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CHAPTER I 

HIStORY AND INTRODUCTION 

This thesis is concerned with the positive integers and some of 

their special properties in terms of their divisors. An N will be 

used to denote this set of positive integers and only small letters will 

be used to denote positive integers unless otherwise specified. 

From ancient times some positive integers have been considered to 

have magical prop~rties. Some such positive integers are 7 and 40 

from their use in the Bible, 6 which is the number of days in the 

creation of the world, and 28 which is the length of the lunar cycle 

1 [l;p. 94). ·. 
·*.• 

One classification made by the ancient Greeks depended upon tll.e 

sum of the aliquot parts of a positive integer n, that is, the 

divisors of n other than n itself. The positive integer n is 

deficient, abundant, or perfect if the sum of the aliquot parts is less 

than, greater than, or equal to n. For example, 8 is deficient since 

1 + 2 + 4 = 7 < 8, 12 is abundant since 1 + 2 + 3 + 4 + 6 = 16 > 12, 

and 6 is perfect since 1 + 2 + 3 ~ 6. The ancient Greeks knew five 

perfect numbers 6, 28, 496, 8128, and 33550336. Later mathemati-

cians have extended this list to include twenty-four perfect numbers, 

the largest of which contains 12,003 digits [2), 

1 Numbers in brackets refer to the bibliography at the end of the 
thesis. 
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In the th.ird century B, C, Euclid proved that if 

2 k p=l+2+2 +···+2 = 2k+l - 1 

is prime, then 2kp is perfect. This is proposition 36 in Book IX of 

The Elements. ln the eighteenth century Leonhard Euler proved that all 

even perfect numbers are of this type. Euler also determined some con-

ditions necessary for odd numbers to .be perfect [3], However, no one 

has yet proven the existence or nonexistence of odd perfect numbers. 

In 1965 M, V. Subbarao and L; J, Warren studied unitary perfect 

numbers, . A number is unitary perfect if the sum of its unitary divisors, 

other than itself, is equal to the number where a divisor d of a 

number n is a unitary divisor if d and n/d are relatively prime 

numbers [ 4] • 

Chapter II will show a. comparison between Euclid's method and the 

modern method of proving that a number of the form 2p-l(2p - 1), 

where 2P - 1 is a prime, is perfect. It will be shown that all even. 

perfect numbers are of this form. The value of p for the twenty-four 

known perfect numbers and the numerical value of the fit'st thirteen 

perfect numbers will be listed. Interesting, but not as .well known, 

properties of even perfect numbers will be presented, 

Chapter III will show that if an odd perfect number exists, it is 

of the form 
a 2b1 2b2 2bk 

where a= 1 mod 4 and n = p P1 Pz pk p - p, 

pi, i = 1, 2, ... , k are distinct odd primes. Other restrictions for 

p, a, pi, and bi, i = 1, 2, ••• , k are included. It will be shown 

that for n to be an odd perfect number, n = 1 mod 4 and 

n = 1 mod 12 or n = 9 mod 36. It will be shown tnat there is at :most 
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a finite number of odd perfect numbers with a given number of distinct 

prime factors. 

Included are some upper bounds for p1 , the smallest prime divisor 

of an odd perfect number, such as p1 .::_ k, 2 
pl < 3 k + 2, and 

3 pl..::_ 2 k + ! where k is the number of distinct prime divisors. In 

addition, if n is an odd perfect number, then 

1 
-< 
2 

1T 
< 2 ln 2 , 

where p is a prime. Improvements on these bounds will also be shown. 

Chapter IV will show that all unitary perfect numbers are of the 

form 
t a1 az ak 

n = 2 p1 p2 pk where the pi's are distinct odd primes and 

t > 0. The f;i.ve known unitary perfect numbers will be shown. 

Parts of this thesis could be used in a seminar for high school 

students and for enrichment and supplementary'material for an elemen-

tary number theory course, Also., this thesis . could be used as a 

reference by others wishing to do work in the area of perfect numbers 

or unitary perfect numbers. 

It :i.s not necessary for a person to have an extenstf.ve knowledge of 

mathematics or number theory to read this thesis, but some background in 

selected topics of number theory such as congruences and number-

theoretic functions would be helpful. 



CHAPTER II 

EVEN PERFECT NUMB~RS 

The theory of even perfect numbers is well developed. Euclid 

proved that .. if p = 1 + 2 + + 2k = 2k+l - 1 is prime, then 2kp is 

perfect. Euler proved that all even perfect numbers are of this form. 

Many interesting facts about even perfect numbers are also known. 

In his theorem, Propositior1 36 in Book IX of The Elements, Euclid 

used Proposition 35 which states that if a set of numbers is in con-

tinued proportion (a geometric progression), and if the first number is 

subtracted from the second and last numbers, then the ratio of this 

first difference is to the first number as the second difference is to 

the sum of all the numbers before it [S;p. 420]. That is, stated in 

present day symbolic algebra, if 2 k a, ar, ar , ••• , ar is a geometric· 

progression then 

ar - a 
a 

This is equivalent to 

k ar - a = .,......~~~~.,.......,.......,.......,......~.,.......,......~ 
2 k-1· 

a + ar + ar + • • • + ar 

2 k-1 a + ar + ar + • • • + ar = a(rk - 1) 
r - 1 

which is .the well-known formula for the sum of a geometric progression. 
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The following is Euclid's proof of Propo$ition 36 as taken from 

the translation by Sir Thomas L, Heath [6;p. 421], Although the proof 

is difficult to read, most of the terminology and symbolism of lieath's 

translation is retained in orde.r to show, by comparison with a proof 

later in this chapter of the same proposition, the advantage of using 

the present day symbolic algebra and number theory techniques. 

Let the numbers A, B, C, D (not necessarily four in number) 

beginning from a unit (the integer one) be set out in double proportion 

(A is dou.ble t;:he unit and each of the others is double the preceding 

number) until the sum of all, including the unit, is a prime. Let E 

be equal to. this sum. Let FG be the product of. E and D~ Then FG 

is perfect. For however many numbers there are in A, B, C, D, let the 

same amount E, HK, L, M be taken in double proportion beginning from 

E. Therefore, the product of E and D is equal to the product of A. 

and M, But the product of. E and D is FG. Therefore, the product 

of A and M is FG, Since A is the double of the unit, FG is 

the double of M. Then E, HK, L, M, FG are in double proportion. 

Subtract from HK and FG the numbers HN and FO each equal to E. 

Therefore, by Proposition 35, the ratio of.the first difference NK is 

to E as the second difference OG is to the sum of E, HK, L, and 

M. But since HK is the double of E, NK is equal to E, Therefore,. 

OG equ13-ls the sum of E, HK, L, and M. But FO is also equal to E 

which is the sum of the unit., A, B, C, and D, Therefore, the whole 

FG is equal to the sum of E, HK, L,, M, A, B, c, D and the unit. 

Also, FG is mea.sured by . E, HK, L, M, 
,t 

!J,.; :.ff,. c' D and the unit. That 
.. 

is, these are all factors of FG. 
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FG is not measured by any other number. For, let P measure FG 

and be different from E, HK, L, M, A, B, C, D, and the unit. Let Q 

be the number such that FG is the product of P and Q. Since the 

product of E and D is also FG, the ratio of E to_ Q is equal to 

the ratio of P to D. Since A, B, C, D are continuously proportion

al begi.nning from a unit, D is measured by no number other than- A, B, 

or C. Since- P is not A, B, or C, P does not measure D. Then

E does not measure Q. Then, _since E is prime, E and Q are -

prime to one another. Thus, the ratio of E to Q is a fraction 

reduced to lowest terms. S:i.nce.the ratio of E to Q is equal,. to the 

ratio of p to D, E measures p the same number of ti.mes that Q 

measures D. Since D is measured only by A, B, and C, Q is 

either A, B, or c. Let D be eq'Qal to B. · How many numbers there 

are in B, c, D, let the sa111e amount E, HK, L - be ·taken. Then the 

ratio of .B to D is eqt,tal to the ratio of E to L. Therefore, the 

product of B and L is equal to the product of D and E. Since 

the product of D and E is equal to the product of Q and P, the 

product of Q and p is equal to the product of B and L. There-:-

fore, the ratio of Q to B is equal to the ratio of L to - p. 

Since Q is equal to B, L is equal to P. This is impossible since 

p is different from E, HK, L, M, A, B, c, D, and the unit. There-

fore, no number other than A, B, C, D, E, HK, L, M, and the unit 

measures. FG. 

Since FG is the sum of A, B, C, D, E, HK, L, M, and the unit 

and is measured only by them, FG is perfect. 
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If a,b e: N, the greatest common divisor of a and b is 

denoted by (a,b). If. a and b are relatively prime, (a,b) = 1. 

The notation alb indicates that a divides b. 

A function f defined on the positive integers is said to be 

multiplicative if f (mn) = f (m) f(n), whenever (m,n) = 1. 

Any positive integer greater than 1 can be expressed uniquely in 

canonical form, that is, if n e: N, there exists primes pie: N and 

numbers i = .1, 2, .•• , k such that 

k 
,--

= I I 
i=l 

If o(n) represents the sutn of the divisors of n, including n it-

self,. then 

k 

I ,--- ai 
cr(n) = d = I I (1 + p. T ••. + pi ) 

l. 

djn i=l 

This function is multiplicative [l;p. 95]. 

Fot n e: N, n is perfect if cr(n) 2n; n is abundant if 

cr (n) > n; and n. is deficient i:f cr (n) < n. These ar.e equivalent to 

the. definitioqs given in Chapter I. 

Theorem 2.1. If n is a perfect number and k e N and k > 1, 

then kn is abundant. 
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PROOF: Let d1 , d2 , •.. , ds be the divisors of n. Since n is 

perfect, 

s 

a (n) = I d. = 2n. 
1 

i=l 

If k £ N and k > 1, then some of the divisors of kn are 1, 

. . . ' kd • s 
Therefore, 

s 

cr(kn) > 1 + L" kdi > 

i=l 

s 

k -I di = 2kn, 

i=l 

and kn is abundant. 

Theorem 2.2. If· n is a perfect number and k ,f, n is a divisor 

of n, then. k is deficient. 

PROOF: If d1 , d2 , ... , ds are the divisors of k, then l,_ 

(n/k)d1 , (n/k)d2 , •.• , (n/k)ds are divisors of n. Then 

s s 

2n O' (n) > 1 L n >~I n = + k di di= k cr(k). 

i=l i=l 

Then, a (n) < 2n( ~) = 2k and k is abundant. 

Basic _Theorems 

Euclid's theorem can now be stated and proved in the following 

manner. 

Theorem 2.3. If 2k - 1 is a prime, then 2k-l(2k - 1) is a 

perfect number. 



PROOF S. 2k 1 · · (2k-l,2k - l)· = 1 and : ince - is a prime, 

Therefore, 2k-l(2k - 1) is perfect [l;_p. 98]. 

The next theorem is the. converse of Theorem 2.3. and was first 

proved by Euler (3 ;p. 19]. 

Theorem 2. 4. If n is an even perfect number., 'then there exists 

a number k such that n = 2k-l(2k - 1) where (2k - 1) is a prime 

number. 

PROOF: . Since n is even, t n = 2 m, where m is ati odd integer 

and t e N. Then (2t~m) =.l and 

o(n) t o(2 )o(m) 
2t+l - 1 

= 2 - 1 . d (Ill) 

= (2t+l - l)o(m). 

B i i f () 2n -- 2(2tm) -- 2t+lm. Thus, ut -s nee n s per ect, .o n .. = 

(2t+l - l)o(m) = 2t+lm and then (2t+l - l)j2t+lm. Since 2t+l - 1 

is odd, <2 t+i - 1) Im. Then m -- (2t+l - l)u, · h · dd were u is an o 

integer, Suppose u > 1. Then 1, 1,1, and (2t+l - l)u are distinct 

divisors of m, so that 

o(m) > 1 + u + (2t+l - l)u .> 2t+lu. 

Therefore, 

9 
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cr(n) = (2t+l - l)o(m) > (2t+l - 1)2t+lu = 2n, 

which contradicts n being perfect. Thus, u = 1 and m = 2 t+l - 1. 

Suppose that m is not a prime. Then, , 

cr(m) > 1 + (2t+.l - 1) = 2t+l. 

Then, 

cr(n) = (2t+l - l)cr(m) > (2t+l - 1)2t+l = 2n. 

This contradicts n being perfect. . Therefore, m is a prime, Let 

k = t + 1 and then n = 2k-l(2k ·- 1) with (2k - 1) a prime [l;p. 98]. 

Theorem 2.5. If 2k - 1 is prime, then k is prime. 

PROOF: If k = ab, a > 1, b > 1, then 

2k _ 1 = 2ab _ 1 = (2a _ l){2a(b-l) + 2a(b-2) + ••• + 2a + l) 

and 2k - 1 is not pri~e. Thus, if 2k - 1 is prime, k must be 

prime also. 

Numbers of the form M 
n 

n 
= 2 - 1 are called Mersenne numbers 

after Marin Mersenne. The problem of finding even perfect numbers is, 

therefore, the problem of finding Mersenne primes of the form 

Mp = 2P - 1. Mersenne in the sevent.eenth century stated that M2 , M3 , 

M5 , M7, M13 , M17 , M19 , M31 , M67 , M127 , and M257 were prime. However, 

M67 = 267 - 1 = (193707721) (761838257287) and M257 is also composi1;:e 

[3;p. 29). Twenty-three Mersenne primes, and hence, twenty-four 

perfect numbers are now known, They are M for p = 2, 3, 5, 7, 13, 
p 
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17, 19, 31, 61i 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 

4423, 9689, 9941, ll213, and 19,937, The twenty-first, twenty'.""second, 

and twenty-third of these were discovered by the use of Illiac II at the 

Digital Computer Laboratory of the University of Illinois; The times 

required by the computer were one hour and twenty-three minutes., one 

hour. and thirty minutes, and two hours and fifteen minutes, respectively 

[6]. The last one was.discovered by Bryant Tuckerman, a mathematician 

with the International Business Machines Corporation using a System/360 

Model 91 computer, the largest IBM machine in common use today. The 

time requited was nearly forty minutes [2], 

The numeric~l values . of the firs.t thirteen perfect numbers have 

been listed by Uhler [7]. However, the fifth number listed. is 

incorrect. It is listed as 33350336 but accoJ;"ding to Dickson. 

[3;p. 7] it should be 33550336 •. Uhler's list with this correction 

made is as follows: 

2(z2 - 1) = 6 

z2 (23 - 1) = 28 

24(25 - 1) 496 

z6 (27 - 1) = 8128 

212 (213 - 1) = 3355 0336 

216 c217 - 1) = 85898 69056 

218(219 - 1) = 13 74386 91328 

230 (231 - 1) ~ 2305 84300 81399 52128 

260(261 - 1) = 26 58455 99156 98317 44654 69261 59538 42176 

288(289 - 1) = 1915 61942 60823 61072 94793 37808 43036 

38130 99732 15480 69216 



2106 c2107 - 1) = 14 13164 03645 85696 48337 23975 34604 58722 

91022 34723 18386 94311 77837 28128 

2126 c2127 - 1) = 47401 11546 64524 42794 63731 26085 98848 

15736 77491 47483 58890 66354 34913 11991 

52128 

2520 c2521 - 1) = 2356 27234 57267 34706 57895 48996 70990 

49884 77547 85839 26007 10143 02759 75063 

37283 17862 22397 30365 53960 26005 613,()0 

25556 64625 03270 17505 28925 78043 21554 

33824 98428 77715 24270 10394 49691 86640 

28644 53412 80338 31439 79023 68386 24033 

17143 59223 56643 21970 31017 20713 16352 

74872 98747 40064 78019 39587 16593 64010 

87419 37564 90579 18549 49216 05556 46976. 

Some Congruel\ce Relations 

12 

It was once thought that even perfect numbers ended alternately in 

6 or 8. This was due to the belief that some Mersenne numbers were 

prime when they were actually compo~ite, and consequently, did n9t give 

numbers that were perfect. However, even perfect numbers do end in a 

6 or an 8. That th~y do not end alternately in a 6 or .an 8 is 

seen from the fact that :the fifth and sixth perfect numbers both end 

in 6. 

Theorem 2.6. If· n = zP-1 czP - 1) is a perfect number where p 

is a prime number, then n. ends in 6 or 28, 
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PROOF: In n I 6, p is odd and of the .form p =·2k + i. Th~n, 

It can be shown that 4k - 4 or 6 mod 10. If 4k - 6 mod 10, 

n = 6(12 - 1) - 6 mod 10, 

and n ends in a 6. If 4k = 4 mod 10, there exists an integer 

such that· k 4 = 4 + lOm. Since . 4j4k and 414, the"Q. 4jlOm 

implies that: 2jm. Thus, 4k = 4 + 20t for· m = 2t. Then 

n = (20t + 4){40t + 8 - 1) = (20t + 4)(40t + 7) 

• 800t2 + 300t + 28 - 28 mod 100, 

and. n ends. in a 28. Thus, n ends in a 6 or a 28. 

which 

If n EN is written.in the. usual base 10 ~otation with digits 

m 

al, a2, ... ,. ~ where 0 < a < 9 for 0 < i < k - 1 and 0 < ak ~ 9, - i - - ~ .. 

then 

k 

n = L 
i=O 

and 

k 
i L ailO -

i=O 

k 

n..:. L ai. 
· i=O 

a1 mod 9 

Let n1 be the sum of the digits of n, let n2 bi the sum of the 

digits of n1 , and continu~ this process until a one digit number.~ 
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is obt:ained. One obtains a finite sequence n · > n > ·n > • • • > n · 1 2 k 

such that n = n1 = n2 - = ~ mod 9 •. 

Theorem 2.7. If n is any even perfect number, except 6, then 

n - 1 mod 9. Thus,· if nl is the sum of the digits of n, n2 the 

sum of.the digits of nl, .... ' ni+l · the sum of the digits of n:i.' 

then n > nl > n > ... > nt > l and n - nl - n2 - ... - nt - 1 mod 9. 
-~ 

PROOF:· If n is an even perfect number other than 6, there 

exists a positive integer k such that k k n·= 4 (2•4. - 1) by the proof 

of Theorem 2.6. Since 4k_=1 4 
. ' . ' or 7 mod 9, -then 

n - 1(2 1) - l mod 9, 

n ·- 4(8 1) - 28 i;: 1 mod 9, 
or 

n - 7(14 - 1) - 91 - 1 mod 9. 

Thus,: n > n1 > n2 > nt > 1 and n - n1 - n2 -

the remarks preceding the _theorem. 

. - nt = ·1 mod 9 by · 

As an illustriition of Theorem 2.7 consider the.sixth even perfect· 

number n = 8589869056. 

nl =· 8 + 5 + 8 + 9 + O + 6 +.9 + 0 + 5 + 6 =-64 

n2 = 6 + 4 = 10 

n3 =·1 + 0 = 1 

8589869056 - 64 - 10 - 1 mod 9 

Theorem 2.8. If· n is any even.perfect number other than 28, 

then · n - ±1 mod 7. 
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PROOF: Let n = 2p-l(2p - 1). Then p is of the fqrm p = 3k, 

p = 3k + 1, or p = 3k + 2 •. Since p is a prime; if p = 3k, k = 1 

and p = 3. Then n =·28. If p = 3k + 1, 

If p .., 3k + 2, 

n = 23k+l(23k+2 - 1) = 2•8k(4•8k - 1) 

- 2(4 - 1) = 6 = -1 mod·7. 

Therefore, n .= 28 or n = ±1 mod 7 •. 

Theorem 2.9. If n. is an even perfect number~ ·oth_er than 6, 

then n = 1, 2 , 3 , . or · 8 mod 13 • 

PROOF:· Sit;1ce. n is perfect, n = 2p-l(2p - 1) where p i$ a 

prime. If p = 2, n = 6. If p = 3, n =is= 2 mod 13. If p = 5, 

n = ,496 - 2 mod 13. If · p = 7, n = 8128 = 3 mod _13. lf p 2:_ 13, 

since p is pr:i.me, .. p is of the form p = 12k + 1, .· p = 12k + 5,. 

p = 12k + 7 , or p = -12k + 11. Now, 

If p = 12k + 1, 

n = 

- 1(2 ..,. 1) = l mo.d 13. 

If p = 12k + 5; 



n = z12k+4(212k+5 _ l) = 16 .2,12k( 32 •212k _ l) 

- 3•1(6·1 - 1) = 3(5) = 15 = 2 mod 13. 

If p = 12k + 7, 

n = 212k+6cz12k+7 - 1) = 16·4·212k(16·8·212k - 1) 

- ,3•4(3•8 - 1) = 12(23) = .-1(-3) = 3 mod 13 

If p = 12k + 11, 

n = 212k+1o(212k+ll _ l) 

= .324(328 - 1) = 36(72 

= 21 = 8 mod 13. 

= 1624·212k(1628•212k - 1) 

- 1) = -3(71} = -3(-7) 

Therefore, n = 6 or n - 1, 2, 3, or 8 mod 13, 

Geometric Numbers 

A number n is triangular if n points can be arranged.in a 

triangular diagram by·the following procedure.· The diagram for the 

first triangular number is an equilateral triangle with sides of unit 

length and points at the three vertices. The first triangular number 

is then 3 •. Let one vertex.be an origin,. The diagram for lrhe second 

16 

triangular number is obtained by superimposing an equilateral triangle 

with sides of length 2 units on the diagram for the first triangular 

number so that a vertex and adjacent sides coincide with the origin and 

its adjacent sides. The th.ird side of the superimposed triangle is 

then partitioned by points into two segments of unit length. The 

second triangular number is then the number of points that are now in 

the diagram. In general, the diagram for the (k + l)th triangular 



number is constructed by superimposing an equilateral triangle with 

sides of length k + 1 units on the diagram for the kth triangular 

17 

number so that a vertex and acljacent sides coincide with the origin and 

its adjacent sides. The third. side of the superimposed triangle is 

then partitioned by points into k + 1 segments of unit length. The 

(k + l)th triangular number. is then the number of points in the 

diagram. The first four tri~ngular numbers are 3, 6, 10, and 15. 

Their diagrams are· shown be.low. 

3 6 10. 

If n ~s the. kth i 1 b ,.. tr angu ar num er, 

n = 1 + 2 + • • • + (k + 1) 
= ...,_(k_+___,l ) __ ( __ k_+_._2 __ ) 

2 

Thus, a number is triangular _if it is of .this form. 

15 

A number n is hexagonal if n points can be arranged in a 

hexagonal diagram by the following precedure. The diagram for the first 

hexagonal number is a regular hexagon with sides of unit length and 

points at the , vertices. The first hexagonal numb.er is then 6. Let 
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one vertex be an origin. The diagram for the sec0nd hexagona:j. number is 

obtained by superimposing a regular hexagon.with sides of length 2 

units on the diagram for the first hexagonal number so that a vertex 

and adjacent sides coincide with the. origin and it~ adjacent. sides. 

The other four siµes .a1;e then partitioned by points into two segments. 

of unit length. The second hexagonal number is then.the number of 

points that are now it). the diagram. In geµeral, the diagram for the 

(k + l)th hexagonal nunibe1; is constructed by superimposing a regular 

hexagon with sides of length k + 1 units on· the diagram for the k th · 

hexagonal nu111-ber so that a vertex and its adjacent sides coincide 'with 

the origin and its adjacent ·sides. The other four sides of the super-

imposed hexagon are then partitioned. by points into k + 1 segmel).ts of 

unit length. The (k + l)th hexagonal number is then the number of 

points in the diagram.· The first three hexagonal numbers are 6, 15, 

and 28. Their diagralllS are shown below, . 

0 
6 . 15 28 
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If n is the kth hexagonal number, 

n !18 1 + 5 + 9 + 13 + • • • + (4k + 1) . 

= ~k +l)~4k + 2) m (k+ 1)(2k + 1}. 

Thus, a.number is hexagona+ if it is of this form. S~~ce, 

n a (k + 1)(2k + 1) • (2k + 1)~2k + 2). 

a hexagonal nu~ber :is also a triangular numbiar •. 

Theorem 2 .10. · If n is an ev:en perfect number, n · is . a hexa_gonal 

number, and hence, also a triangular number. 

PROOF: Since n. is per-feet, 

n = 2p-l(2p - 1) = 2p-l(2 • zP-l - 2 + 1) 

= c2P-1 - 1 + 1>t2c2P-1 ·- 1> + 11 

= (k + 1)(2k + 1) 

p-1 . . 
..• f.1::g; .. ·· .. k • 2 . - 1. Therefore, n is hexagonal and, henc.e; also 

triangular. 

Harmonic Mean of the Divisors 

If T(n) is the number of positive divisors of n, then 

T(n) = T [fi P~iJ = TT (a1 + l)., 
i=l i=l 

The fu:p.ction T (n) .· is ,multiplicative [1 ;p. 95]. 
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iet H(n) be the harmonic.~ of the divisors of n, that is 

the reciprocal of the arithmetic mean of the reciprocals of the divisors 

of n. Then, 

1 1 ~ 1 1 
H (n) = T (n} L d = m (ti) 

~ n 1 
Li d = nT(n) 

din 

where dd' = n. Therefore, 

din 

H(n) _ nt(n) 
- cr(n) 

and H(n) is a multiplicative functi_on. Then 

a (n) 
n t (ri) 

Laborde [8] proves that H(n) > 1 when n > 1 and H(n) > 2 

except when n is a prime or when 1i = 1, 4, or 6. H(n) > 2 for all 

odd composite numbers. 

Theorem 2 .11. If n is an even perfect numbe:r., then 

n = 

PROOF: Since n is perfect, cr(n) = 2n. Also, there ·exists a 

prime p such that 
. 1 

n = 2p- (2p - l) where zP - l is a prime so that 

H(n) nt(n) n(p - 1 + 1)(1 + 1) = = _cr_(._n ...... ) = 2n P • 
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Therefore, 

Theorem 2.12, If n is even and has the form 

then n is perfect, 

PROOF:. It suffices to show that P = 2H(n) - 1 · is prime. Since 

n is ·even, H(n) > 1. Since P is odd (2H(n)-l ,P) = 1, Then, 

H(n)-1· H(n)-1 
= 2 _ t(2 ) H(P) 

cr(2H(n)-1) 

= 2H(n)~l[H(n) - 1 + 1] 
2H(n) -·1 l!(P) 

2H(n)-1H(n) 
= H(P) 

2H(n) - 1 
2 - 1 

> 2H(n)-lH(n)H(P) H(n)H(P) 
2H(n) - 2 

This gives that H(P) < 2, Since P is odd and P > 1, P is a prime 

by the remarks preceding Theorem 2.11. Therefore:, n is perfect [8], 

Lemma: 

Other Properties 

k I (2i .+ 1) 3 = (k + 1) 2 (2k2 + 4k + 1) 

i=O 

PROOF: . The equation is satisfied for k = 0, If it is true for 

k = m, then 
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m+l 

L (21 + 1) 3 = (m + 1) 2(2m2 + 4m + 1) + (2m + 3) 3 

i=.O 
= (m2 + 2m + 1)(2m2 + 4m + 1) + (2m + 3) 3 

= 2m4 + 8m3 + llm2 + ~m + 1 + 8m3 + 36m2 + 54m + 27 

= 2m4 + 16m3 + 47m2 + 60m + 28 = (m.+ 2) 2(2m2 + 8m + 7) 

= (m + 2)2[2(m + 1) 2 + 4(m + 1) + 1]. 

Thus by induction, the ,equation is true for any k. · 

'rheore111 2.13. If n is an even perfect .number, other _than_ 6, 

then there ex:ists an integer - k such that 

k 

n = L c2 i + _l) 3 •• 

i=O 

PROOF: Since n is perfect, n _# 6, 2s 2s+l 
then n = 2 (2 - 1); 

Then 

s 
Then if k = 2 - 1, 

n = (k + 1)2~2(k + 1) 2 - 1] = (k + 1)2(2k2 + 4k + 1). 

Thus, if· n # 6, 

28 -1 

n = I (2i + 1) 3 • 

i=O 



Theorem 2.14. If n = zP-1 (zP - 1) is perfect~ then 

,-- 1 I I d = np-

dln 
d<n 

PROOF:· - Since zP - 1 is prime, 

,--

/ I d = 
din 
d<n f<p-1>il rcp-2)(p-1j] 

= 2[ 2 ]z[ 2 ](2p - l)p-1 

l(p--1) (2p-2)]. 
= 2[ 2 ](zP - l)p-l 

2 
= _2(p-l) (2p - l)p-l = (2p-1 c2P - 1) ]p-l. 

p-1 = n • 

Binary Notation 

If n = 2p-l (2p - 1) is perfect and is expressed. in ·binary ._ 

not,;1.tion, the:binary notation will consist of p, one~ followed by 

p -.1 zeros because 

n = 2p-l(2p - 1) 

2p-2 
= _zP_~-~ .... <:-P-1_-_l __ ) = ~ 2i. 

i=p-1 

The binary representation of this is 

~10~0 (binary). 

p p-1 
ones zeros 

23 
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For example, 28 = 23- 1 (2 3 - 1), p = 3, and 

28 = 24 + 23 + i2 = 11100 (binary). 

If 1, d1 , d2 , •.. , dk are the divisors of an even perfect n, 

excluding n itself, then for each d. 
]. 

there exists a dj such that· 

and 

k 

n = 1 + I di 
i=l 

1 = .!. + 
k d 

"1 _i = .!. + L-J n n n 
i=l 

k 

I~-· 
i=l ]. 

For the perfect number 28 this is 

1 1 . 1. 1 1. 1 
= . 28 + 14 + 7 + 4 + 2· 

If these fractions are expressed in binary notation and added, the 

result .:is 

1 .000010010010··· (binary) -= 
28 

1 
. 00010010010.0 • • • (binary) - == 14 

1 .001001001001···. (binary) --= 
7 

1 .QlOOOOOOOOOO••• (binary) - = 4 

1 .100000000000°•• (binary) - = 2 

1 = , 111111111111 • • • (binary) 
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The fractions add to 1 without·a single carry. As Daniel Shanks 

[9;p. 25] has said, "Is this not perfection--of a sort?". This result is 

the same for any even perfect number. 

Theorem 2 .15. If n is an even per_fect number and d1 , d2 , . ~. , ~ 

are the divisors of· n, other than 1, and if .the reciprocals of 

d1 , d2 , ••• , ·dk are expressed in binary notation .their sum will be 

1 = .11111 • • • without a single . carry. 

PROOF: Since. n is perfect ,c there exists a prime p such. that 

n = 2p-l(2p - 1) ·where· zP - 1 is prime. The divisors of n, other 

than 1,. are 2 22 
' ' 

1 2 = 
2P - 1 1 -

p-1 p p 2 p · 
•.•. , . 2 , (2 - 1) , 2 (2 - 1) , 2 (2 - 1) , .•• , 

-p 

2-p 

p-1. 
zeros 

= 

co 

I 2-ip. 

i=l 

p-1 
zeros 

p-1 
zeros 

For j = i ~ 2, •. , , P"".l, 

1 ----,....,..-- .. 
2j (2p' - 1) 

2-j-p 

l - 2-p =I 
i=:1. 

-j-ip 
2 

= . ~l~-~-,:_.::_.Pl~l · • · (binary) 

p+j-1 p-1 p-1 
zeros zeros zeros 

For j = 1, 2, ••• , p-1, 



p-1 
~ . 1 

Li 2j(2P ·- 1) 
j=rO, 
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1 . j - = 2- = .00 • • • 0100• • •. (binary).· 
2j '--.v-" 

j-1 
zeros 

p-:L co 

~l~l 
= ~ ;r G 2ip 

j=O i=l 

co co co 

=L 1 L 1 +Li+ 
i=l 2ip + i=l 2l+ip ·i=l 42+ip 

co 

• • • + ·L 2P-i+ip 0 

i=l 

For any· m ~:P, m = kp + r. where_ 0 ~ r ~ p - 1 .. and k.e: N. Hence, 

1/ 2m = l/2r+kp · appears as an adden4 in on.ly the sum 

Thus,; 

Then 

co 

~ l 
6 2r+ip 0 

i=l 

p-1 ·. co co 

~ l ~ 1 ~ -· 6 =Li-r=~ 2 J· 
2j (2p ·- 1) 2 , 

j=O. j=p j=p 

co 

=--L 
j=l 

= .1111 • • • (binary). 

-j 
2 



CHAPTER IU 

ODD PERFECT N{JMBERS 

The theory of odd perfect numbers is not as well developed as the 

theory of even perfect numbers. No odd perfect numbers have been found, · 

but no one has proven that they .do not exist. However, many conditions 

that. they must satisfy, if they do exist, are known. 

Basic Structure 

The first condition proven about odd perfect numbers is tne. 

following theqrem .which was first proven by Euler in the nineteenth 

century, (3]. 

Theorem 3.1. If n is an odd perfect number, then 

k 
. a,-- 2bi 

n =·p I I pi 
i;:::l 

where p - a 1 mod 4 and p; pl, Pz, ••• , pk are dis.tinct primes. 

PROOF: Let Po, p1 , Pz, ••. , pk be disti.nct primes where 

k 
r--

n = I I 
i=O 

Since n is perfect, 



a (n) 

k 
r-

= I I 
i=O 

ai 
(1 + p + ••• +pi) 

i 
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k 
,--:, ai 

= 2 I I Pi = 2n. 

i=O 

For some i, i = 0, 1 +Po+ + 
ao 

mus.t be of the form 2m, say. ... 
Po 

m odd, Thus, ao = 2s 

then 

ao 
1 +Po+·~·+ Po 

+ 1 for some S, Let p = Po 

a Pa+l - 1 
= ,l + p + . • • . + p = -----p - 1 

and 

= _P_2s_+_2_._-_l = (ps+l + l) (ps+l -.l) 
p - 1 p --1 

a= a 

= (ps+l + l) (p _ l) (ps + Ps-1 + ••• + l) 
p - 1 

For any s, Ps+l + 1 . is even. Therefore, s = 2t, for some t ' 
order that ps + ps-l + + 1 is odd. Thus, a= 4t + 1. Then 

O' 

in 

ps+l + 1 

p2t+l + l 

= p2t+l + l = 2w, w odd~ That is p2t+l + 1 = 2 mod 4, But 

2t · = p p +.l - p + 1 ma,d 4. Therefore,. p = 1 mod 4, SinGe 

i = 1, 2, .•.. , k then a. = 2bi, 
1 

i = 1, 2, .,., k, Therefore,, 

k 
a r- 2bi 

n = P / I Pi , a - p - 1 mod 4~ 
i=l 

Corollary 3,2, If n is an odd perfect number, n - 1 mod 4. 
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PROOF : Since, for each . i, is odd, 
2bi 

then pi - l mod 4, 

Therefore, n represented as in Theorem 3.1 yields: 

a 4t+l 4t n - p ~ p - p p - p - 1 mod 4. 

Others have. proven additional restrictions of this form, Steurwald 

proved that an odd number n is not perfect if b = b = .•. = b = 1 
1 2 k 

[lO;p. 44]. Kanold proved that n is not perfect if any of.the 

following hold: 

= ••• = b = 2 
k ' 

2. 9, 15, 21, or 33 divide the greatest common divisor of 

bl + 1, b2 

3. bl = b2 = 2 

4. a = ·5 and 

5. 3 does not 

a = 1 or 

6. b = b = 2 .. 3 

+ 1, ... ' bk + 1, 

and b3 = b4 = 

b. = l or 2 
1 

divide·. n, b2 

5, and 

= b = 1 and ·k 

... 
for 

= b3 

= bk = 1, . 

i = 1, 2, .. •, ' k,, 

= ... = bk, = 1, and 

{lO;p. 44], 

The next theorem was provef!. by Brauer [ll. ;p •. 715] •. I:µ the proof 

Brauer used a theorem .of J •. J, Sylvester which states that if . n is 

not divisible by 3, it contains at least 8 diffe1rent prime factors. 

Also, Brauer used the following two lennnas [ll;pp, 713-714], 

Lennna 3,3, Let q. be a positive prime. The Diophantine equation 

2 m q. + q + 1 = y has no solution for m > 1, 

Lemma 3.4. Let r and s be different p<l>sitive integers and p 

be a prime., The system of simultaneous Diophantine equations 



2 r 2 - s 
x + ,c: + 1 = 3p , y + .y + 1 =.3p has no solution in positive· 

integers x and y. 

Also, Brau_er used th_e following leIIIIll,1l; conc~rning cyclotomic. 

polynomials. If e m 
th is an.· n root of 1 · and" all the" number$ -

. 0. 1 2 n-1 - . . i . i h e , e , e , ••• , ·e are d st p.ct, t _en e m m m m m 

-™ of unity. _ The_ polynQmial 

,--
Fn(x) =/I (x - ea), 

a 

the product ~xtending over all primitiye th 
n 

called the cyclotomic polynomial of index n 

is a primitive 
. I . 

th 
n· 

roots of unity, is 

or the th 
n cyclotom;l-c 
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polynomial. The symbol F. (x) 
n 

will be used for the th 
n cyclotomic 1 

polynomial. The degree of F. (x) 
n is <l>(n) where ~ (n) is the number 

of positive integers less than n which are relatively pri~e to n 

[12;p. 158). 

' Lennna 3.5. If. p is .a prime, the only-divisors of -· F (m), p . 
' is of the form. ph + 1,_ h e: -N or p itself. [11; p. 714\]. 

Theorem.3.6. a 2 2 An odd nunib~r of the form n = p_q1q2 

m e: N, 

where are dis.tinct primes and p = a :E 1 mod 4 · is 

not perfect. 

PROOF: By cha.ngiu-g· ,no-ta.tion,· let n· be written in the form 

n = paq12q22 ••• q2r2r2 ••• r28 4 
k 1 2 m 

qi= 1.mod 3 and the primes 

a (n) = 2n. Then 

k..:. O, m..:. O, 

r. t 1 mod 3. If 
l. 

where the primes 

n is per.feet 



.. •· 2 4 r s 
m 

k m 
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= cr(pa) II (1 + qi + q~) II (l + ri + r~) (1 + s + s 2 + s 3 + s 4), (1) 

i=l i=l 

Since each i$ of tl).e form 3b + 1, each 

1 + ( 3b + 1) + ( 3b ,+ 1 / 

= 3 + 9b + 9b 2 = 3(1 + 3b + 3b2) 

is divisible by 3 but not by 9. If for some i, ri = 3, · then 

2 
1 + ri + ri = 1 + 3 + 9 = 13. For all other i, ri is of the form 

3b + 2 , Then each 

1 + ri + r~ = 1 + (3b + 2) + (3b + 2/ = 9b2 + 15b + 7, 

Thus, 3 is n0t a factor of any 1 + r. + 
]. 

by Lemm.a 3.5, all other prime factors of. 

k m. 

2 
r., Since 

]. 

II (1 + qi + q~) II (1 + ri + r~) 
i=l i=l. 

are of the .form 3h + 1, he: N. 

Case I: n ~ 0 mod 3, This implies that k = O. Since n is 

not divisible by 3, it follows from Sylvester's theorem that n 

contains at least 8 different primes. Hence, m > 6. Equation (1) 



is then~. 

m m 
a4,:-,-,- 2 a. 2 3 4 r- 2 

2p s J I ri = a(p )(1 +.s + s + s + s) { l (1 + ri + ri). 

i=l i=l 

Since the factors of each 

each ri t 1 mod 3, · 

2 1 + ri + r 1 are of the .form 3h + 1 

m 
r-

I I 
i=l 

and 
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is a divisor.of a 4 
p s • It could be that one of the m fac;tors of this 

product equals p, but by Lemma 3.3 each of the remaining m - .1 

factors cannot.be a power of p. Hence, each of these m - 1. factors 

must be divisible by. s and their product divisible by at least 5 s • 

This is a contradic.tioq. 

The proof involves two more cases: n = 0 mod.3 and n t O mod 27; 

and s = 3. The second case invo,l ves nine sub cases, and hence, bot:h 

are referenced instead of being included for bulk [12]. 

The next three theorems concerning the form of an odd perfect 

number, if one exists, were proven by Paul J. McCarthy [13]. 

Theorem 3.7. If n is odd and 

m 
r- 2bi' 

n = pa / I pi 

:i.=l 

p - a - 1 mod 4, r is a prime that does not divide n, and 
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pe = 1 mod r for some e e: N, then n is not perfect if . 

a+ 1 = 0 mod (er) [13;p. 257]. 

PROOF: To prove that n is not perfect it is sufficient to show 

that a 
CJ (p ) has a factor which does not divide n. If 

a+ 1 = 0 mod (er), there exists an integer k such that a+ 1 = erk. 

Then 

a 
c, (p ) 

a+l 
- 1 

erk 
- l p p = = p - 1 p .. 1 

(p 
er _ l)(per(k-1) + ••• + er+ 1) = p 

p - 1 

= (pe _ l)(pe(r-1) + ••• +Pe+ l)(per(k-l) + ··~ + l) 
p - 1 

wi~h p - l a divisor of e 
p - 1. 

e Then since. p - 1 mod r, 

e(r-1) + + e + 1 p • • • p - 1 + • • • + 1 + 1 = .r - 0 mod r. 

Therefore, r divides a 
CJ (p ) but not n. Tqtis, n is not perfect. 

The. next theorem by McCarthy is an extension of one.by Steuerwald. 

Theorem 3.8. If n is odd, not divisible by 3, and 

with p - a= 1 mod 4, 

k 
a r-- 2bi 

n = P I I qi , 

i=l 

then n is not perfect if 

i = 1, 2, •.• , k. [13;p. 258]. 

b. - 1 mod 3 
l. 

for 
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PROOF: If each b. - 1 mod 3, then bi is of the form 3h + 1. 
]. 

If, for any i, qi - 1 mod 3, 

2bi _ ( 2(3h+l)) 1 +qi+ + 6h+2 
a (qi ) - a q = ... qi . i 

= .1 + 1 + . ~ . + 1 - .6h + 3 = 0 mod 3. 

Thus, 3ln. which. is impossible, and for each i, qi= 2 mod 3, 

Suppose that n is perfect. Let q be the smallest prime divisor of 

n~ Since a = 4t + 1 for some nonnegative integer t, 

a cr(p ) 
a+l _ 1 4t+2 _ 1 = P = ..._P ___ _ 
p - 1 p - 1 

and Gp+ 1)./2 is a factor of n. If p = q, n is divisible by 

(p + 1)/2 < q •. Hence, q. is one of the qi. Since 

"'(.q2(3h+l)) - q6h+3 1 - 93(2h+l) - 1 
v q - 1 , - q - 1 

a (q3 _ l)(q3(2h) + 93(2h-l) + ••• + tj3 ~ !) 
q -.l 

= (q2 + q + l)(q3(2h) + q3(2h~l) + ••• + q3 + 1), 

q2 + q + 1 = q' is a divisor of n. Since q does not divide q', 

if q' is composite and ali prime divisors are larger than q, then 

2 2 q' .::_ (q + 1) = q + 2q + 1 > q' which is not possible. Thus, if q' 

is composite, it has a divisor less than q. Thus, n would have a 
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prime factor less than q which is impossible. Thus, q' is a prime. 

Since· 

2 
q' = q + q + 1 - 22 + 2 +.1 - 1 mod 3, 

q' = p. Then n is divisible by 

q" - q ' 

Since q does not divide q" and 
2 2 

(q + 1) > (q + q)/2 + 1, if q" 

is composite, it contains a factor less than q, Therefore, q" is a 

prime, Since 

then q" = p. But, 

q i + 1 
q" = - 2 

1 + 1 
2 

q" = q' + 1 = 
2 

- 1. mod 3; 

p + 1 
2 

This is a contradiction, Thus, n is not perfect. 

From Theorem 3,8, if n is not divisible by 3, a necessary 

condition tl)at 

n = l k 

is not perfect is the condition that b = 1 mod 3, The next theorem 

shows that this requirement can be dropped if a condition is imposed on 
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The·orem 3.9. If 3 does not divide the odd n and. 

n = ... 

tllen n is not perfect if q1 = 2 mod 3 (13;p. 258). 

PROOF: Suppose. n is perfect and that q1 - 2 .mod 3. If for any 

i , 2 .:. i .:. k , qi = ]. mod 3 , then · 

2 = .1 + qi.+ qi - 1 + 1 + 1 - 0 mod 3, 

and Jjn which_ is impossible. The.refore, for i = 2, 3, ••• , k, 

qi= 2 mod 3. Since. a(q~) = F3(q), qi cannot divide a(q~) for 

2 m i = 1, 2, ••• , k · by _Lemma 3.5. Thus, a(q2) = p. By Lemma 3.3, · 

m = 1. The same is true fo-,: i = 3, 4, ; .... ' . k. Since k > .3 by the 

theore111 of Sylvester, 2 2 though 'f This a(q2) = a(q3) = P, even q2 <13• 

ie impossible. The.ref ore, n is not perfect_ :Lf ql ; 2 mod 3. 

The next theorem was P+oven by G. Cuthber,t Webber _[14]. The 

proof, which is quite lengthy, has been omitted~ The techniques and 

procedures used are very similar to those used in TheoreI11 3.6. Webber 

used Lemma1;1 3.3, 3,4, and 3.6. In ·addition, he used the follQwing 

lemmas. 

Lemma 3 .10 .• ' ··If 

i 
x ' 

and m, q, and s · are integers, t a _prime, then 



(a) ml s impl;i.es f (x) If (x) , m s 

(b) If q ;: 1 mod t, then fs (q) - 0 mod t, if and only if 

tis, and 

(c) If k is the smallest positive integer such that 

qk = l.mod t, then f (q) = 0 mod t if and only if kls, s 
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Lemma 3.11. If q and r are positive integers, then f 2r+l (q) 

2r 2r-1 + and g2r+l(q) = q - q ••• - q + 1. do not have a common prime 

factor. 

Lemma 3,12, If 2r + 1 is a prime, and q an integer, then 

f2r+l(q) 

2r + l; 

and f 2r+l(q2r+l) do not have a common factor other than 

2r+l 
likewise, .for g2r+l (q) a~d g2r+l (q ) • 

Lemma 3.13. If 2r + l is a prime and p > 1 is a positive 

integer, f2r+l(p), g2r+l(p), f ( 2r+l) 
2r+l P and 2r+l 

82r+l(p ) are 

divisible by four distinct primes, th.at is, each of the functions .is 

divisible by one of the four distinct primes and no two by a single one 

of the primes. 

Lemma 3.14. If 3l:t;4r+2(p) and, in case p = -1111,od 3, 

f 4r+2(p) = 0 mod 3j but p + 1 t O mod 3j, then f 3(p) and g3(p) 

are factors of f 4r+2(p). 

The theorem that is then proved using these lemmas is the following 

one. 

Theorem 3,15. The number 



where p, s1 , s 2 , and s 3 are distinct odd primes.,= 3 and 

p = a = 1 mod 4; is not perfect,. 

'l'he next theorem was proven by R. J. Levit .. (15]. The proof uses 
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the following lemmas. In the first lemma and the theorem, the product 

notation is used with the convention that if a> b, 

b 
,---

/ I xi = i. 

i=a 

The ,first lemma can easily be proven by induction. 

Lemma 3.16. If cl, c2, ... C· t are integers, t.:. 2, then 

t c-1 t 

Ci J 
t t· 

~ TI 
,--- ,--- ,---

(ci - 1) I I = I I c - I I (ci - 1), i 
i-=j+l i=l i•l 

Lemma 3.17. If a> 1 is an integer and p a prime such that 

a = p = 1 mod 4, .· then 
a o(p ) is divisible by at least two distinct 

odd primes. 

PROOF: It is sufficient to exhibit two odd nontrivial divisors of 

a o(p) which are relatively.prime. Since 

o (pa) = .1 + p +. • • • + pa - 1 + 1 + • • • + 1 - a + 1 - 2 mod .. 4, 

a o(p) has but one factor of 2. Then 

a+l _ 1 (a+l)/2 p(a+l)/2 _ 1 o(pa) = ._P ___ = 2 P. .+.l ,... _____ _ 
p - 1 · 2 p - 1 

Then the required divisors. are . 
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(a+l)/2·+·! 
d p . 
1 = 2 . 

P(a+l)/2 _ 1 
and d2 = p ~ 1 

They are relatively prime since . 2d1 - (p - l)d2 = .2 so that: if there 

were a commo~ divisor of dl and d2 it would have .to divide 2. 

They are nontrivial since dl > d2 > 1 for 1. Thus, a has a > a(p _) 

at least .two distinct odd prime divisors. 

Theorem 3.18. If 

k 

n = ar--/ I a.i. p pi 
i=l 

is odd with p =a= 1 mod 4 and are 

all powe~s of primes; then. n. is not a perfect number. 

PROOF: By Lemma 3.17, a a(p )/2 a power .. of a prime implies that 

a• 1. Suppose n is perfect. Then 

k k· k 
r--

2P I I 
,--- ai 

o(p) / I a(pi ) = 2 a~p) /I o(p:i). 

i=l i=l i=l 

Without loss of generality the pi's may be numbered recursively in 

the following manner. Let p1 be that prime such that p~1 = a(p)/2, 
a2. . a1 

p2 be that prime such. that p2 = o(p1 ,>, and in general let pm be 
. i am 8m-l 

that prime such that· p = a (p 1 ) • This process can be continued · m 111,-
a· 

until a prime pt is reac;.hed sdch that . p = a(p/). Suppose that 

t <·k. Then numb1;3ring the ·remaining pi in any order as 

one obtains 
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k k 
r-- r--

I I I I 
i=t+l i=t+l 

But this is impossible since 

k k k 
r--

I l 
r- ai r-

/ I O <Pi > = I I 
i•t+l i=t+l i=t+l 

Hence, t = k and 

i = 2, 3, .•• , k~ 

Let for i = 1, 2, .•• , k then 

(1) 

(2) 

Eliminating p from equation (1) gives 

(3) 

The. first two equations from (2 ) are 

Together, these give 



Then, using the. third eqqation from (2) one obtains 

C4 = b3P3C3 - b3 

• h3P3{(blplb2p2)cl - {bl (b2p2) +. b2]} - b3 

Continuing inductively, one gets 

Combining equations (3) and (4) gives 

or 

Multi.plying both sides by 

k 

k-1 
r----
I I bipi .• 

i•j+l . 

,....,..._ 
I I ·i>:ri>-r· 

i .. j+l 

- b k 
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(4) 



k 
r-
I I (pi - 1) or 
i-=1 

k 
,- 1 

/ 1 ~ 
i=l 

which are equal, gives 

k 
,-

+ I I <Pi - i> = .o. 
i=l 

Then by Lemma 3.16 

( 
k k ) k k JI. pi - 2 JI (pi - l) cl - JI pi + JI (pi - l) 

i=l i=l i=l i=l 

k 
,.......-

+ I I <Pi - 1> = 0 
i=l 

or 

(f-., pi - 2 TT {pi,- l)) cl - (ti. pi - 2 fi .(pi - 1>) = 0 . 
i-=1 i=l i=l i=l . 

Then 

<c1 - 1> ( ( I Pi - 2 / I <Pi - 1l) = 0 • 
i=l i=l 

This implies that either 
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k k -- ,__ I I Pi= 2 I I <Pi - 1>· 
i=l i•l 

The first of these is imp<,>ssible since. p1 ~ 3. The second is impos- · 

sible since.tµe -.:ight member is even and the left member is od(l. Hence, 

n cannot be perfect •. 

The results of this theorem can.be restat~d in the following form. 

COfQlla:ry. 3 ~ 19 •' Let 

k 
a r-- ai 

n = P I I Pi 
i=l 

with, p = a = 1 mod 4. If n is ·an .odd perfect: null_lber, then. at least 

• a1 ak 
two of a(p2 )/2, Q(p1 ), ••• 11 a(pk) must have a .. coninwn factor greater 

than l. 

The next theorem, _which. was proven by Paul J. Mc~arthy [16], uses 

lemmas concerning cyclotomic polynom;als, 

Lemma 3.20. 

Lemma.3.21. 

r ..., 1 mod n •. 

k 

I xi= 
i=C) 

If rlF (q), n 

,--

/ I 
d I (k+1> 

d,'l 

q a prime, then either rln G>r· 
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theorem 3. 23, If n is an odd integer and 

k 
a r-- 2bi 

n = P I I qi 
i=-1 

where p - a - l mod 4 and r is the smallest prime divisor.of 

, (n) /2, then . n is not perfect if it has a prime divisor r' such 

that r > r' and p + l t O mod r'. In particular, n is not perfect 

:if r > P• 

PROOF: Suppose n is perfect, and that r' is a divisor of n 

satisfying r > r' and p + l t O mod r'. Then 

Ther~fore, 

a 
(J (p ) 

by Lemma .3.20 there is 

k 
a r--" 2bi 

(J (p ) I I o(qi . ) = 2n, 

i=], 

2b· 
or r' ja(qi 1 ) for some i. 

a 2bi 

I i . 2bi L Ill; p and a(qi. ) "" 

i=O j=O 

a divisor d 7' l of a+ l 

Since 

j 
qi, 

such 

or the lie is a divisoir d 
"' l 

of 2b. + l, for some i, 
J. 

r' I F d ( q:L) • Then by Lennna 3,21, e;l.ther r' jd or ]j I - 1 

k 
r--" 

,(n) ={a+ 1) / I (2bi + 1), 

i=l 

that r' jFd(p) 

such that 

mod d. Since. 

dj,(n). But, since r' < r and r is the smallest prime divisor of 

a(n)/2, it is iri\.possible for the odd prime r' to divide d. Thus, 
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r' = 1 mod d. Then dJ (r' - 1) which implies that d < r' - L · But, 

since dJT(n) and r is the smallest odd prime that divides T(ri), 

d.:. r: unless d = 2. Then, since r' < r, d > r > r' > r' - 1 unless 

d • 2. Thus, d = 2. Since d = 2, d cannot divide 2bi + I for 

any i and, .therefore, d is a divisor of a+ 1 and r'JF2(p). Thus, 

r' J (p + 1) which is impossible since p + 1 t O mod r' . Therefore, n 

is not perfect. 

The following theorem has been proven by Jacques Touchard. [17] and 

M. Raghavachari [18]. The following proof. is the one by Raghavachari · 

which is simpler .than the one by Touchard. 

Theorem 3. 24. If 

k 
a r-- 2bi 

n = P I I qi 
i=l 

is a~ odd perfect number with p - a - 1 mod 4, then n is of the form 

12m + 1 or 36m + 9, 

PROOF: By Corollary 3.2, n = 1 mod 4. 

Case!: 3Jn. This implies that n is of the form 12m + 3 or 

12m + 9. Since 12m + 3 - 3 mad 4, n is not of the form 12m + 3. 

Hence, n is of the form 12m + 9. Since p = 1 mod 4, p 'f 3. Hence, 

for some i; qi = 3. Thus, 3~ jn. Therefore, 32 j (12m + 9) which 

implies that 3jm. Therefore, n is of the form 36m + 9, 

Case .. II: 3 does not divide n. This implies that n is of the 

form 12m + 1, 12m + 5, 12m + 7, or 12m + 11, Since 

12m + 7 = 3 mod 4 and 12m + 11 = 3 mod 4, n :i,.s not of .the fo:rm 
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12m + 7 or 12m + 11. Suppose n is of the form 12m + 5. Since any 

odd prime, o~her than 3, is of the form 6t + 1 or 6t + 5, then 

for any i, 

2bi 2b · 
q • (6t + 1) i = 

i 

b· 
- 1 i - 1 mod 12 

or 

2bi 2bi 2 bi bi 
q = (6t + 5) = (36t + 60t + 25) · - 1 - 1 mod 12. 

i 

'fhus, for n to be of the form 12m + 5, a p must be of the form 

12m + 5. Since a• 4s +_l for some s, 4s p p is of the form 12m + 5. 

A~ in the case of the 4s p = 1 mod 12 which implies that p is 

of the form 12m + 5. The~ since a= 4s + 1, 

Thus,. 3ln which is a contra.diction. Therefore, n is of the form 

12m + 1. 

Corollary 3.25. If 

k 
a,-- 2bi 

n = P I I qi 

i=l 

is an odd even perfect number and 3 does not divide n, then 

p = 1 mod 12 and a= 1 or 9 mod 12, 



PROOF: From Case II of Theorem 3.24, n - 1 mod 12 and 

k 
r--

I I - 1 me:d 12, 

i=l 

Thus, pa= 1 ~od 12. Since a= 4s + 1 for some s and 

4s p - 1 mod 12, 

a 4s+l 4s p = p = p p - p mod 12. 

Hence, p - 1 mod 12 which implies that p - 1 mod 3, Since 

a= 1 mod 4 then a= 12t + 1, 12t + 5, or 12t + 9 for some t. 

Suppose a = 12 t + 5. . Then 

a o(p) = o(p12t+5) = 1 + P + + 12t+5 • • • p 

- 12t + 6 = 0 mod 3, 
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Thus, 3jo(pa) and, therefore, 3Jn which is a contradiction. There-

fore, a= 1 or 9 mod 12. 

The Number of Prime Factors 

Let n be an odd perfect number with k di$tinct prime factors. 

There seems to be disagreement ama>ng auth.ors as to what has been proven 

about the value of k, Dickson p.9) has stated that Sylvester has 

proven.that k > 5 while Brauer [11) has stat.ed that Sylvester has 

proven that k > 4. Also, according to Dickson [3), Sylvester proved 

that if 3 does not. divide n, k > 8 while according to Brauer [11], 

Sylvester proved that k > } • Dickson [3) also stated that Tepin 

proved that if 3•7 does not divide n, then k ..::_ 11, if 3•5 d~es 
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not divicle n then k .::_ 14, and if . 3 • 5 • 7 does not divide .. n then 

k > 19. Also, c,talan proved. that _if 3 • 5 • 7 does not divide· n, 

k > 26. According to Karl K. Nor.ton [20] , KUhnel has -proven that : 

k.::.. 9· 

Norton -[20] has also developed a formula for a lower bound. -on -the 

value of. k which is based on the value of the smallest prime factor 

of n~ First, the following lennna is needed. 

Lennna 3.26. If n is perfect, then 

k 
,-- pi 

2 < I I p - 1· 
i=l i 

PROOF: Since n is perfect 

k 
r--

= l I 
,-- pi 

< I I pi - 1 · 
i=l i=l 

th If P - represents the r prime, and· P is the: smallest prime· r m 
• al a2 ak 

divisor of tl;le perfect number n .= p1 p2 pk , then Lennna. 3. 26 

implies that 

m+k-1 
pi ,--

2 < I I 1' '~ pi -
i.=m 



Let the function a(m) be defined for m > 2 by the following 

inequality: 

It follows that 

m+a(m)-..2 
,--

, I 
i•m 

pi 
p . - 1 < 2 < 

i 

n must have a prime 

m+a(m)-1 · 
,--

I I 
P. 

1 

p - 1 · 
i 

factor at least as large as 
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p 
s 

where s = s(m) • m + a·(m) - 1. Norton provides a table of .values for 

a(m) and 

m • 100, 

p for 2 < m < 100. The values s - -
a(m) •.26308 and P = 304961. s 

increase rapidly. For 

If n is an abundant numbeJ: and d1 , d2, ••• , dk . are the 

divisors af· n, then the divisors of mn include 1, md1, md2 , •.• , 

mdk. ,Thus, 

k k 
,-- ,--

(1 (mnl ~ · 1 + J I mdi > m / I 
i=l i=l 

This with Theorem 2.1 gives that a multiple of a nondeficient number is 

nondeficient. 

Definition:· A nondeficient number is primitive if it is not the 

multiple of a smaller nondeficient number. 

The set of :all nondeficient numbers is equal to the set of all 

multiples of the primitive nondeficient numbers. Any perfect number is 

a primitive nondeficient p.umber since by Theorem. 2.2 a divisGr of a 

perfect number is deficient. 

There is an infinite. number of nondeficient odd nt,1mbers having a 

given number, greate.r than two, of distinct prime factors. For example: 



0(945) = a(33·5·7) = (1 + 3 + 9 + 27)(1 + 5)(1 + 7) 

= 40(6)(8) = 1920 > 2(945). 

Thus 3 3 •5 • 7 is abundant which implies that 

where the P 's i 
are distinct primes greater .than 7, is an abundant 

nuiµber. However, there are only a finite number of primitive non-

50 

deficient odd numbers having any given number of distinct prime factol;'s; 

and hence, there cannot be an infinite number of odd perfect numbers 

with any given.number of distinct prime factors. This has been proven 

by L. E. Dickson [19]. In order to prove this, the folfowi11,g lemmas 

are needed. 

Lemma 3.27, If 

set 

a 's 
i 

are given prime numbers, then any 

are integers 2:_ O} 

contains a finite number. of integers, n1 , n2 , •.. , n8 such that every 

integer in S is a multiple of at least one n1 . 

PROOF: . For k = l; every element of s is a multiple of 

where b is the smallest ~ a .• . . . l. To proceed by induction, let the lenuna. 

be for k 1 integers. Select random 
cl cz ck 

true - at nl = P1 Pz pk 

from the set S. Then any element of S. is a multiple of n 1 if 

ai > c. - ]. 
for all i = 1, 2, •.. , k, If there are other elements in S, 

consider the elements of S for which 

and v a fixed integer such that 0 < ·v < c i" 

connnon factor there is the set · 

for some i, 1 < i < k 

Afiter ~eleting the 
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By the .induction hypothesis, S' contains a finite number of integers 

m1, m2, ... , mt such. that all elements of S' are multiples of at 

least one m •• 
J 

Thus, all elements of S for which a = v i 
are 

v multiples of at least two of. pi, tll1 , m2 , ••. , mt. The number of .cases 

arising by.varying i and v is finite. Therefore, there is a finite 

number of .integers in S for which each integer in S is a multiple 

of at least one •. 

Lemma 3.28. 

distinct primes and O < k < m, 1 <pi..::_ p1 , p1 a prime, fer i > k. 

Let 

m 
r-- pi 

Po= I I p - 1' 
i=l i 

k ai 
r-- o(pi ) 

Pk = I I ai 
i=l pi 

k 
r-

Pic = I I 
i=l 

m 
r- p' 
r I i . 
· P:1. - 1' 

i=k+l 

Then n 1s deficient if· P < 2 or P' < 2 where s is an integer s - . s -

such thai:I , 0 < s < m. If n is odd and is deficient for all values of 

then P < 2. s 
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PROOF: By definition, n is deficient if P < 2 and nondeficient 

if p > 2. Since P' > p 0 < s n is p < 2 s- s 
> P, < m, deficient if s-

and also if P' < 2. Since p is the limit of P· for a·+cx, 
s- s i , 

i = and since . p < 2 if n then p < 2 s + 1, .- ••• , ·m, is deficient, s-

if n is deficient for al~ values of • • • ' ·a • m 
Suppose, P = 2. 

s 

Then m .. 1. since if m > 1 and is .the greatest prime among 

Ps+l' ••• , pm, no number. in the denominator of P8 is divisible by 

Pj. Thus, 

pl 
p = p = = 4 

s O ·p - 1 
1 

which implies tha.t 2 and 
a1 

Therefore, .if' is odd pl ... n .. 2 • n 

deficient for all va:l.ues pf as+1• .... , a , tthen ·P < 2. 
m s 

Theorem 3. 29. All primitive nond.ef;i.cient odd numbers having a 

given number m of distinct prime factors are formed from a finite . 

and 

number of sets of m primes. Th~s, there c~nnot be an infinite number 

of odd perfect numbers with any given number of distinct prime factors. 

PROOF: 

the· p's 
i 

a1 a2 ~ 
Consider numbers of the form n = p1 p2 • • • pm where 

are. odd. primes in ascending orde.r of magnitude. · Let 

p' = p1 for i = 1, 2; ••• , m then n · is .deficient if 
i 

which implies that: 
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Thus, if n is nondeficient 

Therefore, there is a finite number of distinct primes for p1 . 

Proceeding by induction, assume that ••• , p , 
v 

v < m is a particu-

lar set·of a finite number of sets of v distinct primes. Since n is 

to be a primitive nondeficient number n 
v 

• • • -P 
av 

must be 
v 

deficient. Since each divisor of a deficient number is deficient, the 

deficient nv' s are the numbers in which certain exponei:i.ts 

ai1 , ... , aik are arbitrary; which each remaining exponent takes a 

limited number of values, and further numbers in which. every exponent 

is limited. Consider one such type of n which is one of a finite 
v 

number of analogous cases. After permuting ••• , p ' assume that 

u, 0 < u < v is an integer such that ... ' a 
u 

v 

are limited, while 

ai, i = u + 1, .•. , v takes all values. By Lemma 3.28, the deficiency 

of n implies that 
v 

p 
u 

v 
r--

I I 
i=u+l 

pi 
p - 1 < 2 

i 

the se.cond product being absent if u = v. Since there is a limited 

number of sets al' .. , , a u' each p is less than a constant M < 
u 

Then for P' use p! = pi~ i = u + 1, ... , v and p~ = pv+l' u J. J. 

i = v + 1, · •••. , m. Tqen n is deficient if 

2. 



Thus, if n 

P' 
u 

is 

u ai 
,.--- o(pi ) 

= I I ai 
i=l pi 

= 
( pv+l 

M Pv+l -

deficient 

m 
r--

I I 
i=u+l 

v 
,.---

I I 
i=u+l 

ltv 

p~ 
]. 

p' - 1 
i 

p~ 
p' -i 1 

< 2. 

1 

( r-v pv+l 

pv+l - 1 

( 2 , m-v 
M) 

pv+l ~ ----1--- = M' • 
( ! ) m-v _ 1 

Hence, if n is nondeficient, pv+l < M', and in a nondeficient n, 
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pv+l is less than the largest of the limits obtained in the various 

cases, finite in number. Consider the set S of primitive nondeficient 

numbers having as distinct prime factors p1 , ••. , pm a particular one 

of the finite number of possible sets of m primes. Since any greater 

multiple of a nondeficient number is not pi;imitive, the set S is 

finite by Lemma 3.27. ThereJore, there can not be an infinite number of 

perfect numbers with any given number of distinct prime factors. 

Bounds On the Prime Fact.ors 

If n = ... is an odd perfect number with 

pl < p2 < . • • • < .pk, then Cesaro proved that pl .::_ ldz and Desboves 

proved that p1 < 2k [4]. S~veral such bounds have been proven for 

p1 • Servais proved the follow:Lng theorem [4]. 
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Theorem 3.30. If is an odd perfect number 

with pi < Pi+l" i = 1, 2, ••. , .k - 1, then p1 2. k, 

PROOF: . Since the p •IS 
1 

are odd, i=l,2, ••. , 

k - 1. Then for each i, 

l + .. 1_ 1 < l + p + l 
Pi+l l i - l 

which gives 

This with Lemma 3.26 implies 

k 
r--

2 < I I 
i=l 

p - i 
i 

k-1 
,-- Pl+ i pl+ k - 1 

< f I P1 + ~ - l = P1 - l 
i=O 

This implies that. p1 < k + 1. Therefore,. ~l 2. k. 

Another theorem, similar to the last one, has been proven by 

M. Perisastri [21]. 

Theorem 3.31. If is an odd perfect number 

with 

PROOF: 

i = 1, 2 , .•• , k - 1, · then 

Since the p 's 
i 

are odd primes, 

i 1,2, .•. ,k. Thenforeach i, 

2 
pl< .3 k + 2. 

1 1 
l + -p-. ---1 2- l + p + 2i. - 3 

1 l 

for 



which implies 

pi pl+ 2i - 2 
---< ------pi - 1 - pl+ 2i - 3• 

This with Lemma 3,26 implies 

k 
,--

2 < I I 
i=l 

p. -
J. 

k 
,-- pl+ 2i - 2 

1 ..:. I I p + 2i - 3 • 
i=l l 

But since 

pl+ 2i - 2 
------- < pl+ 2i - 3 

pl+ 2i - 3 

pl+ 2i - 4 

for i = 1, 2, • , • , k, then 

k 
,--

4 < I I 
i=l 

2) 2 
3 

k 
,-- pl+ 2i - 2 p1 + 2i - 3 

< j I P1 + Zi - 3 P1 + 2i - 4 
i=l 

k 
,-- pl + 2i- 2 

= j I P1 + Zi - 4 = 
i=l 

2 Then· p1 < 3 k + 2. 

pl+ 2k - 2 
p - 2 • 

1 

The next theorem has been proven by both T, M. Putnam [22] and 

M. Perisastri [23]. It uses a different. technique· for establishing_ a 

bound for the smallest prime divisor of ai;i odd.perfect \lumber. 

Theorem 3.32. 
ak 

pk is an .odd perfect nqmber, 

there exists at least one pi such that . pi < ln k 2 + 1. That is, 

3 
p. < -2 k + 1. 

J. -
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PROOF: The proof of Lenuna 3.29 implies 

k k 

-o<:-) > II (1 -!i) = /11 + _1_1_ 
i=l i=l p. - 1 

1 

Suppose i=l,2, ... ,k. Since 

is an increasing function, 

is an increasing function. Therefore, for m > k 

n 
cr (n) > 

Hence, 

k 
,-- 1 

I I 1 + 1n 2 • 
i=l k 

_n_ > lim 
cr (n)" 

1 1 
ln 2 = 2' 

e 

Therefore, 2n > o(n). Therefore, if n is perfect, at least one 

k 
ln 2 + 1 < l.45k + 1. Thus, there exists at least one such 

that 3 
pi < 2 k + 1. 

ay Theorem 3.24, if n is an odd perfect number, n is of the 
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form 12m + 1 or 36m + 9. In the proof of the theorem it is seen that 

n is of the form 36m + 9 only if 3Jn. Thus, if n is of the form 



36m + 9, ·· p1 = 3 and no bound is needed. Thus, the bounds developed 

are for th~ case when n is .of the form 12~ + 1, 
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The following theorem provides a bound for pi other than p1 [4], 

Theorem 3,33, If n = 

odd perfect number and L is defined by 

where 2,.:. m..:. k, then 

m-1 
,-- p. 
/ Ip. : 1..:. L < 2 

i=l i 

L(k - m) + 2 
pm< 2 - L 

is an 

PROOF: For i = m + 1, m + 2, ..• , k, pi< pm+ i implies that. 

p + i - m 
m 

< -p--+-i---m----1".""~ 
m 

This with Lemma 3.26 gives 

This implies 

k k -- ,-- pi 
< L 2 < I I I I :i - p. -

1 
1 

i=l i=m 

k 
,-- p + i - m 

< 1 / I pm+ i - m - 1 = 
i=m m 

L(p + k - m) 
m 
p - 1 

111. 

L(k - m) + 2 
pm< 2 - L 



Suni of the Reciprocals of the Prime Factors 

In 1958, M. Perisastri [21] established both upper and lower 

bounds on the sum of the reciprocals of the prime factors of an odd 

perfect number, if one exists. In his proof he used the fact tpat 

r-

I I 
p 

where p runs through all primes, The following theorem is .the one 

proven by PerisastrL 

the~ 

Thus, 

Then, 

Theorem 3, 34, If 

k 

1:.<'\'l 
2 6. pi < 

PROOF: If. n is perfect, then 

k ai+l r- - 1 
I I pi 

o(n) i=l p. - 1 
2 

J. =--= 
n k 

r-- ai 
I I pi 
i=l 

2fi(1-!.) 
i=l J. 

k 
r-

= I I 
i=l 

is an odd perfect number, 

1T 
2 ln 2. 

k 

11 (i - /+l) 
i=l p. l. 

J. = k 

II (1 - ~ ) 
. 1 i i= 

(1 - p~~+l) < l, 
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k k 

1 r--( 1) 2 > I I 1 - -;:-· 
i=l J. 

> 1 - I !. , 
i=l J. 

which implie$ 

k 

t < I !i· 
i=l 

Si > 3 > 5 > h qk J.·s the kth odd nee p1 _ , p2 _., ... ,pk,-- qk, were . 

prime, 

k 

2 /1 (1 - ~ ) 
;l.-=l i 

Then, since 1 - x < e~x for O < x < 1, 

.§_ < 
2 

1T 

This gives 

k 

2 /1 (1 - ! ) 
i=l i 

k 

"""' L < L Pi. 
i=l 

1T 
2 ln 2. 

4 6 8 =.,....-=-. 
3 2 2 

1T 1T 

(-± !.) . 
i=l J. 

60 



Renee, 

1< 
2 

'If. 
2 ln 2. 

From this theor.em it is seen that 

k 

. s < I ! < • 90 3. 

i=l i 

D. Su1:yanarayana and Ven~ateswara Rao [24] have improved on both the 

upper and lower bound in the following theorem. 
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Theorem 3.35. 
ak 

pk is an odd perfect number, 

then 

k 
ln 2 < 

5(1ti 5 - ln. ·4) I! < 
i=l i 

if n is of the form 12t + 1 and 

.!. + 2 ln 2 - ln 3 
3 5 ( ln ·5 - ln 4) 

if n is of the form 36t +.9. 

PROOF:· Since n is perfect 

k k 

2/1(1-!) 
i=l i 

,--

= I I 
i=l 

ln .2 + 3; 8 

18 53 
ln 13 + 150 

(1) 
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Therefe,re, 

2 < k 
1 

/1(1-!.) 
k=l l. 

which implies 

k 

ln 2 < - I ln ( 1 - ! ) 
i=l i 

(2) 

Equation (1) also gives -

k ' 

TI ( 1 - ":~n l 2 = _k _______ _ 

II (1 - ~.) 
i=l l. 

which implies · 

k 

l -I ln ( 1 - ! . ·) 
i=l i 

)-± (-it1I) 
i=l j=l pi 



k 

=I~ + 
i=l i 

k 00 

~~-1 
L L (j + l)p~+1 
i=l j=l i 

k oq . 

I I j (a~+l)j • 
i=l j=l pi 

Let p1 be the prime divisor of n such that p1 = 1 mod 4 anq 

a1 - 1 mod 4. Also, let the other primes be such that 

< pk with 2 I a i , i = 2 , 3 , • • • , k. 
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(3) 

Case 1: n is of the form 12t + 1. By Corollary 3.25, 3 does 

not divide n and p1 = 1 mod 12. Hence, pi.::... 5 for 

i = 1, 3, ..• , k and p1 .::... 13. Then from (2) 

ln 2 < 

k k k 

~1+1~1+1~1 + 
L pi 2 L 5pi , 3 L T 
i=l ial i=l pi 

k 

= -5 ln ( l - ~ ) I ~. = 5 
i=l i 

which implies 

From (3~ 

ln 2 

k 

= ~L+ L p. 
i=l i 

k 
__ 1_n ___ 4 __ ,.... < ~ L. 
5(ln 5 - in 4) L p. 

i=l i 

k 00 

~ fi ( {j ) 
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Since af .;:_ 2 for i = 2, 3, _, . , , k each term in the sec~nd summation 

ie positive, and hence, the sum is positive. Similarly, the fourth 

term is positive. Since p1 2_ 13 and a1 2_ 1, 

Thus, 

which gives 

k 

~L< £ p, 
i•l J. 

1 ln 2 + 338. 

Therefore, if · n is of the form. 12t + 1 

· J.n 2 
--,,-----.,..,,- < 
5(1n 5 -ln4) 

k 

It-< 
i=l i 

1 
ln 2 + 338' 

Case 2: n is of the form 36t + 9, Then clearly 3jn and 

p "' 3. 2 

i = 3, 4, , , . , k inequality (2) gives 

Since p. > 5 for 
J. -



k k k 

ln 2 < - 1n ( 1 - .!.) + ~ L + 1 ~ L + .!. ~ L + 
3 ~ pi 2 ~ 2 3 ~ 3 

i=l i=l pi i=l pi 
i~2 i~2 i~2 

3 1 1 1 1 1 1 1 • ln--+-+---+---+ 
2 pl 2 5 pl 3 5i Pl 

k k k 
+~L+.!.1~1 +11 ~1 + 
~ pi 2 5 ~ pi 3 52 ~ pi 
i=3 i•3 i=3 

k 

3 ( 5)1 5Ll = ln .,..... + 5 ln - -. + 5 ln - -
2 4 pl 4 Pi 

i=-3 

k 

:::; ln 23 + 5 ln 1 ~ L - l 1n 1. 
4 ~ pi 3 4 

i=l 

... 

This implies 

From (3) 

ln i :::; 

.!. + 2 ln 2 - ln 3, 
3 5(ln 5 - ln 4) 

± !i+ ± i ( 1 

(j + l)p~+l 
i•l i=3 j:;=l . l. 

00 

1 

k 

< ~L . 
~ p. 
i=l l. 

1 - . (ai+l)j 
JPi 

1 

) 
1 

+ ( ~-
2pl 

a1+1 
pl ) + j~ ( (j + l)pi+l . (al+!)j 

JPl 

65 

) 
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Since ai ~>2 for i = 2, 3, ••. , k each term in the,second summation 

,is positive, and henc,e, the siacond .summation is positive •. The third 

summation is positi:ve since ~very term is positive •. Since p1 ~ 5 and 

a1 .~ 1, 

Then since p2 = 3 and a~~ 2, 

k <XI 

ln 2 > I !,__..1:.+ I ( p 50 1 1 l 
{j + 1)3J+l ~ {33)j 

This implies 

i 
i•l j•l ·. 

k <XI <XI 

= I ~ -fa+ I j ~j - ~ - I 3 <~5> j 
i=l j=l j=l.. 

k 

= ~ !1 - '§% - bi ( 1 - ~ ) - t + ln ( 1 - ~ ) 

k 

=It-
i=l 

1 26 53 
ln 3 + ln 3 "" 150 3 .. 

k 

= ~ h + 1 13 - 21· 
·~ p · n 9 150· 
i=l i 



k 
~ 1 18 53 
~ p < ln 13 + 150• 
i=l i 

Therefore, if n is of the form 36t + 9, 

.!. + 2 1~ 2 - ln 3 
3 S(ln 5 - ln 4) 

18 53 
ln 13 + 150• 

If the bounds in the last theorem are approximated to three 

decimal place·s the results are stronger bounds than those derived by 

Perisastri. In ·decimal form, this theorem says that if n is of the 

form 12t + 1 

k 

.621 < I t- < .696 

i=l i 

and if n is of the form 36t + 9 

• 591 < 

k 

~ .!.... < 
~ p. 
:t=l l. 

.679 • 
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D. Suryanarayana (25], .using the same techniques as Suryanarayana 

and Rao,. has improved these bounds even more. The proof of 

Suryanarayana's theorem which follows has been omitted. The proof is 

quite lengthy. 

Theorem 3.36. Let 
ak 

pk · be an odd perfect numb et;. 

If n is of the form l.2t + 1 and Sin, then 



• 644 

ln 48 k · 
< l + 1 + . 35 . < '\1 L < l + _1_ + ln 50 < 

5 7 11 ln 11.01 ~ pi 5 2738 31 
i::sl 

• 6 79 • 

If n is of the form 12t + 1 and 5 does not divide n, then · 

1 
.657<7+ 

ln 12 .. 
. 7 

11 < 
11 ln ·10 

k 

ln 2 < , 693, I·~ < 
i=l i 

If n i$ of the form 36t + 9 and SJn, then 

16 k 
1 1 ln 15 < IL .596 < -3· + - + l 

S 17 7 pi 
ln 16 i=l · 

1 1 1 65 
< 3 + 5 + 13 + ln 61 < •674 • 

If n is of the form 36t :+- 9 and 5 does riot divide n, then 

ln i k 
• 600 < 13. + ___ 3_ < I 1 < 1 + 1 + 1 18 

7 . pi. 3 338 n 13' 7 ln -6 i=l · 

M. Perisa$tri [23] has used the Rieman.Zeta function 

co 

z;(s) :I; ,I \ 
i=l i 

to est;ablish a lower bound on .the sum of .the primes, The following 

theorem states his result.s, 
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Theorem 3,37, 
ak 

pk is an odd perfect number and 

s is the smallest i = 1, 2, ... , ki then 

k 

I! > 
i=l i 

l;;+l - 1 
ln ~(s + 1). 

28 

Lower Boun4s On n 

Various lower bounds for odd perfect numbers have been obtained. 

In 1908, Turcaninov obtained 2(10) 6 as a lower bouJld [lll, this was 

improved to 1010 by H, A, Bernhard [ 26] and to . 1. 4 (10) 14 by Kanold 

[l'll, This bound was later improved to 1018 by J. B, Muskat and to 

1020 by Kano:J.d [27], ';the best improvement which is 1036 has been 

made by Bryant Tuckerman. [2]. 



CHAPTER IV 

UNITARY PERFECT NUMBERS 

Unitary perfect numbers are defined in terms of unitary divisors 

analogous to the way·. perfect numbers are defined in terms of divisors. 

For completeness, the following definitionij which first appeared in 

Chapter .I are restated. The positive integer d is a unitary divisor 

of the positive integer n, written dlln, if din and (d,n/d) = 1. 

If n E N, then n is unitary perfect if 

n =Id. 

dlln 
d+n 

a is a prime, .then. p is the largest power of 

p that divides n. For example, the unitary divisors of 28 are 1, 

4, 7, and 28. 

* If o (n) represents the sum of the unitary divisors of. n, 

k 
,---... ai 

n = I I pi > 1, 

i=l 

then 

k 

* 
,-- ai 

(j (n) =. I I (1 + pi), 

i=l 



* Thus, e1 (n) is a multiplicative function [28;p. 37]. It is clear 

* that n is unitary perfect if and only if o (n) = · 2n. 

The· first four unitary perfect numbers are 6, 60, 90, and 

87 ,360 [4]. They are unitary perfect since 

and 

* * o (6) = o [2(3)] = (1 + 2)(1 + 3) = 3(4) = 12 = 2(6), 

o*(60) = 0*(22(3)(5)] = (1 + 2 2)(1 + 3)(1 + 5) 

= 5(4)(6) = 120 = 2(60), 

o*(90) = a*[2(3) 2(5)] = (1 + 2)(1 + 32)(1 +.5) 

= 3(10)(6) = 180 = 2(90), 

o*c87.360) = 0*[26 (3)(5)(7)(13)] 

= (1 + 26)(1 + 3)(1 + 5)Gl + 7)(1 + 13) 

= 65(4)(6)(8)(14) = 174,720 = 2(87,300). 

While it is not known if.there do or do not exist odd perfect 

numbers, it is quite easy to prove that there do not e;icist any odd 

unitary perfect numbers. 

71, 

Theorem 4.1. There do not exist any odd unitary perfect numbers. 

" .. 
PROOF: 

number. Then 

Suppose 

* a (n) 

k 
,--

= I I 
i=l 

is an odd unitary perfect 

k 
ai ,-- ai 

(l +Pi.)= 2 / I pi = 2n. 

i=l 
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is even for i = 1, 2, ..• , k and is odd for 

i = 1, 2, ,,., k, k = 1 and 

a1 
which implies that. p1 = 1 which is a contradiction. Thus, th~re are 

no odd unitary perfect numbers. 

Theorem 4.2. If 
t n = 2 , n is not unitary perfect, 

PROOF: Suppose n is unitary perfect. Then 

which implies that .. 1 = 2 t whicl.i. is impossible. Therefore, n is not 

unitary perfect. 

Thus, any uq.itat'y perfect number is of the form 

where each pi is an·odd prime. 

The following lemmas.and theorem were proven by M. V. Subbarao and 

L. J, Warren [4]. However, the proofs presented here, in most.cases, 

do not follow the pattern of Subbarao and Warren, 

The following notation will be used throughout the remainder of 

the chapter. Unless otherwise specified, m JTepresents an odd integer 

greater than 1 and n. is an even integer given.by n ::; 2tm W'ith t 

a positive integer, If is ·written in the form 
a1 a2. 8k 

m m = P1 P2 pk ' 
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then (ml ,lllz) = (ml ,m3) = (m2,m3) = 1; every prime divisor of ml is 

congruent to 1 modulo 4; every prime divisor of m2 is congruent to 

3 modulo 4 and occurs with an even exponent; and every prime divisor 

m3 is congruent to 3 modulo 4 and occurs with an odd exponent. For 

any fixed m, ],et a, b, and c denote the number of distinct prime 

factors of m1 , m2,. and m3 , respectively, For given nonnegative 

integers a, b, and c, not all zero, the set of all odd numbers 

of 

m = m1m2m3 associated with a, b, and c will be denoted by K(a,b,c). 

Lemma 4.3. If 

ai bi 
Pi < ,q . , i "' 1, 2, ... , k, then 

- l. 

* a (n) _...._._> 
n 

PROOF: 

ai 

* a· (m) 
m 

k 
* k 1 + 

a (n) ~ pi 
= 11( 1 = I I ai n 

pi i=l i=l 

k k 

Jl(1++) 
,-,--

> = I I 
i=l qii i=l 

Lemma.4.4, If 

then 

m = and 

1 ) + ""'a7 
l. 

pi 

1 
bi 

* + qi a (m) = 
b. m 

qi 1. 

is unitary perfect, 

(1) pk](Zt + 1) if a1 = a2 = ••• = ak-l = l; 

(2) a+ b + 2c < t + l and equality holds when c = 0, 

PROOF: (1) =.l and n is unitary 

perfect, 



i=l,.2, ... ' 

k-1. 

* (2t + ak r--
a (n) = 1)(1 +,pk) I I (1 + pi) 

i=l 

k-1 

= 2t+l ak II 
pk pi = 2n. 

i=l 

i = 1, 2, ••. , k - l, pk does not divide 1 + pi, 
ak 

k - 1. Then, since pk does not divide 1 +pk., 

(2) If m = m1m2m3 and the prime pim1 , then 

p =·1 mod 4. * s . s Thus, a (p) = 1 + p = 2 mod 4 whi~h implies that 

211(1 + ps), where s is the exponent of p in n. If the prime 

Plm2~ then p = 3 mod 4 and the power of p is even. Thus, 
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a* (p2s) = 1 + p2s = 1 + (32)s = 2 mod 4 which implies that 211(1 + p2s), 

where 2s is the exponent of. p in n. If the prime plm3 , then 

p = 3 mod 4 and the power of p is odd, Thus, 

which implies that 4) (1 + p2s+l) where 2s + 1 is the exponent of 

p in. n. Since n is unitary perfect, 

k 
t+l (1 + 2 t) 

,--- ai * 2n = 2 m1m2m3 I I (1 + pi ) = a (n) • 

i=l 

Thus, 2t+l divides 

k 
,--- ai 
I I (1 + p. ) • 

1 

i=l 
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But a+b 

of 2 while 

ai 
of the .factors (1 +pi) 

c of the factors (1 + 

ea~h contain exactly one factor 

ai 
pi) contain at least two 

factors of 2. Thus, ·a+ b + 2c.< t + 1. If c = O, then 

a .+ b = t + 1. 

Lemma 4.5, If 

divide n, then: . 

(1) 

(2) 

t 

if 

~s an 

s· 
p llm; 

t n = 2 m is unitary perfect and 3 does not 

even _integer; 

s 
1 mod 6; then p -

there is a prime p such that pjm, p - 5 lllQd-6, 

p occurs with an even. exponent in m; .. 

(4) m has an even number of distinct primes. 

PROOF: (1) Since n is unitary perfect, 

* t * t+l a (n) = (1 + 2 )a (m) = 2 m = 2n. 

If t = 2s + 1 is odd, then 

1 + 2t = 1 + 22s+l - 1 + 2(l)s - 0 mod 3. 

* Thus, · 3jo (n) which implies that 3ln. Therefore,. t cannot be odd. 

and must be even~ 

(2) Since p is odd and p; 3, ps = 1 or 5 mod 6. 

SuJ>pose s 
p = 5 mod 6, then 1 + ps = 0 mod 6 which implies that 

* 3lo (n)~ and hence, 3ln which is impossible. Therefore, 

s 
p. = 1 mod 6. 
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(3) Since t = 2s is even, 

1 + 2t = 1 + 228 = 1 + 48 - 5 mo4 6. 

* Therefore, there exists a prime p such that· pjcr (n), and hence, 

pjm with p = 5 mod 6. Since p = 5 mod 6, 

Therefore, by (2) the power of p must be even. 

(4) Le.t 
2s a1 a2 ak 

Since, for n = 2 pl Pz pk 

i 1, 2, •• •.' 'k 
ai 

1 mod 6, then 
ai 

1 mod 3. Then = pi - pi -

k 

2n = 22s+1 II ai 
2·1 2 mod 3 pi - -

i=l 

and 

k 

* a (n) = (22s + 1) 
~ 

I I (1 + 1) (1 + 1) k - 2k+l mod 3. 

i=l 

Therefore, 2k+l - 2 mod 3 which implies k is even. 

Although they have not been able to find any unitary perfect 

numbers not divisible by 3, Subbarao and Warren [5] have not been 

able to 'prove that there are none. 

The,orem 4. 6. Let 
t a1 a2 ak 

be unitary 'perfe.ct. n = 2 pl P2 pk 

(1) If k = 1, then n = 6. 

(2) If t = 1, then n = 6 or 90. 

(3) If t = 2, then n = 60. 
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(4) If k = 2, then n = 60 or 90. 

(5) It is not possible for k = 3 or 5. 

(6) It is not possible for t = 3, 4, 5, or 7. 

(7) If t = 6, then n = 87,360. 

(8) If . k .. 4, . then n = 87,360. 

PROOF: (1) If k = 1, n = 2t a p • By Lemma 4.5 part (4), 3ln. 

Therefore, p = 3. Then 

Since 2 does.not divide 2t + 1 and 3 does not divide 3a + 1, 

which .implies 

or 

whic~ implies that , t = 1, and hence,. a = 1. Therefore; n = 6. 

(2) If t = 1, by .Lemma 4,5 part .(1), 3ln. Since. 3 

is a facter of m2 or in3, no.t both b and c can.be· 0. By· 

Lemma 4.4 part (2) there are two. cases. Either a= b = 0 and c = 1 

or a= b = 1 and c = O. In the first c~se, k = 1 and then by (1), 

n = 6. In the seco~d case, n = Then 

which. implies that 3j(p9 + 1). This implies that. p - 2 mod 3 and s 
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is odd, 

fore, 

Since p is one of the factors of 

p - 5 mod 12. s Suppose p ~ 17. Let 

m1 , p = _l mod 4 •.. The-ra

n' = 2•3217. Then by 

Lenuna 4.3, 

a*(2·32rps) a*(2•3217) 
2•32rps ~ 2•3217 • 

Th.en, if n is µnitary perfect, 

2 < (2 + 1)(32 + 1)(17 + 1) 
·2·i11 · 

3(10) (18) 30 
= 2(9) (17) = 17 . 

which is a contradictio~. s Tp:erefore, . p = 5. 

' Then if. n · is un;Ltary perfect 

This implies that 

Then p = 5 and s - 1, 

which shows .that .· 32r = 9. Thus, r = 1 anq n = 2 • 325 = 90. Th.ere-

fore, n = 6 or 90. 

(3) Let t = 2. Then 
2!, 2 

2 In. and p = 2 + 1 = 5 divides 

n. Then a > 1. By ·Lenuna 4.4 part (2), a+ b + 2c.< 3. Thus, 

(i) a = 1, b • 2, and c = 9, (ii} a = 2, b • 1, and c = 0, Gr 

(iii) a= c ~ 1 and b = O. 

p > 7. -· 
2 2 2 

Conside.r n' = 2 3 5•7 ·• By Lemma 4.3, 



Then if· n is unita.ry perfect, 

2 < (22 + 1)(32 + 1)(5 + 1)(72 + 1) 

223 25·72 

= 5(10)(6)(50) 250 
4(9)(5)(49) = 147 

which is a contradiction. Therefore, n is not unitary perfect. 

Case (ii): a= 2, b = 1, and c = O. By Lemma 4.5 part (4), 
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3jn. Then n .. 2 2 Let n 1 = 2 3 5•13. Then by 

Lennna 4.3 

* cr (n) 
n 

Then if n is unitary perfect, 

5(10)(6)(14) 70 
= 4(9)(5)(13) = 39 

which is a contradiction. Therefore, n is not unitary perfect. 

Case (iii): a= c = 1 and b = 0. Then n = 225rps with 

p - 3 mod 4. Suppose. p.:.. 7. Let n' = 225•7, Then by Lemm~ 4.3, if 

n is unitary .perfect, 

* * 2 
2 = cr (n) < cr (2 5•7) = 

n - 225·7 

(22 + 1)(5 + 1)(7 + 1) 12 
225·7 = -y 



which is a contradiction. Therefore, p = 3 if n is to be unitary 

perfect and n = 223s5r. Suppose s > L Let n" = 22325. Then by 

Lennna 4,3 

* z = a (n) 
5 

which is~ contradiction. Therefore, 2 JI' s = 1 and n = 2 3•5 , 

since. n is unitary perfect, 

or 

r r 24·5 = 20(,5 + l) .• 

Then 
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Thus, Sr~ 5 which implies that r = l, ·2 Therefore,. n = 2 3•5 = 60. 

(4) Let k = 2, Suppose t > 3. 

r s Since. p1 ;:_ 3 and. p2 ;:. 5, Lemma 4,3 shows that if n is unitary 

perfect, . then 

* 
n = a (n) 

n 

9 (4) (6) 
= 8(3) (5) 

9 = -5 

(2 3 + 1)(3 +.1)(5 + l) 

233·5 

whi.ch· is a contradiction, Therefore, for n to be unitary perfect,. 

t. = 1 or 2. But (2) states that if t = 1, then n = 90 and (3) 

states that if t = 2, then n = 60. Therefore, if k = 2, then 

n = 60 or 90, 

(5) Case (1): k = 3. By Lemma 4. 6 part (4), · if n is 

to be unitary perfect, 
t r a1 a2 

3ln, Let n = 2 3 p1 p2 be unitary perfect. 



Then by Lemma 4.3, 

This implies that . 

or 

* 2 = cr (n) 
n 

cr*c2t3•5•7) < ______ ..._ 

2t3,5.7 

(2t + 1)(3 + 1)(5 + 1)(7 + 1) = ......... ~~----""~~ ......... ~~ ........... ~~---
2 t 3, 5, 7 

= (2t + 1)(4)(6)(8) 
. t . 
2 3·5·7 
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which itnplies that t = 1, 2, ·. or 3. But by (2) and (3) , t cannot. 

be 1 or 2. Thus, t .. 3. Since 23 + 1 "' 9, r > ·2. Then by · 

Lennna 4 .3, 

* * 3 2 
2 = cr (n) < cr (2 3 •5•7) 

n 2332 ·5·7 

= c2 3 + 1)(32 + 1)(5 + 1)(7 + 1). 

23i·5·7 

_ 9,,(10) (6) (8). 12 
- 8(9) (5) (7) = 7. 

which is a contradiction •. Therefore, n is n<i>t. unitary perfect for 

k = 3. 

Case (2): k = 5. Suppose n is 

unitary perfect, Then by Lemma 4.3 
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* * t 2 = a (n) < a (23•5•7•11·13) 
n t 23•5•7•11•13 

= (2t + 1)(3 + 1)(5 + 1) (7 + 1)(11 + 1)(13 + 1) 
t . 

2 3•5•7•11•13 

which gives 

which is not true for any t > 1. Thus, n is not unitary perfect for 

k = s. 

(6). Case .(1): t = 3 •. Since 23 + 1 = 9, 32 jn if n 

is unitary perhct. Since . a + b + 2c ~ 4, there are at most 4 odd 

prime factors of n. From (1) and (4) there_ are at least 3 odd prime 

facto.rs of n. Since 

(2 3 + 1) (32. + 1) (5 + 1) (7 + 1) (2 3 + 1) (32 + 1) (5 + 1) (7 + 1) (11 + 1) 

23325--7 - < 123325 7 11 . . 
9(10)(6)(8)(12) = 144 < 2 = 8(9)(5)(7)(11) 77 

by Lemma 4. 3 no such n. can be unitary perfect, 

Case (2): t = 4. Since 24 + 1 = 17, 17jn. Since 

a+ b + 2c ~,5, k < 5. But (1), (4), and .(5) imply that _ k =; 4 if n, 

is to be a unitary perfect number. Suppose there exist~ a p such. that 

plm2 •. Then p ~·3 and ha1:1 an exponent great~r than or.equal to 2. 

Then by Lenuna 4.3, if n is unitary perfect, 

* 2 = a . (n) 
n 



= 17(10)(6)(8)(18) 12 
16(9) (5)(7)(17) = 7 

which is a contradiction. Therefore, for n. to be unitary perfect, 

b = O. Thus, the only possible case is a= 3 and c = 1. Suppose 

1iln, then if n is unitary perfect, by Lelilllla 4.3 

* * 4 2 
2 = a (n) < a (2 3•5·13•17) 

n ..,... 4 2 
2 3•5•13·17 

= (24 + 1)(3 + 1)(5 + 1)(13 + 1)(172 + 1) 
4 2 2 3·5·13·17 

17(4)(6)(14)(290) 406 
= 16(3) (5) (13)(289) = 221 

which_ is a contradiction. Thus, 
i 

17lln if n. is unitary perfect. 

Then· 17 + 1 = 18 implies that 32 ln, Then by Lemma 4.3, if n· is 

unitary perfect, 

2 
o*(n) · 0*{24325·13•17) 

n ~ . 24325•13•17 

(24 + 1)(32 + 1)(5 + 1)(13 .+ 1)(17 + 1) = .......... ____ .......... _______ _._ __ ____, ________________ ---

24325·13•17 

17 (10) (6) (J.4)(18) = ll 
16(9)(5)(13)(17) 13 

which is a contradiction. Therefore, n is not unitary perfect for 

t = 4. 
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Cas.e (3): t = 5. Since 25 + 1 = 33 = 3(11), 3 jn and 11 l-n, 

Since a+ b + 2c ~ 6, k < 6. By (1), (4), and .. (5) t_he only possibili-

ties are k = 4 or 6 if n is to be unitary perfect. Suppose there 

exists a p such that plm2. Then p ~ 3 and has an even exponent. 

Since 

c25 + 1)(32 + 1)(5 +,1)(7 + 1)(11 +. 1) . . . 5 2 , . . .. 
2 3 5 •7 •11. 

< (25 ~ 1)(32 +.1)(5 + 1)(7 + 1)(11 + 1)(13 + 1)(17 + 1) . . . 5· 2 . I .. .. . . . 

2 3 5·7·11·13•17 

= 33(10)(6)(8)(12)(14)(18) = 432 < 2 
32(9)(5)(7)(11)(13)(17) 221 

by Lemma 4.3, n · is not unitary perfect for ~ither k = 4 or k = 6. 

Thus, for n to be unitarr perfect b ~ 0, Then 3lm3 and lljm3 

and c > · 2, This leaves no possibili.ty f~r n to b~ unitary ·perfect 

which is a• 2 and c.= 2. If n is unitary perfect, by Lemma 4.3 

* * 5 2 = cr (n) < cr (~ 3•5•11~13) 
n 2 3•5•11•13 

= (25 + 1)(3 +,1)(5 + 1)(11 + 1)(13 + 1) 
. 5 . 

2 3·5·11·13 

= ~3~4)(6)(12)(14) 
32(3)(5)(11)(13) 

126 =-65 

which is a contradiction. Thus,·. n cannot be unitary perfect for 

k = 5. 

Case (4): t ·= 7, Since 27 + 1 = 129 = 3(43), Jin and 43ln 

if n is unitary perfect. Suppose n is unitary perfe.ct. Since 

a+b + 2c~8,. k~8. By_(!), (3),and (5), k = 4, 6, 7, or 8. 



Since 

cr*c2 73·5·7·43) (2 7 + 1)(3 + 1)(5 + 1)(7 + 1)(43 + 1) 
273•5•7•43 • . . 273·5·7•43 . 

= 129(4)(9)(8)(44) _ 66 
128(3) (5) (7) (43) - 35 < 2 ' 

by Lemma.4.3, n is not unitary perfect for k = 4. Thus, 

k = 6, 7, or 8. Since 

* 7 2 2 * 7 2 2 cr .(2 3 5·7 11·13•43) < cr (2 3 5•7 11•13·17·43) 

27325·7211·13•43 27325·7211•13•17·43 

* 7 2 2 
< cr (2 3 5•7 11·13•17•19•43) 

7 2 2 .. . 
2 3 5•7 11·13•17•19·43 
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= (27 + 1)(32 + 1)(6)(72 + 1)(12)(14)(18)(20)(44) 

27(32)(5)(72)(11)(13)~17)(19)(43) 

= 54000 < 2 
· 29393 

by Lemma 4. 3, n is not unitary perfect if b > 1. . Thus, since 3 

and 43 divide ~ither m2 or m3 , ei.ther (i) a = 5 and b = c = 1, 

(ii) a= 4 and b = c = 1, (iii) a= 3, b = 1, and c = 2, or 

(iv) a = 4, b = 0, and c = 2. Since 

* 7 2 cr (2 3 5•7•13•17•43) < 
7 2 . . .' · 

* 7 2 cr (2 3 5•13•17·29~43) 

2 3 5•7•13·17·43 
7 2 . 

2 3 5•13•17•29•43 

* 7 2 < cr (2 3 5•13•17•29•37•43) 

27325·13·17·29·37·43 

(2 7 + 1)(32 + 1)(6)(14)(18)(30)(38)(44) = --~~'---~~........_ ......... .__ ......... ___._........_ ....... __.~__._ 

27(32)(5)(13)(17)(29)(37)(43) 

= 395010 < 2 
237133 



by Lemma 4. 3, (i), (ii), and (iii) are not possible, Since 

cr*(2 73•5•ll•l7•29·43) 

273·5·13•17•29•43 
= (2 7 + 1)(4)(6)(14)(18)(30)(44) 

27(3)(5)(13)(17)(29)(43) 

= 12474 < 2 
6409 

by Lemma 4.3, (iv) is not possible and n is not unitary perfect, 

Therefore, n is not unitary perfect for t = 7. 

(7) Let t = 6. Since 26 + 1 = 65 = 5(13), if n is 

unitary perfect Sin, 13ln and a.:. 2. Since a+ b + 2c ..::._ 7, 

k < 7. Then by (1), (4), and (5), k = 4, 6, or 7. Since 

* 6 2 2 cr (2 3 5·7 11·13·17) 

26325·7211·13·17 

= (26 + 1)(32 + 1)(6)(72 + i)(12)(l4)(18)(20) 

26325·7211·13·17·19 

45000 
= 24871 < 2 , 

then b < 2. Thus, b = 1 or O. Then either (i) a= 7 and 
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b = c = 0, (ii) a= 6, b = 1 and c = 0 
. ' (iii) a= 2 and b = c = 1, 

(iv) a.= 3, b = O, and c = 1, (v) a= 4 and b = c = 1, (vi) a= 5, 

b = O, and c = 1, or (vii) a= c = 2 and b = O. Since 3 does 

not divide n and k is odd, (i) does not give a unitary perfect 

number. Consider 



and 

Then for 

6 6 2 n = 2 m2' = 2 3 5•13·17·29·37•41, 2 

6 6 2 n • 2 m' • 2 3 5•7•13, 3 · 3 

n ... 
5 

6 2 2 3 5•7•13•17•29, 

* (ni)/ni .2- a * i =:2, 3, 4, 5, 6, a 

m2 e: K(6,l,O),· 

m3 e: K(2,l,1), 

m4 e: ,K(3,0,l), 

m5 e: K(4,l,1), 

m6 e: K(5,0,l). 

(n)/n. 6 for any n.= 2 m 

with m in the appropriate K(a,b,c). Also, 

and 

Then since 

* * * a (n3) a. (n5) a (n2) 
< < 

n3 n5 n· 2 

* a (n4) 
< 

* a .. (n6) * a (n2) 
< 

n4 n6 n2 

6 2 . . 
2 3 5•13•17·29·37•41 

= c26 + 1)(32 + 1)(6)(14)(18)(30)(~8)(42) 

26(32)(5)(13)(17)(29)(37)(41) 

_ 65(10)(6)(14)(18)(30)(3S)(42) 
- 64(9)(5)(13)(17)(29)(37)(41) 

1256850 < 
= 747881 2 , 
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there can be no unitary perfect number in cases (ii), (iii), (iv), , (v) 
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and (vi) • This .leaves only -the case with. a = c = 2 and b = 0. Then 

265rl3spuqv. Since 

and 

and 

* 6 a (2 5·7·11•13) = 5(13)(6)(8)(12)(14) 

26i·7•11·13 26(5)(7)(11)(13) 

a*c26325~7·13) _ 5(13)(10)(6)(8)(14) 5 

26325·7·13 - 26ci)(5)(7)(13) =1< 2 ' 

* 6 · 2 a (2 3•5 7•13) = 

263•527·13 

5 (13) (4) (26) (8) (14) ... 1§. < 2 
26 (3)(52)(7)(13) 15 ' 

* 6 2 
a (2 3•5•7•13) = 5(13)(4)(6)(8)(170) .. lli < 2 

263·5•7•132 26(3)(5)(7)(132) 91 

by Lemma 4.3, r = s = l. 6 u Then n = 2 3•5•13p Then if n is unitary 

perfect 

2n = 273•5•13pu = 5(13)(4)(~)(14)(pu + 1) = o~(n) 

or 

u u Bp = 7(p + 1) 

which gives pu = 7. Then n = 2°3·5·7·13 = 87,360. 

Then 

(8) k = 4, Let n be unitary perfect. Suppose 
I 

* 2 = a (n) 
n 

cr*c2t5·7·11•13) 
< = 

2t5·7·11•13 

(2t + 1)(6)(8)(12)(14) 

2t(5) (7) (11) (13) 



5005(2t) < 4032(2t + 1) 

or 

which implies that t = 1 or 2 which leads to a contradi~tion. 

Therefore, 3jn. Suppose 

2 < cr*c2t325·7·11) = (2t + 1)(10)(6)(8)(12) 

2t325·7·11 22(32)(5)(7)(11) 

Then 

or 

13(2t) 2. 64, 
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which implies that t = 1 or 2 which is a contradiction. Therefore, 

3Un. Suppose 

Then 

or 

o*c2t3·7·11·13) 2 < . = 
2t3·7·11·13 

(2t + 1)(4)(8)(12)(14) 

2\3) (7) (11) (13) 

which implies that t = 1, 2, . or 3 which is a cohtradiction. Thus, 

5jn. Suppose 

(2t + 1)(4)(26)(8)(12) 

2t(3)(5 2)(7)(11) 
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Then 

or 

which implies that t = 1 or 2 which is a contradiction. Thus, 

5Hn, ~uppose. 

Then 

or 

* t 
2 < cr (2 3•5•11•13) = 

2t3·5·11·13 

(2t + 1)(4)(6)(12)(14) 

2 \3) (5) (11) (13) 

which' implies that t = 1, 2, or 3 which is a contradiction. Then 

71 n, Suppose 

Then 

or 

(2t + 1)(4)(6)(50)(12) 

2 t (3) (5) (72) (11) 

which implies that t = 1, 2, or 3 which is a contradiction, There-

fore, 1fn. Thus, 
t r 

n = 2 3•5•7p. Suppose p ..::._ 17, Then 



which implies that 

or 

(2t + 1)(4)(6)(8)(18) 

2 t(3) (5) (7) (17) 
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Then t = 1, 2, 3, or 4 which. is a contradiction. Therefore, p == 11 

or 13. Since 

t ~ 6, Then 

* r r 6 r a (3·5•7p) = 4(6)(8)(p + 1) = 2 (3)(p + 1), 

* 6 r a (2 3•5•7p ) 
2 < 6 . ~ == 

2 3•5•7p 

65(4)(6)(8)(pr + 1) 

26(3)(5)(7)pr 

which implies ·that 

r r 14p ~ 13(p + 1) 

or 

r 
p ~ 13. 

Thus,· r = .1 for p == 11 or 13, Suppose p = l+, then 

* t 
2 = a (2 3•5•7•11) = 

2t3·5·7·11 

which implies that 

(2t + 1)(4)(6)(8)(12) 

2 \ J) (5) (7) (11) 
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385 (2 t). = 384(2t + 1) 

or 

2t = 384 

which is a co1:1tradiction. Thus, p can only be 13. If p = 13, 

* t (2 t + 1) (4)(6)(8) (14) 2 C1 (2 3•5•7•13) = = t 2 t (3) (5) (7) (13) 2 3•5.• 7•13 

which implies that 

65 (2 t) = 64(2t + 1) 

or 

t 
2 · = 64 

which implies that t =.6. Then n = 263·5•7•13 = 87,360. 

Subbarao (29] has stated that )le has proven the following theorem 

with "extensive and exhausting calculations usi-p.g a desk calculator." 

Theorem 4.7. If n = 2tm is a unitary perfect number-with the 

same notation as in Theorem 4. 6, · 

(1) it is not . possible for t = 8, 9, or 10, . and 

(2) it is no~ possible for. k .. 6. 

These theorems can be used to show that after_ 87,360 there exist. 

no unitary perfect number with less than 20 digits. Charles R. Wall 

of the University of Tennessee has discovered one with 24 digits (29]. 
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It is 

18 4 
2 • 3•5 • 7 ·11·13 •19 •37 • 79 ·109 ·15,7 • 313. 

Subbarao conjectures that there is only a finite number of unitary 

perfect numbers .(29]. 



CHAPTER V 

SUMMARY 

The study of perfect numbers has fascinated .mathematicians for 

centuries. Perhaps this collection of known facts about perfect numbers 

can aid others in working in this interesting area of mathematics. 

The theory of even perfect numbers seems well established, and the 

form is well known (See Theorem 2.3, page 8 and Theorem 2.4, page 9). 

Othe:r even perfect numbers can and, undoubtably, will be found by 

finding new Mersenne primes. This will need to be done by the use of 

computers. It will take considerable time, even with computers, to 

check Mersenne numbers until a prime is found. 

It still is not known whether or not there exists an infinite 

number of even perfect numbers. This fact depends, of course, upon 

whether or not there are an infinite number of Mersenne primes. Pe~haps 

some day someone will be able to prove that there are either an infinite 

number or a finite number of Mersenne primes. 

The situation with odd perfect numbers is much different. The 

existence of odd perfect numbers is still an open question. Many 

mathematicians are still working on this problem today. With all the 

restrictions that have been proven, it looks doubtful that there do 

exist any odd perfect numbers. 

As was pointed out in Chapter III, authors do not agree on what 

has been proven, especially about the number of distinct prime factors 
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that an odd, perfect number, if it exists, must have. Perhaps it; would 

be worthwhile for someone to research the original works of some, such 

as J, J. Sylvester, to determine what has been proven. 

The basic form of an odd perfect number, if it exists, is well. 

known (See Theorem 3.1, page 27). More restrictions on t]lis form.can 

be made. However, it appears that unlesl:! other techniques are developed, 

such proofs w;ill be qu;it:e lengthy. Perhaps better bounds on tl}e prime 

divisors or the sum of the reciprocals of the prime divisors is a better 

area for investig~tion. 

The study of unitary perfect numbers, since it is a much newer 

topic, presents a topic for much more investigation. However, it 

appears that to continue the search for unitary perfect numbers would 

involve qu:f,.te lengthy proofs unless other techniques are developed. 

The procedures that have been used involve considerable numerical calcu

lations. 

Subaarao 's .conjecture that there is only a finite number of 

unitary perfect numbers is interesting. This presents a challenge for 

someone to prove or disprove. If it could be shown that there are only 

a finite number, it would then become an interesting problem to 

discover all of them. If there are an infinite number of unitary 

perfect numbers, perhaps more about them can be studied. Something 

analogous to what has been done with perfect: numbers could be done. 

There are still many questions that remain unanswered. Is 3 

always a factor of a unitary perfect number? Except for 6, all of 

the known unitary perfect numbers contain the factor of 5. Do all of 

the unitary perfect numbers greater than 6 contain 5 as a factor? 



There remain many areas of investigation in the study of unitary 

perfect numbers. 
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It is hoped that the work done in this dissertation will be.helpful 

to someone desiring to investigate further the subject of perfect or 

unitary perfect numbers. 
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