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CHAPT:E:R I 

INTROOUCTION 

The problem of characterizing probability distribution originates 

in early papers by Bernstein [2] and Cramer [3]. The modern equivalents 

of the results of these men are stated in the following. 

Theorem 1.1 (Bernstein): Let x1 and x2 be independent random 

variables. Then the independence of z1 = X1 + X2 and · Z2 = X1 .:.. X2 · 

is a necessary ari,d sufficient condition for X and X · to be dist:d-1 . 2 · 

buted normally •. 

The result of Cramer is the converse to the well known fact that 

if x1 and x2 are independent and normally distributed then so is 

Theorem 1.2 (Cramer): Let x1 and x2 be independent random 

variables and suppose Z = x1 + x2 is distributed normally. Then each 

of x1 and x2 is distributed normally. 

We note that Bernstein's characterization is based on functions of 

random variables being independent, while Cramer's relies on a property 

of a statistic, in particular that of being normally distributed. 

It is the purpose of this paper to extend and generalize two 

characterizations, one given originally by M. V. Trunhankar [10], the 

second by A. Kagan and o. Shalaevski [5]. The work with Tamhankar's 

characterization is similar to the theorem of Bernstein in that it is 
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based on independent functions. The generalizations of the work by 

Kagan and Shalaevski are based on statistic properties as was Cramer's 

theorem. These later results are presented as they occurreq in our 

investigations, and thus tend to telescope. 

We state the theorem of Tamhankar in nearly the form in which it 

originally appeared. Let x1, ••• , Xn have a joint probability density 

function f(x1 , ••• , xn) and transform as follows: 

X1 R cos 81 

x2 = R sin 91 cos 92 

x = R sin 91 
. sine 2 cos en-1 n-1 n-

x = R sin 91 sin9 2 sin 9 1 n n- n .. 

where capital letters represent random variables and small letters their 

values and-

-00 _< x._ <: = 
,. l . 

i ;= 1, 2, ••• , n 

0 ~ r < eo 

0 ~ e. ~ ,,. 
l 

i _· = · 1, 2; ••• , n-2 

0 ~ e < 2Tl' 
n-1 

Let g be the probability density function of the transformed vector 

... ' 
and continuous so we may write 

where 

J 
n-1 . n-2 

r sin 91 • • • • • sin e 2 • n-

Assume also that f is continuous in each X. 
J 

2 n 2 
and note that r =.r1 x .• 

J= J 



Theorem 1.3 (Tamhankar): Under the above conditions x1 , ••• , Xn 

are mutually independent and R is independent of (~, ••• ,E,n_1) if 

3 

and only if all x. 
J 

are distributed normally with zero mean and common 

variance. 

The theorem was extended by Kotlarski [6, 7] to allow more general 

transformations, and by Flusser [4] to allow more freedom in the 

independence grouping of the .original and transformed vectors; 

i.e. , (R, •••, 8.) and (8. 1 , ••• , 8 1 ). In Chapter II we combine 
J J+ n~ 

and generalize the work of Kotlarski and Flusser to give what appears 

to be the ultimate extension of Tamhankar• s result.". 

n 2 
Z = J'~-· 1 (X. + a.) , a.ER, 

J J J 
It is well known that if the statistic 

is drawn from a population which is distributed normally with zero mean, 

then the distribution of z depends on the a. 
J 

only through 

The theorem of Kagan and Shalaevski is the converse. 

n 2 
j~1 aj • 

Theorem 1.4 (Kagan and Shalaevski): Let x1 , ••• , Xn be inde

pendent and identically distributed (i.i.d.) and suppose the distri-

bution of 
n 
.E 
J=1 

2 
a. • 

J 

n 2 
Z =.E1 (X. + a.) , a. ER, depends on the 

J= J J J 
a. 

J 
only through 

Then each X. is distributed N(o,a). 
J 

In Chapter n;I we present three generalizations of this theorem·. 

The first relaxes the i.i.d. requirement to the independence of vectors 

(X 1 , ••• , X) with no restriction that the 
m+ n 

variates have an identical distribution. The second allows the 

characterization of correlated random variables and the third invokes 

convolution and Fourier transforms to characterize other probability 

distributions, including the gamma. 



CHAPTER II 

GENERALIZATION OF TAMHANKAR•S TttEOREM 

-+ -+ -+ -+ 
Let X = (W,Z), where W = (X1 , ••• , Xs) 

be an absolutely continuo~s random vector. Let 

and ..+ ( 
Z = X 1' s+ . 

and l be 

pendent with continuous positive density functions as follows: 

(C-1) 
-+ 
W; 

(o, ••• , o) E a1 • 

••• ' x ) ' n 

in de,.. 

1 < s < n 

-+ 
Z: g(x 1' s+ 

i • r • ' x ) , where 
n 

( X) E u c Rn-s 
x 1' ••• ' s+ n 2 

with ( o, ••• , ; o) E u 2 • 

Note that the;Lebesque measure of u and u should be 
I 1 2 

positive. 

(C-2) Let pk' k = 11
, ••• , n, be real numbers such that the:re 

exist limits 

lim f(x1' • • •' xs) 
•• • , x -+ 0 s . pk -1 

s ! k~11~1 

... ' 
. g(x 1 , ••• , x ) 
i s+. n 

x to n pk-1 
n ! k=~+11~1 

lim 

Consider the transformation 



x1 

x2 

XJ 

;x: 
r 

x 
r+1 

x 
n 

= 

= 

= 

= 

= 

°'1(y1)a.2(y2)a.3(y3) 

a.1(y1)S2(y2)°'J(y3) • . • 
0./Y 1) S/Y.3) 

'\ (y1) 

a'1(y1) 

5 

a. (y )y(y 1' r · r r+ ... , y ) 
n 

cx.r (y r)y(y r+1' ... , yn) 

a.r(yr)y(yr+1' ••• ' y ) n 

(2.1.1) 

~ (y )y(y 1' r r r+ ... ' y ) 
n 

yr+1 (y r+1' ... , y ) 
n 

Y (y ' ••• , y) n r+1 n 

Assume that the functions ~' Sk, y, and yk are taken in such a way 

that there is possible a change of variables inn-dimensional integrals, 

in particular that the Jacobian of (2.1.1) exists and does not vanish 

for Y1 E (o,•), (y2, 

( * 
Y r+1' ... ' *) 

Yn such 

strictly monotonic on 

... ' yn ) E ~o· 

that ( * y Y r+1' 

[o, •) with 

We also require at least one point 

... ' y"') = o, 
n 

a.1 (o) = o. 

and that a 
1 

be 

(C-3) Assume there exist continuous real valued functions 

that 
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lf(y1) = lf1(x1, ... ' x ) + 'i'2 (xs+1' ... ' x ) 
s n 

Y1 E [o,•) ' (x1, ... , x E G: 1 s 

(x 
s+1' ... ' x ) Eu 

2 
(2.1.2) 

n 

where each function maps onto [o,•), has value O only 

at the origin, and '!' is strictly monotonic. 

(C~~) Finally, assume the functions 

... , x ) 
s 

s p -1 

A1 krr 1 l:xic I k 

.. ·-, 

... , x ) 
s 

x ) Ea 
s 1 

0 ( X1' • • • I 

g (x 1 , ••• , x ) = 
s+ n 

... ' x ) 
n 

(x 1 , ••• , x ) Ea 
:s+ n 2 

0 (x X ) ERn-~a 
1 , ••• ' s+ n 2 

(2.1.3) 

are probability density functions. 



Theorem 2.1: W and 
~ 
Z are distributed as in (2.1.3) if and only 

if there exists an integer q, 1 ~ q ~ r, such that (Y1 , ·~·, Yq) and 

(Y 1 , ••• , Y) are independent. 
q+ n 

We state the following lemmas, which may be verified through 

manipulation of the determinant, before proceeding with the proof of 

the theorem. 

Lemma 2.1: The Jacobian of the transformation (2.1.1) is, for any 

k ~ r, the product of two functions, one involving only (y1 , ••• , yk) 

the other only ••• , y ) • 
n 

Thus 

7 

(2.1.4) 

n p -1 
Lemma 2.2: The product k~1 1:xic1 k remains after applying trans-

formation (2.1.1) a product of two functions, one involving only 

the other only (y 1' ••• , y ). 
q+ n 

Hence, we may write 

n p -1 

k~1 l:xic I k G(y1, ••• , y) H(y 1' ••• , y) ' q q+ n 

( ) E l't"\ c Rn-q 
y 1' "" •' y ~2 q+ n 

(2.1.5) 
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Proof of Theorem: Suppose q exists. The random vectors 

* 
(X1' ... , x ) and (Y 1' ... ' y ) have density functions f defined on 

n n 

* a = a x a , 
1 2 

and h defined on !i) = [o,ao) x !i)o' respectively, which 

are connected by the formula 

••• , y ) • 
n 

(2.1.6) 

ln view of the assumed independence of the variables this becomes 

f(x 1 , ••• , x)g(x 1, ••• ,x)!JI s s+ n h(y1, ••• , y) k(y 1' q q+ 

(x 1 , ••• , x ) E G: 
s+ n 2 

(y1 , ••• , yq) E !i)1 c Rq 

( Y) E ~ c Rn-q 
y 1' ••• , Ji.} q+ n 2 

··~, y ), n 

(2.1.7) 

(2.1.8) 

where !i)1 X !i)2 = !i), and the x' s and y' s are connected by (2.1.1). 

Dividing both sides of (2.1.7) by !JI= H1 • H2 and setting 

... , 

... ' y ) ' 
q 

(2.1.9) 

r ho ( y 1' ••• ' y q) " 

l ko(yq+1' ·•·• yn)" 
k(y 1' ••• ' y ) q+ n 

H2(y 1' •••, y) ' 
(y 1' ••• ' y ) E !i)2 q+ n 

q+ n 

we have 

... ' x ) g ( x 1' • • • ' x ) "' ho ( y1· ' ••• ' Y ) ko ( Y 1' s s+ n q · q+ 
••• ' y ) 

n 

(2.1.10) 

with arguments as in (2.1.8). 



Dividing side by side (2.1.5) into (2.1.10) yields 

with arguments as in (2.1.8) and 

:f(x1, ••• , xs) 

s . p .-1 

jrr1 lxj l J 

g1(x 1' ••• , x r = s+ · n 

g (x 1 , ••• , x ) 
s+ . n , (x 1' ••• , x ) Eu2 

n p .-1 s+ · n 
. rr 1 lx. l J 
J=S+ J 

ho (y 1' • • ·' Y ) . q 

••• , y ) 
n 

9 

(2.1.11) 

(2.1.12) 

k1(y 1' """' y ) . q+ n (y 1' ••• , y )E!i)2 
q+ n 

Letting y 1 ~ O and observing from (2~1.1) that this forces each 

x. to zero, j::: 1, ••• , n, causing (2.1.11) to become 
J 

(y 1' ••• , y )E!i)2 • q+ n 
(2.1.13) 

We remark here that the left side of (2.1.13) is equivalent to the 

product of A1 and A2 by definition in (C-2). Now div.iding (2.1.11) 

by (2.1.13) we obtain 

(2.1.11J:) 



with arguments as in (2.1.8) and where 

f 1 (:x;:1' ••• ' x ) 
:f 2 ( x1, • • • , x s) :;: ____ A_l ___ s_ 

x ) 
n ( x 1 , ••• , x ) E u2 s+ n 

(y1, ••• , 

Obsere here that f 2 (o, ••• , . o) = g2 (o, ••• , Q) = 1. 

Choosing a vector * * * ( y 1 , ••• , y 1 , ••• , y ) E ~2 such that 
q+ r+ n 

* * y(yr+l' ••• , yn) = 0 we note from (2~1.1) that at this point 

••• = x = o~ r 

choice of (yq+1' ••• , 

Since Equation (2.1.14) is independent of the 

y) it is equivalent to 
n 

(x 1' r+ 
... , x ) ERn-r 

n 

10 

(y1, ··n yq) E~1 

(2.1.16) 

where n 2 is the product of f 2 and g2 restricted to points at 

which the first r coordiriates are zero. But observing again from 

(2.1.1) that the vector (x 1 , 
r+ 

we are justified in writing 

... , ... ' y ) 
r 

h3(y1) = h2(y1,Y2, ••• , yq), Y1 E [o,•) ' (y1, ••• , yq) E~1 ' 

(2.1.17) 

from which (2.1.14) becomes 

f2(x1, ••• , xs) g2(xs+1' ••• , xn)=h/y1), (x1, ••• , xs) ea1' 

(xs+l' ••• , xn) Eu2 , y 1 E [o,•) . (2.1.18) 
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w w-1 Since 1 is one to one and onto, 1 exists and we may write 

(2.1.2) as 

... ' x ) + '±'2(x 1' s s+ 
... , x )] 

n 

( ) Ea ( >·ea x1, •••, xs . 1' xs+1' ••• ,xn · 2° 

(2.1.19) 

Then (2.1.18) becomes 

... ' xn)=h}lf-\lf1[x1 , ••• , xs]+ 

+ '¥/xs+1' •••, xn])], 

( x 1 , ••• , x s) Ea 1 , ( x 1 , ••• , x- ) E u2 • 
s+ n 

( 2.1. 20) 

If we set 

(2.1.21) 

the Equation (2.1.20) becomes 

... ' x ) J , 
n 

(2.1. 22) 

By evaluating (2.1.22) first when x 1 = x2 = x s 
O and then 

when = 0 we have 

(2.1.23) 

92(xs+1' ••• , xn) =h4[1f2(xs+1' ••• , xn)]' (xs+1' ••• , xn) ea2 ° 
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Putting (2.1.23) into (2.1.22) 

( x 1 , ••• , x ) E G2 • (2.1.24) 

Now set 

from which (2.1.24) becomes 

... ' x ) ' s 

s+ n 

... , 
(2.1.25) 

( x 1 , ••• , x ) E G2 s+ n 

(2.1.26) 

The Equation (2.1.16) is the Cauchy equation and in view of the 

continuity of f, g, t, t 1, 12 , the function h4 is continuous. The 

solution of (2.1.26) [see [1] p. 38] is given by 

-au 
e u E [o,=), and a is a real constant. 

We may now retrace our steps. From (2.1.25) 

••• ' x ) s 

.... ' x ) n (x 1 , ••• ,x)EG2 • 
s+ n 

From ( 2. 1. 23 ) 
••• , x ) 

s 
( x 1 , ••• , x s) E Ci 1 

g2(x 1' • •., x ) s+ n 

••• ' x ) n ( x 1 , ••• , x ) E G2 • 
s+ n 



From (2.1.15) 

... ' x ) 
s 

... ' 

13 

( x1, • • • ' x ) E a 
s 1 

x ) 
n (x 1 , ••• , x ) E a . 

s+ n 2 

From (2.1.12) 

g(x 1 , ••• , x ) 
s+ n 

n p -1 

A2 k=~+1 I~ I k 

... ' x ) 
s 

( x 1 , ••• , x ) E G 
s 1 

... ' x ) 
n 

(x 1 , ••• , x) EG 
s+ n 2 

This completes the proof of the sufficiency. 

To see that the condition is necessary, note that when (2.1.3) 

holds the product of f and g may be substituted into (2.1.5). 

Recall that the Jacobian may be written as a product which when trans-

formed by (2.1.1) and also used in (2.1.5) gives the desired separation 

of * g • 

It is possible to see that the theorems of Tamhankar [10] and 

Flusser [4] are corollaries of Theorem 2.1 as £,allows. Take r = n 

and the functions C\-c and ~k as given below: 



with 

a./y 1) = Y1 

~(yk) = cos yk, 

Sk(yk) = sin Yk, 

0 :S: y ~ TT for 
k 

2 ~ k ~ n-1 

... ' x ) 
s 

We obtain Tamhankar's result when 

and 

2 ~ k ~ n 

2 ~ k :S: n 

0 ~ y < 2,,.. 
n 

2 
+ • • • + x 

s 

+ • • • + x 
n 

2 

Set 

••• , x 
n 

are assumed to be 

mutually independent and identically distributed, and Flusser's result 

by assuming only (X1 , ••• , Xs) 

1 ~ s < n. 

and ( X 1 , ••• , X ) 
s+ n 

are independent 

14 

Example 2.1 which follows shows that the independence break of the 

transformed variables is free to occur anywhere between t and r. 

Examples 2.2 and 2.3 with the additional assumption that ... ' x 
n 

are mutually independent are the subject of the paper by Kotlarski [6]. 

~ 
and Z = (X3 ,x4 ) be· independent 

with continuous positive density functions f 
12 

b., j = 1, 2, 3, 4, be real numbers such that 
J 

1 

1 

are finite and positive. 

Let a., 
J 



Let 

Transform 

where 

Put 

as follows 

x1 k 1 r (a4 cos 6\ 

x2 = k 1 r (a1sin 6 1 

x3 k2 r (b4sin 62 

X4 = k2 r (b 1 sin e3 

X, ER, j 1, .. "' , 
J 

0 ~ r :s;: CIO 

0 ~ @1 < 21'T 

-'li/2 ~ 6 , ~ TT/2 
J 

'f(r) 2 
r 

j 1, 2 • 

15 

- a 2sin 61) cos e2 cos e3 

- a3cos Q1) cos 62 cos 63 

cos 93 - b2 sin A ) ·3 

- b 3 
sin e 

2 
cos 6 ) 

3 

4 . 

x.ER, j=1, ••• ,4. 
J 

where the c., j = 1, ••• , 6, 
J 

are appropriate combinations of the 

and b. so that the transformation leads to the equation 
J 

X, ER, 
J 

j=1, ••• ,4. 

a. 
J 
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The necessary and sufficient condition that (X1 ,x2 ) and ,(x3 ,x4 ) 

be distributed according to 

x. ER, j= 1, ••• , 4 
J 

is that R and (91 , 92 , e3) or (R,91 ) and (62 ,93) be independent. 

Recall the gamma distribution G(p,a) with parameters p > O, 

a> O, which is given by the density 

p p-1 -ax 
a x e 

f(p) 
x>O 

f(x) = 

0 otherwise. 

Example 2.2: 
~ 

and Z = ( X 1 , ••• , X ) , 
s+ n 

(O ~ s < n), be two independent random vectors with positive 

coordinates. Assume that the probability density functions f and g 

of ~ and Z are continuous for positive arguments and that there 

exist limits 

lim ... ' 

lim 

x ~a 
s 

x 
s+1' a • • , x ~a 

n 

f (x0 , • • •, XS) 

Po-1 pn -1 

XO XS 

g(x 1' ... , x ) 
s+ n 

p -1 
s+1 Pn -1 

x 
s+1 

x 
n 

for some set of positive pi, i o, ... , n. 

A2 >o 



Transform as follows: 

x 
1 

x 
n-1 

x 
n 

= y 

y 

y 

y 
n 

y 
n 

( 1-Y ) 
n 

y > o, 

o<y.<1, i=1, ••• ,n 
1 

17 

The necessary and sufficient condition fo+ all x. 
l. 

to be mutually 

independent and distributed G(p, ,a) 
1 

is that there exist an integer 

q, O :5: q < n, such that (Y, ••• , y) 
q 

and ( y 1' q+ 
... , y ) 

n 

independent. 

~ ~ 
Example 2.J: Assume W and Z are as in Example 2.2. 

Transform as follows: 

X = YY 
n-1 n 

x 
n 

n 

Q [(y1, ••• , yn)li~1 Yi= 1 ; 

y, ii?! o, i = 1, ••• , n} 
1 

The necessary and sufficient condition for all x. 
1 

to be 

mutually independent and. distributed 

(Y., ••• , Y) be independent. 
1 n 

G(p. ,a) 
1 

is that y and 

are 



CHAPTER III 

GENERJ\LIZA'l'ION OF THE TJ,lEOREM OF 

KAGAN AND SHALAEVSKI 

A re$tatement of the theorem of Kagan and Shalaevski is included 

for reference. 

Theorem J.1: Let 

y = 
n 

2 
.E1 (X. + a.) , a. 
J= J J n J 

only through .E1 
J= 

a. 
J 

N(O, cr). 

... ' 
ER, has 

2 
Then a. . 

J 

x 
n 

be i.i.d. and suppose 

a distribution which depends on 

·the common distribution of the 

the 

x. 
J 

is 

The original method of proof as given by the authors was to twice 

n 2 
a ) = E exp [- . E1 ( X. + a. ) ] • 

n J= 1 1 
differentiate the function ... ' 
When the first generalization was made this method was abandoned and 

replaced by the solution of the Cauchy equation. We include the proof 

of this theorem as originally done to give contrast to the proof of the 

most recent result. 

Theorem J.2: Let (X1' ... ' x ) and (X 1' ... ' x ) , 1 
m m+ n n 

2 be independent and let y = .r: (X.+a.) have a distribution 
n J=1 J J 

depends only on ,!: 2 ER. Then all x. independent a. , a. are 
J=1 J J J 

distributed normally with zero means and common variance • 

be the distribution functions for the vectors (X1 , 

AO 

• • • , x ) ' 
n 

S: m < n, 

which 

and 



and ( X 1 , ••• , X ) , 
m+ n 

respectively. Define a function 

h on Rn as follows: 

n 
2 

h(a1 , ... , a ) = E exp (- !: (X. + a.) ) 
n j:1 J J 

(J.2.1) 

= s n 
+ a.)2) exp (- !: (x. dF(x1 , ... , x ) ' a.ER • 

j=1 J J n J 
Rn 

- ' 

Note that h is continuous with respect to a 1 , ••• , an by the 

convergence theorem for Lebesgue integrals (see Loeve [8~ p. 125]). 

Set 

u1 

G(u1 , ••• ,un)=~ 
_., -= 

n 2 
exp(-.!: x.) dF(x1 , ••• , xn), u. ER 

J=1 J J 

(J.2.2) 

Because of the independence of (X1 , •• ,, Xm) and (X 1 , ••• , X ) 
m+ n 

we may write 

m 2 
(- .!:1 x. ) dF0 (x1 , 

J= J 
... , x ) 

m 

-= -= 
u +1 u n 
~ . . . r1 exp (- . ~ 1 x .2) dF 1 ( x 1 , ••• , x ) , u . ER J ,.} J=m+ J m+ n J 
-ICI ..,.ICI 

(J.2.J) 

Now by expanding the exponent in (J.2.1) and using (J.2.2) and (J.2.J) 

we may write 

h(a1 , ••• , a ) = (' 
n ..) 

.R'11 

m m 2 
exp(-.~1 2a.x.) exp(-.!:1 a. ) dG0 (x1 , ••• , x) 

J= J J J= J m 

n 2 

S e ( - ~ 2a.x.) exp(-. !: 1a. )dG1 (x 1 , 
xp j=m+1 J J J=m+ J m+ 

Rn-m 

a. ER 
J 

• · •• 'x ), 
n 

(J.2.4) 



But by hypothesis 

... ' a ) 
n 

hence combining (J.2.4) and (J.2.5) 

a. ER 
J 

S exp(-jii 2ajxj) exp(-jii aj 2 ) dG0 (x1 , ••• , xm) 

Rm 

Setting 

. s n n 2 
exp( .... ~. 1 2a.x.) exp(-. r: 1 a.) dG 1 (xn+i' ••• , x) 

J=m+ J J J=m+ J n 
Rn-m 

n 2 
= 'f(.r:1 a.), 

J;: J 
a.ER • 

J 

t ::!!: 0 , 

we see that J.2.6 becomes 

n 
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(J.2.5) 

(J.2.6) 

(J.2.7) 

exp(-. r: 12a.4.)a.G1 (x 1 , ••• ,x,) 
J=m+ J J .. .JII+ n 

Let 

a. ER 
J 

... ' x ) 
m 

... ' 

(J.2.8) 

x ) 
n 

and note that neither b0 nor b 1 is zero. Evaluating _(J.2.8) first 

when 

we find 

= a = 0 
n 

and then when a = 0 
m 



'!'1(j~1 a/) ::b1 ~ exp(-j~12ajx}dG0 (x1 , ••• , xm) , 

Rm 

n 
exp(-. l::. 12a.xj)dG1(x 1, ••• ,x ), 

J=m+ J m+ n 

Substituting (J.2.10) into (J.2.8) 

2 n 
a · ) '!'1 ( ' :r; 1 

J J=m+ 
2 a. ) 

1 

Dividing both sides of (J.2.11) by b0b1 and setting 

'!'1(t) 
't'2(t), t :t O 

bob1 

we have 

m . n 
2 n 2 

'!'2(j~1 a:2)'!'2(. ~ 1 a. ) '!'2(j~1 a. ), 
J J=m+ J J 

a.ER. 
J 

a. ER 
J 
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(J.2.10) 

a. ER • 
J 

(J.2.11) 

(J.2.12) 

(3.2.13) 

which is a form of the Cauchy equation (see Aczel [1, p. 31]) and, 

because the continuity of '!'2 follows from the continuity of h, has 

solution 

ct 
e t ~ 0 

where ~ is a real constant. From (3.2.12), 

t ~ 0 • 

Now from (J.2.2), (3.2.5), and (3.2.7) we may write 

~ exp(~j~l 2ajxj)dG(x1, ••• , xn), 

Rn 

a.ER; 
J 

(J.2.14) 

(J.2.15) 

(J.2.16) 



thus from (J.2.15) and (J.2.16) 

S exp(-.~12a.x.)dG(x1 , ••• , x) =b0b1 exp(c .~1 a. 2), 
J= J J n J= J 

a.ER • 
J 
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But (J.2.17) is an n~dimensional transform with parameters 2a., j = 1, 2, 
J 

... ' n, hence dG(x1 , ... , x ) is determined uniquely by, 
n 

n 
2 dG(x1 , ... ' xn) = k1 exp(k2 ,I:1 xj )dx1 ... dx, x.ER. (J.2.18) 

J= n J 

Then from (J.2.2) 

n 
2 

dF(;x:1, • • •, xn) = k1 exp(k3 .I: xj )dx1 dx, x. ER . 
J=1 n J 

Since F is a distribution function k1 and kJ must be given by 

kJ = -(202)-1 

k1 = [(2TT)n/2 cf1r1 

which shows all X. to be distributed independently and normally with 
J 

zero mean and common variance. 

In attempting to generalize further it was noticed that the 

statistic 
n 2 

Y = .I:1(X. + a.) 
J= 1 1 

is essentially a function of vectors 

d ~ d b · tt Y = (:-t + ~a) I (:-t + ~a) 1· an a an may e wr1 en as X X 

transposition and I is then X n identity matrix. 

statistic y being a sum may be freely broken; i.e., 

where 
I 

denotes 

Further, the 

m 2 
Y= .I:1(X.+a.) 

J= J J 
n 2 

+ . I: 1 (X. +a.) • 
J=m+ ;i. 1 

The following theorems and corollaries are natural 

extensions of Theorem J.2; hence, some of the proofs are omitted. 

Theorems J.J and J.~ taken together allow a characterization of the 

normal distribution. 



Theorem J.J: Let 

real random row vectors. Let 

u = 

A = 

u nXn 

A nXn 

... ' x ) 
n 

B = B X mm 

be 

b" real, symmetric, positive definite matrices with A + u""1, B + v- 1 

nonsingular. Denote 

E n m For all row vectors .a R, b ER ae;fine 

I • I 

Z = (X - a)A(X - a) + (Y - b)B(Y - b) 

where again means transposition. If X and Y are independent 

and distributed N(O,U) and N(O,V), respectively, then the 

expectation of Z 
, I I 

depends only on· a£a + bDb. 

Proof: Define the following functions 

<Px(a) = Ee:x:p[-%(X-a)A(X-a)'] 

<Pz(a,b) = Ee:x:p[-%(X-a)A(X-a)' - %(Y-b)B(Y-b) 1
] 

n 
a ER 
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(J.J.1) 

By hypothesis X ""'N(O,U), thus evaluating <,OX(a) we find 

<,OX(a) = · / 2 . S exp[-Mx-a)A(x-a) ']e:x:p[-%xu- 1x'] dx1 ••• dxn, 
(2TT)n ITuT 

n 
R aERn. (33) •• 2 



Expanding the exponent and simplifying 

• dx1 ••• dx 
n 

(3.3.3) 

The final portion of (3.3.3) is the moment generating function/ of a 

normal vector with covariance matrix ( U-1) .. 1 A + evaluated at point 

aA (~ee Moran [9, p. 272]), thus 

Combining exponents and recalling the definition of C 

= k exp [%.a.Ca' ] 
1 ' 

Similarly 

From the independence of X and Y we have that 

Hence from (3.3.5) and (3.3.6) 

n 
a ER , 

(3.3.5) 

(3.3.6) 

which is sufficient to show the expectation of Z is dependent only on 

I I 
aCa + bDb ·• 
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Corollary 3 .1: Let x:;: (X1 ,. ... ' x 
n 

) and y c (Y 1' ... ' y ) 
m 

be real random row vectors. Let u = u x and v = v x be real, 
n n mm 

symmetric, positive definite matrices. For all 
n 

a ER , b ERm define 

-1 I -1 )' Z = (X - a)U (X - a) + (Y - b)V (Y - b • 

I;f X and Y are independent and distributed N(o,u) and N(O,V) 

respectively then the distribution of Z depends only on 

-1 I ..,1 I 
au a + bV b • 

Theorem J.4:: Let x::, (X1' ... , x ) ' y:;:: (Y1, ... ' y ) be two 
n n 

real independent random vectors. Let A,C be real nXn matrices 

and B,D be real mXm matrices with A - cC and a - cl) invertable 

for suitable real constant c. I:>enote 

Q = Q(c) = B 1 (B - cD)-~ 

and require that P - A and Q·- B be positive definite and symmetric. 

For all a E Rn, b E Rm define 

Z (X-a)A(Xra)' + (Y-b)B(Y-b)' • 

If the distribution of Z 
I I 

depends only on aCa + bDb then X and Y 

are distributed normally with zero means and covariance matrices 

( . )-1 
p - A and (Q - B)- 1 respectively. 

Corollary J.2; Let X and Y be real independent random row 

vectors. Let Ac AnXn and B = BmXm be real, symmetric, positive 

definite matrices. For all a E Rn, b E Rm define 
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Z = (X - a)A(X - a)'+ (Y - b)B(Y ~ b) 1 
• 

If the distribution of z depends only on 
I I 

aAa + bBb then and y 

are distributed N(O, cA- 1 ) and N(O, cB .. 1 ) respectively for a suitable 

constant c, 

Further generalization hinged on the recovery of the original 

distribution from the integral transform. Although tables Eµ"e 

extensive, they lacked the exact transforms of interest. This problem 

was overcome by introducing convolutions of probability measures and 

requiring the statistic to be sufficiently close to a probability 

density function. We begin with some preliminary definitions and 

notations. 

Let µ be- a probability measure (p.m.) and f a p.d.f. defined 

l Rn. on rea n-space The respective Fourier.:trc:1-nsforms 

will be given by 

µ(t) = ~ itx 
e. µ( dx) , 

itx e · f(x)dx, t E;R.11 • 

We define the convolution of f and µ by 

(f * µ)(a) = s 
and: note that 

(f * µ)(a) = 

f(a - x)µ(dx) , 

E f(a - X) , µ 

A A 
µ and f 



Here E 
µ. denotes the expectation under the measure µ. and when no 

confusion results the µ. will be supressed. The convolution f * µ. 

is a p.d.f. which corresponds to the sum of two independent random 

vectors, one with p.d.f. f and the other with p.m. µ. (see Moran 

[9, p. 230]) and their Fourier transfor~s are related by 
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The following conditions are notation will be used for the theorems 

and corollaries which follow. 

independent random vectors with p .• m. 's µ. 1 and µ.2 • 

II. The functions and are p.d.f.'s on Rn and 

respectively. 

A A 
III. The Fourier transforms f 1 and f 2 do not vanish. 

IV. For 

or (0,1], the functions 

respectively, satisfy 

Notation: Denote 

and let denote a point of 

and ~ being one of 

defined on Rn 

k = 1,2 

k= 1,2, 

a 
k 

such that 

(o,•), [1,c), 

and 
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VI. For all cEC c R and for suitable c1 and c2 dependent 

on c, 

~(8ic;c) = ckg~(8ic) 

is a p.d.f. k=1,2, 
n 

a 1 ER , 
m 

a 2 ER 

VII. There exists a set c' cc such that for c EC' the 

equations 
t E Rn if k = 1 

" " f (t)'" (t·c) = h (t·c) 
k 'l"'k ' k ' 

(J.6.1) 
tERm :i,f k=2, 

have solutions for unknown cpk which are Fourier transforms of p.m. 1 s 

on and Rm, respectively. 

Whenever I and II are satisfied we shall denote 

(J.6.2) 

Theorem 3.5: If assumptions I and II are satisfied then 

Proof: Since Y1 and Y2 are specified independent in I we may 

write for a 1 E Rn, a 2 E Rm, 

Theorem J.6: Suppose assumptions I-VII are satisfied and the 

expectation of Z(~1 ,a2 ) depends on a 1 and a 2 only through a 
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function of g 1 (a1 ) • g2 (a2 ) which is continuous at at least one point 

of ~ and is zero at zero. Then the p.m.•s µ1 and µ2 are deter-

CE C/ 
mined up to a parameter by 

" h 2 (s;c) 

"' f 2 (s) 

(3.6.J) 

Remark: These two theorems along with an additional condition 

which specified c may be used to. characterize µ1 and µ2 • 

Proof of Theorem 3.6: By Theorem 1 we have 

On the other hand by hypothesis E Z(a1 ,a2 ) may be expressed as 

(3.6.5) 

with p being continuous at at least one point of ~ and zero at zero. 

Combining (3.6.4,) and (3.6 .• 5) we obtain the functional equation 

(3.6.6) 

in which and ,.., '12 are unknown. * Evaluating (3.6.6) when a 2 = a 2 

* and then when a 1 = a 1 we see that because of IV 

* * or because V requires 111 ( a 1 ) -JO -J 112 ( a 2 ) 



JO 

p(g1(a1)) 

* i]2(a2) 

(J.6.7) 

Define a function y by 

tE!l)U[o}. (J.6.8) 

Note that since p is zero at zero and continuous at some point of !i) 

the same is true of y. Also since gk = O on the complement of Gk' 

k:::i 1, 2, it follows from (J.6.7) that \ = 0 on complement of Gk' 

We conclude that and 'l'1 '12 are unknown only on a 
1 

and 

u2 , hence restrict ourselves to those sets. Now using (J.6.7) and 

(J.6.8) in (J.6.6) we get 

(J.6.9) 

(J.6.10) 

This is the Cauchy equation (see Aczel [1, p. J8]) which has most 

general solutions for y continuous at at least one point 

y( t) = t 0 or y( t) = o , t E $> , (J.6.11) 

and c a real constant. We now retrace our steps. From (J.6.8) 

p(t) = o , t E~. (J.6.12) 



Putting (J.6.12) into (J.6.7) and recalling that g = 0 outside 
k 

Gk, k = 1, 2, we obtain 

or 

* * 
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However, we see from the requirement 11 1 (a1 ) /. o/ 'Tl2 (a2 ) that the latter 

case is impossible. Recalling the definition of 'Tlk' (J.6 .• 13) becomes 

(J.6.14) 

The left sides of (J.6.14) are p.d.f.'s, as noted when the convolution 

was defined. The right sides are also p.d.f. 's for c EC as given 

in VI. Thus, for c EC (J.6.14) becomes 

Since µk is a p,m., k = 1, 2, · we have our second restriction on the 

CE C/ 
parameter c and may state that for 

unknown µk are determined by 

A A 
f 1 (t) • µ1 (t;c) 

as given in VII the 



32 

Finally, since III requires 
A A 
f 1 and f 2 to be nonzero, we see the 

above equations are equivalent to those given in (J.6.J) which completes 

the proof. 

Remarks: (i) With minor alterations the functions f 1 and f 2 

may be replaced by constant multiples of p~d.f.'s. 

(ii) By setting lfk(~) = log gk(~), ~ EGk' k= 1, 2, the 

dependence on the product g1(a1)·g2 (a2 ) becomes a dependence on the 

sum If 1 (a1 ) + lf2 (a2 ), a 1 EG1 , a 2 EG:2 • 

The following examples and corollaries illustrate the application 

of Theorems. J.5 and J.p. 

Example J.1: Assume n > o, O <pk< 1, pk+ qk = 1, k = 1, 2, ••• , 

m+n.· Assume x ) and 
n 

independent random vectors. Denote 
n ,,,Rj p .-1 
TT '"" , J 

... EiX.x • 
J 

and 

j=1 f(p .) xj 
J 

0 

n+m 
• TT 1 =n+ 

p. 
Ill. J 

f(p .) 
J 

••• ,x )z: n+m 

0 

0 

p .... 1 
x J 

j 

..,GJ.x. 
J 

... ' x ) are real n+m 

elsewhere 

all x. > 0 
J 

elsewhere 

all a. :a: 0 
J 

elsewhere 



[ n+m J 
exp - . I: 1 a. 

J=nt J 

0 

Assume for some 1 :!:: k :!:: n+m that EX = k a. 

all a. :I!: 0 
J 

elsewhere. 

Corollary J.J: The expectation of 

... ' 
b =(a 1 , ••• ,a )ERm 

2 n+ n+m 

depends on b 1 and b 2 only through a continuous function of 

n 
. I::1 a. 
J= J 

n+m 
+ . E 1 a . 

J=n+ J 
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if and only if all coordinates of Y1 and Y2 are mutually independent 

with X . ,.., G ( q . , a.) • 
J J 

Proof: It is evident that Theorem J.5 applies. Assumptions I - VI 

are satisfied for C = (o,m) and 

-n 
exp[-c j~i aj] c 

h 1 (b1 ;c) = 

0 

exp[-c 
n+m 

aj] 
-m .E c 

J=n+1 

h 2 (b 2 ;c) = 

0 

all a . .t O 
J 

elsewhere 

all a. :t O 
J 

elsewhere 



The corresponding characteristic functions are 

,. 
h1 (t;c) 

n 

= .rr1 J= 

n+m 

-1 

( it') 1 - __l. 
c 

= . TT 1 J=n+ 
( is .)-1 

1 - __l. 
(1 ' 

We see that the equations 

cp1 (t;c) 

t. ER 
J 

s. ER • 
J 

s. ER 
J 

have solutions for cpk which are Fourier transforms of p.m.'s at 

least for c = a. Thus VII is satisfied for some set c' c c c' 
' 

containing at least GX.. Thus Theorem J.6 applies. From (J.6.15) we 

see that the characteristic function corresponding to 

where F. 
J 

denotes the di~tribution function of x .• 
J 

X. is 
J 

Then from the 

relationship 
fl I 

-iF.(O):EX. 
I 

( denotes derivative here) we see that 
J q J 
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the assumption k actually forces a· c = GX.. Hence the character-

istic functions are 

j = 1, 2, ••• , n+m, 

Example J.2; The previous example characterized the gamma distri-

bution under the strict assumption that pk+ qk = 1. This example shows 



that the assumption may be avoided and allowed more freedom. 

simplicity we take m = n = 1. Assume ~, pk' qk are positive and 

Assume x1 
q1 

are real independent 

random variables and E X1 = Cl • 

pk 
ex. pk-1 

x 
f(p ) 

fk(x) 
k 

= 

0 

and 

Denote 

-ax 
e x>o 

x S: 0 

-CXa 
e 

k 

a> 0 

O a S: 0 

Corollary J.4: The expectation of 

= 1, 2 

depends on a 1 and a 2 'only-:f;pro~gh a. continuous function of 

Proof: Similar to the proof of Corollary J~J. 

' 

For 

Example J.J: Let A,C be real n X n matrices and B,D be real 

m Xm matrices which are invertable, positive definite and symmetric. 

Assume X = (X1 , ••• , Xn) and Y = · (Y1 , ••• , Ym) are real and 

independent. Denote 

[ -1 J J exp -Jf x A x , 

( [ -1 (] 
f 2 y) = exp -Jf y B y , 

35 



where denotes transposition. Also set 

a ERm 
. 2 " .. 

and assume th~re exists a non-empty set C' c (o,ao) such that for 

I 
c EC , cC - A and cD - B are invertable and positive definite. 

Corollary 3. 5: The expectation of 

depends on a 1 and a 2 only through a continuous function of 

36 

-1 I -1 I 
a 1C a 1 + a 2D a 2 if and only if X ,..,. N(O, cC - A) and Y ,..,. N(O, cD - B). 

Proof: We have the assumptions I - VI satisfied with C= (o,oci). 

The Equations (J.6.1) are then equivalent to 

exp[-%t cCt 1 ] 

exp[ ... % t At' J 

exp C.-% s cDs 1 
] 

= exp[-% s Bs 1 J 

These equations have solutions which are the Fourier transforms of 

I 
p.m. 's when c EC (as in. example J.J),, which establi.shes the corollary. 

Example J.4: Assume ... ' 
are real and independent. Denote 

x ) 
n 

and Y =CX: 1'····,x ) 2 n+ · n+m 



Take C = (o,~) and C' = (1,m). 

Corollary J.6: The expectation of 

x. ER 
J 

... , a ) Elf 
n 

b ( - a )ERm 
2 = a 1'"""' n+ n+m 

depends on b 1 and b 2 only through a continuous function of 

n 2 n+m 
" " a2. · '"'1 a · + · '"' 1 J= J J=n+ J 
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if and only if all components of Y1 and Y2 are mutually independent 

and distributed N(O,~). 

Proof: This is a particular case of Corollary J.5 with all 

matrices taken as the identity. 
, I 

Remark: Corollaries J.5 and 3.6 are restatements of Theorem J.3 

and Theorem J.4. If the assumptions in Corollary J.6 are changed to 

require all X. be i.i.d., then the same conclusions follow which is 
J 

the original result of Kagan and Shalaevski. 



CHAPTER, IV 

SUMMARY AND CONCLUSIONS 

The purpose of this work has been to offer generalizations of two 

know characterization. theorems for probability distributions. 

The generalization of Tamhankar's [10] theorem as given in 

Chapter II appears to be complete and allows characterizations of the 

normal, gamma, and Dirichlet distributions based on the independence of 

transformed variables. 

The work presented in Chapter III extends the result of Kagan and 

Shalaevski [5] and allows characterization of two useful distributions, 

the normal and the gamma; hence, also the Chi-square and the 

exponential. These characterizations are based primarily on statistic 

properties, in particular the fashion in which the expectation of a 

random variable depends on a parameter. It is almost certain that these 

generalizations can be extended. For example, it appears possible that 

the: random variables may be allowed to take values in a Hilbert or 

Banach space, where the normal distribution is given by its character

istic function. The author intends to extend these theorems to these 

more abstract spaces and additionally to endeavor to change the group 

operators of + and to more general operations. __ This would then 

allow characterizations of distributions which stem from quotients 

and products, as an example the Cauchy distribution. 
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