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CHAPTER I 

INTRODUCTION 

The stability of earth slopes is a matter of considerable impor

tance in the construction of highways, railways, and earth dams, as 

well as in connection with land.slides. During the last four decades, 

numerous efforts have been made to deal with the problem of stability 

of slopes with the aim of computing the factor of safety with respect to 

the sliding of slopes of cuts and embankments. The properties of the 

material ( soil) in which sliding occurs deviate quite considerably from 

those of elastic solids. Hence·, the laws of strength of materials and 

theory of elasticity do not hold true precisely for soils. 

The absence of any mathematical theory which could be used to 

deal with real soil materials, coupled with the necessity to solve prob

lems in soils engineering, require that several assumptions be made 

idealizing this material, the most important among them being homo

geneity and isotropy. Since most of the methods for stability analysis 

are based on these two basic assumptions, they give only a rough esti

mate of the factor of safety. 

In nature, there are two deviations from the ideal homogeneous 

material. The first is the case in which the subsoil consists of layers 

of distinctly different soils. The second is the case of a soil deposit 

which lacks any distinct stratification but whose properties vary from 

one point to another over a wide range. This type of non-homogeneity 

1 
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makes it difficult to arrive at representative soil properties to be used 

in calculations. 

Again, in nature, most soils are anisotropic because of the mode 

of deposition, the stress metamorphosis after deposition, or both. 

There is considerable evidence in literature showing that the stability 

of earth slopes is influenced by non-homogeneity and anisotropy in 

strength (Gibson and Morgenstern, 1962; Lo, 1965; Livneh, 1967; and 

others). 

In this thesis, an analytical method is presented for analyzing 

slope stability problems in a two- layered system of non-homogeneous 

and anisotropic soils. Chapter II deals with a brief review of published 

literature regarding the methods available for slope stability analysis. 

Since the published material in this area of soil mechanics is quite ex

tensive, only that material which is directly related to the present work 

is reviewed in detail. The reader is referred to the references cited 

in the bibliography for additional information. 

Chapter IH deals with the analytical method for solving slope 

stability problems in a two-layered system of non-homogeneous and 

anisotropic sons. The working formulae for stability number and fac,.. 

tor of safety are derived in detail. In Chapter IV, the results obtained 

in this analysis are discussed, and the conclusions drawn from this 

study are listed. Some aspects related to this area which merit further 

research are suggested. Charts, slope angle versus stability number, 

thickness ratio versus stability number, and relative strength index 

versus stability number are presented (Figures 7 through 30). 

Two hypothetical problems dealing with slope stability in a 

layered system are worked out in Appendix A. These demonstrate the 
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usefulness of the charts in analyzing stability problems in layered soils. 

The computer program used in obtaining numerical results in this study 

is given in Appendix B. 



CHAPTER II 

REVIEW OF LITERATURE 

The construction of earthen embankments is as old as civilization 

itself. Many ancient man-made embankments exist in China. India. and 

the Middle East. Rao (1961) de.scribes 18 existing earth dams con"" 

structed in southern India between 1000 A. D. and 1800 A. D. 

The dams described above, as well as those built in other 

countries during that or earlier periods. were designed by men who had 

only an empirical knowledge of mechanics and material properties. The 

successful functioning of thEy'se structures clearly indicates that embank
/ 

ment design could be carried out based on some experience and intuition. 

The main drawback of this approach was that it did not permit a quanti-

tative assessment of the safety of structure. Nor could it handle 

unusual conditions encountered in embankment design. Real progress 

in this direction was to wait until tools of mathematics and mechanics 

and scientific knowledge of soil behavior were available. 

Pr0bably the ~arliest contribution dealing with soil behavior was 

that of Coulomb ( 177 3 }. who has given the expression for the critical 

height of vertical clay slope as 

where c = cohesion, 

H = c 

y = unit weight. and 

4c cos cp 
y 1 - sin cp 

cp = internal friction of clay. 

4 
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In 1820, Francais extended Coulomb's analysis to the case of a 

day bank sloping at an angle of 8 .:to the horizontal and, on the assump

tion that the slip surface was a plane passing through the toe of the 

slope, deduced the following expression for the height of limiting 

stability: 

H = 4c f cos cp sin e .} 
y , 1 - cos ( e - cp) • 

'This equation is generally, but incorrectly, attributed to Culmann, 

who published it forty- six years later in his book "Die Graphische 

Statik" ( 1866 ). 

The earliest pioneering work in stability of clay slopes was done 

by Collin ( 1846 ). He published a memoir which contained careful field 

observations on approximately fifteen slips in cuttings, embankments, 

and earth dams, a description of shear box tests on clay samples, and 

an approximate analysis of stability which was the primitive forerunner 

of the present-day cp = 0 analysis. Yet after its publication, the book 

remained almost unknown for seventy years until the study of the stabi-

lity of clay slopes was again placed on a sound bas-is by the work of such 

I men as Resal (1910), Bell (1915), Petterson and Hultin (1916), FeUenius 

(1916-22), Frontard (1922), and others. 

The curious neglect of such an important work and, indeed, the 

almost stationary position of soil mechanics during thts interim period 

is due to two main causes. Firstly, the mechanical properties of soils 

and especially clays are considered to be more complex than those of 

construction materials such as masonry. concrete, and steel. Conse-

quently, research was more profitably directed toward structures and 

hydraulics. Secondly, the period 1840-1910 was dominated in the f!eld 

of soil mechanics by the conventionalized theories of bearing capacity, 



earth pressure and slope stability, due principally to Poncelet ( 1840) 

and Rankine ( 1857 and 1862), which although of some value for sands 
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are in most cases misleading for clays. Cohesion was ignored, the 

curved surface of rupture was forgotten, and the false "angle of repose 11 

reigned supreme. 

Modern developments leading to the present state of art began 

during the second decade of the century. The revival of interest appears 

to have stemmed from several serious landslides in Sweden and from 

massive ·landslides that took place during the construction of the Panama 

Canal. There are probably two other causes for the rapid progress 

that followed this renewal of interest. First, at about this time, im

proved and more widespread understanding of the soil properties was 

developing. Second, there appeared on the scene the great guiding 

genius of Terzaghi, who was to weld the principles of mechanics and 

the properties of soil into a coherent whole that would lay the foundation 

for a new science. 

The slip of Stigberg quay into the harbor at Gothenberg, Sweden, 

in 1916 touched off an investigation that had profound consequences in 

slope stability analysis. Petterson and Hult in ( 1916) investigated the 

slide. In addition to analyzing this slide, they also studied earlier case 

histories, assuming circular rupture surfaces. According to the con

cepts of the time, clay was treated purely as a frictional material. 

Professor Moller studied the problem concerning friction angles 

and safety factors more carefully than had been done earlier and pub

lished a book Erddruch-Tabellen. He brought out a second edition of 

the book in 1922 with the subtitle "Augmented with New Earth Pressure 

Investigations. " This is the first publication on circular sliding 
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surfaces to be internationally known. Professor Fellenius continued 

working on circular sliding surfaces and published several papers 

during 1918-26. As a partly new method of analysis instead of the fric

tion method formerly solely used, he took up the question of bringing 

the cohesive strength of soil into the calculations. He referred to 

investigations and experiments made by the Geotechnical Commission 

of the Swedish State Roads. The report, published in 1922, contained 

many examples of circular slides in Sweden. By direct mathematical 

treatment combined with graphical methods, he arrived at a series of 

tables and di:3-grams for predicting the critical slip surfaces. The cir

cular arc analysis for slope stability problems has, in time, come to 

be known as the "Swedish Method. " 

Professor Terzaghi { 1936) compared circular arc analysis with 

logarithmic spirals and cycloids and decided that the circular arc 

method is the most convenient, as well as sufficiently accurate, for 

many engineering problems. Since the development of the Swedish 

Method, many new procedures have been advanced to solve the slope 

stability problem. These are tabulated, showing the assumptions 

involved and the originators, in Table I. 

Most of the methods available for performing slope stability 

analysis may be categorized as limit equilibrium methods. The basic 

assumption of the limit equilibrium approach is that Coulomb's failure 

criterion is satisfied along the failure surface. A weakness of the 

limit equilibrium method is that it neglects the soil's stress- strain 

relationship. In an attempt to take into account the stress-strain 

relationship in analyzing the stability of slopes, it has been suggested 

that the theory of plasticity be applied to the problem {Drucker and 



TABLE I 

CLASSIFICATION OF SLOPE STABILITY ANALYSIS BY LIMIT EQUILIBRIUM METHOD 

(After Fank and Hirst, 1970) 

Type of 
Failure 
Plane 

Straight 
line 

Circular 
Arc 

Name of 
Method 

Culmann 
Method 

Method of 
Infinite 
Slope 

Wedge 

Slices 
Method 

Bishop's 
Method 

Simplified 
Bishop's 

Type of 
Solution 

Analytical 

Analytical 

Semigraphi
cal-analyt i
cal 

Semigraphi
cal-numeri
cal 

Analytical
Numerical 

Analytical
Numerical 

Basic A ssu:tnptiefis-- -- -· -- ---······-----· .n.,, -----"'-Referefice·i:r· - -- · -

Failure occurs on a plane through the toe Culmann ( 1866) 
of the slope. 

The slope is constant with unlimited 
extent. 

A "trertical column is typical of the entire 
mass. No cohesion may be depended on 
within the depth to which tension occurs. 

Sliding block mechanism is assumed with 
lateral earth forces. 

The lateral forces are equal on two s.ides 
of each slice. 

Oolique side forces on each slice are 
considered. 

Vertical component of lateral earth forces 
are considered to be equal and opposite. 

Resal ( 1910) 

Frontard (1922) 

Culmann ( 1866), 
Terzaghi and 
Peck (1948) 

Fellenius (1939) 

Bishop ( 1955) 

Bishop (1955), 
Little and Price 
( 1958) 00 



TABLE I (CONTINUED} 

Type of 
Failure Name of T_ype of 
Plane Method Solution Basic Assumptions References 

CJ) - Circle Analytical- Resultant acting on rupture arc is Gilboy ( 1933 }, 
Method Graphical tangential to a concentric circle with Taylor ( 1937 }, 

radius = R sin cpd. Casagrande ( 19 34) 

Modified Analytical- The resultant misses tangency to the cpd Taylor (1937) 
cp - Circle Graphical circle by a small amount. Radius of 

cpd circle= KR sin cpd. 

Loga.rith- Log-spiral Analytical No assumptions required to make the Rendulic (1935), 
mic Spiral Method problem statically determinate. Taylor ( 1937 }, 

Spencer ( 1969) 

Irregular Irregular Analytical- General slip surface. Forces between Morg.enstern and 
Numerical slices are considered. Price ( 1965) 

co 



Prager, 1952). Analytical procedures have been developed to solve 

homogeneous and isotropic earth slopes using plastic theory (Chen, 

Giger and Fang, 1969; Fang and Hirst, 1970; Chen and Giger, 1971). 

10 

In most of these methods, however, the basic principles have re

mained the same. The earlier methods were based on the assumptions 

that the soil is homogeneous and isotropic. Neither of these is true, 

as may be seen from the brief review of the published literature cited 

elsewhere in this chapter. In view of this, some recent procedures 

have utilized more realistic assumptions for the solution of slope stabi

lity problems (Morgenstern and Gibson, 1962; Lo, 1965; and others). 

It is often necessary to determine the factor of safety of cuts in 

normally consolidated clays. These clays characteristicaUy exhibit a 

linear increase of strength with depth, as shown in Figure 1. Close to 

the surface, the clay is usually overconsolidated due to desiccation; 

and the strength of this crust is higher than that of the material immedi

ately below it. Morgenstern and Gibson (1962) have analyzed the slope 

stability problem in homogeneous soils with strength increasing linearly 

with depth, as shown in Figure 2. 

The expression for the factor of safety established by Morgenstern 

and Gibson implies that the ground water table is at or above the ground 

surface. Their approach to this problem was extended by Hunter and 

Schuster ( 1969) to include an analytical solution for the common case of 

ground water table below the ground surface. This method permits a 

better estimate of the factor of safety where the shear strength C is 

greater than zero at the ground surface but still increases linearly with 

depth. Hunter and Schuster present graphically the results of 
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computations of stability numbers for a range of slope inclinations and 

depths of water table. 

In nature, the clay-size particles are nonsymmetrical in shape. 

They are usually longer in two directions than in the third. Due to this 

nonsymmetrical shape, the soil deformations and the soil-forming 

processes produce within the soil fabric an anisotropic structure. This 

anisotropic structure is reflected by directional variations in the physi-

cal properties of soil such as strength, compressibility, and perme-

ability. There is ample evidence in literature confirming the 

occurrence of anisotropic soil fabric and anisotropic physical properties 

in natural and remolded cohesive soils.(Mitchell, 1956; Hvorslev, 1960; 

Duncan and Seed, 1966; and others). 

Anisotropy of clays with :r:espect to strength is probably related 

to the orientation of clay particles. The structure of clay was studied 

by many investigators (Lambe, 1953; Mitchell, 1956; Pacey, 1956; 

Martin, 1962; and others). These studies have shown that the clay 

particles tend to become oriented parallel to the major principal plane 

during anisotropic consolidation. Mitchell ( 19 56) studied the structure 

of seven undisturbed marine clays and one lacustrine clay with the aid 

of a petrographic microscope. From these studies, he concluded that 

these clays had some degree of parallel orientation. With one exception, 

these clays were consolidated to nearly 3 kg/ sq cm. Quigley and 

Thompson ( 1966), studying the relationship between soil fabric and the 

anisotropic consolidation characteristics of Leda Clay from Ottawa 

found that anisotropic consolidation of undisturbed samples causes 

reorientation of the clay platelets into a plane perpendicular to the 

direction of major principal consolidation pressure. Martin ( 1962) 

· ..... -.~.,~ .,,;:.i ·-

\"'-. 
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studied the structure of Ka0linite Clay using X-ray diffraction technique. 

He compared the peak amplitudes of diffracted X-rays from 002 and 02© 

planes- of the clay and concluded that the clay was approximately "ideally 

eriented" after one-dimensional consolidation to 197 kg/sq cm., and· 

appr0ximately "ideally random" after isotropic consolidation to . 

1 kg I Seil c:m, 

It may be cencluded from these studies that there- is a tendency 

for the clay--size particles to become 0riented parallel to the plane en 

whi_ch the major principal stress acts during consolidati0n.: This 

parallel particle orientation might be expected to cause anisotropy in 

physical preperties such as strength, compressibility. and permeability. 

Unconsolidated undrained triaxial tests on samples trimmed in different 

directians have shewn ,that anisetropically cons01idatect clays are 

anisotropic with respect to undrained strength. 

For a soil to be perfectly isotr0pic, the coefficient 0f earth 

pressure at rest. K0 , should be 1, as isotr0pic conselidation requires 

a hydrostatic state of stress to exist. As early as 1920, Terzaghi re

p>0rted the value of K0 for a coarse sand to be O. 42. In 1925, he 

rep0rted a value of o. 7 for a yellow residual clay and a blue marine 

clay; and experiments by Kjellman with triaxial eEJ_uiptnent yielded 

values ranging from O. 5 t0 1. 5. K0 is supposed to be a function of 

stress history 0f soil. The assumptions that K0 = 1 - sin cp' (Jaky) 0r 

K0 = 0. 95 - sin cp' (Broeker and Ireland, 1965) indicate that few soils 

have K = 1. . 0 

In reviewing -the published literature regarding anis0tropic 

strength characteristics of clays, the definition.fer shear strength as 

sh0~ in Figure 3 is followed. 
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Figure 3. Definition of Shear Strength Variation with Direction (After Lo, 1965) 
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The physical vertical and horizontal directions, which usually 

coincide with lines perpendicular and parallel to the bedding planes of 

soil deposit are the principal directions. ff the sample is tested with 

the major principal stress direction coinciding with the principal direc-

tions, the strengths thus determined (C 1 and c 2) are known as principal 

strengths. When the major principal stress makes an angle, i, with 

the vertical, the strength then determined is designated as c1. For a 

soil with isotropic strength characteristics, the principal strengths c 1 

and c 2 and Ci are equal. In other words, the curve traced by Ci in a 

vertical plane is a circle. However, for a soil having anisotropic 

strength characteristics, the principal strengths c 1 and c 2 are not 

equal and the curve traced by C. is not a circle. The ratio of principal 
1 

strengths c 2 tc 1 is termed as t~e degree of anisotropy. (Ranganatham 

and Mathai, 1967. denote it as the Coefficient of Orthotropy. ) Depend-

ing on the stress history, clay particle orientation, etc., the ratio 

C2 /c 1 is less than or greater than one. For convenience, the former 

is designated as M-anisotropy and the latter as C-anisotropy (Lo, 1965). 

Soil deposits with c 2 /c 1 equal to unity are rather rare in nature. 

Lo (1965) performed unconfined compression tests on undisturbed 

samples of clay from Welland, Ontario, Canada. It was reported that 

the horizontal strengths were less than the .vertical strengths, the ratio 

c 2 tc 1 varying between 0. 64 and 0. 8 (M-anisotropy). 

A as ( 1965 ), using vanes of different shapes, performed vane tests 
l 

on Canadian clays. He reported the raHo of undrained shear strengths 

acting along horizontal and vertical failure surfaces to be 1. 5 to 2. 0 

(C-anisotropy). Ward, Samuels, and Butler ( 1959) have reported from 

their tests on London clay that horizontal strengths were greater than 
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vertical strengths. The ratio c 2/c 1 was established to be 1. 3 .::!:: O. 1 

{G~anisotropy). The higher strengths exhibited in the horizontal sam-

ples may be related to the fact that London clay is heavily overconsoli

dated and the horizontal stresses in the ground are considerably higher 

than the vertical stresses (Skempton, 1961). Skempton has shown that 

the ratio of horizontal-to-vertical stress in the overconsolidated London 

clay varies from 2. 5 at the top.to 1. 5 at a depth of 100 feet below the 

surface. Some examples in which Cu• the undrained strength, depends 

on principal stress directions during shear are furnished in Table II. 

From the brief review of published literature, it may be concluded 

that in nature the rule is anisotropy, isotropy being an exception. There 

is ample evidence in literature to show that stability of earth masses is 

affected by strength anisotropy ~Lo, 1965; Ranganatham and Mathai~ 

1967; Livneh, 1967; and others). These investigators have used dif-

ferent strength variations, which are reviewed beloi.y-1 to account for 

strength anisotropy. 

Lo (1965) developed a general method of stability analysis for 

ari.usotropic soils. Rigorous solutions were obtained for two cases: 

{a) the vertical strength was constant with depth, and (b) the vertical 

strength varied linearly with depth. He assumed the following strength 

variation, as suggested by Carillo and Casagrande ( 1942). 

where 

c .. = 
L 

shear strength when the major principal stress at 
failure is inclined at an angle, i, to the vertical 

principal strengths in directions of principal 
stresses. 

Charts of slope angle versus stability number were presented. 



TABLE II 

SOME EXAMPLES IN WHICH C DEPENDS ON PRINCIPAL · .... ··.. .. . . u 

STRESS DIRECTIONS DURING SHEAR (TESTS IN 

SITU OR ON UNDISTURBED SAMPLES) 

1. Cu from field vane lower than Cu from piston samples or block 
samples. ( Vold, 1956; Coates and McRostie, 1963 ). 

2. Cu from field vane for vertical plane lower than for horizontal 
plane. (Aas, 1965). 

3. Cu from block samples with axis horizontal lower than with axis 
vertical in lightly overconsolidated clay. (Lo, 1965). 

17 

4. Cu from block samples with axis horizontal higher than with axis 
vertical in heavily overconsolidated clay. (Ward, Marsland, and 
Samuels, 196.5 ). 
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Livneh ( 1967) has also studied the effect of strength anisotropy 

on slope stability. In his analysis, the following variation for strength 

was as~mmed (Figure 4). 

where 

Ca = c 1 [1 + (n - 1) sin2K (a - w)] 

c 1 == minimum cohesion, 

c 2 == maximum cohesion, 

n == the anisotropy index defined as the ratio c 2 /c 1, 

Q' = the angle between the horizontal axis and an arbitrary 
axis of reference, 

,jr = the angle between the horizontal axis and the minimum 
cohesion axis, and 

K =i: a positive integer permitting characterization of 
different cohesion patterns in terms of angle a. 

Livneh presented charts giving the slope angle versus stability 

factor (YH/C) for various values of ,jt, K, and n. He showed that ne

glecting the anisotropy factor would lead to results that are either con-

servative or in error on the unsafe side. Disregarding the anisotropy 

factor and assuming that the soil is isotrop:ic may lead to a decrease 

in the computed factor of safety. For example, a 27 percent decrease 

is obtained for f3 == 10°, n = 2, K = 1, nd = 1. 5, and ,jr == 60°. 

Ranganatham and Mathai (1967) have analyzed the effect of 

strength anisotropy on the stability of earth masses. They have 

assumed the following variation to account for anisotropy: 

where 

· C = c0hesion along a plane inclined at an angle to e 
to horizontal, 



PRINCIPAL ... 
STRENGTH AXIS. 
C2 MAXIMUM 

PRINCI~ 
STRENGTH AXIS 
C1 MINIMUM 

( , (]'. . 

Figure 4. 

ORIENTATION OF 
SOIL PARTICLES 

Ca 

0 

C2 

9 I 
4 1Y2 1'l2+4 

( b) 

The Definition of Anisotropic Cohesional Medium 
{a) The Principal Strength Axes 
{b) The Variation of Cohesion with a 
(After Livh~h, 1967) 

a 

~ 

CD 



Ch = cohesive strength along the horizontal plane, 

C = cohesive strength along the vertical plane, and 
v 

n = Cvl Ch, called the anisotropic strength ratio ( also 
called the coefficient of orthotropy). 
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The proposed method followed the analysis of Janbu (1954) {based 

on dimensionless parameters for base failure in purely cohesive soil) 

except for strength anisotropy. Charts were presented giving the slope 

angle versus the stability number ( C /YH) for various values of the 

coefficient of orthotropy and depth to hard stratum. It was noticed that 

for vertical cohesive strength ranging from half to double the horizontal, 

the stability number changed by about +30 percent to -40 percent of the 

isotropic case. From the numerical results, it was cone luded that the 

influence of anisotropy on stability is much greater than is the depth to 

hard stratum. 

In the above methods, two assumptions are made: ( 1) Soil mass 

is homogeneous, and ( 2) it is purely cohesive (cp = 0 condition). 

When estimating the stability of foundations and slopes, it is often 

assumed that the soil is homogeneous and isotropic; but it is known 

that the shear strength increases with depth beyond the zone of desic-

cation and is also dependent on the direction of the failure surface. 

While it is difficult to describe the exact functional relationship between 

the shear strength and depth and direction of failure surface, Rangana

tham, Sani, and Sreenivasulu (1969) investigated through carefully

planned experiments the probable variation of strength with depth and 

direction of failure plane and used these findings in evaluating 

slope stability. Experimental work was done to obtain the variation in 

shear strength ( 1) with direction of failure surface, keeping consolidation 
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pressure constant, and ( 2) with consolidation pressure, keeping the 

direction of failure surface constant. 

This experimental study lends support to the hypothesis that the 

undrained strength of an element of soil along a plane other than the 

hc;,rizontal or vertical is equal to the vectorial sum of those acting on 

the projected areas of the element in the vertical and horizontal planes. 

Expressed mathematically. the strength Ce along a plane inclined at 

an angle e to the horizontal is given by 

c e = ch cos 2 e + c v sin 2 e 

where Ch and Cv are strengths in the horizontal and vertical planes, 

respectively. 

The shear strength at any depth Z in relation to the direction of 

failure surface was defined as follows; 

where 

Chz = 
c = vZ 

Cho = 
c = VO 

.eh and J, v = 

z 
= n ch ( 1 + .e H) co O V 

strength along the horizontal plane at any depth Z, 

strength along the vertical plane at any depth Z, 

strength along the horizontal plane at the surface, 

strength along the vertical plane at the surface, and 

coefficients defining the variation of Ch and C 
over a significant depth H. v 

On substituting for Chz and Cvz in the equation for Ce, the fol

lowing expression for the undrained shear strength at any depth Z on 

any failure surface inclined at an angle e to the horizontal is obtained: 
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C C ( 1 + n z) 2 ( l + n z) . 2 "' 9 Z = ho x-h H cos 8 + nco x- v H sm O • 

Control charts, providing a critical combination of stability num-

ber and tangent of friction angle were presented for a given slope 

({3 = tan-l 1/25) and various values of the coefficient of orthotropy, 

depth to hard layer, etc. Numerical results presented demonstrate 

the influence of strength anisotropy and strength increase with depth 

on the control charts. 



CHAPTER III 

ANALYTICAL METHOD FOR STABILITY OF EARTH 

SLOPES IN NON-HOMOGENEOUS A ND 

ANISOTROPIC SOILS 

Introduction 

It is evident from the review of published literature ( Chapter II) 

that soil is neither homogeneous nor isotropic. Consequently, when 

' analyzing.the stability of earth slopes, this fact should be recognized 

and accounted for. 

In this chapter, an analytical method is suggested for evaluating 

the stability of slopes in a two-layered system of anisotropic soils. 

The basic assumptions made in the analysis are listed below. Follow

ing this, the working formulae used in arrivrng at the factor of safety 

for the slope are derived in detail. 

Basic Assumptions 

1. The controlling potential surface of failure is either cylin-

drical or a combination of planar and cylindrical surfaces, as shown in 

Figure 5. 

2: The sGil in each layer is homogeneous with respect to shear 

strength. 

3. The coefficient of anisotropy is the same at all points in the 

slope. 
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4. The anisotropic strength in each layer is characterized by 

the following equation: 

where 

c. 
1 

ch and c 
.V 

= shear strength along a plane inclined at an angle, 
i, to the vertical; and, 

= shear strengths along the horizontal and vertical 
planes respectively. 

5. The stability of the slope is analyzed by considering the 

stability of the individual layers. 

Derivation of Working Formulae 

The working formulae for the factor of safety are derived 

separately for the two layers. 

Layer 2 

There are two possible types of slip surfaces, as shown in Figure 

6. These could be designated as Case (a) and Case (b ). For each one 

of these two cases, the expressions for disturbing moment, resisting 

moment, and the factor of safety are derived in detail. 

Case (a). For limiting equilibrium of the mass above the poten

tial surface of rupture ADC (Figure 6a), the total disturbing moment 

about o 2 must be equal to the total resisting moment about the same 

point. 

While evaluating the disturbing moment for this case, the mass 

of soil above the interface EJ? is taken to be acting as surcharge. 

Hence, the disturbing moment due to this is considered in addition to 
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that contributed by the soil above the slip surface AD. The expressions 

for these two J;,rl.Oments are derived below. 

Let the disturbing moment due to surcharge load (EBCD) be MD . 
1 

Weight of Son Mass W 1 

Let P., 1 be the lever arm for this mass about o2• 

1., 1 = Y 1H1 1-H 2 (cot A.2 - cot /3) - H1 cot f3 J [ R 2 cos a 2 

2 
Hl H2 J ylHl 

+ 2 cot f3 - 2 (cot· .x2 - cot (3 )_ + 2 cot (3 

Moment of EBCD about o2 

= wre 1. 

y 1 [H1 {H2 (cot A.2 - cot /3) - H1 cot 13} {R 2 cos a 2 

2 
Hl H2 Hl 

+ 2 cot f3 - 2 ( cot A. 2 - cot (3 )1 + - 2- cot (3 

x { R 2 cos a 2 - H 2 ( cot A.2 - cot (3) + i H 1 cot (3 )} J . 
Let the disturbing moment due to mass of soil enclosed in ADE 

(Figure 6a) be MD . 
2 

Weight of soil mass ( triangle A ED) 

! 
= ( cot A. 2 - cot (3 ). 



Weight of soil mass (segment AD) 

2 
Y2R2 

2 = (a' - { sin 2a'). 

Total weight of woil mass (W 2) 

= (a' - { sin 2 a') • 

Let .t 2 be the lever arm for this mass about o 2• 

J, = 2 
r {H2 

2 
} { 1 L - 2- (cot A2 - cot {3) R 2 cos a 2 - 3 (2H 2 cot A2 

R 2 sin3 a' 
X ! cos (a 2 + a')] 3 (a' - sin a' cos a') 

;H~2 
2 

- cot f3) + R 2 a' -
R 2 + sin 2a'. 

Moment of ADE about o 2 

M = D 2 

3 

} 2R2 . 3 J - H 2 cot{3) + .. 3 sma'cos(a 2 +a'). 

The total disturbing moment (MD ) is the sum of MD and 
II 1 
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Hl H2 } Hl 2 
+ T cot {3 - - 2- (cot >i. 2 - cot {3) + - 2- cot {3 

x { R 2 cos a 2 - H2 (cot >i. 2 - cot {3) + i H1 cot f3)} J 
H 2 

+ y 2 [ + ( cot >i.2 - cot {3) { R 2 cos a 2 - f ( 2H2 cot >i.2 

2R 3 

- H 2 cot f3)} + f sin3 a' cos (a 2 + a')] . 
From the geometry of the problem, 

= n 

Substituting these values in the above equation and simplifying, 

3 r 1 
y 2H 2 L 2mn (cot >i. 2 - cot {3) (cot a'+ cot {3) 

1 2 + 2 cot {3( cot >i. 2 - cot a' - 4 cot {3 + 2 cot {3) 
4mn 

1 2 1 2 
- --3 cot {3 + 12 ( 1 - 2 cot {3 + 3 cot >i. 2 cot a' 

6mn 

+ 3 cot {:3 cot >i.2 - 3 cot {3 cot a')] . 
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The resisting moment for this case consists of two parts, MR 
1 

and MR • 
2 



MR = Resisting moment due to cohesion along CD, 
1 

MR = Resisting moment due to cohesion along AD. 
2 

where J, 1 = lever arm about o 2• 

From the geometry of the problem, 

2 sin a' sin A2 

Q:' = 2 
90 - ( A2 +a'). 

Substituting these values for R 2 and a 2 in the above equation, 

= 
C 1H 1H 2 sin (A2 + a') 

2 sin a' sin A2 

Putting n 2 /H1 = n, and simplifying, 

2 

MR = 
C1H2 

( cot a' + cot A2). 
1 n 

Q:' 

J3 
MR = R2 C(B,Z)R 2de 

2 Q:'2 

a 
2 r· 3 C' C' 

= R 2 J c '1 [ '.c-,2 + ( 1 - 2 )l 2 .. de a 2 1 C]. _j COS .1 • 
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On integrating the above expression, and putting c2;c1 = K', the 

explicit value for MR is obtained as 
2 

M =R 2 L1(l+K 1)C'a 1 -.!.(1-K')C'sin2a'cos(2a'-2A >] R 2 2 1 2 1 2 · 

On further simplification, the above expression for MR reduces to 
2 

The total resisting moment (MR ) for this case is the sum of 
II 

MR and MR • 
1 2 

= 
C' H 2 

1 2 
8 , 2 I , 2 -.,. 

sin a sin "-2 

x [2a'(l+K') - (1-K')sin2 a 1 cos(2a'-2A2)]. 

Putting c1 = (p + 1) c 1• 

c 1H 22 [ -n1 (cot a'+ cot A2) + (p + l) 
8 . 2 , . 2..,. 

sin a s in "- 2 

x { 2a 1 (1 + K') - (1 - K') sin 2a' cos (2a' - 2A2)} J. 
The factor of safety, F, is given by 

F = 
Resisting Moment (MR ) 

II 
Disturbing Moment (MD ) · 

II 

30 
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F = 2 1 1 (p + 1) c 1H 2 1L -n (cot a'+ cot A2) + 2 2 
8 . ' . A sm a sm 2 

x {2a1.(l+K') - (1-K')sin2a'cos(2a'-.2A2)}] 

3 1 1 
y 2H 2 L 2mn (cot A2 - cot {3) (cot a'+ cot {3) 

1 2 
+ 2 cot f3 ( cot A2 - cot a' - 4 cot {3 + 2 cot {3) 

4mn 

1 2 1 2 
- 3 cot f3 + 12 ( 1 - 2 cot f3 + 3 cot A2 cot a' 

6mn 

+ 3 cot B cot A2 - 3 cot {3 cot a')l 

The above expression for the factor of safety may be conveniently 

expressed as 

where N 2 is termed a stability number. 

N =.,.... 
2 

cot a' + cot A2 ( + 1) r 
+P t2a'(l+K') 

2n 8 . 2 , . 2 A sm a sm 2 

- (1 - K') sin 2 a' cos ( 2 a ' - 2A2)} I 2.!,,, 
1 x (cotA2 -cot{3)(cota 1 +cotf3) + 2 cot(3 

4mn 

2 x ( cot A2 - cot a' - 4 cot (3 + 2 cot B) 
1 

3 
6mn 

2 1 2 
X cot f3 + l2 ( 1 - 2 cot {3 + 3 cot A2 cot a' 

+ 3 cot B cot A2 - 3 cot (3 cot a'). 

It is obvious that the minimum factor of safety is obtained by 

minimizing the stability number, N 2• with respect to a' and A2, so that 
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oN 2 
0 oa' = 

oN 2 

oA 2 
= 0. 

The foregoing operations may be carried out with the aid of a 

computer, and N 2 minimum would be a function of K', m, n, p, and (3. 

For given values of K', m, n, and p, the stability number is a function 

of (3 alone. 

Computations have been carried out for values of K' ranging from 

O. 5 to 1. 0, n ranging from 1. 0 to 3. 0, and p ranging from -0. 5 to 

+O. 5. Since the unit weights of soils in the two layers would not 

ordinar Lly differ greatly, m = y 2/y 1 is assumed to be unity. 

Case (b). The approach followed in arriving at the expressions 

for disturbing moment, resistLng moment, and the factor of safety is 

the same as that for Case (a). 

The total disturbing moment, MD , is the sum of the disturbing 
II 

moments MD and MD . 
1 2 

= 

H 2 
Y1 {+(cot :.\2 - cot {3) (cot A2 tan (3 - 1)} 

x { R 2 cos a 2 - i (cot A2 - cot f3)} 

2 
r H2 f 1 

y 2 L - 2- (cot A2 - cot {3) l R 2 cos a 2 - 3 (2H 2 cot A2 

'} 2 3 , 3 2 ] - H 2 cot {3) + 3 R 2 sm a' cos (a + a') • 

The total disturbing moment (MD ) is found by 
II 
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From the geometry of the problem, 

and as per the notation 

n = 

m = 

Substituting these values in the above equation for the disturbing 

moment, and on simplifying, 

= 
- 1 
Lm (cot A2 - cot {3) (cot A tan {3 - 1) (3 cot a' 

+ cot A2 + 2 cot {3) + (cot A2 - cot /3) (3 cot a' - cot :\. 2 

2 1 + 2 cot {3) + cosec A2 _J . 

The resisting moment consists of two parts, MR and MR , as 
1 2 

in Case (a). The total resisti.:n.g moment (MR ) is the sum of MR 
II 1 

and MR . 
2 



C'H 2 
1 2 

8 , 2 I , 2 '\ sin QI sm "- 2 

[2Ql 1 (1 +K') - (1 - K') 

x sin 2QI' cos ( 2QI' - 2A 2)] . 

C'H 2 
+ 1 2 

8 , 2 I • 2'\ sin QI sin "-2 
[2Q1 1 (l+K') - (1-K') 

Putting c1 = (p + 1) c 1, 

M = 
Ru 

+ (p+l) {2Ql 1 (l+K')-(l-K') 
8 . 2 I • 2 A sm QI sm 2 

x sin 2Ql 1 cos (2Ql 1 - 2A2)} J. 
The factor of safety, F, is given by 

Resisting Moment (MR ) 

F = II 
Disturbing Moment (MD ) 

II 

34 
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F = 

+ (p + 1) {2Ql 1 (1 + K') - (1 - K') sin 2Ql 1 

8 . 2 I • 2 A sm QI sm 2 

x ( cot A2 tan {3 - 1) ( 3 cot QI' + cot A2 + 2 cot {3) 

+ (cot A2 - cot {3) (3 cot Ql 1 - cot A2 + 2 cot {3) 

2 .., 
+ cosec A2 J . 

The above expression for the factor of safety may be conveniently 

express€d as 

where N 2 is termed a stability number. 

N = 2 
-21 ( cot A2 tan {3 - 1) ( cot A2 + cot QI') + ( P + 1 ) 

8 . 2 I • 2A sm QI sm 2 

x {2Ql 1 (1 + K') - (1 - K') sin 2Ql 1 cos (2QI' - 2A 2)} 

1 r 1 l2 L m ( cot A2 - cot {3) ( cot A2 tan f3 - 1) ( 3 cot QI I 

+ cotA2 +2cot{3) + (cotA2 -cot{3)(3cotQl 1 -cotA2 

+ 2 cot {3) + cosec 2 A2 J. 
It is obvious that the minimum factor of safety is obtained by 

minimizing the stability number, N 2, with respect to QI' and A2, so 

that 
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oN 2 
= 0 OQ! I 

oN 2 
oA 2 

= 0 • 

The foregoing operations may be carried out with the aid of a 

computer; and N 2 minimum would be a function of K', m, p, and [3. 

For given values of K 1 , m, and p, the stability number is a function of 

[3 alone. 

Computations have been carried out for a given set of K', m, and 

p, as listed in Case (a). 

Layer 1 

The failure surface is circular, as shown in Figure 5. The 

solution for this case is available (Lo, 1965), but to keep the clarity 

and continuity of the present analysis, this is listed in detail. 

For limiting equilibrium of the mass above the potential surface 

of rupture EF, the total disturbing moment about o1 must be equal to 

the total resisting moment about the same point. 

The disturbing moment of the mass of soil above EJF is equal to 

= 
2 

( 1 - 2 cot [3 + 3 cot i\ cot [3 + 3 cot a 

x cot Al .,. 3 cot a cot [3 ). 



The resisting moment (MR ) is given by 
I 

Q:'2 

= R 1 J C(8,Z)R 1 de 
al 

On integration and simplification, the expression for MR would be 
I 

2 
ClHl r 1 

2 2 1 ( 1 + K) a + 2 ( 1 - K) sin 2a 
4 sin a sin ;.\ L 

x cos{2f-2\)]. 

The factor of safety, F, is given by 

F = 

x 

F = 
Resisting Moment (MR ) 

I 
Disturbing Moment (MD ) 

I 

4 0 2 0 2). 
sin a sin /\.l 

[ ( 1 + K) a + .!.2 ( 1 - K) sin 2 a 

cos ( 2f - 2A)] I 2 
( 1 - 2 cot {3 + 3 cot Al 

x cot B: + 3 cot a cot Al -; 3 cot a cot {3 ). 
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For isotropic material, c 1 = Ci = c 2, and the above expression 

for the factor of safety reduces to 

F = ; 6a c1 /y 1H 1 sin2 a sin\ (1 - 2 cot 2 {3 + 3 cot A1 

x-:.· cot (3 + 3 cot a cot Al - 3 cot a cot {3 ). 



This equation is identical to Taylor's solution for the case cp = 0 

{Taylor, 1937). 

The above equation for F may be conveniently written as 

where N 1 is termed a stability number. 

N = 1 
3 ~ 1 + K) a, + i { 1 - K) sin 2 a, cos ( 2f - 2 ~\ ) J 
sin2 a, sin2 Al (1 - 2 cot 2 {3 + 3 cot Al cot {3 

+ 3 cot a, cot Al - 3 cot a, cot {3 ). 

It is obvious that the minimum factor of safety is obtained by 

minimizing the stability number N1 with respect to a, and A1, so that 

oN 1 
= 0 

oa, 

8N = o. 8A1 

The foregoing operations may be carried out with the aid of a 
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computer; and N 1 is solely a function of K, f, and {3. For given values 

of K and f, the stability number is a function of {3 alone. 

Computations have been carried out for f = 55° and K ranging 

from O. 5 to 1. O. The value of 55° for f is based on experimental data 

(Lo, 1965). 

Charts 

Numerical results, which are graphically presented in the follow-

ing pages {Figures 7 through 29), are obtained with the aid of an 

IBM 360/65 computer available at Oklahoma State University. 
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Figure 30 is a reproduction of the chart presented by Lo.( 196 5 ). These 

charts can be used to solve slope stability problems in a two-layered 

system of anisotropic soils. 
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Figure 15. Slope Angle (f3) versus Stability Number (N 2), 
Layer 2, (m = 1.0, n = 2.0, and p = -0.25) 
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Figure 16. Slope Angle (/3) versus Stability Number (N 2), 
Layer 2 (m = 1.0, n = 3.0, and p = -0,25) 
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Figure 18. Slope Angle (f3) versus Stability Number (N 2L 
Layer 2 (m = 1. 0, n = 3. 0, and p = -0~ 5) 
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Figure 20. Relative Strength Index (p) versus Stability 
Number. (N 2) (ni = .1.,0, n = .2. 0, and ,.. 
{3 = 400) 
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Figure 22. Relative Strength Index (p) versus Stability 
Nurnber (N2) (m = 1, 0, n = 1. O. and 
{3 = 60°) 



(\J 

2 .. 
a:: 
w 
al 
~ 
:::> 
2 

>-
I-
_J 
-
al 

~ 
(/) 

56 

5.4 
I 

m = 1.0 

5.0 n = 2.0 
{3 = 60° 

4.6 

4.2 

3.8 

3.4 

3.0 

2.6 

2.2 

1.8 

1.4 

1.0----......_ _________________ _ 
-0.75 -0.50 -0.25 0 0. 25 

RELATIVE STRENGTH INDEX, p 

Figure ~3. Relative Strength Index (p) versus Stability 
Number (N 2) (m :::: 1. 0, n = 2. 0, and 
B = 60°) . 

0.50 



N 
2 .. 
a:: 
w 
m 
~ 
:::) 
2 

>-
~ 

-' -m 
<t ..__ 
(/) 

57 

5.4r.-------r-,o~-..----,---------~~----------

m = 1.0 

5.0 n = 3.0 
/3 = 60° 

4.6 

4.2 

3.8 

3.4 

3.0 

2.6 

2.2 

1.8 

1.4 

I.0'------""----.__-------.-....----
-0.75 -0.50 -0.25 0 0.25 · 0.50 

RELATIVE STRENGTH INDEX, p 

Figure 24. Relative Strength Index (p) versus Stability 
Number (N2) (m = 1, 0, n = 3. 0, and 
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CHAPTER IV 

DISCUSSION OF RESULTS A ND CONCLUSIONS 

While estimating the stability of slopes, it is often assumed that 

soil is homogeneous and isotropic. However, it is evident from the 

review of the published literature ( Chapter II) that soil is rarely homo-

geneous and isotropic. Nonhomogeneity and anisotropy in natural soil 

deposits affect the stability of slopes in such deposits. There are two 

major kinds of deviation from the ideal homogeneous material. The 

first is the case in which the soil consists of layers of distinctly dif-

ferent soils (for example, layered clays), the second being a soil de-

posit which lacks any distinct stratification but whose properties vary 

from one point to another over a wide range. 

In the present study., it is the former kind of nonhomogeneity 

that is studied. An analytical method for the evq.luation of stability of 

earth slopes in a two- layered syste:qi of anisotropic soils is presented. 
,1:~_., ... ,; 

The approach to this problem is based on the intuition that the overall 

stability of the slope is governed by the individual stability of the 

layers. Hence, the two layers are analyzed separately for their stabi

lity numbers (from which the factor of safety is obtained, F = Yir N). 

The stability of a given elope is then dependent on the layer having the 

lower factor of safety. 

It is logical to expect that the ratio of thickness of layers 
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relative strength (p) of the layers would influence the stability of the 

slope. To study these effects, numerical results are obtained for the 

following values of the above parameters; 

n == 0. 5, 1. 0, 2. 0, and 3. 0 

K and K ' == 0. 5, 0. 6, 0. 7, 0. 8, 0. 9, and 1 . 0 

p == - 0. 5, - 0. 2 5, 0. 2 5, 0. 5, and 1. 0. 

Since there would not be much difference in the unit weights of 

soil in the two layers, m (y 2/Y 1) is taken to be unity. All the numeri

cal results whLch are graphically presented (Figures 7 through 29) were 

obtained with the aid of IBM 360/65 computer available at Oklahoma 

State University. The computer program used in obtaining the mini

mum stability number is listed in Appendix I. The analytical method 

suggested in this report is valid for slopes steeper than 40°. 

The stability number N2 for the bottom layer is dependent on 

slope angle (/3 ), coefficient of anisotropy (K' ), coefficient of nonhomo

geneity (m), thickness ratio (n), and relative strength index (p). 

Charts (FLgures 7 through 19) are presented to show slope angle (/3) 

versus stability number (N 2) for various values of K', n, and p. For 

all these charts, m is taken to be unity. 

The stability number N 1 for the top layer is a function of slope 

angle (/3) and coefficient of anisotropy (K). A cbart (Figure 30) showing 

slope angle (/3) versus stability number (N 1) is presented for various 

values of K (Lo, 1965). 

To assess the influence of p (relative strength index) on the 

stability of the second layer, the stability number (N 2) is plotted against 

p varying from -0, 50 to O. 50 Ln Figures 20 through 24. It is evident 

from these charts that the stability number increases linearly with p. 
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This is in accordance with the expectations that the stronger the stratum 

the more stable it will be. 

Charts (Figures 25 through 29) demonstrate the influence of 

thickness ratio. (n) on stability number (N 2). For a given slope ({3) and 

strength (p), the stability number (N 2) increases with n. Nevertheless, 

there is a trend indicating that N 2 is less and less influenced with an 

increase in n from 0, 5 to 3. 0. For clarity in understanding this state-

ment, four cases are tabulated below, Perhaps, for values of n 

greater than 3, its influence on N 2 is negligible, 

TABLE III 

INFLUENCE OF THICKNESS RATIO (n) ON 
STABILITY NUMBER (N2) 

percent increase inN2 
as n increases from 

0.5 to 1.0 to 2.0 to 
m p {:3 K' 1.0 2.0 3.0 

1. 0 0, 5 60° 0.5 27. 50 22.82 10. 14 

1. 0 0.5 60° 1. 0 30.24 25.92 11. 40 

1. 0 0.5 40° 0.5 30.60 24. 12 11. 83 

1. 0 0.5 40° 1. 0 38.85 29 .. 95 12. 37 

Conclusions 

From the above study, the following conclusions may be drawn 

with regard to stability slopes in a layered system: 
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1. Charts (Figures 7 through 30) enable the analysis of earth 

slopes ( slopes steeper than 40°) in a two-layered system of anisotropic 

soils. 

2. The overall stability of a slope is dependent on the individual 

stability of the layers. 

3. The stability of the bottom layer is dependent on the thickness 

ratio (n), the coefficient of anisotropy (K' ), the relative strength index 

{p), m(y2/y1), and slope angle {{3), whereas the stability of the top layer 

is a function of the coefficient of anisotropy {K) and slope angle ({3 ). 

4. The stability number (N 2) of the bottom layer for a given slope 

increases linearly with the relative strength index {p). 

5. The influence of the thickness ratio {n) on the stability number 

(N 2) for a given slope reduces gradually as n increases from O. 5 to 

3. 0. Perhaps, for higher values (n > 3. 0), its influence on N 2 is 

negligible. So, for thickness ratios greater than 3. 0, the charts for 

n = 3. 0 could be used to analyze the stability of a given slope. These 

would give a conservative estimate of the factor of safety. 

6. The method presented in this thesis assumes the following 

variation for shear strength: 

where 

Ci= ch+ (CV - Ch) cos2i, 

C. = shear strength along a plane inclined at an angle, i, 
1 to the vertical, and 

= shear strengths along the horizontal and vertical 
planes, respectively. 

However, this method could be extended for any other assumed varia-

tion for shear strength. 



Recommendations for Further Research 

During this study, some interesting topics were noted which 

merit further investigation. Some suggestions in this direction are 

listed in the following paragraphs. 
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1. It is not uncommon for. a soils engineer to encounter C - cp 

soils in nature. Therefore, it may be worthwhile to develop an analy

tical method to solve stability problems in such soils, 

2. Pore pressure effects and earthquake effects have not been 

considered in the present work. It is suggested that a theoretical 

method could be developed taking these factors into account to assess 

their influence on stab Llity of earth slopes in layered soils. 

3. The application of the finite element method of analysis, 

which has been found to be versatile in solving problems in some areas 

of soil mechanics, could be studied to analyze slope stability problems 

in a layered system of nonhomogeneous and anisotropic soils. 
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HYPOTHETICAL PROBLEMS 
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1. Analyze the slope cut shown in Figure 31 for its stability. The 

cut is of 30' in height and is on a 40° slope in a layered system of non-

homogeneous and anisotropic soils. The properties of the soil in the 

layers are as follows: 

Top Layer: C1 = 800 psf c 2 = 480 psf y 1 = 120 pcf 

Bottom Layer: c 1 = 600 psf C' :: 360 psf 
2 ; 

y 2 =, 120 pcf .. 

Assume that the critical surface corresponds to a toe failure. 

Data: 

Figure 31. Slope Cut in a Layered System 
of Anisotropic Soils 

K _ c2 = 480 
cl = 800 psf, C - 480 psf - = o. 6 2 - • c 1 800 

c2 360 c1 = 600 psf, c 2 = 360 psf, K'= Cl = 600 = o. 6. 

As peT the approach followed in this thesis, 

C' 1 = (p + 1) c 1 

-·:-~-;r--
600 (E? + 1) 800 __ . ..,7-:::-: = 

(p + 1) = 600 
800 

p = o. 7 5 1. 0 

= -0. 25. 



Y2 120 
1. 0 m = = = 

Y1 120 

H2 20 
2. 0 n = ~ 

= 10 = 

f3 = 40° M - 1. O 

p = -0. 25 K = K' = O. 6. 

Layer 1: 

Stability Number (N1} = 5. 198 (From Figure 30} 

Factor of Safety 
c1 

= ylHl Nl 

800 
= 120 x 10 x 5· 198 

= 3. 446~ 

Laye:r, 2: 

Stability Number (N2} = 2. 26 (From Figure 15) 

c1 
Factor of Safety ;:: -

Y2H2 

800 
= 120 x 20 x 2• 26 

= o. 7 53. 

75 

n = 2. 0 

The stability of the cut is governed by the bottom layer (weaker}, 

slnce the factor of safety for this layer is less than that for the top 

layer. In the present case, the cut is unstable, since the factor of 

safety is less than one. 

2. An embankment 30 feet high (Figure 32} is made up of two soils, 

s1 and s2, whose properties are given below. The soil s1 is used for 

constructing the lower 10 feet of the embankment, and soil s2 is used 

for the rest. 
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Soil s1: c 1 :;:: 500 psf c 2 = 400 psf y 1 = 120 pcf 

Soi1S2: cl =lOOOpsf c2 = 800psf Y2 = 120pcf. 

Analyze this embankment for its stability. Assume that the criti-

cal failure surface corresponds to toe failuI'.e. 

Data: 

3d 

Figure 32. An Eµibankment with a 
La.yered System of 
Anisotropic Soils 

c2 400 
Soil s1: c 1 = 500 psf, c 2 = 400 psf, K = - = - = o. 8 c 1 500 

C' 
Soil S 2: C 11 c 1000 psf, c 21 = 800 psf, K' = C~ = 180°0°0 = O. 8 

'1 

As per the notation followed in this thesis, 

C' = (p + 1) c 1 1 

1000 = (p + 1) 500 

(p + 1) = 2. 0 

p = 1. 0 

y 
120 2 1. 0 m = = 120 = 

Y1 

H2 10 o. 5. n = 
Hl 

::; 
20 = 



m = 1. 0 n = O. 5 

p = 1. 0 K = K' = O. 8. 

Top Layer: 

Stability Number = 5. 023 (From Figure 30) 

Factor of Safety 

500 
= 120 x 20 x 5• 023 

:i:: 1. 0465. 

Bottqm Layer: 

Stability Number = 3. 3415 (From Figure 19) 

Fc\-ctor Qf Saf ~ty 

500 = 120 x 10 x 3. 3415 

= 1. 3920. 

The stability of the embankment is controlled by the top layer 

(weaker), as the factor of safety for this is less than that for the 

bottom layer. 
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APPENDIX B 

COMPUTER PROGRAM 

1"10 



CARO 
0001· 
()002 
0003 
0004 
0005 
0006 
0007 
ooc8 
0009 
0010 
0() 11 
0012 
0013 
0014 

,0015 
001.6 
0017 
0018 
0019 
0020 
0021 
01)22 · 
0023 
0024 
0025 
0026 
0027 
0028 
0029 
0030 
0031 
0032 
0033 
0034 

• 0035 
0036 
0037 
0038 
0039 
0040 
0041 
0042 
0043 
0044 
0045 
0046 

. 00.47 
004.8 
0049 
0050 
00·51 
OO'i2 
0053 
0054 
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10/80 LIST 

000000000111111111122222222223333333333441o1t41t1t1t445555555555666666666677111111118 
I ZJ1t56 7890 l 2345618901. 23456 78901234567890123456 7890123456 7 89012 3456789012 3456 7 890, 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

200 

201 

OKLAHOMA STATE UNIVERSITY O.OHAVALA 

STABILITY ANALYSIS OF SLOPES IN A TWO-LAYER SY.STEM OF. 
ANISOTROPIC SOILS 

DESCRIPTION OF PARAMETERS 

8 
M 
T 
p 
RP 
SN2 
AP 

BP 

XLC 1.1 
XU2t 
XR( l t 
XR12 I 

•SLOPE ANGLE . 
•COEFFICIENT OF NON-HOMOGENEITY 
•THICKNESS RATIO 
•RELATIVE STRENGTH lffOEX 
•COEFFICIENT OF ANISOTROPY 
•S.TABIL ITY NUMBER-LAYER 2 
•GEOMETRICAL PARAMETER DEF.INING CRITICAL SLIP SURFAft, 

ALPHA.PRIME 
•GEOMETRICAL PARAMETER DEFINING CRITICAL SLIP SURFf.tE:, 

LAMDA TWO 
•LOWER LIMIT ON AP 
•LOWER LIMIT ON BP 
•UPPER LI MIT ON AP 
•UPPER LI Ml T ON BP ,., 

SUBROUTINES REQUIRED 

PATRN, EXPLOR,. AND MERIT 

IMPLICIT REAL•8 CA-H,O-ZI 
tOMMON /MNMERT/ AA,BB,B,R,RP,SN7 
O I ME NS I ON XI 91 , XL 19 I , XR 19 I 
N•2 
NP=2 
DEL T A=O .01 
ROW=0.5 
F•0.001 
0 .. 3 .141592600/18 .ooo 
CONTINUE 
READ 201,RP 
.FORMAT! lEl0.31 
I VAL•lO .O*RP 
IF I IVAL .eo. Ot GO TO 999 
DO 2 'I I •5, 7 
8•1•0 
XLU t•0.1745 
XLI 2 t •0.1745 
XIU l t •O. 8855 
XRC2 t•0.5655 
Xlll•0.5236 
XI 2t •0.43.63 
CALL PATRNCN,NP,DELTA,f,XL,XR,Y,X,ROW,NN) 
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80/80 LIST 

000000000 l ll l l l 11112222222222 33 3333333341t4444441tlt5555 55.5555666666.666617777777 778 
12345678901231t5678901234567890l2345678901234567890l2345678901231t567890l234567A90 

CARO 
0055 
0056 
0057 
0058 
0059 
00.60 
C06l 
0062 
1)06) 
0064 
0065 
0066 
0067 
0068 
006<1 
0070 
C'071 
0072 

. (.1073 
0074 
1)075 C 
0076 C 
0077 C 
0078 C 
0079 C 
0080 C 
0081 C 
00112 · C 
0083 . C 
00114 C 
0085 C 
001!6 C 
0087 C 
0088 C 
0089 C 
OO'lO C 
0091 C 
0092 C 
1'093 C 
0094 C 
0:)95 C 
0096 . C 
0097 C 
C09.8 C 
0099 C 
0100 
0101 
0102 
0103 
0104 
0105 
0106 
0107 
!HOS 

CALL 14ERITIX,YI 
WRITEC6,31 AA,88,8,R,RP,SN2 

3 FORMATC/,lX, 1 AA•',Fl5.8,/1lX1 
1°88• 1 ,Fl5 .• 8tl,1X, 
1.1 8• 1 ,FIS.8,/1 lX, 
1 1 R • 1 , Fl 1 • 4, / , 1 X, 
l~RP•',Fll.4,/,lX, 
l'SN.2= 1 ,Fll.4,//1 

25 CONTINUE 
GO TO 200 

·999 STOP 
ENO 

SUBROUTINE PATRNIN,NP,OELTA1F1XL,XR1Y,X,ROW,NNI 
IMPLICIT 'REAL*B CA-H,O-ZI 
PATTERN SEARCH FOR MULflVARIABtES 
THIS SUBROUTINE. CONDUCT~ A .PAJTERN SEARCH 
WITHIN REGIONAL CONSTRAINTS IN A HIPERSURFACE 
OF UPlO NINE. INDEPENDENT VARJA8LES. 

CALLING PROGRAM REQIREMENTS. 

PROVIDE A SUBROUTINE MERIT FROMWHICH AN ORDINAlE Y IS RETURNED 
WHEN COLUMN VECTOR. ABSCISSA X IS RETURNED. 

VARI ABLES. 
N=NUMBER OF INDEPENDENT VARIABLES. 
NP,..CONVERGENC E MONITOR. 
NP=C WILL NOT PRINT. 
NP l WILL PRINT EVERY IT~RATlON. 
NP 2 WILL PRINT EVERY 2ND. ITERATION., 
DELTA =CURRENT STEP SIZE. 
F=MlNIMUM STEP SIZE 
XL=LOWER BOUNO OF SEARCH DOMAIN 
XR•HIGHER BOUND OF StARC~ OCMAlN 
Y•FUCTIONAL VALUE RESULTING FROM CURRENT MOVE 
YY•FUNCTIONAL VALUE AT BASE POINT 
YYY•FUNCTIONAL VALUE AT CURRENT BASE POINT 
XXX•PREVIOUS BASE POINT 
XX=BASE POINT RE SUL TING FROM CURRENT MOVE 

DIMENSION XC91,XX(91,XXXl9),XLl91,XR(9),N8t11 
NF=O . . 

• Nl•O 
N2=0 
NN=O 

DEL TAl=OELTA 
DO 45 1 = l ,N 

45 NGI II= I 
IF INP15,5,.6 
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eo,e.o qsr 

00000000011'1111111122222222223333333333441t444't44455555555556466666666 77177777778 
12 34,567890123456 7890123456 7 89012 3456 7,89012 3456189012345 6 7 89012 3456789012 3456 7 890 

CARD 
0109 
0110 · 
0111 
0112 
0113 
0114 
0115 
0116 
0117 
0118 C 
01111 
DUO 
0121 
0122 
0123 
0124 
0125. 
OU6 
0127 
0128 
0129 
0130 
0131 
0132 
0133 
()134 
0135 
0136. 

c 
c 
c 
c 

c 

0131 
0138 
0139 
0140 
0141 
0142 

. 0143 
. 0144 

0145 
0146 
0147 
Ol48 
0149 
0150 
0151 
0152 
Cl.53 
0154 
0155 
0156 
0157 
0158 
0159 
0160 
0161 
0162 

c 

c 

6 WRlTEI 6., 71 INGf U ,1 •l•NI 
1 FO.RMAH 2x, • NN• ,6X, 'DEL TA i ,9X, •v•, 2x~,, 1x, • xc •, 12, • 11 11 
5 CALL MERITCX,YI · 

Nf•NF+l 
NN•NN+l 

· 1,: I N.P.1311:U ,32 
.32 WRITEC6, 33 INN ,Dfl TA ,Y, IX I 11, l•l ,NI 
33 FORMATC1X,14,9UX,Ell.4U 
31 CONTINUE 

1 

10 

2 

12 

14 

41 
42 
44 
20 

21 

22 

23 

.3 

15 

13 

STRAT ~T BASE POINT 
YY•Y 
DO 10 K•.ltN 
XXIKl=XiK.I 
CONTINUE 
MAKE EXPLOkATORY MOVES 

CALL. EXP LOR IN, XX, VY, XL,X~,OEL TA,ROW ,NF I 
IS .PRE,SENT FUNCTIONAL VALUE BELOW .THAT AT 

IFIVV - V13,3,2 
SET NEW BASE POINT 
DO 12 K•l,N 
xx·xc K l=XI KI 
XIKl.,XXCKI 
CONTINUE. 
V•YV 
MAKE PATTERN t,IOVE 
00 14 K.,l,N 
)()((KI •2. O*XX I K 1-xxx C!<t 
CONTINUE 
CHECK IF CONSTRAINT IS VIOLATED 
DO 20 Jal,N 
IFIXX1ll-XLllll4l,42,42 
XXI l l•XLll l . 
IFIXXCII-XRClll20,20,44 
XXlll=XRIII 
CONTI NLJE 
CALL MERITCXX,VYYI· 

NF=NF+l 
NN=NN+l 
VV=VVY 
IF I N2 I 21 , 22 , 21 
N2,.N2+1 
IFCN2-NP122,23,22 

WRJ TEC6,331NN,DELTA,V, IXI 11,.J=l,N) 
N~O . . 

CALL EXP.LORIN, XX, YY, XL ,XR,DEL TA,ROW, NF I 
IFIYY-Yll,1,2 
DDHTA=OELTA-F 
IF iooELTAH3,15,l5 
DECREASE STEP SllE 
DELTA=ROW*DELTA 
GO TO l 

WR ITEC 6, 1001 NF, Y,NN,DE L TAl ,DEL TA ,ROW ,F. 

BASE. POll\tf''f:· 

100 FORHATl/,lX,•TOTAL NUMBER OF FUNCTION EVALl,JATIONS •••• ~~·'115,ltlX., 
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80180 LTS'T 

oocoooooo l l l 1llll1122222t22223333333333444444444455555555 55666666666677777777778 
12345.f> 7890123456 7890123456?89012345678901234567890123456789012345678901234567890 

CARD 
0163 
0164 
0165 
0166 
0167 
0168 
0169 
011(1 
0171 C 
0172 C 
0173 
0174 
0175 
017.6 
0177 
0178 
3179 
0180 
0181 
0182 
0183. 
0184 
OlAS 
0186 
0187 
0188 
0189 
0190 
01'11 

c 

c 

c 

c 

Cl 92 
0193 
0194 
0195 
0196 
0197 
0198 
0199 
0200 
0201 
0202 
0203 
0204 
0205 
0206 
0207 
0208 
0209 
0210 
0211 
0212 
0213 
0214 
0215 
0216 

c 

c 

c 

c 

21 
22 
23 
24 

2 

2S 
26 
27 
28 

4 

3 
10 

J•LARGEST HlRIT ORDINATE.~ ••••••••••••••••••••• El5.8,/,1X, 
J'NUHBER OF BASE EVALUATIONS•••••••••••••,115,/,lX, 
]'ORIGINAL ·STEP SI.ZE ••••••.••••••.••• ~ ••••••••• •,Fl5.8,/,1X, 
4 1 F-INAL.STEP s11e •••••••••••• -••.•.••••••••••••• •iF15.8,/",1X, 
5.1 REOUCTION FACTOR FO.R STEP SlZE ••••••••••••• •,F15.8,/,lX, 
6 1 FRACTIONAL REDUCTION OF UNCERTAINITY •••••• ~· 1 Fl5.8 1 //I 

RETURN . . . . 
ENO 

SUB'ROUT !'NE E XPLOR IN, XX, YY,Xl, XR ,DELTA, ROW, NF I 
IMPLICIT RE~L*8 IA-H,O-ZI 
DIMENSION XXC91 ,XL 191,XR(9.I 
00 10 K.al ,N 
INC~EASE ORDINATE, CALCULATE ORDINATE 
XXCKl•XXCX)+OELTA 
CHECK IF CONSTRAINT IS VIOLATED 
IFIXXIK)-XLIKll21,22,22 
XXCKl=XLIKI 
IFIXXIKI-XRCXJ.124,24,23 
XXCKJzXRIKI 
CONTINUE 
CALL ~ERITCXX,YYYI 

NF.,NF+l 
IS HOVE A SUCCESS? 
IFCYYY-YYll,1,2 
RETAIN NEW ·co ORDINATE AND NEW FUNCTIONAL.VALUE 
YY•YYY 
GO TO 10 
DECREASE ORDINATE,CALCULATE NEW ORDINATE 
XXIKJ=XXCKl-2.0*DELTA 
IFIXXIKI-XLCKll25,26,26 
XX( Kl=XLI.KI 
IFCXX(KI-XR(Kll28,28,27 
XX(Kl•XRIKI 
CONTINUE 
CALL MERITIXX,YYYI 

NF=NF+l 
IS MO VE A .SUCCESS ? 
IF( YYY-YYl3,3,4 
RETURN CO-ORDINATE & NEW FUNCTIONAL VALUE 
YY•YYY . 
GO TO 10 
RESET CO-ORDINATE 
XXfKl•XX(Kl+DfLTA 
CONTINUE 
RETURN 
END 
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80/80 LIST 

000000000111111111122 22222222333333333341t444444445555 5555556666666666 77777777778 
123456789012345678901234567890123456789012345678901231t56789012345678901234567890 

CARO 
0217 
0218 
0219 
0220 
0221 
0222 C 
0223 C 
0224 
0225 
0226 
0227 
0228 
0229 
0230 
0231 
02'32 
0233 
0234 
0235 
0236 
0237 
0238 
0239 
0240 
0241 
0242 
0243 
(1244 
0245 
0246 
0247 
0248 
0249 
0250 
0251 
0252 
0253 
0254 
0255 
0256 
0257 
0258 
0259 
0260 
0261 
0262 
0263 
0264 
0265 
0266 
0267 
0268 
0269 
0270 

SUBROUTINE MERITIX,VI 
IMPLICIT REAL•B IA-H,O-ZI 
COMMON /MNMERT/ AA,B8,A,R,RP,SN2 
REAL•B OSIN,DCOS,H,N,AA,BB 
DIMENSION Xl91,Fl41 
AP=ALPHA PRIME 
BPzLAMDA TkO 
APzX 111 
8PzX(21 
M=l.000 
Ta3 0 000 
P=-0.2500 
SAP=OSIN(API 
CAP=OCOSIAPI 
C2AP=OCOSIAP+API 
COT AP =CAP/SAP 
SBP=OSINIBPI 
CBP=OCOSI BPI 
COTBP=CBP/SBP 
COTBP2=COTBP•COTBP 
COTBP3=COTBP2•COTBP 
SB=DSIN(BI 
CB=OCOSIBI 
TANB=SB/CB 
COTB=CB/SB 
COTB2=COTB*COTB 
COTB3=COTB2•COTB 
S2AP=DSINIAP+API 
SAP2=SAP•SAP 
CSAP2=1,0DO/SAP2 
SBP2=SBP*SBP 
CSBP2=1.000/SBP2 
Vl=2.0DO*(AP-BPI 
CVl=OCOS!Vll 
SVl=DSINIVll 
R=COTBP*TANB 
IFIR ,GT. (4,0/3,011 GD TO 50 . . 
AA=O, 2500* 11, OOO+RP I* I 1.000 +P l*AP•CS AP2*CSBP2-0 .12500* I 1.000-RP I* I 

11,000+P J •CSAP2•CSBP 2•S2AP*CV l+ O. 500* I COTBP 2*TANB+CDTAP*COTBP*TANB-
1COTB P-COT AP I . 

BB= I COT AP•COTBP2 *TANB/14. ODO*M l I+ I COTBP 3*TANB/I 12 .ooo•M I 1-1 COTBP2/ 
112,000l+IIM-2,0COl/14,0DO*Mll•COTAP*CDTBP+IIH-1,0001/14,0DO*Mll*CO 
lTBP*COTB+lll.ODO-MJ/14,000*Mll*COTB*COTAP~l(l.OOO•Ml/16.0DO*Mll*CO 
1TB2+11,0D0/12,0DOl*CSBP2 

F 111=10,2500*11.ooo+RPI •11.ooo+Pl*CSBP2-0.5DO*l l.ODO+RP I*( 1·.ooo+Pl 
l*AP*COTAP*CSBP2+0,25DO*ll,ODO-RP)*ll,ODO+Pl*COTAP•CSBP2*S2AP*CV1-0 
l,25DO*ll,OOO-RPl*ll.OOO+Pl*CSBP2*C2AP*CV1+0,2500*11,0DO-RPl*ll,ODO 

• l+Pl*CSBP2*S2AP*SY1+0,500*11,0DC-CDTBP*TANBI l*BB+I0,25DO•COTBP2*TAN 
lB/T+IM-2.0DOl*COTBP/14.0DO*Ml+ll,OOO-Ml*CDTB/14.000*Mtl*AA 
F121=1-0,5DO*ll,OOO+RPl*ll,OOO+Pl*AP*CSAP2•COTBP+0,2500•Cl.ODO~RPI 

l• I l .OOO+P I *C SAP 2*COTBP* S2AP*C V 1-0. 2500* I l. ODO-RP I *.11.000+P I *CSAP2• 
1S2AP*SV1+0,5DO*l-2,000*COTBP*TANB-COTAP*TANB+l,OOOll*BB+(0,500*COT 
lAP*C OTAP+T ANB/M+O ,2 500*COTBP2*T ANB/H+ I M-2, 000 l*COTAP/ 14, ,OOO*Ml + I H
l l ,000 l*COTB/ 14 .000*H I l•AA 
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00000000011111111112222222222333333333344444444445555555555666666666677777777778 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

CARO 
0271 SNZ•AA/88 
0272 Y•Flll•Flll+FIZl•FCZI 
0273 Y•-Y 
0271t RETURN . .· · 
0275 50 AA•O. 2500• 11.0DO+RP I *IP+l .000 l*AP•CSAP2*CSBPZ-O .1 z500•11.ooo~RP •• , 
0276 ll.ODO+PJ•CSAP2•CSBPZ•SZAP•CYl+ICOTAP+COTBPl/12.0DO•TI 
OZ l7 BB" I 0.500/IH•T I +O .z 500/ I HH• TI +O •. 2500 I• I COT BP"'.COT AP J •COTB;,;.I o. 500/ I 
0278 lM•Tl+l.ODO/IH•T•Tl+l.OD0/16.000•H•T•T•Tl+l.OD0/6.0DOl•COTBZ+I0.5PO 
0279 l/lH•T•TIJ•COTB3+l.000/12.0DO+I0.5DO/IH•TJ+0.25DOl•COTBP*COTAP . 
0280 Flll•lO.Z5DO•lloODO+RPl*ll.ODO~Pl*CSBP2-0.5DO•ll.ODO+RPl*ll.OOO+PI 
0281 l*AP•COTAP• CSBP2-0. 2500• I l. ODO-RP 1 • 11.ooo+P I *C2AP*CY1 •cs BPZ+O. 2500* 
0282 111.ooo-RPl•Cl.ODO+Pl•S2AP•SYl•CSBP2+0.25DO•Cl.OOO-RPt•ll.ODO+Pl•S2 
0283 lAP•CYl*COTAP•CSBP2-0. 500/T I *BB+AA• 110 o2 500+0. 500/ I M*T I I *CDT BP-IO. 5 
OZ 84 100/ I M•T l.+0 .2 500/1 H•T• T) +0 • 2500 l*COTB I • 
0285 F 12, .. 1-0 • .soo• 11 .ooo+RPI • c 1.0DO+P I •AP*CSAP2*COTBP-O. 2500 •11. ODO-RP I 
0286 1•11.ooo+Pl•SZAP*SYl•CSAP2+0.25DO*ll.ODO-PPl*ll.OOO+Pl•SZAP•CYl*CSA 
0287 lPZ*COTBP-0.500/T I •BB+ 11 0. 500/1 M*TI +O. 25001 •COTAP+ 10. 500/1 M*TI +O .25 
0288 100/IM*T•Tl+O.Z5DOl•COTBl*AA 
0289 SN2•AA/BB . 
0290 Y=flll•Flll+Fl2l*fl21 
0291 Y•-Y 
0292 RETURN 
0293 END 
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