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ABSTRACT 

Unconventional reservoirs cover a wide range of hydrocarbon-bearing formations 

and reservoir types that generally do not produce economic rates of hydrocarbons without 

stimulation. The focus of this dissertation is to develop and calibrate workflows to aid in 

the characterization of the highly heterogeneous Mississippi Limestone reservoir play of 

northern Oklahoma. Because natural fractures and faults are the primary pathways for 

hydrocarbon migration and production in many reservoirs, naturally fractured reservoirs 

represent a significant percentage of oil and gas reservoirs throughout the world. In 2012, 

unconventional shale gas productions were accounting for 34% of the total natural gas 

production in the U.S. (0.68 trillion m3). Because of their complexity and commercial 

significance, naturally fractured reservoirs have been extensively studied showing that 

the in-situ stress field, lithology, formation thickness, structural setting and other 

geological factors all play a role. The understanding of the magnitude, timing, and 

distribution of these controlling factors could lead to an improvement in the 

characterization of fractures in reservoirs. Although, the geomechanical history of the 

rocks is elusive and often speculative, one can infer the magnitude and orientation of 

paleostresses and thereby hypothesize the degree of fracturing given current structure. 

Reservoir structure are mapped using petrophysical logs and seismic techniques where 

seismic attributes such as coherence and curvature are commonly used to map 

deformation in the subsurface. This dissertation introduces a new edge-detecting seismic 

attribute, aberrancy that quantitatively estimates the orientation and magnitude of poorly 

resolved faults as well as flexures in the subsurface. The rate of penetration (ROP) 

measures drilling speed, which is indicative of the overall time and in general, the cost of 

the drilling operation process. ROP depends on many engineering factors; however, if 



xx 

these parameters are held constant, ROP is a function of the geology. This dissertation is 

the first study that links ROP to seismic data and seismic-related attributes using proximal 

support vector machine. By using this workflow, we anticipate that this process can help 

better predict a budget or even reduce the cost of drilling when an ROP assessment is 

made in conjunction with reservoir quality and characteristics. Due to the complexity of 

fracture characterization, fracture prediction is more commonly the product of 

comprehensive integration of software, data, and specialize measurements specific to 

unconventional reservoirs. To calibrate volumetric aberrancy. I integrate seismic 

attributes and borehole image logs as the input to neural network. The findings on the use 

of volumetric aberrancy as an aid to structrual interpretation and quantitative fracture 

prediction.  
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CHAPTER 1 

INTRODUCTION 

The term “unconventional reservoirs” covers a wide range of hydrocarbon-

bearing formations and reservoir types that generally do not produce economic rates of 

hydrocarbons without stimulation. Common terms for such “unconventional reservoirs” 

include: Tight-Gas Sandstone, Gas Hydrates, Oil Shale formations, Heavy Oil 

Sandstones, and Shale Gas (Passey et al., 2010). The focus of this dissertation is to discuss 

the characterization of the Shale Gas and Carbonate reservoir assisted by seismic 

technique.   

Because natural fractures and faults are the primary pathways for hydrocarbon 

migration and production in many reservoirs, natural fractured reservoirs represent a 

significant percentage of oil and gas reservoirs throughout the world (Ouenes, 2000). In 

2012, unconventional shale gas productions were accounting for 34% of the total natural 

gas production in the U.S. (0.68 trillion m3) (Vengosh et al., 2014). Because of their 

complexity and commercial significance, natural fractured reservoirs have been 

extensively studied. Many of the efforts have been dedicated to exploring the possible 

factors that may affect rock fracturing. Numerous approaches have been used to estimate 

the spatial distribution of fractures within individual horizons (Gale et al., 2007). Gale et 

al. (2007) characterized natural fractures using four Barnett Shale cores. Through 

measuring a suite of mechanical rock properties, he concluded that the geometry of the 

fracture system and in-situ stress field are two most critical factors that control the 

direction of hydraulic fracture propagation as well as natural fracture system. The 
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approach mentioned above was applied to small areas encompassing the scale of a gas 

field. Although structural aspects can be important, it is demanding to recognize there is 

a complex interplay between the driving factors. For example, fractures characteristics in 

carbonates are as variable as the range of carbonate lithologies, fabrics, and structural 

settings (Lorenz et al., 2012). Structure and tectonics cause the stresses that initiate 

fracturing within a package of rock, while lithology is the primary control on fractures 

susceptibility (Lorenz et al., 2012). Of these two controls, lithology is commonly more 

important than the structural position in determining the intensity of fracturing in 

carbonate strata, although structure becomes more import as deformation increases 

(Lorenz et al., 2012). Another factor in carbonates fracture characterization is solubility 

(Lorenz et al., 2012). Formation fluids within the fractures may have dissolved much of 

the adjacent rock, leaving mismatched fracture walls and significant volumes of vuggy, 

fracture-related porosity (Lorenz et al., 2012). It is imperative to identify the primary 

geologic controlling factors. Only then can a comprehensive fracture prediction model be 

generated.  

As discussed above, in-situ stress field, lithology, formation thickness, structural 

setting and other geological factors are recognized to leave an impact in fractured 

reservoirs. The understanding of the magnitude, timing, and distribution of these 

controlling factors could lead to an improvement in the characterization of fractures in 

reservoirs. Unfortunately, the geomechanical history of the rocks is elusive and often 

speculative (Ouenes, 2000). Study pointed out paleostresses are, to some extent, revealed 
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by present-day curvature. Hence, one can infer the magnitude of paleostresses and gain 

insight into the degree of fracturing given current structure (Ouenes, 2000).  

Reservoir structure can be obtained easily using petrophysical logs and seismic 

techniques. Geometric seismic attributes such as coherence allow interpreters to quickly 

visualize and map complex fault systems (Chopera, 2002). Volumetric curvature provides 

not only images of folds, domes, and collapse features, but also helps interpreters map 

faults whose vertical throw fall below seismic resolution (Chopra and Marfurt, 2007). 

Aberrancy measures the lateral change (or gradient) of the curvature of a picked or 

inferred surface, and as such provides not only an indication of the strength of the normal 

faulting, but also the direction fo the downthrown side (discussed in Chapter 2).  

Seismic-reflection data used in reservoir characterization not only for obtaining 

the insight of geometric information of subsurface structures but also for estimating 

geomechanical properties such as lithologies and fluids. Rock physics allows us to link 

seismic response with reservoir properties. Impedance inversion is currently the most 

direct seismic-based estimate of rock properties. Seismic-impedance inversion results 

have been used to predict fault zones, potential fractures, and lithology in the 

Mississippian Limestone (Dowdell et al., 2013; Roy et al., 2013; Verma et al., 2013; 

Lindzey et al., 2015) (discussed in Chapter 3). Young’s modulus, E, and Poisson’s ratio, 

υ, calculated from bulk density, ρ, compressional velocity, Vp, and shear velocity, Vs logs 

can be used to estimate rock brittleness (Harris et al., 2011). 

Seismic imaging brings large-scale reservoir behavior. Geostatistical stochastic 

stimulations add spatial correlation and small-scale variability which is hard to identify 
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from seismic due to the limits of resolution. Two machine learning techniques will be 

applied and discussed in this dissertation: the proximal support vector machine (PSVM) 

(Chapter 3) and artificial neural network (ANN) (Chapter 4). The PSVM method is a 

more recent innovation that has been successfully used to predict brittleness (Zhang et 

al., 2015), seismic facies recognition (e.g., channels, mass-transport complexes, etc.) 

(Zhao et al., 2015) and lithofacies classification (Zhao et al., 2014). Neural networks have 

been applied successfully in geophysics since last decade. Neural networks have been 

used for waveform recognition (Murat and Rudman, 1992), electromagnetic (Poulton et 

al., 1992), well log analysis (Hampson et al., 2001), seismic inversion (Bosch et al., 2010), 

and many other problems.  

Due to the complexity of fracture characterization, fracture prediction is more 

commonly the product of comprehensive integration of software, data, and specialize 

measurements specific to unconventional reservoirs (Figure 1.1). Mukerji et al., (2001) 

combined three techniques to reduce the uncertainty of reservoir characterization. He 

integrated geological facies indicator (derived from cores, thin section, and production 

data), seismic attributes (derived from seismic inversion), and geostatistics method (such 

as variograms) to guide quantitative decision analysis. I will apply similar workflow in 

my third research topic (Chapter 4), which integrated geomechanical rock properties, 

seismic attributes, and neural network method to predict the fracture intensity over the 

Mississippian Limestone horizon located at central Oklahoma.  

   I structure the dissertation as follows. Chapter 2 is divided into two sections. In 

section 1, I will provide an in-depth review and comparison of some of the most popular 
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seismic geometric attributes that have been applied to characterize faults and fractures. 

In section 2, I will introduce aberrancy, a new seismic attributes volume developed by 

Dr. Marfurt and me. I will begin section 2 by summarizing the theory of aberrancy. I will 

then apply volumetric aberrancy calculation first to two synthetic models: a 3D synthetic 

of a circular sinkhole model and a 3D synthetic consisting of an EW-trending flexure and 

three NS-trending flexures. Next, I will present an application of volumetric aberrancy to 

a data volume acquired over the Barnett Shale gas reservoir of Fort Worth Basin, Texas. 

In Chapter 3, I will present a case study linking seismic attributes and geomechanical 

properties of Mississippian Limestone strata with a petroleum measurement rate of 

penetration using proximal support vector machine (PSVM). This case study is over a 

carbonate reservoir located at central Oklahoma. In this case study, I will cast workflow 

details for those wishing to create a similar model. In chapter 4, I will inherit the 

knowledge from Chapter 2 and 3, integrate aberrancy and other eight seismic attributes 

and geomechanical properties with a neural network to predict fracture intensity in the 

same carbonate reservoir discussed in chapter 3. Finally, I will sum up the materials from 

Chapter 2 to 4 with conclusions in Chapter 5. 
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CHAPTER 1 FIGURES 

 

 

Figure 1.1. The conceptual diagram demonstrates fracture prediction is the product of 

comprehensive integration of software, data, and specialize measurements specific to 

unconventional reservoirs.  
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CHAPTER 2 

VOLUMETRIC ATTRIBUTES TO MAP SUBTLE FAULTS AND 

FLEXURES1 

ABSTRACT 

One of the key tasks of a seismic interpreter is to map lateral changes in surfaces, 

not only including faults, folds, and flexures, but also incisements, diapirism, and 

dissolution features. Volumetrically, coherence provides rapid visualization of faults and 

curvature provides rapid visualization of folds and flexures. Aberrancy measures the 

lateral change (or gradient) of curvature along a picked or inferred surface. Aberrancy 

complements curvature and coherence. In normally faulted terrains, the aberrancy 

anomaly will track the coherence anomaly and fall between the most positive curvature 

anomaly defining the footwall and the most negative curvature anomaly defining the 

hanging wall. Aberrancy can delineate faults whose throw falls below the seismic 

resolution or is distributed across a suite of smaller conjugate faults that do not exhibit a 

coherence anomaly. Previously limited to horizon computations, we extend aberrancy to 

uninterpreted seismic data volumes. We apply our volumetric aberrancy calculation to a 

data volume acquired over the Barnett Shale gas reservoir of the Fort Worth Basin, Texas. 

In this area, the Barnett Shale is bound on the top by the Marble Falls Limestone and on 

the bottom by the Ellenburger Dolomite. Basement faulting controls karstification in the 

                                                

1 This chapter contains contents from a published article - X. Qi and K. Marfurt, 2018, Volumetric aberrancy to 

map subtle faults and flexures: Interpretation 
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Ellenburger, resulting in the well-known “string of pearls” pattern seen on coherence 

images. Aberrancy delineates small karst features, which are, in many places, too 

smoothly varying to be detected by coherence. Equally important, aberrancy provides the 

azimuthal orientation of the fault and flexure anomalies. 

 

INTRODUCTION 

As briefly introduced in Chapter 1, seismic attributes are the measure of seismic 

data that help us visually enhance or quantify features of interpretation interest (Chopra 

and Marfurt, 2007a). The deformation of rocks due to faulting and fracturing may cause 

changes in lithology and pore pressure, and thus affect seismic velocity and amplitude 

(Mooney and Ginzburg, 1986). Mooney and Ginzburg (1986) found out that highly 

fractured rock and thick fault gauge along the creeping portion of the San Andreas fault 

linked with a pronounced seismic low-velocity zone. Because observations of the seismic 

anisotropy have the potential of providing the orientation of the in-situ stress field, several 

theoretical studies of fracture-induced anisotropy have been reported in the literature 

(Schoenberg and Sayers, 1995). Among the various geophysical technique available for 

characterizing faults and fractures, 3-dimensional (3D) seismic attributes are particularly 

useful for interpreting faults and channels, unraveling the structural deformation history, 

and organize subtle features into displays (Chopra and Marfurt, 2007a). This chapter is 

divided into two subsections: section one focuses on the reviewing of existing volumetric 

seismic attributes to map subtle faults and flexures. Section two focuses on introducing 

volumetric aberrancy and its application in a case study, Fort Worth Basin.  
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A REVIEW OF VOLUMETRIC ATTRIBUTES TO MAP FAULTS AND 

FLEXURES 

Taner et al. (1994) divide seismic attributes into two general categories: 

geometrical and physical. The geometrical attributes help to enhance the visibility of the 

geometrical characteristics of seismic data; they include dip, azimuth, coherence, 

curvature, and continuity (Chopra and Marfurt, 2005). Physical attributes have to do with 

the physical parameters of the subsurface and so relate to lithology; they include 

amplitude, phase, and frequency (Chopra and Marfurt, 2005).  

Volumetric dip and azimuth 

In seismology, dip is a vector consisting of dip magnitude and dip azimuth. Dip 

magnitude, θ, is identical to that used in the above geologic definition. Dip azimuth, φ, is 

measured either from the north, or for convenience, from the inline seismic survey axis. 

Azimuth is perpendicular to the geologic strike and is measured in the direction of 

maximum downward dip. Dip magnitude and azimuth volumes can be a very convenient 

tool in defining a local reflector surface upon which we estimate discontinuity features. 

The discontinuity features include chaotic slumps, infill of karsted terrains, angular 

unconformities and of course faults and flexures (Marfurt, 2006). Inline and crossline dip 

components in Figure 2.1, delineate detail of a system of complex joints and fractures. A 

robust estimate of vector dip allows us to generate curvature attributes throughout the 

entire survey volume (Marfurt, 2006).  

Coherence  
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Coherence measures the similarity between waveforms or trace. The seismic 

waveform is a response of the seismic wavelet convolved with the geology subsurface. 

Any changes in response such as amplitude, frequency, and phase depending on the 

acoustic-impedance contrast and thickness of the layers above and below the reflecting 

boundary (Chopra and Marfurt, 2007a). Because acoustic-impedance is closely related to 

the lithology, porosity, density and fluid type of the subsurface layers, consequently, 

strong lateral changes in subsurface layers give rise to strong later changes in waveform 

character. Coherence allows interpreters to quickly visualize and map complex fault 

systems, salt and shale diapirs and incoherent overpressured shales (Chopra and Marfurt, 

2007a). Bahorich and Farmer (1995) used coherence attribute to map faults on time slices 

that are not readily seen on conventional amplitude slices (Figure 2.2). Using traditional 

methods, it is often difficult to get a clear and unbiased view of faults and stratigraphic 

features hidden in the 3-D data (Bahorich and Farmer, 1995). It allows an interpreter to 

view geologic features in map view without having to pick seismic events. Large faults 

are often readily seen on vertical cross-sections, but time slice view allows interpreters to 

determine the lateral extent of faulting (Bahorich and Farmer, 1995).   

Volumetric curvature  

Curvature describes how bent a curve is at a particular point on the curve. 

Curvature in two dimensions is defined as the radius of a circle tangent to a curve (Figure 

2.3) (Chopra and Marfurt, 2007a). Chopra and Marfurt, (2007a) defined anticlines as 

having positive curvature and synclines as having negative curvature. Linear (straight-

line) portions of a curve have zero curvature. For example, portions with a constant dip 
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show zero curvature. Curvature in three dimensions is defined using two circles tangent 

to a surface. The circles always reside in orthogonal planes. The centers of these circles 

lie along an axis that is perpendicular to a plane tangent to the surface (Chopra and 

Marfurt, 2007a).  

Curvature has been accepted as a promising attribute to predict fractures from 

surface seismic data (Chopra and Marfurt, 2007a). Both theoretical research and lab 

experiments show that large curvature values correlate with high-stress field and thus 

explained the increasing probability of fracturing (Hunt et al., 2011; White et al., 2012). 

However, the relationship between open fractures and curvature measures is proven quite 

complicated and can be controlled by lithology, precious faults and fractures zones, the 

paleo-stress regime, pore pressures, and the present-day stress regime (Chopra and 

Marfurt, 2007a).  

Although direct prediction of open fractures using curvature requires a significant 

amount of geologic unraveling and calibration through production data, curvature images 

are a powerful aid to conventional structural and stratigraphic interpretation. Studies 

prove that the most-positive curvature, kpos, and the most-negative curvature, kneg, are the 

most helpful and widely used in delineating faults, fractures, and folds (Chopra and 

Marfurt, 2007b). Chopra and Marfurt used the most-positive and most-negative curvature 

to map channel system (Figure 2.4), which stands out with the main limb running 

northwest-southeast. Because of differential deposition compaction, the most-negative 

curvature highlights the channel axis, while the most-positive curvature delineates the 
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flanks of the channels, potential levee, and over-bank deposits (Chopra and Marfurt, 

2007b).   

 

VOLUMETRIC ABERRANCY 

Well known to mathematicians (Schot, 1978), aberrancy has only recently been 

applied to 3D seismic surveys. Gao, (2013) defines aberrancy as a measure of the 

deformation of a surface. Aberrancy measures the lateral change (or gradient) of the 

curvature of a picked or inferred surface. In three dimensions, aberrancy is a vector 

described by its magnitude and azimuth. The magnitude defines the intensity of surface 

deformation, while the azimuth indicates the direction in which the curvature decreases 

in signed value. This positive-to-negative definition provides as azimuth consistent with 

that of fault plane azimuths.  

Gao and Di, (2015) find aberrancy to be complementary to curvature. In normally 

faulted terrains, the aberrancy anomaly will track the coherence anomaly and fall between 

the most-positive curvature anomalies defining the footwall and the most-negative 

curvature anomalies defining the hanging walls (Chopra and Marfurt, 2007b). Unlike 

coherence, which measures lateral changes in waveform and/or amplitude, aberrancy 

measures lateral changes in curvature, and as such provides not only an indication of the 

strength of the normal faulting (the magnitude of the vector), but also the direction of the 

downthrown side (the azimuth of the vector).The value of aberrancy is that it may 

delineate faults whose throw falls below seismic resolution, or is distributed across a suite 

of smaller conjugate faults, which do not exhibit a coherence anomaly (Di and Gao, 2016) 
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(Figure 2.5). For this reason, we hypothesize that aberrancy will be quite useful in 

correlating surface seismic data to fractures associated with faults that are commonly seen 

in image logs from horizontal wells. 

Because aberrancy measures the changes in curvature, it characterizes the third-

order surface behavior (Joshi and Séquin, 2010). Calculation of aberrancy involves two 

main challenges, the robustness of high order derivatives, and computational efficiency. 

Di and Gao (2014) introduced a horizon-based aberrancy calculation based on first 

computing 3rd derivatives at equal azimuthal intervals. They then search these values for 

extrema. More recently, Di and Gao (2016) they showed how rotating the coordinate 

system can simplify the equations. We build on this latter innovation and generalize it to 

compute aberrancy volumetrically. We compute 2nd derivatives of vector dip in the x, y, 

and z directions, rotate the calculations about the local vector dip to simplify the 

computation, compute aberrancy, and then rotate the aberrancy vectors back the original 

coordinate system. In general, there are three roots to the 3rd order differential equation 

(Di and Gao, 2016), where we define as the maximum aberrancy, the minimum 

aberrancy, and the intermedium aberrancy. We begin this paper by summarizing the 

theory of aberrancy. We then apply our volumetric aberrancy calculation first to two 

synthetic models: a 3D synthetic of a circular sinkhole model and a 3D synthetic 

consisting of an EW-trending flexure and three NS-trending flexures. Next, we apply our 

volumetric aberrancy algorithm to a data volume acquired over the Barnett Shale gas 

reservoir of Fort Worth Basin, Texas. We conclude with a summary of interpretational 
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value of the attribute as well as the computational cast mathematical details for those 

wishing to implement such an algorithm are provided in the appendices. 

 

Apparent dip, curvature, and aberrancy 

Geoscientists define a locally planar surface by its dip magnitude, θ, and dip 

azimuth, φ, where θ is sometimes called the “true dip” to distinguish it from the apparent 

dip at an azimuth β. Introducing the dip vector, p, measured in dimensionless units of 

km/km or kft/kft, the components of the true dip along the x1 and x2 axes are 

1
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while the apparent dip component pβ and apparent dip angle θβ along the azimuth 
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Most geoscientists are also familiar with the two principal (most-positive and 

most-negative) curvature values, k1 and k2, and their corresponding strikes, γ1 and γ2, 

where Rich and Marfurt (2013) shows that they are the eigenvalues and eigenvectors of 

a solid geometry problem. Somewhat less familiar is the apparent curvature at a given 

azimuth, or Euler curvature, kβ, at strike β defined as 

   2 2

1 1 2 1cos sin ,k k k             (3) 

Di and Gao (2014) show that one can compute the most-positive and most-

negative principal curvatures by searching for extrema of the Euler or apparent 
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curvatures. This search is significantly simplified if one first locally flattens the data about 

the vector dip at the analysis point. While this approach is somewhat less efficient than 

the more commonly used eigenvector curvature solution, it provides not only physical 

insight into the meaning of the principal curvatures, it also provides a means to compute 

the extrema of aberrancy. 

Because the vector dip at any voxel can be different from its neighbors, a direct 

implementation of Di and Gao’s (2014) algorithm would require rotating an analysis 

window of volumetric dip values, p, followed by the computation of its derivatives using 

a convolution operator. In our implementation, this convolution operator typically uses 

121 traces and 50 vertical samples, or a computational stencil of 6050 points, which 

would not be amenable to vector computing strategies. We therefore compute the required 

derivatives in the original unrotated coordinate system, and then obtain the corresponding 

derivatives in the locally rotated coordinate system through three cascaded rotation 

operators applied to the 3x3x3, or 27-element second derivative operators applied to the 

three vector dip components (Figure 2.6). These details are important to those who wish 

to implement aberrancy, but provide only limited insight into its use and are thus relegated 

to Appendix A.  

After rotation, one can compute the apparent aberrancy at any azimuth, ψ, in the 

rotated plane, using equation B-3, repeated here 
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where the primes indicate the surface z’(x1’,x2’) in the rotated coordinate system. 

For volumetric aberrancy, one does not explicitly pick surfaces, but rather computes the 

first derivatives of assumed surfaces, resulting in the volumetric dip component volumes, 

p1 and p2 defined in equation, equation 4 then becomes 
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 (5) 

The extrema of the aberrancy are computed by minimizing the value of fψ with 

respect to ψ. Recall that vector dip is computed using the first derivative of the surface, 

z, and has one extrema, the dip magnitude and the dip azimuth, which define a single dip 

vector. Curvature is computed using the second derivatives of the surface z and has two 

extrema, the most-positive and most-negative principal curvatures and their strikes. 

Aberrancy is computed using the third derivatives (equation 4) of the surface z and 

therefore will have in general three extrema. We will call these extrema the maximum, 

intermediate, and minimum aberrancy vectors expressed by its magnitude, fψ and its 

azimuth ψ (Borwein et al.,2012). The numerical roots of the minimization problem are in 

terms of tan ψ (equation B-1), such that initially ψ ranges between ±900. Inserting these 
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roots into equation 5 may provide negative values of aberrancy fψ. It is obvious that a 

negative flexure to the north is equivalent to a positive flexure to the south. For this 

reason, in our implementation, we define our resulting maximum, intermediate, and 

minimum aberrancy magnitudes, fmax, fint, and fmin, to be strictly positive, with the 

corresponding azimuths ψmax, ψint, and ψmin ranging between ±1800.  The analysis and 

display of three roots can be cumbersome, although we hypothesize non-zero values of 

fint, and fmin, represent intersecting flexures which may be indicators of increased shear 

strain. We leave such quantitative analysis to future work which will require image logs 

calibration. In this paper we will examine the total vector aberrancy vector, ftot, which is 

simply the sum of the three aberrancy vectors.  

tot max int minf = f +f +f .  

Synthetic calibration 

A 3D synthetic of a circular sink hole model 

Figure 2.7 shows a simple 3D synthetic circular model used to validate the 

aberrancy calculation. The synthetic consists of a circular sinkhole embedded in a planar 

reflector dipping 2° to the northeast. In this example, the intermediate and minimum 

aberrancy vectors are near zero (Figure 2.7d). Note that, the total aberrancy vector is 

oriented inwards towards the center of the sinkhole. Also note that the maximum and total 

aberrancy vectors sit in the approximately middle of the most positive curvature and the 

most negative curvature (Figure 2.7b), where we observe the largest changes in the 

magnitude of curvature (Figure 2.7c).  
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A 3D synthetic consisting of an EW-trending flexure and three NS-trending flexures.  

To calibrate how aberrancy works when two flexures cross each other, we built 

the simple synthetic model shown in Figure 2.8a, consisting of an EW-trending flexure 

(dipping to the North and appearing as blue), and three NS-trending flexures (dipping 

towards the east and appearing as red-magenta). The maximum dip of NS flexures 

increases from 1°, 2°, to 3° from left to right.    

Rich and Marfurt (2013) show how the principal curvatures are the solution of an 

eigenvector problem. The first eigenvalue corresponds to the eigenvector that best 

represents the deformation at any voxel, and thus is the one exhibiting the largest absolute 

value, kmax. The second eigenvector represents the deformation in the orthogonal 

direction and is denoted as kmin. Note that the patterns exhibited by the weaker flexures 

(the NS one on the left, and the EW one on the right) are broken by the locally larger 

flexures (Figure 2.8b). Such images make it more difficult to track weak faults cut by 

stronger faults. In contrast, the most-positive and most-negative principal curvatures, k1 

and k2, exhibit more continuous pattern. The blue arrow indicates a bowl-shaped anomaly 

in the most-positive curvature slice, while the red arrow indicates a dome-shaped anomaly 

in the most-negative curvature image (Figure 2.8c).  

After examining the maximum, intermediate, and minimum aberrancy vectors, 

we find that the total aberrancy vector provides a single vector volume appropriate for 

structural interpretation (Figure 2.8d). However, the intermediate and minimum 

aberrancy indicate zones of conflicting flexure, and depending on the tectonic model, 

may potentially show areas of more intense natural fracturing. 
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Application  

Geologic background 

The Fort Worth basin is a shallow, north-south-elongated foreland basin 

extending 15,000 mi2 (38,100 km2) in north-central Texas (Montgomery et al., 2005). 

The Ouachita thrust-fold belt, Llano uplift, Bend arch, and the Muenster arch bound the 

basin to the east, south, west, and north, correspondingly (Figure 2.9). Preserved fill in 

the Fort Worth basin reaches a maximum of about 12,000 ft (3660 m) in the northeast 

corner, adjacent to the Muenster arch (Montgomery et al., 2005). Deposits consist of 

about 4000-5000 ft (1200-1500 m) of Ordovician-Mississippian carbonates and shales, 

6000-7000 ft (1800-2100 m) of Pennsylvanian clastics and carbonates, and, in the eastern 

parts of the basin, a thin layer of Cretaceous rocks (Montgomery et al., 2005).  

The structures in the Fort Worth basin include both major and minor faulting, 

local folding, fracturing, and karst-related collapse features (Montgomery et al., 2005; Qi 

et al., 2014). Thrust-fold structures are more common in the easternmost parts of the 

basin. Studies have shown that the major fault exerted significant control on the 

depositional patterns and thermal history of the Barnett (Qi et al., 2014). The small-scale 

faulting controls karstification in the Ellenburger, resulting in the well-known “string of 

pearls” pattern seen on seismic coherence images (Schuelke et al., 2014). 

The Barnett Shale of the Fort Worth Basin, Texas, has played an important role 

in a gas-shale play in North America. Recent studies estimate that the Barnett Shales may 

hold as much as 39 trillion cubic feet of gas (Tcf) undiscovered (Bruner and Smosna, 

2011). The Barnett Shale of the Fort Worth Basin, Texas formed during the late Paleozoic 
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Ouachita Orogeny, generated by the convergence of Laurasia and Gondwana (Bruner and 

Smosna, 2011). Figure 2.10 provides a generalized stratigraphy column of the Fort Worth 

Basin. The Barnett Shale is an organic-rich, petroliferous black shale of middle-late 

Mississippian age, bound in the survey between the Lower Marble Falls and Ellenburger 

Group (Figure 2.10). The Marble Falls Formation is conformably overlying the Barnett 

Shale on top. It typically includes two parts, an upper limestone interval and a lower 

member of interbedded dark limestone and gray-black shale (Montgomery et al., 2005). 

The top of the Ellenburger Group is an erosional surface (second-order Sauk-Tippecanoe 

erosional unconformity) commonly characterized by solution-collapse features 

(Montgomery et al., 2005). We expect to see major and/or minor faulting, local folding, 

fracturing, and karst-related collapse features within our study area.   

Seismic data 

In 2006, Marathon Oil Company acquired a 3D wide-azimuth seismic survey to 

image the Barnett Shale using 16 live receiver lines with a nominal 16 16 m (5555 ft) 

CDP bin size (Khatiwada et al., 2013). The overall data quality is excellent, with a 

poststack data-conditioning workflow including edge-preserving structure oriented 

filtering and spectral balancing performed by Qi et al. (2014) further improving the 

continuity and vertical resolution. The top Marble Falls Limestone is an easy-to-pick 

horizon that lies immediately above the Barnett Shale at approximately 0.7 s two-way 

time (TWT).   

Results  

Seismic amplitude 
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Seismic amplitude is the most commonly used attribute in seismic interpretation. 

Lines AA’ and BB’ (Figure 2.12) shows two strong reflections, representing the top of 

the Marble Falls (Figure 2.11a) and the top of Ellenburger Group (Figure 2.11b). The 

organic-rich Barnett Shale sits between these two units where arrows indicating karst 

collapse features. At least two major faults control collapse features indicated by yellow 

arrows. Several smaller compaction induced sags are seen some distance away from the 

faults. Even though the seismic amplitude data have been preconditioned, there are 

several strata-bound low coherence anomalies, some of which are associated with deeper 

collapse features (cyan arrows), and others simply due to areas exhibiting a low seismic 

signal-to-noise ratio. 

Coherence 

Coherence measures the similarity between waveforms on neighboring traces, and 

helps delineate faults and collapse features in the study area (Figure 2.12). Figures 2.12 

and 2.13 shows the same time slices at approximately t = 0.726 s through coherence 

volume. Time slices through the coherence volume show a complex system of lineaments 

and collapse features (yellow and white arrows). Although we do see the vertical trace of 

several faults, the most prominent features are the circular collapse features, which are 

more pronounced at the deeper Ellenburger level than at the Marble Falls level (Figure 

2.11).  

Curvature  

When calibrated to image logs, most-negative and most-positive curvature can 

serve as a means of predicting fractures from surface seismic data (Chopra and Marfurt, 
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2007a). Figure 2.13 shows co-rendered most-positive and most-negative curvature, 

corendered with coherence on the time slice and with amplitude on the same vertical slice. 

Notice that the major faults exhibit a positive curvature anomaly on the footwall, which 

is laterally offset from a corresponding negative curvature anomaly on the hanging wall. 

The bowl-shaped collapse features exhibit a negative curvature value and appear as blue 

ellipses (white and yellow arrows).  

Aberrancy  

Because aberrancy measures the lateral change (or gradient) of the curvature 

along a picked or inferred surface, it not only detects major faults that exhibit finite 

displacement, but also more subtle “sub-seismic-resolution” faults that appears as 

flexures referring to Figure 2.5. Figure 2.5a shows a finite offset across a fault which 

results in a strong coherence anomaly (highlighted in red). In contrast, in Figure 2.5b, if 

the offset is distributed over a zone of conjugate faults, where the offsets fall below 

seismic resolution. The continuous reflector no longer gives rise to a coherence anomaly. 

Aberrancy measures the change in curvature, highlighting the zone of conjugate faults 

area that offset a horst block to the east (shaded in red). Figure 2.14 shows the same slices 

as in the previous two images, but now through the total aberrancy volume. Orange and 

green arrows indicate small grabens while white arrows indicate collapse features. Figure 

2.15 shows the same image but now with the addition of coherence on the time slice. In 

this data volume, the inability of coherence to map subtle featues may be due to geology 

(a single fault becoming a flexure, fault splay) or data quality issues (limit of seismic 

resolution of a fault offset, or insufficient statics and velocities limiting the lateral 
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resolution of the image). Figure 2.16 shows horizon slices along the top Marble Falls 

through the maximum, intermediate, minimum, and total aberrancy vectors. The total 

aberrancy vector provides a single vector volume appropriate for structural interpretation. 

Lineaments in the total aberrancy vector horizon slices indicate faults or flexures, while 

flexures that cycle the color wheel (as in the synthetic example shown in figure 1), 

indicate collapse features. The intermediate and minimum aberrancy may indicate zones 

of conflicting flexure, and depending on the tectonic model, may potentially show areas 

of more intense natural fracturing.  

Aberrancy is a function of signal to noise ratio (Figure 2.17, 2.18). In Figure 

2.18, note the strong NW-SE trending acquisition footprint in the shallow slice shown in 

(a). Likewise, the dip estimate in the basement in (c) is also noisy. In contrast, the time 

slice in (b) through the target Barnett Shale area exhibits a high signal-to-noise ratio. The 

accuracy of the aberrancy estimates are directly related to the accuracy of the input 

components of the structural dip vector (d-f). The image in (a) is contaminated by 

acquisition footprint while that in (c) is noisy, although useful structural lineaments can 

still be extracted in total aberrancy images.  

Comparison between aberrancy and coherence on cross sections 

To better understand the collapse patterns, flexures, faults and their expression in 

the aberrancy attributes, we display three vertical cross-section through seismic survey 

corresponding to line AA’, BB’, and CC’ in Figure 2.19-2.21. Aberrancy seems to be 

less sensitive to the chaotic zones seen in vertical section AA’ and BB’, showing flexures 

that continue vertically through the section. In cross section AA’ the anomalies along the 
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top Marble Falls that are better resolved by aberrancy (Figure 2.19). From left to right, 

aberrancy delineates flexures (indicated by green arrows), which coherence is unable to 

resolve. In cross section BB’, the faults in the aberrancy image appear as steeply dipping 

continuous thin lines, but as stair step blotches in coherence image (Figure 2.20). 

Similarly, in cross section CC’, the collapse features are better resolved by aberrancy, 

indicated by green arrows (Figure 2.21). 

 

CONCLUSION AND DISCUSSION 

Tectonic forces, diagenetic dissolution, diapirism, and erosion all act to deform 

stratigraphic layers that originally may have been deposited with relatively featureless 

surfaces. While coherence measures disruptions in these surfaces, dip, curvature, and 

aberrancy measures changes in their orientation and morphology. Lateral changes in dip 

give use to curvature while lateral changes in curvature give use to aberrancy.  

Positive and negative curvature pairs are commonly used to map the footwall and 

hanging wall of normal faults, bracketing a coherence anomaly. When the fault offset 

falls below seismic resolution, and the coherence anomaly disappears, the curvature 

pattern can be used to map the fault further. In general, curvature anomalies are typically 

juxtaposed to rather than aligned with a fault. In contrast, aberrancy anomalies are aligned 

with the fault, providing a quantitative measure than can not only be mapped, but also 

correlated with image logs, production logs, chemical trace data and other measures of 

fractures.  
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Previously limited to computation from picked horizons, we have extended 

aberrancy to provide volumetric results of uninterpreted seismic data volumes. By using 

along wavelength calculations commonly used in volumetric curvature computations 

implemented as convolution operators in the original unrotated data volume, we obtain 

results that are numerically stable, computationally efficient, and geologically 

meaningful.  

While we compute the three aberrancy roots, their value as independent measures 

has yet to be determined. In contrast, the vector sum of these three roots is easier to 

understand and interpret. Since it is a vector, total aberrancy images can be azimuthally 

limited using to highlight and then numerically correlate hypothesized fracture sets to 

production data.  

While aberrancy will provide superior images of certain geologic features, it will 

complement rather than supplant other structural attributes such as coherence, curvature, 

and diffraction imaging. Indeed, when used together, they provide deeper insight into the 

seismic data volume.



28 

 

CHAPTER 2 FIGURES 

(a) 

 

 

(b) 

 

Figure 2.1. (a) amplitude-extract map corresponding to the Caddo horizon. (b) Estimates 

of inline and crossline dip corresponding to the same horizon (modified from Marfurt 

2006).  
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Figure 2.2. The left panel shows traditional 3-D seismic time slice. Fault parallel to strike 

are difficult to see. The right panel shows coherency time slice. Faults are clearly visible 

(modified from Bahorich and Farmer 1995).  
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Figure 2.3. An illustrated definition of 2D curvature. Synclinal features have negative 

curvature, anticlinal features have positive curvature, and planar features have zeros 

curvature.   
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Figure 2.4. Phantom horizon slices through the (a) coherence, (b) most-positive 

curvature, and (c) most-negative curvature volumes (modified from Chopra and Marfurt, 

2007b).   
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Figure 2.5. Cartoons of two different fault models, (a) a model where finite offset across 

a fault results in a strong coherence anomaly but no curvature or aberrancy anomaly.  (b) 

a model where the offset is distributed over a zone of conjugate faults, such that the now 

continuous reflector no longer gives rise to a coherence anomaly. Positive curvature 

anomalies on the footwall are indicated by red circles, where negative curvature 

anomalies on the hanging wall indicated by the blue circles. Aberrancy measures the 

change in curvature which in this example is towards the east, and is displayed as a red-

magenta aberrancy anomaly. 

 

 

 

 (b) 
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Figure 2.6. The internal steps of aberrancy computation. The first step is to compute the 

inline and crossline dip, which including the first, and second derivatives of inline and 

crossline dip. The second step is to rotate the original coordinate system, 0 0 0x - y - z , to 

the new coordinate system, 1 1 1x - y - z  by using the dip magnitude and dip azimuth. The 

third step is to find extrema of a cubic function, which compute the magnitude and 

azimuth of aberrancy. The final step is rotate the new coordinate sytem back to original 

coordinate system to get the correct aberrancy azimuth value. 
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(a) 
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(b) 
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(c) 
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(d) 

 

 

 

 

Figure 2.7. (a) Mesh grid showing a simple synthetic model in depth consisting of a 

circular sink hole embedded in a planar reflector dipping 2° to the northeast (b) Vector 

dip computed from the synthetic model shown in (a) The maximum dip of the sink is 2° 

such that the edge dips 4° to the NE in the SW portion of the sink hole and dips 0° or is 

nearly flat in the northeast portion of the sink hole. (c) Alternative means of displaying 

the two extreme curvature values computed from the synthetic shown in the previous 

figure. In this image, the minimum curvature carries little information, since the input 

model consists of parallel rather than crossing flexures. (d) Time slices through the 

aberrancy volumes corresponding to the synthetic dip and curvature images shown in the 

previous two figures. The total aberrancy is the vector sum of the maximum, intermediate, 

and minimum aberrancy vectors. 
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(a) 
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(b) 
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(c) 
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(d) 

 

Figure 2.8. (a) Mesh grid showing a simple synthetic model in depth consisting of an 

EW-trending flexure and three NS-trending flexures. (b) Vector dip computed from the 

synthetic model shown in (a). The EW-trending flexure dipping to the North appearing 

as blue, and three NS-trending flexures dipping towards the east and appearing as red-

magenta. The maximum dip for each of the NS flexures is 1°, 2°, and 4°, crossing the EW 

flexure with maximum dip of 2°. (c) Alternative means of displaying the two extreme 

curvature values computed from the synthetic shown in the previous figure. (d) Time 

slices through the aberrancy volumes corresponding to the synthetic dip and curvature 

images shown in the previous two figures. The total aberrancy is the vector sum of the 

maximum, intermediate, and minimum aberrancy vectors. 
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Figure 2.9. Index map of FWB and major tectonic units (modified after Khatiwada et al., 

2013) corresponding to the gray square on the map of Texas. 
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Figure 2.10. Generalized stratigraphic column (modified from Montgomery et al., 2005). 
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(a) 

 

(b) 

 

 

Figure 2.11.  (a) Time structure maps of the top Marble Falls and (b) Ellenburger 

horizons with three crossline AA’, BB’, and CC’. Vertical slices AA’, BB’, and CC’ will 

be discussed in subsequent figures. 
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Figure 2.12. Vertical slices AA’ and BB’ through the Barnett Shale interval through the 

co-rendered seismic amplitude and coherence volumes. Time slice at the Barnett Shale 

level (t = 0.726) through the coherence volume. Yellow arrows indicate two faults 

delineated on the lines AA’ and BB’ that continue into the time slice. Even though the 

seismic amplitude data have been preconditioned, there are several strata-bound low 

coherence anomalies (cyan arrows), some of which are associated with deeper collapse 

features (white arrows), and others with low signal-to-noise ratio. 
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Figure 2.13. The same slices shown in the previous figure, but now through the co-

rendered most-positive and most-negative curvature with seismic amplitude on the 

vertical slices and with coherence on the time slice.   The yellow arrows indicate the same 

faults shown indicated in the previous image. The White arrow points deeper collapse 

features.  
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Figure 2.14. The same slices shown in the previous two figures through the total 

aberrancy volume. Note the continuous flexures cutting through the time slice. Orange 

arrows indicate couplets, defining the edges of small grabens by a NW-oriented (cyan) 

flexure on one side and a SE-oriented (orange) flexure on the other. The green arrow 

indicates a graben delineated by a NE-oriented (magenta) on one side and a SW-oriented 

(lime green) flexure on the other. Several of the collapse features exhibit flexures that 

cycle the color wheel (white arrows). 
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Figure 2.15. The same slices as the previous four figures, but now with the time slice 

through co-rendered aberrancy vector and coherence volumes.  The magenta arrows 

indicate the same two faults shown in the previous image. The flexures indicated by the 

black arrows exhibit a different azimuth, suggesting trans-tensional deformation. In this 

example, coherence is complementary to aberrancy, providing additional insight into the 

interpretation. White arrows indicate the same two collapse features shown in previous 

images. In this example, aberrancy confirms an interpretation already made by examining 

coherence alone. 
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Figure 2.16. Horizon slices along the top Marble Falls through the aberrancy volumes. 

The total aberrancy is the vector sum of the maximum, intermediate, and minimum 

aberrancy vectors. We find the total aberrancy vector to be most useful for structural 

interpretation; however, the intermediate and minimum aberrancy indicate zones of 

conflicting flexure, and depending on the tectonic model, may potentially indicate areas 

of more intense natural fracturing. 
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Figure 2.17. Vertical slice along line AA’ through seismic amplitude co-rendered with 

the inline component of vector dip at approximately 1:1 vertical to horizontal aspect ratio, 

showing the data quality. Location of line shown in the Figure 2.18. There is strong 

acquisition footprint in the shallow section at t = 0.3 s , resulting in vertical stripes in 

inline dip. In contrast, the inline dip estimated at the target Barnett Shale level at t = 0.7 

s exhibits high signal-to-noise. The top of the basement is at t = 0.9 s in this image. Below 

this level, the reflectors become less continuous, resulting in a noisier estimation of the 

inline dip component. The vertical (left square inset) and inline (right square inset) 

derivative operators show the extent of what we call a “long wavelength” operator. Since 

the bin size is 110 ft by 110 ft, the crossline derivative operator (not shown) is a rotated 

version of the inline derivative operator for this data volume. 
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Figure 2.18. Time slices at (a) t = 0.3 s, (b) t = 0.7 s, and (c) t = 1.0 s through the inline 

component of the dip vector. The line AA’ indicates the location of the vertical slice 

through the same volume shown in the previous figure. Time slices through total vector 

aberrancy at (d) t = 0.3 s, (e) t = 0.7 s, and (f) t = 1.0 s. Because aberrancy is the second 

derivative of the two dip components, the time slice in (d) exhibits acquisition footprint 

while the time slice in (f) is noisy due to the poorly imaged basement reflectors. In 

contrast, the time slice in (e) at the target level exhibits high signal-to-noise and accurate 

delineates both faulting and karsting. 
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Figure 2.19. Vertical slices along line AA’ through (a) aberrancy and (b) coherence. 

Arrows indicate anomalies along the top Marble Falls that are better resolved by 

aberrancy.   
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Figure 2.20. Vertical slices along line BB’ through (a) aberrancy and (b) coherence. 

Arrows indicate anomalies along the top Marble Falls that are better resolved by 

aberrancy. The faults in the aberrancy image appear as relatively thin, vertically 

continuous vertical thin lines but as less continuous stair step blotches in coherence.    
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Figure 2.21. Vertical slices along line CC’ through (a) aberrancy and (b) coherence 

through several collapse features. Arrows indicate anomalies along the top Marble Falls 

that are better resolved by aberrancy. The flexure indicated by the magenta arrow in (b) 

exhibits a 19 ms offset over a distance of 260 ft, while the more subtle flexure indicated 

by the white arrow in (a) exhibits only a 8 ms offset over 260 ft.  

  



55 

 

 

Figure A-1. Schematic diagram showing a reflector surface, z(x,y) (in gray) along with 

dip magnitude, dip azimuth, and the unit vector n normal to the reflector surface.  
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Figure B-1. Flexure ( )f   showing one independent extremum. 

 

 

Figure B-2. Flexure ( )f   showing two independent extrema.  
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Figure C-1. Horizon slices along the top Marble Falls through the total aberrancy 

magnitude, dip magnitude, curvedness, and the coherence volume. The total aberrancy is 

the vector sum of the maximum, intermediate, and minimum aberrancy vectors.  
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(a) 

 

 

 

(b) 
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(c) 

 

 

 

(d) 
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(e) 

 

(f) 

 

Figure D-1. Because each aberrancy anomaly is described by a magnitude and an 

azimuth, one can generate a suite of apparent aberrancy by either explicitly filtering the 

attribute volumes, or as shown in this suite of six images at 30° increments, using opacity 

resulting in image that show flexure trending at (a) 0° and -180°, (b) 30° and -150°, (c) 

60° and -120°, (d) 90° and -90°, (e) 120° and -60°, and (f) 150° and -30°. 
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APPENDIX A: COMPUTATION OF DERIVATIVES IN A ROTATED 

COORDINATE SYSTEM 

Reflector dip and the unit normal 

Seismic interpreters commonly define reflector dip vector, u, in terms of an inline 

dip component, p1, and crossline dip component, p2, for time migrated data in units of 

s/km or s/kft 

1 1 2 2
ˆ ˆ 1p p  u x x .        (A-1) 

In this appendix we will assume the x1-axis of the survey to be North, and the x2 

axis to be East, with all azimuths, φ, measured clockwise from North. Other survey 

orientations require additional rotations before any of the rotations described below. 

Computation of curvature and aberrancy requires the conversion of such dips to the depth 

domain, either through depth migration, depth conversion of a time-migrated data 

volume, or more commonly, using a single conversion velocity, resulting in the units of 

p1 and p2 being dimensionless (or more explicitly, in km/km or kft/kft), much as a roofer 

measures the pitch when installing a new roof. Thus, p1 measures how many units down 

the horizon goes for every unit traversed in the x, direction, and p2 how many units down 

the horizon goes for every unit traversed in the y direction. The definition of a vector 

requires a third component, which is a measure of how many units down one goes for 

every unit traversed in the x3 direction. This last value, which is not always obvious, is 

identically 1.0 for all dips.  

Given these definitions, the unit normal to the reflector surface, 1 2 3( , , )n n nn , 

where the axes are chosen such that 3 0n  (Figure A-1), is then 
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n .      (A-2) 

After depth conversion of the vector p, the reflector dip magnitude θ and dip 

azimuth φ are  

                                                                       

,     (A-3a) 

 

and 

2 1ATAN2( , )p p  ,       (A-3b) 

where the result of the function ATAN2 ranges between ±1800. 

  

Derivatives in the original (unrotated) coordinate system 

Using indicial notation, the derivative in the xl (l=1,2,3) direction of vector dip 

component pn (n=1,2) in the unrotated coordinate system can be written as 

,n l l np p ,        (A-4a) 

while the second derivatives in the l and m (m=1,2,3) directions are 

,n lm m l np p  .                                 (A-4b) 

In terms of implementation, we compute the gradient of pn numerically, using a 

convolutional operator described by Marfurt (2006). The second derivatives are 

computed by cascading two first derivative convolution derivative operators. The 

 
1/2

2 2 2

1
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1p q


 
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convolution of the more finely sampled vertical dimension is accelerated by computing 

the convolution as a multiplication in the vertical wavenumber domain.   

 

The vector dip and its derivatives in the rotated coordinate system 

Di and Gao (2016) show that the equations for curvature and aberrancy are much 

simpler if the data are first flattened about the reflector normal at each voxel. Such 

flattening requires a rotation -φ about the original x3-axis, followed by a rotation -θ first 

about the new x2’ axis. The resulting rotation operator R is then  

1 11 12 13 1 1

2 21 22 23 2 2

3 31 32 33 3 3

' cos cos cos sin sin

' sin cos 0

' sin cos sin sin cos

p R R R p p

p R R R p p

p R R R p p

    

 

    

       
      

       
              

          (A-5) 

where p3=1. Writing equation A-5 in indicial notation using the Einstein 

summation convention (Einstein et al., 1938): 

'k kn np R p (k=1,2,3).       (A-6) 

The gradient, l , is a vector operator and can also be rotated: 

' ( 1,2,3)j jl lR j           (A-7) 

while the rotated second derivative operator becomes 

' ' ( 1,2,3)i j im m jl l im jl m lR R R R i         .    (A-8) 

Applying the operator in equation A-8 to the dip components in equation A-6, the 

rotated derivatives of pk’ are thus 

 ' ' 'i j k im m jl l kn n im jl kn m l np R R R p R R R p        ,   (A-9) 
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Where the terms in the parentheses are the previously calculated derivatives in the 

original, unrotated coordinate system given by equation A-4b. For efficiency, we 

compute the required derivatives in the unrotated system then using equation A-9. 
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APPENDIX B: COMPUTING THE EXTREMA OF APPARENT ABERRANCY 

Derivation of the roots to the cubic equation 

Di and Gao (2014) show that the apparent flexure, fψ, at azimuth ψ in the rotated 

coordinate system to be   

3 3
3 2

1 1 1 1 1 2

3 3
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1 2 2 2 2 2
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          (B-1) 

Where z’(x1’,x2’) is their rotated picked surface. Computing the derivative of fψ, 

with ψ and setting the result to zero results in an equation for three extrema: 

3 3 3
3 3 2

1 1 2 1 1 2 2 2 2

3 3 3
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          (B-2) 

Next, Di and Gao (2014) set y=tanψ and define coefficients a, b, c, and d, to 

obtain a simple cubic equation in s: 

.       (B-3) 

 

The coefficients of equation B-3 are third derivatives of the rotated surface z’. In 

our volumetric implementation, we do not pick any surfaces. The third derivatives of z’ 

in equation B-2 then become second derivatives of p1’ and p2’, resulting in   

3 3 2cos ( )
df

ay by cy d
d
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 1 2 1 1 1 2 2 2 2' ' ' ' ' ' ' ' 'b p p p        ,    (B-5) 

 2 2 1 1 2 2 1 1 1' ' ' ' ' ' ' ' 'c p p p        ,    (B-6) 

and 

 1 2 1 1 1 2

1
' ' ' ' ' '

2
d p p       .     (B-7) 

Setting equation B-3 to zero provides the three extrema of the cubic equation. 

There are multiple special cases that would lead to equation B-3 equals to zeros. The first 

is the degenerate case where: 

 
3cos 0  , and 0

df

d




 . 

In this case, 90  .  

For the non-degenerate case where 
3cos 0  , one solves the cubic equation 

3 2 0ay by cy d    .       (B-8) 

 

Computation of the roots to the cubic equation 

Following Fan (1989), one defines the following variables in order to facilitate 

the computation of the  roots of equation B-3:  

2
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3 ,  and
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There are several cases: 

Case 1: 0A B   (three identical roots): 

1 2 3
3

b
s s s

a
     .      (B-10) 

Case 2: 0, 0, 0A B     (only one real root) (Figure B-2):  
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Case 3: 0, 0, 0A B     (three real roots, two of which are identical):  
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Case 4: 0, 0, 0A B     (three independent real roots) (Figure B-1):  
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where 
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The resulting values of ψ represent an azimuth in the rotated plane. To compute 

ψ projected on the x-y plane of the original unrotated coordinate system, one must first 

create a vector, q’, 
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 ,       (B-16) 

and rotate it back using the transpose of R 

q=RTq’.        (B-17) 

The desired aberrancy azimuth measured from North is then ATAN2(q2,q1). 
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APPENDIX C: MAGNITUDE OF ABERRANCY 

The use of color by interpreters is subjective. Many of interpreters prefer the 

display of just the magnitude of aberrancy. We’ve emphasized the points that aberrancy 

is a vector, whereby the azimuth shows the orientation of the flexure. However, there are 

applications (e.g. co-rendering an edge attribute like aberrancy with impedance inversion 

or peak frequency) where one would rather use a grayscale. We have included an 

additional figure that shows coherence, dip magnitude, curvedness, and the magnitude of 

aberrancy, all plotted against a grayscale color bar in the Figure C-1. 
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APPENDIX D: APPARENT ABERRANCY 

The maximum aberrancy is larger in magnitude than the intermediate and 

minimum aberrancy. The problem we have with aberrancy, is that the roots (at least at 

present) cannot be organized in a manner that separates geological features as k1 and k2 

do for curvature. As crossing flexures become larger and smaller, we will encounter 

situations where the maximum aberrancy will follow two separate flexures rather than a 

single flexure that is losing strength when it crosses a second one gaining strength. Our 

current fix for this issue is to provide a suite of apparent aberrancy images, sorted by 

azimuthal windows (Figure D-1). 
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CHAPTER 3 

CORRELATION OF SEISMIC ATTRIBUTES AND GEOMECHANICAL 

PROPERTIES TO THE RATE OF PENETRATION IN THE MISSISSIPPIAN 

LIMESTONE, OKLAHOMA 2 

ABSTRACT 

The rate of penetration (ROP) measures drilling speed, which is indicative of the 

overall time and in general, the cost of the drilling operation process. ROP depends on 

many engineering 30 factors; however, if these parameters are held constant, ROP is a 

function of the geology. We examine ROP in the relatively heterogeneous Mississippian 

Limestone reservoir of north-central Oklahoma where hydrocarbon exploration and 

development have been present in this area for over fifty years. A 400 mi2 (1036 km2) 3D 

seismic survey and 51 horizontal wells were used to compute seismic attributes and geo-

mechanical properties in the area of interest. Previous Tunnel Boring Machines (TBM) 

studies have shown that ROP can be correlated to rock brittleness and natural fractures. 

We therefore hypothesize that both structural attributes and rock properties should be 

correlated to ROP in drilling horizontal wells. We use a proximal support vector machine 

(PSVM) to link rate of penetration to seismic attributes and mechanical rock properties 

with the objective to better predict the time and cost of the drilling operation process. Our 

                                                

2This study is published as - Qi, X., J. Snyder, T. Zhao, K. J. Marfurt, and M. J. Pranter, 2017, Correlation 

of seismic attributes and geo-mechanical properties to the rate of penetration in the Mississippian 

Limestone, Oklahoma, in Mississippian Reservoirs of the Midcontinent: AAPG Memoir 116: AAPG Books 

Ahead of Print, doi:10.1306/13632162M1163795. 
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workflow includes three steps: exploratory data analysis, model validation, and 

classification. Exploratory data analysis using 14 wells indicate high ROP is correlated 

with low porosity, high lambda-rho, high mu-rho, low curvedness, and high P-impedance. 

Low ROP was exhibited by wells with high porosity, low lambda-rho, low mu-rho, high 

curvedness and low P-impedance. Validation of the PSVM model using the remaining 37 

wells gives an R2 = 0.94. Using these five attributes and 14 training wells, we used PSVM 

to compute a ROP volume in the target formation. We anticipate that this process can 

help better predict a budget or even reduce the cost of drilling when an ROP assessment 

is made in conjunction with reservoir quality and characteristics. 

 

INTRODUCTION 

Drilling and completion of horizontal wells are the largest expenses in 

unconventional reservoir plays, where the cost of drilling a well is proportional to the 

time it takes to reach the target objective. Accordingly, the faster the desired penetration 

depth and offset is achieved, the lower the cost of the drilling process. The rate of 

penetration (ROP) is measured in all wells, but rarely examined by geoscientists. ROP 

depends on many factors, but the primary factors are weight on the drill bit, drill bit 

rotation speed, drilling fluid flow rate, and the characteristics of the formation being 

drilled (Bourgoyne et al., 1986). In this study, all wells were drilled within a 2-year period 

using similar drilling parameters, allowing investigation of the formation characteristics 

on the ROP. 
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Various approaches have been applied to estimate ROP. One of the main 

challenges for ROP estimation is the variability in the interplay between the rock and 

drilling speed (Farrokh et al., 2012). A “drill-off test” is a method primarily used to 

determine an optimum ROP for a set of conditions; however, a limitation of the drill-off 

test is that this process produces a static weight only valid for limited conditions during 

the test. The drill-off test does not work well under more complex geological conditions 

(King and Pinckard, 2000). Gong et al. (2007) utilized numerical simulations to 

investigate how rock properties affected penetration rates in Tunnel Boring Machines 

(TBM) and found that an increase in rock brittleness caused an increase in penetration 

rate. Later, a numerical model was created to model penetration rate for TBM’s by Gong 

and Zhao (2009), who found that an increase in compression strength decreased ROP and 

an increase in volumetric joint count increased ROP. 

In addition to well logs and cores, seismic attributes are widely used to predict 

lithological and petrophysical properties of reservoirs. For example, curvature anomalies 

commonly indicate an increase in rock strain, which in turn can be used to infer fractures 

(White et al., 2012). Impedance inversion is currently the most direct seismic-based 

estimate of rock properties. Seismic-impedance inversion results have been used to 

predict fault zones, potential fractures, and lithology in the Mississippian limestone 

(Dowdell et al., 2013; Roy et al., 2013; Verma et al., 2013; Lindzey et al., 2015). Young’s 

modulus, E, and Poisson’s ratio, υ, calculated from bulk density, ρ, compressional 

velocity, Vp, and shear velocity, Vs logs can be used to estimate rock brittleness (Harris et 

al., 2011). 
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Drilling and borehole measurements such as ROP are usually not linearly related 

to volumetric seismic attributes, such that the use of multilinear regression is limited. 

Artificial neural networks (ANN) are commonly used to link attributes to properties such 

as gamma-ray response (Verma et al., 2013), total organic carbon (TOC; Verma et al., 

2016), and well production (Da Silva et al., 2012). The proximal support vector machine 

(PSVM) method is a more recent innovation that has been successfully used to predict 

brittleness (Zhang et al., 2015). PSVM utilizes pattern recognition and classifies points 

by mapping them to a higher dimension before assigning them to categories. PSVM has 

been applied in seismic facies recognition (e.g., channels, mass-transport complexes, etc.) 

(Zhao et al., 2015) and lithofacies classification (Zhao et al., 2014). Zhao et al. (2014) 

used PSVM to categorize shale and limestone on well logs with training inputs of gamma-

ray and sonic logs. 

With the recent onset of unconventional techniques such as horizontal drilling and 

hydraulic fracturing, the Mississippian limestone has seen a growth in activities. Where 

operators once targeted structural traps with vertical wells, now they target stratigraphic 

traps with horizontal wells (Lindzey et al., 2015). Such horizontal wells require a better 

understanding of the variability within the Mississippian limestone to increase the success 

and efficiency of precisely targeted directional wells. Throughout this study, a workflow 

is presented to establish a relationship between seismic attributes and rock mechanical 

properties with ROP to optimize well placement and decrease the drilling cost. 
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GEOLOGIC SETTING 

The Mississippian limestone is a broad informal term that refers to dominantly 

carbonate deposits of the midcontinent (Parham and Northcutt, 1993). The main 

depositional environment represented in north-central Oklahoma is associated with the 

east–west trending ramp margin of the Burlington shelf of a starved basin environment 

(Costello et al., 2013). The thickness of the Mississippian limestone ranges from 350 ft 

(106.7 m) to 700 ft (213.4 m) north to south over the study area (Costello et al., 2013). 

Mississippian limestone in the study area was deposited in a southward 

prograding system near the shelf margin during the Osagean and Meramecian (Costello 

et al., 2013). This environment has resulted in commonly acknowledged facies within the 

Mississippian carbonates, ranging from shale, chert conglomerate, tripolitic chert, dense 

chert, altered chert-rich limestone, dense limestone, to shale-rich limestone (Lindzey et 

al., 2015). In the study area, tripolitic chert is most prevalent in the Upper Mississippian 

zones and rapidly decreases in abundance at depth greater than 150 ft (45.7 m) below the 

pre-Pennsylvanian unconformity (Lindzey et al., 2015). 

During the Early Mississippian, warm oxygenated water covered much of the 

ramp in the study area. Sponge-microbe bioherms formed elongate mounds below storm 

wavebase and produced abundant SiO2 spicules, which led to formation of spicule-rich 

wackestones and packstones (Lindzey et al., 2015). Limestone and cherty limestone rich 

in marine fauna were the dominant sediments deposited at this time (Parham and 

Northcutt, 1993). 
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Regional uplift occurred during the Pennsylvanian, creating the Pennsylvanian 

unconformity that overlies most of the Mississippian in the midcontinent (Parham and 

Northcutt, 1993). The uplift not only removed large sections of rock but also reworked 

and caused alteration at the top of the Mississippian section and created detrital deposits 

of reworked Mississippian-aged rocks (Rogers, 2001). These altered sections of rocks 

comprise highly porous tripolitic chert and very dense glass-like chert. The leaching due 

to meteoric waters during relative sea-level fall has led to karstification and the formation 

of caverns and solution-channel features (Parham and Northcutt, 1993). 

In the study area, diagenesis left intensely altered Mississippian limestone after 

deposition, and one of the most prominent of these diagenetic features is silica 

replacement (Lindzey et al., 2015). Water washed through the pores and redistributed the 

siliceous volcanic ash and some macrofossils, which left extensive microscale porosity 

(Lindzey et al., 2015). The dissolved silica precipitated in pore space and partially or 

completely replaced some carbonate fossils (Lindzey et al., 2015). Pore sediment 

structures are not well preserved due to the strong diagenetic overprint. Chert nodules are 

present, especially in highly reworked and bioturbated zones. Fractures are often filled 

with silica or calcite (Costello et al., 2013). 

Molds, fractures, channels, and especially vugs are the most prominent pore type 

observed in the Mississippian interval of the study area (Lindzey et al., 2015). Vuggy 

porosity is often associated with tripolite but also exists in the other dominant facies. In 

many places where silica replacement took place, extensive secondary porosity formed 

in the shape of vugs (Rogers, 2001). Moldic porosity is also common, especially in 
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packstone and grainstone facies that exhibit more skeletal grains. Moldic porosity 

develops by dissolution of sponge spicules (Montgomery et al., 1998). Both fracture and 

channel porosity exist but are less abundant compared to the other pore types (Lindzey et 

al., 2015). 

 

METHODOLOGY  

In 2010, Chesapeake Energy acquired a 400 mi2 (1,036 km2) 3-D seismic survey 

in Woods County, Oklahoma (Figure 3.1). The seismic processing workflow included 

refraction statics, velocity analysis, residual statics, prestack time migration, frequency–

space-time (FXY) predictive noise rejection, and Ormsby filtering. The overall data 

quality is excellent. The signal-to-noise ratio (S/N) is relatively high and the wavelet 

amplitude appears continuous throughout the Mississippian target. The data set includes 

digital well logs and mud logs for 83 wells consisting of 52 horizontal and 31 vertical 

wells. For the ROP analysis, only horizontal wells were used. These data consisted of 52 

gamma-ray logs, 51 mud logs, and 18 of them are open-hole logs. 

The wells in the area of interest were drilled by the same operator in a similar time 

period; therefore, we assume consistency between the wells regarding weight on bit, mud 

type, and bit type. This study evaluates the impact of geological properties on the ROP. 

The workflow contains three steps: training, validation, and classification (Figure 3.2). 

Prestack inversion and seismic-attribute volumes were generated for the Mississippian 

limestone and converted to depth. Geomechanical rock properties (from seismic 

inversion) and seismic-attribute values were interpolated and then extracted along each 
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wellbore every 2 ft (0.61 m) corresponding to the well-coordinate system from the mud 

logs. The mud logs give ROP in units of min/ft, which is an inverse velocity. We define 

the inverse velocity to be the cost of penetration (COP). The mean and standard deviation 

of COP for the 51 horizontal wells resulted in two categories: high and low COP with 

average values of 27 and 2.5 min/ft (89 and 8.2 min/m), respectively (Figure 3.3). Each 

coordinate location is assigned a COP category and a set of values including seismic 

attributes and geomechanical rock properties. The category and values for 30% of the 

wells were used as inputs to train the model. The remaining 70% of the wells were used 

to validate the model. When an optimal accuracy is reached, the model is used to classify 

the entire data set where wells have yet to be drilled and no COP data are available. 

 

Time-Depth Conversion 

Formation tops for the Lansing, Mississippian, and Woodford units were 

interpreted on the time-migrated seismic data in the time domain and on well logs in the 

depth domain. A conversion velocity model ( ) was built using commercial 

software PETREL (© Schlumberger), where velocity, V0, is defined at the top of the 

Lansing datum, . Depth, Z, is calculated by adding the depth below the Lansing, 

 to the datum. The well tops were used as a correction 

factor in the creation of the velocity model. Well data were assigned more weights than 

the seismic data. We followed the recommended settings to build the velocity model, such 

that a moving-average method was used as an interpolation approach for creating the new 

 0 ,  V x y

 0 ,  Z x y

   0 0 ,  ,Z V x y t t x y     
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depth surfaces and an inverse-distance-squared algorithm was used to compute the 

inverse distance during the interpolation processes. Because the seismic horizons honored 

the faults in the study area, the velocity model is computed taking faults into 

consideration. 

Geometric Attributes 

Geometric attributes for this data set were generated using software AASPI 

developed at the University of Oklahoma. The attributes generated included: most 

positive curvature, k1, most negative curvature, k2, curvedness, , shape index, 

, coherent energy, and coherence. These attributes were chosen 

because of their ability to delineate the structural complexity in the area of interest. The 

sampling interval of these attributes is the same as the original seismic data volume, 110 

× 110 ft (33.5 × 33.5 m). To match the mud log coordinate spacing, linear interpolation 

was used to generate values at 2 ft (0.61 m) intervals. 

 

Geomechanical Rock Properties 

Geomechanical rock properties were derived from prestack inversion results using 

commercial software Hampson Russell (©CGG GeoSoftware). Data preconditioning 

steps, prior to a prestack seismic inversion included phase shift, bandpass filtering (10–

15–110–120 Hz), parabolic radon transform, and trim statics. 
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Exploratory Data Analysis 

Exploratory data analysis consisted of evaluation of two different families of 

volumetric attributes as input to PSVM classification: geometric attributes and 

geomechanical rock properties with the goal of determining which attributes are most 

sensitive to COP in the heterogeneous Mississippian limestone. 

Geometric attributes are used to aid in the interpretation of folds and faults. Based 

on the TBM observation by Gong et al. (2007), we hypothesize that COP is affected by 

faults and fractures. Therefore, we examined the correlation of the structural attributes 

coherence, dip magnitude, curvature, and curvedness to our two well clusters (Figure 

3.6). The attribute histograms indicate little to no separation for coherence and dip 

magnitude; however, curvature and curvedness exhibit measurable separation. Figure 4D 

indicates that low curvedness correlates to low COP. 

TBM analysis by Gong et al. (2007) also suggested that mechanical properties 

play a significant role in the variation of COP. Using prestack seismic inversion we 

computed porosity, lambda–rho, , mu–rho, , and P-impedance volumes to analyze 

the Mississippian Limestone (Figure 3.5). The P-impedance measures the product of 

density and seismic P velocity. λρ and μρ are used to estimate lithology and 

geomechanical behavior such as the brittleness index (Perez and Marfurt, 2013). Figure 

3.4B, C, shows the high degree of separation for these rock properties. Low COP is 

related to low porosity, high λρ, high μρ, and high P-impedance values. Conversely, high 

porosity, low λρ, low μρ, and low P-impedance values are indicative of high COP. These 

differences were used to train the PSVM model and classify COP data based on the 

 
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geomechanical rock properties within the Mississippian interval in the study area 

(Figure3.10). 

 

RESULTS 

Interactive Classification 

The rectangular frame separating the dark gray circle from the light gray circle in 

Figure 3.7B is called a discriminator. Note that many of the measurements cannot be 

separated in Figure 3.7A. Because Gong and Zhao (2009) found that increased brittleness 

improved TBM performance, we examine brittleness as a means to predict COP. Altamar 

and Marfurt (2014) used geomechanical properties to predict brittleness index for shale 

plays in the U.S.A. We display a crossplot in Figure 3.9 where each sample was color-

coded by COP and plotted in a 2-D space. Then we manually defined high COP (red), 

low COP (green), and mixed COP (yellow) polygons to define a 3-cluster template. A 

cross-plot of λρ and μρ in Figure 3.9A illustrates the limitations of manually picking 

clusters in two-attribute space, where 50% of the voxels fall into the mixed COP (yellow) 

class. Figure 3.9B, a cross-plot of ρ and Vp/Vs, further shows this problem with the 

handpicked clusters where an even larger number of voxels falls into the mixed (yellow) 

class. Figure 3.8 suggests improved class separation when using three attributes. 

However, drawing a template is significantly more challenging than in Figure 3.6. 
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PSVM Classification 

Visualization and interactive visualization with more than three attributes is 

intractable. PSVM addresses this problem in two ways. First, it projects the data, in this 

case, two attributes defining a 2-D space that cannot be separated by a linear 

discriminator, into a higher 3-dimensional space (Figure 3.7) where separation by a 

planar discriminator is possible. Second, because the discriminator generation is machine 

driven rather than interpreter driven, one can introduce more than three input attributes. 

We used the five attributes, curvedness, λρ, μρ, porosity, and P-impedance, which found 

to exhibit good histogram separation in all exploratory data analysis steps (Figure 3.3). 

The PSVM method allows us to create a classification model based on a set of training 

input. As the dimensionality of the input increases, the model becomes more accurate at 

classifying COP within the data set. For instance, during the validation process, we found 

the model to be sensitive to porosity. Before porosity was introduced to the model, the 

accuracy was 88.9%. When porosity was added as a new degree of dimensionality, the 

accuracy increased to 94%. This allowed for the creation of an optimal model with five 

degrees of dimensionality for COP classification across the study area. 

A comparison of the histograms (Figure 3.4) shows that the generated PSVM 

model is more sensitive to geomechanical rock properties than geometric attributes. 

Indeed, strain (measured by curvature) is only one component necessary to generate 

natural fractures. Stearns (2015) found fractures measured in horizontal image logs were 

highly correlated to gamma-ray (lithology) response and only less connected to curvature, 

if at all. Nevertheless, this is not to say structural attributes such as curvature have no 
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effect on the model. We observed that higher COP values are linked with higher 

curvedness, which indicated that it is harder to drill through the formation with higher 

structural complexities. Studies have found that large curvature values are related with 

natural fractures, which may or not be cemented (Bourgoyne et al., 1986; Hunt et al., 

2011). Such heterogeneities may slow the drilling progress. Porosity is another good 

indicator of microstructures associated with fracture geometry. Low porosity observed in 

low-COP wells may seem counter-intuitive at first; however, woodworkers observe that 

there are few bit problems when drilling through oak, but that the bit often gets stuck or 

even breaks when drilling relatively “soft” pine (Neher, 1993). Again, using the 

woodworker’s analogy, one uses different saw blades for different woods. The bits used 

in this survey may have been chosen to deal effectively with the very hard chert. 

 

CONCLUSIONS 

COP is a major factor affecting the time spent drilling a well and is directly related 

to the overall cost of the drilling process. This is the first study that links COP to seismic 

data and seismic-related attributes. Clustering five attributes using a PSVM classification 

method, we were able to correlate COP with seismic attributes and geomechanical rock 

properties and obtain a confidence of 94%. Low COP was observed in wells encountering 

low porosity, high λρ, high μρ, low curvedness, and high P-impedance. High COP was 

observed in wells encountering high porosity, low λρ, low μρ, high curvedness, and low 

P-impedance. By using this workflow, we can use COP of previously drilled wells with 

3-D seismic data to predict COP over the study area. Whereas one may still wish to drill 
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a specific target objective, we claim that this statistical analysis technique will provide a 

more accurate cost estimate and help choose the appropriate drilling equipment.



87 

 

CHAPTER 3 FIGURES 

(a) 
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(b) 

 

 

 

 

Figure 3.1. (A) Major geologic provinces of Oklahoma with the area of interest outlined 

in red. (Modified from Johnson and Luza, 2008; Northcutt and Campbell, 1996). (B) a 

type log showing the Mississippian Limestone section in the area of interest (Modified 

from Lindzey et al., 2015). 
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(a) 
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(c) 

 

 

 

 

 

(d) 

 

 

Figure 3.2. (a) Workflow for attribute generation and depth conversion, (b) data analysis 

of the extracted parameters, (c) the training process, and (d) the validation process. 
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Figure 3.3. The mean and standard deviation of COP for 51 horizontal wells that fall 

within the 3D seismic survey. We separate these wells into two classes: seven high COP 

(the grey cluster) and forty-four low COP wells (the white cluster). The dashed line is 

called the discriminator between the two clusters. 
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Figure 3.4. Exploratory data analysis using the workflow shown in Figure 3.2b. Showing 

five attributes exhibiting good histogram separation between high COP (in dark gray) and 

low COP (in light gray) along all well trajectories: (a) curvedness, (b)  , (c) , (d) P-

impedance, and (e) porosity. (f) Results of the validation test using seven low and seven 

high COP wells which are highlighted by gray circle in Figure 3.3. With increases in the 

number of inputs (from one to five), the accuracy increases accordingly.   
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Figure 3.5. Horizon probes along the top of Mississippian Limestone through (a) 

porosity, (b) λρ, (c) µρ, and (d) P-impedance volumes. Red and green well paths denote 

representative high and low COP wells, respectively. 

 

 

 

a) b) 

d) c) 
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Figure 3.6. Co-rendered the most positive (k1) and the most negative (k2) curvature along 

the top of the picked Mississippian horizon with two representative high and low COP 

wells paths. The opacity curve is applied to k1 and k2. 
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Figure 3.7. (a) when two different clusters are impossible to separate by a line in a 2-D 

space. (b) increasing the dimensionality to 3 through a nonlinear attribute transformation 

allows separation of the two classes by a plan. 
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Figure 3.8. (a) Similarly, high and low COP is difficult to discriminate when using λρ 

and curvedness in a 2-D space. (b) Discrimination becomes easier by adding a third 

porosity axis. 
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Figure 3.9. (a) An interactive classification in λρ-μρ space. Along the wellbore we have 

λρ, μρ and COP triplets. Each sample is color-coded along the well by its COP and plot 

in λρ-μρ space. Red, green and mixed cluster polygons are hand-drawn polygons around 

each cluster. This template is then used to color-code voxels between the top of the 

Mississippian Limestone and the top of Woodford. Red and green well paths denote 

representative high and low COP wells. In (b) Classification in ρ-Vp/Vs space. Triplets of 

ρ, Vp/Vs and COP are sampled along the wellbore, crossplotted, and a new template 

constructed and used to color code the Mississippian interval. Note that neither template 

accurately predicts the COP of these two wells.  

(a) 

(b) 
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Figure 3.10. Horizon probe of COP on the Mississippian Limestone computed using the 

five attributes shows in Figure 3.4-3.6 and a PSVM classifier. Note that the two 

representative wells now fall along voxels corresponding to their observed COP value. 
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CHAPTER 4 

CALIBRATING VOLUMETRIC ABERRANCY FRACTURE 

PREDICTION USING BOREHOLE IMAGE LOGS AND MUD 

LOGS: APPLICATION TO THE MISSISSIPPIAN LIMESTONE 3 

ABSTRACT 

Seismic attributes have been widely used to capture the morpholocial features 

seen in seismic data. Nevertherless, it is still a challenge to map subtle fautls and other 

discontinuies using relatively low resolution 3D seismic data. Volumetric aberrancy 

measures the gradient or lateral change of curvature, which anomalies would track the 

sub-seismic faults and flexures makes it complementary to coherence and curvature. At 

present, no direct relationships have been established between aberrancy vectors and 

fractures associated with faults. This study explores whether volumetric aberrancy can be 

statistically validated to be a fracture predicition proxy in undrilled parts of the survey. A 

suite of geometric including aberrancy vectors and geomechanical attributes were 

generated for the Mississippian Limestone target containing five interpreted borehole 

image logs and 52 mud log. With the use of Convolutionary Neural Network, eight 

statistically significant seismic attributes were chose to model fractures seen on the image 

logs over the Mississipppian Limestone horizon with the total accuracy 65%.  

                                                

3 This study is prepared to publish as – Qi, X., M. Pranter, and K. Marfurt, Calibrating volumetric 

aberrancy fracture prediction using borehole image logs and mud logs: application to the Mississippian 

Limestone. 
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INTRODUCTION 

Seismic Attributes 

Since the mid-1990s, seismic attributes have been widely used to capture the 

morphological features seen in seismic data. For example, the coherence attribute 

developed in the middle 1990s captures the same fault discontinuities that Rummerfield 

(1954) saw in the seismic amplitude data (Chopra and Marfurt, 2005). Nevertheless, it is 

still a challenge to map subtle faults and other discontinuities using relatively low 

resolution 3D seismic data that are more easily imaged using higher resolution cores, 

electric logs, and horehole image logs.  

Volumetric aberrancy measures the lateral change (or gradient) of the curvature 

of a picked or inferred surface (Schot, 1978) and is complementary to curvature and 

coherence. While coherence measures disruptions in these surfaces, dip, curvature, and 

aberrancy measure changes in their orientation and morphology. Following horizon-

based aberrancy calculation introduced by Di and Gao (2014), Qi and Marfurt (2018) 

extended aberrancy to provide volumetric results of uninterpreted seismic data volumes. 

In extensional terrains exhibiting normal faults, an aberrancy anomaly will track a 

coherence anomaly and fall between a most-positive curvature anomaly defining the 

footwall and a most-negative curvature anomaly defining the hanging wall. Aberrancy 

often delineates faults which may not exhibit a coherence anomaly when the throw falls 

below seismic resolution,  is distributed across a suite of smaller conjugate faults, or is 

smeared due to inaccurate velocities and/or statics applied in the processing (Qi and 

Marfurt, 2018). At present, no direct relationships have been established between 
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aberrancy vectors and fractures associated with faults. This study explores whether 

volumetric aberrancy can be statistically validated to be a fracture predicition proxy in 

undrilled parts of the survey. 

Fractures and Image Logs 

Since their development in the late 1960s (Zemanek et al., 1969), borehole image 

logs have been widely used to map fractures in the subsurface (Wu and Pollard, 2002). 

More recently, several studies have explored the correlation between seismic attributes 

and fracturing using borehole image logs. In his analysis of core and borehole images in 

a North-Central Oklahoma Mississippian Limestone survey, Stearns (2015) found that 

curvature is an excellent measure of structural deformation and hence strain. However, 

fractures measured in a suite of horizontal image logs were more strongly correlated to 

lithology than to strain. Cook (2016) conducted a multi-linear regression analysis of six 

geometric attributes with fractures measured in horizontal image logs in a Northwest 

Oklahoma Mississippi Limestone survey and found that coherence images of karst 

features seeb on surface seismic data correlated strongly with natural fractures seen on 

image logs. Staples (2011) built a suite of clay models, induced extensional and 

compressional faults, measuring the degree of deformation using laser scans and the 

fracture density usng photographic images, and found an excellent (though nonlinear) 

correlation between curvature and fracture density. He then confirmed this correlation 

between curvature measured on a 3D seismic survey and seven horizontal image logs 

acquired in the Hunton Limestone of the Cherokee Platform, OK. White (2012) extended 

Staple’s (2011) clay model experiments to include simple folding, confirming the 
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correlation of curvature to fractures. He further validated this correlation between 

fractures and folding on outcrops seen in Cambrian limestones in the Arbuckle Mountains 

of south-central Oklahoma, as well as between fractures measured in image logs and 

curvature seen on seismic data in the Mississippi Limestone in an Osage county, OK 

survey. Given these observations, and the fact that aberrancy is a lateral derivative of 

curvature, we hypothesize that aberrancy will be computed from 3D seismic data will be 

correlated to faults and fractures seen on image logs  acquired in horizontal wells.  

Cost of penetration (COP) measures how fast the drill bit go through formation. 

Increases in rock brittleness may cause an increase in penetration rate (Gong et al., 2007). 

Qi et al. (2017) explored the correlation between COP with structural attributes, and 

found high curvature values to be linked with lower COP values. Since aberrancy 

measures the gradient of curvature, we hypothesize that aberrancy can show statistically 

significant correlation with COP.  

Linear vs. Nonlinear Correlation 

White (2012) showed that drilling and borehole measurements such as fracture 

intensity are not linearly related to volumetric seismic attributes. Specifically, the 

initiation of fractures is preceded by an elastic stage of deformation, whereby the rock 

may be strained, but not fractured. After some minimum level of strain, the first fracture 

occurs, with more fractures monotonically increasing until the  distance between fractures 

approximates the layer thickness. After reaching this “fracture saturation” point, 

increasing strain isg accomodated by movement along existing fractures, which are now 

named faults. Microseismic experiments also indicate nonlinear behavoir, with Perez and 
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Marfurt (2015) finding brittle rocks to accommodate most fracture events, while ductile 

rocks accommodate few, if any fracture events, suggesting some brittleness failure 

threshold. These two nonlinear observations indicate that the use of multilinear regression 

is limited.  

In contrast to multilinear regression, neural networks are able to identify nonlinear 

relationships and have been successfully used in correlating well measurements to 

seismic attributes for almost two decades. To estimate porosity in wells, Leiphart and 

Hart, (2001) frist conducted a multi-linear regression analysis. Though the correlation 

between seismic attribues and observed porosity logs was good, exhibiting an R2=0.74 in 

Lower Brush Canyon channeled sandstones, the estimated porosity volume did not 

correlate to known geologic features.  They then trained a probabilistic neural network to 

look for a nonlinear relationship with the input of seven seismic attributes, including 

amplitude, frequency, P-wave impedance, and others. The neural network results not only 

exhibited a geologically realistic porosity distribution but also provided a better 

correlation (R2=0.82).  

We begin this paper with an overview of the Mississippian Limestone in north-

central Oklahoma, previously analyzed by Cook, (2016).   Next, we review the principals 

of volumetric aberrancy. We then use Cook’s (2016) image log and Qi et al.’s (2018) 

mud log analyses as calibration data to determine if we can establish a quantitative 

relation between fractures, COP, and seismic aberrancy.  Building on observations by 

Stearns (2016), we combine our aberrancy volumes with other geometric and 

geomechanical seismic attributes as input to a neural-network computer analysis. We 
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conclude with a summary of our findings on the use of volumetric aberrancy as an aid to 

structural interpretation and quantitative fracture prediction. 

 

GEOLOGIC SETTING 

The Anadarko Basin is one of the richest oil and gas reservoirs in the United 

States. The structural elements of the basin were created through faulting and uplift of the 

Wichita Orogeny during the Pennsylvanian Period. The basin is bounded to the east by 

the Nemaha Uplift and to the south by the Wichita Mountains and Amarillo Uplift. The 

basin shallows as it moves north onto a shelf (Ball et al., 1991). This shelf, better known 

as the Anadarko Shelf, was formed during the Permian period. The area of interest is in 

Woods County, located in the northwest part of Oklahoma within the Anadarko Shelf and 

is bounded by the Cimarron River to the west and south. Woods County has been an 

active petroleum production area since 1953, when the county first began producing oil 

(Bowles, 1961). 

Our study is primarily focused on the Mississippian section which was deposited 

during the Late Devonian through early Pennsylvanian. During Mississippian time, the 

mid-continent region that is now northern Oklahoma was at 20° south latitude, covered 

by a well-oxygenated, shallow sea. The shelf margin sloped gradually from relatively 

shallow water (Mazzullo et al., 2011) to a deeper seaway to the south that paralleled the 

converging plate boundaries (Scotese, 1999). This plate boundary may have relesed 

volcanic emissions that provided the source of slica (Watney et al., 2001). Parallel to the 

shelf margin, sponge-microbe bioherms formed elongated mounds which led to the 
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deposit of spicule-rich wackestones and packstones (Watney et al., 2001). The shelf 

region was a highly productive carbonate factory located around the mounds.  

The Mississippian Limestone in the study area was deposited in a southward 

prograding system near the shelf margin during approximately 360 to 320 million years 

ago (Costello et al., 2013). Subsurface units of the Mississippian system in Woods County 

include rocks of the Chesteran, Meramecian, Osagian, and Kinderhookian Series (Figure 

3.1). Lindzey (2015) created a type log in the study area using a well with both core 

sample and log data. The type log shows that the Chesterian interval is absent in the study 

area, subcropping south of the seismic survey.  

The thickness of the Mississippian Limestone ranges from 350 ft (106.7 m) to 700 

ft (213.4 m) north to south over the study area (Costello et al., 2013). The thinning in the 

Mississippian strata is caused by the significant uplifting and erosion of the mid-continent 

(Watney et al., 2001). This environment has resulted in commonly acknowledged facies 

within the Mississippian carbonates, ranging from shale, chert conglomerate, tripolitic 

chert, dense chert, altered chert-rich limestone, dense limestone, to shale-rich limestone 

(Lindzey et al., 2015). In the study area, tripolitic chert is most prevalent in the Upper 

Mississippian zones and rapidly decreases in abundance at depths greater than 150 ft (45.7 

m) below the pre-Pennsylvanian unconformity (Lindzey et al., 2015). 

The Mississippian strata underwent four stacked transgressive-regressive cycles, 

which make up one third-order transgressive-regressive cycle bounded by unconformity 

surfaces above and below (Manger, 2014) who proposes that sufficiently drops in reletive 

sea level would lead to exposure of the sponge mounds, thus allowing for weathering and 
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diagenetic alteration. In the study area, diagenesis left intensely altered Mississippian 

Limestone after deposition, where one of the most prominent of these diagenetic features 

is silica replacement  (Lindzey et al., 2015). Water flowed through the pores and 

redistributed the siliceous volcanic ash and some macrofossils, which left extensive 

micro-scale porosity (Lindzey et al., 2015). This dissolved silica precipitated in pore 

space, partially or completely replacing some carbonate fossils (Lindzey et al., 2015). 

Pore sediment structures are not well preserved due to the strong diagenetic overprint. 

Chert nodules are present, especially in highly reworked and bioturbated zones. Fractures 

are often filled with silica or calcite (Costello et al., 2013).   

Tectonic deformation and diagenetic alteration of the rock are the two leading 

causes of fracturing in the Mississippian (Cook, 2016).  Mazzullo et al. (2011) found that 

fracturing in the Mississippian Limestone is associated with lithology, such that fractures 

occur more often in the more brittle chert and limestone, and less often in shaly limestone. 

Diagenesis of the chert and cherty limestone as described above could also contribute to 

fracture intensity in the chert and cherty limestone lithofacies (Manger, 2014). Manger 

highlights shrinkage fractures from de-watering along a deeper portion of Mississippian 

Limestone section Roadcut in Arkansas. Young (2010) found that fracturing in the 

Mississippian occurred due to diagenesis during subaerial exposure that occurred during 

uplift and erosion, burial, and hydrothermal alteration post burial. Trumbo (2014) 

speculated that fracturing in the Mississippian contributes to intermittent production in 

vertical wells in reservoirs with no matrix porosity.  
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METHOD 

Aberrancy 

The detailed description of aberrancy computation can be found in Qi and Marfurt 

(2018). After rotating the (x1, x2, x3) coordinate system to one oriented about the reflector 

dip and each voxel, the apparent aberrancy (or flexure), f(ψ) at azimuth ψ is 
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where the primes indicate the rotated coordinate system and where  p1
’ and p2

’ are the dip 

components along rotated axes x1’ and x2’ measured in m/m.  

The extrema of the aberrancy are computed by setting the value of ∂f(ψ)/∂ψ=0. 

Recall that vector dip, p, is computed using the first derivative of the surface, z(x1, x2), 

and has one extrema, the dip magnitude, and the dip azimuth, which define a single dip 

vector. Also recall that curvature is computed using the second derivatives of the surface 

z(x1, x2) and has two extrema, the most-positive and most-negative principal curvatures 

and their strikes. Aberrancy is computed using the third derivatives (equation 1) of the 

surface z(x1, x2) and therefore will have in general three extrema. We will call these 

extrema the maximum, intermediate, and minimum aberrancy vectors expressed by its 

magnitude, f(ψ) and its azimuth ψ. The numerical roots of the minimization problem are 

in terms of tan ψ, such that initially ψ ranges between ±900. Inserting these roots into 



111 

 

equation 1 may provide negative values of aberrancy f(ψ). It is obvious that a negative 

flexure to the north is equivalent to a positive flexure to the south. For this reason, in our 

implementation, we define our resulting maximum, intermediate, and minimum 

aberrancy magnitudes, fmax, fint, and fmin, to be strictly positive, with the corresponding 

azimuths ψmax, ψint, and ψmin ranging between ±180°.  

The analysis and display of three roots can be cumbersome. A simple fexure is 

represented by a finite value of fmax, with fint = fmin = 0. Intersecting flexures give rise to 

non-zero values of fmin and fint. We hypothesize that non-zero values of fint, and fmin, may 

be indicators of increased shear strain giving rise to fractures measureable by image logs. 

For structural interpretation such as picking faults, we use the total vector aberrancy, ftot, 

which is simply the sum of the three aberrancy vectors. 

Seismic data, mud logs and image logs 

In 2010, Chesapeake Energy acquired a 400 mi2 (1036 km2) 3D seismic survey in 

Woods County, Oklahoma (Figure 3.1a). The seismic processing workflow included 

refraction statics, velocity analysis, residual statics, prestack time migration, frequency-

space-time predictive noise rejection, and bandpass filtering. The overall data quality is 

excellent. The signal to noise ratio (S/N) is relatively high and the wavelet amplitude 

appears continuous throughout the Mississippian target (Figure 3.1b). The data set 

includes digital well logs and mud logs for 83 wells, consisting of 52 horizontal and 31 

vertical wells. For the cost of penetration (COP) calibration analysis, we will only use the 

horizontal wells. The horizontal well data consisted of 52 gamma-ray logs, 51 mud logs, 

with 18 of them being open-hole logs. Building on our previous findings (Qi et al., 2017), 
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we examine 51 horizontal wells drilled by the same operator in a similar time period; 

allowing us to assume consistency between the wells regarding weight on bit, mud type, 

and bit type. The mean and standard deviation of COP for the 51 horizontal wells resulted 

in two categories: high and low COP with average value of 27 and 2.5 min/ft (89 and 8.2 

min/m), respectively (Figure 3.3).  

For the borehole image logs calibration analysis, five electrical borehole image 

logs were interpreted from electrical borehole imaging tools to map open conductive 

fractures by our colleague Stephanie Cook (Figure 4.1). Both open, conductive fractures 

and mineralized, non-conductive fractures were observed in borehole images (Cook, 

2016). However, the mineralized, non-conductive fractures were removed from her 

interpretation results. The fracture intensity log is calculated by taking the area of the 

fracture surface and then dividing by the unit volume of the borehole along one foot 

increments resulting in measurements exhibiting units of ft2/ft3 = 1/ft (Figure A1). A 

detailed description of the borehole image interpretation can be found in Cook (2016).  

 

Analysis 

Pre-stack inversion and seismic-attribute volumes were generated for the 

Mississippian Limestone target and converted to depth. The detailed description of 

seismic depth conversion can be found in Qi et al., (2017). Geomechanical rock properties 

(from seismic inversion) and seismic-attribute values were then extracted along each 

wellbore every 110 ft (34 m) corresponding to the well-coordinate system from both mud 

logs and image logs. We applied a 110 ft (34 m) sliding Backus averaging window to the 
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fracture area logs and mud logs to upscale them to the seismic 110 ft by 110 ft bin size 

(Figure A2). Assuming that fractures directly influence permeability, Backus averaging 

provides an appropriate upscaling useful for fluid flow calculations (Cook, 2016). 

Likewise, Backus averaging preserves the time taken to drill through a given well distance. 

Once upscaled, we construct a vector of seismic geometric and geomechanical attributes 

at 110 ft increments along each horizontal well bore. 

Neural network is a generic name for a large class of machine learning algorithms, 

including but not limited to perceptrons, Hopfield Networks, Boltzmann Machines, Fully 

Connected Neural Networks, Convolutional Neural Networks and many more 

(Krizhevsky et al., 2012). In the late 1980s, Fully Connected Neural Networks were the 

most popular neural network algorithm used. Unfortunately, this type of network has a 

large number of parameters, and does not scale well (Krizhevsky et al., 2012). This 

network has been superceded by the less fully connected Convolutional Neural Network  

(CNN),  where neurons share weights and each neuron is connected to only a few neurons 

in the previous layer. CNNs have been successfully appied to problems in  computer 

vision and signal processing (Krizhevsky et al., 2012). A CNN consists of sequence of 

layers, and the three main types of layers to buid CNN are convolutional layers, max-

pooling, and fully-connected layers. In our fracture prediction study, we first train and 

validate the CNN using the known fracture density data interpreted from five image logs, 

and then predict the fracture density in the unknown region. The input to the CNNs are 

eight seismic attributes extracted along the boreholes, which are then transformed using 

15 hidden layers (Figure 4.2). The algorithm evaluates alternative weights, W, and 
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biases, b, at each hidden layer of the CNN, that when combined with the output of other 

layers, provides a nonlinear prediction of the measured fracture density training data 

(Hagan et al., 1996).  In this study, we used 15 hidden layers, with intermediate results 

from each layer passed to the last fully-connected output layer to support regression 

(Figure 4.2). The algorithm iterates until it “learns” the relationship (finds the optimum 

values of W and b) between the input attributes and fracture density. 179 eight-element 

vectors were used to train the CNNs, with the proportion of 70% (125 samples), 15% (27 

samples), and 15% (27 samples) to train, validate, and test the model, respectively. The 

CNN analysis is conducted using a Neural Network Toolbox developed by MATLAB 

R2017b (Mathworks, 2017). 

 

RESULTS 

Coherence andcurvature  

Coherence measures the similarity between waveforms on neighboring traces, and 

helps delineate faults and other discontinuities in the seismic data. In contrast, curvature 

measures more continuous reflector deformation, with folded reflectors exhibiting high 

curvature and planar reflectors zero curvature. When calibrated to image logs, most-

negative and most-positive curvature can serve as a means of predicting fractures from 

surface seismic data (Chopra and Marfurt, 2007). The horizon slice in Figure 4.3 alongh 

the top Mississippian Limestone in this survey shows two large strike-slip faults (yellow 

arrows) and one reverse fault (white arrow). One strike-slip fault runs from the northeast 

corner all the way to the southwest corner of the survey where the target horizon is 
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upthrown to the northwest and downthrown to the southeast; the second strike-slip fault 

extends in southeastern portion of the survey. The reverse fault runs north-south, 

extending south of the strike-slip fault described above. Notice that the major faults 

exhibit a positive curvature anomaly on the footwall, which is laterally offset from a 

corresponding negative curvature anomaly on the hanging wall. The offsets of the large 

northeast-southwest strike-slip fault can be as large as 100 ft (Cook, 2016).   

Aberrancy  

Aberrancy measures the lateral change of the curvature along a picked or inferred 

surface, and not only detects major faults that exhibits finite displacement, but also more 

subtle “sub-seismic-resolution” faults that appears as flexures (Qi and Marfurt, 2017). 

Figure 4.4 shows the same slices as in the previous image, but now through the total 

aberrancy volume. The total aberrancy vector provides a single vector volume appropriate 

for structural interpretation. The previously identified strike-slip and reverse fault 

indicated by white and yellow arrows are delineated by total aberrancy. Blue arrows 

indicate several additional flexures seen in the horizon slice.  

Geomechanical and texture attributes  

The next suite of attributes which contributed to fracture characterization are 

geomechanical attributes. Using prestack seismic inversion, we computed lambda-rho, 

mu-rho, and P-impedance volumes. The P-impedance measures the product of density 

and seismic P-wave velocity. Lambda-rho and mu-rho are used to estimate lithology and 

geomechanical behavior such as brittleness index (Perez and Marfurt, 2013; 2015) (Table 
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4.1). We also constructed a chaos volume, faults and fractures result in more disorganized 

image (Figure 4.5).  

Aberrancy calibration  

To investigate the interpretational value of the minimum, intermediate, and 

maximum aberrancy (aberrancy vectors), we performed both qualitative (visualization) 

and quantitative (numerical) analysis. We first display five image logs against the 

aberrancy attributes (Figure 4.6-4.10). Recall that there are three aberrancy attribute 

vectors. For a simple linear flexure there is only one aberrancy vector – the maximum 

aberrancy. Flexure that defined a curved fault or fold, or flexures that cut other flexures 

give rise to non-zero minimum and intermediate aberrancy vectors. Examining Figure 

4.8, note that high values of the minimum y and intermediate aberrancy magnitude 

indicated by the white arrow correlate with relatively low areas of fracture density area. 

In contrast, high values of maximum aberrancy magnitude correlate with areas of 

relatively high fracture density area indicated by yellow arrows in Figure 4.7. Because 

total aberrancy is the vector sum of three aberrancy vectors, high total aberrancy 

magnitude values correlate with both relatively low and high fracture density indicated 

by white and yellow arrows (Figure 4.6), indicating that this may be a poor candidate to 

use in fracture prediction. 

To further evaluate these relations, we calculated the linear correlations between 

each of four aberrancy magnitude volumes and fracture density. The model shows a 

correlation of an increase in fractures with decreases in both minimum aberrancy, fmin, 

and intermediate aberrancy, fint, magnitude (Figure 4.11). In contrast, there is an increase 
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in fractures correlate with an increase in the maximum aberrancy magnitude, fmax. These 

correlations suggest that the total aberrancy is more helpful for interpreters in highlighting 

subtle features. The minimum and the intermediate aberrancy is mostly helpful in finding 

smooth area. 

Aberrancy vectors are not always correlated with fracture density, the results may 

limit by relatively low seismic image resolution compared to image logs and uncertainties 

in image logs interpretation. Both the averaged fast and slow ROP doesn’t seem to have 

statistically significant correlations with fracture intensity, and the results are presented 

in the appendix (Figure B1, B2).   

CNN prediction of fractures 

Before training the CNNs model, we first performed a multi-linear regression 

analysis to calculate and select which of the attributes could be used to train a fracture 

density model that would best simulate the interpreted fracture density throughout the 

seismic volume (Figure 4.12).  With the multi-linear regression, more than one step is 

taken to come to the best solution, where the best fit to the data requiring a reiterative 

process. First, one computes an initial estimate of the correlation for each attribute. Then, 

in the multi-linear regression process, different attributes are combined to improve the fit 

of the curve to the data. These iterations continue until the process converges. The 

resulting attribute correlations must also be examined to be geologically reasonable. For 

example, higher fracture intensity may be expected to be seen with smaller values of 

coherence. If a candidate attribute shows a correlation counter to findings in previous 

studies and geologic knowledge, that attribute should be taken out of the multi-linear 
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regression model. To avoid over training the model by incorporating too many seismic 

attributes, of the 22 seismic attributes examined, only eight were retained in the final 

model.  

Eight statistically representative attributes were picked to correlate with fractures, 

aberrancy, coherence, lambda-rho, mu-rho, P-impedance (ZP), chaos, envelope, and 

instantaneous frequency (Figure 4.11, 4.12). Figure 4.12 present linear correlations for 

each attribute with fracture density in order of their significance to the model. There is a 

negative correlation between fracture density and coherence, such that an increase in 

fractures density corresponds with a decrease in coherence. Two complex trace attributes, 

Instantaneous frequency and amplitude (envelope) were picked to correlate with fracture 

density. Envelope represents the acoustic impedance contrast and can be a good indicator 

of major changes of lithology or thickness (Chopra and Marfurt, 2007). The increases in 

fracturing correlated with increases in envelope. The chaos attribute is computed based 

on eigen-analysis of gradient covariance (Chopra and Marfurt, 2016). The larger the value 

is, the smoother the image is. There is a negative correlation between chaos and fracture 

density.  

The cross plots confirm that all three of prestack inversion attributes exhibit 

negative nonlinear correlation with fracture density. This correlation is likely a result of 

fractures from the heterogeneous formation. Cook (2016) confirmed five rock types were 

seen on image logs. The first rock type was chert, with only a small percentage of the 

wellbores with the borehole image logs contained pure chert. The areas that contained 

chert except karsted chert were moderately fractured. The second rock type was cherty 
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limestone, which exhibited no fractures in the area. The third and fourth rock types were 

limestone and highly fractured limestone. As the most abundant lithology present in the 

borehole image logs, there was some limestone that had little to no fractures, while some 

limestone was heavily fractured, suggesting factors other than lithology play a role in 

fracture genesis (Cook, 2016). The last rock type was in the area of karsting.  

All of the attributes appeared complicated nonlinear relationship with fractures. 

Thus we choose CNNs to recognize the fracture pattern in the unknown area. We 

compared the performance of multi-linear regression model with the CNNs against 

successive combinations of attributes, the R-square value is always higher using CNNs 

(Figure 4.13). After training, validation, and testing the CNNs model, we successfully 

estimated fracture density across the Mississippian Limestone horizon (Figure 4.15).  

The resulting fracture training model had the training R2-value of 0.781, validation R2-

value of 0.426, test R2-value of 0.564, and a total R2-value of 0.675 (Figure 4.14). Figure 

4.16 display one representative fracture area log against predicted fracture intensity 

model. Many of the increases and decreases in fracture intensity line up between the 

model and the fracture area logs. The model was able to predict much of the same fracture 

intensity trends along Mississippian Limestone horizon, though some areas also have 

some discrepancies from the original interpretation of fracture area. Observing the 

predicted fracure density model, there is an increase in fracture density along known 

mapped faults in the survey (Figure 4.15). Increases in predicted fracture density could 

be an area contain a higher probability of tripolitic chert (Lindzey et al., 2015).There are 

areas of zero fracture density along the perimeter of the seismic survey or formed into 



120 

 

magenta square, which is assumed to be the edge effect or no-permit zones in the seismic 

survey. Lastly, in the southeastern part of the survey, strong correlation was reported 

between predicted fracture density and a known area of heavy karsting (Cook, 2016).   

  Azimuthal intensity was computed from the maximum aberrancy vector from 

azimuth -90°, -60°, -30°, 0, 30°, and 60°. Azimuthal intensity was extracted onto a surface 

of the Mississippian Limestone (Figure 4.17). Azimuthal intensity at 60º correlated best 

with estimated fracture density with a correlation coefficient of 0.72, while azimuthal 

intensity at 0º correlated the worst with estimated fracture density with a correlation 

coefficient of 0.58. This azimuthal correlation match well with Cook, (2016) image log 

interpretation. She pointed out that most of the natural fracturing and faulting in the study 

area runs -30° from the west – east maximum horizontal stress. 

 

CONCLUSIONS 

Edge-detecting seismic attributes are widely used to highlight faults and other 

discontinuities. Volumetric aberrancy anomalies would track the coherence anomaly and 

highlight sub-seismic faults and flexures. This is the first study explores whether 

volumetric aberrancy can be statistically correlated to fractures and therefore use it predict 

fractures in undrilled parts of the survey.  

A suite of geometric and geomechanical attributes were generated for the 

Mississippian Limestone target containing five interpreted borehole image logs and 52 

mud log. With the use of Convolutionary Neural Network, eight seismic attributes were 

used to model fractures seen on the image logs over the Mississipppian Limestone 
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horizon. Of these attributes, high values of minimum aberrancy and intemediate 

aberrancy correlate with low fracture density, while high values of the maximum 

aberrancy anomalies correlate with higher fracture density. In figure cross plots of all 

eight aberrancy attributes, there is a clear negative correlation between fracture density 

and coherence. Three geomechnical attributes exhibit negative nonlinear coorelation with 

fracture density. This nonlinear coorelation is likely a result of fractures from the 

heterogeneous formation. No statistically significant correlations were found between 

aberrancy vectors and rate of penetraion.  

With the estimated fracture density model, higher fracture density was observed 

along known mapped faults in the survey. Some higher fracture density region can be 

assoicated with tripolitic chert deposits. The maximum aberrancy correlated best with 

estimated fracture density at 60° with a correlation coefficient of 0.72.  

While we calibrated four aberrancy vectors using image logs, the total aberrancy 

is more helpful for interpreters in highlighting subtle features, the azimuthal fracture 

intensity extracted from the maximum aberrancy vector can be a good indicator of 

estimating azimuth of natural fracturing and fault.   
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CHAPTER 4 TABLES 

 

Table 4.1. Summary of eight seismic attributes inputs and their hypothesized correlation 

to fractures.  

 

Attribute name  Measures  Hypothesis 

Aberrancy, f Flexures 
Greater strain induces 

more fractures 

Instantaneous frequency  
The rate of change of 

instantaneous phase 

Fracture results in change 

of lithology and thickness 

of beds  

lambda-rho, λρ product of shear module 

and density 

With mu-rho, can 

differentiate brittle rocks 

from ductile rocks 

Chaos Eigen-analysis of gradient 

covariance 

Fracture results in more 

disorganized image 

Mu-rho, μρ Product of shear module 

and density  

With lambda-rho, can 

differentiate brittle rocks 

from ductile rocks 

Envelope Acoustic impedance 

contrast 

Fracture results in 

lithology change  

P-impedance, ZP Product of P-velocity and 

density 

Fractures result in “softer”, 

less dense rock 

Coherence, c 
Discontinuities 

Faults and large joints may 

be directly detected; 

Subseismic resolution 

fractures occur in 

proximity to large faults. 
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CHAPTER 4 FIGURES 

 

Figure 4.1. Examples of conductive fractures seen in a horizontal well where drilling 

mud filling the fracture planes appears as dark brown (high conductivity) against the 

lighter colored (lower conductivity) limestone and chert. The orientation of the image is 

indicated by up (U), right (R), down (D), and left (L) of the well circumference. The 

stereonets below the track show the strike of the fractures that cut through the entire 

borehole. (Modified from Cook 2016). 
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Figure 4.2. Diagram of Convolutional Neural networks (CNNs). This two-layer feed-

forward network consists of 15 sigmoid hidden layers and one linear output layer. CNNs 

are made up of neurons that have learnable weights, W, and biases, b. The input to the 

CNNs include eight seismic attributes which are then transformed through 15 hidden 

layers. The hidden layer is connected to a regression output layer, which predicts the 

fracture density in the unknown region.  
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Figure 4.3. Co-rendered most-positive and most-negative curvature with seismic 

amplitude on the vertical slices. Horizon slice along the co-rendered top of Mississippian 

Limestone through the most-positive and most-negative curvature and coherence 

volumes showing five image log paths (wells A-E). Yellow arrows indicate two lateral 

strike-slip faults; one runs from the northeast corner all the way to the southwest corner 

of the survey, the other one extends in southeastern portion of the survey. White arrows 

indicate a reverse fault running north-south, extending south of the strike-slip fault 

described above. White squares correspond to no-permit zones in the seismic survey. 
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Figure 4.4. The same slices shown in the previous figures through the total aberrancy 

vector volume with five image logs path (well A-E). Yellow arrows indicate two lateral 

strike-slip faults. White arrows indicate a reverse fault running north-south, extending 

south of the strike-slip fault described above. Blue arrows indicate two (of many) flexures 

that do not exhibit a coherence anomaly.  
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Figure 4.6. Interpreted well A fracture density plotted against (a) minimum aberrancy, 

(b) intermediate aberrancy, (c) maximum aberrancy, and (d) total aberrancy vectors. 

Yellow arrows indicate trends where higher aberrancy anomalies align with higher 

fracture density. White arrows indicate areas where the higher aberrancy values align 

with lower fracture density, suggesting it is not highly fractured.  
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Figure 4.7. Interpreted well B fracture density plotted against (a) minimum aberrancy, 

(b) intermediate aberrancy, (c) maximum aberrancy, and (d) total aberrancy vectors. 

Yellow arrows indicate trends where the aberrancy anomalies align with higher fracture 

density. White arrows indicate the areas where the high aberrancy values align with lower 

fractures density. 
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Figure 4.8. Interpreted well C fracture density plotted against (a) Minimum aberrancy, 

(b) intermediate aberrancy, (c) maximum aberrancy, and (d) total aberrancy vectors. 

Yellow arrows indicate trends where the aberrancy anomalies align with higher fracture 

density. White arrows indicate to the areas where the aberrancy values align with lower 

fractures density. 
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Figure 4.9. Interpreted well D fracture density plotted against (a) Minimum aberrancy, 

(b) intermediate aberrancy, (c) maximum aberrancy, and (d) total aberrancy vectors. 

Yellow arrows indicate trends where the higher aberrancy anomalies align with higher 

fracture density. White arrows indicate to the areas where the higher aberrancy values 

align with lower fracture density. 
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Figure 4.10. Interpreted well E fracture density plotted against (a) Minimum aberrancy, 

(b) intermediate aberrancy, (c) maximum aberrancy, and (d) total aberrancy vectors. 

Yellow arrows indicate trends where the higher aberrancy anomalies align with higher 

fracture density. White arrows indicate to the areas where the higher aberrancy values 

align with lower fracture density. 
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Figure 4.11. Four linear correlations between the magnitude of minimum, intermediate, 

maximum, and total aberrancy and fracture density. The red lines indicate the linear fit 

with the R2 value at the upper right corner of each panel.  
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Figure 4.12. Seismic attribute input into the multi-linear regression model predicting 

fractures. The attributes are in order of their significance to the model. The last panel 

shows multi-linear regression against successive combinations of attributes.  
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Figure 4.13. A comparison shows multi-linear regression and Convolutional Neural 

Network against successive combinations of attributes. 
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Figure 4.14. Performance of CNN model. Four panels showing results of training, 

validation, testing, and the complete data, with the training error R2
train=0.796, validation 

error R2
v=0.723 and testing error R2

test=0.689 for the 1:1 Line.   
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Figure 4.15. Horizon slice of predicted fracture density on the Mississippian Limestone 

computed using the eight attributes shown in Figures 4.11 and 4.12. 
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Figure 4.17. Azimuthal intensity was computed from the maximum aberrancy vector 

from azimuths (a) -90°, (b) -60°, (c) -30°, (d) 0°, (e) 30°, and (f) 60°. Azimuthal intensity 

was extracted onto a surface over the Mississippian Limestone. (f) 60° correlated best 

with predicted fractures density with a correlation coefficient of 0.72.  
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Figure A1. A schematic explaining the fracture area log that was generated based on the 

fracture interpretation. the fracture area logs were exported at 1 ft increment with a 1 ft 

step distance. Thus, the 1 ft of orange was exported out as the orange shaded area of 

fractures, divided by the volume of the orange cylinder (Cook, 2016).  
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Figure A2. 1-ft resolution fracture count from the Fracture Area Log (in black) and 

corresponding 110-ft Backus averages (in red). The dashed area indicates the size and 

position of the sliding window.    
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Figure B1. Cross plot of the magnitude of minimum, intermediate, maximum, total 

aberrancy computed from seismic volume against slow cost of penetration (COP). No 

statistically significant correlations were found between aberrancy vectors and slow COP.  
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Figure B2. Cross plot of the magnitude of minimum, intermediate, maximum, total 

aberrancy computed from seismic volume against fast cost of penetration (COP). No 

statistically significant correlations were found between aberrancy vectors and fast COP.  
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APPENDIX A: SEISMIC CALIBRATION BOREHOLE FRACTURE 

INTERPRETATION  

In this appendix, I show how fracture density and Backus averaging fracture 

density were generated.    
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APPENDIX B: CORRELATION BETWEEN COP AND ABERRANCY   

In this appendix, I show two cross plots between COP and the magnitude of four 

aberrancy. Two sets of COP were correlated with the magnitude of aberrancy, slow 

(Figure B1) and fast COP (Figure B2), with the average value of 27 min/ft and 2.5 min/ft, 

respectively. No statistically significant correlations were found between the magnitude 

of aberrancy and COP.  
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CHAPTER 5 

CONCLUSIONS 

Seismic attribute assisted reservoir characterization is a critical process in today’s 

oil and gas industry to perform prospect evaluation. It provides interpreters with an 

optimal understanding of the reservoir’s internal architecture and properties. This process 

has become significantly necessary since the era of “unconventional reservoir revolution” 

has begun since 2005. Higher-intensity completion design, longer horizontal sections in 

a well lead to more hydrocarbons recovered per well and higher production rates. All of 

these revolutions requires technology advancements such as providing more accurate 

subsurface seismic imaging, creating “perfect” fracture systems, reducing completion 

costs, use of data analytics to achieve productivity improvements. Since the mid-1990s, 

seismic attributes have widely used to capture the morphological features seen in seismic 

data. Seismic imaging brings large-scale reservoir behavior. Geostatistical stochastic 

stimulations add spatial correlation and small-scale variability which is hard to identify 

from seismic due to the limits of resolution. Unconventional reservoir characterization is 

more commonly the product of comprehensive integration of software, data, and 

specialize measurements.  

In this dissertation, I examined the feasibility of using seismic attributes to predict 

fractures and rate of penetration. I spent particular focus on a new  seismic attribute, 

aberrancy, which was previously limited to analysis of interpreted horizons to 3D analysis 

of uninterpreted volumes.  
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Aberrancy complements rather than supplants other structural attributes such as 

coherence, curvature, and diffraction imaging. I extended the 2-D aberrancy to volumetric 

results of uninterpreted seismic data volumes. Specifically, I used a long wavelength 

calculations successfully used in volumetric curvature computations, implemented as 

convolution operators in the original unrotated data volume. The new volumetric 

aberrancy are numerically stable, computationally efficient, and geologically meaningful 

in mapping  faults and flexures.  

Depending on the deformation, there may be as many a three independent 

aberrancy vectors. For a simple linear flexure there is only one aberrancy vector, the 

maximum aberrancy. For curvilinear and crossing flexures there may be also an 

intermediate and minimum aberrancy vector. I therefore wished to understand whether 

more complex deformation leads to increased number of natural fractures. While I 

hypothesized that aberrancy, which measures strain, should be correlated to natural 

fractures seen in horizontal image logs, this correlation was less than 10%.  While not 

useful by itself as a fracture indicator, aberrancy was quite useful when combined with 

other attributes using a convolution neural network estimation. In this case, I was able to 

find a training accuracy of 78%, validation accuracy of 43%, and testing accuracy of 

56%.  

Attributes can also be correlated to the  rate of penetration. Using a  proximal 

support vector machine I found a prediction accuracy of 94%. By using this workflow, 

one can use rate of penetration of previously drilled wells with 3-D seismic data to predict 

rate of penetration over the study area. Whereas one may still wish to drill a specific target 
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objective, this statistical analysis technique will provide a more accurate cost estimate 

and help choose the appropriate drilling equipment.  

 


