 
characteristics. 

Total C Residual P 

Total N 0.977** 0.679** 

N03 0.464* -0.017 

NH.1 0.534* 0.179 

Resin P, 0.664** 0.353 

NaHC03 P, 0.455* 0.240 

NaOH P, 0.512* 0.392 

IM HCIP, 0.542* 0.485* 

cHCI P, 0.866** 0.781** 

NaHC03 Po -0.361 -0.004 

NaOH Po 0.398 0.546* 

cHCI Po .0899** 0.790** 

K 0.583** 0.551 ** 

so4 0.808** 0.632** 

Ca .0868** 0.633** 

Mg 0.827** 0.650* 

Na 0.234 0.186 

Sand -0.835** -0.778** 

Silt 0.758** 0.689** 

Clay 0.892** 0.693** 

Soil organic 0.959** 0.713** 

Bare ground -0.496* -0.337 

Grass height 0.588** 0.259 

Forb height 0.523* 0.473* 

** Significant at the 0.0 l level (2-tailed) 

* Significant at the 0.05 level (2-tailed) 
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Figure 14. Partitioning of variation in plant species composition explained by the 
soil variables: total C, Mehlich III extractable Fe, pH, residual P, and Mehlich III 
extractable Zn. Variation explained by Fe, pH, and Zn is grouped as one unit. 
n = intersection. 
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