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PREFACE 

Recent trends in industry have brought two very signif­

icant effects to the center of attention by management, 

namely: (a) A continued increase in technological progress 

has resulted in over-all systems which are extremely complex 

and correspondingly more expensive (examples would be the 

Boeing 747 or the Nautilus class submarine); (b) There is 

an increased emphasis by practically all political and 

social groups on resource allocations to social problems and 

activities to alleviate or restore the polluted environment. 

Both of the above conditions have increased the pressure on 

cost and price analysts to provide more accurate estimates 

and forecasts. The price per unit has increased, while the 

number of units per production run has decreased. 

Based on the above background information, the prime 

objective of this study has been to develop a method to pre­

dict the learnability of mechanical systems based on actual 

design parameters of mechanical assemblies. If we assume 

this approach is feasible, then a quantitative design­

oriented prediction model can be specified to forecast 

learnability of mechanical assembly tasks. Thus, learning 

allowances for a new design may be prepared, based directly 

on the unique features of this design, rather than having to 



rely on historical averages. A series of exploratory tests 

positively supported the feasibility of this concept. 

Based on the initial success of these tests, a further 

series of controlled experiments were run, which further 

substantiated the effectiveness of this method and permitted 

the formulation of a prediction model based on the measured 

sensitivity of design parameters. 

More experience and additional tests would be required 

to further increase confidence in these described tech-

niques. However, an illustrative sample mechanical design 

assembly analyzed by the prediction model, indicated an 

apparent error of less than one percent, when compared with 

results from a series of test runs that were used to gener­

ate a learning curve. 

Based on the nature of stated industrial problems, the 

results outlined above were deemed gratifying since the 

objectives of the research were substantially fulfilled. 

The author knows of no reason why the methodologies pre­

sented in this report cannot be applied immediately to real 

world problems. The figure of merit and decision making 

procedures described herein could also be adapted to a wide 

range of real problems where quantitative measures are 

need~d. 

My graduate study at Oklahoma State University was made 

possible by the support from the National Aeronautics and 

Space Administration and the Marshall Space Flight Center. 

I am extremely appreciative for this support and for the 



unswerving cooperation of Mr. Clyde M. Hightower of the 
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gratitude for his invaluable advice and encouragement, and a 
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subject for this dissertation. I also feel a deep debt of 

appreciation to the late Professor Wilson J. Bentley who was 

Chairman of my Doctoral Committee. His advice, friendli­

ness, and consideration were always available and cannot 

easily be forgotten. Dr. Earl J. Ferguson deserves my deep 

appreciation for his advice, help, and warm encouragement 

throughout my association with Oklahoma State University. 

The.other members of my graduate committee, Dr. M. Palmer 
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dissertation. 
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CHAPTER I 

INTRODUCTION 

Statement of Problem and Hypothesis 

Background 

Research activities that are both directly and indi­

rectly linked with learning theory have been actively 

pursued for many years by representatives of several scien-

tific disciplines. Since the majority of the researchers 

have been psychologists, it is not unusual that most of the 

resulting studies emphasized observations of the test sub­

jects, which included such animals as dogs, birds, and mice. 

The results of this research have provided a valuable 

storehouse of data which continue to be useful. 

Engineers have also contributed to the field of learn­

ing research. Using different experimental techniques than 

those of the psychologists and placing different demands on 

test subjects, the engineers have placed major emphasis on 

the results of the tests or, more specifically, the learning 

progress (learning curves). The ex~erimental activities 

conducted by engineers have been concerned with attempts to 

forecast, control, or reduce costs and other resource 

outlays. In previous studies, Baloff (.1) reported a 
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procedure to predict learning rates based on performance by 

groups; Hancock (2) predicted learning rates by use of job 

start-up parameters, such as trpe of work, age and sex of 

the operator, operator skill, and breaks in production 

cycle; Nelson (J) proposed forecasting learning progress by 

means of rate differences between slow and fast learners. 

Regretfully, no examples of research studies were uncovered 

which were devoted to scaling the possible effects of design 

complexity on learning progress. 

Statement of Problem 

Recent trends in American industry have shown a contin­

uous increase in resource requirements for certain produc­

tion units (e.g., Boeing 747, Air Force C-5A, or NASA Space 

Shuttle). While the design complexity has been increasing 

for these production units, the demand in terms of required 

delivery of production units has decreased. Part of the 

increase in costs can be attributed to inflation, while part 

is due to a growth in design complexity. Naturally, there 

has been increased emphasis in both business and government 

on more accurate cost estimates. There is, therefore, an 

increased need to more accurately forecast learning rates 

in preparation of cost proposals and budgets. One approach 

would be to base learning-rate estimates on the design com­

plexity of the unique hardware design under consideration. 

It is felt that approaches of this type will permit more 

accurate learning-rate forecasts than previous estimating 



techniques which relied heavily on industrial learning-rate 

averages and other generalized parameters. 

Hypothesis 

3 

Based on consideration of the above cited information, 

it is hypothesized: By use of systems analysis and a series 

of controlled experiments, perturbations in design configu­

ration can be used to gauge learning rate sensitivity for a 

minimum set of design-oriented factors. This set will be 

selected from such factors as the number of parts, the num­

ber of sub-assemblies, the number of fasteners, or the 

required skill level. (See list of Mechanical Assembly 

Skill Levels in Appendix A.) Based on these factors, pre­

diction models of individual learning progress can be deter­

mined for simple mechanical assembly tasks. All tests will 

be controlled to minimize potential deviations ~neither 

the task, test subject, or physical environment. All 

improvements in output will be assumed to result primarily 

from individual operator learning as measured by replica­

tions of a mechanical assembly task. Outputs from such 

prediction models will take the form of log-linear learning 

curve slopes, or the equivalent learnability estimates for 

each unique hardware design considered. 

Learnability Concept 

Most of the previous engineering-oriented studies in 

learning research have reported learning progress functions 



as approximations of exponential-type functions. The ordi­

nate term is usually expressed as some function of Y, which 

represents either the time to complete a specific unit or 

the average process time for "X" units. The abscissa is 

denoted by X and represents either the total number of units 

produced or the serial number of a specific unit. For 

example, if X = 20, this would represent either a total of 

all units produced (cumulative), or the twentieth unit. 

Expression of these functional terms in equation format is 

as follows: 

y =a. x-b (1-1) 

where a= constant, and will represent the Y axis intercept 

for the condition of X = 1. Equation (1-1) can be rewritten 

in logarithmic form as shown: 

log Y = log a - blog X (1-2) 

where b = an exponent representing a constant reduction in 

time (Y) per unit (X), or the mathematic~! slope. Another 

way of expressing the mathematical learning curve slope is 

in trigonometric terms for the log-linear learning curve 

plot as shown below: 

log Y 

log X 

B = Angle of learning curve with 

horizontal axis. 
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Since tangent of angle equals ratio of opposite to adjacent 

sides, the tangent of angle B would b 

Tan B = log Y = 
log X [b]. (1-3) 

If function is montonically decreasing, bis negative. 

Customarily, log-linear learning curve trends are expressed 

in terms of learning progress in percent or, more commonly, 

as "learning curve slope in percent". Since this term for 

slope is different from the notation for slope as defined 

above, confusion could result unless there is a clear under-

standing of the difference. 

In order to assure no misinterpretation, the term "mil 

is assigned to the slope of the log-linear learning curve 

trace as illustrated in Figure 1. To further clarify, the 

slope (m) may be defined numerically as the ratio of one 

ordinate value (and a corresponding abscissa) to a succeed-

ing ordinate value (and an abscissa value which is double 

the first abscissa). To specify "m" in percent, this ratio 

must be multiplied by 100, although "m" expressed as a frac-

tional ratio should be assumed for all forms below. 

or 

Ya 
So learning slope in%=~ X 100 

Y1 

then, simplifying and cancelling gives 

(1-4) 

(1-5) 

(1-6) 
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or 

so log m = 0 - blog 2 

log m = -.30103 b 

or b = -3.32 log m. (1-7) 

If Equation (1-2) is plotted on log-log coordinates, it 

will yield a monotonically decreasing straight line which 

intersects the Y axis at point X = 1 (see Figure 1). This 

ordinate intercept may represent the time for unit number 

one, and is the same value regardless of whether a 

cumulative-type or a unit-type learning function is used to 

represent the learning progress trace. Since this relation 

is linear in logarithmic terms, the slope of the straight 

line plot is a constant (bin 1-1, 1-2), but it is commonly 

referred to in terms of percent slope or "m". This per-

cent slope notation is used in industrial as well as govern-

ment circles to represent rate of learning. The Department 

of Defense has published a document, entitled "Report on 

Improvement Curve Experience", which lists in tabular form 

the percent slopes for improvement curves plus a designa­

tion as to whether slope is based on "unit" or "cumulative" 

theory for a large number of NASA, Navy, Army, or Air Force 

projects (4). In addition, many other sources of historical 

learning curve slope information are available, e.g., see 

Dahlhaus (5), Large (6), or Hartmeyer (7). In these and 

other references, it is the practice to refer to a plot of 



learning or improvement information on log-log coordinates 

as the log-linear learning curve, or simply as the log­

linear plot. It follows that two terms must be known in 

order to specify learning accurately: 

a) Slope (either b or m). 

b) Curve Theory (either unit or cumulative). 

Need for New Term 

Frequent problems in communication have come up 

because of the use of "percent slope" to refer to a change 

in the rate of learning progress. This happens because it 

8 

has been conventional to use the term "percent slope" (m) 

of the learning or improvement curve to specify rate of 

progress on a particular task. If a task is more difficult, 

the slope (m) increases; if a task is easier, slope (m) 

decreases. Thus, a task which indicates virtually no 

learning progress may approach an "m" value of 100%. A 

learning curve plot for a slope of 100% would be parallel 

with the X axis on a log-log set of coordinates. This is 

often confusing to laymen because an increase in percent 

slope of a learning curve means a lower rate of learning 

progress is being made. To minimize such problems, it was 

decided to provide a new term which responds algebraically 

the same as a corresponding increase or decrease in learn-

ing progress. This term is designated as LEARNABILITY (L), 

and it is defined as follows. 
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Learnability Definition 

Learnability (L) is a measure of the relative ease or 

difficulty that a designated task(s) may b~ learned by 

qualified individuals or groups of individuals. Such tasks 

may include steps which are purely mental, manual, or combi-

nations of types of activities. 

In order to provide a link between previously compiled 

learning data and this new definition, the term learnability 

(L) is also defined as approximately equal to the reciprocal 

of the log-linear learning curve slope or, 

,.., 
L = 1/m. (1-8) 

As a typical task becomes easier to perform (or learn), the 

learnability estimate (L) will increase in value, and, if 

the task becomes more difficult, the estimate will decrease. 

The normal range for such learnability estimates will vary 

between 1.0 for no learrting progress to a value of around 

1.7 for a rapid rate of learning progress. In this new 

context, the higher the learnability estimate number, the 

greater the degree of learning progress can be expected. To 

illustrate an application of this new term, an example is 

outlined below. 

Learnability Example 

The XYZ Furnace Company has designed a new model fur-

nace which it hopes to market in order to become more com-

petitive in the industry. The new design has approximately 
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the same thermal performance as the old furnace design, but 

design changes have reduced the number of fasteners from 42 

to 20 per assembly; the number of sub-assemblies from 10 to 

5; and the total of parts from 130 to 44. For the purpose 

of discussion, the old design is referred to as design A, 

and the new design as design B. The old design has exhib~ 

ited a learnability of approximately 1.18 (m = 85%). The 

new design indicates a learnability of approximately 1.JJ 

(m = 76%). As a reflection of the reductions in values for 

several design parameters which are sensitive to learning, 

the learnability value for design B increased significantly. 

Learning curves for both design A and design B have been 

plotted on Figure 2. It should be noted that there is not 

only a difference in percent slope, but also a decrease in 

the first unit time for design B. This and other effective-

ness parameters must be considered if the analyst is to make 

an over-all progress or improvement comparison between the 

two designs. On the other hand, the intent in this study 

will be to focus attention on those differences in learning 

performance brought about by variations or changes in the 

design configuration. Other measures of over-all perform-

ance (e.g., material cost) could either add to or subtract 

from any gains from increased learnability. Learnability, 

thus, becomes one of a list of performance sensitive parame­

ters which must be reviewed prior to making the final deci­

sion to incorporate a design change. 
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Relationship of Learnability and 

Systems Engineering Parameters 

12 

In order to achieve maximum usefulness in relation to 

existing technology and/or systems engineering terms, the 

11 Learnability Concept" as developed in the previous section 

must be clearly stated here and must be understood with 

respect to those previously established terms. The learn­

ability term is defined particularly such that it would be 

compatible with a category of system engineering terms 

called "specialty parameters". Other similar parameters in 

this grouping include: reliability, maintainability, 

producibility, etc. As may be observed, all of these terms 

may be thought of as general technical characteristics of an 

over-all system to provide more information and engineering 

confidence in the relative adequacy of the entire system. 

Learnability has a definite relationship to several of the 

systems engineering specialty parameters (see MIL-STD-499 

USAF, 8). The unique roles played by learnability with 

respect to these parameters will be cited below. In addi­

tion, Figure 3 illustrates schematically the relationship of 

learnability to other systems specialty parameters. 

Learnability and producibility are considered to have a 

special mutual relationship. For example, if a certain 

mechanical assembly were to be rated on producibility, the 

analyst would need to have some measure of the ease or dif­

ficulty required to assemble the parts or sub-assemblies. 

Learnability could be one of the sub-parameters utilized in 
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estimating the over-all producibility. Learnability would 

also have significance in any "Maintainability" analysis of 

a technical system, since, generally speaking, the simpler 

a mechanical assembly is to assemble/disassemble, the easier 

it is to maintain. In a similar vein, the simpler an 

assembly task can be made, the easier it is to control 

quality and to provide quality and reliability assurances. 

Complexity and Learnability 

Although references to the term "complexity" may be 

found in a wide range of sources, the depth of penetration 

in treatment is generally very shallow. Ellis and Ludwig 

(9), in their book Systems Philosophy, have devoted one 

chapter to the subject. As is the case with the term 

rrsystem", complexity commands a broad interest by various 

physical and human scientific disciplines, including 

psychology, training/education, engineering design, indus­

trial engineering/management, reliability, systems safety, 

etc. A total listing would be almost endless, as would be 

any attempt to pursue a study of the entire spectrum of 

involvement. Therefore, in keeping with the purpose of this 

study, an attempt will be made to clarify the special or 

unique role played by complexity as it relPtes to the 

learnability concept previously described. In this appli-

cation, "design complexity" is the particular part of com­

plexity which appears to be most important to this 

investigation. Other system parameters which are succinctly 
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related to design complexity are such systems aspects as 

flexibility, operability, producibility, and maintain­

ability. Ellis and Ludwig (9) have reported that a general 

increase in complexity shows an exponential increase in the 

probability of failure. They also report an apparent engi-

neering paradox which results when components or sub-systems 

are added to a prime system to increase reliability through 

redundant "share-the-load" or "stand-by" capabilities. 

(Usually, reliability decreases with increasing design 

complexity.) The addition of "self-checking" and in some 

cases "self-healing" components/sub-systems also are 

intended to increase reliability, even though such additions 

add to a general growth in complexity. Other side effects 

brought about by a general increase in complexity are the 

increased requirements for the test and checkout of parts, 

components, and sub-systems. In the case of certain super 

systems (e.g., Apollo Program), there will be a need to pro­

vide additional design, documentation, and, in some cases, 

test and checkout efforts to develop interface (or between 

systems) requirements. Such activities tend to increase 

over-all complexity and program costs. 

Harris ( 10)). 

Micro Complexity Analysis 

(See article by 

The above information was developed primarily from an 

over-all or total-systems point of view. Based on the 

limits of manageability, and also from the standpoint of a 
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logical starting place, attempts to quantify complexity data 

are constrained to the micro or individual worker level. 

The approach at this level is to run controlled experiments 

using a single operator performing mechanical assembly 

tasks. Experimental data points keyed to certain design-

oriented factors of the mechanical assembly tasks can be 

used to scale complexity and to measure rates of learning 

progress over time 1 i.e. 1 learnability. These micro level 

gauges of complexity might eventually be integrated or 

otherwise expanded to provide some measures of macro or 

over-all system complexity. In general? it has been found 

that learnability will tend to decrease as complexity 

increases. In other words~ a subject (or operator) will 

find any task more difficult to learn as its complexity is 

increased. The task taxonomy must be scrutinized carefully 

in order to ascertain which factors, aspects, or other 

characteristics make the activities more or less difficult 

to accomplish. As shown graphically in Figure 4 1 there are 

three prime factors involved in this analysis: a) the sub­

ject, b) the job taxonomy, and c) the design features or 

characteristics. As shown in the diagram, each of these 

prime factors have unique sub-factors which must be consid-

erect in any learnability analysis. In a controlled experi-

ment of this typej changes in task complexity will be 

minimized for any one test as will be changes in operator-

oriented variables. Learnability values are determined 
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as indicated by the cyclic output of a test subject/operator 

over time. A plot such values has commonly been referred to 

as a "Learning Curve". 

Design Impact on Learnability 

Design complexity will play a major role in any analy­

sis of design effects on learnability. This effect or 

impact is also a major consideration when attempting a 

learnability review of a mechanical assembly task. As out-

lined previously, such mechanical design features as the 

number of parts, the number of sub-assemblies, or the number 

of fasteners will directly affect the inherent or relative 

difficulty experienced by an operator in completing a task 

of this type. A listing of other mechanical system design-

oriented features which directly affect learnability are 

pressure relief valves, shaft seals, ball bearings, and 

gasket closures. These parts tend to critically affect 

operation of some assemblies and must be assembled with 

utmost care and precision to assure proper performance of 

the total system. This tends to increase skill require-

ments, and learnability would, therefore, decrease with the 

increased use of this type of part in a system. 

Goldman and Slattery (11) have reported that in the 

case of electronic modules, an optimum design complexity 

range exists for electronic modules in terms of number of 

transistor parts per module. This analysis was based on the 

policy assumption that the electronic module being considered 
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was designed for discard, as opposed to being repaired when 

a malfunction occurred. The optimum occurred at around 30 

transistors per module but with a constant decrease 'in cost 

effectiveness after this point was passed. At present, 

there is insufficient information available to permit any 

valid comparisons (using this approach) with respect to 

mechanical components, sub-systems, or systems. 

To control a potential growth in number of parts and 

other undesirable trends, an organized attempt for "simpli-

fication of design" would be an alternative. Fewer parts 

and, in particular, fewer moving/closure parts would not 

only tend to make a system more reliable but would also tend 

to reduce costs and increase learnability. 

Special Tools/Equipment Required 

by Design 

Sometimes when certain unique design features are 

established or introduced into the design configuration, 

there will automatically be established a need for special 

tools or equipment and, at the same time, special skills/ 

processes to meet these technical requirements. Typical 

examples would be an assembly fixture required to meet close 

tolerances on assembly dimensions; or the need for a special 

reaming tool to meet a very small allowable parallelism 

tolerance; or design specifications calling for specific 

torque values for threaded studs, which might require 

special "torque wrench" as well as special skill. In all of 
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these examples, there is an increase in complexity and a 

corresponding tendency toward a decrease in learnability. 

This is generally true of any deviation from the norm in 

usage of standard tools, equipment, fixtures, processes, or 

modes of operation. 

Engineering Materials Versus Learnability 

It appears logical to assume that costs will go up and 

learnability value will go down as more sophisticated mate­

rials and/or processes are specified in design criteria. 

Again, this is primarily_related to an increase in skills 

required to complete the various fabrication and assembly 

tasks. A recent report published by the Aerospace Corp. 

(12) lists complexity factors with respect to choices of 

several exotic alloys, including coated tantalum, coated 

columbium, Rene 41, etc. Since such materials normally 

require more time and care to process, complexity will 

increase as will the skill requirements for production 

workers. 

In summary, it has been stated that learnability may be 

affected by one or more of the several types of design fea­

tures related to mechanical assemblies, such as the number 

of moving parts, the number of closure parts (shaft seals, 

gaskets, etc.), the number and type of different materials 

used, the number of parts, the number of sub-assemblies, the 

number of fasteners, the number of heat treatments, the need 
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for special coatings or surfaces, or the need for special 

tools/equipment. 

Design Effect on Mechanical 

Assembly Learning 

Previous sections have discussed complexity and how 

complexity affects learnability, or how certain design fea-

tures will tend to increase complexity and, thus, decrease 

learnability as a task becomes more difficult to perform. 

Such effects are perhaps more transparent insofar as mechan-

ical assembly tasks are concerned, since it can readily be 

seen, for example, that a metal shelving unit with ten 

shelves will be more difficult to learn to assemble than a 

three-shelf unit. Also, the ten-shelf unit will automat-

ically have a much larger number of fasteners and other 

related parts. These aspects are all design-oriented fea-

tures, and they will usually have an effect on the time 

required to complete mechanical assemblies. Suppose a 

design change in a mechanical assembly replaces a machine 

screw fastener with a self-tapping sheet metal screw. As 

before, the total number of parts would decrease and 

learnability increase. The operator would have a simpler 

job to perform, since he would have fewer parts to handle 

and install. By use of creative design, a designer might 

be able to completely eliminate all fasteners from this unit 

by redesigning the shelving posts such that they would 

accept the shelves with a simple plug-in type connection. 
i 
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Even greater savings could then be effected through further 

reductions in parts, lower standard times, and increased 

learnability. 

Material Selection Impact on 

Mechanical Assembly 

In some cases, the choice of aluminum instead of steel 

could have a-significant effect upon the ability of an 

assembler to handle either component parts or a complete 

assembly (e.g., aluminum lawn furniture). Also, in some 

instances it may be possible to substitute a single part for 

several smaller parts by use of a metal die casting, or a 

moulded plastic. Other possible design innovations might 

involve use of epoxy cements to bond together component 

parts in lieu of traditional screw or bolt fasteners. 

Gains in learnability might result by reductions in required 

skill, weight, and number of component parts. 

If the designer plans his design not only for ease of 

manipulation by the assembler, but also for easy access with 

standard tools and fixtures, there could be an additional 

increase in learnability for a mechanical assembly. 

Closing Remarks 

This chapter has endeavored to introduce the Learn­

ability Concept, and demonstrate how it fits with other pre­

viously established system engineering parameters. 

Descriptive information has also been presented for the key 
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term rrcomplexi ty11 , and the unique role it plays, for 

example, in attempts to quantify learnability. Narrative 

has also been submitted concerning other related aspects 

which tend to affect learning in performance of a mechanical 

assembly task. Chapter II will utilize information from 

Chapter I as a foundation for a more complete description of 

critical parameters/aspects involved with learning theory, 

and a taxonomy of relevant learning theory terms. The goal 

will be to build a bridge of understanding between the large 

contribution to applied learning theory by the behavioral 

scientists (psychologists, sociologists, etc.) and the 

industrial/systems engineers. Hopefully, these discussions 

will furnish a necessary background of learning theory 

fundamentals, and at the same time provide the basis for a 

learnability prediction model. 



CHAPTER II 

LEARNING THEORY AND APPLICATIONS 

Learning Theory Overview 

Problems of. Classification 

Although the main body of learning theory is centered 

in the field of psychology, interest by academicians and 

laymen is clearly evident in such other disciplines as 

management, sociology, and engineering. Since different 

points of emphasis and paradigms of investigation are prac­

ticed by each group outside of psychology, the problem of 

choosing rigorously correct categories is magnified. An­

other facet of the classification problem is the sheer size 

of the sub-field called Learning Theory. Were it not 

already classified as a sub-set of the much larger disci­

pline of psychology, it could easily qualify as an independ-

ent discipline. Although a portrayal of the entire scope of 

learning theory is beyond the scope of this study, an effort 

will be made to present an abbreviated summary of the pri­

mary categories with emphasis on the "Perceptual-Motor 

Skill Learning" category. This category includes the partic­

ular experimental investigations which were utilized in this 

study. Actually, the category is a sub-category of 
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1tLearned Skillsn, the other sub-category being "Language 

Skills". A tree diagram, which depits the logical represen­

tation of some categories of human learning and/or perform­

ance, is included as Figure 5. This schematic representa­

tion, in conjunction with the descriptive definitions given 

below, is intended to provide a capsule understanding of 

learning theory, as developed and portrayed by the psychol­

ogy discipline. These descriptions are felt to be necessary 

for a more complete understanding of the stated problem(s), 

in spite of an almost universal convention by psychology 

researchers to focus observations on the test subject's re­

action and performance (see Figure 4, p. 17). The praxis of 

this study has been to consider all aspects of a mechanical 

assembly task/job. In some references, research in 

perceptual-motor skill learning is referred to as training 

research (12). Much of the research activities in training 

have been sponsored by various military agencies, particu­

larly the Air Force relative to flight crew tasks (e.g., 

pilot, navigator, bombardier, gunner, etc.). More recently, 

with the advent of larger and more complex aircraft, this 

type of activity has been given increased emphasis by com­

mercial airlines and the Federal Aviation Administration 

(FAA). Also, the National Aeronautics and Space Administra­

tion (NASA), chiefly at the Houston Manned Spacecraft Cen­

ter, has beert engaged in highly detailed training exercises 

utilizing very complex training aids and simulators. The 

degree of success by both commercial carriers and NASA in 
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space and flight operations would appear to justify the need 

for this type of research activity. 

The work that follows has been structured to present a 

compendium of learning theory as it relates to the stated 

hypothesis in Chapter I. The order of the various cate­

gories presented is not intended to indicate any degree of 

importance, although as previously stated, the section on 

"Learned Skills" embraces the sub-set (Perceptual-Motor 

Skills) which was studied in the experimental parts of this 

research. 

Conditioning 

Conditioning, as a learning theory sub-discipline, 

probably had its beginning in the 1920's with the research 

conducted by the Russian scientist, I. P. Pavlov (1J). As 

is the custom in many Russi:an experimental studies, Pavlov 

utilized dogs as test subjects. The conditioning training 

given to the dogs consisted essentially of audio signals 

(bell ringing) each time hungry dogs were fed. Eventually, 

the dogs salivated in anticipation of food each time a bell 

was rung, even though in some instances there was no reward 

of food. This type of conditioning has become known as 

1rc1assical Conditioning". It has two sub-classes -- type 

'"A" conditioning, as in the dog experiment outlined above, 

and Pavlovian type "B" conditioning, after another Pavlov 

dog experiment in which the animals exhibited both nausea 

and salivary secretions with a mere touch by the 
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experimenter (after first being conditioned by several 

injections of morphine). The primary difference between 

type A and type Bis the kind of motivation present in each 

case. The test subject in type A is positively motivated 

with the possible reward of food. In type B, the motivation 

is negative, since it is based on the fear which the animal 

experiences after repetitive injections of morphine by the 

experimenter. 

The other main class of conditioned learning is known 

as "Instrumental Conditioning". This type of conditioning 

may be illustrated by the tests reported by B. F. Skinner 

(14). White rats were conditioned to press a small lever in 

their cage, which would automatically drop a food pellet in 

a cup as the reward. There are eight sub-categories of 

instrumental conditioning, and approximately one-half of 

these sub-categories depend on rewards for motivation rein­

forcement, while the other one-half depend on some form of 

punishment (15). The thread of commonality running through 

all forms of instrumental conditioning is the use of some 

device or mechanism in the actual conditioning process. For 

example, in Skinner's rat experiments, it was a clicking 

lever in a soundproof box; in Sheffield's and Ternmer's 

experiments (16), it was the electrically charged floor. In 

some cases, the cue/signal is audio; in others, it is visual 

(color-coded, etc.). Alternatively, it may be in the form 

of punishing-type cues, such as electric shock, excessive 

heating, or cooling. The organism, whether human or animal, 
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learns from cues that either motivate the subject positively 

by reward or negatively by some form of punishment. 

Rote Learning 

This category of learning has been called "Verbal 

Learning", which can be considered a synonym for it. As 

contrasted with conditioning or skill-type learning, rote 

learning, py individuals, has to do with individual learners 

whose learning may be the memorization of words or groups of 

letters (e.g., VXK). Sometimes single letters, such as 

those commonly used in psychological journals, are memorized 

(for example, S = test subject, E = experimenter). Learning 

of this type is strictly mental and does not normally have 

physical cues. As illustrated in the examples given above, 

the use of an acronym may serve to reinforce memorization in 

rote learning. Further examples are such terms as 11 ID11 to 

represent Index of Difficulty or 11 RT11 for Reaction Time.' 

Probability Learning 

This sub-group of learning theory encompasses a large 

group of activities that include a significant proportion of 

the quantitative and applied mathematical/statistical analy­

sis of experimental learning data. A classical example 

would be an investigation in which the test subject is given 

a series of experimenter-defined sets of alternatives. 

After making a choice, the subject receives a signal from 

the experimenter indicating whether or not his responses 
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were correct. Also typical for this type of experiment 

design, each response has some fixed probability of being 

reinforced (noted as being correct by the experimenter), and 

this probability is independent of the test subject's pres-

ent or past choices. To be more specific, a test subject 

may be asked to predict which of two alternative events will 

occur (e.g., light on or light off). After each trial, 

either one or the other of the two events does take place 

( 1 7) • However, there is virtually no limit to the number 

and variety of tests or experiment designs that could be 

devised to probe the unknowns of this sub-field. In some 

studies, the subject is motivated by either a reward or a 

punishment, depending on a proper selection of alternatives 

(18). Results have shown a tendency toward "repetition 

responding". From the standpoint of such responses, a 

correct response by a test subject tends to be repeated, 

whereas an incorrect response tends to be changed. Since 

such trends are not necessarily congruent with the expected 

likelihood of occurrence for each of the alternatives, this 

type of response tends to bias the recorded data. 

Short-Term Memory and Incidental 

Learning 

Although these two learning sub-categories are grouped 

together, there are some unique differences. For example, 

a distinguishing feature of incidental learning is that a 

limit is placed on the number of presentations of material 
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to a single or, at most, a few replications. On the other 

hand, short-term memorization is primarily concerned with a 

subject's ability to immediately reproduce the materials to 

which he has been exposed. Short-term memorization is also 

concerned with serial organization and the process of 

forgetting. 

Typical examples of short-term memory being used in 

learning applications are: 

(a) Copying Morse code signals behind real-time; 

transmission has been used by radio operators 

to copy a signal speed which would be virtu-

ally impossible to copy continuously in real-

time. Morse code speeds in excess of 30 

groups/minute* have been copied on a real-

time basis by using this technique. 

(b) In essence, the same approach has been used 

by secretaries in copying shorthand characters 

behind the real-time dictation speed for 

correspondence (19). 

In both of these cases, serial organization within a short-

term memory trace is important, so characters will be trans-

posed from short-term memory to a written manuscript in the 

correct sequence. 

*Morse code groups consist of alpha-numeric characters 
copied in groups of five characters per group by a tran­
scriber. These groups are sometimes referred to as "words" 
in the radio-operator discipline. 
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Concept Learning 

Although this sub-class of learning does not appear 

difficult to characterize on the surface, clear and concise 

definitions do not appear to be readily available. Three 

suggested identifying properties of "concepts" are: 

(a) associations, (b) cues or stimµli, and (c) responses. 

The "Learning Curve Concept" could be used as an illustra-

tion. This approach should stimulate associations with 

other types of curves and even other concepts such as the 

law of diminishing returns, a situation which might be 

graphically illustrated by a plot of human performance data 

over a period of time. 

Concept learning is, therefore, something more than a 

neat package of information which can be transmitted or 

received in a discrete manner. It has to do with acquiring 

by learning some distinguishing features or criteria of one 

"thing", which can set it apart from other "things". Con-

cept learning may also be a general idea, or property, that 

can be assigned to two or more individual items. 

Learned Skills 

As previously noted, this category of learning theory 

includes two principle sub-categories: 

motor skills and (2) language skills. 

(1) perceptual­

Both categories 

include rather extensive ranges of information, which must 

be included in classes of activities that people perform 

every day. There is little doubt that humans participate 
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in both sub-categories, the only uncertainty being in the 

relative proportions of Type I (perceptual-motor skills) 

versus Type 2 (language skills). Some jobs require a pre­

ponderance of manual/physical actions, such as agricultural 

harvesting, ditch digging, or professional football. Other 

tasks require a primarily "mental" or "thinking" set of 

activities, such as would be performed by an accountant, 

scientist, or chess player. Even so, no single job would 

normally require only mental, or strictly manual operations; 

logically, it would contain instead a combination of the 

two. 

The Type 1, or perceptual-motor.skill 1 sub-category as 

noted above includes those tasks which are primarily manual 

or physical. There are many factors which affect the 

learning performance of a human in this context. Some of 

the more sensitive variables are: 

(a) Complexity of task (number of separate steps 

or processes required to complete task), 

including design complexity. 

(b) Time interval required to complete cycle. 

(c) Individual/natural skill or compatibility 

of operator. 

(d) Bias-type constraints placed on test sub­

ject due to environmental and/or job design 

aspects. 

(e) Motivation of operator, including knowledge 

of results, rewards (whether positive or 



negative), etc. 

(f) Pressure to reduce cycle time, whether 

self-imposed by the operator or by 

supervision. 

(g) Number of practice cycles or replications 

of a perceptual-motor task. 

(h) Similarity of the task to other tasks 

previously performed by the operator. 

J4 

Each of the above factors may influence the accuracy of 

human performance measurements, if they are not controlled 

or adequately considered prior to measurement. For example, 

if an Air Force bombardier uses a bomb-sight device which 

is out of calibration, his performance will surely reflect 

this type of bias. Another example is the negative motiva­

tion of an operator who receives no feedback on the accuracy 

or speed of a task he is performing. By proper understand­

ing and consideration of each such factor, it should be 

possible to increase the accuracy of measurements for 

perceptual-motor skill tests. This objective was estab-

lished as a ground-rule for controlled experiments in 

perceptual-motor skill learning, which will be described in 

subsequent chapters. Task complexity or, more specifically, 

"design complexity" was utilized as an independent variable. 

Readings at several levels of design complexity were taken 

for a single test subject, while other variables were 

either controlled or held constant. 

The Type 2, or language skills, sub-category, has been 
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used to include all those varieties of learned skills which 

require thinking or mental effort. Such skills include 

mathematics, logic, science, and other related disciplines 

normally used in problem solving. Also included is the 

normal day-to-day use of language in conversation, reading, 

and writing. Although speed of learning is a factor in this 

sub-category, success may be more important in the solution 

of problems. Typical in language-type skills is an activity 

that has been called "information reduction". 

Information reduction involves the normal summarization 

and abstraction of information such that it is in manageable 

proportions. Attendees to management staff meetings fre-

quently communicate with other parts of the organization by 

writing what is called "Highlights of the Meeting". These 

highlights represent a condensation of the information 

covered in the staff meeting. Highlights from meetings may 

also represent the output from a gating-type sort of meeting 

topics into either relevant or trivial information by the 

meeting secretary. The meeting highlights will normally 

include only relevant information, trivial topics will 

simply be overlooked or deleted by the meeting chairman. 

The human mind is continually required to process raw 

information by means of "gating tasks" (sorting books as 

cloth bound or paper bound, allowing other features to be 

ignored), "condensation tasks" (classifying digits as odd 

or even, retaining only part of the information received 

from the numbers), or both. In general, the more 
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dimensions/parameters which a test subject has to either 

ignore or classify, the slower he learns (20). This obser-

vation is related to experiment observations in subsequent 

chapters. When perceptual-motor tasks increase in complex­

ity, progress of learning is slower (assuming other vari-

ables do not vary). It has been argued that the larger the 

number of factors or sub-parameters requiring consideration 

in a decision-making exercise, the greater will be the 

expected number of errors (21). 

Industrial Applications of 

Learning Theory 

Training Production Workers 

With the advent of automation, there has been increased 

emphasis on micro-level planning of production activities 

for workers. At the same time, there has also been a trend 

toward positions which are less complex and are shorter in 

cycle time. Such tasks are basically simpler and demand 

less skill from the workers. For this reason, the training 

activities have become restricted to brief pre-job orienta­

tion and training sessions just in the specific activities 

which the employees will be required to perform. There are 

many reasons why the individual jobs have been structured as 

described above, but, primarily, the justifications have 

been that the total job or process is machine-paced. In 

other words, the speed or rate of output is tied to the 

speed of a production line. With this approach, the 
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operators' movements must be coupled with or integrated with 

the speed of machines. This tends to subordinate the roles 

played by individual workers with a corresponding decline in 

the emphasis on workmanship and craftsmanship. Many such 

workers are simply trained on the job with no formal train-

ing period. In some cases, no training is needed since many 

of the jobs are so simple in skill requirements and number 

of steps. Although it may seem paradoxical, measurable 

learning progress is very difficult to ascertain when a task 

is broken into sub-tasks that are minimum in number of steps 

and cycle time. Crossman (22) reported on a study of such 

tasks as cigar-making by individual operators who used cigar 

machines instead of employing the older technique of hand-

rolling cigars. Results indicated that a large number of 

replications were required in order to demonstrate a tradi­

tional learning curve response; also, a rather long time was 

required (over one year) to register the expected response. 

It was noteworthy that as the improvement in cycle time was 

gradually recorded, a leveling-off trend developed as the 

cycle time of the operator-plus-machine-time approached the 

cycle time of the machine alone. This result is, of course, 

as one would expect for an operation which is machine-

paced. The study of long-term learning progress for sub-

jects, who use machines to complete their tasks, is outside 

of the objectives of this study. It represents an important 

but quite different sub-category in the over-all field of 

learning theory. 
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Another aspect of training production workers which is 

closely related to the technique of breaking down tasks is 

the strategy of specialization of workers according to 

individual talents or previously acquired skills. This 

method tends to support automation and assembly line produc-

tion techniques. The training periods for individual 

workers are reduced, and the time required to reach over-all 

production goals is shortened. Based on pre-employment 

interviews and tests, workers are normally placed in spe-

cific jobs which require skills and aptitudes in which they 

excell. In some states, such tests are administered by the 

state employment agency as a service to individuals as well 

as a means to encourage new plant locations or expansions. 

In a plant tour of the Prestolite Corporation* in 

Decatur, Alabama, it was learned that all prospective em-

ployees are given a battery of pre-employment tests which 

are prepared and administered by the State. This battery of 

tests includes tests for: (a) intelligence/general ability, 

(b) verbal aptitude, (c) numerical aptitude, (d) spatial 

aptitude, (e) form perception, (f) clerical perception, 

(g) motor coordination, (h) finger dexterity, and (i) manual 

dexterity. Indications were that a high degree of success 

had been realized in the placement of employees at the 

Prestolite plant based on these tests. The only recognized 

*The Decatur works of the Prestolite Corporation is 
engaged primarily in the fabrication and assembly of igni­
tion systems for internal combustion engines. This in­
cludes such ignition components as breaker-points, 
distributors, spark plugs, and voltage regulators. 
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problem was the tendency of some employees to become bored 

or restless on job assignments which were well below the 

individual's performance ability (in the punch press depart­

ment, for example). The apparently successful corrective 

action was to assign workers to this location with rela­

tively lower qualifications (e.g., high school dropouts). 

There was a significant reduction in turnover for these jobs 

and an improvement in morale. The output from this depart­

ment was also judged to be completely satisfactory after the 

change in placement policy. 

Hartmeyer .(2J) in his book has hypothesized: "Only the 

non-repetitive portion of the job cycle warrants a learning 

allowance". Presumably, this means that most workers will 

naturally go through a series of "false starts", redundant, 

or otherwise superfluous motions during the first few repli­

cations of a motor-task. Since these non-mandatory motions 

are presumably not a part of an officially planned procedure 

or programmed step, they are classified as "non-repetitive" 

as well as non-essential. At least a portion, if not all, 

of the progress made during a learning phase of an on-the­

job training exercise would be the gradual elimination of 

all unnecessary motions. As noted above, high-volume pro­

duction tasks usually involve jobs which have such a small 

number of steps, that learning progress may not be detected 

by normal measurement techniques. There may be no non­

essential motions if the job is simple enough; the only 

apparent learning effects for such a task would be primarily 
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improvements in speed and/or dexterity, after long-term 

observations. As noted in Crossman above, high-volume pro-

duction tasks improve at a slower rate,but over a longer 

time span. Short-term observations may not indicate any 

learning progress at all, since the rate is so minimal. 

Training Military, Air Lines, and 

Space Personnel in Transportation 

Equipment Operations 

The greatly increased demand for skilled and semi­

skilled workers during World War II provided an impetus for 

a large number of studies on applied learning theory and 

training research. This series of studies continued well 

into the 1960 1 s, and only recently appears to have subsided, 

the slowdown being more or less the result of general cut­

backs in federally sponsored studies. 

It was during World War II that the use of highly 

planned training programs came into general use by the 

military establishment. Special schools were set up to 

train individuals as well as teams in skills of the motor 

and/or verbal learning categories. The U.S. Army 

(including what is now the Air Force) set up separate 

schools to train individuals in the special skills they 

would require to become pilots, bombardiers, navigators, 

gunners, radio-operator/mechanics, engine mechanics, 

armorers, and so forth. In order to determine individual 

qualifications for such skills, a battery of tests was set 



up by learning theory specialists. Several centers (such as 

the one set up by the Army at Nashville, Tennessee, to test 

flight crew candidates) were located throughout the conti-

nental United States at convenient locations. Tests given 

flight crews probed perceptual-motor, language, and person­

ality qualifications of the candidate flying cadets. In 

addition, each candidate was subjected to extremely detailed 

physical examinations. The students who remained after this 

lengthy screening process were presumed qualified in one or 

more of the classification categories. The subsequent 

activities involved highly programmed training sessions 

which, in the case of flight crew trainees, were split 

approximately on a 50-50 basis between verbal and motor 

skill learning. Classes were arranged such that each 

morning or afternoon was devoted to either verbal or motor 

skills. In some cases, students would be scheduled for one 

week with morning classes in physics, math, and other verbal 

learning courses. The afternoons would then be utilized for 

marching, physical training, etc. By alternatihg between 

morning and afternoon sessions, it was possible to reduce 

for students at least some of the potential boredom of the 

material, which, in the case of verbal learning activities, 

was related to the necessity of considerable overlearning. 

As a flight crew candidate progressed through training from 

beginning levels to advanced training schools, a large 

portion of the basic verbal learning courses were repeated 

often at each station in the training cycle. As a result, 



American flight crews were among the most proficient in the 

entire world. Overlearning is still utilized by the U.S. 

Air Force, but to a somewhat reduced degree. Its value, 

however, has clearly been proven as a means to reduce risks 

of performance errors by flight crews, as well as ground 

personnel. 

Training Military, Air Lines, and 

Space Personnel Using Simulators 

Another training strategy which received extended trial 

and use during World War II was the use of training simula­

tors along with other types of training aids to accelerate 

or improve learning of complex tasks. Such devices varied 

from such simple devices as headphones and telegraphic keys 

installed on tables to train Air Force personnel in Morse· 

code to the complex training devices called "Link 

Trainers", which trained flying students in instrument 

flying techniques. The link trainer approach has survived 

to the present time and is being actively utilized by com­

merical air lines to train pilots to fly the latest commer­

cial jet passenger aircraft such as the Boeing 747. 

Naturally, improvements and refinements have been made in 

this technique. One such improvement is the addition of a 

viewing screen of the closed circuit television type, which 

presents the trainee with an almost perfect pictorial view 

of a simulated horizon during landing, take-off, and other 

critical maneuvers. This and other similar improvements in 



the design of simulators has enabled training organizations 

to significantly improve the quality and reliability of such 

training activities. Consequently, the number of hours 

required to qualify pilots in actual flight conditions has 

been reduced as well. This represents a savings in training 

costs since actual flight time in 747 type equipment is 

extremely expensive. The military establishment, including 

the Army, Navy, and Air Force, continue to utilize simulators 

for unmanned as well as man-machine systems training. Cost-

effectiveness as well as increased safety assurance are the 

justifications. There exists a similar situation in the 

space administration, for which a very limited number of 

launch windows and space vehicles are available. The cost 

of failure in these cases is so astronomical that virtually 

no opportunity to reduce risks by training is ignored. 

Elaborate training procedures and mock-ups have been devised 

for the astronauts. In addition, electrical system 

"breadboards" have been designed and assembled to simulate 

the complex electrical systems of the total launch vehicle. 

With these elaborate simulation devices, it is possible to 

train operations personnel as well as flight personnel in 

detailed procedures. It is also possible to probe effects 

of design changes with less risk to the lives of personnel 

and less chance of possible damage to equipment. Over-

learning is utilized extensively to minimize the risk of 

forgetting key information at a moment of maximum stress. 

Closely related to these procedures is the type of 
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activity called "system checkout". In this type of activity 

man-machine relationships are developed in which huge com­

plex systems, such as the Apollo launch vehicle, are func­

tionally inspected electrically and, to a limited degree, 

mechanically. By this method, many otherwise unknown 

defects and malfunctions have been located in various compo-

nents and sub-systems of the assembly. Normal practice is 

to repeat the system checkout two or more times and to 

correct all discrepancies which are found. Ground personnel 

learn from practice replications of these ground check-outs, 

and manufacturing personnel naturally improve the quality of 

workmanship with each succeeding vehicle. The result is a 

learning curve output which contains parameters related to 

several improvements embedded in a single-response. Such 

functions may also contain maturation and/or design innova­

tions in tooling and/or process aspects of manufacturing. 

These interactions have prompted some researchers to refer 

to such functions as "Progress Functions", in deference to 

the fact that not all of the improvement can be truly clas­

sified as learning (24). 

It can be summarized that simulators and other devices 

may be utilized for training maintenance, operations, 

flight, and quality control personnel and that these 

devices can also be used beneficially in development engi­

neering and the investigation of potential systems safety 

hazards. 



Application of Learning Theory to 

Human Engineering Problems 

Often, it is neither possible nor feasible to measure 

directly the performance of man-machine combinations. It is 

also virtually impossible to forecast the performance of 

functions involving man-machine activities. From this 

point of view, Meister (25), in his recent book, has stated: 

From a pragmatic standpoint (i.e., the cost of 
training and its relative lack of effectiveness) 
we must assign a relatively high priority to any 
research that attacks the relationship between 
training and system design in concrete terms. 

One possible way to control human engineering design is to 

observe replicated human performance under stress in the 

operation of some machine. For example, suppose a test sub-

ject driving an auto was given a series of random emergency 

stops. If these tests were repeated with different 

emergency-brake designs on the auto, it might be possible to 

determine which of the designs constituted the best human-

engineered emergency brake designs. The best human-

engineered brake design would be the one which indicated the 

most rapid learning progress (steepest slope of log-log plot 

of stopping time versus number of trials). It would, of 

course, be preferable to eliminate or hold constant as many 

other sources of error or variability as possible in the 

running of such tests. General Motors has recently an~ 

nounced a research program in human engineering which 

involves a small digital device to prevent intoxicated 

drivers from being able to turn on the car ignition. 



Involved here is the learning theory that most persons are 

not able to utilize short-term memory when intoxicated. 
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Even when given a random number to reproduce on a push­

button type keyboard three separate times, the likelihood is 

heavily biased that the subject will !!:.2.!, be able to recall 

the correct series of numerical characters if he is intoxi­

cated. In this proposed safety interlock device, the switch 

for the auto ignition cannot be turned on if the correct 

random number is not fed into the keyboard by the driver. 

This type of device could also screen out other potentially 

hazardous drivers having, for example symptoms of certain 

drug side-effects such as blurred vision, temporary memory 

lapse, tempora~y loss of motor.-dexterity (coordination), 

etc. In certain instances where the driver has neither 

drugs nor alcohol in his system, he still may not be physi­

cally able to drive safely if he cannot complete this simple 

task. 

Another recent application of learning theory to human 

engineering problems was a series of simulator experiments 

which were run to optimize the shape of the control stick 

handle for the lunar rover (moon car). Handle configura­

tions were varied starting with the conventional-type 

11 Joyce 11 stick handle common to certain pursuit-type military 

planes, and also some private aircraft. The selected opti­

mum configuration, however, was what has been cal,led a "T" 

handle, except that the horizontal portion of the handle 

was canted (or rotated) slightly to the right in the 



horizontal plane. This configuration apparently was more 

natural and comfortable to the test subject. In addition, 

learning progress for this configuration was maximum as 

measured in terms of number of corrections required by the 

test subject when traversing a standard, simulated lunar 

surface mission path in the simulator. 

Language Training: Memorization Learning 

Tasks, e.g., Foreign Languages or 

Computer Based Languages 

This category of learning theory applications includes 

the type of learning in which individuals primarily utilize 

sight and sound senses and, to a much lesser degree, the 

perceptual-motor approaches. Some examples have already 

been cited above in the section under short-term memoriza-

tion. One of the examples, Morse code, is a good illustra-

tion of a non-spoken language. Computer programming 

languages, such as Fortran IV or COBOL, are also of the 

non-spoken variety. These basic languages can all be 

learned more efficiently by the application of known rules 

of learning theory. At least to some extent, the learning 

requirements and/or objectives will determine the emphasis 

on particular aspects of learning, as will be cited below 

under the individual discussions of factors which affect 

learning; 

(a) Motivation, which,in many cases, will affect 

rate of learning progress as well as 



forgetting. The two main sub-categories 

are intrinsic (self-inspired drive), and 

extrinsic (status, rewards, penalties, 

rivalry/competition, feedback, knowledge of 

results or progress, etc.). 

(b) Personnel placement cognizant of known physical 

handicaps/attributes and mental or skill apti­

tudes in order to match requirements of partic­

ular jobs and individual qualifications. 

(c) The physical environment of the learning situ­

ation, including temperature, sound, light, 

color, space, or other physical parameters 

which have been known to affect learning by 

individuals. 

(d) Learning techniques/methods. Examples include 

the whole-to-part method, the whole-versus-part 

method (which depends on the type of learning 

and fractional ratio of motor to memory), the 

mediating method (involving the giving of 

increased attention to harder parts of the 

learning task), the recitation method (which 

tends to reinforce the memory process), the 

regulation of learning periods (giving consid­

eration to productive span-of-attention) and 

over-learning (to counteract forgetting and to 

prepare for the demands of delayed recall (26)). 
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Forecasting Demand for Resources 

With Learning Theory Principles 
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Recently, policy trends of the Department of Defense 

(DOD) have been in the direction of greater use of learning 

theory in the preparation of estimates and in Requests for 

Quotation (RFQ) criteria (27). Most contracts for military 

weapon systems require the contractor to include in his 

quotation an estimated cost of the first article to be 

delivered and a learning-curve slope estimate expressed in 

percent (whether "unit" or 11 cumu1Ptive" type learning-curve 

formats, must also be stated). As previously noted, the 

improvement over time with the serial production of military 

systems is considered to be a composite of several factors. 

Included in the total performance improvement would be such 

factors as: (a) reduction in material costs due to quantity 

buying practices, (b) improvement in management and/or 

administrative techniques over time, (c) reduction in costs 

due to tooling and/or manufacturing process improvements 

over time, (d) reduction in product complexity and material 

costs, so that cheaper materials are used or design changes 

that reduce manufacturing time or handling charges are 

implemented, and (e) traditional learning by manufacturing 

fabricators or assemblers, who may improve both the quantity 

and quality of manufactured products over time. Hartmeyer 

(28) has proposed two factors which involve a learning 

allowance based on the size of a production run and an 

allowance based on relative "newness" or "complexity" of the 
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product. He also states that, if all non-recurring costs 

are included for consideration when preparing a forecast for 

a new program progress function, a curve slope which is 

approximately 5% steeper will result. 

If it is possible to est~mate the slope of the progress 

function accurately, then it will provide information 

vitally needed in the detailed preparation of resource allo-

cation plans. Such plans would include manpower hiring and 

releasing, as well as purchase and delivery of needed raw 

materials or "buy" items, in a time-phased relationship. 

In the case of a contractor preparing a quotation for a 

military weapon system, the ability to forecast accurately 

the expected costs is an extremely valuable tool. It also 

provides an effective control to use in project management 

after a contract has been awarded. 

Although limited to the electronics industry so far as 

data is concerned, Hartmeyer (28) presents a methodology for 

estimating material discount curves based on predicted 

decrements in unit cost as the quantity of units purchased 

increases. These applications generate surprisingly accu-

rate approximations of exponential decreasing functions 

(relative cost values versus quantity of units). The 

curves, which appear linear when plotted on log-log coordi­

nates, have been entitled "Material Discount Curves". 

Undoubtedly, there is a close relationship between the 

learning/improvement functions for a manufacturer and his 

ability and/or willingness to quote lower prices for larger 
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quantity orders. This procedure could prove valuable to 

cost estimators in preparing bids. In a similar manner, it 

could be equally useful to a program cost analyst who is 

evaluating a cost proposal from a contractor/bidder. 

Taxonomy of Learning Terms 

Introduction 

The context of this section should be interpreted to 

include not only the descriptions, which are related to pure 

learning theory considerations, but also to the complete 

range of applied learning theory. As noted in Chapter I, 

there have been misinterpretations involving the use of the 

term "learning-curve slope". ,Consequently, there appears to 

be a strong likelihood that some confusion in the applied 

learning theory field will continue, if fo~ no other reason 

than the wide diversity of disciplines which are involved. 

In some cases, shop foremen and even production workers or 

inspectors can be directly involved. It is easy to under-

stand how such issues could create problems in day-to-day 

communications between management and workers. For similar 

reasons, this could easily generate a dispute during con­

tract negotiations with bargaining units, unless terms are 

both defined and agreed to by all involved parties. It is 

with these thoughts in mind that the following descriptions 

are presented: 

(a) Job/Task design (JD) 

(b) Job/Task environment (JE) 



(c) Short-term memory (STM) 

(d) Long-term memory (LTM) 

(e) Perceptual-motor function (PM) 

(f) Dec~sion-making and problem solving 

(g) Operator/Test Subject/Worker (S) 

(h) Evaluator/Experimenter (E) 

(i) Reinforcement/Cues (R,C) 

(j) Overlearning (OL) 

(k) Conditioning and Training (CG,TR) 

(1) Learning curve (LC) 

(m) Slope in percent (8) 

(n) Learnability/Trainability (LY,TY) 

(o) Progress/Improvement functions 

(p) Other. 

Discussion 
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The above listing of terms is intended to supply a 

relevant set of categories which represent both parametric 

learning variables and other vital aspects in learnability 

analysis and learning theory. In some cases, learning terms 

which are closely related to each other are listed together. 

No claim is made that the set of items presented is exhaus­

tive, although within the context cited, these terms have 

performed satisfactorily during both the literature search 

and experimental investigations parts of the learning 

research. Some of these terms have been defined in Chapter 

I or in previous sections of this chapter. Those terms 



which have not been previously described may be found in 

Appendix D, Glossary of Learning and Related Systems 
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Engineering Terms. As may be observed above, abbreviations 

or acronyms are given for several of the terms. Many of the 

articles, papers, and books written on learning theory by 

the psychology discipline make frequent use of such acronyms 

in all parts of their manuscripts. A typical communication 

problem develops, however, in the use of acronyms which have 

not been duly defined, at least once, in the text in which 

they appear. Persons having legitimate interest in such 

documents sometimes have doubts as to the true or intended 

meaning of the acronyms. There are, even so, certain 

advantages to the use of these abbreviations. Sometimes, it 

is easier to memorize such terms than it might be if they 

were written out in complete phrases; also, the use of 

acronyms tends to relieve the tautologous appearance of a 

paper in which certain terms must be repeated over and over 

to insure a rigorous interpretation of written descriptions. 

Recognizing the inter-disciplinary scope of this work, the 

policy has been to avoid the general use of acronyms or 

other esoteric terms wherever possible. As cited above, a 

glossary of terms is included in the Appendix to minimize 

potential communication problems. 



CHAPTER III 

FORMULATION AND ANALYSIS OF LEARNABILITY 

PREDICTION METHODOLOGY 

Introduction 

Interactions Between Prime Factors 

in the Learnability Loop 

In Chapter I, Figure 4 (page 17) depicts schematically 

the three prime factors in a learnability loop; namely, the 

Test Subject, the Job, and the Design. The purpose of 

Chapter III will be to define the role of each of these fac­

tors and to determine, where feasible, any impact or inter­

action each of these aspects might have on the performance 

of the over-all learnability loop. To accomplish this 

classification of role and impact, one might consider the 

learnability loop as a "system" in which each prime factor 

is either a component or a subsystem of the over-all system. 

As with other system elements, these components and/or sub­

systems interact with each other in a special way which may 

affect not only the performance of each elemental part but 

also the performance of the whole system. As described 

above, the multiplicity of interactions, reactions, and 

effects tends to justify the term "complex system". 
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Circumspectly, optimum performances can be achieved only by 

proper control and by the individual specification of each 

factor, with proper attention given to interaction with 

other factors in the functioning of the entire system 

(learnability loop). The following information sets forth, 

for intrinsic as well as extrinsic consideration, all 

aspects which might naturally affect the outcome of the 

analysis. It should be possible, as the result of this 

presentation, to accurately specify a system with proper 

recognition given to the physical and operational con­

straints that are involved in such specifications. 

Specifications/Criteria for 

Prime Factors 

If the performance of the prime factors is to be 

optimized, the structure of these element~ cannot be left 

to chance. Each of the factors must be viewed both inde-

. pendently and as an element in the learnability loop. 

Consequently, if optimum performance is the goal, 

specifications/criteria for the job/task in question, the 

human organism, and the product design must be accurately 

defined. After each prime factor is considered separately, 

the standard approach will be to make necessary adjustments 

or changes to ensure that all parts are compatible with each 

other and that they perform efficiently as elements of the 

over-all system. 

As may be observed in Figure 4 (page 17), 
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specifications/criteria for the "human organism" consist of 

skill level required, communication, motivation (incentives, 

feedback, etc.), endurance or fatigue criteria, etc. 

Essentially everything having either a direct or indirect 

affect on the ability of an operator to perform an assigned 

task should be considered. Although an operator cannot be 

molded or shaped in the same manner as a hardware design, it 

is possible to select from a group of job candidates those 

who most closely meet the established criteria. Sometimes a 

Hjob specification" is used to assist in the selection 

process. This document is intended to provide the 

specification/criteria needed for a learnability analysis. 

A "job specification" should not be confused with the 

specification or criteria for the "Job" prime factor in the 

learnability loop (29). The prior term "job specification" 

is primarily "people" oriented, whereas the "Job" term in 

the loop is oriented to the equipment, tools, working condi­

tions, or other comfort parameters, all of which are in­

volved in the "how" and/or effectiveness of completing a 

task. These aspects are inanimate and, although they 

enhance or support the human organism, specifications/ 

criteria are developed separately. Specifications for a job 

or task must also be closely coordinated with the design of 

the product for which the job sub-factors provide support. 

To complete mechanical assembly tasks such production tool­

ing as assembly fixtures and drill-jigs are often utilized 

to increase production rates and/or maintain quality control. 



In addition, such hand tools as screwdrivers, hammers, 

mallets, wrenches, pliers, punches, rivet tools and clamps 

are frequently used. Such equipment as tables, benches, 
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ladders, special light fixtures or power supplies are also 

needed frequently for assembly operations. Special 

environment-conditioning equipment such as air conditioning 

and heating units, humidifiers, and dehumidifiers may be 

necessary in the maintenance of product quality, and to 

create an environment conducive to better operator perform-

ance. Such conditioning equipment may be needed only for 

quality control, or it may be strictly used for "comfort" 

air conditioning. If all of the job variables are consid-

ered as a package, the structuring process may be thought of 

as a "job design" (JO), the second prime factor, in a con­

text similar to the design of a hardware device. 

The third prime factor in the learnability loop is, of 

course, the "product design". Customarily, the product 

design is considered as "given" and not treated as a:q. ele-

ment which may be changed by choice. However, if certain 

design features or criteria are found to impede normal 

progress, to require'excessive time for assembly, or to 

create a potential safety hazard, changes to the basic prod­

uct design may be generated to eliminate or minimize the 

problem. Numerous examples might be given to illustrate 

real situations in which this type of problem exists: 

(a) A hole in a sheet metal part is slightly 

undersize, requiring excessive screwdriver 



torque by the operator to insert a sheet 

metal screw. (Hole size is increased.)* 

(b) Excessive burrs and sharp edges on metal 

parts which must be handled by the operator 

cause frequent cuts to fingers and hands. 

(~dd a deburring operation to drawing 

specification.) 

(c) Metal parts which receive excessive cold 

working during their forming process require 

excessive drill-bit pressure to d~ill holes, 

causing a high rate of tool breakage and 

undue operator fatigue. (Anneal metal parts 

after deepdraw operation.) 

As may be observed in the above examples, a change in 

58 

any one of the prime factors of the learnability loop could 

easily affect one or both of the other two. The operator 

should be assigned a task which is compatible with his 

qualifications and for which he has been adequately moti-

vat ed. If a change in the product design places demands on 

the operator in excess of his current qualifications, he 

might have to be retrained or replaced. On the other hand, 

a design change might reduce operator qualification require-

ments, thus permitting the use of a lower skilled worker or 

even the use of a worker with lower physical capabilities. 

*Phrases inside parentheses indicate type of remedial 
action taken to correct the problem. 



To illustrate the interdependence of design changes with 

other aspects of a particular task, consider a change in 

design which imposed a demand for greater precision of 

assembly. This increase in precision could affect both 
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operator performance and one or more of the job sub-factors, 

such as tools, workplace, or lighting. A reduction in 

lighting levels, for example, could affect performance of 

the operator by reducing his ability to meet quality speci-

fications. If planned changes to the product design are 

introduced as independent variables, in order to gauge 

learning progress, any variation in the other prime factors 

must be minimized. The accuracy of progress data will be 

in question, and there may be an element of unexplained 

error if these factors are not closely controlled. 

Introduction 

Recognition of Factors Sensitive 

to Learning Progress 

With due consideration of the stated research objec­

tives, there exists a recognized analytical need to deter­

mine which factors are sensitive to learning progress. In 

the determination of these factors, the first logical step 

is to select from those factors under study a set which 

could be used to effectively measure the rate of learning 

progress. Moreover, the dictates of manageability further 

limit the scope of interest to only the design-oriented 
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parameters for mechanical assemblies. The combined effects 

of this set of parameters can be used to measure the ''design 

complexity" of a particular mechanical assembly design. The 

design complexity can subsequently be used to estimate the 

"Learnability" quotient for a particular assembly. 

Principle Design-Oriented Factors 

Intuitively, certain design features might be nominated 

as candidates for learnability analysis. One approach would 

be simply to count the number of parts required to complete 

each assembly. This is based on the knowledge that, as the 

number of parts increases in a given type of mechanical 

assembly, more time is required to process these parts. If 

each part has a unique or specific location in the assembly 

(as opposed to a random selection and location), indications 

are that learning progress will be affected by the number of 

component parts in the assembly (31). If there is a mechan­

ical assembly in which parts have no specific or unique 

location, then the des~gn-oriented learning progress would 

be minimal or nonexistent. An example of this latter situa­

tion is the assembly of a wall made up of bricks, all of 

which are virtually identical in color, shape, and size. 

Learning progress in the assembly of such masonry may indeed 

occur in the long run, but it will be reflected primarily in 

improvements in manual dexterity or physical speed by the 

operators and not in design features of the assembly. 

Controlled experiments to probe "number of parts" and 
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other parameters of learning progress have been performed. 

Analyses of data derived from these experiments and sum­

maries of progress will be presented in subsequent chapters. 

The cited design feature (number of parts) provides an ideal 

candidate parameter for study, since the number of part~ is 

normally counted anyway by production planners, stores per­

sonnel, and cost estimators. 

The number of sub-assemblies or subsystems may also 

provide a means to gauge learning progress. The assumption 

made here is that mechanical assemblies will, in general, be 

more complex and that learning progress will be slower as 

the number of sub-assemblies increases. An experimental 

investigation and an analysis; of this candidate learning 

progress factor will also be included in subsequent chapters 

and will illustrate the connection between aspects that make 

an assembly more complex and its potential sensitivity for 

learning or learnability. 

Another design feature, related to the "number of 

parts", is the number of fasteners. Of course, this candi­

date factor is included in the number of parts count. Quite 

frequently, perceptual-motor skill requirements for mechan­

ical assemblies are directly tied to the type and number of 

fasteners, and variety of fastener categories. Some fasten­

ers require careful installation to avoid sub-standard 

quality of workmanship. This might lead to the rejection of 

a complete assembly due to faulty installations (consider 

the example of a cylinder-head on an internal combustion 



engine). Consequently, some fastener designs require 

installation by highly-skilled operators, and may have a 
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significant influence on learning progress. This factor has 

been investigated in the experimental sections of this work, 

and an analysis of its effect on learnability is detailed in 

subsequent chapters. 

"Skill-level" has been discussed previously as it 

relates to other sensitive design-oriented parameters. 

Clearly, the designer of a mechanical assembly can regulate 

the degree of "skill required by virtue of the nature of cer­

tain design specifications. Relevant design specifications 

often include such aspects as machined-surface finish 

specifications, dimensional tolerances, heat-treating 

requirements, surface treatment specifications (anodize, 

alodine, phosphate, etc.). Because these parameters can 

vary over such a wide range, their impact on learning prog-

ress is a distinct possibility. Normally, the higher the 

degree or level of skill required to perform a certain task, 

the longer it takes an operator to become proficient (or to 

be trained). 

Several possible learning-sensitive factors have been 

reviewed in this section. Experimental investigations to 

establish their degree of validity in gauging the learn­

ability of certain mechanical assemblies are described in 

subsequent chapters. One of the objectives thus far has 

been to discover, where possible, those parameters which 

can be measured by discrete dimensions (the number of parts, 



for example). Variables of this type are felt to be more 

reliable and easier to use in practical applications. 
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Any attempt to predict learnability of a unique design 

must be carefully planned to be certain that all aspects of 

the learnability loop are given proper emphasis and consid­

eration. If this is not done, paradoxical situations can 

easily arise. This type of problem in learnability analysis 

is treated in the next section. 

Learning Progress Paradox 

Proper understanding as well as an effective applica­

tion of learning/improvement theory is a necessary condition 

for successful results. Otherwise, si tuc;ttions .. may arise 

which appear to be contradictory. The two following exam­

ples are representative illustrations of the complex and 

seemingly contradictory relationships. 

An operator may perform a series of mechanical assembly 

tasks at an initially accelerated pace (e.g., 120% of the 

normal or standard speed, see Figure 6). As a result, the 

first unit cycle time will be lower than·would otherwise be 

the case, and the second cycle time may also be depressed 

below its expected value. In effect, the entire learning 

curve will progress downward over time, although at a some­

what shallower slope than standard. Without proper under­

standing of learning/improvement theory, this outcome may 

mislead an analyst to conclude that progress is less than 

expected for the conditions of the task (operator, tools, 
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environment, sub-assemblies/parts, etc.). In other words, 

although the operator's performance clearly exceeds the 

job requirements, his apparent learning progress is defi­

cient, as indicated by the reduced slope of the learning 

curve. This may be due, in part, to the existence of acer­

tain "incompressible trough" in the curve, which serves as a 

lower boundary constraint. 

Conversely, if the same operator begins a similar me­

chanical assembly task at a slower pace (e.g., 80% of the 

expected speed), then a rate of progress may be attained 

which seems to exceed the anticipated level, and the slope 

of the learning curve will be steeper. As in the first 

example, the decrease in cycle time, with successive repli­

cations, is constrained on the lower side by the same 

incompressible trough or boundary (Figure 6). In the second 

example, however, the slower-than-normal pace results in a 

first unit cycle time which is higher than expected, sug­

gesting there is considerable room for improvement, but this 

could also be a misleading conclusion, when viewed in rela-

tion to the complexity of the task or design. If the slope 

is depressed as in the case of the above-normal pace, the 

apparent complexity will be greater, and conversely, a 

simpler task is suggested for the opposite condition, where 

the learning curve slope is steeper. Such conditions 

require a careful analysis of all job-oriented parameters, 

including the possible use of predetermined time standards 

(M1M), or some other method to estimate a standard time to 
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complete the task. The results could then be compared with 

the actual observed times, and a more accurate rating of the 

job pace would be possible. 

Sub-Task Learning Paradox 

Another paradoxical condition occurs when a ta:s:k is 

broken down into a group of sub-elements. In instances 

where the size of the production run justifies it, single 

operators placed on each sub-task can be expected to produce 

an over-all reduction in the learning curve slope or, in 

other words, a slower apparent rate of progress. This pro-

ductivity enhancing technique can be checked by comparing 

actual data with the standard times. In this situation, the 

potential learning for sub-tasks may have been reduced to 

the vanishing point, since each sub-task will require only a 

fractional part of the required learning for the whole job. 

The over-all effect is such that the initial unit time 

cycles will be depressed, generally below the time for a 

single operator doing the entire job, and the learning curve 

slope for the whole job will be less steep. This might 

create the misleading impression that the task is more dif­

ficult. The net effect in this instance is very similar to 

that where a single operator performs at a pace greater than 

100%. Actually, such comparisons are not admissible for the 

thesis problem, since they compare the performance of a 

single operator in the first situation with a team of 

operators, each of whom does only a portion of the over-all 



task. Since learning requirements are minimized in this 

example, so is the training problem, and, for this reason, 

the majority of such operators are simply trained on the 

job. 

Measurement/Quantification of 

Learnability Prediction 

Methodology 

Recognition of Constraints and Estab~, 

lishment of Ground Rules for 

Learnability Predictions 
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To assure the widest range of applicability, as well as 

repeatability for the experimental data, it is well to rec­

ognize the inherent as well as the necessary constraints for 

this type of problem. As mentioned above, the limitations 

of manageability forced a certain set of limits insofar as 

the scope of interest is concerned. Another constraint was 

the limiting of consideration to mechanical assemblies. 

Because of the number and variety of organizations which 

engage in this type of work, .the range of consideration was 

still rather broad. Both the physical size and design com-

plexity of mechanical assemblies can vary from something as 

small as a lady's wrist watch to a huge self-propelled 

earth moving machine. 

Since this second constraint did not narrow the focus 

of attention significantly, it was desirable, in the study 
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conducted, to limit observations to tasks performed by a 

single operator. In order to ensure adequate motivation of 

test subjects, an incentive arrangement was provided in each 

set of experimental runs. Cooperation was rated good to 

excellent in all cases, even though, in one situation, 

incentives for some trade school students did not involve 

monetary rewards. Nevertheless, an incentive of one form 

or another was found to be a very desirable, if not re-

quired, adjunct of learning research. 

Because it was generally not convenient to make learn-

ing observations of task-cycles lasting longer than around 

one hour, tasks which exceeded this time constraint were 

ruled out for study purposes, thereby eliminating observa-

tions of long-term trends or very long cycle-times. This 

does not necessarily mean, however, that data taken in the 

actual study would not be useful in the analysis of long-

term trend data. 

Another rather obvious study constraint involved 

limiting consideration of learning progress to single-

operator tasks which do not involve machines. (Considera-

tion of machine-assisted single-operator tasks would have 

constituted a unique task-category with different expected 

results from the various operators.) 

Operators were instructed to work at a normal or aver-

age pace.* As a part of the observation, operators who 

*A normal/average pace is defined as simply a rate of 
performance or output which a qualified operator can main­
tain for a full day's work, without excessive fatigue. 



were used as test subjects were required to perform on a 

skill level at least equal to the minimum acceptable per­

formance levels for a particular task. 

In order to assure that apparent gains in performance 

were primarily due to learning by the test subject, no meth­

ods and/or tool improvements were allowed during the ob-

served data runs. In a similar vein, no unplanned work 

stoppages were charged to the cycle times for observed task 

replications. All tasks were performed in accordance with 

established procedures, and times required to brief opera­

tors concerning procedural matters were changed to the first 

unit cycle time. However, in subsequent replications, addi-

tional time required to brief test subjects (concerning pro­

cedural problems) was charged to the particular cycle in 

which the question arose. 

In all of the ground rules and constraints, the objec­

tive was to structure the data format s4ch that it would be 

as free from "built-in" inaccuracies as possible. These 

planning and control approaches produced data which appears 

to reinforce the appropriateness of their application. 

Examples are provided in the next two chapters. 

Procedures for Learnability Measurement 

Although prior methods and procedures for measuring 

learning progress have existed for some time, little or no 

effort has been made to measure learnability, either of a 

specific task or of a unique design configuration requiring 



assembly. What is required is a means to utilize design 

features/parameters in the establishment of learning prog-

ress trends. The design parametric values are utilized as 
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the independent variables in experimental learning progress 

runs. For such data, a family of learning curves can be 

plotted. Each determined design configuration will produce 

a unique learning curve. Ideally, it would be desirable to 

change only one design parameter at a time and to make an 

experimental learning progress run for each condition. If 

more than one independent design parameter is changed in 

each run, there may be a potential problem with interac-

tions. Conversely, only artificially contrived designs 

exhibit the characteristic of only one design parameter 

change at a time. 

One approach used in the study was to use artificially 

contrived designs to establish the approximate sensitivi-, 

ties of certain parameters in the measurement of learning 

progress. Later tests were run on existing commercial prod-

uct designs to verify the earlier findings. By these proce-

<lures, it was possible to establish trends in learning 

sensitivity (learnability) versus several design parameter 

values. Each experimental run produces one unique learning 

curve, and, if plotted on log-log graph paper, it may yield 

a monotonically decreasing, log-linear plot (Figure 1, page 

6). As defined in Chapter I, each log-linear plot will rep­

resent one "Learnability" value, computed as the reciprocal 

of the slope of the log-linear plot. In this way, each 
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learnability value is joined directly with the learning 

progress information. This technique produces learnability 

values that will logically decrease as the design becomes 

more complex and increase if the design configuration is 

simplified (Appendix B), 

Data Conditioning and Structuring 

Information for Prediction 

Effectiveness 

As previously described in this thesis, some learning 

curve analysts prefer to utilize the cumulative average 

times per unit, while others prefer to plot the actual unit 

times for each cycle replication versus the serial number of 

units (first, second, third, etc.). There seems to be no 

conclusive evidence to support a contention that either 

method is superior. However, the cumulative average mode 

does tend to smooth the data point trend lines. As a 

result, there is less apparent variation in learning curve 

plots, and the estimation of a log-linear slope is easier. 

It was for these reasons that the cumulative average method 

of data conditioning was selected for the experimental re­

search parts of this thesis. Als~, it was necessary to plot 

learning data such that all time values were in the same 

units -- in this case, "minutes". 

After learning curves had been developed for a variety 

of design complexities, it was necessary to determine the 

trend lines based on these design configurations and the 
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corresponding learning curve slopes in percent (or learn­

ability values). In order for these trend curves to be 

useful in making learnability predictions, it was desirable 

that all trend lines increase or decrease in the same direc­

tion monotonically. 

Since various mechanical assemblies require widely 

varying motor-skill requirements, it is desirable that a set 

of prediction data be established for each skill category, 

with the selection of any particular category of learnabil­

ity data being made after a review of the engineering 

design and criteria for a given mechanical assembly. 

Delineation of Learning-Sensitive 

Design Parameters for Mechanical 

Assemblies 

Previously, several factors were discussed which migh~ 

show promise in measuring learning progress. Included in 

this group were: number of parts, number of fasteners, 

number of sub-assemblies or subsystems, ratio of fasteners 

to non-fastener parts, ratio of fastener parts to total 

parts, and ratio of fasteners to number of sub-assemblies. 

Each of these parameters has an inherent characteristic 

which permits the analyst to count and record the number of 

units of each item, or, by making a simple arithmetic calcu-

lation, to derive quantified values. This information can 

usually be obtained by a review of design_ drawings a~d 

related parts lists or by a physical audit of component 
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parts and sub-assemblies. In general, as the quantities of 

such parameters increase, so does the complexity, so far as 

assembling the parts, components, sub-assemblies, etc., into 

a complete working assembly is concerned. There are excep­

tions, however, which illustrate that such design parameters 

may sometimes fail as indicator/indices of complexity and 

difficulty. For example, a railroad track may increase in 

length, number of parts, number of sub-assemblies/subsystems 

without any significant increase in complexity or difficulty 

of assembly. Of course, the longer the railroad, the longer 

the time that will be required to complete assembly of the 

parts, but learnability in this example would not be signif­

icantly different. The salient feature of this mechanical 

design (railroad track) which rules out application of total 

number of parts as a learning sensitive parameter is the 

fact that the design has highly repetitive design features 

(cross-ties, rails, and spikes) which are duplicated over 

and over. To minimize the inclusion of such meaningless 

features, an additional ground-rule seems appropriate: If 

an engineering design has a highly repetitive design fea­

ture, then the total number of parts may not be useful in 

making a learnability analysis. The specific set of design­

oriented factors must be carefully selected such that they 

are compatible with the type or category of design configu­

ration being considered. For some types of hardware, 

design complexity might be gauged by design features differ­

ent from those previously named. To illustrate, very large 
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assemblies such as ships might be correlated with displace­

ment or total weight. Passenger aircraft might utilize 

either speed or number of passengers to estimate complexity 

and learnability. Almost any design aspect that can be 

counted or measured (number of joints, thrust) could be 

utilized to quantitatively predict complexity and learnabil­

ity. Another aspect of this analysis could be a tabulation 

not only of sub-assemblies, but also a count of the number 

of different types of sub-assemblies or different types of 

processes needed to complete an assembly. Examples might be 

a speed reducing gear box or an electric power-conditioner 

requiring heat treating and electron-beam welding. Thus, 

assemblies which comprise a large variety of generically 

different subsystems and/or require a large variety of dif­

ferent processes or procedures to complete the task are 

generally more complex, and learning progress is correspond­

ingly slower. 

Approaches for selection of desi~n-oriented parameters 

to use in measuring learnability are similar, regardless of 

the type of design. The parameters selected for the mechan­

ical assemblies used in the experimental runs for this study 

were taken from a list given in an earlier section of this 

chapter. As will be demonstrate4 in Chapter V, the actual 

selection can be made in a manner that is not tightly bound. 

So long as the parameters are reproducible and exhibit ade­

quate sensitivity, the actual choiqe can be more or less 

arbitrary -- both with reference to the particular 



parameters selected and to the number of parameters being 

employed in the model. 

Use of Learning-Sensitive Mechanical 

Assembly Parameters to Formulate 

Prediction Model 

Categorization of Data Collection 

by Skill Level 

In Chapter I, a schedule of mechanical assembly skill 

75 

levels was introduced as Appendix A. This schedule defines 

four categories of skills. The level designations have been 

set up such that Level I includes skill requirements for the 

simplest mechanical assembly tasks. As the numerical desig-

nations increase, the skill demands also increase until the 

highest skill requirements for ultra-precision assemblies 

are displayed in the Level IV category. 

Since each category will involve different categories 

of mechanical assembly designs, it is reasonable to expect 

different operators and job design categories for each. 

Consequently, meaningful data collection for these unique 

sets of conditions should be taken at the particular level 

being studied. As more data is generated, a storehouse of 

information is gradually built up. This data bank could be 

unique to a special industry or a product design, depending 

on the intended application and the degree of precision 

desired. The larger the number of samples included in the 



data population, the higher will be the reliability of the 

results. 

To summarize, all experimental data should be classi­

fied in accord with the schedule of skill levels in 

Appendix A. 

Application of Decision Theory Concepts 

to Formulate Prediction Model 
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Quite often in decision theory problems, it is neces­

sary to classify, define, or otherwise determine the unique 

superlatives of one or more alternative solutions •. These 

information packages are then compared with a set of stand­

ard criteria or perhaps a bench mark, sometimes referred to 

as a "baseline" solution. This baseline solution is ordi-

narily a solution to the problem which has been generally 

acknowledged as satisfactory or feasible, but not neces-

sarily optimum. At any rate, a score or performance rating 

may be generated for a baseline solution, with similar 

scores or ratings being assigned to each of the projected 

alternative solutions. In some cases, only technical cri-

teria and superlatives are used to generate a performance 

rating; in other situations, economic criteria (such as 

profit or return on investment) are used, and sometimes a 

combination of both types of information is utilized to 

formulate a score. 

In this learnability application, very similar tech­

niques will be employed to analyze and then rate various 
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mechanical assembly design configurations. These perform-

ance ratings, or scores, are based on a sum of the individ-

ual key parameter scores for the mechanical assembly designs 

being evaluated. Certain key parameters which indicate a 

significant sensitivity to learnability will be utilized to 

build a table of learnability values. Once a table of 

learnability values has been established, it should be pos-

sible to evaluate any unique mechanical assembly design* 

using the same key parameters that were used to assemble the 

learnability table data. In normal industrial applications, 

there should be no problem in following this convention, 

since radical changes in design are the exception rather 

than the rule. If radical changes should occur, a new table 

might be necessary, and a substitute course of action 

involving the use of the trend curve for a single parameter 

could be used until a new complete table of learnability 

data could be assembled. 

In the above descriptions, a methodology has been out-

lined which makes use of parametric design features from a 

set of mechanical assembly designs. Learnability data is 

collected experimentally at several levels for each of the 

designated design parameters (features). With this informa-

tion, the next step is to establish a family of trend curves 

which include all of the design microvariables (parameters), 

*Any design being evaluated by table data must fit 
within the range of constraints and application rules for 
the table. 



and in which all of the curves are monotonic in the same 

direction and represent a plot of learnability versus the 

particular parameter. Thus, if properly selected, each of 

the trend curves for the design microvariables provide a 
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limited means to predict learnability. An alternative mode 

of identification would be to designate these plots as a set 

of micro trend curves for learnability. However, in the 

quest for optimality, a single prediction or forecast is 

desired which embraces all of the microvariable trend values 

for learnability. This single value, which can be referred 

to as a "macrovariable", represents all of the individual 

microvariables in a context which is similar to the prin-

ciples of the law of large numbers (32). Each of the 

learnability values for the microvariables might be consid­

ered as individual or micro figures of merit, and the summa­

tion of these values comprise a macro figure of merit, or an 

over-all learnability Figure of Merit (FOM). A more 

detailed description of structuring this over-all FOM is 

given in the next section. 

Utilizing Time-Series Analysis Concepts 

to Structure Learnability Figure 

of Merit 

In a typical time series analysis, a trend l~ne is 

plotted over time, with the time series numbers as the ordi­

nate values. These time series numbers are made up of sev­

eral component values, each of which represents some effect 
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on the over-all time series number. In one generally 

accepted model, the time series number is generated as a 

product of the effects of the component parameters.* Thus, 

the individual effects are embedded in a single number, 

which in this case may be referred to as FOM (JJ). With 

respect to this work, a similar approach may be used to 

generate learnability FOM values. The learnability FOM 

values may be computed by taking reference points from each 

of the component trend curves and multiplying each of these 

numbers by each other number. As a result, there is a 

single function which represents all of the family of trend 

curves. Since there are several levels of skills, a sepa-

rate set of learnability FOM values is required for each 

category for which learnability forecasts are needed. These 

sets of data may take the form of a trend curve or a table 

of FOM numbers versus learnability values. 

Preliminary Outline of a Design-

Oriented Learnability Prediction Model 

The learnability concept has been presented in an 

earlier section. In addition, the approach is to use param-

eters sensitive to learning progress to generate FOM scores. 

Since these parameter/factors are design-oriented by selec-

tion, the over-all FQM can be expected to be design-oriented 

*Time series number = TX S X C X I, where T = trend fac­
tor, S = seasonal factor, C = cyclical, and I = irregular 
component. 
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as well. This macrovariable can then be used to tabulate an 

over-all trend of learnability versus the composite FOM 

values. When different designs are reviewed, and relevant 

FOM scores are computed the values can be compared with 

previously established FOM values in order to predict 

learnability for the new designs. This method will be out-

lined below in sequential order: 

(1) Review criteria, parts lists, and drawings for 

mechanical assembly design. 

(2) After review, tabulate such design information 

as the number of parts, the number of fastener 

parts, the number of sub-assemblies, etc. 

(J) Based on the list of key factors which were 

used to construct the learnability table, 

compute a learnability FOM score, using the 

multiplicative time series format. For 

example: 

w l w 2 
Q = Pa • Pb (J-1) 

where 

Q = Figure of Merit Score. 

P Parametric design factors which 

explain variation in learnability 

for various design configurations. 

w = Weighting coefficients to indicate 
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relative importance to the learning 

process.* 

For ease of computation, the above relation 

can be rewritten as 

(J-2) 

and, for a system which includes several 

design related factors, 

(J-J) 

(4) After computing the FOM score with the above 

forms, select the corresponding learnability 

value from the table. 

In order to further clarify the steps in such a learna-

bility analysis, a flow diagram (Figure 7) has been prepared 

to present an over-all summary of the analysis process. The 

next chapter will include a comprehensive review of a series 

of exploratory experiments which were used to determine and 

measure some of the design parameters sensitive to learning 

progress. 

*If there is no background information to justify the 
assignment of weights to the various factors, a value of one 
(1) will be assigned to each factor. 
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CHAPTER IV 

EXPLORATORY EXPERIMENTS TO PROBE UTILITY 

OF PROPOSED LEARNABILITY­

SENSITIVE FACTORS 

Test Philosophy 

Previous learning or progress tests have focused atten­

tion primarily on either the type of work (task) or on the 

human operator (age, sex, experience, etc.) (J4). As pre­

viously discussed and pictured schematically in Figure 5 

(page 26), a perceptual-motor task which involves mechanical 

assembly has three basic operational aspects: the job, the 

human organism, and the product design. The approach in 

this study has been to hold constant the job and human 

aspects of the experiments. Planned changes were introduced 

in the product design element. Product design factors, such 

as total number of parts, number of fastener parts, or num·­

ber of sub-assemblies were varied within a range of prac­

ticability. In this context, the product design 

configuration is an independent additive 11 macrovariable 11 , 

which represents the combination of two or more microvari­

ables (parts, fasteners, sub-assemblies, etc.), any one of 

which could exert influence on the learnability of the 



subject assembly. Since flexibility in making planned 

changes to the product design configuration was of prime 

importance, it was decided to use "Tinker Toys" to build 

laboratory type product designs. This type of assembly 

design also represents the simplest, most basic mode of 

mechanical assembly, i.e., "plug-in/pull out", requiring a 

minimum level of dexterity, coordination, and other indica-

tors of mechanical assembly skill. This elementary approach 

would permit learnability testing to start with very simple 

tasks and then progress step by step upward to more complex 

tasks requiring higher levels of skill. Thus, it would be 

possible to observe variability in skill requirements as the 

complexity of a task is increased. The "Tinker Toy" 

approach would also provide a means to gauge learning prog­

ress over time for unique product design configurations and 

provide a method for forecasting changes in learnability 

based on perturbations in design factors. 

Plans were made to extend the scope of the exploratory 

tests to include "Erector Set" parts, if the initial tests 

based on tinker toy parts showed promise. 

was, in fact, carried out. 

Test Plans 

Preplanning Activities 

This extension 

Since the first series of tests were to be based on the 

use of tinker toy parts, a test subject who met all of the 



minimum requirements was selected, but the subject (a 

college student) was not trained in any particular skill. 

To enhance motivation for the tests, a rate of pay which was 

slightly higher than the going rate for such work was agreed 

upon with the student. In addition, the test subject was 

provided with the usual "coffee break" and rest breaks. The 

work place was well lighted and air conditioned. Everything 

that could be reasonably done to exclude environmental 

interactions was done. All of these preparations were made 

with the intention of making the acquired data as free from 

bias as possible. 

Detail Test Plans 

In order to have a range of design complexities to use 

in ga~ging learnability variation between different designs, 

a group of six designs was chosen from the tinker toy set 

from which parts were supplied. For purposes of identifica-

tion, these designs were titled a, b, c, d, e, and f. 

Using a uniform approach to assemble each design, a series 

of from six to ten runs were made on each design, and time 

studies of each run were taken. 

Data Reduction Plans 

After completion of experimental runs, all time values 

were tabulated in whole and decimal fractions of minutes. 

Cumulative average times (also in minutes) were computed for 

each run and each design. These cumulative average time 
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values were used to plot learning curves on double­

logarithmic graph paper. After plotting, log-linear learn­

ing curves were drawn for each design, and a slope value in 

percent was determined for each curve. 

A complexity analysis was made for each design to 

obtain such information as the total number of parts or the 

number of possible sub-assemblies for each different config-

uration. Finally, in order to test the potential of these 

tests as a means to gauge learnability, trend curve plots 

were made of the learning curve slope (in percent) versus 

the number of parts and the number of sub-assemblies. 

Based on promise shown in initial tests on tinker toy 

designs, a series of tests -was planned for two product 

designs using "Erector Set" parts. The first two erector 

set designs were titled g and h. Since erector set designs 

required fasteners to complete mechanical assemblies, it was 

possible to collect data from tasks which required a higher 

level of skill (Level II). It was also possible to collect 

data for possible learning sensitive factors based on the 

increase in design complexity by the addition of fasteners. 

The two new parameters which showed promise were the number 

of fasteners and the ratio of fasteners to the total number 

of parts. 

Prior to starting any of the test runs outlined above, 

test subjects were given the following type of verbal 

instructions: 

(1) Time keeping on assembly runs starts at the 



time of first discussions between test con­

ductor and test subject. 

(2) All parts must be in cardboard boxes prior 

to the start of any run. 

(J) Final step by the test subject for any 

assembly will be to verify that the completed 

assembly complies with the design requirements. 

(4) If any unplanned event interrupts a.test run, 

time keeping should stop until normal activi­

ties can commence again. 

(5) Test subject must signal the test conductor 

as soon as a test run has been completed. 

Summary of Results 

Discussion 

In general, all of the test plans outlined above were 

found to be completely satisfactory. Test data were used to 

plot a series of learning curves which indicated a gradu­

ally increasing complexity as the number of component parts 

increased. The erector set assemblies also exhibited a 

similar sensitivity trend for increasing complexity. Learn­

ability decreased as the number of parts and the number of 

sub-assemblies increased. A series of trend curves were 

plotted to indicate learning sensitivity of various design 

configurations to changes in design parametric values. 

Results were promising in all examples cited above. Trend 
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curve performance in all of these samples was approximately 

in line with predictions. 

Table I, included below, summarizes the experimental 

data taken on the six tinker toy configurations and the two 

erector set designs. Also included is a series of learning 

curves (one for each design). Finally, a series of trend 

curves are presented to demonstrate graphically the varia­

tions in learnability brought about by design changes. An 

analysis of these results.may be found in the next section. 

Analysis of Findings and Presentation 

of Conclusions 

A perusal of the set of learning curves for the six 

design trials with tinker toy parts and for the two configu­

rations made from erector set parts will indicate that sig-

nificant progress was recorded on each plot. The curves 

also show almost perfect log-linear traces on the log-log 

paper. 

As may be noted in Table I, the assembly designs 

started with a unit which had only thirteen parts and re-

quired less than a minute to assemble. The learning curve 

for unit "a" indicated a slope of approximately 70%, which 

is in line with expectations for such a simple assembly. 

Each of the other five tinker toy assemblies was carefully 

chosen so each successive design would be slightly more com­

plex than its predecessor and, presumably, more difficult 

to learn. As indicated in Table I, a definite trend in the 



Design 
Type 

a 

b 

c 

d 

e 

f 

g 

h 

TABLE I 

EXPLORATORY TESTS OF LEARNING PROGRESS 
FOR DIFFERENT DESIGN CONFIGURATIONS 

Skill **Slope No. of No. of *Cycle 
Level In Parts Sub- Time in 

Percent Assmb. Minutes 

I 70 13 1 0.5 

I 73 JO 3 2.0 

I 75 38 4 3.0 

I 77 108 5 10.1 

I 79 96 6 8.o 

I 83 93 7 11.6 

II 72 68 3 12.4 

II 85 200 8 42.6 

Remarks 

Tinker Toy 
Design 

" 

" 
" 

" 

" 
Erector Set 

Design 

" 

*These times represent the minimum cycle times recorded 
for each type of design. 

* *Slope values were determined by graphical measurements 
on learning curve plots. 



predicted direction between design complexity and learn­

ability was indicated. The trend curves display learning 

curve slope in percent versus number of sub-assemblies in 

one example and total of parts for the other example (see 

Figures 16 and 17). The data in Table I, as well as the 

trend curves, reinforced the notion that learnability does 

correlate with design complexity. 

Conclusions 

(1) Although both the tinker toy parts and the 

erector set parts proved beneficial as labora­

tory devices to probe the learnability princi­

ple, the erector set designs appeared to 

simulate more closely the design complexity 

of industrial mechanical assemblies. 

(2) Based on the promising results that were reg­

istered with the erector set contrived 

designs, it was decided that erector set 

designs would be used for any future labora­

tory tests requiring such designs. 

(J) Future learnability tests should involve some 

actual industrial designs, where possible, to 

verify sensitivity of learnability to varia­

tions in the design complexity of mechanical 

assemblies. 

(4) In order to minimize random variations in 

replications of mechanical assembly tasks, 



written procedures should be developed for 

each new task. 

Revisions to Methodology and 

Discussion 

Planning for Extension of 

Learnability Testing 
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Valuable experience was gained through the use of the 

contrived designs using tinker toy and erector set parts. 

With this approach, it was possible to make a large number 

of experimental runs in a limited time span. Changes in 

design configuration were, of course, very easy to imple-

ment .• As can be seen in the resulting learning;curves in 

Figures 8 through 15, each separate design clearly demon­

strated learning progress functions that were approximately 

exponential. Indications were, however, that the erector 

set parts provide closer simulation of industrial-type 

mechanical assemblies. It was primarily for this reason 

that a decision was made to utilize erector set parts for 

future laboratory tests requiring a contrived design. 

In addition to the information cited above, the explor­

atory tests (see Figures 16 and 17) also indicated that 

learnability sensitivity might be gauged by such design 

complexity factors as (1) number of parts, (2) number of 

sub-assemblies, or (J) number of fasteners. Since these 

observations are based on a very limited number of cases, 
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further testing will be necessary to extend the scope and 

depth of the experimental program. 

102 

A new series of experimental learnability tests were 

run to expand the data base with learning progress tests on 

mechanical assemblies. Where possible, these tests utilized 

actual industrial mechanical assembly designs. The major 

over-all purpose of the study was to accumulate sufficient 

experimental data to show that the proposed learnability 

prediction_model could be demonstrated. A secondary purpose 

of the extended tests was to verify the selection and sensi­

tivity of the proposed learnability,sensitive design factors 

in mechanical assemb'ly tasks. 

The next chapter will review specific objectives in the 

test extensions and describe analyses and results of the 

extended runs. Also included will be a discussion of the 

trial application of the proposed model to a sample problem. 



CHAPTER V 

EXTENSION OF LEARNABILITY TESTING AND 

FORMULATION OF A DESIGN-ORIENTED 

PREDICTION MODEL 

Objectives in Test Extension 

Simulation Aspects of Extended Tests 

In the previous chapter, it was noted that some of the 

extended runs did not provide a close simulation of the 

planned category of mechanical assemblies. This was not of 

serious consequence, since closeness of simulation was not a 

major objective of the exploratory tests. However, accuracy 

of simulation was deemed to be very important for data which 

was to be used in an operational prediction model. For this 

reason, the selections of design configurations for these 

tests were made to simulate as closely as possible 

industrial-type mechanical assembly tasks. A second obj ec-

tive was to determine the relative usefulness in learnabil-

ity testing of contrived laboratory-type mechanical assembly 

designs (assembled from erector set parts). If such con-

trived designs can be substituted in some cases for actual 

industrial design configurations, there is a clear advantage 
! 

in flexibility. The prime consideration in the use of 



simulation testing for mechanical assembly learnability 

analysis becomes one of the accuracy of simulation of 

design complexity. 

Verification of Proposed Design 

Factors 

104 

In addition to foregoing discussions relative to exten­

sions of learnability testing, there is a need to expand the 

depth and quantity of experimental tests in order to more 

clearly establish confidence in the proposed design factors 

and to identify any new parameters which might be useful in 

forecasting learnability. Factors which are both reproduci-

ble and reliable are naturally more desirable in a predic-

tion model. Also, factors which are common to the largest 

variety of configurations or, in other words, common to the 

largest number of different assembly designs will be more 

desirable for model application. An additional objective to 

be considered in Chapter V will be to demonstrate the use­

fulness of contrived designs in verifying the simulation of 

design complexity. In working toward this objective, the 

capability to closely simulate industrial-type design con­

figurations with contrived designs will greatly enhance the 

flexibility of the proposed methodology. 

Frequently, certain sub-tasks or procedural steps have 

become critical aspects in the successful accomplishment of 

a manual task which is composed of multiple steps. Some 

sub-tasks consume an unusually long time and/or account for 
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a disproportionate number of defects due either to a need 

for further methods development or to the high degree of 

skill required to accomplish a particular job element. If 

the techniques of learnability analysis are extended to 

include separate analyses of certain sub-elements, valuable 

contributions to the art of "methods engineering" can be 

made. Often, in industrial situations, time and other 

resource expenditures become excessive due to an isolated 

incongruous step in a task. A learnability analysis of all 

sub-tasks could be used to.locate those elements which need 

special attention to reduce surfeited direct labor costs. 

Expansion of Data Base for Model 

Tests which were run in the exploratory phase of the 

study were not intended to have sufficient depth or breadth 

to support the proposed learnability analysis prediction 

model. Since the analysis methodology was constrained to 

only mechanical assemblies 3 it became necessary to plan fur­

ther experimental runs for this unique type of design con-

figuration. Further, it was desirable that these extended 

tests be as typical and representative as possible of real 

industrial tasks within the constraints which have been 

adopted for this work. Finally 9 beyond all the established 

qualitative constraints~ the discrete quantity of data was 

expanded for such obvious reasons as reliability, flexi­

bility of applications, etc. 



Verification of Test Subject 

Variability 
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Most of the experimental runs were made intentionally 

with a single test subject. There is, therefore, a natural 

concern relative to whether or not the operator-to-operator 

variations are significant. It is recognized that there 

will always be a small amount of variation between any two 

operators or test subjects, but the aspect for this study 

which is of prime interest is a possible variation in 

learning rates between two otherwise qualified operators. 

If there is a significant difference, it will be demon­

strated by variability in the slopes of the learning curves. 

The hypothesis that requires verification states: "there is 

no significant operator-to-operator difference in learnabil-

ity for completion of identical manual tasks". Of course, 

the additional implied assumption is that the other parame­

ters of the learnability loop are also closely controlled. 

Subsequent sections of Chapter V will describe how effec­

tively the above points have been validated by the con­

trolled learnability tests. 

Foreword 

Description of Extended Testing 

and Summary of Results 

The order of presentation of extended experiments 

results do not necessarily represent the chronological 
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sequence in which the tests were ·run. The first category 

presented includes all of the test activity on the metal 

shelving, even though all of these tests were not run at the 

same time. This category was found to provide an excellent 

source of data, and,so far as could be determined, the 

results were reliable and accurate. Consideration of the 

data taken from a series of runs on a commercial gas heater 

assembly was intended to provide diversification and a real 

example of a commerc.ial product being produced in an indus­

trial manufacturing environment. The inclusion of observed 

data taken of the wrist watch assembly tasks was also 

intended to provide further diversification of types of 

mechanical assemblies. Thus, collected data came from a 

broad range of mechanical assemblies, some of which were 

almost too large for a single operator to handle, while the 

lady's wrist watch assembly, the opposite extreme of the 

large assemblies, required optical magnification for the 

assembler to see the miniature parts well enough to put them 

together. This represents a considerable range of size, as 

well as precision in the assembly of individual parts. 

A final category of extended testing involves the use 

of erector set parts, and a contrived design to make learn­

ability test runs. Flexibility of technique makes this 

approach to data accumulation attractive. As the detail 

descriptions below will indicate, this method continues to 

show promise; correlation with test data taken from commer­

cial type mechanical assemblies is very good. 



Extended Tests Using Metal Shelving 

Assemblies 
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The metal shelving assemblies were selected as suitable 

test configurations because of their inherent flexibility as 

test hardware. Moreover, after several runs had been com­

pleted, it became obvious that learnability data taken with 

this type of hardware was both reproducible and predictable 

within the context of the proposed model. Although the 

research information is grouped together here 1 not all of 

these tests were run at the same time. The period of obser-

vations was spread over a period of approximately eighteen 

months, and, although most of the tests involved primarily 

one test subject, a second test subject was used on one 

series of runs to test for operator-to-operator variability. 

Each gr0up of tests which were run on metal shelving assem-

blies will be described below. The appropriate tables of 

data, and/or analyses of results will be included with each 

sub-set of results, including the learning curves and trend 

charts. Over-all significance of these test results or 

other comments relative to support of the prediction model 

will be included in the analyses and discussions for the 

sub-section, "Summary and Evaluation of Test Results". 

Learnability Testing With Four-Shelf Assemblies. In 

the consideration of a stated test objective to obtain 

learning progress test data from mechanical assemblies which 

closely simulate industrial-type hardware, a four-shelf 
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metal shelving unit was selected (Figure 18). This particu­

lar unit utilized self-tapping sheet-metal screws as fasten­

ers. The assembly also included metal posts which had been 

predrilled to accept the sheet-metal screws (see Table II). 

Table II includes a simple list of procedural steps which 

were used to guide the test subject. Prior to the assembly 

of the first unit, the test subject was given a copy of this 

information to read and was also given an opportunity to ask 

questions prior to starting the assembly activities. This 

approach was adopted as the standard ~olicy for all subse­

quent experimental runs and was proven to be highly satis­

factory. In each instance, the time required for the 

operator to review written information sheets and for the 

test conductor to answer questions was charged to the time 

for the first unit. The same policy was followed for any 

problems which required consultation between test subject 

and the test conductor while the assembly activities were in 

progress. In each case, the time required to answer ques-

tions was charged to the particular cycle during which the 

problem arose. This approach not only appeared logical, but 

it was also found to be practical when the points for the 

various learning runs were plotted for the learning curves. 

For example, the points for the learning curve plot on 

double-logarithmic paper formed a very good log-linear 

trace, as can be seen in the learning curve of Figure 19. 

These facts tended to establish confidence in the policies 

and methodology which had been employed in this initial 



Figure 18. 
Il lustration of Four-Shelf 

Shelving Unit 
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TABLE II 

FOUR-SHELF CONFIGURATION DATA AND METHODS ANALYSIS 

Number 

1. 

2. 

J. 

4. 

5. 

6. 

Shelves 

Post Sections 

Post Section 

Plastic Shims 

Plastic Caps 

Plastic Feet 

Joiners 

4 

8 

4 

4 

4 

4 

7. 

8. 

Sheet-Metal Screws 

Corner Braces 

16 

16 
Total Parts 60 

Tools Required: Screwdriver, Punch, Pliers, File. 

Assembly Operations: 

1. Get ready (count parts, align tools, etc.) 
2. Assemble four posts using sections, joiners 

with plastic shims, plastic feet and caps. 
J. Install top shelf to four metal posts. 
4. Install bottom shelf. 
5. Install shelf number two. 
6. Install shelf number three. 
7. Final checkout and adjustments, check screws 

for tightness, and en1tire assembly for 
squareness. 
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group of tests. Also, the inherent flexibility of design 

innovation was found to be very desirable, as was the ease 

with which the assemblies could be disassembled and reused 

in subsequent assembly runs. By merely relocating the posi­

tioning of the shelves and, at the same time, adding or 

deleting one or more shelves from the assembly configura­

tion, it was possible to generate several different design 

configurations within the same generic type of mechanical 

assembly. This made possible the simple perturbation of one 

or more of the design-oriented learning-sensitive parameters 

previously discussed in Chapters II and III. 

Use of a Ten-Shelf Shelving Unit to Extend Metal 

Shelving Learning Tests. ~ased on the definite promise 

which was indicated by the f-irst series of learning tests 

using metal shelving assemblies, a further group of tests 

were programmed with a similar unit containing ten shelves 

(see Figure 20). This unit was found to represent nearly 

the maximum in over-all size which could be handled during 

assembly operations by a single operator. Except for its 

large size, this assembly was. similar in construction to the 

assembly used in the first series of tests on four-shelf 

assemblies. The same type of self-tapping sheet metal 

screws were specified, and the vertical posts were pre­

drilled to accept the sheet-metal screws. The purpose in 

going from a four-shelf assembly to a ten-shelf unit of the 

same general type was to probe the effect on design 

complexity resulting rom a significant increase in number of 



Figure 20. Illustration of Ten-Shelf 
Shelving Unit 

114 



115 

parts. Of course, in this example, there is a corresponding 

increase in the number of sub-assemblies and in the number 

of fasteners. Each of these design-oriented factors could 

influence the over-all learnability of the mechanical 

assembly task. For this case, a change in the number of 

shelves will automatically change the numerical count of the 

number of fasteners and the total number of parts parameter. 

For this reason, the apparent change in learnability for the 

ten-shelf configuration from the four-shelf unit will repre­

sent a composite of the individual effects for the three 

single parameters. The results from a series of learning 

progress runs were plotted, as before, on the double­

logarithmic paper to obtairi a log-linear learning curve 

trace (Figure 21). Results from these runs continued to 

show promising contrast with test results from the first 

series of runs on shelving. 

Sub-Task Learnability Analysis on Shelving Assemblies. 

As a means to probe the role played by the various sub-tasks 

in the determination of learning progress for an over-all 

assembly analysis, a series of sub-task learning curves were 

plotted for sub-taskslin both the initial four-shelf 

assembly unit and the ten-shelf metal shelving unit de-

scribed above. In both of these cited .examples, the results 

were considered very encouraging. An evaluation of this 

application of learning theory will be made later in this 

chapter. Two typical examples of sub-task curves have been 

included as Figures 22 and 23. 

1, 
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Final Extension of Metal Shelving Tests Using a Three­

Shelf Assembly Design. This series of learning progress 

tests were run on a shelving design which was different from 

the other previous designs. The prime generic difference 

was in the type of fastener used to assemble the metal 

parts. This unit had only three shelves, and "machine 

screws" were specified instead of sheet-metal self-tapping 

screws. In addition, the machine screws required "machine 

nuts" to complete the assembly. This meant a corresponding 

increase in the number of required parts per unit (as com­

pared with a unit using the sheet-metal screws). As bef~re, 

a series of learning progress tests were used to probe the 

learnability of this design. The results have been plotted 

a~ a log-linear·learning curve, as may be seen in Figure 24. 

Table III includes information tabulated relative to the 

design configuration and related parameters. In Figure 24, 

data is plotted from two individual test subjects, so an 

analysis may be made of any potential operator-to-operator 

variation. An evaluation of these results will be made in a 

subsequent section of this chapter. These tests were useful 

in the analysis of learning data. No significant differ­

ences in performance were noted for the two test subjects 

who had basically the same qualifications and performed 

identical tasks. A more detailed analysis of any potential 

differences in work performance between the two test sub­

jects will be included below. 
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TABLE III 

THREE-SHELF SHELVING UNIT CONFIGURATION DATA 

Parts Number 

1. Shelves 3 

2. Braces 4 

3. Plastic Feet 4 

4. Posts 4 

5. Bolts 31 

6. Nuts -1!_ 
Total Parts 77 

1. pa - Total number of' parts (77). 

2. Pb - Total number of' sub-assemblies (6). 

3. Pe - Number of' fasteners ( 31). 

4. p· f' - Number of' non-fastener parts ( 46). 



Learnability Test of a Gas Heater 

Assembly 
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This investigation represents a series of experimental 

learnability tests on a typical commercial product manufac­

tured in a typical industrial environment. The assembly 

consisted primarily of sheet metal stampings, machine burner 

parts, sheet-metal screw~ and other metal fasteners, along 

with certain ceramic flame-distributors and asbestos insula-

tion. The assembly is a floor-mounted gas space heater 

usually intended to heat one room in a private home or cabin 

not equipped with a central heating system. A summary of 

pertinent information relative to the gas heater assembly is 

displayed in Table IV. 

TABLE IV 

GAS HEATER CONFIGURATION DATA 

(Heater Model 1540, Martin Stove & Stamping Co.)* 

Description 

1. Non-Fastener Parts 

2. Fasteners 

J. Sub-Assemblies 

4. Total Number of Parts** 

*Location: Huntsville, Alabama. 

**Item 4 is the total of items 1 and 2. 

Number 

75 
36 

10 

111 
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The learning progress data has been plotted on a 

double-logarithmic learning curve format as before, and it 

may be viewed in Figure 25. The closeness of the data points 

to a perfect log-linear trace indicates that the experimen­

tal runs have continued to show correlation with predicted 

results. The test subject for these runs was selected from 

a group of average industrial production workers who worked 

in assembly activities for the industrial firm. As in pre-

vious tests, six runs were found to be adequate to establish 

a definite trend in learning progress. Details of the test 

results are presented near the end of this chapter. 

Learnability Tests of Wrist Watch 

Assemblies 

The addition of the wrist watch assembly tests to the 

previous set of learnability tests added several dimensions 

to the previous experimental data. In the first place, pre-

vious tests had been primarily concerned with the assembly 

of hardware which was relatively non-precision. Also, the 

parts were generally large enough in over-all size to be 

classified as either "small" or "average" in size. However, 

most of the assemblies of wrist watch parts were made with 

the aid of a "loupe" or other magnifying device. Such 

devices were needed because the sizes of the parts were so 

small they could not be seen easily with the naked eye. The 

tools and various handling devices also had to be miniatur­

ized such that the parts could be assembled/disassembled 
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readily. It was also very important for the work place to 

be well lighted and otherwise comfortable for the operator. 

Thus, the "job" aspects of the learnability· loop were made 

more critical by the unique design features of the category 

of mechanical assemblies under consideration. Initially, 

the thought had been that the highest level of skill cate­

gory would be required for the assembly ef these precision 

watch parts (Level IV). Later, as more experience and 

familiarity was gained with this type of hardware, it was 

concluded that this type of assembly actually required a 

Level III skill (see Appendix A). Of course, there are 

always some individuals who cannot master the watch assembly 

type of motor skills due either to vision or to manual dex­

terity handicaps. The test subjects used for these experi­

mental runs were selected from a group of operator-students 

who had already been screened for potential qualification 

deficiencies • 

. With due consideration given to the several novel 

aspects of assembly activities using watch parts, a series 

of learnability tests were run. Two assembly design config­

uration were used, one being a self~winging man's wrist 

watch and the other being a manual-wind lady's wrist watch. 

Table V shows a summary of the parts and sub-assemblies 

for both watch types. Observations were made of two indi-

vidual test subjects, both performing identical tasks. 

These dual runs were made, as before, to test the potential 

operator-to-operator variability aspects of learning 



TABLE V 

CONFIGURATION DATA FOR WRIST WATCH ASSEMBLIES 

Description 

A. Watch No. 1*: 17-Jewel, Self-Winding, Man's Watch 

1. Total Number of Component Parts 

2. Total Number of Screw-Fasteners 

3. Total Number of Sub-Assemblies** 

a) Setting Mechanism 
b) Winding Mechanism 
c) Power Unit (Main Spring) 
d) Train-of-Wheels 
e) Escapement 
f) Self-Winding Mechanism 
g) Dial-Train Mechanism 
h) Power Indicator (Running Time) 

B. Watch No. 2*: 17-Jewel, Manual-Wind, Lady's Watch 

1. Total Number of Component Parts 

2. Total Number of Screw-Fasteners 

3. Total Number of Sub-Assemblies 

a) Setting Mechanism 
b) Winding Mechanism 
c) Power Unit (Main Spring) 
d) Train-of-Wheels 
e) Escapement 
f) Dial-Train Mechanism 

126 

Number 

31 

8 

43 

16 

6 

*Both watches No. 1 and No. 2 have cases which could 
constitute another sub-assembly. Since the assembly proce­
dure did not include replacing watch movement in its case, 
this item was not included in the parts lists shown above. 

**In the watchmaker trade, sub-assemblies are referred 
to as units. 
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progress. As may be observed in Figures 26 and 27, a close 

agreement in learning progress was indicated for both test 

subjects, and the indicated difference in learnability be­

tween the two types of wrist watches correlated well with 

predicted results. Again, the results from this series of 

test runs continued to show excellent promise in support of 

the proposed prediction model. 

Further Use of Contrived Design 

Configurations in Learnability Testing 

A need was recognized for a technique which would per­

mit contrived designs to be used in making laboratory-type 

learnabili ty tests and analyse·s. Since exploratory tests 

demonstrated the utility of erector set parts, it was 

decided to generate a contrived design using these parts and 

to employ learning tests to further probe the usefulness of 

this approach. The resulting design from erector set parts 

was named "utility van truck". The results from a series of 

six learning progress runs have been plotted on the standard 

double-logarithmic paper (Figure 28). Figure 28 indicates 

that the learning curve has formed an almost perfect log­

linear trace. As will be discussed in detail in the last 

section of Chapter V, this configuration was used as·a sam­

ple problem to. test the proposed prediction model. Results 

were again positive as a validation of the prediction 

methodology. 
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Summary and Evaluation of Test 

Results 
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Summary. In the previous sections of Chapter V, sever-

al different test extensions have been outlined. The objec-

tives for these extensions naturally included the goal to 

increase the over-all quantity of data to support the pro-

posed model. During the course of these tests, it was also 

possible to increase the level of understanding in the 

application of design-oriented parameters to predict learn­

ability for a specific mechanical assembly design. Based on 

the rather wide variety of types of mechanical assemblies 

employed in the experimental runs, the aspect of generality 

of application was enhanced. One disappointment, however, 

was the difficulty in obtaining industrial-type data from 

private industrial firms. Some firms offered cooperation 

but simply were not engaged in the type of operations which 

would support this research work. Others took the position 

that this type of information was sensitive from a competi-

tive position point of view. One of the most beneficial 

sources of information was a technical school (Calhoun 

State Technical School*), where the information obtained 

was excellent and the cooperation of academic officials out­

standing. In two separate sets of experimental runs (three­

shelf assembly, wrist watch assemblies) it was possible to 

probe the operator-to-operator potential source of 

*Location: Decatur, Alabama. 
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variability in the learnability evaluations. In both sets 

of experimental results, the differences in performance be­

tween two qualified operators doing identical tasks was 

deemed insignificant. This judgment was based principally 

on comparisons between rates of learning progress or learn­

ability values as determined from the learning curves of the 

experimental runs. 

Evaluation of Test Results for Mechanical. Assemblies. 

The first set of test results for a typical industrial-type 

design configuration was demonstrated by the four-shelf 

assembly. These results have been plotted in the learning 

curve of Figure 18 (page 110). As previously explained, 

this learning curve is based on a cumulative data reduction 

principle, since this approach tends to effect an element of 

smoothing to the data values, making it easier to fit a 

curve to the plotted points. Since the parts used in this 

assembly were the eutput of rihigh-volume production", it was 

not surprising that ~ome difficulties were experienced in. 

fitting the parts together. In accord with a previously 

stated ground rule, the time required to. correct ill-fitting 

parts was not charged to the cycle time in which the problem 

surfaced. An exam:pie of such problems was the occurrence of 

excessive burrs on sheet-metal corner braces for the shelves. 

It was necessary to remove these burrs with a file in order 

to permit a properly fitted joint. Another minor problem 

resulted from the undersize holes in the sheet-metal posts 
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for the shelves. This condition required excessive torque 

by the operator to set the self-tapping sheet-metal screws. 

An additional drilling operation was required on some of the 

holes to make a small increase in the diameter of the holes. 

When thi~ type of operation was required, the time-study 

watch was stopped, and the time required ·to correct the 

problem was not charged to the cycle time. This same 

approach was used for all of the subsequent runs, and the 

policy of not charging parts correction time to the cycle 

time was established as one of the experimental ground rules 

for this study. The slope of the learning curve for the 

four-shelf assembly was approximately 77%. This value cor­

responds very well with an expected learnability value for 

an assembly of this type with a total of 60 parts and five 

sub-assemblies. These and other design-oriented data may be 

seen displayed in Table VI, "Trend Curve Parametric Data". 

From these data values, a series of learnability trend 

curves have been pl-otted based on a set of selected learning 

sensitive design-oriented parameters. These trend curves 

a.ppear as follows:. Figure 29 for Pe or "Total Number of 

Fasteners", Figure JO for Pr or "Non-Fastener Parts", 

Figure 31 for Pb or "Number of Sub-Assemblies", Figure 32 

for Pa or "Total Number of Parts". Individually, and also 

collectively, these trend curves have provided the basis for 

the "Learnability Figure of Merit", which is the key element 

in the prediction model. The learning sensitive parameters 

utilized in Figures 29-32 were selected from a larger set of 
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TABLE VI 

TREND CURVE PARAMETRIC DATA 

Description Total No. Non- No. of Total No. 
of Curve Fasteners Fasteners Sub of 

Test Slope Parts Assemb. Parts 
Pe pf Pb Pa 

#1540 82% 36 75 10 111 
Martin 
Stove Gas 
Heater 

*Calhoun- 76% 16 27 6 43 
Tech 
Benrus 
Lady's 
Watch 

*Calhoun- 81% 31 54 9 85 
Tech 
Benrus 
Man's 
Watch 

3-Shelf 80% 31 46 6 77 
Shelving 
Unit 

4-Shelf 77% 20 40 5 60 
Shelving 
Unit 

10-Shelf 87% 46 80 11 126 
Shelving 
Unit 

*Average of runs by 2 operators. 



CJ') 

a: 
w 
2 
w 
~ 
CJ') 
<( 
LL. 
LL. 
0 

a:: 
w 
al 

. :; 
::, 
z 

46 

44 

42 

40 

.38 

36 

34 

32 

30 

28 

26 

24 

22 

20 

18 

16 

14-------·--------------

12 

1~o 12 74 76 1e 80 a2 84 · 86 a0 
LEARNING CtJRVE SLOPE IN PERCENT 

Figure 29. Trend Curve for Total Number 
of Fasteners, Pe 

135 



136 

90------------------------------------------~----

..... 
2 
w 
(.) 

a: 
w 
CL 

z 
w 
CL 
0 
....J 
U) 

88 
0 

w 7a1--~~~+--~'---~ > a: 
::> 
u 
l!) 
z 
2 74--------
0: 
<( 

-~ 72 

35 45 55 65 75 
NUMBER OF NON-FASTENER PARTS 

Figure 30. Trend Curve for Non-Fastener Parts 
Count, Pf 

·r 

85 



Cl) 
w 
...J 
CD 
~ 
w 
Cf) 
Cf) 
<( 

I 

CD 
:::> 
Cf) 

LL 
0 

0: 
w 
CD 
~ 
:::> 
z 

9 

8 

7 

6 

5-----l 

310 74 78 82 86 90 

LEARNING CURVE SLOPE IN PERCENT 

Figure 31. Trend Curve for Number of 
Sub-Assemblies, Pb 

137 



• 138 

160.----.-....,..---..-----.. ....... - ........................ 

120 

Cll .... 
0: 100 <( 
Q. 

LL. 
0 
0: 
w 80 m 
~ 
::, z 
.J 

~ 
·~ 

60 

Figure 32. 

0 

0 

76 80 84 88 92 
LE:ARNING CURVE SLOPE IN PERCENT 

Trend Curve for Total Number of Parts, P 
a 



139 

factors as outlined in Chapter III. The ones selected were 

found to be more effective as predictors of changes in 

learnability resulting from planned or discrete changes in 

design features for the mechanical assemblies being studied. 

Further extensions of the research started in this effort 

could possibly yield a more efficient set of parameters, as 

well as some different factors to use in a forecast of 

learnability. Further discussions concerning this and other 

recommendations for future research and potential applica­

tions have been made in Chapter VI. 

Development of Figure of Merit (FOM) and the Character-

istic Learnability FOM Curve.: As explained in Chapter III, 

the selected learning sensitive factors, as depicted in the 

trend curves, have provided an information source essential 

to the development of the prediction model. Also, the use 

of a "time series" approach makes it possible to establish a 

predictable trend in learning performance. The FOM values 

and the "time series" numbers may be considered as synony-

mous within the context of this work. The development of 

the FOM values was accomplished by the following procedural 

steps: 

(a) Make cuts through each of the trend curves 

being utilized at programmed intervals of 

learning slope (72, 75, 78, etc.). 

(b) Form a matrix of values from the above cuts 

such that the steps in slope percent are on 



the vertical axis of the matrix, and the 

parametric values obtained by the cuts are 

the cell-entries on the matrix. The column 

headings represent the nomenclature for the 

various learning sensitive factors such as 

(c) In order to facilitate mathematical processing 

of the data, take logarithms of each cell 

entry and enter them in each of the cell 

spaces (logarithms to the base 10 are used 

although this choice is arbitrary). An illus-

tration of such data is displayed in Table 

VII, entitled "Learnability Parameters Trend 

Curve Data". 

(d) As may be seen in the cited table, the FOM 

value for a particular cut or slope value 

may be found in the total column. Compute 

these values by the time series multiplicative 

method of multiplying each of the chosen 

parametric values (for a particular cut) times 

each other, or Pa X Pb X Pe X Pf. To simplify 

this operation,· Q ·- Anti-log ( log Pa + log Pb 

+ log Pe+ log Pf). 

' 
(e) As the final step in this procedure, use the 

values in the total column in the trend 

curve data matrix (Table VII) to plot the 

FOM characteristic curve (Figure 33). 

140 
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TABLE VII 

LEARNABILITY PARAMETERS TREND CURVE DATA 

m 
L 

72 
1. 39 

75 
1. 33 

78 
1.28 

81 
1.24 

84 
1.19 

87 
1.15 

90 
1.11 

p 
a 

(Log P) 
a 

10.0 
( 1.00000) 

35.0 
( 1. 54407) 

61.0 
(1.78533) 

87.0 
(1.93952) 

113.0 
(2.05308) 

139.0 
(2.14301) 

163.0 
(2.21219) 

1.5. 
(0.17609) 

3.7 
(0.56820) 

5.86 
(0.76790) 

8.05 
(0.90580) 

10.2 
( 1. 00860) 

12.4 
( 1. 09 342) 

14.4 
(1.15836) 

p 
e 

(Log P ) 
e 

8.0 
(0.90309) 

16.0 
( 1. 20412) 

24.3 
( 1. 38561) 

32.3 
( 1. 50920) 

40.3 
(1.60531) 

48.6 
( 1. 68664) 

56.6 
( 1. 75282) 

1. All logarithms are to base 10. 

8.0 
(0.90309) 

24.o 
( 1. 38021) 

40.7 
( 1. 60959) 

57.5 
(1.75967) 

74.5 
(1.87216) 

91.1 
(1.95952) 

107.5 
(2.03140) 

Totals 
Q 

(Log Q) 

960 
(2.98227) 

49,730 
(4.69660) 

353,530 
(5.54843) 

1,300,700 
(6.11419) 

3,460,500 
(6.53914) 

7,631,200 
(6.88259) 

14,810,000 
(7.15477) 

2. Q = Pa X Pb X Pe X Pf (all with weights assumed equal 

to one). 

3. Above values were taken from samples of trend curve cuts 
taken at each of the 7 slope values. 

4. m = slope of learning curve. 

5. L = Learnability or 1/m. 
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If the analyst prefers to work with a table in making 

a learnability analysis, it is possible to make a series of 

cuts at uniform increments on the characteristic curve 

illustrated by Figure 33. An example of a table built by 

this method is Table VIII, "Learnability Figure of Merit 

Table". The analyst may, therefore, choose either format of 

data presentation when making a learnability prediction 

analysis. The sample application to an illustrative example 

in the last section of Chapter V illustrates both of these 

methods, but the choice is felt to be strictly a matter of 

personal preference. As may be observed in the item "d" 

above, no weighting or preference values were assigned to 

the parameter entries since there was no basis for placing 

more emphasis on one parameter than on any other. For this 

reason, all of these values may be assumed to have the 

implied weight of "one", which, of course, vanishes from the 

above mathematical notations. If further test extensions 

should reveal the existence of actual or implied weights in 

the trend data, these weight values can easily be incorpo­

rated in the FOM computation forms (see Chapter III). 

Revisions to Prediction Model Format 

Subsequent to the initial formulation of a prediction 

model, several additional test extensions have been accom-

plished. There have been no startling revelations based on 

the information obtained through these experimental investi-

gations. However, based on an analysis of the data, it has 
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TABLE VIII 

LEARNABILITY FIGURE OF MERIT TABLE 

Slope 1/m Q2 Fi~ure of Merit Scores 
% or 

Log10 Anti-Log x io3 
m L 

72 1. 389 2.98 .96 

73 1. 370 3.62 4.17 

74 1. 351 4.18 15.14 

75 1.333 4.69 49.70 

76 1. 316 5.00 100.00 

77 1.299 5.23 169.90 

78 1. 282 5.54 354.oo 

79 1.266 5.78 603.00 

Bo 1.250 5.96 913.00 

81 1.235 6.11 1,300.00 

82 :t,. 220 6.33 2,140.00 

83 1. 205 6.45 2,820.00 

84 1.190 6.54 3,460.00 

85 1.176 6.65 4,470.00 

86 1.163 6.84 6,919.00 

87 1.149 6.88 7, 631.00 

88 1.136 7.02 10,470.00 

89 1.124 7.09 12,310.00 

90 1.111 7.15 14,810.00 
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been possible to screen a list of potential candidate fac­

tors which are learnability sensitive after programmed 

changes in design configuration have been introduced. One 

such candidate factor (which was deleted) was the "ratio of 

number of fasteners to total number of parts". The attempt 

to form a trend curve with this parameter failed, as can be 

seen in the Figure 34 scatter diagram. As is evident from 

the random distribution of points in Figure 34, there was 

virtually no indication of predictable variability based on 

this factor. In addition, al1 of the points included on 

this scatter diagram were taken from actual industrial or 

industrial-type mechanical assembly observations. By con­

trast, the set of design-ori.ented parameters exhbi ted in 

Figures 29-32 (pages 135-138) were judged to be reasonable 

predictors of learning progress. Each of these factors 

exhibited predictable changes in learnability as programmed 

changes to a design configuration were made. In other 

words, these factors did support the proposed prediction 

model ~s originally described; and they are herewith nomi­

nated as the preferred set of learnability factors for this 

work. The applicability and/or flexibility of the revised 

model must, quite logically, be subject to appropriate 

ground rules and constraints. These will be discussed in 

more detail in the next section. 

Another aspect of the experiment analysis which could 

influence application of the model is the "skill level" 

factor. Initially, it was felt that rigor would require a 
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learnability characteristic curve or table for each skill 

level itemized in Appendix A. Later, it was realized that 

Levels II and III could be combined, so far as application 

of the model is concerned, although this combination repre-

sents a rather broad band of operator expertise. What is 

particularly relevant in this situation is the capability of 

the operator to meet the skill demands of the particular job 

assignment. Routine screening of candidate op,erators will 

normally satisfy this requirement. For the t"echnical school 

watchmaker students, normal student entrance testing elimi-

nates practically all candidate trainees who are not quali-

fied to meet the skill demands for this type of work. No 

deficiencies in skill were observed during any of the exper-

' imental runs documented in this research. The test subjects 

were screened by standard procedures which gave no indica-

tion of selection bias. For each series of experimental 

runs, a planned effort was made to prdvide some small but 

significant increase in motivation to each separate test 

subject. A review of these results indicated that all test 

subjects observed in this work were positively motivated. 

This· judgment was based on such quantitative aspects as the 

steady improvements indicated by the several learning curves 

and by the reproducibility of replicated task assignments. 

Based on the abov-e discussion, suggested revisions to 

the previously proposed prediction model format are as 

follows: 

(a) The learnability "factor set" for the body of 



test data engendered here shall include 

such factors as Pe, number of fasteners 

per unit; Pf, the non-fastener parts 

count per unit; Pb, the number of sub­

assemblies per unit; and Pa, the total 

number of parts per unit. 

(b) Predictions or forecasts of learnability 

based on evaluations of pertinent design 

criteria and requirements will be made 

considering skill Levels II and III as a 

single category. For example, Figure 33 

may be used for preparation of estimates 

on tasks requiring either Level II or 

Level III skills.* 

So far as can be determined, neither of the above 

148 

revisions make the model less useful or affect its accuracy. 

Discussion of Ground Rules and 

Constraints'in Application 

of Prediction Model 

One of the minor modifications to the prediction model 

as initially proposed was a suggested change in the ground 

rule that a separate set of learnability data be developed 

for each level of skill. This revision simply combines 

*The assumption is made that all operators have been 
screened in accord with the skill requirements for each task 
observed. 



Levels II and III for purposes of model application based on 

experience gained from the several test extensions de­

scribed above. In effect, this makes application of the 

prediction model to a wider variety of mechanical assemblies 

less critical and, presumably, simpler. Based on these and 

other previously noted considerations, a modified set of 

ground rules and constraints are outlined below: 

(1) Model shall be applied to mechanical assem­

blies only. 

(2) Model shall be applicable to single operator 

activities only. 

(J) Model data (see Table VII) may be applied to 

any task requiring Level II or Level III 

skills as described in Appendix A (operators 

are assumed to be qualified). 

(q) Derived learnability values should always be 

considered as a "best estimate" and not 

absolute. 

(5) Model format and data may be considered as 

substantially typical, based on a limited 

data population. Its use, however, should 

be complemented or replaced when discrete 

historical information is available for a 

specific design. 

(6) Limit applications to mechanical assemblies 

which have between J0-1qO total parts. 
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Trial Application of Model to 

a Sample Problem 
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One reason for using the contrived design as a sample 

application of the prediction model was the desire by the 

test conductor to maintain very close control of the experi­

mental runs, at least in the outset. The test subject for 

these runs was the same operator who performed the majority 

of the earlier shelving and erector set runs. All of the 

normal conventions of time study practice were used. In 

addition, the set of ground rules and constraints outlined 

in the previous section were .. observed. Also, the same con­

ventions for starting/stopping, interruptions, and other 

unplanned events were followed for this final set of experi­

mental runs. This contrived design, which was assembled 

from erector set parts, is illustrated by Figure J5. 

Details of Experimental Runs and 

Data Analysis 

Again, as on previous test runs, six replications of 

the assembly cycle were sufficient to establish a definite 

trend in learning progress. Data from these six test runs 

was plotted on the usual double-logarithmic paper, as shown 

in Figure 28 (page 1JO). Agreement with a perfect log­

linear trace was very close, and most of the points fell 

directly on a straight line. These results tended to 



Figure 35. Illustration of Utility Van Truck 
(Contrived Design 
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reinforce the suitability and reliability of the various 

procedures, conventions, and techniques practiced throughout 

the entire study. 

Learnability Analysis by Model 

Some analysts may prefer to utilize an 11 MTM11 type 

table, as opposed to a characteristic curve such as Figure 

JJ (page 142). It is possible to create such a table of 

learnability values simply by taking cuts across the curve. 

To illustrate both approaches to the learnability analysis, 

Table VIII has been created from the Figure JJ characteris-

tic curve. Also, the design configuration in question, the 

"Utility Van Truck", has been reviewed in detail, and a list 

of parts is displayed in Table IX. Using all of this infor-

mation, a learnability analysis has been completed for this 

sample problem, and the results are summarized in Table X. 

Both approaches to the determination of the learnability 

estimate are illustrated by the ·analysis, and both of these 

numerical predictions were found to agree very closely with 

a learnability value which was determined directly from the 

learning curve of Figure 28 (page 1JO). Figure J6 has been 
i 

included to illustrate how the characteristic curve can be 

used to obtain a learnability estimate, if the over-all 

learnability FOM for a particular design configuration is 

known. The apparent error of prediction for this sample 
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TABLE IX 

PARTS LIST FOR UTILITY VAN TRUCK 

Description Number 

·1. . Axels 2 

2. Cab Front 1 

3. Chassis Parts 2 

4. Door Panels 4 

5. Finders 4 

6. Front Bumper Pads 2 

7. Head Lights 4 

8. Nuts 27 

9. Screws 27 

10. Seat Assembly 1 

11. Side Panels 2 

12. Steering Column 1 

13. Steering Wheel 1 

14. Straight Brackets 4 

15. Tail Lights 2 

16. Tires 4 

17. Top Plates 3 

18. Wheel Hubs 4 
Total ~ 



1. Pa, 

2. Pb, 

3. Pe' 

4. Pf, 
= 

TABLE X 

LEARNABILITY FIGURE OF MERIT ANALYSIS* 

Design Name: Utility Van Truck** 

Total number of Parts = 89, log10 

Number of Sub-Assemblies = 6, log10 

Number of Fasteners/Unit = 27, log10 

Number of Non-Fastener Parts/Unit 
35, log10 

Total Log10 
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1. 94, 939 

0.77,815 

1.48,059 

1. 54, 407 

5.75,220 

Anti-Log10 565. 2 X 103 

5. Learnability Prediction Estimate from 
Table VIII 

6. Learnability Prediction Estimate from 
Figure 36 

7. Learnability Graphically Determined from 
Figure 28 

78.9% 

79% 

79% 

Apparent Error (Difference over Measured) <1% 

*Factor weights assumed equal to one (1) for this 
problem. 

**Utility Van Truck was contrived design, and was 
assembled from erector set parts. 
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problem is very small. Further comments relative to this 

trial application of the model and the results obtained 

will be made in Chapter VI. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

Summary of Research Activities 

During the early phase of this research work, the ac­

tivities were concentrated primarily on a search of engi­

neering publications for information on learning theory. 

This source of information., unfortunately, did not provide 

either the quantity or the level of information which would 

support the objectives of this study. Most of the engineer­

ing sources appeared to view learning theory primarily from 

the viewpoint of a shop f0reman or production manager. 

Indeed, most of the society papers appeared to be concen­

trating on the "learning curve" as the principal item 

requiring consideration for research in learning theory. 

This was further complicated by the multiplicity of terms 

which were sometimes used to convey the same thought but did 

not actually qualify as synonyms. Some of the alternative 

terms which appear frequently are: (a) progress functions, 

(b) improvement functions, (c) complexity functions, (d) 

memory functions, (e) training transfer, (f) motor learning, 

(g) maturation, and others. This listing includes several 

examples, although it cannot be considered exhaustive. 
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Other terms could be added to the list, but this would not 

eliminate the problem of using non-equal terms interchange-

ably. One attempt to minimize this problem was to include 

a glossary of learning and related systems engineering in 

the appendixes (see Appendix D). 

During the course of the literature search, several 

excellent sources of information on learning theory were 

found which did supply satisfactory and sufficient informa-

tion in support of the selected research topic. Typical of 

such research categories were: Learning Theory, Experimental 

Psychology, Human Factors, Ergonomics, Educational Psychol­

ogy, Physiology, Human Performance, Space Biology, Training 

and Training Research, Systems Engineering, Perceptual-Motor 

Learning, Simulation, Mathematical Learning Theory, Techno­

logical Forecasting, Decision Theory, Time-Series Analysis, 

Psychological Statistics, Multiple Regression Analysis, 

Product Design, Factor Analysis, Trend Analysis, Operations 

Research, Prediction Models, Large Number Theory, Project 

Management, Cost Estimation, Job/Personnel Analysis, and 

Econometrics. Again, this listing is not exhaustive, since 

there is hardly any activity involving the human organism 

that does not in a small or large way involve "learning". 

Based on these information sources, however, both theoreti­

cal concepts and practical applications of learning theory 

and its related peripheral disciplines were investigated in 

support of the stated objective to develop "prediction 

models" which could be used operationally to prepare 
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learning forecasts of certain mechanical assembly designs. 

Although literature research continued throughout the 

entire study, the main thrust of the second phase of the 

program was to plan and execute a series of exploratory 

tests to gauge the sensitivity of a set of design-oriented 

factors as a means to predict rates of learning for unique 

mechanical assembly tasks. A preliminary model format and 

prediction methodology was developed, and it is described 

in Chapter III.' The exploratory tests have been documented 

in Chapter IV. The analysis of these runs .was sufficiently 

successful to plan a series of test extensions. The objec-

tives of these extended tests were twofold: first, to 

introduce more variety in mechanical assembly design and to 

further enhance confidence in the methodology by substan­

tially increasing the number of separate tests, and, second, 

to obtain as much industrial-type data as possible. This 

would also increase confidence in the utility of the model 

for applications to mechanical assembly tasks in industry. 

Industrial data proved to be very difficult to obtain, since 

many managers felt it was detrimental to ·their competitive 

position to release such information. To a large extent, 

this problem was overcome by using student test subjects and 

by making time studies under laboratory-type conditions. 

Thus, by one means or another, a considerable number of test 

extensions were completed on industrial or industrial-type 

hardware. The results of these extended tests have been 

documented in Chapter V. The quality and reproducibility of 
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these data tended to support the research hypothesis and to 

further reinforce confidence in the proposed prediction 

model. Modifications to the model based on the broader and 

larger volume of data were essentially trivial. Actually, a 

set of design-oriented parameters was selected (four were 

chosen from a larger group). The minor revisions to the 

prediction model were displayed in Chapter V. 

To further illustrate the flexibility of test runs on 

contrived designs, a sample illustrative problem was pre­

sented in the final section of Chapter V. This sample prob­

lem also served to exercise the revised prediction model and 

to demonstrate how it would perform when applied to a real 

problem. As a check against any possible inaccuracy of the 

model, a series of six learning progress runs (replications) 

were made on the contrived design, the "Utility Van Truck" 

assembled from erector set parts. The learnability analysis 

shown in Table X (page 154) indicates that the apparent 

error of prediction in forecasting the learnability of this 

mechanical assembly was less than one percent. 

Conclusions 

As described in the problem statement, previous learn­

ing theory methodologies have not provided a means to pre­

dict learning progress which can be correlated with 

design-oriented parameters of a mechanical assembly task. 

There is another related problem -- the learning theory 

disciplinarians have not provided a clear, concise 
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understanding of the interacting factors of such learning 

problems. The descriptive materials provided in Chapters I 

and III represent an attempt to fill this void. For exam­

ple, the "Learnability" concept, and the closely related 

descriptions of the "Learnability Loop" depicted schemati­

cally in Figure 5 (page 26), provide this needed 

clarification. 

Another facet of the above problems was the need for a 

bridge of understanding between practitioners of learning 

theory in the social sciences and those in the engineering 

discipline. Through a vigorous multidisciplinary search of 

the literature, the beginning of such a bridge is displayed 

in Chapter II. 

A proposed prediction model is presented in Chapter 

III. It is constructed with due consideration to learned 

contributions from all those working in the area of learning 

theory and is not based solely on engineering generated 

methodologies. This model also adds to the desired bridge 

of understanding between engineering and the social 

sciences. 

In the hypothesis, it was stated that a "minimum set of 

design-oriented parameters" could be employed in a predic­

tion model to forecast the potential learning progress of a 

single person mechanical assembly task. Based on the 

descriptive materials in Chapters III and V, this goal has 

been fulfilled and validated by the experimental verifica­

tion tests outlined in Chapters IV and V. The application 
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of the model to a sample problem, as detailed in Chapter V, 

further validates the adequacy of the prediction model. 

Although a greater volume of data would undoubtedly add 

statistical depth to the accuracy and reliability of the 

model, it appears that the prior assumptions made in the 

hypothesis have been substantially fulfilled by the predic-

tion model as presented. It may also be concluded by a 

review of the data generated to support the prediction mode~ 

that it is feasible to develop methodologies to quantita­

tively measure "design complexity". 

Recommendations for Further Research 

Extension of Prediction Mod:el 

Applications 

The variety and depth of data utilized in the predic~ 

tion model was limited because of the unavailability of data 

from industrial sources and the usual manageability problems 

that are normal when trying to build a general use model in 

a limited time span. An industrial firm, however, which 

specializes in manufacturing a particular type of assembly 

could easily accumulate its own data bank of information 

tailored to fit a given line of products. This approach 

would be strongly recommended for an industrial firm if 

there is a need to prepare forecasts of learning progress 

for industrial products. 

There is also a potential need to extend the prediction 
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model to include multi-operator tasks, tasks other than 

assembly tasks (e.g., inspection tasks), and tasks in which 

machines are sharing the production work load with the 

operator (e.g., machine operators). This list is not 

exhaustive since the approach might be beneficially applied 

to non-manual tasks such as clerical, or even·to ce~tain 

tasks in the medical sciences. As stated above, the data 

could be selected in each application to fit the type of 

product or service being considered. The model approach for 

a large variety of applications would not change, only the 

supporting data would vary depending on the degree of skill 

or type of skill required. The set of prediction parame­

ters would be selected to match the product. 

Expansion and Qualification of 

Complexity 

Frequent references have been found in the literature 

which make brief qualitative discussions of the term 

"Complexity". It has a broad base of interest including 

experimental psychology, engineering, training, simulation, 

and other disciplines. The problem is that very little 

published work has been devoted to the quantification of 

complexity even though the interest is intense and wide-

spread. A companion problem is that little has been done to 

define the necessary sub-parameters for complexity. One 

minor exception is a study of the interactions of complex­

ity with the performance of an inspection task by 
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Harris (35). In this work, the term "Equipment Complexity" 

was employed in the problem to predict learnability for the 

inspection activities. 

A general study to define the many aspects of complex­

ity is recommended as a highly desirable future area of 

research. After definition, a second phase of such a study 

would be to investigate methods to quantify complexity. 

Applications would be useful in engineering, physical sci­

ences, economics, and social sciences. 

Extension of Figure of Merit Criteria 

Developed in Model to Generalized 

Decision Model 

The approach developed in this work to evaluate the 

over-all Figure of Merit is based on a characteristic inde­

pendent variable with a set of key sub-factors that could be 

used to develop a general decision model to use in making 

trade studies of large complex systems. This technique 

could be useful for any decision problem where one approach 

is compared with a known standard or with an alternative 

approach. A sample application of this methodology would be 

to evaluate alternative modes of solution for ecology prob-

lems involving air pollution. Almost any problem which can 

identify a set of functional trend parameters could be 

serviced by this approach. 
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Further Mathematical or Statistical 

Investigations 

These functions are related to the time series multi-

plicative trend functions which are u~ed in economic fore-

casting, since they are formed by similar embedding 

operations of several sub-factor values. A study of the 

mathematical boundary con~traints, limits, maxima/minima, 
I 

,,' 

optimality, or the relationship of such artifical functions 

to the theory of "large numbers" would be highly beneficial 

to a better understanding of these functions. A statistical 

solution to the problem of fitting a curve to a set of 

learning trend data is illustrated by a modified "Doolittle" 

solution in Appendix C. This approach utilized the loga-

rithms of the data to simplify the regression of the infor-

mat ion. An alternative and much simpler solution is also 

given which utilizes the sum of the sub-factor logarithms to 

effect a single factor regression. Both approaches were 

applied to the exploratory data described in Chapter IV and 

indicated completely satisfactory results for the illustra-

tive examples. Further study of the application of multi-

factor analysis techniques to the class of problems and 

functions typical of the learning theory disciplines is 

also recommended. Such studies would increase the needed 

understanding of this very large and important field. 
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MECHANICAL ASSEMBLY SKILL LEVELS 
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Level I 

Operator must demonstrate the ability to follow written 

instructions and to interpret isometric type diagrams or 

schematics. He must demonstrate sufficient motor dexterity 

for plug-in/plug-out type connectors, for example, tinker 

toy assemblies, electronic tubes, electrical fuses, or elec­

tronic plug-in circuit boards. 

Level II 

Operator must meet requirements of Level I and demon­

strate ability to assemble piece parts which have threaded 

connections, such as screws., bolts, nuts, washers, utilizing 

such tools as wrenches, screw drivers, pliers, and allen 

wrenches. Motor dexterity requirements are higher than 

Level I since ability to align threaded connections and 

judge applied torques is mandatory. 

Level III 

Operator must meet requirements for skill Levels I and 

II and be proficient in reading blueprints, making necessary 

on-the-spot minor adjustments and/or alterations to mating 

parts to make sure that they fit together properly or per-

form within specified requirements and criteria. This cate-

gory might occasionally require the use of such precision 

measuring tools as micrometers, vernier calipers, depth 

gauges, or thread gauges. Operator might also need to use 

such hand tools as drills, reamers, thread taps and dies, 
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files, or deburring tools in order to complete an acceptable 

mechanical assembly. 

Level IV 

Operator must meet all previous skill requirements and 

have the ability to utilize measurement and alignment tools 

requiring the highest degree of precision. For example, 

such instruments as a precision optical level may be uti-

lized in locating assembly parts. In general, component 

parts may be either ultra precision parts, or require pre­

cision alignment during their installation. Maximum care 

and dexterity is required to handle such parts, many of 

which could be ruined by careless or awkward handling. 

Products requiring this level of skill would be precision 

instruments or special camera on optical assemblies intended 

for space application. Operator must be able to comprehend 

the intended use of the assembly and to evaluate the cor­

rectness of his own workmanship. 



APPENDIX B 

LEARNABILITY VERSUS PERCENT SLOPE 

CONVERSION TABLE 



% 
Ill 0 1 

50 2.00 1.996 
51 1.96 1.957 
52 1.92 1.919 
53 1.89 1.883 
54 1.85 1.848 
55 1.82 1.815 

56 1. 79 1. 783 
57 1. 75 1. 751 
58 1. 72 1. 721 
59 1. 70 1.692 
60 1.67 1.664 

61 1.64 1.637 
62 1.61 1.610 
63 1.59 1.585 
64 1.56 1.560 
65 1.54 1.536 

66 1.52 1.513 
67 1. 49 1.490 
68 1.47 1.468 
69 1.45 1.447 
70 1. 43 1.427 

TABLE XI 

LEARNABILITY VERSUS PERCENT SLOPE CONVERSION TABLE 
(m = Learning Curve Slope in%) 

2 3 4 5 6 7 

1.992 1.988 1.984 1.980 1.976 1.972 
1. 953 1.949 1.946 1.942 1.938 1.934 
1.916 1.912 1.908 1. 905 1.901 1.898 
1.880 1.876 1.873 1.869 1.866 1.862 
1.845 1.842 1.838 1.835 1.832 1.828 
1.812 1.808 1~805 1.802 1.799 1. 795 

1.779 1. 776 1. 773 1.770 1.768 1.764 
1. 748 1. 745 1. 742 1. 739 1.736 1. 733 
1.718 1. 715 1.712 1.709 1.707 1.704 
1.689 1.686 1.684 1.681 1.678 1.675 
1.661 1.658 1.656 1.653 1.650 1.648 

1.634 1.631 1.629 1.626 1.623 1.621 
1.608 1.605 1.603 1.600 1.597 1.595 
1.582 1.580 1.577 1.575 1.572 1.570 
1.558 1.555 1.553 1.550 1.548 1.546 
1.534 1.531 1.529 1.527 1.524 1.522 

1.511 1.508 1.506 1.504 1.502 1.500 
1.488 1.486 1.484 1.482 1.479 1.477 
1.466 1.464 1.462 1.460 1.458 1. 456 
1.445 1.443 1.441 1.439 1.438 1.435 
1.425 1.423 1.421 1.!,!:18 1.416 1.414 

8 9 

1.969 1.965 
1.931 1.927 
1.894 1.890 
1.859 1.855 
1.825 1.822 
1.792 1.789 

1.761 1.758 
1.730 1. 727 
1.701 1.698 
1.672 1.670 
1.645 1.642 

1.618 1.616 
1.592 1.590 
1.567 1.565 
1.543 1.541 
1.520 1.518 

1.497 1.495 
1.475 1.473 
1.454 1.451 
1.433 1.4J1 
1.412 1.410 ~ 

-.J 
\,;.) 



TABLE XI (Continued) 

% 
m 0 1 2 3 4 5 6 7 8 9 

71 1.41 1.407 1.405 1.403 1.401 1. 399 1. 397 1.395 1.393 1.391 
72 1. 39 1. 387 1. 385 1.383 1.381 1. 379 1. 377 1.376 1.374 1. 372 
73 1. 37 1.368 1. 366 1. 364 1. 362 1.361 1. 359 1.357 1. 355 1.353 
74 1. 35 1.350 1.348 1.346 1.344 1.342 1. 341 1. 339 1.337 1. 335 
75 1. 33 1. 332 1. 330 1.328 1.326 1.325 1. 323 1.321 1. 319 1.318 

76 1. 32 1.314 1. 312 1. 311 1.309 1.307 1.306 1.304 1.302 1.300 
77 1.30 1.297 1.295 1.294 1.292 1.290 1. 289 1.287 1.285 1.284 
78 1. 28 1.280 1.279 1.277 1.276 1. 274 1.272 1.271 1.269 1.267 
79 1. 27 1.264 1.263 1.261 1. 260. 1.258 1. 256 1.255 1.253 1.252 
80 1.25 1.248 1.247 1.245 1.244 1.242 1.241 1.239 1.238 1.236 

81 1. 24 1.233 1.~32 1.230 1.229 1.227 1.226 1.224 1.223 1.221 
82 1.22 1.218 1.217 1.215 1.214 1. 212 1.211 1.210 1.208 1.206 
83 1.21 1.203 1.202 1.201 1.199 1.198 1.196 1.195 1.193 1.192 
84 1.19 1.189 1.188 1.186 1.185 1.183 1.182 1.181 1.180 1.178 
85 1.18 1.175 1.175 1.172 1.171 1.170 1.168 1.167 1.166 1.164 

86 1.16 1.161 1.160 1.159 1.157 1.156 1.155 1.153 1.152 1.151 
87 1.15 1.148 1.147 1.146 1.144 1.143 1.142 1.140 1.139 1.138 
88 1.14 1.135 1.134 1.133 1.131 1.130 1.129 1.127 1.126 1.125 
89 1.12 1.122 1.121 1.120 1.119 1.117 1.116 1.115 1.114 1.112 
90 1.11 1.110 1.109 1.107 1.106 1.105 1.104 1.103 1.101 1.100 

91 1.10 1.098 1.097 1.095 1.094 1.093 1.092 1.091 1.090 1.090 
92 1.09 1.086 1.085 1.083 1.082 1.081 1.080 1.079 1.078 1.076 
93 1.08 1.074 1.073 1.072 1.071 1.070 1.068 1.067 1.066 1.065 ..... 
94 1.06 1.063 1.062 1.061 1.059 1.058 1.057 1.056 1.055 1.054 -.J 

95 1.05 1.052 1.050 1.049 1.048 1.047 1.046 1.045 1.044 1.043 o,1:-



% 
m 0 1 2 

96 1.04 1.041 1.040 
97 1.03 1.030 1.029 
98 1.02 1.019 1.018 
99 1.01 1.009 1.008 

100 1.000 

TABLE XI (Continued) 

3 4 5 

1.038 1.037 1.036 
1.028 1.027 1.026 
1.017 1.016 1.015 
1.007 1.006 1.005 

6 7 

1.035 1.034 
1.025 1.024 
1.014 1.013 
1.004 1.003 

8 

1.033 
1.023 
1.012 
1.002 

9 

1.032 
1.022 
1.011 
1.001 

..... 
'1 
Vl 



APPENDIX C 

SOLUTION FOR LEARNABILITY FOM 

REGRESSION, SKILL LEVEL I 



Pt. 
No. 

1 

3 

5 

6 

1.3424 0.3137 

1.6721 0.5401 

1.8751 0.7033 

2.0043 0.8195 

2.1038 0.9063 

2.1847 

1.0682 

1.3324 

1. 4928 

1. 6075 

1.6990 

Q 
Log Tot. 

2.7253 

3.5486 

4.0712 

4. 4313 

4.7091 

4.9437 

"L" 
or'.,1/m 

*Calculated Values 

1. Math Model ""' Y = a + B log X1 + Ba Log X2 + ~ Log Xa 

2. To convert to format for "Doolittle" solution, the following 
matrices are formed from above ·information: 
(Note: Column of X2 's multiplied by 10 to code) 

177 

m % 

7.2 1.0 .1.J424.·. 3.137 ·1.0682 

7.5 1.0 1.6721 5.401 1.3324 

7.8 1.0 1.8751 7.033 1.4928 
Y* = X* 

8.1 1.0 2.0043 8.195 1.6075 

8.4 1.0 2.1038 9.063 1.6990 

I 
8.7 1.0 2.1847 9.823 1. 7767 
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J. Transpose as follows: 

1.0 1.0 1.0 1.0 1.0 1.0 

x'* 1.3424 1.6721 1.8751 2.0043 2.1038 2.1847 

3.137 5.401 7.033 8.195 9.063 9.823 

1.0682 1. 3324 1.4928 1.6075 1.6990 1. 7767 

4. Now, to get X 1 X, rank will be 4 X 4: 

X 1 *X * - 6.o 11.1824 42.622 8.9766 ;;. -

11.1824 21.3301 BJ .382· 17 .161 

42.622 59.790 334.262 67.0726 

8.9766 17 .161 67.0726 13.5297 Matrix Line 
of Symmetry ..,. 

5. Now, to get X 1 Y, rank will be 4 X·1: 

X1 *Y* = 47.7 

89.746 

345.92 

72.078 



x 1x 

Lines 0 1 

(O) 6.o 11. 1824 

(i) > a x 21.3301 

(2) x x 

(3) x x 
~ 

(4) Ao 6.o 11.1824 

(5) Bo 1.0 1.8637 

. (6) A1 ' x o.48946 
' 

(7) Bi x 1.0 

(8) Aa x x 

(9) Bz x x 

(10) A,:, x x 

(11) Ba x x 

Ba == 2.7774 

Ba+ .026995 (2. 777395) 0.210678 

Bz = 0.135702 

2 3 

42.622 8.9766 

83.382 17 .161 

334.262 67.0726 

x 13.5297 

42.622 8.9766 

7.120 1.4961 

3.640 o.431 

7.4368 0.8806 

3.723448 0.100516 

1.0 0.026995 

x 0.282442 

x 1.0 

Bi+ (7.4368)(.135702) + (~8806) (2.7774) 1.7282 

B1 ::: 1. 7282 - 1.0092 - 2.44586209 

Bi = 1. 726862 
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X1Y 

g 

.. 
47.70 

I 
89.746 I 

I 

i 
I 

345.920 

72.078 

47.70 

7.95 

o.8459 

1.7282 

0.784452 

0.210678 

0.784452 

2.777395 

Bo - (1.8637) (1.726862) + (7.12) (.135702) + (1.4961) (2.7774) 7.95 

Bo= 6.0468938 

Y/10* = 6.0469 - 1. 7269 Log X1 + 1.357 Log Xa + 2. 7774 Log X3 

or 

Y = 60.469 - 17.269 Log X1+ 13.57 Log Xa+ 27.77 Log X3 



180 

Abbreviated Solution for Skill Level I 

X* = 1.0 5.5476 

1.0 8.4055 

1.0 10.4000 

1.0 11.8068 

1.0 12.8658 

1.0 13.7844 

x I* 1.0 1.0 1.0 

5.5476 8.4055 10.40 

x I *X* - 6.0 62.81 

62.81 704.53 

x'x 
·. 

Hows 0 1 

au (o) 6.o 62.81 

( 1) 704.53 

Ao j (2) 6.0 62.81 

(3) 1.0 10.468 

A1 J (4) 47.03492 

(5) 1.0 

.17852 

Bo 10.468 b1 = 7.95 

Bo= 7.95 - (10.468) (.17852) 

B0 = 6.081253 

Y* = 7.2 

7.5 

7.8 
' 

8.1 

8.4 

8.7 

LO 1.0 1.0 

11.8068 12.8658 13.7844 

X 1Y* = 47.70 

507.736 

x'y 
g 

47.79 

507.736 

47.70 

7.95 

8.3965 

0.17852 

NOTE: Yt = Y0 /10 

Math Model: 

or 

Y0 = 60.81+ 
1.7852 Log X* 

Example 

Y75 60.81 + 

1.7852 (8:4055) 

60.81 + 15 

Y75 = 75.81 
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Introduction 

The terms which are described here have been screened 

for relevancy to the subject areas covered in this research. 

Those terms which have been defined elsewhere in this work 

will be referenced to the section of the thesis in which 

they appear, and will not be repeated here. Definitions 

will, in general, be brief and will employ style patterns 

which are indigenous to the field of engineering, although 

it is recognized that other professional disciplines may 

have a natural interest in the subject matter. Where appro-

priate acronyms are listed in parenthesis after the term. 

Terms 

1. Complexity Function (CF) - This term refers to approx­
imate relations emperically relating complexity to some 
other parameter, such as cost or reliability. In gen­
eral, such functions depict reliability decreasing, and 
cost increasing as the complexity of a system or design 
increases. 

2. Conditioning (CG) - See definitions in section with 
same name in Chapter II of text. 

J. Cues (C) - This term is used frequently in experimental 
psychology documents to refer to a signal from a test 
conductor to a test subject (may be animal or human). 
Some cues are audio, others are visual (lights, color 
code, etc.). In other cases cue may be combined with 
some form of motivation such as click/food pellet, or 
punishment cue such as electric shock, or unpleasant 
noise. 

4. Design Complexity (DC) - This form of complexity has to 
do with features or parameters of an engineering design 
which contribute to its complexity. Examples of such 
features which tend to increase the measure of design 
complexity are such aspects as total number of parts, 
number of fasteners, or number of sub-assemblies. 
Others might be the number of different steps or proc­
esses required to fabricate, assemble, and inspect. 
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5. Evaluator/Experimentor (E) - This term simply means the 
person who is making the analysis or performing the 
experiment. 

6. Factor - This term can be considered a synonym of 
parameter as far is this research is dorteern~d (see 
Parameter definition below). 

7. Figure of Merit (FOM) - This term can be considered a 
numerical performance rating which is a measure of the 
relative performance of a system or design. Term is 
usually dimensionless or is considered so in its appli­
cations to decision theory. 

8. Improvement Function (IF) - This term is often used to 
describe the performance aspects of a system or design 
over time which tend to improve. Since both learning 
and other changes in a system performance may be 
included it cannot be considered as a synonym for 
"learning curve", but may be interchanged with the term 
"Progress Function" which is listed below. 

9. Job Specification (JS) - This term refers to the quali­
fications, performance/experience requirements, skill, 
and/or education that a prospective candidate must have 
in order to qualify for a particular job. Usually 
there is a corresponding job/position description which 
defines the duties, functions, and responsibilities 
which a candidate would be expected to perform. 

10. Job/Task Design (JD) - This term refers to the total 
activity of planning and specifying all of the neces­
sary steps, tools, equipment, environmental require­
ments, and/or any other performance criteria required 
for a qualified operator to perform. 

11. Job/Task Environment (JE) - All of the atmospheric or 
comfort requirements which are necessary for a worker 
to successfully perform his job. Included would be 
lighting, heating, cooling, ventilation, safety and 
health needs, and, in some cases, acoustical or struc­
tural dynamics attenuation~ 

12. Learnability (L) - This term has been defined in detail 
in the section by the same name in Chapter I. 

1J. Learnability Loop (LL) - This concept has been defined 
in Chapter I, and is depicted schematically in the flow 
diagram of Figure 4. 

14. Learning Curve (LC) - A learning curve is a graphical 
plot on either cartesian coordinates or on double 
logarithmic paper, which represents the rate of learn­
ing progress by humans, usually in performance of some 
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task or group of tasks. In the engineering discipline, 
this plot is usually made with time as the ordinate 
parameter, and number of units complete or simply num­
ber of units as the abscissa. In general, these curves 
will approximate an exponential shaped function, if the 
progress is normal. This function should be separated 
from progress and improvement functions by the fact 
that only human learning progress is to be included in 
a learning curve ••• not tooling, design, or other gains 
in performance which may be a part of progress or 
improvement functions. Figure 1 illustrates a typical 
learning curve plotted on double-log paper. 

15. Log-Linear - This term is often used to describe 
learning curves which are plotted on double-logarithmic 
paper. In general, such curves will appear as straight 
lines. This greatly simplifies computation of the 
slope, and will 1 of course, make these curves easier to 
plot. 

16. Long-Term Memory (LTM) - This term refers to the reten­
tion of information by an organism which is available 
for recall at a point in time which may vary from a 
few days to several years. (See short-term memory 
below for contrast.) 

17. Material Discount Curves (LTM) - This term refers to 
curves which are used to project the decrease in the 
cost of material and many purchased items, as the quan­
tity of the i teni purchased _is increased. Sometimes tables 
are used to reflect this information, and also double 
logarithmic paper is used since this function will fre­
quently have a shape similar to a learning curve and 
will appear linear on double-log paper. 

18. Maturation - This term refers to the sub-set of 
improvement or progress factors which relate to the 
segment of progress by individuals or other organisms 
that results from a time-related maturing or "growing­
up" process. Maturation is not considered a normal 
part of learning progress. 

19. Model - A model is an approximation of reality which is 
frequently used to forecast or predict performance 
approximations of real world situations. Models may b~ 
physical or analytical within this context. Analytical 
models are sometimes referred to as math models, or as 
algorithms which consist of a necessary and sufficient 
set of terms, values, and formuli needed to compute or 
predict an output value based on a known input or set 
of input values and recognized constraints or 
limitations. 
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.20. Monotonic Function - This term is used to designate a 
mathematical function, either theoretical or empirical, 
which has single maximum and minimum points. If the 
function is an increasing function, it would be 
referred to as a monotonic increasing function and con­
versely a monotonic decreasing function. Learning 
curves are normally monotonic decreasing functions over 
time. 

21. Motor Learning - Refer·s to the category of human learn­
ing that is primarily manual or physical. The prepon­
derance of learning by practicing athletes is motor 
learning and, to a lesser degree, the verbal or mental 
type learning. 

22. Motor Skill -,. This is the skill that is acquired by a 
transfer of training on the motor learning described 
above. 

23. MTM - This is an acronym commonly used to refer to a 
type of time study values that are determined by refer­
ence to standard tables, as opposed to making actual 
time studies of a job or task. The specific words are 
Methods Time Measurement or MTM. 

24. Operator - Within the context of this research, the 
terms operator, test subject, and worker are all inter­
changeable ••• the person who is performing the job or 
task. 

25. Operator Performance Rate (OPR) - This term refers to a 
performance rating given a worker by an observer which 
is relative to a standard time or standard output rate 
for a particular job or·task. If the person is per­
forming at a speed which is, for example, 20% above 
normal,his rating would be 120%. Conversely, if the 
individual 'is performing at a speed which is 20% below 
normal, he would be given a rating of 80% (see Figure 
6). 

26. Overlearning (OL) - Refers to condition frequently 
referred to in psychological documents which implies 
that an organism (animal or man) may be trained 
repetitively beyond the point that an acceptable per­
formance has been reached. In the case of the militar~ 
this technique can be used effectively to reduce the 
risk that an individual may forget a correct procedure 
or strategy under extreme pressure of battle. Over­
learning is also obviously important as a safety assur-
_ance strategy, and as a means to minimize unintentional 
demage to machines by operators. 

27. Parameter For purposes of this study, the terms fac­
tor, design feature, or parameter may be. used 



186 

interchangeably. A parameter is a term which is used 
to measure or gauge some feature or physical charac­
teristic of a system or design. This measurement is 
usually defined in some unit which is officially 
accepted, such as weight in grams or volume in cubic 
feet, etc. 

28. Perceptual-Motor Function (PM) - This term refers to 
terminology used in the experimental psychology disci­
pline to describe an activity which is primarily 
accomplished by physical effort as opposed to verbal or 
mental activities. 

29. Producibility (P) - This systems specialty parameter 
refers to the inherent capability or characteristics 
which enable a system to be manufactured, inspected 9 

and/or checked out. 

JO. Progress Functions (PF) - This term refers to the class 
of functions, which although related to learning 
curves, cannot be interchanged since a progress func­
tion should include all improvements, maturations~ 
learning, or other advances in technology or manage­
ment which would tend to reduce resource requirements 
over time. 

J1. Reinforcement - This t'erm frequently appears in psy­
chological journals and is used to infer that anything 
which tends to help a person to recall from memory or 
to accelerate the learning process, is considered a 
reinforcement. Sometimes reinforcements may be con­
sidered as positive or negative depending on the pur­
pose or objective. One form of reinforcement would be 
to repeat a rule to a group of army recruits to assure 
a transfer to memory. A memorized poem may be repeated 
over several times by a student to reinforce the 
memorization of this passage. 

32. Short-Term Memory (STM) - The part of an individual's 
recall capability which enables him to immediately 
recall from memory materials to which he had only a 
brief exposure. Serialization is an important feature 
of this aspect (see the section on Short-Term Memory in 
Chapter II). 

33. Slope in Percent (m) - See section entitled Learnabil­
ity Concept in Chapter I. 

J4. Sub-Task - A sub-task refers to a separate part of a 
job or task, in other words, one of several procedural 
steps required to complete an activity. 

35. System - A system is a planned 9 integrated assembly or 
grouping of hardware 9 software, and/or human elements 



which function as a unit to produce some specific or 
unique desired effect or result. A subsystem is sub­
ordinate to a system, but must meet the same definition 
criteria. 

36. System Specialty Parameters (SSP) - Expressions of sys­
tem performance variables or characteristics concerned 
with the over-all technical effectiveness of an inte­
grated system. System specialty parameters are used in 
system modeling, system trade studies, technical per­
formance measurements, and assessments. Typical exam­
ples of specialty parameters are reliability, avail­
ability, maintainability, safety, survivability, etc. 

J7. Systems Engineeri~g (SE) - The discipline in which 
engineering principles are used to plan, group, design, 
integrate, coordinate, specify, analyze or otherwise 
bring together all of the elements or component parts 
of a system such that each element operates in unison 
with all other elements of the system to produce a pre­
dictable and desired effect or output when operating in 
a specified environment. 

38. Test Conductor (TC) - A test conductor is a researcher 
who supervises an experimental test run or performs the 
test himself. 

39. Test Subject (S) - A familiar term in experimental 
psychology used to describe the organism (human or 
animal) who is a part of the experiment. In some 
experiments, the test subject would be the prime inter­
est of the research, but in this work the test subject 
is merely playing a supporting role. 

40. Time Series - This well-known statistical analysis 
technique employs an artif~cial parameter (called time 
series) which is created from selected sub-factors 
additively or by a multiplicative process. This macro­
variable when plotted over time produces a trend line 
which is one basis for forecasts or predictions of 
future performance. 

41. Training Transfer - This is a term used frequently in 
psychology anals to refer to the part of a trained 
skill that is actually learned by the trainee. 

42. Weighting Coefficients - These values are usually 
expressed in fractional parts and are used to transfer 
the desired emphasis to alternative performance ratings 
or estimates of value. The sum of such weights must 
always equal 1; if whole numbers are preferred the sum 
must equal 10. If there is no particular emphasis 
desired by the decision maker, then each alternative 
will receive an implied weight of one. 
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