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NOMENCLATURE

slope angle

thickness of top layer

thickness of bottom layer

unit weight of soil in top layer
unit weight of soil in bottom layer

cohesion along vertical and horizontal planes,
respectively, in top layer

cohesion along vertical and horizontal planes,
respectively, in bottom layer

geometrical parameters characterizing the slip
surface in top layer

geometrical parameters characterizing the slip
surface in bottom layer

geometrical parameter
the angle between the failure plane and the plane
normal to the direction of the major principal

stress

angle of major principal stress from vertical,
measured clockwise

undrained strength
relative strength index
thickness ratio
coefficients of anisotropy
Yo/Yq

H2/H1

(p+1)Cy
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CHAPTER I
INTRODUCTION

The stéb ility of earth slopes is a matter of considerable impor-
tance in the construction of highways, railways, and earth dams, as
well as in connection (With landslides. During the last four decades,
numerous efforts have been made to deal with the problem of stability
of slopes with the aim of computing the factor of safety with respect to
the sliding of slopes of cuts and embankments. The properties of the
material (soil) in which sliding occurs deviate quite considerably from
those of elastic solids. Hencei, the laws of strength of materials and
theory of elasticity do not hold true precisely for soils.

The absence of any mathematical theory which could be used to
deal with real soil materials, coupled with the necessity to solve prob-
lems in soils engineering, require that several assumptions be made
idealizing this material, the most important among them being homo-
geneity and isotropy. Since most of the methods for stability analysis
are based on these two basic assumptions, they give only a rough esti-
mate of the factor of safety.

In nature, there are two deviations from the ideal homogeneous
material. The first is the case in which the subsoil consists of layers
of distinctly different soils. The second ig the case of a soil deposit
which lacks any distinct stratification but whose properties vary from

one point to another over a wide range. This type of non-homogeneity



makes it difficult to arrive at representative soil properties to be used
in calculations.

Again, in nature, most soils are anisotropic because of the mode
of deposition, the stress metamorphosis after deposition, or both.
There is considerable evidence in literature showing that the stability
of earth slopes is influenced by non-homogeneity and anisotropy in
strength (Gibson and Morgenstern, 1962; Lo, 1965; Liivneh, 1967; and
others).

In this thesis, an analytical method is presented for analyzing
slope stability problems in a two-layered system of non-homogeneous
and anisotropic soils. Chapter II deals with a brief review of published
literature regarding the methods available for slope stability analysis.
Since the published material in this area of soil mechanics is quite ex-
tensive, only that material which is directly related to the present work
is reviewed in detail., The reader is referred to the references cited
in the bibliography for additional information.

Chapter IIf deals with the analytical method for solving slope
stability problems in a two-layered system of non-homogeneous and
anisotropic soils. The working formulae for stability number and fac-
tor of safety are derived in detail. In Chapter IV, the results obtained
in this analysis are discussed, and the conclusions drawn from this
study are listed. Some aspects related to this area which merit further
research are suggested., Charts, slope angle versus stability number,
thickness ratio versus stability number, and relative strength index
versus stability number are presented (Figufes 7 through 30),

Two hypothetical problems dealing with slope stability in a

layered system are worked cut in Appendix A, These demonstrate the



usefulness of the charts in analyzing stability problems in layered soils.
The computer program used in obtaining numerical results in this study

ig given in Appendix B.



CHAPTER II
REVIEW OF LITERATURE

The construction of earthen embankments is as old as civilization
itself, Many ancient man-made embankments exist in China, India, and
the Middle East. Rao (1961) describes 18 existing earth dams con-
structed in southern India between 1000 A.D. and 1800 A, D,

The dams described above, as well asg those built in other
countries during that or earlier periods, were designed by men who had
only an empirical knowledge of mechanics and material properties. The
successful functioning of these structures clearly indicates that embank-
ment degign could be carriéd out based on some experience and intuition,
The main drawback of this approach was that it did not permit a quanti-
tative assessment of the safety of siructure. Nor could it handle
unusual conditions encountered in embankment design. Real progress
in this direction was to wait until tbols of mathematics and mechanicé
and scientific knowledge of soil behavior were available,

Prebably the earliest contribution dealing with soil behavior was
that of Coulomb (1773), who has given the expression for the critical

height of vertical clay slope as

where ¢ = cohesion,
vy = unit weight, and
® = internal friction of clay.



In 1820, Francais extended Coulomb's analysis to the case of a
clay bank sloping at an angle of 6:to the horizontal and, on the assump-
tion that the slip surface was a plane passing through the toe of the
slope, deduced the following expression for the height of limiting

stability:

. 4c [ cos ® sin 0
H = Y{l—cos(G—cp) :

'This equation is generally, but incorrectly, attributed to Culmann,
who published it forty-six years later in his book ''Die Graphische
Statik'' (18686).

The eafliest pioneering work in stability of clay slopes was done
by Collin (1846). He publishe.d a memoir which contained careful field
observations on approximately fifteen slips in cuttings, embankments,'
and earth dams, a description .of shear box tests on clay samples, and
an approximate analysis of stability which was the primitive forerunner
of the present-day o = 0 analysis. Yet after its publication, the book
remained almost unknown for seventy years until the study of the stabi-
lity of clay slopes was again placed on a sound basis by the work of such
men as Resal {1910), Bell (1915), Petterson and Hultin (1916), Fellenius
(1916-22), Frontard (1922), and others.

The curious neglect of such an important work and, indeed, the
almost stationary position of soil mechanics during this interim period
is due to two main causes. Firstly, the mechanical properties of soils
and especially clays are considered to be more complex than those of
construction materials such as masonry, concrete, and steel, Conse-
guently, research was more profitably directed toward structures and
hydraulics. Secondly, the period 1840-1910 was dominated in the field

of soil mechanics by the conventionalized theories of bearing capacity,



earth pressure and slope stability, due pr:incipally to Poncelet (1840)
and Rankine (1857 and 1862), which although of some value for sands
are in most cases misleading for clays. Cohesion Was ignored, the
curved surface of rupture was forgotten, and the false "angle of repose"
reigned supreme.

Modern developments leading to the present state of art began
during the second decade of the century. The revival of interest appears
to have stemmed from several serious landslides in Sweden and from
massive-landslides that took place during the construction of the Panama
Canal. There are probably two other causes fbr the rapid progress
that followed this renewal of ihterest. First, at about this time, im-
proved and more widespread understanding of the soil properties was
developing. Second, there appeared on the scene the great guiding
genius of Terzaghi, who was to weld the principles of mechanics and
the properties of soil into a coherent whole that would lay the foundation
for a new science.

The slip of Stigberg quay into the harbor at Gothenberg, Sweden,
in 1916 touched off an investigétion that had profound consequences in
slope stability analysis. Pettersonand Hultin (1916) investigated the
slide. In addition to analyzing this slide, they also studied earlier case
histories, assuming circular rupture surfaces, According to the con-
cepts of the time, clay was treated purely as a frictional material.

Professor Moller studiéd the problem concerning friction angles
and safety factors more carefully than had béen done earlier and pub-

lished a book Erddruch-Tabellen. He brought out a second edition of -

the book in 1922 with the subtitle "Augmented with New Earth Pressure

!

Investigations.'' This is the first publication on circular sliding



surfaces to be internationally known. Professor Fellenius continued
working on circular sliding surfaces and published several papers
during 1918-26. As a partly new method of analysis instead of the fric-
tion method formerly solely used, he took up. the question of bringing
the cohesive strength of soil into the calculations. He referred to
investigations and experiments made by the Geotechnical Commission
of the Swedish State Roads. The report, published in 1922, contained
many examples of circular slides in Sweden. By direct mathematical
treatment combined with graphical methods, he arrived at a series of
tables and diagrams for predicting the critical slip surfaces. The cir-
cular arc analysis for slope stability problems has, in time, come to
be known as the ''Swedish Method. "

Professor Terzaghi (1936) compared circular arc analysis with
logarithmic spirals and cycloids and decided that the circular arc
method is the most convenient, as well as sufficiently accurate, for
many engineering problems. Since the development of the Swedish
Method, many new procedures have been advanced to solve the slope
stability problem. These are tébulated, showing the assumptions
involved and the originators, in Table I.

Most of the methods available for performing slope stability
analysis may be categorized as limit equilibrium methods. The basic
assumption of the limit equilibrium approach is that Coulomb's failure
criterion is satisfied along the failure surface. A weakness of the
limit equilibrium method is that it neglects the soil's stress-strain
relationship. In an attempt to take into account the stress-strain
relationship in analyzing the stability of slopes, it has been suggested

that the theory of plasticity be applied to the problem (Drucker and



TABLE I

CLASSIFICATION OF SLOPE STABILITY ANALYSIS BY LIMIT EQUILIBRIUM METHOD

(After Fank and Hirst, 1970)

Type of ~
Failure Name of Type of »
Plane Method Solution Basic Assumptions =TT T References T T
Straight Culmann Analytical Failure occurs on a plane through the toe Culmann (1866)
line Method of the slope.
Method of  Analytical The slope is constant with unlimited Resal (1910)
Infinite extent, :
Slope
A vertical column is typical of the entire Frontard (1922)
mass. No cohesion may be depended on
within the depth to which tension occurs.
Wedge Semigraphi- Sliding block mechanism is assumed with Culmann (1866),
cal-analyti- lateral earth forces. Terzaghi and
cal Peck (1948)
Circular Slices -Semigraphi- The lateral forces are equal on two sides Fellenius (1939)
Arc Method cal-numeri- of each slice.
cal :
Bishop's Analytical- Oblique side forces on each slice are Bishop (1955)
Method Numerical considered.
Simplified  Analytical- Vertical component of lateral earth forces Bishop (1955),
Bishop's Numerical are considered to be equal and opposite, Little and Price

(1958)




TABLE I (CONTINUED)

Type of
Failure Name of Type of
Plane Metheod Solution Basic Assumptions " References
p - Circle Analytical- Resultant acting on rupture arc is Gilboy (1933),
Method Graphical tangential to a concentric circle with Taylor (1937),
radius = R sin ;. : Casagrande (1934)
Modified Analytical- The resultant misses tangency to the Taylor (1937)
@ - Circle Graphical circle by a small amount. Radius of
P4 circle = K R sin de.
Logarith- Log-spiral Analytical No assumptions required to make the Rendulic (1935),
mic Spiral Method problem statically determinate. Taylor (1937),
Spencer (1969)
Irregular Irregular Analytical- General slip surface. Forces between Morgenstern and
Numerical slices are considered. Price (196595)
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Prager, 1952), Analytical procedures have been developed to solve
homogeneous and isotropic earth slopes using plastic theory (Chen,
Giger and Fang, 1969; Fang and Hirst, 1970; Chen and Giger, 1971),

In most of these methods, however, the basic principles have re-
mained the same. The earlier methods were based on the assumptions
that the soil is homogeneous and isotropic. Neither of these is true,
as may be seen from the brief review of the published literature cited
elsewhere in this chapter. In view of this, some recent procedures
have utilized more realistic assumptions for the solution of slope stabi-
lity problems (Morgenstern and Gibson, 1962; Lo, 1965; and others).

It is often necessary to determine the factor of safety of cuts in
normally consolidated clays. These clays characteristically exhibit a
linear increase of strength with depth, as shown in Figure 1. Close to
the surface, the clay is usually overconsolidated due to desiccation;
and the strength of this crust is higher than that of the material immedi-
ately below it. Morgenstern and Gibson (1962) have analyzed the slope
stability problem in homogeneous soils with strength increasing linearly

‘with depth, as shown in Figure 2,

The expression for the factor of safety established by Morgenstern
and Gibson implies that the ground water table is at or above the ground
surface. Their approach to this problem was extended by Hunter and
Schuster (1969) to include an analytical solution for the common case of
ground water table below the ground surface., This method permits a
better estimate of the factor of safety where the shear strength C is
greater than zoro at the ground surface but still increases linearly with

depth. Hunter and Schuster present graphically the results of
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computations of stability numbers for a range of slope-inclihations and
depths of water table,

In nature, the clay-size particles are nonsymmetrical in shape,
They are usually longer in two directions than in the third. Due to this
nonsymmetrical shape, the soil deformations and the soil-forming
processes produce within the soil fabric an anisotropic structure. This
anisotropic structure is reflected by directional variations in the physi-
cal properties of soil such as strength, compressibility, and perme-
ability., There is ample evidence in literature confirming the
occurrence of anisotropic soil fabric and anisotropic physical properties
in natural and remolded cohesive soils.(Mitchell, 1956; Hvorslev, 1960:
Duncan and Seed, 1966; and others).

Anisotropy of clays with respect to strength is probably related
to the orientation of clay particles. The structure of clay was studied
by many investigators (Lambe, 1953; Mitchell, 1956; Pacey, 1956;
Martin, 1962; and others). These studies have shown that the clay
particles tend to become oriented parallel to the major principal plane
during anisotropic consolidation. Mitchell (1956) studied the structure
of seven undisturbed marine clays and one lacustrine clay with the aid
of a petrographic microscope. From these studies, he concluded that
these clays had some degree of parallel orientation. With one exception,
these clays were consolidated to nearly 3 kg/éé cm. Quigley and
Thompson (1966), studying the relationship between soil fabric and the
anisotropic consolidation characteristics of Leda Clay from Ottawa
found that anisotropic consolidation of undisturbed samples causes
reorientation of the clay platelets into a plane perpendicular to the

direction of major principaf consolidation pressure. Martin (1962)

St

\_-‘\\‘ “
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studied the structure of Kaolinite Clay using X-ray diffraction technique.
He compared the peak amplitudes of diffracted X-rays from 002 and 020
planes of the clay and concluded that the clay was approximately "'ideally
oriented' after one-dimensional consolidation to 197 kg/sq cm,, and’
approximately "ideally random' after isotropic consolidation to o
1 kg/sg cm. |

It may be concluded from these studies that there is a tendency
forvthe clay-size particles to becofne oriented paraliel to the plane en
whiich the major principal stréss acts during consolidation. This
parallel particle orientation might be expected to cause anisotropy in
physical properties such as strength, compressibility, and permeability.
Unconsolidated undrained triaxial tests on samples trimmed in different
directions have shoewn that anisetropically conselidated clays are
anisotropic with respect to undrained strength.

For a soil to be perfectly isotropic, the coefficient of earth
pressure at rest, Ko’ should be 1, as isotrepic consoliddtion requires
a hydrostatic state of stress to exist. As early as 1920, Terzaghi re-
ported the value of K0 for a coarse sand to be 0.42, In 1925, he
reported a value of 0,7 fbr a yellow residual clay and a blue marine
clay; and experiments by Kjellman with triaxial ééﬁipment yielded
values ranging from 0.5 to 1. 5. KO is supposed to be a function of
stress history of soil, The assumptions that K, = 1 - sin ®' (Jaky) or
K0 =0, 95 - sin @' (Brooker and Ireland, 1965) indicate that few soils
have K0 =1,

In reviewing the published literature regarding anisetropic
strength characteristics of clays, the definition for shear strength as

shown in Figure 3 is followed.
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The physical vertical and horizontal directions, which usually
coincide with lines perpendicular and parallel to the bedding planes of
soil deposit are the principal directions. If the sample is tested with
the major principal stress direction coinciding with the principal direc-
tions, the strengths thus determined (C1 and CZ) are known as principal
strengths. When the major principal stress makes an angle, i, with
the vertical, the strength then determined is designated as Ci‘ For a
soil with isotropic strength characteristics, the principal strengths C1
and C, and Ci are equal. In other words, the curve traced by C.L in a
vertical plane is a circle. However, for a soil having anisotropic
strength characteristics, the principal strengths C1 and 02 are not
equal and the curve traced by Ci is not a circle. The ratio of principal
strengths CZ/CI is termed as the degree of anisotropy. (Ranganatham
and Mathai, 1967, denote it as the Coefficient of Orthotropy.) Depend-
ing on the stress history, clay particle orientation, etc., the ratio
C2/01 is less than or greater than one. For convenience, the former
is designated as M-anisotropy and the latter as C-anisotropy (Lo, 1965).
Soil deposits with CZ,I'C1 equal to unity are rather rare in nature.

1.0 (1965) performed unconfined compression tests on undisturbed
samples of clay from Welland, Ontario, Canada. It was reported that
the horizontal strengths were less than the vertical strerigths, the ratio )
CZ/C1 varying between 0. 64 and 0.8 (M-anisotropy).

Aas (1965), using vanes of different shapes, performed vane tests
Em Canadian clays. He reported the ratic of undrained shear strengths
acting along‘horizontal and vertical failure surfaces to be 1.5 to 2.0
(C-anisotropy). Ward, Samuels, and Butler {1959) have reported from

their tests on London clay that horizontal strengths were greater than
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-vertical strengths. The ratio C,/C; was established to be 1.3 + 0.1
(C-anisotropy). The higher strengths exhibited in the horizontal sam-
ples may be related to the fact that London clay is heavily overconsoli-
dated and the horizontal stresses in the ground are considerably higher
than the vertical stresses (Skempton, 1961). Skempton has shown that
the ratio of horizontal-to-vertical stress in the overconsolidated London
clay varies from 2,5 at the top to 1.5 at a depth of 100 feet below the
surface. Some examples in which C'u’ the undrained strength, depends
on principal stress directions during shear are furnished in Table II,
From the brief review of published literature, it may be concluded
that in nature the rule is anisotropy, isotropy being an exception. There
is ample evidence in literature to show that stability of earth masses is
affected by strength anisotropy gLo, 1965; Ranganatham and Mathai,
1967; Livneh, 1967; and others). " These investigators have used dif-

ferent strength variations, which are reviewed below, to account for

oy
o

strength anisotropy.
Lo (1965) developed a general method of stability analysis for

anisotropic soils. Rigorous solutions were obtained for two cases:

(a) the vertical strength was constant with depth, and (b) the vertical

strength \.7aried linearly with depth. He assumed the following strength

variation, as suggested by Carillo and Casagrande (1942).

2,
Ci = C2 + (Cl - C2) cos’ i,
where
C.L = ghear gtrength when the major principal stress at
failure is inclined at an angle, i, to the vertical
C1 and C2 = principal strengths in directions of principal

stresses.

Charts of slope angle versus stability nurnber were presented.
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» TABLE 1II
SOM_E;EXAMPLES IN WHICH C  DEPENDS ON PRINCIPAL
" STRESS DIRECTIONS DURING SHEAR (TESTS IN
SITU OR ON UNDISTURBED SAMPLES)
Cy from field vane lower than C,, from piston éamples or block
samples. (Vold, 1956; Coates and McRostie, 1963).

Cy from field vane for vertical plane lower than for horizental
plane. (Aas, 1965).

Cy from bleck samples with axis horizontal lower than with axis
vertical in lightly overconsolidated clay. (Lo, 1965),

Cy from block samples with axis horizontal higher than with axis
vertical in heavily overconsolidated clay. (Ward, Marsland, and
Samuels, 1965),
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" Livneh (1967) has also studied the effect of strength anisotropy
on slope stability. In his analysis, the following variation for strength

was assumed (Figure 4).

c,=¢ [1+@m-1 sink (@ - 0]
where
Cl = minimum cohesion,
: C2 = maximum cohesion,

n = the anisotropy index defined as the ratio C2/C1,

@ = the angle between the horizontal axis and an arbitrary
axis of reference,

~ the angle between the horizontal axis and the minimum
- cohesgion axis, and

it

K = a positive integer permitting characterization of
different cohesion patterns in terms of angle a.

Livneh presented charts giving the slope angle versus stability
factor (YH/C) for vafious values of ¥, K, and n. He showed that ne-
glecting the anisotropy factor would lead to results that are either con-
servative or in error on the unsafe side. Disregarding the anisotropy
factor and assuming that the soil is isotropic may lead to a decrease
in the computed factor of safety. For example, a 27 percent decrease

(o}

is obtained for 3 =107, n=2, K=1, n, = 1,5, and | = 60°,

d
Ranganatham and Mathai (1967) have analyzed the effect of
strength anisotropy on the stability of earth masses. They have

assumed the following variation to account for anisotropy:
C = Ch(cos2 6+ n sin2 0)
where

'C = cohesion along a plane inclined at an angle to 6
to horizontal,
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= cohesive strength along the horizontal plane,
= cohesive strength along the vertical plane, and

Cy/Cp, called the anisotropic strength ratio (also
called the coefficient of orthotropy).

1

The proposed method followed the analysis of Janbu (1954) (based
on dimensionless parameters for base failure in purely cohesive soil)
except for strength anisotropy. Charts were presented giving the slope
angle versus the stability number (C/YH) for various values of the
coefficient of orthotropy and depth to hard stratum. It was noticed that
for vertical cohesive strength ranging from half to double the horizontal,
the stability number changed by about +30 percent to -40 percent of the
isotropic case. From the numerical results, it was concluded that the
influence of anisotropy on stability is much greater than is the depth to
hard stratum.

In the above methods, two assumptions are made: (1) Soil mass
is homogeneous, and (2) it is purely cohesive (¥ = 0 condition).

When estimating the stability of foundations and slopes, it is often
assumed that the soil is homogeneous and isotropic; but it is known
that the shear strength increases with depth beyond the zone of desic-
cation and is also dependent on the direction of the failure surface.
While it is difficult to describe the exact functional relationship between
the shear strength and depth and direction of failure surface, Rangana-
tham, Sani, and Sreenivasulu (1969) investigated through carefully-
planned experiments the probable variation of strength with depth and
direction of failure plane and used these findings in evaluating
slope stability. Experimental work was done to obtain the variation in

shear strength (1) with direction of failure surface, keeping consolidation
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pressure constant, and (2) with consolidation pressure, keeping the
direction of failure surface constant.

This experimental study lends support to the hypothesis that the
undrained strength of an element of soil along a plane other than the
horizontal or vertical is equal to the vectorial sum of those acting on
the projected areas of the element in the vertical and horizontal planes.
Expressed mathematically, the strength Ce along a plane inclined at

an angle 6 to the horizontal is given by

- 2 .2
CG = Chcos 9+Cvsm 6

where Ch and Cv are strengths in the horizontal and vertical planes,
respectively.
The shear strength at any depth Z in relation to the direction of

failure surface was defined as follows:

- Z
“hz T Chol*4y H)
_ z
CvZ - Cvo(1 +£v H)
- Z
= 0 G (T Ly ®)
where
Cy,7 = strength along the horizontal plane at any depth Z,
CVZ = strength along the vertical plane at any depth Z,
Cho = strength along the horizontal plane at the surface,
CVO = strength along the vertical plane at the surface, and
Ly and L, = coefficients defining the variation of Ch and Cv

over a significant depth H.
On substituting for ChZ and CvZ in the equation for Ce, the fol-
lowing expression for the undrained shear strength at any depth Z on

any failure surface inclined at an angle 6 to the horizontal is obtained:
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2

] z, 2 z
Cogy = Cho(l t4, Flcos 6 + n (1+4 F)sin 6 .

Control charts, providing a critical combination of stability num-
ber and tangent of friction angle were presented for a given slope
B = tan_1 1/25) and various values of the coefficient of orthotropy,
depth to hard layer, etc. Numerical results presented demonstrate

the influence of strength anisotrropy and strength increase with depth

on the control charts.



CHAPTER III

ANALYTICAL METHOD FOR STABILITY OF EARTH
SLOPES IN NON-HOMOGENEOUS AND

ANISOTROPIC SOILS
Introduction

It is evident from the review of published literature (Chapter II)
that soil is neither homogeneous nor isotropic. Consequently, when
analyzing the stability of earth slopes, this fact should be recognized
and accounted for.

In this chapter, an analytical method is suggested for evaluating
the stability of slopes in a two-layered syétem of anisotropic soils.
The basic assumptions made in the analysis are listed below. Follow-
ing this, the working formulae used in arriving at the factor of safety

for the slope are derived in detail.
Basic Assumptions

1. The controlling potential surface of failure is either cylin-
drical or a combination of planar and cylindrical surfaces, as shown in
Figure 5.

2. The soil in each layer is homogeneous with respect to shear
strength,

3. The coefficient of anisotropy is the same at all points in the

slope.
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4. The anisotropic strength in each layer is characterized by

the following equation:

where

C. = shear strength along a plane inclined at an angle,
! i, to the vertical; and,

shear strengths along the horizontal and vertical

C, and C
v e
planes respectively.

h

5. The stability of the slope is analyzed by considering the

stability of the individual layers.
. Derivation of Working Formulae

The Wo‘rking formulae for the factor of safety are derived

separately for the two layers.

Layer 2

There are two possible types of slip surfaces, as shown in Figure
6. These could be designated as Case (a) and Case (b). For each one
of these two cases, the expressions for disturbing moment, resisting
moment, and the factor of safety are derived in detail.

Case ga) For limiting equilibrium of the mass above the poten-
tial surface of rupture ADC (Figure 6a), the total disturbing moment
about O, must be equal to the total resisting moment about the same
point.

While evaluating the disturbing moment for this case, the mass
of soil above the interface ED is taken to be acting as surcharge.

Hence, the disturbing moment due to this is considered in addition to
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that contributed by the soil above the slip surface AD. The expressions
for these two moments are derived below.

Let the disturbing moment due to surcharge load (EBCD) be MD .
1

Weight of Soil Mass W1

H2

| 1
= YlHle(cot 7\2 - cot B) - 5 cot 8.

Let 1&1 be the lever arm for this mass about 02.

zl = YlH [H2(cot 7\2— cot B) - H1 cotB] [Rz cos a,
2
Hy Hy Y15y
+ — cotB - —2 (cot-h, - cotB):] + L5 cotB -
x R, cosa, - H (cot A, - cot B) + gH cotB]
L2 2 2 2 371 i
2
2 Hy
+ Yl[Hle(cot A2— cot B) - H1 cot B + TcotB].
Moment of EBCD about O2
= lezl'
MDI = Yy [Hl {H2(cot 7\2— cot B) - H1 cot B} {R2 cos a,
H1 H2 H12
+ ——2—cot3 - —2—-(cot>\2—cot3)} + 5 cot B

X {R2 cos @y - Hz(cot 7\2— cot B) + %Hl cot B)}].

Let the disturbing moment due to mass of soil enclosed in ADE

(Figure 6a) be MD .
2

Weight of soil mass (triangle AED)
2
YoHy
2

(cot A2 - cot B!).



Weight of soil mass (segment AD)

Total weight of woil mass (W2)

v oH Yo R
= 222 (cotkz—cotB)-f- 222 (a'—%sinZaf').

Let 1&2 be the lever arm for this mass about 02.

2
H
I ) 1
!,2 = Li"z— (cot AZ - cot B)}> {Rz cos a, - §(ZH2 cot Az
2
2 Ry
- H, cot B)} + {Rz a' - —5- sm(af3 -az)}
, Rysin’a H,’
< ' —s
X3 (@' - sina' cosa') cos (a2+ @ ).—J 2 (cot >t2
2
2 Ry
- cotB) + Ry o' - —5~ sin 2a'.
Moment of ADE about 02
= szlz.

H22 1
b, = Vo[ (cotny - ot Ry conay - i2my ot

2R °
- H, cot B)} + 2 sin3a' cos (a +a')]
2 3 2 :

The total disturbing moment (MD ) is the sum of MD and
11 1

27
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MD = Yq [Hl {Hz (cot Az - cotfB) - H1 cot B} {Rz cos a,

2
Hl

2

H H

1 2
o cot B - —é—(cotkz—cotB)} +

cot 8

X {Rz cos a., = H2 (cot kz - cotfB) + —g-Hl cot B)}_‘_l

w|—

2
H
o+ Yz[% (cot AZ— cotB){R2 cos a, -

9 (2H2 cot AZ

3
2R2

H2 cot B)} + 3 sinsa' cos (a2+a‘)] .

From the geometry of the problem,

H

_ 2
Ry = 35ma st Ay
@y = 90—(>L1+a/),
5 .

Hy
Yo
- = m.,
Y1

Substituting these values in the above equation and simplifying,

MD = yszg[E—é—n(cot Az— cot ) (cot o' + cot B)
11
1 2
+ 5 cot B(cot KZ- cota' -4 cotf + 2 cot” B)
4mn :
1 2 1 2
- 6mn3C0t B"’Tg‘(l‘ZCOt B+3cot>\2cota'

+ 3 cot B cot ?uz - 3cothota'):‘.

The resisting moment for this case consists of two parts, MR
1

and M, .
Ry



MRl = Resisting moment due to cohesion along CD,
MR2 = Resisting moment due to cohesion along AD.
MRl = (C)) (CD) 2
where 4y = lever arm about 02.
MRl = C1H1R2 cos a,,.

From the gegmetry of the problem,

H
"R = 2
2 2 gin ¢' sin )\2
- - 1
az 90 ()\24‘& ).

Substituting these values for R, and @, in the above equation,

3 !
_ C1H1H2 sin (?\2 + a')
IVI - . ' 3

R, - 2 sine!' sin ?\2

Putting H2/H1 = n, and simplifying,

c,H,’
= L
MRl - (cot a' + cot 7\2).
23
Mg, = R, | € (8,2)R,d6
%9

o
3
2 2 .
R, L{ [y +(Cy - Cy)] cos® i a8
2

0

c 251 2
(&8 + (1- &)l cos®ian.
T .

et~

29
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On integrating the above expression, and putting CIZ/C'1 = K!', the

explicit value for MR is obtained as
2

27

Mp =Ry [(1+K)Ca’ - 2(1-K) C! sin Za' cos (2" - 21,) .

On further simplification, the above expression for MR reduces to
2

crH,” .
M. = 21+K")a' - (1 -K')sin2al cos(2' - 2) )].
R .2, .2 L 2
2 8 sin a'sin )tz

The total resisting moment (MR ) for this case is the sum of
II

M. and M. .
Ry Ry

Clez c sz
M = ——— (cota' + cot Ag) * 5 5
I 8 sin” a' sin” A

2
x [2r(1+KY) - (1-K)sinar cos (2a' - 22y)].

Putting C} = (p +1) C,,

M, = CHz[l(cota'+cotx)+ (p+1)
R 172 n 2 . 2 .
II 8 sin o' sin )tz

X {Zaf‘(l +K') - (1 - K'") sin 2¢' cos (2a' - 2)&2)} _J

The factor of safety, F, is given by

Resisting Moment (M, )
Ry

)
Dyq

F

Disturbing Moment (M



F = CHzr%(cota'+cotA2)+ (p+1)

172 L 8 sin2 o' sinzkz

X {2(2! (1 +K') - (1 -K') sin 2o COS(ZC(' - 2A2)}_]-

. sr 1
" voHo L o

(cot 7&2 - cot ) (cota' + cot B)

+ lzcotB(cotkz—cota -4cotfB+ 2cot B)

4mn
- 13cot23+i-1§(1—200t28 +3cot7t2coto:'
6mn

+ 3 cot B cot 7&2 - 3 cot B cot a')‘l.

The above expression for the factor of safety may be conveniently

expressed as

C1
F = — N
Y2H2 2
where N2 is termed a stability number.
cot o' + cot A
= 2 (p +1)
= +
N2 5 5 2a' (1 +KY)

8sm o' sin 7t

{
- (1 - K')sin 2¢' cos (2a ' - 2A2) /

X (cotk - cotB)(cota'+cotB) + 2cotB
4mn
X (cot A, - cota' —4cotB+2cot28) - ——gl
2
6mn

X cot B+ (1—2cot B+300t7t cot o'
+ 3 cot B cot 7t2 - 3 cot B cota').

It is obvious that the minimum factor of safety is obtained by

minimizing the stability number, N2’ with respect toa' and Az, so that
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2 _
80{'—0
MNa .
BAZ

The foregoing operations may be carried out with the aid of a
computer, and N2 minimum would be a function of K', m, n, p, and 3.
For given values of K', m, n, and p, the stability number is a function
of B alone.

Computations have been carried out for values of K' ranging from
0.5to0 1.0, n ranging from 1.0 to 3.0, and p ranging from -0.5 to
+0. 5. Since the unit weights of soils in the two layers would not

ordinarily differ greatly, m = Y2/y1 is assumed to be unity.

Case (b). The approach followed in arriving at the expressions
for disturbing moment, resisting moment, and the factor of safety is
the same as that for Case (a).

The total disturbing moment, MD , is the sum of the disturbing

II
moments M and MD .

Dl 2
H?
MD1 = Yy {-——2-—(001: )tz - cot B) (cot ?tz tan 8 - 1)}
[ 1
X 'LRZ cos @, —§(cot 7&2 - cot B)};
2
M = r}i—(cotl - cot 3 fR cos —l(ZH t A
D, Yol 72 2 )Ry cosay - g2, cot Ay

- H2 cot B)JL + %Rzg’ sin3 a' cos (a2 + a'):‘ .
The total disturbing moment (MD ) is found by
II
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2
rHy
M = Y11—2— (cot Az— cot ) (cot KztanB - 1)}L

H2

1 r—2
X {Rz cos ag - g(cot Az - cot B) + Y2L—2_ (cot Kz
- cotB){R cos « ——1-(2H cot A, - H cotB)}
2 2 3 2 2 2

R23 sin3 a' cos (a2 +a')1 .

wlno

-

From the geometry of the problem,

H

R, = 2
2 2 gsin o' sin Az
= - 1
@, 90 (A2+af )

and as per the notation

L. 2
Hl
_ T2
m = —,
Y1

Substituting these values in the above equation for the disturbing

moment, and on simplifying,
Y2Hz3 1
I3 L—II_l(COt AZ - cot B)(cot Atan B - 1) (3 cot o'

M
Dy

+ cot A2 + 2cotfB) + (cot Az - cot B)(3 cot @' - cot Kz

+ 2cotfB) + cose02 Az]o

The resisting moment consists of two parts, MR and MR , as
1 2

in Case (a). The total resisting moment (1\/1R ) is the sum of MR
Ir 1

and M, .

Ry
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C1H22
M = 5 (cot A

tan B - 1) (cot A, + cota');

2 2

C'1H22 -
M, = 20" (1 +K') - (1 - K")
2 2 L
8 sin” a' sin A2

X sin 2a' cos (2a' - 2K2)] .

M. = M. + M
Ry Ry Ry

C1H22
MR = 5 (cot A2 tan B - 1) (cot K2+cota')

iy’ o
+ 5— [2e¢' (1 +K') - (1-K')

8 sinza' sin A2

X sin2a' cos (2a' - ZAZ)] .

Putting C'1 = (p+1) Cl’

M, = CH, [l cot X, tan B - 1) (cot A

+ cota')
Ry; 1 2

2

+ (F2’+1) {2a'(1+K) - (1-K)
8 sin” o' sm Ag

X gin 2a' cos (2a' - 2K2)} ]

The factor of safety, F, is given by

Resisting Moment (M, )
R
Disturbing Moment (MD )

II

F =
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2 71 . L
F = C1H2 LE'(COt 7L-2 tan B3 - 1) (cot A-2—+ cot a')

(p+1) {20 (1 +K") - (1 - K) sin 20"
3
8 sin o' sin A2

J-

x

vy H,S
cos (2a' - 2A2)} ] -—21—22— [—é—l(cot 7\2 - cot f3)

X (cot A, tanfB - 1) (3 cot o' + cot 7\2+2 cot B3)

2
+ (cot AZ - cot B) (3 cot @' - cot 7\2 + 2 cot B)
+ cosec2 x| .
2 |
The above expression for the factor of safety may be conveniently

expressed as

where N, is termed a stability number.

- I
N, = E(cot)\

2 tan B - 1) (cot 7t2+cota/')+ (p2+1)

2 8 sin af'sin2)\2
x {22 (1+K') - (1-K')sin 2a' cos (2a' - 2)\2)}

1r1
12 m

'—l

(cot A2 - cot B) (cot 7\2 tan 3 - 1) (3 cot o'

+ cot 7\2 + 2 cot B) + (cot 7\2 - cot B)(3 cota' - cot )\2

¥ 2 cot B) + co's;ec2 )\2] .
It is obvious that the minimum factor of safety is obtained by

minimizing the stability number, N2, with respect toa' and 7\2, so

that
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% = 0
oo !
8N2 )
8)&2

The foregoing operations may be carried out with the aid of a
computer; and N2 minimum would be a function of K', m, p, and 3.
For given values of K', m, and p, the stability number is a function of
B alone,

Computations have been carried out for a given set of K', m, and

p, as listed in Case (a).

Layer 1

The failure surface is circular, as shown in Figure 5. The
solution for this case is available (Lo, 1965), but to keep the clarity
- and continuity of the present analysis, this is listed in detail.

For limiting equilibrium of the mass above the potential surface
of rupture EF, the total disturbing moment about O1 must be equal to
the total resisting moment about the same point.

The disturbing moment of the mass of soil above EF is equal to

3
Y1Hy

I 12

=

(1—2cot23+3cot7\1 cot B + 3 cot «

X cot )tl - 3 cota cot B).



37

The resisting moment (MR ) is given by
I

o
2 .
R, | C(6,2)R, do
%1

=

cos2 ide.

u
=

1) {Cz +(Cy - C2)}'

On integration and simplification, the expression for MR would be

I
cH,’ r 1
M, = (1+K)a + 5(1 - K) sin 2«
R .2 .2 )
I 4 sin o sin kl
X cos (26 - 21| .
The factor of safety, F, is given by
Resisting Moment (MR )
= I
Disturbing Moment (MD )
I
CyH, 1 2
F = \:(1+K)a+—(1~K)sin a
L2 2 2
4 sin"a sin” A

1

1
3
YiHy 2
X cos(2f—2k)] 5— (1 - 2 cot” B +3 cot A,

X cotB + 3 cota cot Ay = 3 cota cotf).

For isotropic material, C1 = C,

P C2’ and the above expression

for the factor of safety reduces to

i . 2 . 2 :
F = ~6aC1 YlHlsm QSLnA1(1—2c0t6+3cotA1

X+ cot B + 3 cot a cot A; - 3 cot @ cot ).
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This equation is identical to Taylor's solution for the case® = 0

(Taylor, 1937).

The above equation for F may be conveniently written as

where N1 is termed a stability number.

r 1 ,
N, = 3[(1+K)a+ 5(1-K)sin2a cos (2f - 21,)]

2
+ sin2asi.n2>u1(1-2cot B + 3 cot A, cotf

1

+ 3 cot o cot kl - 3 cot @ cot B).

It is obvious that the minimum factor of safety is obtained by

minimizing the stability number Nl with respect to o and 7&1, so that

..aiv_l = 0
oo
oN
——r = Oa
8?&1

The foregoing operations may be carried out with the aid of a
computer; and Nl is solely a function of K, f, and 8. For given values
of K and f, the stability number is a function of 8 alone,

Computations have been carried out for f = 55° and K ranging

from 0.5 to 1.0. The value of 55° for f is based on experimental data

(Lo, 1965).
Charts

Numerical results, which are graphically presented in the follow-
ing pages (Figures 7 through 29), are obtained with the aid of an

IBM 360/65 computer available at Oklahoma State University.
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Figure 30 is a reproduction of the chart presented by Lo¢(1965). These
charts can be used to solve slope stability problems in a two-layered

system of anisotropic soils.
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CHAPTER IV
DISCUSSION OF RESULTS AND CONCLUSIONS

While estimating the stability of slopes, it is often assumed that
soil is homogeneous and isotropic. However, it is evident from the
review of the published literature (Chapter II) that soil is rarely homo-
geneous and isotropic. Nonhomogeneity and anisotropy in natural soil
deposits affect the stability of slopes in such deposits. There are two
major kinds of deviation from the ideal homogeneous material. The
first is the case in which the soil consists of layers of distinctly dif-
ferent soils (for example, layered clays), the second being a soil de-
posit which lacks any distinct stratification but whose properties vary
from one point to ancther over a wide range.

In the present study, it is the former kind of nonhomogeneity
that is studied. An analytical method for the evaluation of stability of
earth slopes in a two-layered syste%:ﬁof anisotropic soils is presented.
The approach to this problem is b’ans.e‘zdion the intuition that the overall
stability of the slope is governed by the individual stability of the
layers. Hené:e, the two layers are analyzed separately for their stabi-
lity numbers (from which the factor of safety is obtained, F = §% N).
The stability of a given slope is then dependent on the layer having the
lower factor of safety.

It is logical to expect that the ratio of thickness of layers

(n= H2/H1), the anisotropy index (K = C2/C1, K'= C‘2/C'1), and the
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relative strength (p) of the layers would influence the stability of the
slope. To study these effects, numerical results are obtained for the

following values of the above parameters:

n = 0,5 1.0, 2.0, and 3.0
KandK'= 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0
p = -0.5, -0.25, 0,25, 0.5, and 1.0,

Since there would not be much difference in the unit weights of
soil in the two layers, m (YZ/YI) is taken to be unity. All the numeri-
cal results which are graphically presented (Figures 7 through 29) were
obtained with the aid of IBM 360/65 computer available at Oklahoma
State University. The computer program used in obtaining the mini-
mum stability number is listed in Appendix I. The analytical method
suggested in this report is valid for slopes steeper than 40°,

The stability number N, for the bottom layer is dependent on
slope angle (), coefficient of anisotropy (K'), coefficient of nonhomo-
geneity (m), thickness ratio (n), and relative strength index (p).

Charts (Figures 7 through 19) are presented to show slope angle (8)
versus stability number (N2) for various values of K', n, and p. For
all these charts, m is taken to be unity.

The stability number N1 for the top layer is a function of slope
angle (8) and coefficient of anisotropy (K). A chart (Figure 30) showing
slope angle (8) versus stability number (Nl) is presented for various
values of K (Lo, 1965).

To assess the influence of p (relative strength index) on the
stability of the second layer, the stability number (N,) is plotted against
p varying from -0. 50 to 0,50 in Figures 20 through 24. It is evident

from these charts that the stability number increases linearly with p.
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This is in accordance with the expectations that the stronger the stratum
the more stable it will be. |
Charts (Figures 25 through 29) demonstrate the influence of

thickness ratio (n) on stability number (Nz). For a given slope (8 ) and
strength (p), the stability number (N2) increases with n. Nevertheless,
there is a trend indicating that N2 is less and less influenced with an
increase in n from 0.5 to 3.0. For clarity in understanding this state-
ment, four cases are tabulated below, Perhaps, for values of n

greater than 3, its influence on N, is negligible,

" TABLE III

INFLUENCE OF THICKNESS RATIO (n) ON
STABILITY NUMBER (Nz)

percent increase in N
as n increases from

0.5 to 1.0 to 2.0 to

m p B K! 1.0 2.0 3.0

1.0 0.5 60° 0.5 27.50 22.82  10.14

1.0 0.5 60° 1.0 30, 24 25,92 11.40

1.0 0.5 40° 0.5 30.60 24,12 11.83 .

1.0 0.5 40° 1.0 38.85 29.95 12, 37
Conclusions

From the above study, the following conclusions may be drawn

with regard to stability slopes in a layered system:
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1. Charts (Figures 7 through 30) enable the analysis of earth
slopes (slopes steeper than 40° ) in a two-layered system of anisotropic
soils.

2. The overall stability of a slope is dependent on the individual
stability of the layers.

3. The stability of the bottom layer is dependent on the thickness
ratio (n), the coefficient of anisotropy (K'), the relative strength index
(p), m(YzlYl)’ and slope angle (8), whereas the stability of the top layer
is a function of the coefficient of anisotropy (K) and slope angle ().

4. The stability number (Nz) of the bottom layer for a given slope
increases linearly with the relative strength index (p).

5. The influence of the thickness ratio (n) on the stability number
(Nz) for a given slope reduces gradually as n increases from 0.5 to
3.0. Perhaps, for higher values (n >3.0), its influence on N2 is
negligible. So, for thickness ratios greater than 3.0, the charts for
n = 3.0 could be used to analyze the stability of a given slope. These
would give a conservative estimate of the factor of safety.

6. The method presented in this thesis assumes the following
variation for shear strength:

= - 2,
Ci Ch+ (CV Ch) cos“i,

where
C. = shear strength along a plane inclined at an angle, i,
1 to the vertical, and
C, and C_ = shear strengths along the horizontal and vertical

b planes, respectively.

However, this method could be extended for any other assumed varia-

tion for shear strength.
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Recommendations for Further Research

During this study, some interesting topics were noted which
merit further investigation. Some suggestions in this direction are
listed in the following paragraphs.

1. It is not uncommon for a soils engineer to encounter C —’cp
soils in nature. Therefore, it may be worthwhile to develop an analy-
tical method to solve stability problems in such soils.

2. Pore pressure effects and earthquake effects have not been
considered in the present work. It is suggested that a theoretical
method could be developed taking these factors into account to assess
their influence on stability of earth slopes in layered soils.

3. The application of the finite element method of analysis,
which has been found to be versatjile in solving problems in some areas
of soil mechanics, could be studied to analyze slope stability problems

in a layered system of nonhomogeneous and anisotropic soils.
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APPENDIX A

HYPOTHETICAL PROBLEMS
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1. Analyze the slope cutshown in Figure 31 for its stability. The
cut is of 30' in height and is on a 40° slope in a layered system of non-
homogeneous and anisotropic soils., The properties of the soil in the

layers are as follows:

Top Layer: C1 800 psf C2 = 480 psf Yy 120 pef

n
H

120 pef..

Bottom Layer: Cj =600 psf Cy = 360 psf Yo

Assume that the critical surface corresponds to a toe failure.

PR

o

40 Ll

Figure 31. Slope Cut in a Layered System
of Anisotropic Soils

C
j = = = ._2 = 480 =
Data:  C, = 800 psf, C, = 480 psf, K e * 500 0.6
C5 360
! = ! = e em = a— =
C} = 600 psf, C}, = 360 psf, K St = 500 0.6.

As per the approach followed in this thesis,

(pt+1) Cl

!
€1
e 600 = (p+ 1) 800

600
800

(p+1)

p = 0,75 - 1.0
= -0.25.
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Y
m:-g._ﬁ_l'o
Y1 120
H
2 20
n === == = 2,0
] 10
B = 40° M = 1.0 n =20
p = -0.25 K=K'=0.6

Layer 1:

Stability Number (Nl) = 5,198 (From Figure 30)

.I.

Factor of Safety

800

® T30x 10 X °-198

i

3. 446,
Layer 2:
Stability Number (N,) = 2.26 (From Figure 15)

C
..__1..._ N
yoHy 72

n

Factor of Safety

800
= 150 x 29 * 2-26

0.753.

The stab‘ility of the cut is governed by the bottom layer (weaker),
since the factor of safety for this layer is less than that for the top
layer. In the present case, the cut is unstable, since the factor of

safety is less than one,

2. An embankment 30 feet high (Figure 32) is made up of two soils,
S1 and SZ’ whose properties are given below, The soil S1 is used for
constructing the lower 10 feet of the embankment, and soil 82 is used

for the rest.
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n
n

Soil SI: C1 = 500 psf C, 400 psf Yy 120 pcf

]
1]

Soil 8,: Cy =1000 psf  Cj,

) 800 pst v,

120 pcf.

Analyze this embankment for its stability. Assume that the criti-

cal failure surface corresponds to toe failure.

Figure 32. An Embankment with a
Layered System of
Anisotropic Soils

Data:
Soil S,: C. = 500 psf, C. = 400 pst K=Sg=-4—0—0—=08
RAS K | pst, g pst, c, 500 "
Cy 800
Soil Sz: C'l = 1000 psf, C'2 = 800 psf, K!' = —,1 =-1—0m = 0,8
As per the notation followed in this thesis,
Cy = (p+1)C,
1000 = (p + 1) 500
(p+1) = 2.0
p = 1.0
Y
- Yo 120 _
m = -'Y——; — 120 - 1.0
H
_ 2 _ 10 _
R ST 0.5



p = 1.0 K

Top Layer:

1]

Stability Number

i

Factor of Safety

1

n

Bottom Layer:

[i]

Stability Number

Factor of Safety =

= 120x 10 ¥

The stability of the

K' = 0.8.

5,023 (From Figure 30)

500 3.3415

1,3920.

embankment is controlled by the top layer

(weaker), as the factor of safety for this is less than that for the

bottom layer.
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APPENDIX B

COMPUTER PROGRAM
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STABILIT
- ANI'SOTRO

DESCRIPT

V4X®

RP
SN2
AP

apP

XL{l}
xtt2)
XR{1)
XR{2)
SUBROUTI

PATRN, E

OO0 OOOOONOOOON

IMPLICIT
COMMON /

¢ OKLAHOMA STATE UNIVERSITY D.DHAVALA .

Al g J

Y ANALYS1S OF SLOPES IN A TWO-LAYER SYSTEM OF
PIC SOILS ' ‘
ION OF PARAMETERS

-SLOPE 'ANGLE
=COEFFICIENT OF NON-HOHOGENEITV
=THICKNESS RATIO

- =RELATIVE STRENGTH INDEX

=COEFFICIENT OF ANISOTROPY

=STABILITY NUMBER-LAYER. 2

=GEOMETRICAL PARAMETER DEFlNlNG CRITICAL sLip SURFACE‘
ALPHA PRIME

=GEOMETRICAL PARAMETER DEFINING CRITICAL SLIP SURFAtE.
LAMDA THO :
=LOWER LIMIT ON AP

=LOWER LIMIT ON BP

=UPPER LIMIT ON AP

sUPPER LIMIT ON BP

NES REQUIRED
XPLORy AND MERIT

REAL*8 (A-H,0-2)
MNMERT/ AA,BBByRyRPySN?

DIMENSION X(9)}4XL(9)yXR(9}

N=2

NP=2
DELTA=0.
ROW=0.5
F=0.001

01

Q=3,1415926D0/18.0D0

200 CONTINUE

READ 201,

201 FORMATI(L
IVAL=10,
IF {1VAL
DO 25 I=
B=1%Q
XL(l)=0,
XL(21%0,

XR(1)=0.,
XR(2)=0.
X(1)=0.5
X(2)50.4
CALL PAT

RP
E10.3}
0%RP
+€Q. 0) GO TO 999
547

1745
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8855
5655
236
363
RN(N NP, DELTA.F.XL'XR’Y'X.ROH’NN)
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CALL MERITIX,Y)
WRITE(693) AABBB,RyRPySN2

3 FORMATI/ 41X, "AA="4F15.89/741X,

25

‘999

45

l'»BBS'.FlS.B./olxv
198=¢ F15,85741X,
LOR=8 4F1ll a4/ 01Xy
1'RP=S,Flle4e/ sl X,
1°SN2=* 4Fll.44/7)
CONTINUE
GO TO0 200
sSYopP
END .

SUBROUTINE PATRNINsNP,DELYA4F XL, XRsYs Xy ROWNN}
IMPLICIT REAL*8 (A-H,0-2)

PATTERN SEARCH FOR MULTIVARIABLES

THIS: SUBROUTINE CONDUCTS A PATTERN SEARCH .
WITHIN REGIONAL CONSTRAINTS IN A HIPERSURFACE
OF UPTO NINE INDEPENDENT VARJABLES.

CALLING PROGRAM REO[REMENTS.

PROVIDE A SUBROUTINE MERIT FROMWHICH AN ORDINATE ¥ 1S RETURNED
WHEN COLUMN VECTOR. ABSCISSA X IS RETURNED.

VARI ABLES.
N=NUMBER OF INDEPENDENT VARIABLES.
NP=CONVERGENCE MONITOR.
NP=C WILL NOT PRINT.
NP 1 WILL PRINT EVERY ITERATION.
NP 2 WILL PRINT EVERY 2ND ITERATION.
DELTA =CURRENT STEP SIZE.
F=MINIMUM STEP SIZE )
XL=LOWER BOUND OF SEARCH DOMAIN
XR=HIGHER BOUND OF SEARCH DCMAIN
Y=FUCTIONAL VALUE RESULTING FROM CURRENT MOVE
YY=FUNCTIONAL VALUE AT BASE PQINT
YYY=FUNCTIONAL VALUE AT CURRENT BASE POINT
XXX=PREVIOUS BASE POINT
XX=RASE POINT RESULTING FROM CURRENT HDVE .
DIMENSION X(9).XX(9D-XXX(Q”XL(9)pXR(9);NGf9)
NF=0Q
N1=0
N2=0
NN=0
OELTAL=DELTA
DO 45 13l,N
NG(I)=1
IF (NP)5,546
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0123
0124
0125
0126
0127
o128
0129
0130
0131
0132
0133
0134
0135
0136

0137

0138
0139
0140
0141
0142
0143

T 0144 .

0145
0146
0147
0148
0149
0150
0151
0152
c153
0154
0155
0156
0157
0158
0159
N0160
016l
0162
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(s 2N =N o BN o]

6
7
5

32
33
31

10

12

14

41
42
44
20

21
22
23

15

13
100

WRITE(6,7)(NGL1) E=1;N)
FORHAT(ZX.'NN'.6X.'DELTA"9X.'V'.2X IUTX X0 124000))
CALL MERIT(X,Y)
NF=NF+1
NN=NN+1

"IFINP)31,31,.32

WRITE(6433)NNDELTA Y4 (X(I)eI=1,N)
FORMAT(1Xy)14+9(2XsELL144))
CONT INUE
STRAT AT BASE POINT
YY=yY
00 10 K=14N
XX(K)=X{K)
CONTINUE
MAKE EXPLORATORY MOVES
CALL EXPLORIN, XXy YYyXL'yXRoDELTA,ROWNF)
1S PRESENT FUNCTIONAL VALUE BELOW THAT AT BASE POINTZ

IFLYY = ¥)3,3,2
SET NEW BASE POINT
DD 12 K=1,N
XXXUK)=X(K)
X(K) =XX (K)
CONT INUE .
Y=Yy
MAKE PATTERN MOVE
PO 14 K=lyN
XX{K)=2 s O%XXX{K) =XXX (K)
CONT INUE
CHECK 1F CONSTRAINT IS VIOLATED
D0 20 I=1,N
TF{XX(T)=XLUT)) 41442442
XX{I)=xL (1)
IFUXX{T)=XRU1))20,20,44
XXCI)=XR{1)
CONTINUE
CALL MERIT(XX,YYY)
NF=NF+1 .
NN=NN+1
YY=YYY
IF (N2)21,22,21
N2sN2+1
IF{N2-NP)22y23,22
WRITE(6,33)NN,DELTA, Yy (X(1) ,1=1,N)
N2=0
CALL EXPLOR(N»XX»YYoXL yXRyOELTA,ROW NF)
TFLYY=Y)1,1,2
DDELTA=DEL TA-F
IF (DDELTAI13,15,15
DECREASE STEP SIZE
DELTA=RDW*DELTA
GO TO 1 ,
WRITE(6,100)NF,Y,NN,DELTAL,DELTA yROW,F -
FORMAT(/,1X,'TOTAL NUMBER OF FUNCTION EVALUATIONSeoasess?yISs/y1Xy

a



CARD
0163
0164
0165
S
0167
0168
0169
0170
0171

0172
0173
0174
0175
0176
0177
0178
o179
0180
o181
0182
0183
0184
0185
0186
0187
0188
0189
0190

0191

cte2
0193
0194
0195
0196
0197
0198
0199

0200 -

0201
0202
0203
0206
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214

0215

n21e
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AYLARGEST MERIT ORDINATE.-..-...o.......-.-.. 1E15.84 /41X,
JTYNUMBER OF BASE - EVALUATIONSesevecasscaa®il1l59/,41X, .
desea'9Fl5, 84/41X,
"'FINAL STEP SllE-.-.-aa'caoa...co.-oaioc.c-c lFls 81/.1!.
S5*REDUCTION FACTOR FOR STEP SI2Ecesacscesecas®iF15.8¢/01X,
6YFRACTIONAL REDUCTION OF UNCERTAINITYceevaes® 1F15.84//)

C
[
[
c
21
22
21
24
C
[
2
C.
1
25
26
27
. 28
Cc
C
4
c
3
10

3.0RlGlNAL STEP Sle‘.l..Q....l.......l

RETURN
END

SUBROUTINE EXPLORINy XXsYYsXLyXRoDELTA,ROW,AF)
IMPLICIT REAL*8 (A-Hy0-2)

DIMENSTON XX(9) ¢XL ({9) ¢XR(9)
DO 10 K=1,N .

INCREASE ORDINATE, CALCULATE ORDINATE
XX(K)I=XX{K)+DELTA

CHECK IF CONSTRAINT IS VlOLATED
IFIXX{K)=XLIK)D2Y,22422
XX{K)=XL (K) :
TFIXX(K)=XRIK).}24,24423
XX(K)=XRK)
CONT INUE ) )
CALL MERIT(XX,YYY)
NF=NF+1

1S MOVE A SUCCESS ?
IFLYYY=YY)}1l,l,2
RETAIN NEW CO ORDINATE AND NEW FUNCTIONAL VALUE
YY=YVYY . o
GO TO 10 :
DECREASE ORDINATE+CALCULATE NEW ORDINATE
XX{K)=XX{K)=2 O*DELTA

IFEXX{K)=XL{K})}25,26,26

XX(K)=XLIK} - i
IFIXX{K)=-XR(K)}}28,28,27 o
XX(K)I=XR(K)
CONT INUE
CALL MERITIXX,YYY)

NF=NF+1 .

IS MOVE A SUCCESS ?

IF(YYY-YY)3,3,4

RETURN CO-ORDINATE & NEW FUNCTIONAL VALUE
YY=YYY
GO TO 10

RESET CO-ORDINATE

XXEK)=XX{K)+DELTA
CONTINUE

RETURN

END



CARD
Q217
0218
0219
0220
na2z21
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
..0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
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0270
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C
C

.

SUBROUTINE MERITUIX,Y)

IMPLICIT REAL*8 (A-H,0-1)

COMMON /MNMERT/ AA:8B,ByRsRPySN2

REAL#*8 DSIN,DCOS,M,N,AA,BB

DIMENSION X(S9),Fl4)

AP=ALPHA PRIME

BP=zLAMDA TwO

AP=X (1}

BP=x{2}

M=1,0D0

T=3,000

P=-0.2500

SAP=DSIN(AP)

CAP=DCODS LAP)

C2AP=DCOS(AP+AP)

COTAP=CAP/SAP

SBP=DSIN(BP)

CBP=DCOS(BP)

CoTBP=CBP/SBP

COTBP2=COTBP*COTBP

COTBP3=COTBP2*COTBP

SB=DSIN(B)

CB=DCOS(8B)

TANB=SB/CB

coTB=CR/SB

COTB2=COTB*COT8

COTB3=COTB2%COTAB

S2AP=DSIN{AP+AP) .

SAP2=SAP%*SAP

CSAP2=1,0D0/SAP2

SBP2=SBP*SBP

CSBP2=1,0D0/SBP2

Y1=2,0D0%{ AP-BP)

CY1=pCOS{Yl)

SY1=DSIN(Y1)

R=COTBP*TANS : . )

IF{R .GT, (4.0/3.0)) GO TO 50 ' < -
AA=0.250D0%(1. ODO*RP)‘(l.ODOOP)‘AP‘CSAPZ‘CSBPZ-O 12500*(1 ODO‘RP)‘(
11.0D0+P ) *CSAP2*CSBP2*S2AP*CY1+0. 500*(COTBP2‘TANB*COTAP*COTBP‘TANB-
1COTBP-COTAP)
BR=(COTAP*COTBP2%TANB/(4.0D0%M) )+ (COTBP3*TANB/(12.0D0%M))~(COTBP2/
112.0D0) +((M~2,0C0)/ (4 .0D0*M) ) *COTAP*COTBP+( (M~1,0D0)/(4.,0D0*M})*CO
ITAP*COTB+((1.0D0~M) /(4. ODO*M))‘COTB*COTAP*((I ODO*M)/(b ODO‘M))‘CU
1TB2+(1.0D0/12.,0D0)*CSBP2

FL1)=(0.25D00*(1.0D0+RP) *(1. 00009)‘CSBPZ 0.500%(1. ODOORPD‘(I 0DO+P)
1* AP*COTAP*CSBP2+0.2500%(1.0D0~RP) *(1.0D0+P) *COTAP*CSBP2*S2AP*CY1-0
1.2500%(1.0DN-RP }*(1.,0D0+PI*CSBP2xC2AP*CY1+0.25D00%(1.0D0-RP) *{-1.0D0

14P)*CSAP2* S2AP*SY1+0.500%(1,0DC~COTBP*TANB) )*BB+(0.2500*COTBP2*TAN

1B/T+(M-2.0D0)*COTBP/{4.0D0*M)+(1.0D0~-M) *COTB/ (4.0D0*M)) *AA
Fl2)=(-0.5D00%(1.0D0+RP)*(1.0D0+P ) *AP*CSAP2*COTRP+0.,25D00*(1.0D0-RP)
1%(1.0D0+P)*CSAP2*COTBP*S2AP*CY1-0.25D00%(1.0D0~RP)*(1.0D0+P)*CSAP2%*
1S2AP*SY140,.5D00% (-2 .0D0O*COTBP*TANB-COT AP*TANB+1.000) ) *88+ (0. 5D0*COT
LAP*COTRAP+TANB/M+0.,2500*%COTBP2*TANB/ M+ (M=-2, ODO)*COTAP/(Q-ODO*M)*(M-
11.0D00)*COTB/ (4. ODO*M))*AA
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CARD

0271 SN2=AA/BB

0272 Y=FULISF(LI4E(2)9F(2)

0273 y=-y

0274 RETURN

0275 50 AA=0.2500% (1.0DO+RP)*(P+1.000)*AP¥CSAPZ#CSBP2=0.125D0%( 1.000=RP | %(

0276 11.0D0+P)#CSAP2#CSBP2*S2AP*CY 1 +(COTAP+COTBP)/(2.0D0%T)

0277 - BB=2(0.5D0/(M*T)+0.2500/ (M*T#T)+0,2500)*(COTBP-COTAP)*COTB={0.5D0/ (

0278 1MH*T}+1,000/(M*T#T)+1.0D0/{6.,0D0*M*T*T#T}+1.000/6.0D0)*COTB2+(0, 500
- 0279 1/(M*T#T) )*COTB3+1.0D0/12.0D0+(0.5D0/(M*T)+0.2500)*COTBP*COT AP,

0280 . F(1)=(0.25D0%(1.0D0+RP) *({1.0D0+P)*CSBP2~0.500%(1,0D0+RP}*(1,0D0+P)

0281 1*AP*COTAP*CSBP2-0,2500%(1,0D0-RP)# (1.0D0+P)*C2AP*CY1*CSAP2+0.2500%

0282 101.0D0=RP1%{1.,000+P 1%52AP*SY1*CSBP2+0.2500%(1,000~RPI*(1.0D0+P %52

0283 1AP#CY1*COTAP*CSBP2-0,500/T) *BB+AA*((0.25D0+0. SDOI(M*T)l*COTBP (0.5

0284 100/ (M*T)+0,2500/( M¥T*T)+0,25D0)*COTB)

0285 F(212(~0.5D0% (1,000 ¢RP) * ( 1.0D0+P ) xAP*CSAP2#COTBP=0. 2500 *( 1. 0D0-RP)

0286 1%(1.0D0+P ) ¥S2AP*SYL#C SAP2+40, 2500% (1.0D0~RP)*(1.0N0+P ) *S2AP* CY1*CSA

0287 1P2*COTBP=0.500/T) *BB+((0.500/(M*T1+0.25D0) *COTAP+(0.5D0/ (M£T)+0,25

0288 1DO/(M#T*T)+0.25D0 ) %COTB) *AA ‘

0289 SN2=AA/BB

0290 Y=F(LI*F(L)+F(2)%F(2)

0291 . Ya-y

0292 RETURN

0293 END
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