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QUADRATURE VARIATIONS IN THE DISCRETE ORDINATES
APPROXIMATION TO THE BOLTZMANN

TRANSPORT EQUATION
CHAPTER I
INTRODUCTI ON

The fundamental problem in nuclear reactor theory is the determi-
nation of the neutron distribution N(Z, E, 2, t) as a function of space,
energy, direction, and time. The migration o.f such particles through
various media is most accurately described by the Boltzmann transport
equation [1]. In its mos%t general form, the transport equation des-
cribes the behaviour of an inhomogeneous mixture of mutually interacting
pa.rticles‘. Since the neutron is an elementary, wncharged particle, sev=-
eral simplifying assumptions mey be made when the equation is applied
to nuclear reactors. These are:

(1) That neutron-:;eutron collisions may be neglected. This
assumption is wvalid since, even in an ex‘c;remely powerful 'réactor, the
neufron density is negiigible compared to the density of the nuclei
.cpx}stituting the medium.

(2) That between collisions the neutrons travel in straight lines

at ‘a constant energy. This assumption is true since the only forces of

importance acting on the neutrons are short range nuclear ones.

l i



(3) That interactions, or collisions, between thé neutrons and
the medium are well defined events and that neutrons emerge from a colli-
sion at the same point in space at which the collision occurred. This
assumption is justifed by the nature of the nuclear forces and the rela-
tive nuclear transparency of .the medium.

While the second and third assumptions would be violated if the
transport equation were applied to charged particles, none of the
assumptions is contradicted when photons are treated. The form of the
trensport equation to be used is, then, equally valid for problems in-
volving radiative transfer in stellar atmospheres and the attenuation
and scattering of X and y rays. A

The quantity of basic interest in nuclear reactors is the neutron
engular flux (%, E, Q, t) which is defined as the product of the

neutron speed, v, and density, n(¥, E, &, t). In this equation,

T = the space coordinates.

E = the neutron energy in the laboratory system.

Q = the unit vector in the neutron direction of motion.
t = the time.

The scalar, or non-angular dependent, neutrzon flux is related to

the angular flux by

¢(%, E, ) =ﬁ(?~, E, &, t)ad (1)

2
If the probability, per unit path length, that a neutron interact with

the nuclei of the medium is defined as

o*(%, E)



then one important aspect of the scalar neutron flux is immediately

apparent. It dis that the simple product
Rx(;s E, t) = ¢(?3 E, t)cx(;’ E)

gives the reection rate, Rx (;,E,t), for process x.

It is now possible, using the definition for the angular flux and
the assumptions previously stated, to obtain & mathematical expression
for the time rate of change of the neutron density, n(r, E, ﬁ, t).

Since

|3

va(r, E, Q, t) = o(¥, E, 9, t)

then

(P, B, 8, t) _ 13y E, 8, t)
ot v at

vhich must be equal to the sum of all the factors contributing to the
density change.

There are two basic reasons for a change in the neutron density.
The position coordinates may change due to motion of the neutron or the
energy-direction variables may be altered due to collision with the med-

ium. In the absence of an interaction, due to transport of the neutrons:

o B _o
Q T

-a—ﬂ)-— )
X dx ¥ 3z~ % W

z

If an interaction with the medium occurs, the collision process may re-
N . s

sult in the neutron being scattered, ¢ , out of the energy range and

direction of interest:

- [ az af (¥, E, Q, t)[cs‘(‘?, E->E', Q- Ez”)]



If the collision results in the neutron being absorbed, ca,
(%, E, @, t)o*(¥, E)

The collision may also result in a neutron being scattered into the

energy-direction range of interest:

-iL/\dE'dﬁ' (¥, E', Q', t) o°(F, ' + E, 9'» )

In addition, there may be other sources of neutrons such as the fission
process, of, neutron producing materials, or particle accelerators.

For the present, let these be represented by

. .

s(F, E, 9, t)

Summing all these terms, noting that

ﬁx at o®(r, E+E', 2+ 4') =°(x, E)

and defining the total cross-section, ot, as

o*(2, E) = o*(F, E) + ¢°(7, E)

yields the transport equation

IWEE LI . 4. e, 5 bt S E, 8, t)

'

-¥(¥, E, &, “E’t(?’ E)]

, +de'd§' ¥(Z, B', @', t)[os('f, E' > E, Q' +s‘z£]

(2)
which 1is essentially a statement of the law of conservation applied to

neutrons.



The single most important application of the transport equation
is the determination of the neutron flux distridbution in the stationary
cese. Removing the time dependence from equation (2) and setting the

left hand term equal to zero results in

a - V‘P(i", E, ﬁ) + lp(?, E, ﬁ) ot(?’ E) .

=ﬁE'd§’ W(F, E', 9')o°(F, E' > E, Q' » Q)
+ 8(r, E, &) (3)

the stationary transport equation. There are two classes of problem
which are of primary interest. Although the S(F, E, &, t) term was

- defined to include neutrons produced by the fission process, any such
interaction process depends on the neutron flux and the fission pro-
duction term may be. combined with the tota}_crbss-section term. The
remaining terms in S(T, E, ﬁ, t) are then extraneous sources in the
sense that they represent neutrons introduced into theAsystem. ﬁnder
these conditions, solutions to the transpor? equation are seen to fall
into two categories:

(1) If the extranecus source term is not zero, the problem con-
sists of determining the reéulting flux distribution in a given config-
uration. The equation is non-homogeneous.

(2) If the extraneous source term is zero, the problem is that
of determining the nuclear or geometricel configuration for which a
stgtionary flux distribution is possible. This equation is homogeneous.

The solutions to problems of this type constitute the main body

of nuclear reactor theory. In particular, the solution to the



homogeneous equation leads to &n eigenvalue problem allowing calculatioa
of the critical size or critical mass of a reactor. The solution to the
stationary equation is also of basic importance since, in theory, the
time dependent problem mey always be reduced to a staticnary one [2].

If the Laplace transform of & function, F(t), is defined as

P>
F(s) = ™% P(t)at

: 0
then introducing the boundary condition that (%, E, ﬁ, 0) =0 and
teking the transform of squation (2) gives .

s = a = =t Ay _S'

T V=~ WS -ypo 4 dE'dQ'y'c (&)
which is of the same fo?m as equation (3) since the s/v modifying v
in the left hand ferm may be combined with the right hand side to mod-
ify the definition of the total cross-section. Solutions to the stat-
ionary problem of equation (3) are then also solutions to the trans-
formed equation (4). In practice, considerable difficulty msy be
encountered in finding the inverse transform. Howgver, if the stationary
equation is soluble, there are several practical methods for extending
the solution to the time dependent case.

There are several physical aspects of nuclear reactor design
which may be applied in considering possible solutions to equations (3)
and (4) especially in the homogeneous form [3]. First, the angular flux
must everywhere be finite and non-negative since negative fluxes or

densities do not admit of a valid physical interpretation. Since only



one eigenfvnction resulting.from the solution of the homogeneous equa~
tion can meet this requirement, only the associated eigenvalue is of
interest. Second, the nuclear reactor must have definite boundaries.

' Since the solution to an eigenvalue problem for a finite system must
yield a discrete set of eigenvalues, these may be arranged in descending
order. If the eigenvalues are -An’ with Ao the largest, then the gen-
eral solution for the transformed angular flux of eguation (!) may be

shown to be [2]

o
" W(F, E, 4, t) =Z an\ut,n(?, E, 0) Rt
n=0
so that, at large t, when the largest eigenvalue predominates
: At

W7, E, 2, t) e N (7, E &) e
and indicates that the flux distribution changes.exponentially when the
réactor is perturbed. This equation is also of interest since it shows
that the value of Ao controls the behaviour of the reactor. If Ao
is negative, the system is subcritical and the flux distribution is con-
trolled by the extraneous sources. If Ao is exactly zero, the system
is critical and the flux, and power level, remain constant. If Ao is
greater than zero, the éystem is supercritical and the flux and power
level increase exponentially.

An additional consequence of the eigenvalue problem posed by the
homogeneous transport equation is that the positive eigenfunction is
determined only to within an a;hitrary multiplicative constant. This

indicates, as is also experimentally observable, that a change in flux



distribution caused by a variation in Xo’ which is then returned to its
original vaelue, changes only the magnitude, not the shape, of the dis-
tribution. Therefore, the neutron flux distribution found by solving

the stationary transport equation is e general solution in the sense

that it yields the correct distribution for a given critical reactor

operating at any constant power level.

As a result of the foregoing discussion, the balance of this study
will be devoted to methods for obtaining solutions to the stationary

transport equation.

© e adnt s St i A\ btk dma? St



CHAPTER II

REVIEW OF PREVIOUS WORK

The search for methods which might be suitable for obtaining solu-

tions to problems involving the stationary Boltzmenn transport equation

& - v+ yot =J?1E'd§'¢'os(?, E'>E, 0' - 0) +8 (3)

has occupied a prominent place in the literature since the initial
derivation of the equation. Much of the early literature was devoted
to problems not connected with neutrons and, indeed, antedates the dis-
covery of the neutron by many years. Some,of_fhe more important early
applications of the equation were to radiation transfer and equilibrium
in steller atmospheres, penetration of photons in various media, and
the study of cosmic rays. Most of this early work is characterized by
the extreme nature of the assumptions made t0 simplify the transport equa-
tion. The type of problem considered was also less complex than that
encountered in neutron reactor theory. A star, for example, is an ex=-
tremely large body which.is relatively homogeneous.

The assumption most widely used to simplify the transport equation
is the removal of the energy dependence of-equation‘(3). The resulting

-equation

' 8. wE, 8) + ¥F, B)ob(F) =fdﬁ" W(FE, A)eS(F, At > D) +s (5)

9
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is the "constent cross-section" approximation or the "monoenergetic"
transport equation. Solutions to the monoenergetic equation are not,

in general, obtainable particularly when finite boundaries or material
interfaces are present. The particle flux in an infinite, homogeneous
medium with an isotropic point or line source may, however, ve deter—
mined in.a straightforward manner. The introduction of even a simple
boundary condition greatly complicates the treatment. The classical
"Milne Problem" treats the infinite helf-space defined by =z > 0.

There is a net flux in the negative 2z direction and the half-space

z < 0 1is taken to be a vacuum so that particles emergent at 2z = 0 can-
not return. The description is roughly that of & star. The particles
- are photons which are produced deep within the star (z = +«) and emerge
from its constant cross-section, isotropically scattering interior at

(z = 0). The photon angular distribution at the surface mey be obtained
by the Wiener-Hopf method [U4] and probebly represents the most difficult
type of problem for which an analytic solution is possible. .

As exact solutions are not possible for more complex types of
problems than those considered sbove, some of the methods which mey be
applied to more difficult cases will be briefly discussed. The most
powerful of these is the spherical harmonics method [5] in which the
integro-differential transport equation is reduced to a set of differ-

. ential equations. This is done by expanding those terms of eguation (5)
which exhibit angular dependence in sets of orthogonal polynomials. The
regulting series f'or each of these functions is then substituted back
into the transport equation and the orthogqnality property used to ob=-

tain an infinite set of differential equations in the angular flux
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moments. Since there are an infinite number of equations, an exact so~
lution is impossible. However, any degree of accuracy may be had by
increasing the number of equations retained. The various moments mey

elsc be related to physicel quantities in thét the first moment corre-

sponds to the scalar flux, ¢(¥), and the second to the particle current,

3(3) =f§¢(?, 8)ad.

Retention of the first four equations in the infinite set effec-
tively removes the angular dependence from the- flux and leads to the
diffusion theory approximation. This approximation is widely used in
designing certain types of nuclear reactors. However, neglect of the
angular dependence leads to inaccuracies near strong absorbers, materisl
interfaces, and system boundaries. Diffusion theory is, therefor, most
useful in large, relatively homogeneous reactors. There are mauy add-
itional refinements which may be included in diffusion theory to extend
its range of applicability. Until recently, most practical reactor
analysis was accomplisped through the use of computer programs designed
to solve the diffusion equations. The current trend to smaller, more
highly enriched, nuclear reactors has, however, necessitated th: use of
more accurate a.pp'roximations,_‘ to the transport equation.

The spherical harmonics formulation of the Boltzmann eéua.tion is
capable of yielding extremely accurate results if a sufficient number
of‘ the expanded equations are retained. However, the rapid increase in
the number of calculations required for the higher order terms and the
difficulty encountered in treating multidimensional geometries limit its

utility. Thus, while some use of the method has been made through the
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application of computerss such.approximetions have been limited to lower
order and one dimensional calculations [6].

The last method to be covered will be discussed in somewhat more
deteil because of its relationship fo the trénsport methods currently
used. The basic technique, known as the method of discrete ordinates,
was suggested by Wick [7] and has been developed and extended by
Chandrasekar [8]. As the method is restricted to one dimensional geo-
metries, equation (5) will be used, in a form suitable for a homogeneous,
isotropic medium, to illustrate the concept. Let the single coordinate
be z(; ~ z); the angular dependence is only sn QZ(QZ + u); the scatter-
ing crosé-section is indeperident of position and angle [oS(%,Q' + {)+0S];
and, due to symmetry, the integration over u is from -1 to +l. Equa-

tion (5) then becomes
1

w ey et s [ e s (6)
' -1
The major difficulty with the transport equation is caused by the
presence of the integral term on the right hand side of (6). Rather
than attempt to remove this term by some purely mathematical treatment,
the Wick-Chandrasekar concept is based on immediately evaluating the in-
tegrals through some numerical technique. Let the integral be approxi-

mated by some quadrature formula

, 1 _N
f P(z,u')au’ =L b ¥(z,u ) (1)

-1 n=1
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and a system of N differential equations is obtained:

N

dw(z,ui) ) £
u, —g— + lli(z,ui)d (Z) = bn w(zsun) [n=l,23' . 'N] (7)

i dz
n=1

each of which involves summation of the series approximating the integral
over all N wvalues of Mo This approach is of interest in that it
mekes direct use 6f & numerical integration technique to solve the trans-
port equation. Several consequences of the method are apparent. The
solution to equation (6) now consists of a set of N differential equa-
tions in N unknowns. The method is most suited for an iterative pro=-
cess since the calculation is simplified if a value for all Wy is
aveilable for the determination of a Hy . The discrete ordinates, the

M » mey be chosen in several ways. In particular, if the y(z,u) are

assumed to be given by a polynomial, then g Gaussien quadrature, with

?he “n

1 N
f Y(z,u)dp = Z v w(Z,un) (8)

-1 n=1

based on the zeros of the Legendre polynomial of degree n+l, gives an
exact result for ¢(z,u) of degree 2n+l or less. This treatment; )
while seemingly ouite different, has been shown to be almost equivalent‘.
to that of the spherical harmonics method.

The prime disadvantagé of the method of discrete ordinates, as
applied by Wick and Chandrasekar, lies in its extension to multidimen=-

‘sional spatial systems. There is no derivation enalogous to that of:
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the Gaussian quadrature for more than one spatial dimension. Therefore,
vhile there is no bar to use of the method in such systems, it is not
possible to set limits on the accuracy of the resulting solutions nor

to determine, a priori, an optimum set of discrete ordinates.

The method of discrete ordinates has been applied to multidimen-
sional systems by Carlson [9]. This treatment, the 5, method, differs
basically from that of Wick-Chandrasekar in that no formal justification
for the choice of the ordinates is involved. Instead, a number of
points on the unit sphere defined by Q are specified and their

weighted sum
1 N
- " ~ >
GO ) v Gy (9)
do n=1
taken to approximate the integral in the transport equation. This Sn

technique has proven to be quite powerful in finding solutions to gen-

eral problems involving the transport equation.
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CHAPTER III
THE DISCRETE ORDINATES (sn) METHOD

Since the discrete ordinates method forms the basis of the work
performed in this study, a fairly detailed presentation of the features
of the method will be made [10][11]1[12]1[13]. In particular, those as-
pects of the technique which are.subsequently altered will be emphasized
in order to facilitate the discussion of the next chapter.

Although the gener;l purpose of the discrete ordinates method is,
of course, the solution of the linear Boltzmann transport equation, de-

tails of the process are more clearly understood if the derivation of

the difference equations is presented directly rather than as &a conse-

quence of the application of differencing techniques to equation (3)

The presentation involves the fundamental concept of the conservation

of particles, along with the assumptions of Chapter I, .in terms of
finite differences of the variables. Although the derivation will be
made a&s general as possible, the work performed has been based primarily
on configurations having Cartesian coordinate (x,y,z) geometry and,
where necessary for completeness, this geometry will be used. As the
formalism used in treating the energy dependence is not directly con-

nected with the Sn method, it will be covered in the next chapter

.and, for clarity, the energy subscripts omitted from the following.

15
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Consider the three dimensional (x,y,z) geometry shown in figure 1.
Let this represent a general spatial mesh cell from among those formed
by superimposing.a coordinate grid on the configuration to be analyzed.
The mesh intervals and boundaries in each direction are xi(i=0,I),
yJ(J=O,J), and zk(k=0,K). There are a total of IxJxK mesh cells in
the configuration. The dimensions of the cell shown in figure 1 are

Ax = (x

4l " xi), Ay = (yj+l - yj), and Az = (zk+l - Zk)' If the

center of the cell is defined to be located at xi+l/2’ yj+l/2’

59 then the volume is given by V = Ax Ay Az,

Zi+1/ 1+1/2,541/2,k+1/2

The area of the cell face in the y-z plane is denoted by Ai,j+l/2’

K+1/2 = Ay Az, end similarly for the other faces in the x-z,

= Ax Az and x-y, C = Ax Ay ©planes.

Bi+l/2,,j,k+1/2 i+l/2,3+1/2,k
In figure 2 is shown the first octant of the unit sphere defined
by §. The discrete ordinates values to be used in the transport equa-
tion integrel may be thought of as points on the unit sphere with origin
at (0,0,0). Let there be M such points with the corresponding angular
flux denoted by wm(m=l,M). The average value of the angular flux in
each mesh interval for each direction, in accord with the convention

established above is ¢ There are IxJxKxM wvalues

m,i+l/2,j+1/2,k+1/2"
for this quentity and, to avoid confusion, these will always be denoted
.by Y. Each m point is fully specified by giving the direction co-

sines (u,n,E) with respect to the x, y, and z axes. The law of

direction cosines must hold so that, for each point:

2

m

2 2 -
+ g+ Em 1.0

As shown by equation (9), there is a weight associated with each point



Ly f—————— =
AX Ay
i .
Ki——— x az
=
| l
| o
i // | l// y
xl ————— '—4L‘— —————— l—ﬂl'
| 7 \ v/
X+l fpm —————— e -V

Figure 1. - Rectangular coordinate mesh cell.
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1. Y(Q) represents the angular flux between the directions m - /2, m + 1/2.
2. The intersection of lines of constant (y, n, §) determines each direction.

/ \ .
\

L— 1 = constant N

Figure 2. - Unit direction vector coordinates.

8t
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ﬁm = (um,nm,gm). These weights must sum to the area of the unit sphere

but are given in units of 4w so that a condition on the W, is

Then, by equation (9), the scalar flux is

M

o=) v ¥ (10)
m= :

Although the weights may be arbitrarily assigned, subject to the above
restriction, the most consistent set is obtained when each weight is
associated with that portion of the unit sphere surface associated with
its corresponding direction. -

Using the definitions and subscript conventions above, the rate
of change of the neutron density, n = w/v, between times ts+l and

ts, for the direction range m in the cell of figure 1 may be written

as

W
2

v '[@%+1,m,i+1/z,J+1/2,k+1/z

h yﬁ,m,i+l/2,j+l/2,k+l/2)vi+l/2,j+l/2,k+l/%] (12)

The number of neutrons crossing a cell face is the product of the angu-
lar flux at the cell surface, the cosine of the angle between the sur-
face normal and the neutron direction, and the cell surface area. For

the same direction, m, the flow into the cell through the i, j, and
\ :

!

k faces is
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Volhy, g41/2,k41/2 841 /2, m, 1, 341 /2 k1 /2 OF

* VuPian /2,5 k01 /2%41/2,m,141/2, 3, k01 /2 O (12)

* vofnCiaa/2, 34172,k Ys41/2,n, 141 /2, 4172, k5%

Again, for direction m, the flow out through the i+l, 3+1, and k+l

faces is -

Vi Aien 417214172 Yee1/2,m,i41,040/2, k4172 OF

* ¥y Biase,ge1ke1/2, Vse1/2,m,141/2,041 k1 /2 O (13)

* Vb Cia1/2,g41/2,k01 Ye+1/2,m,141/2, 341/2, ki1 OF
For the present, let the.number of source neturons produced in the cell

per unit .direction, per unit time, and per unit volume be SS +1/2,m,

141/2,441/2 k+1/2" Then the number of neut:,rons generated in the cell

‘18

Vo Se1/2,m,1+1/2,341/2,k+1/2 141/2,341/2,k+1/2 OF (1k)

which includes neutrons scatteréd into the direction m. The number of
neutrons removed from the cell by all collision processes is the _product‘_
of the average flux, the angular area, the cell volume, and the time

interval .

o
m 9a+1/2, i+l/2,J+1/2,k+1/2 Is+1/2,m i+1/2,J+1/2,k+l/2 i+l/2,J+l/2,k+1/2
(15)

Equating the rate of change in neutron density to the remainder of these

ternms, dropping the central subscripts,.and dividing by Vo At ylelds

At
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a neutron balance equation for the .finite cell:

('ws+l = ‘PB)V
vae Ay - A g) v (Bl - Biyby)

+ g(ckxpk - Ck+1“’k+1) + 8V - o YV (16)

Using the definitions of the various surface areas and the volume,
dividing through by Ax Ay Az yields:
\PS"'l - \yS N(U’i_,,l - Wi) n(wj,’,l - “’J) . E(‘#‘k,,.l - l"k)

+

%
vt DX by bz +toy=8 (17)

or in the limit,

%%%+u%£+n%yq"—+ 5%%+0t¢=8 (18)
which is the three dimensional rectangular coordinate representation of
the transport equation (2). Extension of‘the derivation to other geo=-
metries is relatively straightforward.

All the terms in equation (16), with the exception of S are
precisely rendered. In order to obtain a more specific description of
this source term, assume that equations (16) and (17) represent not the"
monoenérgetic problem but some specified energy range, AE, and that
their energy dependence exterior to this range is governed by similar
equations. The source terms, S(AE), may then be separated into three |
components: external sources, fission sources, and scattering sources.
The external sources inclﬁde those due to particle accelerators and |

neutron producing materials. They correspond to those grouped into the

extraneous source term under (1) of Chapter I and lead to the
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non-homogeneous equation mentioned there. In general, these source
strengths are known and may be put directly into the calculation. It
is, therefore, sufficient to denote them by

Q(AE)S+1/2,m,i+l/2,j+l/2,k+l/2

which has dimensions of neutrons per unit time, per unit direction, per
unit volume.

The remaining components are proportional to the neutron flux.
The fission source results from the interaction of a neutron with a
fissionable nucleus. According to the definition of Chepter I, the re-
action rate for the fission process is proportional to the scalar neutron
flux

F(E) = ¢(E)s" (E)

The meen number of neutrons per fission, which may be energy dependent,
is usually denoted by v(E) so that the total number of neutrols produced

is given by

F(E) iv/r\v(E)of(E)¢(E)dE
E

These neutrons may be emitted at various energies. If X(E) is defined
as the fission spectrum, or normalized probability that a neutron
appear st energy E, the number of neutrons produced by the fission

process in the range AE is

F(AE) = X(AE) v(E)of(E)¢(E)dE
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The collision source for the energy range AE 1is the product of
the scattering reaction rate at all other energies and- the probability
that a scattered neutron will emerge in AE. It will be assumed that
this scattering distribution function is known since it is a property

of the medium. The inscattering source term then consists of

ST (AE) =fa‘-8(‘E > AE)¢-(E)dE_:

E
The total source, S, is the sum of these three terms.
Since it is primarily desired to solve the time-independent trans-

port equation, equation (16) becomes

+ %WV = SV : (19)
Equation (19), representing the three dime’n.aional transport equation in
rectangular coordinates, is now in .a form amenable to numerical calcul=-
ation. There are, however, seven unknowns, not including -the scalar
fluxes appearing in the source terms, in this equation. These unknowns
are the angular fluxes at six faces of the rectangular parallelopiped
enclosing the volume V and the average angular flux of equation (15).
Three of these angular fluxes are known as a result of the boundary con-
ditions placed on the configuration. The rest must be specified by they
introduction of some relationship between tl;e various angular fluxes.
Since the main body of-the célculation is concerned with the repea;ted
determination of the angular fluxes over the .spatial mesh, it is prefer-

eble to use & physical model which is as simple as possible. Two such
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relationships are currently used:

(1) The Step Model
In the step model it is assumed that each of the unknown
angular fluxes at the opposite cell boundaries is equal to
the central average angular flux:

L= =y = (20)

(2) The Diamond Model
In the diamond model the unknown boundary angular fluxes are
assumed to have an average value, wi+l + wi)/2 equal to the ’

central average angular flux:

¥y

1 T Y < wm + WJ =Yy t W =2 (21)
It is seen that knowledge of. the three boundary engular fluxes, either
from the boundary conditions imposed or froz;x celculation of the previous
adjacent mesh cells, i:lus either of the.ab‘o‘ve relations (20) or (21)
changes the form of equation (19). For the. diamond model, for example,
if the ¥, ¥ 50 ¥, are given, equation (21) yields for the central av-

erage angular flux:

Ay * AdY + n(By, + By, + E(Ceyy * C ¥ + 8V

+ ctV

(22)

i:

2 +2n B, . +2E

WA 341 Cre1

ix; terms of the known angular fluxes. The opposite boundary fluxes are‘
then also found by equation (21)

Vieg 2L Y _

Ve = 28 - ¥y N (23)

Vep ™ 20 - Wy
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so that the resulting system of equations involves three unknowns in
three equations. It should also be noted that there is a similar set

of equations (19), (22;, and (23) for every characteristic direction,

m, used in the angular éuadrature. The essential feature of the deriv-
ation of equation (22) is that the value of the source term in the
numerator for some energy range, AE, requires a knowledge of the fluxes
at all other energies. This was shown in the previous discussion of

the inscattering and fission sources where each of these terms was

taken to be proportional to the scalar flux. Thus, solution of the gen-
eral form of equation (22) must constitute an iterative process. A fur-
ther discussion of the nature and treatment of these sources will be
reserved for the next chapter.

It is now possible to describe the flow of the discrete ordinates
calculation.. For simplicity, a two dimens;pndl rectangular coordinate
illustration will be used. It is shown in figure 3 and has three spat=-
ial mesh intervals along each of the I and K &axes for a total of
(IxK) nine intervals. Let the angular quadrature consist of only one
directioq in each quadrent. There is then a total of four directions,
M=lb, along which the angular fluxes must be determined. Assume that an )
initiai estimate of the scalar flux is made, to allow calculation of the
source terms,vand.that-gpe-boundary conditions are known. The form ofI‘
the boundary conditions is usually such that the initial behaviour of
thg-anguiar fluxes is specified. For example, a "vacuum" or "no return
_current" condition states that the incident angular flux along all

characteristic directions at‘fhax boundary is zero. The subscript -con-

" ventions used in equation (11) will be .followed. Thus
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1. The ¢ areangular fluxes at the spatial mesh interfaces.
2. The ¢ areangular fluxes centered with respect to all differenced variables,
3. Circlein IK =5 indicates order in which directions are executed.

YA
Uy2L 3
K=3 /2
- : Ql,z%.,z% -
U] ] 1 2=
1,0, 25/\ 2,0, 2§ L,2,2./ Ve /| 13, 5
ey KT IK = 8 IK=9
) s
g 2 41'1,2%,2 g:’fm,i,k
" b, U= U, i+ 102, k+1/2
(o1 |IK=4 IK=5 K= 6
’1‘4,2%,0
IK=1 1K =2 IK=3 #
k=0
i=0 =1 =2 2 1-3
U101 0
2

Figure 3. - Angular-spatial quadrature flow diagram.
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Ynyi = ¥m,141/2,141/2

mesh interval bounded by i=l, i=2, k=1, and k=2. The characteristic

denotes the central average angular flux in the

directions are numbered in the order used as indicated in the same fig-
ure.

The calculation is begun by using the known values (from the
boundary conditions) of wl,2—l/2,3 and wl,3,2—l/2 in equation (22)

to determine in the mesh interval 1IK=9. Equations

¥ ,2-1/2,2-1/2

(23) then give values for wl 5 The central
. E

—/2,2 84 ¥ g 970 5
average angular flux for interval IX=8 may then be found and, con-
sequently, the angular fluxes at the surrounding mesh interfaces. At
the left hand boundary of the configuration, the appropriate conditions

are applied and the for the top row found for the direction

¥2,1,3
m=2. The calculation then proceeds down to the middle row and, using
the now known wl,i+l/2,2 sweeps from right to left and back. When the
bottom row is fully determined for the wl,i+l/2,0 and w2,1+1/2,0’ an
upward sweep is performed to complete the angular flux array by finding
Y, . and wh . .+ All the angular fluxes required for the whole
3,133 ’l’vj
mesh sweep are then known. Each such complete sweep, or pass, is an
"inner" iteration. Figure 3 shows only the fluxes necessary for the
foregoing description. The whole angular flux array comprises the four
angular fluxes at each mesh interface and four central average angular
fluxes in each mesh interval. Only the mesh interval IK=5 in the

figure shows the complete array. After each complete inner iteration,

the scalar flux in each interval is revised using

¢ = }f: ¥, 141 /2,k+1/2 (10)
m=1
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When the inner iterations have converged, (i.e., when the angular
fluxes -do not very by more than some specified convergence criteria) the
resulting scalar fluxes are used to updéte, or recalculate, the various
gource terms. This process is done in an "outer" iteration. The steps
in reeching & solution may be surmarized: Using en initial scalar flux
estimete, the source terms for the first group are found. The angular
fluxes are then converged by performing the required number of inner
iterations. The scalar fluxes and source terms are updated in the outer'
iteration and the whole process, of inner and outer iteration, continued
until final convergence on either, or both, the angular and scalar
fluxes is attained. In a standard Sn calculation, the procedure is
identical for all geometries (with the appropriate changes in the areas
and.volum;s) and types of discrete ordinates. It is evident that direct
application of equations'(l6) or (17) in this manner affords one method
for solving the time dependent transport equation,_ The times, ts+1
end t_ may be considered merely other "discrete ordinates" and the
solution obtained for each time step.

Various convergence tests and techniques for accelerating conver- )
gence are utilized in the discrete ordinates approximation. The methods
presented in the following Chapter are meent to be fully compatible with
these existing techniques and to bé used in conjunction with them if sob

desired.



. CHAPTER IV
QUADRATURE VARIATIONS

Solutions to the general stationary transport equation
R ¢ VY(F,E,R) + W(F,E)0"(F,E)

=\/?1E'aﬁ'w(?,E',ﬁ')Zs(F,E‘ + E,Q'+ Q) + 8(F,E,2) (3)

are, at present, available only through recourse to numerical methods
tlh]. Of the methods which have been attempted, the discrete ordinates
approximation presented in the preceding f:hapfer has proven most sat-
isfactory. The application of this method, particularly to complex |
spatial configurations requiring high order angular quadratures, is
restricted by several factors. The single most important limitation on
the method is the extremely large amount of calculational effort re-
quired to solve detailed multidimensional problems. An ancillary prob-n
lem, which is partially a consequence of using lower order angular
quadratures in an attempt to simplify the calculation, is the return of
incorrect particle flux distributions." Tha,}: is, although the choice of
& spatial mesh is relatively simple since the physical composition of
the configuration is known in advance, selection of the angular quad-
rature set is moi'e difficult since the' behaviour of the angular fluxes

is not known prior to the calculation.
29
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In this chepter, several methods are to be presented which remove
or minimize some restrictions inherent in applications of the discrete
ordinates approximation. In addition, some aspects of these methods
may be utilized to allow extension of the approximation to classes of

problems not previously susceptible to calculation.

Machine Solutions

In implementing these methods, it is necessary to use high speed
digital computers to obtain solutions to the discrete ordinates approxi-
metions to the transport equation. In making comparisons between the
methods to be presented and the standard Sn techniques, considerable
care has been taken to assure that the computer hardware and software
were identical for all calculations. The stendard multidimensional Sn
program is quite complex although there is little variation in pro-
gramming between different machine codes [15][16]. In the results pre-—
sented all operations other than those directly involved in the work
performed conform %o the standard treatment. The conclusions drawn,
are, therefore, intended to be applicable to the general discrete ordi-
nates method and not dependent on either machine equipment or program-
ming technlques.

In the preceding chapter, it was noted that application of spatial
and angular differencing techniqﬁés to fhe transport equation led to
equation (22). This equation, as formulated, applies strictly only to
the angular flux distribution. In ¢eriving the various source terms,
SV, grouped in the equation,'ohly thelscalar fluxes weré used. This is

possible since the reaction rate for the scattering and fission processes
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is presumed independent of the incident angle of the neutron. The gen-
eral flow of the inner and outer iterations previously mentioned may
then be arranged as follows: In the inner iteration, only the angular
fluxes are calculated. The set of these angular fluxes in the energy
range OE allows the summation of equation (10) to be performed to ob-
tain the scalar flux in AE. This revised scalar flux may then be used
to revise the scattering source term but only in the range AE. The
scalar fluxes and, cqnsequently, all other source terms at different
energies remain unchanged. It is most convenient to treat these terms
at one time in the outer iterations. Therefore, subseguent use of the
terms inner iteration and outer iteration may be inferred to be synony-
mous with, respectively, the angular and scalar flux calculations. The
computer program procedure is then, in the inner iterations, to deter-
mine the angular fluxes in AE, revise the scattering source in AE,
and repeat this calculation until the angular fluxes converge. When
the whole energy range of the problem has been so treated, the total
scalar flux distribution is used, in the outer iterations, to revisé
the source terms. The whole procedure is reiterated until both the
angular end scalar fluxes are converged. The formel methematical oper-
ations involved in rendering the transport equation ameneble to numer-
ical anelysis will be presented below. A matrix notation will also be

introduced to simplify discussion of the various methods.

Scalar and Angular Flux Matrices
In the general, energy dependent transport equation, the energy

dependence mey be effectively removed by use of the multigroup
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formelism [17]. In this process, all energy dependent quantities are
replaced by flux weighted averages over the desired energy ranges.
For example, the value of any energy dependent quantity, f(E), to be

used in energy group g 1is defined as

f £(E)¢(E)aE
ra AE

g
f ¢(E)aE

AE

vhere AE 1is the energy range of the group. Since a knowledge of the
true scalar flux, ¢(E), would constitute a solution to the problem to
be solved, and is not available, some estimate of this quantity must
be made. Many averaging techniques are poasible but all are based on
solving the transport ec';,ua.tion in an infinite medium similar to that of
the actual configuration. Since averaging over smaller energy groups
may be expected to incur less error, the accuracy of solutions to the
transport equation will generally increase with the number of energy
groups.

If these energy avere.gec'll .,q_ua.ntities are used in equation (3), a
set ’o'f partial differential equations, similer in form to the original.

equation

d - w(F8) ¢y Fo F) =5 () g . (24)

is obtained. These eqtiétions are coupled only by the particle soui'ce
terms, S(;,ﬁ). which include extraneous, fission, and inscattering

sources. rJ‘.‘he extraneous sources are taken to be those which are not
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functions of the flux and are presumed to be specified:

Q_ (7,0) (24a)

Following the arguments of chaéter III, the multigroup representation

of the fission source is:

)_'(_g £ 1 - ~11425

- & 1 '

n E vo . (F) | 57 - v(Fat)da .. (2kv)
g'nl Q'

where )\ 1s a normelization factor required because of the variation

in flux level due to neutron multiplication in the assembly. It is,

of. course, also the principle eigenvalue of the assembly since it

yields the flux distribution which is everywhere positive. The quantity

1/x 1is the effective multiplication factor or ratio of the neutron pro-

th

duction in the n~ diteration to that of the (n-1)®® iteration. The

inscattering source, including the within group, or (g + g), contribu-

tion is:
&
1 "8 > o 2 F a2
2 s N og,_}g(r,n' -+ n)wg,(r,n')d ar (2ke)
g'=l1

where OZ”’S is the kernel for scattering from group g' to g
through the angle cos_l(ﬁ . ﬁ). The total source of equation (24)
is‘tﬁen the sum of whichever of these three terms exits in a given
inétance.

Since, in theory, all groups may ‘contribute to each other, the

system comprises a set of G linear partial differential equations
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in G unknowns. These multigroup equations are operated on primarily

in the outer iterations. Although the system of equations (24)

~ > + 2yt +
Q vwg(r.n) + wg(r,n)cs(r) Qg(r,ﬂ)

G . .
X . R
+ I& Z \,g'cZ'(;) %ﬂ’- R wg'(;’n' )dQ' (2hd)
g'ﬂl Q!
G i .
* Z %? . UZ'->8(;’Q'*Q)&8'(;’Q')G-Q
g'=1 v

involves both angular and scalar fluxes, it is, as stated previously,
most convenient to treat €ach separately. Assume that a scalar flux
estimate is given to begin the calculation. The source terms appear-
ing in equation (22), which constitute the right hand side of equation
(24d), may then be determined in the following‘manner: The extran-—
eous source term, Qg(;,a), is given explicitly. If it is scalar, it
mey be inserted into the calculation at this point. If it is angu-
larly dependent, it mey be added during the course of the angular flux
calculation which is to be subsequently discussed. Since neither
option presents any difficulties, the extraneous sources need not be
further considered. The integral appearing in the fission source term
is merelx the scelar flux and this may be multiplied by the group con-
stants shown to obtain the fission source contribution. A full treat-
ment of the scattering source term complicates discussion of the
calculation and is not required for the work performed in this study.
If the scattering process is assumed to\be isotropic, then the scat-

tering source is the product of the scalar flux and the elastic
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scattering matrix which, since it is a propeprty of the target medium,
is presumed specified. Under these conditions, the scalar fluxes may
be used to obtain the source terms for each energy group. Let the
total_g;oup source be Sg. Dropping unnecessary subscripts and noting

that

~

n'

wSG,&' )an = ¢(¥)

yields, from the right hand side of equation (24d),

>

= ”r £ f f [
Se 'i“l_"’l"ﬂl Vo92% * V39383 * ]

| s s s 8
+ ¢1E’1—»1 ¥ Ot :I + “’2E’2+1 tOop ]

$ oo
for those fission and scatter terms which conpiibute to group g. The
coefficients of each group scalar flux, from the above equation, may
be-collected. If these are represented by sgg, the following set
of equations is obtained for the group sources:

S) %8118 ¥ B0y + Bgdg *t  t

S. =28 $ o e

p % 88 * 80, * 8y5d4

or, in matrix notation,

4| $=5 . : . (25)
.where |§] will be referred to as the scalar. flux matrix and ¢ and
) are, respectively, the energy group,&ependent scalar flux and source

vectors.
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Introduction of the discrete ordinates approximation, through
equations (19) and (22) of the preceding chapter, shows that the gov-
erning equation within each energy group consists of a set of equa-
tions of the form (22) with, however, the direéﬁion cosines, u, n, and
£, varying for each characteristic direction and the mesh interval di-
mensions, A, B, and C, varying for each spatial position. Using equa~
tion (23), determination of the angular fluxes then requires a set of
three equations in three unknowns:

Yo,i41 T % I5E T Youi

bpyg T 1,5k T Yo, (23)

Yokl = ¥ 1L]R

where the central average angular flux, is given by equa-

1,3,k

tion (22). 1In the general form of equation (22) for each energy group

C.) +

(Ajyq *25) v (B, ) +By) +

2umAi+l + Qnt + 2£mC

ElChrn * G 5550
T

+
)l T %3,5,k"1,0.k

’m3{33’k

3+l
(22)

all the quantities on the right hand. side of the equation, but for

the scalar fluxes involved in the source terms, S, may be regarded as

known from the calculation of the previous mesh interval. If the terms

containing the direction cosines in the numerator of equation (22) are

represented by K; and tﬁe coefficient of the source term by K2, then

the equation for each energy group may be written

o€ = K€ 4 kP88 (26)

The source terms, by equations (24), are functions of the scalar
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fluxes in all energy groups, Introduction of equation (25) into equa-

tion (26) yields

£ PEET (27)
vhere all quantities are functions of m, i, J, and k. Performing
the indicated multiplicstion (only one row of the |§| matrix is

q:lrectly involved) leads to an equation.of the form

=8+ K23[§81¢1 + 8505 .o :l | (27a)

If the terms containing all the scalar fluxes but those in group g

3

are combined with the - Kl € to form enother constant, K ’3, this

equation becomes

T o 38 : :
Vg = K7 * 800, (27v)

vhich, as & consequence of equation (10), may -also be written as

& = KO8 4 ng[z v yB (28)
m

If all terms involving the P, with the exception of i’m’ are pre-~
sumed known from the previous inner iteration, and incorporated into

& new constant K, this may also be written as

wﬁ =Kt ey (28e)

vhere the s and the w_ have also been combined to form a__.
. &8 m 8
Since every characteristic direction, m, yields a set of equations
(28a) for each permutation of i, J, and k, the angular flux equa-

tions constitute an extremely large set. Rather than write these

\

explicitly, a matrix form will again be employed to represent the.

angular 'flux equations- '
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p=l0 g +x (28b)
vhere kll will be termed the angular flux matrix.

Some additional consideration of the details of the numerical
method used in obtaining solutions to the discrete ordinates approxi-
mation is now possible. In.practice, it is most efficient to solve the
system of equations (25) and (28). The steps in the iterative proced-
-ure are as follows: Given a scalar flux estimate, the fission and
scattering source terms may be calculated using equation (25). These
group source terms may now be used in equation (28) to solve for the
angular fluxes in a given group. Within this group, the angular flux
array thus obtained allows, through equation (10), re-calculation of
the scalar fluxes in that group. These new group scalar fluxes may
then'be used to improve the estimate of the within group source terms
and, consequently, to again determine the angular flux array. When
this sequence has been completed, the resuifing improved scalar fluxes

may be agein used in equation (25) to improve the source term estimates.

Matrix Application

According to equation (25) the multigroup discrete ordinates
equations constitute a set of G linear equations which may be written )
in general form as

14l $=§ (25)
vhere S is the total source term.

The ensuing discusgion will be prima?ily concerned with thé de-
tails of the actual numerical calculation. Use of the general matrixl
form, equation (25) will, however, simplify tﬁe presentation. All the

methods to be presented concern alteraxionswto the form of the matrices

|4] end |@ or to the manner in which they.are applied. Since the
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general form is used, the specific matrix involved will be designated

when one of the methods is developed.

Application of the definition of matrix addition to equation (25)

will return a slightly different form for the matrix equation. The

matrix ||, which represents a set of G equations in G unknowns,

is a square matrix. Any square matrix may be decomposed into the sum

of three related matrices

L4l =18 + I£] + Jul

where |#| is & diagonal matrix, |% an upper triengular matrix, and [

a lower triangular matrix as indicated below

511812 « o o B
321822 )
Bnl e o 8

im

11

o] 322

.

[ ] . . o

n-lnm

(29)
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therefore

14l ¢ = {I/SI + |£] I’M}I=§ | (30)

and premultiplication by A% yields

— -1 - -l =

RN (R ) R e

F=4F+5 : (31)
where

80 == [141(11 + 1) s ls'] = 16718
Equation (25) is now of the same form as equation' (28) with the source
terms operated on only by the diagonal matrix.

Since both the scalar (31) and angular (28)' flux equations in-
volve a prior knowledge of the neutron soprce's, which depend on the
scalar fluxes, solution of the matrix problem is an iterative procedure.
Any iterative method must involve some rule for operating on an approx-
imate solution, ¢k-l, to obtain an improved solution, «bk. This rule

will be represented by

kR (32)

-1, Will be operated on by lm| to obtain the

Thus, a given estimate, Ek_
improved estimate. In the multigroup equations (24), determination of

the fluxes in group g involves knowledge of the fluxes in all groups

¢g!<g and ¢g'>g' Since the flow of the ca.l-cula.tion' is from group g
to g+l,. the values for ¢1;'4<”8 are available while group g is being

solved. For groups g'>g only the ¢];',':>Lg are available. For example,
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in a three energy group case as stated by equation (29), prior to the

kth iteration
L + =5
S11%1  * 8108, S13%3 =5
kL, - ) |
Sgp®y  * Sppty T Fspgdy =5, (33)
k-1, )
S¢p  FSypby  *sggly =54

shows that in solving the first equation, only terms in the diagonal
matrix, |[ﬂ, operate on the ¢l component of ¢. Solution of this
equation yields the improved value ¢§. In the second equation of (33),
only the diagonal matrix is again involved with ¢2, and only the lower
matrix, Igﬂl s operates on ¢1;:. The same scheme is followed in any such
set of equations: only the aiagonal terms are used in determining

¢

s only the lower matrix is used on ¢:'<g’ and the upper matrix

k-1
g'>g’

g'=g

operates only on the ¢ Then equation (30) may be written

- _k—l
(1e1 + 121 )e = - P13
or, introducing the iterative scheme of equation (32)

- (18 + I e (181 ) S (3)

The most recently calculated values for the $g may be used in the
procedure. Equations (34) is in the same form (32) as equations (28)
d (31), however, rather than solve the complete set of equations to

obtain a new total scalar flux vector,

- k
3 = {qfl‘ b - v ¢1§]
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eacl; component of the vector may be substituted into the calculation as
soon as it is available. Thus, while ¢k is being determined, the
latest ¢k vglues may be. operated on by the diagonal and lower triang-.
ular matrices while the upper triangular matrix must use the previous
values, cpk-l. This scheme will be retained in all the quadrature var-
iations subsequently introduced.

Before proceeding, an algorithm due to L. Cesari [18] will be

introduced. Assume that the true solution to the traunsport equation,

taken to have the form of equation (32),
¢ = lml$+ﬁl (32e)

may be approximated by.finding the solution to a similar problem based

on a less complex matrix, |7].

% = Il ) (320)
which has the solutionA _

- -1 -—

o () el o (32¢)
Let the true solution be the sum of two terms

¢=¢ +m (324)
then substituting (32d4) into (32a)

$=3% +m = mls, + tilm, + m (32e)

and, to put both (32a) and (32b) into the same form, this becomes

Y

4 = Iml(?l + El) | (32£)
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Now let the true solutkon, ¢,.be approximated by & series of terms

¢ = d’l + mll + ¢2 (32g)
in which the solution consists of (32d) and a residue term, 32, involv~

ing the difference between the true solution and the. approximate result.

Substituting (32g) back into (32a),
o= 3 +m = e, + |mim + [me, +m) (320)
:;2 = 'wd b-l 'Pn—ll + Imr’rz - El :
which is of the same form as the original (32a)
b = Moy +my o (321)
if the modified term, 52-, is given by

5, = i, +5,) - 5, (32)

Putting (32b) into. (32)) returns, for 32.

5'2 =. m[(]{l '“;1) - |')z[(¢l + El) (321;) .
m = (il - i) (%, +3,) (321)

thus, as the matrix |7| approaches ||, the term 52 will approach
zero. As is evident from equation (32c), the value of the residue temm,
3'2. found from (321) will also approach zero. The accuracy.of the

approximate solution, (32g), is then good if 77| + Im|.
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This same procedure may be repeatedly applied in order to obtain a
series form of soiution for .4?: '
N-1
o=/ (¢ +m)+ oy (32m)
n=l :

such that

R (5 + &)
and

5, = (il - b))%, + )

This algorithm has Been applied by Kopp [19][20] to the transport
equation to obtain the Synthetic Method. 1In this method repeated use
of the [7)| matrix is made to calculate the terms of the series solution
to the problem. The msjor difficulty in apply’ing the method is in se-
lecting an ,’)?l matrix which is a good approximation to [%] but is more
reedily solveble. The calculation of the terms m_  may also be diffi-
cult since they require use of the matrix |7 - |#| which may be more
complicated than the original [%]. The method has been applied by
Crawford and Friedmsn [21] and Gelbard and Hageman [22] using the three
term series (32g). In these applications the approximation made is
that the |’)zl matrix is defined by either the diffusion equation or an ,~
Sé quadrature and the |7] matrix by a high order (86)' discrete ordi-
nates calculation or by a Monte Carlo calculation of the transport
equation. Since neither, of these |7]| matrix approximations to the 1’}7(]
metrix satisfies closely the condition that | + |74 the }r:esidua.l term,

m, » may be large and .the solution in error.



b5

The Ray Effect

The Sn method, since its inception, has been used successfully
on a great variety of problems. It had generally been assumed that
even .a. reiatively low order Sn epproximation would yield scalar flux
distributions sufficiently accurate for most problems. The quadrature
orders most often used were either 82 or Sh' More recently, however,
it has been found that anomalous effects [23] leading to quite incorrect
flux distributions could be present even in seemingly simple configura-
tions. The phenomenon has been shown to be due to the nature of the
discrete ordinates approximation to the angular integral in the trans-

port equation [24]. If the analytic integral over the unit sphere de-

fined by Q
¢(r)\=j\ (7, 8)an
y

is replaced by the discrete ordinates summation

M
¢o(x) =Zwm ¥ B (10)

m=1

c;ver a limited number of characteristic directions, then the accuracy
of the substitution dei)ends strongly.on-thef degree to which the centrai .
avgra.ge angular flux, -Em’ corresponds to-the true average value of the- ‘
angular flux on each portion, Anm, of t".he uri;‘.t- sphere. For example,
figure U4 shows a two.dimensional represent:ation of a possible a.ngula.r‘
flux distribution. It is evident that eny plé.cement of a small number

of characteristic directions, such as that indicated by the y_(nm) in
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1. Average angular flux calculated for
quadrant is along direction Qp,.

.

Figure 4. - Angular flux distribution - S,
 calculation (2D), [solid line].
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the figure, is unlikely to yield a valid average for use in equation
(10). Again, from the same figure, is it possible for the average value
along & particular characteristic direction to be either overestimated
or underestimated. The results of reference [23] furnish a good example
of the overprediction of the angular fluxes while [24] demonstrates an
extreme case of underprediction. In either case, the resulting scalar
fluxes are in error, the subsequeﬁt source calculation not valid, and
the final solution incorrect. Since the particles in a discrete ordi-
nates approximation may be considered to be transmitted along charac-
teristic directions, or "rays", such instances of incorrect averaging
and their propagation are referred to as examples of the "ray effect".
This situation is further complicated by the fact that existence of

the ray effect in a particular case may not be obvious and all Sn
solutions are, therefore, suspect.

The angular quadratures presently used in discrete ordinates cal-~
culations are also subject to restrictions which tend to aggravate this
incorrect averaging. The following brief discussion outlines the sal-
ient features concerning the generation of engular quadrature sets, [11]
and [13],which are valid in any number of spatial dimensions:

The characteristic directions define & number of points on the
unit sphere. Each point may be described by its direction cosines (u,
n,&) with respect to the x, y and 2z axes. There are several ways
in which weighting factors may be assigned to each direction. Since
these are somevhat arbitrary the quadrature sets used will genersally
utilize weights proportional to the ares of the unit sphere represented

by each point. The convention of stating the weighting factors in units
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of br, to match the analytic integral, will be adhered to so that one

condition on these is

iwm =1.0 ' (35)

m=1

Since there is ﬁo way of determining in advance the character-
istic directions best suited for each problem, the stendard requirement
that the solution be invariant with respect to rotetion of the coordi-
nate system is introduced. That is, the solution must not depend on
the orientation of the configuration with respect to the coordinate
system. The replacement’ 'o:t‘ the continuum of directions in the analytic
integral by a finiﬁe number of cha.racteris'b:l:c directions precludes
rotational~-reflection invariance with respect to arbitrary rotations
but allows the substitution of invariance with respect to 90° rotations
and to reflections about any axis. Considération of the quadrature set
in figure 2 indicates that this invariance is possible only if the
points on each octant are identical. Thus, u must map into n or &,
as indicated, and the ‘direction cosines must be femutations of one sét
of values. Furthermore, if the solution is tlo be invariant, the
weights -a'ssigned to each point must: cofrespbnd to those of the equiv-
alent point in all d‘cher octents. It is sufficient, then, to consider
oﬁly one octant in the derivation of formulae for generating the char- '
aéteristic directions. .

If the points on each octant of the unit sphere are arranged in
n/2 levels, the total number of points,

nin + 2) ' (35)
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is taken to define an S, epproximation of order n(n = 2,4,6, . . .).
It has been shown that the law of direction cosines in conjunction with
the condition of rotation-reflection invariance determines a formula

for the values of the n/2 1levels on the unit sphere [11]

w= oyl o+ (1 1)[i f 5 (1 - 3;@)] - i=,. . g (36)

is the smallest value. One immediate consequence of
rotation-reflection invariance is a severe limitation on the arrange-
ment of points on the unit sphere. Thus, regardless of the order of
the quadrature, there is only one independent value for the direction
cosines. Every characteristic direction is fixed, even though the
points may not be well distributed, once By is chosen, In additibn,
use of the formulae of [11] to generate invariant angular quadrature
sets of order greater than 822 has not been possible due to the
appearance of negative weights which disrupt the calculation. The use
of an arbitrarily large number of characteristic directions to correct
ray effects is, therefore, precluded.

It is evident that the existence of ray effects is due to use of
a limited number of characteristic directions. The snomalous results
obtained are compounded by limitations on the original placement of
these directions and the retention of a single fixed angular quadrature
set for each calculation. Some suggestions have been made for mini-
mizing the magnitude of the ray effect by eltering the treatment of
the characteristic directions. Thus, Kaplan [25] has proposed a space-
angle synthesis approach in which the quadrature directions are per-—

mitted to vary es & function of the spatial coordinates. This is done
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to interrupt particle transmission along the fixed characteristic direc-
tions and so achieve better average angular fluxes. Another approach
hes been formulated by Brissenden [26] and involves using the neutron
balance in each mesh interval to choose optimum values for the charac-
teristic directions. Each of these proposels involves apprecisable al-
terations in the standard discrete ordinates application and, if imple=~

mented, offers no aessurance of eventual convergence on the solution.

Angular Quadrature Decoupling
In this section, an alternative proposal for reduction of the ray

effect will be pfesented. The basic feature of the approach is:a method
for varying the angular quadrature within the framework of the standard
Sn applicaxion. Since the ray effect is geometric. in nature, it is
sufficient to consider equation (22), for the central average angular
flux, es applied to the monoenergetic case: While the ray effect may
be present in any multidimensional coordinate system, it is most evident
in two dimensional (x,z) rectangular coordinates. For this case, equa-

tion (22) reduces to

R R S

. t
2u Ai+l + 2E Ck+l +0'V

The use of equation (37) considerably simplifies the matrix IGJ of
equation (28). For the monoenergetic case, the |$| matrix of equation
(25) reduces to one row while the summation of equation (10) is wn- ' -
changed. As described in the Machine Solutions section, the angular

fluxes willl be calculated in the inner iterations with scalar sources

being redetermined in each outer iteration.
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The individual terms in the || matrix may be associated with
equivalent terms in the transport equation. Those terms containing v
and £ relate to particle transport (uninterrupted transfer along the
characteristic directions) while the scalar source term, SV, includes
particle reorientation due to scattering collisions with the medium.
Conventional application of the discrete ordinates requires that a com~
rlete inner iteration over all directions represented by the matrix IGJ
be executed before thne scalar fluxes may he used t¢c update the source
- terms. An incorrect estimate of the particle transport may, however,
be caused not only by the initial choice of quadrﬁture directions but
by the coupling between these directions. Consider the béhaviour of
equation (28) in a source free medium which is.a perfect absorber.

Then all the source terﬁs, SV,.are zero and particles can be present in
the medium only if transmitted along the chgracteristic directions. If
scattering is introduced, particles may he,present due to angular re-
orientation caused by the scattering. Any process in which the angular
orientation of the particles is altered tends to reduce the ray effect
by disrupting transmission along the characteristic directions. Accord-
ing to equation (37), all terms involving these processes, both scatter=
ing and fission, are functions only of the scalar flux. In the standard
Sn procedure, however, the coupling between &irections, caused by de-
termining all the angular fluxes prior to calculation of the scalar
flux, may mask the effect of the angular redistribution terms. That is,

in solving the matrix |0 for a given spatial mesh interval, the in-

dividual Eomponents of some of the source terms

8
Vidn Tgrg



mey be negligible when compared to the total source term

°:~*s¢8 =_ .°s(r.§' + Q). p(r,a')ah’

inferred by the integral.

In order to illustrate this postulate, a configuration similar
fo that used in reference [24] to discuss rey effects will be intro-
duced. ‘It is, as shqvm in.figure é, a re:ctar;gle having a source region
at one end. For the pi;esent, the discussion is confined to fixed .(con-
stant) source problems with scatterihg bﬁt no fission. Since it is not
possible to obtain ana.iytica.l solutions to problems of this type, some
832 and 516’ which are valid

only in two dimensional configurations, will be taken to return reason-

special [13] high order quadrature sets,

ably correct results. As a first test case, let the source free por-
tion of the medium have a scattering ratic;; e = os/ct, of one-half and
a total cross-section of one. Assume that the solution may be obtained
by application of a standard invariant 86 quadrature. The matrix Iaj
in the form of equation (37), is then solved for all g (642) = 24
directions and 12 x 5 = 60 mesh intervals and the complete set of wm
found end summed according to equation (10). The scalar flux distribu-
tion for the edge and end (the problem is symmetrical about the x
a._xis) of the test configuration is shown in table 1. The results are |
seen to be poor, particularly at the far ené of the rectangle where

the ray effect causes a concé,ve, rather than convex, flux shape. 'To.
‘l';est the postulate made, the same S6 _‘qua.d'.ra:.ture set is applied with,

however, the matrix |@] solved separately for each characteristic



1. Spatial mesh as shown. All intervals 1x1 centimeter.
2. Cross hatching denotes source region, (fixed or fission).
3. Interval numbering corresponds to tables 1, 2, 3, and 4.
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Figure 5. - Ray effect test case geometry.
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TABLE 1

SCALAR FLUX DISTRIBUTION IN STANDARD AND FULLY DECOUPLED ‘Sg QUADRATURES

1

Interval number® 2 3 4 5 6 7
bs6 0.771x10° |0.679x100 |0.256%10° |0.656x1071|0.189x10"1 [0.591x1072 | 0.189x102
°Sg 0.754x10° o.éséxloo 0.248x10° 07664X1071 0.199k10‘1_6.682x16'2 0.252X10~2
Intervel number® 8 9 10 11 12 .24 36
bs6 0.613x10™3]0.199x1.073 0. 666x10~% | 0.199x107% | 0. 659%10~5 | 0. 763%10~5 | 0. 750%10~5
°Sg 0.987x10™2 |0.393%10730.157x1073| 0. 622x1073 | 0. 236%107* | 0. 3371074 | 0. 369x10™%

aTWel‘ve edge and five end intervals of 1 cm, problem is symmetric asbout x direction.

bealculated in standard method.

CEach direction calculated separately.

R {4
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direction. In other words, a quasi-séalar'flux, ¢m’ is found for each
direction (iu,*f) by assuming that the weighting factors, w_, for each
separated set meet the condition of equation (35). These quasi, or de-

coupled, fluxes are tﬁen recombined according to the original point

weights
M f
wh¢m
¢(r) = -;;— (38)
m=1

to obtain the revised solution.

The results of these calculations are shown in table 1 which in-
dicates that particle transmission to the far end of the configuration
is greatly increased by decoupling the matrix laJ. It is obvious that
complete decoupling of the angular flux matrix is not desirable since
it allows overemphasis of one particular Qireétion and increases the
time requi;gd to obtain the finel solution by requiring an outer iter-
ation for each direction. However, due to the nature of the derivation
of standard quadrature sets, it is always possible to separate them,
according to the different weighting factors, 5o as to obtain subsets
which have the same number of points as those in some lower order set.
The S6 set of figure 6 is an example. The two possible weighting
factors are indicated and if the set is so d;;oupled, two subsets of
three points (in each bctant).are obtained. It is also poséible to
apply this technique by replacing the higher order set with multiple
lower order sets having an equivalent number.of characteristic direc-
tions. This approach allows more lattitude in the placement of points

2
since an independent value for Hy may be specified for each lower



1. Arrangement of point weights is as shown.
2. Decoupling is by original point weights, Solid and open circles .
indicate resulting two sets of three points each.

9s

Sg Direction cosines
and weights
i w
0.9305 |0.0458
.6831 | .0375
. 2582

Figure 6, - Decoupling of standard S¢ quadrature set,
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order set. Both the decoupling and multiple lower order approaches are
now applied to the test problem. The scalar flux is found by replacing
the Sg |@] matrix with two subset matrices. One is the decoupled S¢ '
set whil.e the other consists of two independent Sh quadrature sets,
shown in figure T, with.differing values of u%. The edge and end
scalar flux distributions for these calculations are given in table 2
along with the standard 86 result and the high order 832 solution.
While the orders of magnitude variation in the flux distribution pre-
cludes general graphical presentation, figure 8 exhibits the end fluxes
for these cases. As seen before, the straight S6 solution is ex-
tremely poor, particularly at the far end of the configuration where it
is low in maegnitude and concave rather than convex. The two inde-
pendent Sh sets a.ltho'ugh low in megnitude, return the correct end
flux shape. The decoupled 29;14(86) sets demonstrate a significant im-
provement when compared with the standard aspplicetion. Not only are
the maegnitudes substantially correct but the fluxes are extremely close
to those of the S32 solution. Since it is not possible to compare
the independent subsets with any base celculation, the process of de=-
.coupling the matrix accordin‘gdto the point weights is applied to some h
additional higher order quadratures. In table 3 are presented the re-
sults of separating en Sg quadrature into three (182, 18, and 186) ;

gsubsets and an S quadrature into five (3Sh and 236) subsets.

12
Pertinent details of each of these invarient angular quadrature sets

are given in figures 9 and 10. Comparison of these results with those
of the etandard application for each set show considerable improvement

for the decoupled 88 set. Neither the original 812 set, nor the



1. Use of two independent (S,) sets to replace one (Sg) higher order set,
2. As shown by dashed lines, additional free parameters () are created.

25, Direction cosines
and weights

i w

© Set 1

0.8319 | 0.0833
.3333

8s

O Set 2

0.7041 | 0.0833
.0918

Figure 7. - Independent S, sets to replace standard S¢ set
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——=S3 Standard
O S Standard

A O 25,(S¢] Decoupled
A 25, independent
| | | | B
0 : 1 2 3 4 _ -5
. z,cm | _

Figure 8. - Standard test configuration (6% = 65 = 0.5)
- end scalar flux distribution.



TABLE 2

SCALAR FLUX DISTRIBUTION IN (0% = 0% = 0.5) TEST CASE

Interval number 1 2 3 4 5 6 7
254, 0.810x10° |0.714x10° |0.254x10° |0.632%x10-1 0.1?1><10‘l 0.593x1072 | 0.189%10™2
85 0.771x00° |0.678x10° |0.256x10° 0. 656x10"L {0. 189x10" | 05915102 | 0. 188x1 072
bs, 0.771x10° |0.679x10° |0.256x10° |0.659%10"1 [0.189x1071 |0.587%10"2 | 0.187x10"2
®2s, » 5  [0.812x10° [0.728x10° |0.291x10° [0.762x107} |0.214x10"L |0.646x107 |0.194x1072

Interval number 8 9 10 11 12 24 36
52, 0.595x10~>]0.204x10~3[ 0.670x10™% |0.221%107% |0.710x10¢ |0. 932x1075 | 0. 20131 0~4
asg 0.613x10~3|0.199x10~3| 0.666x10~% |0.199%10~¢ [0.659%x107" |0.763%107° [ 0. 750%10™5
bg, 0.625x1073{0.213x1073| 0. 694x10~% | 0. 238x10~% |0.701x10~5 |0.859x107° | 0.919%10-5
°25, - Sg  |0.554x1073]0.169x1073!0.515x10"% | 0.162x10™% |0.485x107° [0.643%105 | 0. 716x107°

8Calculated in standard method.

bealculated using decoupled S, subsets.

CCalculated using two S, subsets to replace Sg set.

09



SCALAR FLUX DISTRIBUTION

TABLE

IN (02 = oS

3

= 0.5) DECOUPLED HIGHER ORDERS

Interval number 1 2 3 4 5 6 7
8525 0.810x100 |0.714x10° {0.254x100 |0.632x10"10.191x10"1 |0.593%1072| 0. 189x10-2
asg 0.780x1.00 [0.687x10° |0.256x100 |0.597%10-1 0.168x10-1 |0. 499x1.0-2 0.158x10-2
bsgy 0.779x100 |0.687x10° |0.263x100 |0.601>10-1]0.167x10-1 |0.494x10-2| 0.159x10-2
5,5 0.789x10° }0.695%10° |0.253x10° |0.694x10-1|0.211x10-1 |0.672x10-2 0.218%1.0~2
s, 0.788x10°% 10.694x10° | 0.253x100 |0.694x10"1(0.209x10"1 |0.659%1072 | 0.216x10~2
Interval number 8 9 10 11 12 24 36
%3, 0.595%1073 |0.204x10~3| 0. 670x10~% | 0. 2211074 | 0. 710%10~¢ |0. 932x%10-5 | 0. 101x10~%
agg 0.518x10~3 [0.188x10-3| 0.646x10~% | 0.200x1.0-4| 0. 622x1.05 |0.702%105 | 0. 714x10-5
bsg 0.566x10~> [0.189%1073]0.667x1.0~%| 0.225%10~%| 0.727%x10-5 | 0.870%10-5| 0.890%x10-5
812 0.723%103 |0.263x10-3| 0.896%10~4 | 0.296x10% | 0.985%10-5 | 0.127x10~4 | 0. 135%1.0-4
bs.. 0.735%1073 |0.261x10-3| 0. 9031074 | 0.324%10-4| 0.109x1.0-4 | 0.142%10~4 | 0. 151%10~4

8Calculated in standard method.

bealculated using decoupled S, subsets.

19



1. Decoupling by point weights yields one S, (1 poind),
one Sy (3 points), and one Sg (6 points) set.

Sg Direction cosines|
and weights
u w
0.9512 | 0.0635
L7868 | .0457 .
113 | .0354
. 2182

Figure 9, - Decoupling of standard Sg quadrature set,

29



l; Decoupling by point weights yields three S, (3 pdints),
~ andtwo S (6 points) sets.

y2
812 Direction cosines
and weights
u w
0.9716 | 0.0177
L8723 | .0140
. 7600 . 0093
. 6280 .0126
. 4595 . 0065
. 1672 .

€9

Figure 10. - Decoupling of standard Sy, quadrature set,
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decoupled S yield particularly accurate solutions. This may be

12’
attributed to the fact that the characteristic directions in this set
are not initially well chosen.

The major limitation on any use of multiple subsets to replace a
standard quadrature set is the magnitude of the scattering cross section
in the medium under consideration. In a pure absorber, the source ternm,
SV, vanishes and the angular fluxes calculated are identical for each
direction whether the matrix is decoupled or not. No improvement.is,
therefore, expected in’the scalar flux distribution. Since the major
effect of replacing the |@} matrix with submatrices is to augment part-
icle reorientation, less improvement may be anticipated %ith diminished
scattering. To demonstrate this, the base 532 and the S6 problems
described above are recalculated with both the absorption and scatter-
ing cross sections reduced by a factor of ten; The resulting scelar
flux distributions are shown in table 4 aﬁd the end fluxes in figure
1l. As expected, only minor improvement is noted in the decoupled sub-
sets. The two independent subsets, although returning fluxes whose
maegnitude seems too high, do preserve the correct flux shape. It should
be noted that problems of this type (i.e., with little scattering and no
gsources) represent an extreme test of the discrete ordinates approxima-

tion. Even the S base calculation of this test case, also given in

32
table L, demonstrates points of inflection in the end flux distribution
which are not physically realistic.

For the next test case, the fixed source is replaced with a fis-

sion source which is, of course, dependent on the scalar flux. This

test case now represents an eigenvalue problem and requires several



- TABLE 4

SCALAR FLUX DISTRIBUTION IN (05 = 0® = 0.05) TEST CASE.

Internal

3

4

5 6 7 8 9 10 11 12 24 36
number :
assz 0.811{0.708{0.421|0.266| 0.187 |0.139]0.103( 0.0785| 0.0617]0.0485} 0. 0386 0.0305}0.0323|0.0354
aS6 0.774|0.672[0.4410.275/0.174 {0.122|0,101} 0.0808]|0.0669 |0.0555| 0. 0419 0.6312 0.0179 9;0122
bS6 0.77410.672}0.44210.275{0.174 |0.122}0.101} 0.0809{0.0669 j0.0546| 0.0421 0.6313 0.0180}0.0124
c284 ; Sg| 0.814]0.716 O.4é2’0.297 0.213(0.149(0.109]| 0.0864|0.0703|0.0556]0.044110.0349]/0.0421.10.0471

8Calculated in standard method.

bgalculated using decoupled Sg subsets.

CCalculated using two S, subsets to replace Sg set.

s9
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— S3 Standard
Standard

22 4[S¢] Decoupled

A 254 Independent

O
A
A A
A
"g/-\g\
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K .
= 3 '
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0 1 2 3 4 b
Z, cm

Figure 11. - Standard test configuration (6 @= ¢° = 0,05)
end scalar flux distribution.
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inner and outer iterations to converge. This allows an alternative
procedure in the method being described to be attempted. Sinée more
than one outer iteration, in which the terms dependent on the scalar
fluxes are recalculated, is necessary, .the decoupled quadrature sets
may be used separstely in the inner (or IaJ metrix angular flux cal-
culation) and the resultant scalar fluxes combined in each outer (or
LZI matrix) iteration. Thisvprocedure is of interest since it has a
common besis with the proposals of references [25] and [26]. The alter-
nation of the quadrature sets is roughly equivalent to rotating points
on the unit sphere in order to disrupt the particle transmission. As
all the quadrature sets used in implementing this version behaved sim-
ilarly, only the S6 test results, along with the S32 control dis-
tribution, are reported. The permutations run included the standard
S6 inverient set, the decoupled S6 set with full convergence on each
subset prior to flux recombination, and the "rotating" decoupled 8¢
set using & varying number of inner iterations on each subset. In or-
der to exhibit the results graphically, the flux distributions at the
end of the test configuration are shown in figure 12. The Sleresults
are expected to be substantially correct for this case. As is evident,
the "rotating” decoupled sets yield a flux distribution which is better
thean that of the stendard S6 application. They do not, however, even
with the fission source, show as much improvement as the decoupled sets
in which full convergence is attained prior to recombining the scalar

fluxes as in equation (38). They are also more slowly convergent and,

therefore, the original method proposed must be judged somewhat superior.
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—_— 532 Standard

S¢ Standard
2g4(56) Converged
254(Sg) Rotating

Xye

1 2 3 4 5
-Z, cm -

Figure 12, - Standard test con'figqration (fission source)

end scalar flux distribution.
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Ray Effect Conclusions

The method developed in the preceding sections has been shown to
be effective in reducing fhe magnitude of the ray effect in certain
classes of problem. It is of interest, at this point, to summarize
the causes of this effect and to briefly review other- suggested
methods of eliminating it.

The ray effect is caused by the necessity for evaluating the
angular integral in the transport equation by numerical methods. As
exemplified by figure 4, the use of a small number 6f ordinates, N,
in the substitution of equation (9)

V1 B - |
¥(7,0) =z vy (,9) (9)

-1 ' n=l -
cannot be expected to yield valid results where the angular flux dis-
tribution varies rapidly. Again in figuré'h, the magnitude of the
calculated angular'flux in each thirty degree segment will be that at
the point where the discrete direction intercepts the distribution,
w(?,&), and not, in general, equal to the correct average over the
angular interval. The resultant effect of such incorrect averaging
manifests itself primarily in two ways. First, the characteristic
directions may not intercept source regions at the points necessary
to obtain a valid average source. Second, the calculation of particle
tfansmission along the characteristic directions may be incorrect due
to the coupling between directions. However, since any numerical
evaluation of the integral requires thg use of a finite number of dis-

crete ordinates, alternative methods for midimizing the ray effect
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must depend, as does the present method, on increasing the efficiency
of - the angular guadrature used.

In the method suggested by Kaplan [25], the underlying concept
is that of extending synthesis type approximations [27] to the space-
angle quedratures required by the transport equation. In space-angle
synthesis the flux distribution is found as & linear combination of &
speéifiea set of "trial functions". These trial funcfgons are actu-
ally angular flux estimates which are permitted to vary with position
in the spatial mesh. This approach has been implemented [28] by
using such discontinuous trial functions to solve some Milne type
problems. An extension of the method to apply a low order space-angle
synthesis approximation to some more practical monoenergetic, fixed
source problems has also been accomplished [29]. While the method is
still under development, its utility is l;mitéd for several reasons:
the accuracy of the solution depends strongly on the degree to which
the trial functions approximate the true solution. Qbtaining such
functions is, to a_larg; degreé, equivalent to obtaining solutions to
the transport equation. While a given set of trial functions may be
used for problems having similar configurations, new trial functions
must be obtained for arbitrary configurations. In»aqgition, the sol-
utions admit of discontinuities which may not be acceptable in many
types .of problem. For these'féasons, use of the method seems re-
stricted tq repetitivg appli;ation on problems having similar physical
dimensions and flux distributions which also contain large, nearly

N

homogeneous regions.
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The proposed ﬁethod'of Brissenden [26] is more difficult to
evaluate since it has not been implemented. The basic principle is
that of calculating the particle balance in each spatial mesh interval.
This'balénce is then to be used in optimizing tﬁe placement of the
characteristic directions. While the extension of the approach to
high angular order multidimensional geometries is not clearly under=-
stood, there are several aspects which would seem.to mitigate against
its use. One is that the major purpose of the discrete ordinates is
to determine the angular distribution. .That is, while the correct
particle balance for each interval may improve the initial source
calculation, it is essential that the correct proportion of particles
transported in each direction be known. Optimization of the charac-
teristic directions is d;fficult since it is only through the use of
a given set of dirgctioﬁs that'the particie_transmission through the
orthogonal interval faces can be estimate&. Nor would the "optimum"
set of directions in one interval necessarily correspond to those of
another interval. If more than one set of directions is used in the
spatial mesh, the calculation of the particle balance.ﬁcross each
face and its subsequent re-distribution along each new characteristic
direction in the new set woulﬁ be extremely time{consuming and permit.
of a large number of discontinuities in the angular flux. Thus, any
further evaluation mist await application of the method to some
practical problems. .

The method prese;téd in thié paper r;lies on the use of a linear

combination of ‘solutions to lower order. angular quadrature problems.

The mixing coefficients are either the weighting factors (for the
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multiple decoupled quadratures) or simple averages (for the multiple
independent quadratures). The use of multiple lower order quadrature
sets may be related to the causes of the.ray effect discussed above.
If the incorrect averaging is due to improper detection of the source,
multiple sets allow more latitude in placement of the set directions
and can improve the sod}ce calculation. If the incorrect particle
transmission is due to Eoupling between directions in the set, some
improvement may be expected when the set is decoupled gince the trans-
mission along the individual directions is enhanced. The degree of
improvement in this approach is dependent on the physical composition
of the medium. Thus, limits may be placed on the general method of
substituting multiple sets for a single higher order set by consider-
ing the behaviour of equation (37)

WAL * A+ E(C )+ Oy + SV

T
GuAj4q * 286G, t OV

under varying conditions. Since any scalar particle source tends to
obscure ray effects, it is sufficient to consider equation (37) as
epplied to monoenergetic, fixed source problems. Under these condi-
tions, the coefficient sgg of equations (28) is equal to the self-
scattering (UZ*B) cross-section and the source term, SV, becomes
¢q:*sv. Then, consider equation (37) in a purely ebsorbing medium.
There is no scattering and the angular fluxes do not depend on the

scalar fluxes. The scalar fluxes calculated by summing as in equation

(10) will be the same whether the quadrature set is decoupled or not.
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Thus, in the limit of a pure absorber, the solution for the decoupled
sets will be identical to that of the original quadrature set. In

a purely scattering material it is more difficult to enalytically
establish a limit on the use of multiple sets. However, the magni-
tude of the source terms, SV, becomes so large that the scalar sources
predominate., Under these conditions., the multiple sets again tend

to approach the same solution as that returhed by the originel set.
When the test configuration ‘described in the previous section is -
solved for a pure scat¥erer, for example, the decoupled sets return
the same results as the original quadratures. Thus, for well chosen
quadrature subsets, the method yields results which tend to be
bounded by the solutions of the single higher order set.

There are several other advantages to this epproach. The ro;
tationally inveriant quadrature sets are }imifed to orders less than
822, due to the eppearance of negative weights. In the method pre-
sented, however, more characteristic directions may be employed by
linearly combining the results of multiple high order calculations.
In addition, the other proposed methods contain features which may
disrupt the convergence properties of the discrete ordinates approx-
imation. The present method, however, is applied within the frame-
work of the approximaﬁion, and retains the c;nvergence properties
of the original procedure.

In summary, it does not seem that any numerical method, which

must rely on a limited number of discrete ordinates, can completely

\
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eliminate the ray effect. While significant improvement has been
obtained in some problems by application of the method developed,
the disparities noted in the high order results for the second test
cases indicate that only the use of a larger number of angular in-
tervals, either standard or multiple, can insure accurate results.
Unfortunately, problems which require high order quadratures, either
angular or spatial, are extremely time consuming due to the number
of angular fluxes which must be determined for each spatial interval
in each iteraxion. For example, in a two space dimension config-
uration requiring ten spatial intervals forceach coordinate direc-
tion (a relatively small problem), there are 100 mesh intervals. 'If

it is:found necessary to use, say, an S 2 calculation rather than an

3
Sg» use of equation (35) shows that

Sg = n(n + 2) = 80x10° = 8000 directions,
845 = n(n + 2) = 1088x10° = 108,800 directions
the number of directions ‘increases radically. Since each inner iter-
ation over the spatial mesh requires not one but several (to obtain
the mesh boundery fluxes as well as the central average angular fluxes)
calculations for each direction, the time required to perform such
calculations increases drastically.

In the next section, a study is made of possible methods for
reducing the amount of calculational effort required to obtain high

order solutions to the transport equation. In addition, several
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methods.which increase the generality of applications of the discrete
 ordinates approximation'are also investigated. All the methods to

be studied are suitable to standard applications_of the discrete ord-
inates approximation as well as to the multiple order quadrature var-

iations presented above.[30].

General Quadrature Variations

The calculational effort required to solve higher order sapprox-
imations to the transport equation using the discrete ordinates
method may be prohibitive. In this section some methods which are
capable of reducing thé'numbei of calculﬁtions and, therefore, the
machine time, necessary to solve such approximations will be studied.

In a previous section it was shown that invokation of the multi-
group formalism yields a system of linear partial differential equa-
tions. Due to the nature of these equamians, each éﬂergy group
equation is independent in the sense that it involves only scalar
fluxes from the other groupé while determining the angular fluxes
for that groub. Accérding to the iterative process described by
.equation (25), the major portion of the caleulational effort is de-
voted to successively improved esﬁim;tes df the scalar fluxes, ¢z_l.
While these scalar fiuxes‘depend on the‘angular flux distribution,
equation (22) indicates that a good scalar flux distribution will
allow more rapid convérgence on the angular fluxes and, thus, on the

improved scalar flux, ¢§, for that group. ©Since neither angular nor

scalar fluxes are known prior to the calculation, it is most common
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to use as a first estimate a scalar flux distribution which is con-
stant in the independent varisbles. This constent velue may be zero
or may be some value based on the normalization factor to be used.

In standard epplications of the Sn method, the solution to group g
of the multigroup eqﬁations

4,18, = 5, (25)

is obtained by using this estimate and iterating on the set of

angular flux equations

v= W g+E : (28)

for each group until some required degree of convergence is attained.
The current scalar fluxes from this calculation are then substituted
into equation (25) and the next set of scalar fluxes;lfor group

g+l, determined. The procedure is continued until all group scalar
fluxes have been determined. The whole process is then repeafed
until the multigroup.scalar fluxes have tﬁemsel&es converged to the
degree required.

In.this section, an investigdtian will be made of alterations to
the form of the matrices 18] and | "which will accelerate the
convergence process.
| Test Configuration

fn sfudying the modifications to be made to the standard discrete

ordinates treatment, it is essential thet a realistic test configuration
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be used. Since comparisons must be made between the various modif-
ications, it is also p;eferdﬁle to use one configuration which may
ge analyzed by all the variations to be developed.

The configuration chosen is a two space dimension representation
of the transverse section of a cylindrical space power reactor shown

233

in figure 13. It is fueled with uranium nitride and uses

lithium7 as a coolant. Control is effected by the rotation of two
noncentral drums containihg boronhcarbide and the whole assembly. is
housed in beryllium cxide which serves as a reflector. It is a typ-
ical sﬁall reactor with a relatively high median fission energy. The
beryllium tends to reduce the energy of the neutrons near the core=-
reflector interface to allow the much higher low energy boron ab-
sorption cross section to be more effective as & control device.

The resulting configuration is a severe test of the accuracy of the
analysis since it emphasizes both high and low energy fluxes, con-
tains strong absorbers in proximity to thermalizing media and has
irregular boundaries.

Eight energy groups, seven fast and one thermal, are used in
the anelysis. They were obtained by solving the infinite medium
transport equation, [31], [32], in the neutron spectrum generated
by the appropriate spatial region. The energy range for each group
is shown in table 5.

The eigenvalue and flux distribution for this configuration were:

. verified for all the modifications developed. Due to the length of the

\
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TABLE 5

ENERGY GROUPS AND CROSS-SECTIONS FOR QUADRATURE VARIATION PROBLEMS

Energy Group Boundaries

Energy Upper Lower
Group Bound, Bound,
eV eV
1 14,918, 250.0| 820, 850.1
2 820, 850.1 183, 156.4
3 183, 156.4 40, 867.73
4 40, 867.73 15, 034.40
5 15, 034.40 5, 530.846
8 S, 530.846 748.5186
7 748.51€6 0.414
8 0.414 0.0253

Material Cross-Sections

o' 0.

Ga 'vO'f O’t 08,8 68'73
U233 N
0.0311 0.0736 0.2223 0.1310 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
.0368 L0771 3067 .2527 .0521 .0000 .00OO .0000 .00Q0 .0000 .0000
. 0452 .0898 4442 .3912 .0170 .0073 .0000 .0Q000 .0000 .0000 .0OO0O
. 0639 .1251 .5878 .5146 .0073 .0002 .0004 .0000 .0000 .000O0 .0OQOQO
.0970 .1878 L7133 .6077 .0093 .0004 .0001L .0001 .00OO .0000 .0000
.1527 .2723 1.036 .8816 .0087 .0000 .0001- .0000 .000O0 .0000 .0O000
.4879 .6119 1.946. 1.458 .0017 .0000 .’OOOO .0000 .0000 .0000 .0000
7.695 16.44 8.037 .3427 .0000 .0000 .0000 .0000 .0000 .0000 .0O0Q0
BeO
0.0030 0.0000 0.2551 0 2024 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
.0000 . 0000 .5130 .4471 .0559 .0000 .0000 .QOO0 L0000 .0000 .0000
.0000 . 0000 5772 .5065 .0659 .0002 .0000 .0000 .0000 .0000 .000Q0
.0000 . 0000 .6070 .4944 ,0707 .0000 .0000 .0000 .0000 .0000 .000O
.0000 . 0000 .6088 ,4559 ,1126 .0000 .0000 .0000 .000O0 .000QO0 .0000
.0000 . 0000 .6184 .5615 .1128 .00CO .0000 .0000 .0000 .0000 .000OO
.0001 .0000 .6170 .6047 .0569 .0000 .0000 .0000 .0000 .0000 .0000
.0007 . 0000 .6451 .6443 .0150 .0000 .0000 .0000 .0000 .0000 .0000
B4C
0.0253 0.0000 0.2402 0.1743 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
.0759 . 0000 .4929 .3539 .0407 .0000 .0000 .0000 .0000 .0000 .0000
.2330 . 0000 6042 ,3328 .0631 .0001 .0000 .0000 .0000 .0000 .0000
«4339 . 0000 7302 .2385 .0385 .0000 .0000 .0000 .0000 .00O00 .0000
. 7106 .0000 1.167 .3570 .0579 .0000 .0000 .0000 .0000 .0000 .0000
1.485 .0000 2.007 4710 .0990 .0000 .00Q00 .0000 .000O0 .0000 .0000
25.73 .0000 26.25 .5064 .0503 .0000 .0000 .0000 ..0000 .0000 .0000
355.7 . 0000 364.9 9.243 .0132 .0000 .0000 .0000 .0OOO .00O0O0 .0O000
1. In the scattering matrix, g' runs g, g-1, g=2, + « ., g=7.
‘2. Fission fractions (X,) are 0.7491, 0.2176, 0.0303, 0.003, 0.0, 0.0, 0.0, and
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high order (88 and Sl6) calculations in some of the optimization

studies, a one dimensional representation of the reactor was used.

Angular Quadrature Variations

In this section only fechniques which alter the form of the
multigroup matrix Lf] will be considered. In the procedure outlined

in the introduction the matrix equations for the angular fluxes

T=1d B+ x (28)
in each group are solved completely for each direction in a. high'order

quadrature before the next iteration on the scalar flux matrix; b&[ i
in accordance with equation (34)

o= 4] ¢+ 8 ' (31)
is performed. In this process, a large number of unnecessary calcula-
tions are performed since, particularly in the early outer iteratioms,
the scalar fluxes vary rapidly. The variation is due to the initial
poor estimate of the scalar flux distribution used for the source, SV,
terms in equation (22). These rough scalar fluxes control the angular
flux calculation and, therefor, the next iterative value for the scalar
fluxes. The whole iterative process would be accelerated if & proced-
ure for obtaining more rapid early estimates were developed.

One method for such an accelerative procedure may be derived using
one of the results of Cesari's algorithm presented in the Introduction
in this chapter. In the three term representation of the series solu-
tion

9= ¢1 + o+ g, (32g)
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to the problem stated by equation (32a), where |7n] represents the high
order quadrature matrix desired for the final solution, it was shown
that the residue term is small if the approximate matrix, |72| » used in

finding

m = (Il - )3, + =) (328)

is close to I’Iﬂl . Rather than use the series solution for $, which is
limited in application for the reasons given previously, use will be
maede of the fact that succeeding discrete ordinates angular quadratures

are relatively close in form. That is, an S quadrature contains

n+2

few additional characteristic directions and, in general, yields a flux
distribution similar to that of an Sn quadrature. Then, for the Sn 42

and Sn matrices

= _ _ ry +a) (39)
2 (Wsn+2| lq?Snl)( 1.1
The residue term will then be small if
+
|ﬁsn+2| msnl

and, therefore, the differential scalar flux, 7;2, of equation (32g) -

should be small. The scalar flux obtained by solving

- _ s
¢n I'Jnl cI’n Sn
will then constitute an accurate estimate for the matrix problem

¢n+2 = IJn+2| ¢n+2 + .sn+2

so that the solution, En 4o TEY be much more repidly obtained. In
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accord with equation (39), only quadrature orders which are relatively
close in form may be used. The final solution, therefore, must be

approached by the application of successively ascending quadrature mat-
rices to |A'| in equation (31). That is, rather than approximating the

solution to the angular quadrature order N problem

=18yl ¢+ 5 (31)

by the series
N-1
Ty z (an + ;n) e (32m)
=1
The true solution to that problem will be found by the successive appli-
cetion of progressively higher order angular quadratures.

In the implementation of this method, several considerations are
of importance. Since the accuracy of each succeeding approximation to
the final order quadrature is not known in advance, provision must be
made for allowing any progression of quadratures to be used. To avoid
unnecessary calculations, several arbitrary termination criteria for
each quadrature step should also be incorporated. Such provisions will
not only eallow studies to be made of the optimum manner in which to
_epproach convergence on the final quadrature but will also reduce or -
eliminate the application of angular guadratures where each step in the
progression n + n+2 is not required due to similarity of the solutions
in the lower order sets. As the multigroup equations directly use only
the scalar fluxes, it is also possible to use |aj matrices corresponding

to different order final quadratures in various energy groups. Since
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most configurations involve energy dependent cross sections in which the
optimum quadrature would not be the same for all groups, an option for
permitting the quadrature order to be a function of energy is included.

Since the lower order quadratures éannot be expected to yield
scalar flux distributions with an accuracy equivalent to that of higher
order quedratures, tﬁere is little poinﬁ in solving the lower order cal~
culation to the same degree of convergence required for the final cal-
culetion. The major benefit in the final calculation should be derived
from the use of intermediate scalar flux estimates which minimize the
number of inner iterations required for convergence on the final quad-
rature and not from fu;l& converged low order scaler fluxes. An im~
portant question ih this regard is that of Aetermining the optimum point
at which to effect the quadrature variations. In order to investigate
the effect on solution time of the variations discussed, the discrete
ordinates approximation has been programméd to permif'the following se~
quences of operation:

(1) The use of any number of preliminary lower order angular
quadrature sets. The'progression mey involve each succeedingly highe;
qrder set or allow the omission of specified orders in the progression. -

(2) The termination of the calculation on & given quadrature set
either by‘completioﬁ'bf a number of outer iterations or by attainment
of some specified intermediate degree of convergence.

‘ (3) The execution of a number of outer iterations on a given
quadrature set terminatea by prior intermediate convergence on that set.

(4) The final angular quadrature order to be made a function of
the energy group in the problem. This feature may be applied in con-

Junction with the preliminary lower order quadrature sets.
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Sequences (2) and (3) imply that more than one degree of conver-
gence may be used on the same quadrature set. In effect, this serves
to limit the number of inner iterations on the angular flux matrix (28)
in the early phaées of the calculation. In addition, all options norm=-
ally used in Sn applications, including additional convergence tests
and acceleration procedures, are retained. None of the modifications
made which involve varying the angular quadrature order during the
course of the calculation should affect the accuracy of the final re-
sults. Convergence on the final values of the angular fluxes, eigen-
values, gnd other quantities must not depend on the manner in which the
calculation is begun.  This is also true, within the framework of the
- quadrature orders used, for the modification in which the quadrafure is
made & function of the energy.

In order to study the effect of the ’v_a.ri‘ous permutations of
options (1) through (4), a one dimensional representation of the test
configuration previously described was used. Since thé primary consid-
eration, in addition to verifying the accuracy of the solution, is to
develop & procedure for gpproaching final convergence, two test cases
have been used. They differ only in the order of the final angular
quadrature. The first uses‘an S8 final approximation and the second
an Sl6 final set. The purpose is to observe the optimum marner in
- which to approach final convergence in intermediate order (SB) and
higher order (516) calculations. The results are presented in tables 6 .
and T. The headings in these tebles are self-explanatory. In case (£)
of teble 6, for example, two preliminary quadratures, 82 and S8’ were

used although the latter (Sa) is identical to the final. The 2¢
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TABLE 6

ANGULAR QUADRATURE VARIATIONS

Testl Preliminary Quadra,ture2 Solution® Eigenvalue4
Case Angular Variation Time
Quadratures| Criterion
a. Sz Coap 0.751 1.6051
b. 8, 3 .727 1.6051
c. 5, 1072 .644 . | 1.8051
d. 5, 1073 .700 1.8051
e. '8, 107 >1.000 | =m-en-
£.| S, 55 | 29, 1072 .601 | 1.6051
g-| S5 54 2p, 1073 .478 1.6051
h.| S, 8, | 2,102 [ .672 1.6051

lBase tegt case is standard Sg angular quadrature
requiring 2.53 minutes for final solution.

znp is the ‘number of outers run on the indicated

quadrature set. Other criteria refer to max-
imum alloweble change of self-scattering term
in sequential iterations.

Ssolution time is given in fractions of base case
solution time.

The commonly used term "Eigenvalue" is actually
the reciprocal of the eigenvalue (1/A).
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TABLE 7

ANGULAR QUADRATURE VARIATIONS

3 Eigenvalue4

Testt Preliminary Quadrature’ Solution
Case Angular Variation Time

Quadratures Criterion

a. Sy, 84, Sg | 20, 49, 2072 | 0.427 1.6052
-3
b. | S, Sig 4, 10 514 | 1.6052

c. [8,, 5,5 S 1074, 104, 10| .590 | 1.6052

1Base test case is standard S1g angular quadrature re-
gquiring 9.33 minutes for final solution.

2As in Table 6. . Where multiple preliminary quadra-
tures are used, the Quadrature Variation Criteria
are applied in the order listed.

3As in Table 6.

4ps in Table 6.
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indicates that two outer iterations were first performed using an 82
quadrature. The first 88 calculation, as indiceted in the Quadrature’ Var-
iation column, is converged to a lesser degree than the final calcula-
tion to limit the number of inner iterations. The Solution Time is the
time required to attain final convergence. As may be seen, all the mod-
ifications return the same eigenvalue in the final calculation.
For the test case used, with final quadratures of 88 or lower
order, the maximum time reduction is obtained when only a single pre-
liminary 82 calculation is performed. For problems involving quadra-
tures of higher order than SB’ the optimum approach is to use more than
one preliminary quadrature. This is best illustrated, for the S8 or
lower quadratures, by case 1lh which uses both an 82 and Sh pre-
limiﬁary'calculation and whose running time to final convergence ex-
ceeded that of case 1lg "which had only an’,Sé start. For an sl6
final quadrature, however, case 2b, which used only an S2 preliminary
celculation, required conside;ably longer to conve¥ge than case 2a,
which used successively higher qu#dratures to approach final convergence.
For those problems in which the use of only a single preliminary
quadrature is most efficient, a number of trisl cases (la to 1lg) were
run in order to determine when to shift from the preliminary to the

final quadrature. As discussed previously, full convergence on the pre-

liminary quadrature is probably not desirable. This is borne out by

%)

case le of table 6 which con#erged the S3 start to the final (10~
criterion and required more running time than any of the other methods
applied. These cases also indicate that final convergence is best

approached by first performing several outer iterations end then
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converging to some intermediate criterion on the final quadrature. The
use of this integmediaxe eriterion essentially acts to limit the number
of inner iterations per outer iteration during that portion of the cal-
culation when the flux distribution is changing rapidly. The same effect
could be achieved by directly controlling the number of inner iterations
per outer iteration but this procedure affords no way of. insuring that
the flux in each energy group is equally well converged. Case 1lg,

which used this approach, yielded the shortest running time for the
problen. ,

For fhose problems in.which multiple quadratures aré used to
approach finel convergence, it is more difficult to specify an optimum
approach. The calculation of -all of the large number of permutations
afforded by allowing.both a given number of outer iterations and an in-
termediate convergence for each quadrature’criterion would require an
. inordinate amount of effort. Again, however, case 2¢ of table 7 dem-
onstrates that running to full convergence on each preliminary guadrature
 is less efficient than use of other available options. Consideration of
the results of the cases run shows that the shortest running time for the
S16 solution was achieved by performing a limited'nuMSer of outér iter-
ations on both an 82 and an Sh prelimin%ry calculation followed by .
intermediate convergence‘on an 88 quadrature and, finally, by final
convergence on the Sl6 solution. Case 2a, which followed this pat-
fern, reduced the time required to obtain an Sl6 result by more than
fifty percent.

The program modification which allows the quadrature order to be

specified by energy group was also tested'on the same base case but with
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the quadrature sets for the eig%lt energy groups arbitrarily chosen as
28¢5 hsh, and 28, 'star.ting with the highest energy group. For this
test case the running time was reduced by about sixty percent. The low
order quadrature start may also be used in conjunction with this modifi-
cation to further reduce the running time. The value of this modifica~-
tion is limited due to the difficulty involved in specifying appropriate

quadrature orders.

Spé.tial Quadrature Variations
Present applicdtions of the discrete ordinates method require that

& uniform spatial mesh be employed. This méa.ns that the interval spacing
used in one directior.l .inu'st ‘!;e retained ove.r the whole configuration. For
exemple, the use of rectangular coordinates to represent the cylindrical
boundary shown in figur;a' 13 requires the retention of extraneous inter-
vals lying outside the ac1.:ual configuration. The typical reactor problem
also contains larger homogeneous regions which should not require the
same detailed spatial treatment as is necessary near material interfaces
or boundaries. Since the angular flux matrix, |0J » must be repetitively
computed for each mesh iteration, reduction or elimination of unnecessary.
intervals would improve the efficiency of the calculation. Another de-
sirable option would be to obtain an initial improved flux estimate by
first solving a less detailed problem.

| Although the work performed in this section involves the angular
flux equations,

= 1a g+ . (28)

the form of the equations is unchanged. The alterations involved are
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.essentially calculational in nature and involve the process in which the
equations are applied to the spatial mesh. That is, terms aiJ of the
matrix IGJ and the vector K are made a function of the spatial mesh
intervel. The arguments given above indicate that there are three major
variations to the standard application of the discrete ordinates approxi--
mation which would reduce the required number of celculations.

(1) An option for specifying the number of intervals in each row
and column of the spatial mesh matrix should be added. This option re-

- tains the standard mesh spacing but permits the rows and columns to be
truncated. This provision should also allow the use of any of the
staendard boundary conditions on any surface of the configuration, whether’
truncated or not. The particle leakage given by integrating the angular
fluxes over the truncated surfaces must also be correctly calculated.

(2) Anvoption for varying the mesh iqterfal spacing, in any direc-
tion, of interior regions of the configuration is required. In effect,
this allows several intervals, in regions where little variation in the
angular flux is anticipated, to be combined. The angular flux matrix
must then be solved only once rather than for each_original interval.

One problem connected with this option is the specification of the ang-
ular flux values at intgrfaces between the normael and reduced spatial
meshes. Since this option is intended for use only in regions where
the. flux variation is not severe, the assumption is made that the ang-
ular flux on the reduced boundary is the average of the angular fluxes
entering through the interface. TFor example, if there are K intervals

bordering one reduced interval, the angular flux at the boundary is:
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K

1pm= Z wm,k/K

k=1

When crossing the interface in the opposite direction, the angular

flux in each normal interval is taken to be equal to that at the reduced

boundary
wm,k = wm (k=l’2,o . L] K)

\

(3) Since one criterion for all the variations under consideration
is that they be capable of returning solutions identical to that of the
standard method, a provision for expanding the scalar flux vectors ob-
tained in (1) and (2) to match the original spatial configuration is in-
cluded. This permits further convergence to the standard solution for
the original mesh and also allows accurate comparison of solution times.

The first modification tested was thai;‘ in which the number of in-
tervals in each row and column is ellowed to very. This option is pri-
marily useful where it is necessary to use rectangular coordinates to
analyze & cylindrical core such as shown in figure 14. Any combination
of the normal boundary conditions is permitted so that the quarter, half,
or full configuration may be run. In the standard Sn treatment, it is
necessary to run the complete rectangular mesh with some artificial
ma‘tferial in the extraneous intervals. It is possible to compare the
accuracy of this modification with that of the standard treatment by in-
serting a "perfect absorber" into these intervals. Comparison of the
eigenvalues from such ca.l.culations shows, agreeﬁent, at the end of each

outer iteration, to better than the accuracy required by the convergence
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criterion used. The timé reduction depends, of course, on. the complex-
ity of the original case and on the number of intervals deleted. For
the configuration of figure 14, with the exterior intervals removed from
the computation, the time reduction is approximately 25 percent.

As a test of the leakage calculation, a simple case was run using
cylindrical coordinates in a standard Sn code to obtain the eigenvalue
and leakage for a 10 centimeter radius cylinder with no internal details.
This run was then compared with the interval deletion modification re-
sults using a ten interval approximation of the cylindrical boundary.

The comparison yields

Eigenvalue (Leakage)/(Source

(1/x) Neutron)
Original TDSN 0.9623 0.0377

Intervel deletion L9617 ~ .0383

which is quite accurate since only ten steps were used to approximate
the boundary.

The second modification, in which interior mesh intervals within
homogeneous regions of the core are combined, is the most complex in
terms of alternations made to the standard flow. Since the method of
implementing any such scheme is quite arbitrary, a brief description of
the procedure followed will be given.

The normal spatial mesh ié first defined. Two interior coordinate
boundaries are then specified. Within these boundaries, the interval ‘
reduction, or combination, may be applied. Each original region is com=-
prised of a given number of intervals, bounded by mesh lines. Thé in-

terval reduction is accomplished by choosing the number of mesh lines,
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in each direcfion, to be eliminated. Thus, sets of from one to the
total number of interval.lines may be removed. As an example, if sets
of two are removed, two interval boundaries are deleted, the next is
retained, the next two removed and the process continued until the outer
region boundary is reached. This process is illustrated in figure 15.
Thé elimination is performed independently in each coordinate direction
with the only restriction being that the last rereining intervel bound-
eries must coincide with the original region boundaries. Figure 16
indicates the results of applying this process to the test case. Since
the process results in q;ssimi;arly sized adjacent intervals, the
assumption made concerning the behavior of the angular fluxes across
such boundaries is applied.

As an example of the use of this modification, the configuration
shown in figure 16 was run with the intervals éombined,as indicated.
This problem should represent an extreme test of the modification since
some intervals have been combined in regions, such as near the control
drums and material interfaces, where the angular fluxes are expected to
vary rapidly. Two test cases were run and compared with the results of
the original version of the prégrag in.érder'to compare both eigenvalues.
and reactivities. The second case is alsp as.in figure 3 but with'the

control drums rotated 90° clockwise. Results for the first case are

Method- Time | Eigenvalue
: (min) (1/x)

Standard Sn Code | 17.22 1.285

Interval reduction| 11.96| - 1.280




L In Ry, one setof 2 interior boundaries is removed.

2. In Ry, three sets of 1 interior boundary are removed.

3. The resulting mesh retains only the boundaries xj, X3, Xs,
X7, and Xg within the horizontal limits specified.

- X

- I.Ql — D3 R2 >
| | | |
L | | |
| } | %
% X | X
I | | |
I I I |
l | i | |

X0 X1 X X3 X X5 X6 X7 X8 X9

Figure 15. - Spatial mesh (interval combination) example.
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and the eigenvalues differ by 0.39 percent. The running time is reduced
by about 35 percent.

For the 90° control drum rotation, the results are

Method Time | Eigenvalue
(min) (1/X)

Standard Sn Code | 22.88 1.256

Interval reduction | 15.4k4 1.252

and the eigenvalues differ by 0.32 percent with a time reduction of
about 33 percent. A comparison of the control reactivities shows that
the original version yields‘2.28 percent 6k/k and the interval reduc-
tion scheme 2.21 percent 6&k/k. This is good agreement in view of the

" fact that intervﬁls have been deleted in regions where the flux does not
conform to the assumption of relative constancy.

The most general application of this variation is to generate a
preliminary scalar flux guess for use in a final calculation over the
original spatial mesh. To demonstrate this, a configuration similar to
that shown in figure 16 was run, using a coarse spatial mesh with less
deteil in the control drum region, for three outer iferations of the re-
duced mesh. The scalar fluxes resulting from this calculation were then
expa.ndéd to fit the original mesh, and the final iterations converged qn

this mesh. A comparison of the times involved yields

Method Time Eigenvalue
(min) (1/2)
Originel 8, Code 13.32 | 1.145
Interval | Coarse mesh 4,192 1.135
Reduction | Original mesh | +3.830 1.145
=8.022
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for a time reduction of approximately 40 percent.

The variations déscribéd above, which affect the application of
tﬁe angular flux equations to the spatial mesh, are seen to be capsable
of significantly redncing the calculational effort required in appli-
cations of the discrete ofdinates approximation. While the variations
which allow deletion and combination of spatial mesh intervals are
applicable only to configurations satisfying certain conditions, such
cases are fairly ty?ical in both reactor and shield design. The test
case used is an example of s problem which is most suited for analysis
in Cartesian coordinstes and profits from the elimination of extrane- |
ous intervals. In addition, all variations yield scalar flux esti-
mates which are rapidly obtained and gccelerate convergence of the

originel problem.



CHAPTER V

VERIFICATION OF NUMERICAL METHODS

In this chapter, the validity of the numericel methods developed
in the preceding sections will be verified. While the techniques de-
veloped in this paper will be employed to accelerate convergence of
the problems considered, the primary purpose is to insure that the
inclusion of these techniques has not disturbed the convergence prop-
grties of the discrete.ordinates approximation and that the accuracy
of the numerical methods is acceptable.

The choice of problems to be used in accomplishing these ends
is of considerable importance. While the éhalysis of experimental
data constitutes one class of problem which may be compared to the
numerical solution, the lack of accurate experimental cross-section
data and the necessity foé approximating experimental geometries with
orthogonal coordinate meshes make exact comparisons impossible. As-
discussed in Chapter II, however, it is possible to obtain exceedingly
accurate analytic solutions to certain simple classes of problem.
One of the quantities which may be most accurately determined in such
problems is the critical radius of homogeneous configurations. A con-
siderable amount of effort has been expended by Carlson and Bell [33]
in determining exact critical radii fog slabs; spheres, and cylinders.

The results obtained incorporated data takén from Case, de Hoffmann,

99
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and Placzek [34] and used a variety of methods to insure accuracy to
four decimal places. N

One of the major drawbacks in using the results of such problems
to verify the numerical methods developed is that, due to analytic re-
strictions and the calculational effort involved, solutions to such
problems are based on one-group theory. Some essential features of
the numerical methods, such as the treatment of the source terms
(the full inter-group scattering matrix and the allocation of fission
neutrons) in equations (24d) and, subsequently, (25), are then, not
tested. However, in the following section, a procedure for eliminating

this defect is given and some multigroup, rigorously soluble, test

problems developed.

Multigroup Test Problems

0f the range of problems for which riéorous monoenergetic criti=-
cal radii are available, both the infinite slab and the sphere repre-
sent one dimensional calculations. Since one purpose of the test case
is to verify the multidimensional caelculation, the right circular
cylinder will be used as a test configuration. While the exact solu~
ﬁions referenced are for infinite cylinders, there are several ways
in which the results may be extended to two spatial dimensions. For
the test problems below, an r-g geometry will be used. This config-
uration is as shown in %he sketch on the next page and provides a
severe test of the ability of the approximation to calculate particle

flux redistribution across the faces of the ﬁésh intervels. Rather
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i

6=_100(3 divisions)

r =,
; (16 divisions)

than calculate the complete 360 degree mesh, the numerical perfect
reflection boundary condition (in which the net current is zero) will
be applied to the vertical boundaries as also shown above. The
standard geometry will then be defined as having 16 intervals in the
r direction and 3 intervals in the & directioh, subtending a 10
degree arc.

In order to extend the monoenergétic results to multigroup prob-
lems, a'device developed by this author [35] will be introduced. This
pfocedure(involves the definition of c¢,.the number of particles re-

leased per collision by the target medium. For a fissionable material .

T
e ='\30' + O ' (hO)
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This definition will be extended by redefining the number of particles

per collision for a multigroup problem as

¢ = g (L1)

. where, again, g 1is the group index and G the total number of
groups. As an example, for a value of ¢ equal to 1.2, the one group
cross-sections would be

0.2 + 1.0 _
C B m————

1.0 1.2

Use of equation (41), however, allows formation of the following

scattering matrix

THREE GROUP CROSS-SECTIONS

¢ =1.20

8 t t
+) vo g o g o ‘o o
82,8 | g*l.g 858 g-1,8 | "8-2.g

0.0 | 0.2 | 1,0 | 0.3333 | 0.3333 | 0.3333 | 0.0000 | 0.0000

0.0 [ 0.2 | 1.0 | 0.0000 | 0.3333 | 0.3333 | 0.3333 | 0.0000

0.0 { 0.2 [ 1.0 | 0.0000 | 0.0000 | 0.3333 | 0.3333 | 0.3333

for a three energy group expansion. It should be noted that this

set of cross-sections, which will be used in the test problems,
rigorously tests the fission production and energy exchange between
groups. Since the scatféring metrix creates & perfect balance between
energy groups,;it is only necessary to alte;'the value of vgoz to

obtain the desired value of ec.
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The value of c¢ determines not only the critical radius but
also the character of the problem. That is, as the ¢ value is in-
creased (corresponding to a more enriched reactor), the critical di-
mensions of the system are reduced. For small ¢ (or large radius),
the problem closely corresponds to a diffusion problem. For larger
¢ (and small radius), the boundary effects exert more influénce and
higher order transport approximations may be required. In order to
test the ability of the numerical procedure at both ends of this range,
the test problems iﬁclude the smallest and largest values of ¢ for
which an exact solution is available. Since primary interest is in
eigenvalue problems, the ¢ value is required to be larger than one.
Three test cases are calculated: the first has ¢ =1.02 and a
critical radius of 9.0433 ceﬁtimeters, the second has ¢ = 1.2 with
a 2.288L4 centimeter radius, and for the last ¢ = 2.0 and the radius

is 0.6673 centimeters.

Test Problem Convergence

Prior to correlating analytical and numerical results, it is
necessary to specify the degree of accuracy to be required on the
numerical solutions. The general question of the existence and
uniqueness of such solutions has been well investigated [36][37]. A
more recent paper [38], containing a bibliography, discusses the sub-
Ject with respect to the generalized transport equation under certain
finite difference approximations. Since the subject is lengthy and
difficult to treat in a limited space, the following Qdiscussion is

predicated on the existence of such solutions.
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Given an appropriate solution, the fundamental problem in any
iterative procedure is specifying the accuracy to which the solution
is to be found. In particular, this requires the application of some
convergence criteria to one of the computed quantities. Since the
difference equations formulated are used to determine the flux dis-
tributions, it is most convenient to apply criteria to these eigen-
vectors. In most practical applications, it is the scalar fluxes
which are of greatest interest so that, in the work performed, all
convergence tests will apply to quantities directly associated with
these fluxes. |

There are many variations of convergence tests, using these
scalar fluxes, which may be applied. For example, the scalar flux,
¢k,linAtﬁe k®  iteration may be compared with that, ¢k_l, of the
previous iteration and the difference requirea rnot to exceed some
given limit. If this criterion is applied to each spatial mesh in-
terval, the test is generally too restrictive since there are usually
some space points which converge slowly but are relatively unimportant
insofar as the overall calculation is concerned. On the other hand,
integral tests (i.e., comparing the flux integrals in each group) may
not be sufficiently accurate. The convergence tests used in this work
are all based on the use of one criterion, ¢. In order to insure that .
both the inner and outer iterations are converged several tests are
applied. These represe;t a coﬁbination of both point and integral
(summation) quantities in succeseive iterations. Using the notation
previously developed, the following quantities are tested. The in-

dividual factors in the formulas represent values in each mesh interval
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and the spatial subscr.ii)ts are dropped to simplify the notation. For
inner iterations: .

1. The ratio of the largest in-group scattering (by spatial in-
terval) to the integrated group flux (for the whole configuration)

s [k _ k-l) I
Gj*s(q’g A

I

1,45k

2. The ratio of the integrated change in in-group scattering to

the integrated group flux

' s k - k-1 *
Z °s+s(¢s - % >V

i,0.k

Lo

i,d,k &

3. The ratio of the integrated changé in the group removal to

the integrated gro;.lp flux

L - o - )

o5V

tot

i’d ’k

Each of these quantities must satisfy the convergence criterion in each
energy group.
For the outer iterations:

1. The ratio of the change in the total integrated scattering

\
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loss to the total integrated flux

Y L (02¢k'lV)

i .k

Z (quakv

g 1,J.k

2. If up-scattering is present (as in the test problems) the
ratio of the change in the total integrated up-scattering to the

total integrated flux

Z Z oup'cbk _ ¢k—l v
g i,J.k
DG

g 1i,J.k

3. The effective multiplication factor, ke £ in three successive

f

outer iterations (to prevent fortuitous cohvergence) is compared

kk kk-l

eff ~ effl and |E k

k+1 k
eff =~ “eff

Each of these quantities must satisfy the convergence criterion in
each outer iteration (over all energy groups).

These convergence tests are applied in the test problems devel-
oped above. In general, all these problems';ere solved using a con-
vergence criterion, e, of 0.0001. Based on previous experience, it
is anticipated that the results obtained (the effective multiplication
factors) will be accurate to at least threé decimel places. Since the

exact multiplication factor is unity, the solutions should be compar-

able to tenths of a percent.
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Numerical Methods Comparison

Since the exact critical radius is known, the procedure used in
thesg cases will be to determine the eigenvalue (and effective multi-
plication factor, keff) for the given cross-section set in ascending
quadrature orders. The éeneral criterion on the numerical solutions
will be an error of about one-tenth of a percent in the multiplication
factor. This procedure also allows some insight into the quadrature
order required to obtain the specified criterion.

The results obtained from the various calculations are collected
in teble 8. As may be seen, it is possible to approach the exact
result in all cases by refining the angular quadrature mesh. It should
be noted that, as anticipated, relatively higher order quadratures
are required in the cases where transport effects assume more import-
ance. This is illustrated in figure 17 where the epproach to con-
vergence of the most difficult transport problem (c = 2.0) has been
plotted as a function of ascending angular quadrature order. While
the discrete representation of the remaining variables precludes cal-
culation of the exact result, it is seen that the higher quadrature
orders (SS through 812) repreéént a slowly convergent process toward
this result. This graph also indicates the necessity for using higher
order angular quedratures than sre normally employed in such calculations.

The accuracy of‘the resulﬁs obtainea in these cases demonstrate the
validity of the discr?te ordinates approximation and of the coding de-
veloped to implement it: The quadrature detail required also emphasizes
the importance 6f the quadrature variétioﬁs_developed in the preceding

chapters.
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* TABLE 8

lCALCULATION OF EXACT CRITICAL RADII

Case

Quadrature

- |criticeal

k

Nunber Order Value | Radius eff
1 s, 1.02 | 9.0433 | 1.012090
2 8, 1.02 | -9.0k33 | 1.001075
3 .'Sz 1.20 | 2.2884 | 0.99940T

éﬁ 1.20 | 2.2884 | 1.011786
5 8¢ 1.20 | 2.2884 | 1.006326
6 8g 1.20 | 2.2884 | 1.001k433
7 S, 2.00 | 0.6673 | 0.948277
8 ‘sh 2.00 | 0.6673 | 1.006967
9 ' S¢ 2.00 | 0.6673 | 1.008812
10 Sg 2.00 | 0.6673 | 1.006309
11 SN 2.00 | 0.6673 | 1.003868
12 S 2.00 | 0.6673 | 1.002586

lFor the exact critical radius given, the eigen-

value should be identically 1.0.
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Quadrature order

Figure 17. - Approach to exact eigenvalue through ascending
quadrature orders. '
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CHAPTER VI
DISCUSSION OF RESULTS AND CONCLUSIONS

Discrete.Ordinates Codes

The Boltzmann transport equation, in a form suitable for des-
cribing the behaviour of non-mutually interacting particles in a medium
having specified nuclear properties, mey be applied to a wide variety
of problems. Among these are radiative transfer in stellar atmospheres,
neutron flux distributions in critical assemblies, and photon transport
in shielding materials. Representative problems in these fields are
normally complex and solutions require the- use of numerical methods in
conjunction with digital computer machinery. The most successful numer-
i;:al method yet developed for such problems i:s the discrete ordinates
approxiﬁation to the transport equation. °

The widespread application of vsn techniques is apparent in the
number of machine codes_ currently in use. The design of newer machine
programs typically extends the range of possible discrete ordinates
sclutions. Thus, recent codes are spatially multidimensional [16],
solve the time dependent transport equation [39], permit various auxil-
liary celculations [40] (i.e., critical radius of concentration
searches), and treat anisotropic scattering [41] and [42].

The present generation of compute;' machinery is capable of pro-
cessing almost arbitrarily large problems. One of the inherent

110
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restrictions of the Sn method is the need for detailed energy, space,
and angular quadratures to insure adequate accuracy in the solutions.
The most serious problem associated with the application of computers

to these detailed problems is the inordinately large amount of machine
time required to convergé the iterative process. It is not unusual for
the typical multidimensional representation of e rgactor design to re-
quire several hours to converge. Discovery of the fact that lower order
angular quadratures may not yield precise results will also tend to in-
crease the size of the average problem. Such calculations rapidly be-

come prohibitive in terms of machine utilization and cost.

Reduction of Solution Time
This study has been made to investigate various means for reducing

the calculational efforp'fequired to obtain solutions for the discrete
ordinates approximation to the transport edthion. Some of the methods
developed may also be used to extend the range of application of Sn
techniques in certain classes of problems. The methods developed rely
on the general principle of permitting variations in the angular and
spatial quadratures to be made during the course of the iterative pro-
cedure. In addition, the metlods are general in the sense that they are '
directly applicable to all coordinate systems and'may be used in con- '
Junction with any numerical techniques for solving the discrete ordinates

approximation.

.Machine Configuration
Since one of the priﬁary considerations of this study has been re-

duction of the time reqﬁired to obtain solutions, care has been exercised:
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to insure accuracy in the reported machine times. The machine config-
uration on which all work was performed is comprised of two coupled com-
puters. The first, which performs such auxiliary functions as manip-
ulating tapes, reading input cards, and printing output, is an IBM TOLO.
The second, which executes the problem submitted, is an IBM 7090. Sep-
arate records are kept of the times required by each in processing every
problem. As only the time required to actually obtain a converged solu-
tion is of interest, the 7040 machine time was deleted from the reported
solution times. All problems were also eiecuted under the same operating
system to avoid discrepancies in the calculation of auxiliary (i.e.,
exponential, trigonometric) subroutines. The reductions in solution
time reported should, therefore, be quite accurate. Although the magni-
tude of the machine times may vary considerably on differing computer

configurations, the time reduction ratio should be nearly constant.

Methods Developed

The pertinent features of the methods developed may be summed
briefly:

(1) Multiple lower order or decoupled angular guadratures may be
used to replace a higher order single quadrature set. One important
feature of this option is that the number of characteristic directions
.nny be increased without incurring negative point weights.

(2) Any progression of angular quadratures, in conjunction with
erbitrery termination criteria, may be used to epproach convergence.
This method also allows the angular dependence of the flux to be made

a function of the energy.
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(3) The sbatial mesh quadrature may be varied either by elim-
inating or combining mesh intervals. Direct use of this option, without
further eonvergence, permits the calculation of problems having a vear-
iable spatial mesh.

(4) As a consequence of (2), it is possible to converge both the
angular and/or scalar fiux distribution to the same degree for any num-

ber of angular quadrature sets.

Conclusions

The first portion of this study was devoted to an attempt to
eliminate or reduce the ray effect caused by the use of an insufficient
number of characteristic directions in an Sn approximation. The
procedure in (1) above has been shown to be partially effective. Its
utility is limited by the fact that appreciable improvement is noted
mainly in materials with a high scattering cross-section. While the ra&
effect mey result in angular flux valueé which are either high or low,
this procedure is most useful in correcting underestimates. Bounds may
be applied to the method by noting that, in a pure absorber, solutions
will be identical to those of the standard Sn method. In a pure
'scaxterer, the method tends to approach the correct solution. However,
since the ray effect is masked by scattering, so does the standard Sn :
technique. Thus, for materials with low scattering and high absorption
cfoss-sections, only the use of a large number of characteristic direc-
tions can insure accuracy.

The second portion of this study‘developed several methods for

allowing variations to be made in engular and spatial quadratures during
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the course of an Sn calculation. Such methods have been éhown to be
quite successful in reducing the number of calculations required to
sttain a given degree of convergence in an Sn solution. For repeti-
tive survey cealculations, in which high accuracy is not required, the
approximate solutions possible using the procedures in (2) and (3),
(energy dependent angular quadratures and the combination or elimination
of spatial mesh intervals)'greatly reduce computation times and are more
accurate than those yielded by merely solving & less detailed standard
Sn case. While there may be some uncertainty regerding the quadrature
order required to adequately describe a given energy group, the test
case results have not varied greatly when reduced orders were used.in
groups expected to have nearly isotropic scattering. Moreover, the
energy dependent quadrature solutions, particularly when combined with a
low order preliminary quadrature, are & means for rapidly performing
survey calculations. The combination or elimination of mesh intervals
is more straightforward since the spatial configuration to be analyzed
is known in advance. If the spatial mesh is reduced only in homogeneous
regions removed from material interfaces, the approximate solutions are
quite accurate.

For problem solutions in which accuracy identical to that yielded
by the standard Sn method in a given spatial and angular approximation
is required, the procedures in (2) and (3) above are capable of signifi-
cantly reducing solution times. In addition, the test cases used allow
some conclusions to be drawn regarding the op%imnm approach to conver-

gence:
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(a) Full éonvergence.to the degree required of the final calcula-
tion should not be required for the preliminary quadrature sets.

(b) For problems having low order (588) final angular quadratures,
the most efficient epproach to final convergence is through the use of a
single preliminary S2 quadrature followed by intermediate convergence
on the final quadrature‘set.

(¢) For problems having higher order (>88) final quadratures, the
number of possible permutations in varying the angular quedratures is so
" large that specification of a general optimized procedure is impbssible.
fhe test cases show, however, that the solution time may be greatly re-
.duced by the use of multiple preliminary quadrature sets.

(d) Por problems using & less detailed spatial mesh to establish
e preliminary scalar flux distribution, the optimum time to final con-
vergence is observed when the preliminary‘mgsh is relatively coarse.

One manifestation of ray effects in a calculation is that varia-
tion (change in order) of the angular quadrature set results in changes
in the scalar flux distribufion. Application of the procedure in (L)
allows the fluxes in one order to be compared with the fluxes in a dif-
- fering order. Appreciable discrepancies between the two approximations.

would be indicative of the presence of ray effects.

Summeation
Use of the methods, and guidelines for their application, developed
in this investigation have been shown to appreciably reduce the number of
calculations and, consequently, the maghine ﬁime,‘required to obtain sole-

utions to the test cases used. The application of these methods to more



116 :

complex problems commonly being formulated may be expected to reflect
even larger reductions in solution times.. While analysis of the test

cases has involved the use of only one type of quadrature variation at

a time, there is no bar to combining the various methods for use in

appropriate problems. The use of machine programs in which some of
these combinations have been implemented indicate that time reductions
of greater than fifty percent are not uncommon for larger, more detailed

reactor configurations.
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APPENDIX
NOMENCLATURE

index denoting'fhe energy group

index denoting the rectangular mesﬁ cell boundary in the x,y,
and 2 directions

residual vector equal to the difference between the exact and
approximate result

neutron density

generalized position coordinates

index denoting an interval in time

time wvariable

neutron velocity

weighting factor dssociated with a given angular direction

rectangular coordinate directions

rectangular mesh cell face area in th2 y=~z, x-z, and x-y
plenes

energy variable

Leplace transform of the function, F

total number of energy groups

total number of mesh cell intervals in the x, y, and 2

directions
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& vector which is constant during the course of & particular
calculation

an extraneous neutron source

reaction rate for a nuclear process

total neutron source in a specified problem

the matrix, with elements a,

iy

» governing the angular flux
calculation

diagonal matrix

identity matrix

a lower triangular matrix, so defined that the diagonal elements
are zero

matrix used to denote an exact formulation of a problem

matrix used to denote an approximation to the matrix, bWI

matrix, with elemeats s,

i

upper triangular matrix, so defined that the diagonal terms are

» governing the scalar flux calculation

zero

Dirac delts funection

direction cosine w?th respect to the y axis

principal, or largest, eigenvalue, so defined that (1/A) is the
effective multiplication factor

direction cosine with respect to the x axis

direction cosine with reépect to the 2z axis

macroscopic cross-section

scalar flux

angular flux

central average angular flux

unit direction wvariable



