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CHAPTER I 

INTRODUCTION 

An integral part of mathematics is the study of functions. This 

study begins early in the student's mathematical career and continues 

throughout his association with mathematics. Some classes of functions 

are peculiar to a particular branch of mathematics, whereas other 

classes of functions cross over the sometimes hazy lines which 

separate the branches, and are associated with several of the branches. 

Number-Theoretic Functions 

The functions to be considered in this dissertation form a sub­

class of the class of functions known as number-theoretic functions. 

Definition 1. 1. A real-valued or complex-valued function whose 

domain is the set N = { l, 2, 3, ... } of positive integers is a number­

theoretic (or arithmetic) function. 

Let i3 denote the class of all number-theoretic functions. Then it can 

be shown [1, p. 237] that rn, +, ,:,), where + denotes pointwise 

addition and * denotes convolution product, is an abelian ring with 

unity. 

A well-known subclass of o is the class of multiplicative 

functions. 
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Definition 1. 2. Let f e [5 and let m, n e N. If f(mn) = f(m) f(n) 

for (m, n) = 1 , then f is a multiplicative function. If 

f(mn) = f(m) f(n) for any pair of positive integers, then f is completely 

multiplicative. 

The function z which is zero for all n e N (i.e., z(n) = 0) is multi-

plicative. The multiplicative functions which are of interest are those 

different from the function z. Let !DI denote this particular class of 

functions. The properties of these functions can be found in any intro-

ductory number theory text and will not be developed here. Three of 

the more familiar multiplicative functions which will be used in this 

dissertation are defined below: 

1, The function T : 

T(n) = the number of positive divisors of n. 

2. The function cp (Euler1 s function) : 

cp(n) = the number of positive integers less than or equal to n, 

and relatively prime to n. 

3. The function µ. (Ml:Jbius function) : 

1 , if n = 1 , 

µ(n) = -1, if n is a prime, 

0, if n is divisible by a power of a prime with exponent 

greater than l . 

This p~per will explore the subclass of [5 known as additive 

functions. The identifying property of this class is the property 

f(mn) = f(m) + f(n), whenever (m, n) = l. This subclass forms a 

subgroup of the additive group ( [5, +), It should be noted that if f e !DI 

is everywhere positive, then logf(n) is defined and is additive. 
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Conversely, given h additive, the function e 
h(n) 

is defined and is 

multiplicative. Furthermore, e 
h(n) 

has positive values. The base of 

the logarithm and of the exponential need not be restricted to the number 

e. The foregoing discussion holds as well for any base k, where k 

is positive and different from 1. 

Most of the classical functions of number theory are additive or 

multiplicative, and many classical problems of arithmetic are closely 

connected with the behavior of these functions. Thus, the study of such 

functions occupies a significant place in the problems of number theory. 

Some of the literature in relation to additive functions deals with the 

existence of a distribution function. The earliest result is credited to 

I.J. Schoenberg [10, p.46] who, in 1928, proved that~ has a 
n 

distribution function. Considerable attention has been given to distri-

bution functions by such authors as P. Erdl::ls, M. Kac, J. Kubilius, 

C. Ryavec and others, in survey articles as well as in books. This 

particular area is not included in this dissertation. 

Purpose 

The purpose of this dissertation is to provide an introduction to 

additive functions, to develop their fundamental properties, and to 

indicate some of the principal areas of study related to these functions. 

Chapter II is concerned with the fundamental concepts and prop-

erties of additive functions. Many examples are considered in connec-

tion with these. Included in the development are the properties: 

completely additive, strongly additive and prime-independent. 

Developed also, is the idea of an average of an additive function and, 

stemming from this, an inversion formula. Two isomorphisms related 
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to additive and multiplicative functions exist. One is the connection 

stated earlier between a subgroup of the multiplicative functions with 

respect to pointwise multiplication and the additive functions with 

respect to addition. The other isomorphism results from defining an 

operator L 1 on multiplicative functions, and is an isomorphism 

between the two subclasses themselves, with the operations convolution 

product and addition, respectively. A list of additive functions which 

are used in this dissertation appears in the Appendix. 

The sum T(x) where x , T(x) = ~ rlk(n), is the arithmetic 
n<x 

average value of functional values of rlk(n) over the first n integers. 

In Chapter III, a formula for approximating the value of T (x) is 

developed. After considering the case for k = 0, a general form is 

then derived. 

There are some theorems which show that if an additive function 

is in some sense "smooth", then it must be a very special type. 

Chapter N deals with this type of function, One result associated with 

this "smoothness" is that the logarithmic function is essentially the 

only nondecreasing additive function. With this in mind, conditions on 

additive, and completely additive, functions to ensure they will be 

constant multiples of the logarithmic function are discussed. 

A rather extensive bibliography concerning additive functions is 

included. Articles related to distribution functions have been included, 

even though this area is not developed here. This bibliography was 

compiled in order to have available a ready reference of articles on 

additive functions, and distribution functions of additive functions. 

The material in this dissertation assumes the knowledge obtained 

from an introductory number theory course, as well as some knowledge 
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of abstract algebra and advanced calculus, all obtained on the under-

graduate level. Little more than basic number theory is required to 

read and understand the material in Chapter II. For Chapter III, the 

reader will have to understand some of the concepts of advanced 

calculus. A greater maturity is necessary for Chapter IV, in that 

comprehension of limit superior and limit inferior, and other basic 

concepts from analysis is essential. If the reader wishes to go further 

than the scope of this dissertation, it will be necessary for him to have 

more than a basic knowledge of analysis and probability. 

Notation 

A word about notation! Throughcmt this paper, the letters p and 

q (with and without subscripts) will denote primes; unless stated other-

wise, x and y will represent real numbers; and other Roman letters 

will denote positive integers. Also, if the base of a logarithm is not 

given, the logarithm is a natural logarithm. That is, log n = log n. 
e 

Used, also, will be the convenient notations O, o, and ,..,_,. A 

discussion of these notations, which were introduced by E. Landau, 

can be found in either LeVeque [36, pp. 92-95] or Hardy and Wright 

[17, pp. 7-8]. To define these,. let f(x) be any function defined on 

some unbounded set S of positive numbers, and let g(x) be defined 

and positive for all positive x. 

Definition 1. 3. If there is a number M such that I f(x) I < M g(x) 

for all sufficiently large x e S, then f(x) = O(g(x)) . 

Thus, lOx = O(x) because there is an M such that j lOx I < Mx; in 

particular, M can be any number larger than 10. Again, sinx = 0(1), 



since I sinx I < M · 1 for any M > 1. When the statement 

f(x) = 0( l) is used, this means that f(x) remains bounded as x 

increases. An immediate consequence of the definition is that 

0(1) ± 0(1) = 0(1). 

Another useful notation is the a-notation. 

Definition 1. 4. If 

then f(x) = o(g(x)). 

lim f(x) = 0 , 
x-.q2, g(x) 
XE~ 

6 

This implies that the function g grows faster than does the function f. 
2 

For example, x = o(x2 ), since lim ~ = lim .!. = 0. If the notation 
x x 

f(x) = o( l) is used, this means f(x)- 0 as x-+ co . 

Some of the properties of these two notations which will be used 

. in this paper are proved below. 

Lemma 1. l. O(O(g(x)) = O(g(x)). 

Proof: Suppose f(x) = O(g(x)) and h(x) = O(f(x).), i.e., suppose 

f(x) and g(x) are positive, I f(x) I < M'g(x) and /h(x) I < M"f(x). 

Then I h(x) I < M' M 11 g(x). Hence, the lemma. 

Lemma l. 2. O(g(x)) ± O(g(x)) = O(g(x)). 

Proof: Let f(x) = O(g(x)) and let h(x) = O(g(x)). Then 

I f(x) I < M' g(x) and I h(x) I < M"g(x). Since 
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I f(x) ± h(x) I < I f(x) I + I h(x) I 

< M'g(x) + M 11 g(x) 

= Mg(x), 

where M = M' + M 11 , the lemma follows. 

Lemmas 1. 1 and 1. 2 imply that O(f(x)) ± O(g(x)) = O(max {f{x), g(x)}). 

Lemma 1.3. If f(x) < g(x), then O(f(x)) = O(g(x)). 

Proof: Let h(x) = O(f(x)). Then I h(x) I < M f(x) < M g(x). 

Thus, h(x) = O(g(x)). Hence, the lemma follows. 

· Note that here symmetry of equality does not follow. F0r 

2 2 
example, O(x) = O(x ) , but O(x ) f O(x). Also, symmetry between 

0 and O does not hold. As an example, if f(x) = o(l), then f(x)- 0, 

which. implies that j f(x) I < M • l for all sufficiently large x. Hence 

f(x) = 0(1), or o(l) = 0(1). But the reverse is not true, since 

f(x) = 0( 1) implies f(x) remains bounded, which does not necessarily 

imply that f(x) -+ 0 • 

Lemma 1. 4. If for all x e S f(x) > 0, then 

f(x) O(g(x)) = O(f(x) g(x)). 

Proof: Let h(x) = O(g(x)). Then I h(x) J < M g(x). Since f(x) 

is positive, f(x) J h(x) I = J f(x) h(x) I < M f(x) g(x). Therefore, the lemma 

follows. 

Lemma 1. 5. o(l)(A+o(l)A) = o(l)A. 

Pro0f: Let g(x) = o(l) and h(x) = o(l). Then g(x)-+O, h(x)-+O, 



and 

o(l)(A+o(l)A) = g(x)(A+h(x)A) 

= g(x)A + g(x) h(x)A 

= g(x) + gh(x)A-+ 0 . 

Thus, the lemma. 

Lemma 1. 6. o(l)a = o(l), for a constant. 

Proof: Suppose g(x) = o( 1 )a. Then g(x) -+ 0 and therefore, 
a 

g(x)-+ 0. The re fore, the lemma follows. 

Finally, ......, is considered. 

Definition 1. 5. If 

f(x) 
lim g(x) = 1, 

x-+co 
xeS 

then f(x) is said to be asymptotically equal to g(x), written 

f(x) ......, g(x). 

8 

As an example, 1 +x......, x since as x-+ai. The expression 

f(x) ......, g(x) is equivalent to the equation f(x) = g(x) + o(g(x)). 

In arguments concerning the behavior of functions as x becomes 

infinite, these notations are useful, in that a complicated expression 

can be replaced by its principal term plus an additional term, whose 

possible size is indicated. 

Definitions and notation from number theory which are necessary 

in 0rde r to read the material in the remainder of the paper have been 
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included here. Other notation will be described as needed, In the next 

chapter, the reader is introduced to additive functions and is given a 

chance to become familiar with them through the many examples which 

are provided, 



CHAPTER II 

CLASSIFICATION OF ADDITIVE FUNCTIONS 

Familiar to the first-year algebra 0r trig0n0metry student is the 

logarithmic function, One of the properties of logarithms is that the 

· logarithm of a product is the sum of the logarithms 0f the factors·, i.e., 

logmn = log m + log n. It is this property that is the defining property 

of additive functions. 

Definition 2. 1. For f e [; , f is an additive function· if 

( 1) f(mn) = f(m) + f(n) , 

whenever (m, n) = 1. If (1) is true for any pair of natural numbers, 

then f is a completely additive function. 

Some segments of literature refer to additive functions as "restrictedly 

additive, ' 1 and to completely additive functions as "totally additive, 11 

but throughout this paper, the nomenclature used will be additive and 

completely additive. It should be noted that a completely additive 

function is always additive, but not conversely. Since 

log mn = log m + log n for any values of m and n, the log function is 

completely additive. 

First, some examples are considered in order to become 

familiar with the definition. In the way of notation, the canonical 

representation of a natural number n is given either by 
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a 
where pa lln Pain but a+l{ II p , means p n, 

pa Jin 

or by 

r a. a. 
II p. 

l where p. l lln. 
i= 1 1 l 

Example 2. 1. Let z(n) = 0 for all n. Then 

z (mn) = 0 = 0 + 0 = z (m) + z(n). Thus, z is completely additive and 

hence, additive. The function z so defined is the identity element for 

addition in 13 . 

Example 2. 2. Let w(n) be the number of distinct prime divisors 
r a· r 

of n. If II p. 1 = n, then w(n) = ~ 1. Note w(l) = 0, The function 
i= 1 1 i= l 

w is additive since, for (m, n) = l, w(mn) is the number of distinct 

prime divisors of m plus 

i.e. , w(mn) = w(m) + w(n). 

any i and j, 

the number of distinct prime divisors of n, 
s b. 

Or, if m = II q. J, where pi# qJ. for 
j=l J 

s r 
w(m) + w(n) = ~ l + ~ 1 

j=l i= 1 

s+r 
= s + r ~ ~ 1 

i= 1 

= w(mn) . 

To show that w is not completely additive, note that w(l2) = 2, since 

2 and 3 are the only distinct primes that divide 12; w(9) = 1, since 3 

is the only distinct prime divisor of 9, But w(l2 · 9) = 2 and 

w(l2)+w(9) = 2+1 =3. 



Example 2. 3. Let rl(n) be the number of all prime factors of 
r 

n. As an example, r2(12) = r2(2 2 3) = 2 + 1 = 3. Then rl(n) = ~ a., 
r a. r b. i= 1 1 

l l where n = II p. Further, let m = II p. , where a. > 0 and 
i= 1 1 i= 1 1 1 -

b. > 0. Then n and m are said to be in comparable form, Thus 
1-

r a.+b. r r r 

12 

l l 
nm = II p. and rl(nm) = ~ (a.+ b.) = ~ a. + ~ b. = rl(n) + rl(m). 

i=l ·1 i=l l l i=l l i=l l 

Hence n is completely additive. 

Example 2. 4, A generalization of the additive function in the 

r k 
previous example is nk(n) = ~ a .. , where k is a nonnegative 

i= 1 1 

integer, It should be noted that n 0 (n) = w(n) (Example 2. 2), while 

n 1 (n) = rl(n) (Example 2. 3). The function nk is additive. Suppose 

(n, m) = 1 and n and m are in comparable form. Then a. > 0 
l 

implies b. = 0, and conversely, so that a.+ b. = a. or 
1 l l l 

b. for each 
l 

i. Then 

r k 
~ (a.+b.) = 

i= 1 1 l 

r k r k 
~ a. + ~ b .. 

i= 1 1 i= 1 1 

However, if (n, m) i: 1, there is some i such that a. i: 0 
l 

and 

b. f. 0, so that 
l 

k k k 
(a.+b.) #a. +b. (unless k=l), 

l l l l 
Therefore, nk 

is not completely additive. 

Example 2. 5. Define the function y by y(l) = 0, 
r 

y(n) = ~ a.p., n > 2. This is known as Chawla's function [2]. Given 
i= 1 1 1 r a.+ b. 

l l 
m and n in comparable form then nm = II p. and 

i= 1 1 

r 
y(nm) = ~ (a. + b.) p. 

i=l l l l 

r r 
= ~ a.p. + ~ b.p. = y(n) + y(m) . 

i= 1 l l i= 1 l l 
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Thus 't is completely additive, so additive. Also, '{(P) = p. Chawla 

proves that the function 't is uniquely determined by the three condi-

tions '{(l) = 0, '{(nm)= '{(n)+'{(m), and '{{p) = p. 

Example 2. 6. An extension of Chawla' s function is the function 

defined by 

r k 
~ a.p. 

i= 1 1 l 

where k is a nonnegative integer and n is in canonical form. If 
r a.+b. 

(n, m) = 1, n and m in comparable form, and nm = II p 1 1 
i 

i= 1 
then 

r k 
~ (a.+ b.) p. 

. 1 l 1 
1= 1 

= 
r k r k 
~ a.p. + ~ b.p. 

i= 1 l 1 i= 1 l 1 

Hence 'tk is completely additive. 

In Example 2. 4, the function r2k which is defined on the expon­

ents of the prime power factors of a number was discussed. In the next 

example, consider the prime factors themselves, Again, k is a non-

negative integer. 

Example 2. 7. Define the function sk (n) by 
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If (n, m) = 1, p / n and q / m, then for r prime, 

Since r is prime, either r = p or r = q, so 

Hence is additive. 

sk is not completely additive can be seen by considering 

n = 12 and 
2 k k k k 

m=15: sk(12) = sk(2 3) = 2 +3; sk(lS) = sk(3·5) = 3 + 5 ; 

sk(2 2 32 5) = 2k+ 3k+ sk. 

Throughout the remainder of the paper, (1 will denote the class 

of additive number-theoretic functions. It is seen from the examples 

that (1 -/. ~. Then with addition of functions as defined on [, , (1 is an 

abelian subgroup of the additive group of the ring ( 0, +, ,:<). 

Theorem 2. 1. (Cl,+) is an abelian subgroup of ( ij, +). 

Proof: Recall from modern algebra [39], that to prove (Cl,+) 

is a subgroup of ( 0 , +), it is sufficient to prove for f, g e G, , that 

(f-g)e(l. 

Since f, g e G, and (1 C 0 , then f, g e ij. For functions in [5, 

and for (m, n) = 1 , 

(f - g)(mn) = f(mn) - g(mn) 

= (f(m) + f(n)) - (g(m) + g(n)) 
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= (f(m) - g(m)) + (f(n) - g(n)) 

= (f - g)(m) + (f - g)(n). 

But this. implies (f - g) e G.. Hence (G., +) is a subgroup of ( [,, +). 

Since addition is commutative in . t5 , addition is commutative in a. 

Hence, the theorem. 

In fact, more can be said about (G., +). Let a be a real number 

and let fe G., Then afe G., for if (m, n) = 1, 

a f(mn) = a [f(m) + f(n)] 

= af{m) + af(n) . 

Thus, since (G., +) is an abelian group, it follows that the group 

(G., +) is a vector space over the reals. 

It would be desirable to be able to identify a set of generating 

elements for the group (G., +). This has not yet been done. However, 

a subset of G. which is generated by the logarithm function is con-

sidered, in a later chapter. 

The additive property (1) yields a way to express the value of an 

additive function f(n) in terms of its value at the prime power factors 

of n. 

Theorem 2. 2. If f ea and 

prime in pairs, then f{l) = 0 and 

(2) f( ~ n,) = 
i= 1 1 

n. , 1 < i. < k, are relatively 
1 

r 
E f(n.) 

i=l l 

In particular, if n is in canonical form, then 
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(3) f(n) = ~ f(pa) 
pa//n 

Proof: Since (n, 1) = 1, for any n, f(n) = f(n,l) = f(n) + f(l). 

Thus, f( 1) = 0 . 

The proof of (2) is by induction on k. If k = 1, then 

(
. 1 ) 1 

f II n. = f(n 1) = ~ f(n.). So the theorem is true for 1. The state-
. 1 l . 1 l 1= 1= 

ment becomes the defining property of additive functions if k = 2. 

Suppose, then, the property is true for some fixed k. 

integer n = n 1 n~ ·, nknk+l. 

which implies c~/i' nk+l) = 1 · 

Now (ni, nk+l) = 1, for 

Since f is additive, 

Consider the 

1 < i. < k, 

But by the induction hypothesis, f( ~ n,) = ~ f(n.). Hence, 

(
k+l ) k k+l i=l l i=l l 

f II n. · = ~ f(n.) + f(nk+ 1) = ~ f(.n,). Therefore, (2) is true 
i=l l i=l l i=l l 

for any 

natural number k. 

Since the primes p 1, p 2 , ••. , pk are all distinct, 
a b 

(p. 'p. ) = 1 ' 
l J 

if i-/:j. Then if n = II pa 
pa /In 

is a product of k factors which are 

relatively prime in pairs, (3) follows from (2) by the substitution 
a. 

l n. = p. 
l i 

The beauty of this theorem is that it reduces the problem of 

deriving a formula for f(n) to the much easier job of deriving a form-

ula for 
a 

f (p ) . In order to use this formula, though, it is necessary to 

know that the function· f is in G.. 
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Special Types of Additive Functions 

In general, if f e G, then f(pa) 'f: af(p). To see this, consider 

the function Qk as defined in Example 2. 4. 
a 5 

If p = 2 , then 

Qk(2 5 ) = Sk, while 5Qk(2) = S(lk). The reason for the inequality is 

that Qk is not completely additive. That the two expressions f(pa) 

and af(p) are equal for completely additive functions follows directly 

from Theorem 2. 2, since a completely additive function has the 

additive property ( l) for any pair of natural numbers. 

Corollary 2. 2. 1. If f e G, then f is completely additive if and 

only if f(pa) = af(p). 

Corollary 2, 2, 2. If f e G, then f is completely additive if and 

only if f(n a) = af(n). 

Consider the function log~ . The function <P(n) is multipli­
n 

cative, but not completely multiplicative [1, p. 82]. Let (m, n) = l. 

Then <P(mn) =<11(m)<11(n). Thus, 

log p(mn) 
mn 

= log <11(m)<11(n) 
m• n 

and therefore, log .<e....{El. is additive. This function is not completely 
n 

additive. This can be shown by letting m = 2 and n = 6 

log .<e.ill. log 
1 

-log 2 = 2 = 2 

log <P (6) log 
2 

log 
1 

-log 3 
6 = 6 = 3 = 

log 
<11(12) log 4 log 

1 
-log 3 = = 3 = . 12 12 
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Now, a formula for <P(n) 1s given by so that 

a 
log <P (p ) 

a 
p 

( a. a-1) 
= log p - P = 

a 
log (p - 1) 

p 
p 

But log !llEl = 
p 

log (p - 1 ) 
p 

That is, this function is dependent only 

on the prime p and not on the exponent of p. This property is called 

strongly additive, 

Definition2.2. If fe(l, then f is stronglyadditive if 

a 
f(p ) = f(p), for a > 2 . 

Other functions which are strongly additive are w(n) and sk(n). 

Since strongly additive functions depend only on p and not on the 

exponent of the power of p, one might ask if there are functions for 

which the function value depends only on the exponent and not on the 

prime p. Consider the additive function f:'2(n) as defined in 

Example 2. 3. Note that 

and are all distinct primes. This property is called 

prime-independent, and is not peculiar to additive functions, since 

T(n) = II (a+ 1) depends only on the exponents and T(n) is a multi-
pa Jin 

plicative function. 

Definition 2. 3. Let f e [5 • The function f is prime-independent 

l'f f(pa) d d 1 · epen s on y on a. 

The functions nk(n) and log T(n) are other examples of additive 

functions which are prime-independent. 
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An Average Function 

The question might arise as to whether an additive function can 

generate an additive function, and if so, how. Let h be an additive 

function. Consider the function f such that f(n) is the sum consisting 

of a term h(d) for each divisor d of n. This, if n = 6 and 

h(n) = w(n), then f(6) = w(l) + w(2) + w(3) + w(6) = 1 + 1 + 2 = 4, while 

f(2) + f(3) = 2 . It is seen, then, that f is not additive. Some adjust-

ment is necessary before it is at all possible for f to be additive. As 

is seem in the next theorem, such an adjustment can be made so that 

the resulting surn is an additive function. This new function can be 

thought of as an average, since the sum of the functional values at the 

divisors of a given n is divided by the number of divisors of n. 

Theorem 2.3. Let h E a. Define H(n) 
1 

= T(n) ~ h(d) • 
din 

He a. 

1 
Proof: From the definition,. H(mn) = ( ) ~ h(d). 

T mn dlmn 
If 

(m, n) = 1 and d lmn, then d = d'd'', where d' Im, d' 1 In and 

(d 1,d 11 ) = 1. Thus, 

H(mn) = l ~ h(d'd 11 ) 
T(m) T(n) d' Im 

d II In 

1 
= T(m)T(n) ~ (h(d') + h(d11)) 

d'lm 
d II In 

" T(m\ T(n) L,,f n 
~ h ( d I ) + ~ ~ h ( d II )l 

d'lm d'lm d 11 ln J 

1 
= T(m) T(n) [ T(n) . ~ h(d I) + T(m) ~ h(d")l 

d'lm d 11 ln J 

Then 



= l ~ h(d') + - 1- ~ h(d") 
T(m) d'/m T(n) d"/n 

= H(m) + H(n). 

Therefore, He G. 

Since He G, in order to obtain H(n} for some he G, by 

Theorem 2. 2, it is necessary to evaluate H only at powers of a 

prime. Recall that 
a 

T(p)=a+l, 

Example 2, 8. 
a 

By Example 2. 3, r2(p ) = a, so that 

H(pa) = (a+ 1)-l ~ 

d/pa 
n (d) 

-1 
= (a+ 1) (r2(1) + r2(p} + ... 

= (a+ 1}"" 1(0+ 1 + + a) 

I a(a + 1) a = = 2 a+l 2 

1 a = z n(p ) . 

Hence, 

H(n) = ~ H(pa} = 
pa/In 

Example 2. 9. 
a k 

Recall that nk(p ) = a . 

+ r2(pa}) 

I 
2 n(n). 

So that 

20 
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= (a+ 1)-l 
a 
z:: / 

i= 1 

a 
Now Z:: ik = (a+ 1) g(a), where g(a) is a polynomial in a of degree 

i= 1 
k, with rational coefficients in absolute value less than 1. Thus, 

= g(a) 

k 
a = z:: b.r2.(p)' 

i= 1 l l 

where j bi j < 1 and bk f. 0. Therefore, 

k 
H(n) = 

a z:: z:: b.r2.(p ) . 
pa II n i= 1 l l 

As an illustration, consider the cases for k = 2 and k = 3. 

For k = 2 , 

Therefore, 

a(a+l)(2a+l) 
6 

(a+ 1)- 1a(a+ 1)(2a+ 1) 
= 6 

2 
2a + a 

= 6 

= 1 a2 +· 1 a 
3 6 ' 



and hence, 

H(n) = [ l a 1 a~ ~ 3 n2 {p ) + 6 n 1 {p ) 
pa /In 

For the case where k = 3, , which implies 

This implies 

(a+l)- 1 a 2 (a+l)2 = 
4 

3 + 2 a a 
4 

Let h be strongly additive. Then h,(pa) = h{p) and 

H(pa) 1 
~ h(d) = a+l d Jlpa 

1 
[h{l) + h(p) + ... + h(pa)] = a+l 

a = a+ i h{p) • 

But since · H{p) = ~ [h(l) + h(p)] = ht) , it follows that H is not 
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strongly additive whenever h is. This leads to the question whether 

H retains the property of being completely additive or prime-indepen-

detn when h has th~se properties. Since n is completely additive, 

it follows that H(n) = -} r2(n), in Example 2. 8, is completely additive. 

So here is an example where h completely additive implies H 

completely additive. In fact, this is always true as is seen in the next 

theorem, 
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Theorem 2. 4, If f e G is completely additive, then H is com­

pletely additive. In particular, H(n) = f~) 

Proof: By Corollary 2. 2. 1, it suffices to show H(pa) = aH(p). 

Thus 

H(pa) = (a+ 1)-l ~ 

d/pa 
f(d) 

= (a+ 1)-l [f(l) + f(p) + f(p2 ) + ... + f(pa)] 

= (a+ 1)- l [f(p) + 2f(p) + ... + af(p)] 

-1 = (a+l) (1 + 2 + ... + a)f(p) 

-1 ' 1 = (a+l) (z)a(a+l)f(p) 

= ~ = ~ 2 2 

since f is completely additive. Also, 

aH(p) = a{~ (f(l) + f(p))} 
f( ) = f 1( n a) 1 =~ ~ 

2 2 

which implies H is completely additive. 

As to the question of prime-independence of H, suppose f is 

prime-independent, i.e., suppose f(pa) depends only on the exponent 

a. Let f(pa) = g(a); a function of a only. Then 

H(pa) = (a+l)-l ~ f(d) 
d/pa 

= (a+ 1)-l [f(l) + f(p) + f(p2 ) + ... + f(pa)] 

= -1 [ (a+ 1) g( 1) + g(2) + ... + g(a)] ' 
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which is an expression that depends only on a. This proves the 

following theorem. 

Theorem 2. 5. If f e G is prime-independent, then H is prime-

independent. 

A natural question to ask concerning the function H is whether 

the additive function h can be recovered if H is given. That it can 

be is a consequence of the Mljbius inversion forrnula [1, p. 88]. This 

formula states that if f e t) and F(n) = ~ f(d), then 
djn n 

f(n) = ~ µ(d) F( d), where µ is the Mclbius function. 
djn 

Theorem 2. 6. If H(n) 

additive and is given by 

(4) h(n) = 

1 
= T(n) ~ h(d) 

djn 
is additive, then h is 

Proof: Applying the Mljbius inversion formula to 

T(n) H(n) = ~ h(d) yields (4). 
djn 

To show he G, let (m, n) = 1 , then 

h(mn) = ~ µ(d 'd ") T(; d~') H(; ;II) ' 
d'd"jmn 

where d = d 1d 11 , d' /m, d" jn, and (d',d") = 1. Therefore, since µ 

and T are multiplicative, and H is additive, 

h(mn) 0 d•f m µ(d') µ(d") T(; Hd~') [8(;) +H( d~•)] 
d"jn 
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= ~ µ(d 11 ) j :rr) ~ µ(d I) T(;) l-T( :) 
d" In '\ d' Im ~, 

+ ~ µ(d')T(:,) ~ µ(d")T(:rr)H(d~') • 
d'lm d"ln 

n 
Now ~ µ(d) T( d) = (µ * T)(n), and µ * T is multiplicative, since 

din · 
b0th µ and T are. So to evaluate µ * T, it is necessary to evaluate 

this function at prime powers. Since µ(pa)= 0, for a> 1, 

a a a-1 
(µ*T}(p) = µ(l)T(p )+µ(p)T(p )+0 

= a-(a-1)= 1. 

Henc.e, 
a 

(µ * T)(n) = II (µ * T)(p ) = II 1 = 1, and therefore, 
Palin 

h(mn) = ~ µ(d 1 ) T(· ~)Hf;) + ~ µ(d 11 ) T(d~') H(d~') 
d'lm \ d"ln 

= h(m) + h(n) • 

Thus, he G when He G. 

Example 2. 10. Let H(n) = log T(n). Then by (4), and since 

a 
µ(p ) = 0 for a > 1 , 

~ a µ(d) T_(i::) log T(p:) 
dip 

a a a-1 a-1 
= µ( 1) T(p ) log T(p ) + µ(p) T(p ) log T(p ) 

= (a+ 1) log (a+ 1) - a log a 

(a+l)a+l 
. - log·..._-.,;---­

a 
a 
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, Hence, 

h(n) = 

The average function gives a way of generating an additive 

function given any additive function h. It is clear from Theorem 2. 6 

that if h is addi6ive, µ * Th, where Th is the pointwise product of 

T and h, is also additive. 

Note that the property of µ and T required in the proof of 

Theorem 2. 6 is that µ ,:< T = u 0 , where u 0 (n) = 1 for all n. This 

suggests that given any pair of multiplicative functions, f and g, such 

that f * g = u 0 the convolution product f * gh is additive if h is 

additive. 

Theorem 2. 7. If f, g e !m such that f ,~ g = u 0 , and he G, then 

f * gh is additive. 

Proof: Let (m,n) = 1. If djmn, then d = d'd", d 1 Jm, d"Jn, 

and (d',d") = 1. Thus, 

(f * gh) (mn) = ~ f(d) gh(~n) 
djmn 

" d ,f m f(d 'd ") g(; d~') h(:;; d~') 

d" In 

= ~ f(d") g(d~') .. ~ f(d') g(~) h(;) 
d"ln d'lm 

+ ~ f(d I) g(;) ~ f(d 11 ) g(;ll) h(;ll) 
d'/m d"/n 



Since 

(f * gh)(mn) = ~ f(d')g(;\h(;). + ~ f(d")g(:11 )h(:J1) 
d'jm ·) · d"jn 

= (f * gh)(m) + (f * gh)(n) , 

Even though µ. * T = T * µ. = u 0 , it is interesting to note that 

µ. * Th ::f. T * µ.h, for h additive. This can be seen in the following 

example, Hence, in general, it follows that f * gh ::f. g * fh when 

f * g = g * h = uo . 

Example 2. 11. Let h be additive. Then 

a a a-1 
{T>:<µ.h){p) = T{p )µ.h(l)+T{p )µ.h{p)+O, 

since 
.a 

µ.{p ) = 0 for a> 1. Thus 

a 
(T * µ.h){p) = (a+ l)µ.{l)h{l) + aµ.(p)h{p) = -ah{p), 

because h( 1) = 0. But, 

a a a-1 
(µ. >:< Th){p ) = µ.( l) Th(p ) + µ.{p) Th{p ) 

a a-1 = (a+ l) h{p ) - ah{p ) , 

Identification of Completely Additive Functions 

A somewhat different way to generate a completely additive 

function is given by the next theorem. It gives a more sophisticated 
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way of defining an additive function than has been illustrated previously. 

This result is used several times later in the paper, 
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Theorem 2. 8. Let f e G. If 

(5) g(n) 

then g is completely additive. 

Proof: Let (m, n) = 1 , then 

g(mn) = lim 
f(mtnt) 

= lim 
f(mt) + f{nt) 

t-a:i t t-co t 

f(mt) t 
= lim + 1. f(n) 

1m--
t-a:i t t-a:i t 

= g(m) + g(n) 

which implies g e G • 

By Corollary 2. 2. 2, it suffices to show 
r 

g(n ) = rg(n), for any 

n. Thus 

r 
lim 

f((nr)t) 
r lim 

f(nrt) 
g(n ) = = 

t-m t t-a:i rt 

s 
= 1 · £( r ) r 1m ---

s-a:i s 

= rg(n) . 

Chapter IV is concerned with additive functions which have a 

11 smoothness 11 about them. One condition which implies smoothness is 

the condition 

( 6) I f(n + 1) - f(n) I - 0 , 
x n<x 

1 
as 

The next theorem shows that if an additive function satisfies the condi-

tion in (6), then it must be completely additive. 



Theorem 2. 9. If f ea and f satisfies (6), then f is 

completely additive. 

a 
Proof: Let p be an arbitrary prime power. For a fixed A 

let 

(7) 6. A (n) = max { I f(n + k) - f(n) j} , k = 1, 2, ... , A . 

Now 

k 
I f(n + k) - f(n) / < Z:: / f(n + i) - f(n + i - I) / , 

i= I 

so that 

But 

A 

A 
6.A(n) < Z:: /f(n+i) - f(n+i -1) j . 

i= 1 

Z:: Z:: jf(n+i) - f(n+i-1)/ < A Z:: jf(n+l) -f(n)j = 
n<x i=l n<x+A 

by the limit in (6). Hence, for A fixed, 

(8) Z:: 6. A (n) = o(x) • 
n<x 

o(x) , 

Let N be an arbitrary positive integer such that (N, p) = 1. 

Then, since f is additive, f(paN) - f(N) = f(pa), so that 

(9) a a 
f(p ) - af(p) = f(p N) - af(p) - f(N) . 

If it can be shown that the left hand member of (9) is zero, then 

Corollary 2. 2. 1 implies that f is completely additive. To this end, 
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consider 

( a a a-1 a-1 
f p N+l) - af(p) - f(N+l) = f(p N+l) - f(p) - f(p N+l) + f(p N+ 1) 

- (a - 1) f(p) - f(N + 1) 

{ a a-1 } = f(p N + 1) - f(p) - f(p N + 1) 

a-1 a-2 } +{f(p N+l)-f(p)-f(p N+l) 

a-2 
+ f ( p N + 1 ) - ( a - 2) f ( p) - f (N + 1 ) . 

Repeating this process a total of a times results in 

a { a a-1 } f(p N+l) -af(p) - f(N+l) = f(p N+l) -f(p) - f(p N+l) 

{ a-1 a-2 } + f(p N+l)-f(p)-f(p N+l) 

0 
+ ..• + {f(pN + 1) - f(p) - f(p N + l)} 

a i i-1 = :E {f(p N+ 1) - f(p) - f(p N+ l)}. 
i= 1 

Thus, by the additivity of f, f(p) + f(pi- lN + 1) = i 
f(p N +p), so that 

a 
(10) f(paN+ 1) - af(p) - f(N+ 1) = :E {f(/N+ 1) - f(piN +p)} 

i= 1 

Now, by (7), for 
i 

n=pN+l, 

I i i I i f(pN+l) - f(pN+p) < ~p(pN+l). 

Substitution into (10) produces 

( 11) 
a i 

jf(paN+l) - af(p) -f(N+l)j < :E ~ (pN+l). 
i=l p 
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But 

- f{N + 1) + f{N + 1) - f{N) I 

~ 1£{paN+l) ~ f{paN)I + 1£{N+l) - f(N)I 

+ I f(paN + 1) - af(p) - f(N + 1) I • 

Therefore, by (9) and (11), 

I f(pa) - af(p) I ~ I f(paN + 1) - f(paN) I + I f(N + 1) - f(N) I 

a . 
+ ~ 6. (p1N + 1) • 

i=l p 

Now take the sum of this inequality over all N < x such that 

(N, p) = 1. Then, 
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~ !£(pa) - af(p)I ~ ~ 1£(paN+l) - f(paN)I + ~ 1£(N+l) - f(N)I 
N<x N<x N<x 

a 
i + ~ ~ 6. (p N + 1) • 

i=l N<x p 

There exists a positive constant c such that ~ 1 > ex, Since 

~ J f(pa) - af(p) J 

N<x 
= J f (pa) - af ( p) I ~ 1 , 

N<x 



(12) 

Since 

[ 

E I f(paN + 1) - f(paN) I 
l N<x 

jf(pa)-af(p)j.< - ----------
- c x 

a . 
E j f(N + 1) - f(N) j E E 6 (p1N + p) J 

N<x i=l N <x P 

+ + ------------------~ x x 
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E I f(paN + 1) - f(paN) I < 
N<x 

E I f(n + 1) - f(n) I a 
n<p x 

a = o(p x) = o(x) , 

the first term in the right hand member of (12) approaches O. Also, 

by (6), the middle term approaches O, and the last term approaches 

0, by (8), Since the left hand member does not depend on. x and. it is 

less than or equal to some value which approaches O,. it follows that 

a 
f{p ) - af(p) = 0. In other words, f is completely additive. 

In a 1969 article, Ryavec [42] establishes, using different 

means, a more general form of this theorem, by using the weaker 

condition 

(13) lim inf 1 E 
x-+co 

I f(n + 1) - f(n) I = 
x 

n<x 
0 . 

This condition is seen again in Chapter IV in formula (16). At that 

p<i>int it is used in the determination of conditions on additive functions 

for them to be constant multiples of log n .. 

Double Sequences and the L-Operator 

AddiUve functions can be considered in a more analytical vein. 

An additive function f is a sequence f ( 1 ), f(2), • . . in which f obeys 
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the additive property ( 1). Let pk denote the kth prime 

(p 1 = 2, Pz = 3, p 3 = 5, .•. ) and let /k) be the function defined by 

if n ±. 0 mod pk , 

( 14) 

Thus, the function defined in (14) is in a, since fe(l. 

Define, for k fixed, the function 

( 15) 

Since a is a group with respect to addition {Theorem 2. 1), it follows 

that the function fk is in a. Thus~ formulas (14) and {15) imply 

that 

(16) f(n) = : f{k)(n) = l1"m f (n) 
£.J k ' 

k= 1 k-+oo 

where, for a fixed n, all but a finite number of terms of the infinite 

series are zero. Therefore, associated with the additive function f is 

a double sequence of numbers { {f(pt)}}. 

Let { {f(pt)}} be a double sequence of numbers, and let 

(m, n) = 1. If m and n both are not congruent to O mod pk, then 

mn ±. 0 mod pk. Hence /k)(mn) = 0 = 0 + 0 = /k)(m) + /k)(n). If 

pt~ mn, then pt II m or pka II n, but not both since m and n are 

relatively prime. Without loss of generality, assume pka /1.m. Then 

n ±. 0 mod pk and 
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f(k) (mn) = 

Since m and n are relatively prime, these are the only two cases 

that need to be considered. Thus, r'k) is an additive function. Also, 

as before, fk .. is an additive function. Thus, f as defined. in (16) is 

an additive function. Hence, if f(p:) = cak, given the double sequence 

{ {ca,k}}' formulas (14), (15) and (16) define the additive functions 

f(k), fk and f, respectively. 

2 4 
Example 2. 12. Let n = !)l Pz , Then 

z 
f(p 1) ' 

/Z)(n) = f(p£), and f(j\n) = 0 for j ~ 3. Also, 

f 1(n) ~ /j) (n). = /1\n) 2 
= = f(p 1 ) ' 

j=l 

2 
2 4 f2 (n) = ~ f(j)(n) ~ f (pl ) + f ( Pz ) , 

j=l 

and 

2 4 T·herefore, by (16), f(n) =f(p 1 )+f(p2 ). 

If P is the subset of u such that f is real-valued and £(1) > 0, 

then consider the operator L defined by 

( 1 7) L f(n) = 

log f( l) , for n = 1, 

~ f(d) f- 1(i) logd, for n > 1. 
din 

It is known [1, p. 259] that f e O is multiplicative if and only if 
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L f(n) = 0. whenever n is not a power of a prime. Given f multipli-

cative, then, Lf is a function h such that 

h(n) = 0, 

for pk the kth prime 

This function is not additive; e.g. , a 
let h(pk) = 1. Then h(l2) = 0, 

h(3) = 1 , h(4) = 1 , and therefore, h(l2) fh(3) +h(4). 

Let n be in canonical form. Define the function h 1 by 

l' a. 
(18) l 

~ h{p. ) 
i= 1 1 

r. a. 
1 The function h 1 is additive. Suppose (m, n) = 1. Then m = II p. 

s b. r a. s b. i=l 1 
1 l l and n = II q... , where p. f:. q., and mn = II p. II q. . From 

i = 1 1 1 J i= 1 1 i= 1 1 

the defi'rrition, it is immediate thc:1.t h 1 (mn) = h 1 (m) + h 1 (n). 

Given any sequence cak, · the function h 1 is uniquely 

determined by this sequence, Let L 1f(n) be the function h 1 (n) 

In other words, 

(19) 

Let f be given. Then Lf is uniquely determined at the prime 

powers. Hence L 1 f, is uniquely determined. Conversely, given 

L 1f, by (19) Lf is determined by Lf(pa) = L/(pa), Lf(n) = 0 if 

n is not a prime power. It is known [1, p. 257] that given h there is 

a unique f e P such that Lf = h. Thus, f is uniquely determined. 
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· Therefore, the operator . L 1 establishes a one-to-one correspondence 

between . !lR .and . a. 

It is known, also, that (1) if f and g. are multiplicative, then 
. ,. 

so is f * g [1,. p. 247], and (2) L(f * g)(n) = L f(n) + L g(n) 

[1, p. 255]. Thus, 
.,, . ' ~ 

' .~ \ . ;: 

·a a 
:: . al; {Lf(p ) + Lg(p· .)} 

P lln · 
''.j. 

Therefore, L 1 is anisomorphism between the multiplicative group 

( !m, *) and the· additive group (CL+). 

It has been pointed out earlier that if f e !IR and f(n) > 0 for 

every n, then log f(n) is defined and. is an additive function. Con­

versely, given any additive functionG h{in.':)\'! the function eh(n) is 

defined, is multiplicative, and has nonzero values. Thus the log 

function maps the functions from !IR+ to a, where · !II+ denotes the 

set of m'\lltipUcative ~unctions which have only positive functional 

values. Thus. two isomorphisms have been established: one between 

+ . 
(!IR,*) and (a,+) by the L~ -operator and one between (!m , •) and 

(a,+) by the log-operator . 
. . ' 

If f is completely mµltiplicative, in general L 1f is not 

completely additive. For example, u 1 (n) = n is compietely multiplica­

tive .. Then L 1 u 1 (n) = a~ L u. 1 (pa). Since 
p lln 



a 
Lu (p ) 

p 

( a -1 a a-1 -1 a-1 
= u 1 p )u 1 (1) logp + u 1 (p )u 1 (p) logp + 0 

because log 1 = 0 

-1 

-1 a 
and u 1 (p ) = 0 for a > 1 [1, p. 250]. 

u 1 (p) = -p, so, 

a a a a-1 a-1 
Lu (p ) = p log p + p (-p) log p · 

1 

a 
= pa log +i 

p 

a 
= p log p , 

a 
Thus, L 1u 1(n)= ~ p logp. 

pa /In 
Then, for 

3 
n = 24 = 2 3, 

L 1u 1(24) = 8 log2 + 3 log3, 

but 

= 6 log 2 + 3 log 3 , 

hence, L 1 u 1 is not completely additive. 

But 
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This material concludes the development of this chapter, but this 

is not all that can be said about the L 1 -operator. The formula for 

determining Lf, formula ( 17), and hence, the formula for 

determining L 1f, formula (19), can be simplified for the case where 

f is completely multiplicative, by using results about completely multi-

plicative functions. For example, the expression for L 1u 1 in the 



above example can be obtained in this manner without having to know 

-1 the value of u 1 . 
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CHAPTER III 

GROWTH PROBLEMS RELATED TO THE 

FUNCTION nk 

Both the functions w(n) anq. Q(n) are concerned with the 

number of prime divisors of n. In Example 2. 9, the function 

H(n) = (T(n))- l ~ h(d) 
dJn 

where h(n) = nk(n), was introduced, The function H represents a 

type of average of the functional values of h based on divisors. 

Another type of average, the ordinary arithmetic average, is given by 

1 
~ h(n) • In the present chap~er the average of the function nk is 

x 
n<x 

con side red, 

Recall that if n is written in canonical form, then 

r k 
= :E a. 

i= 1 1 
But 

k k k] k k] [ k k] a. = [a. - (a. - 1) + [(a. - 1) - (a 1. - 2) + ... + 1 - 0 . 
l l l l 

Hence, if 
a. 

p. 111 n ' 
l 

k 
a. 

l 

where a takes on the values from 1 to a. inclusive. Thus 
l 

39 
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or 

( 1) 

The functions w(n) = n0 (n) and O{n) = n1 {n) are both related 

to th.e distribution of prim~s, and have irregular behavior for large 

values of n, They are both 1 when n is a prime, while 

O(n) =~ when n is a power of p. If p 
r 

is the rth prime and 
logp 

n is the product of the first r primes, then w(n) = r = ir(p ) , where 
r 

,r counts the primes less than or equal to a given number. So the sums 

of these functions are increasing functions, but they exhibit a somewhat 

erratic growth pattern which reflects the erratic distribution of the 

primes. 

An Asymptotic Formula for w(n) 

Let 

(2) S(x) = ~ w{n) 
n<x 

Then S(x) is the arithmetic average of w over the first n integers, 
x 

and hence 

sequence. 

related to the distribution of prime powers throughout this 

If f is a function such that S(x) ,.,_, f(x) , then f is called 
x 

the average order of w • ln the remainder of the chapter, an approxi-

mation, or an asymptotic fol,"mula, for the sum ~ Qk(n) is 
n<x 

established. Once this is accomplished, it is easy-to establish that the 
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average order of w(n) is log log n, and that the average order of 

Ok(n), in general, is log log n . 

A constant used throughout this chapter is Euler's constant, 'I, 

which is defined by lim (1 + 21 + .. , + ! .. log n). Used also, is Abel's 
n-+t0 n 

partial summation formula [17, p. 346] which is stated in the following 

theorem.: 

Theorem 3. 1. Suppose that {c.} is a sequence of numbers, that 
. . . l 

C(t) = E c , 
n 

n<t 

and that f(t) is any function of t. Then 

(3) E c f(n) = 
n 

n~x 
I: C(n) {f(n) - f(n + 1)} + C(x) f( [x]) . 

n<x-1 

If, in addition, cj = 0 for j < n 1 and f(t) has a continuous deriva­

tive for t ~ n 1 , then 

(4) E c f(n) 
n<x n 

= C(x)f(x) - jx C(t) f' (t) dt . 

nl 

for n not a prime, and 

1 
f (t) = log t , it can be shown that 

(5) :E l = loglogx + A 1 + o(~) 
p~x p , ogx 

where A 1 is the value given by 

(6) 
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The proofs of these particular results can be found in Hardy and Wright 

[17, pp. 350-353]. 

In addition, the estimation given by the Prime Number Theorem 

[17, p. 9] is used. This states that 

(7) 

Hrst. 

x 
lT(X) ,..._, log X ' 

A result concerning S(x), the sum in (2), will be established 

Theorem 3. 2. The average order of w(n) is log log n. In 

particular, 

( 8) S(x) = ~ w(n) 
n<x 

= xloglogx + A1x + 0(10;x) , 

where A 1 is defined in (6), 

Proof: Since the re are just [~] values of n < x which are 
p 

multiples of p I 

Also, 

S(x) = ~ ~ 1 = 
n<x p/n 

~ [~] . 
p.:::_x p 

x = [ ~] + r, O < r < 1 , implies that 
p p --

~ [X] : 
p<x p 

~ r. 
p.:::_x 

Because / - ~ r I < ~ 1 = lT(x), it follows that 
p~x p<x 

~ r 
p.:::_x 

= O(lT(x)) - o(-x-) - log x ' 
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by (7). Thus, 

1: x + o( x ) = 
p logx 

p ~:x; 

since x is fixed, By (5), it follows that 

= x log log x + A 1x + x o(i0 ~ x) + o(i0 ; x) . 

Applying Lemmas l. 4 and 1. 2 to the 0-terms yields the required 

results. 

An Asymptotic Formula for Ok(n) 

In 1962, Duncan [5] extended the development of asymptotic 

formulas for 1:w(n) and 1: O(n) (which was already known) to include 

a general formula for 1: nk(n), for all nonnegative values of k. 

Before this generalization is con side red, the bounds on some sums 

need to be established. 'l'hey are presented here as lemmas so as not 

to interrupt the flow of the argument in the proof of the generalization. 

k k ( x ) Lemma 3. 1. 1: {a - (a - 1) } = 0 -1 . ·· · a< ogx 
p _x 

Proof: Let q be a fixed prime and let a be the largest exponent 

a 
such that q ~ x . Then 

k k k k k k k k tf, {b - (b - 1) } = ( 1 - 0 ) + (2 - 1 ) + . , . + (a - (a - 1) ) 
q ~x 

k 
= a • 
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Since a is the large st exponent under the conditions stated 

a< logx) it follows that a= [logx]. Thus, 

(i. e. , the 

large st 
- log q ' log q 

Therefore, if all prime powers less than or equal to x are taken into 

account, 

~ [~Jk 
< log p 

p_x 

k 1 
< log x ~ k 

p~x log p 

Consider the difference ,r(n) - ,r(n - 1). This difference will be 

zero unless n is a prime; in that case, the difference will be 1. 

Therefore, the summation 

and 

~ 

n<x 

rr(n) - ,r(n - 1) = 
k 

log n 

1 
k 

p~x log p 

k k 
~ {a - (a - 1) } a 

k 
= log x ~ 

,r(n) - ,r(n - 1) 
. k 

p ~x n<x log n 

By the Prime Number Theorem (7) and partial summation (5), 

~ 

n<x 

,r(n) - ,r(n - 1) = 
k log n 

rr(x) 
k 

log x 

,r(t) dt 

1 k+lt tog 

= o( :+ 1 ) + o(/x 
log x 2 



Hence, 

by Lemma L 3. 

Lemma 3. 2, 

= o( ~+1 ) . 
log x 

= logkx o( ~+1 ) 
log x 

k k -a 
{a - (a-1) }p = o(~) logx · 

Proof: It is clear that, for a > 2 , 

(9) 
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Since pa > x, it follows that a log p > log x or a > logx = y. Then 
log p 

( 10) 
ro ro 

~ ~ a k p -a + ~ ~ a k p -a 

p>logx a=2 p.:::_logx a>y 

Each of the two double summations in the right member of the 

inequality in ( 10) is examined individually. The first double summa-

tion simplies as follows: 

ro 
k 

ro 
k 

~ ~ 
-a 

~ ~ 
-a 

a p < a n 
a=2 p > log x a=2 n > log x 

ro 
k < ~ ~ 

-a 
a n - a=2 n > log x 



Since 1 1 
a 

n=l n 
converges, an approximation of 

a 
n > log x n 

obtained by 

Therefore, 

/
00 

- 1-dt 
log x ta 

t -a+l lco 1 +l 
= (log x)-a 

-a + 1 log x - a:-:-'f 

k -a 
a p 

a=2 p > log x 
[ co k(-· 1 )a-1] = 0 ~ a 1 . 

a=2 ogx 

By shifting the index, this yields 

00 

( 11) k [ 1 co k ( 1 )a] E E a p -a = 0 lox E (a+ 2) lox 
a=2 p > log x g a=O g 

can be 

because the series E (a+ 2)k(_l_)a 
a>O logx 

is a convergent series. 

For the second double summation in (10), let 6 = log x 
log log x 

Since p :::_ log x implies log p < log log x, it follows that 

~> 
log p 

since 2 

logx 
(i.e., y > 6) log log x 

E E 
k -a a p 

p:::_logx a>y 

< implies that 2-a > 
- p 

and thus, 

< E E 
k -a 

a 2 , - p :::_log x a>6 

-a But p 

( k -a) = E a 2 rr(log x) . 
a >6 

By the Prime Number Theorem (7), it follows that 
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( logx 
,r log x) "' log log x = 6 . 

Thus, there exists an M such that M 6 > ,r(log x) , so that 

k 2 -a k log a -a log 2 k log a - a log 2 Now for any a, a = e e = e . 

k 
Let kloga - alog2 = -a(log2- -log a) = -aa. As a-co, 

a 
k a log a - 0 . Thus a> 0, and since 

-a -aa 
0 < e < 1 , ~ (e ) 

converges, Therefore, 

by Lemma 1. 3 , 

Since 6 = log x 
log logx ' 

O < e - a a < e - ao < 1 • Also, 

-aa 
r = e < 1, Then 

o(o ~ e -aa) , 
a>6 

a>O 

0 < e - ao < 1 . B f > 6 ut or a , 

-aa 
e is a geometric series with 

a>6 

-aa 
e = 

-ao 
e 

-aa 
1 - e 

-ao < Me . 

Therefore, o(o ~ e-aa) = 0(6e-ao). 
a>6 2 

2 log x 
Because (log log x) < log x = 1 , it follows that 

ogx 
2 

(log log x) 
2 

log x 

6 - ao O e < • 

< _!.,__ that is, - 1 < _!.._. Also, since e -ao < 1, 
logx 02 logx ' 

1 Now 6 > 1, so that 2 < 6. By the Archimedean 
6 M 

property, there is an M such that 6 < 2 . Hence, 
6 
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Therefore, 

(12) ~ E akp-a 
p:5_logx a>y 

= 0 ( lo~x) · 

Hence, from (9), (10), (11) and {12), 

{ k k} -a !: a - (a - 1) p 
pa>x 
a>2 

by Lemma 1. 2, 

= o(io~x) + 0 (10~ x) 

= 0(1o!x) 
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Let 0 be the differential operator x(d!) and define Gk{x) to 

be ek( 1 ~ x). Since 1 ~ x = E xn, it follows that 
· n>l 

G 1 (x) 

and in general, 

(13) 

n-1 = x E nx 
n>l 

= 

n-1 x E n(nx ) ~ 
n>l 

2 n 
E n x , 

n>l 

.._.. k-1( n-1) x kJ n nx = k n 
E n x • 

n>l n>l 

It is necessary to define e 0 to be the identity operator in order for 

the generalization to be consistent. That is, e 0 { 1 ~ x} = 1 ~ x . 

In the discussion to follow, let R = ak - (a - l)k. 



Lemma 3. 3, For p a fixed prime 

<Xl 

{ k k} -a -1 -1 -1 
~ a - (a - 1) p = ( 1 - p ) Gk(p ) - p 

a=2 

Proof: Expanding the left member results in 

~ Rp-a k k -2 k k -3 
= (2 - 1 )p + (3 - 2 )p + . . . , 

a=2 

Regrouping the terms in the right member produces 

<Xl 

~ Rp-a 
a=2 

k -3 -4 + 3 (p - p ) + ... 

-1 k -1 -2 k -2 -3 
= -P + 1 (p - p ) + 2 (p - p ) + ... 

This can be written as 

Then by (13), 

co 
-a 

~ Rp 
a=2 

-1 00 k -a -a-1 
= -p + ~ a (p - p ) 

a= 1 

<Xl 

= -p - 1 + ~ a kp -a ( 1 _ p - 1) 

a=l 

-1 -1 ro k -a = -p + ( 1 - p ) ~ a p 
a=l 

co 
~ {ak~ (a-l)k}p-a -1 -1 -1 = ( 1 - p ) Gk(p ) - p 

a=2 
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Lemma 3. 4, For a > 2, 

Proof: Adding and subtracting the same amount yields 

E Rp ~a+ E Rp-a 
pa<x pa>x 

= E Rp-a 
p 

-a 
By Lemma 3. 2, for a_> 2, - E Rp = 

pa>x 
lemma follows. 

o(-1) logx · 
Thus, the 

It is now possible to evaluate 

0 (10:x)' 

E Ok(n) to within an error of 
n<x 

Tp.eorem 3. 3. E Ok(n) = x log log x + B~ + o( 10; x) , where 
n<x 

{ -1 -1 -1 } = y+E (1-p )Gk(p )+log(l-p ) 
p 

and y is Euler's constant. 

so 

Proof: Let T(x) = E Ok(n). Using the result in equation (1), 
n<x 

T(x) = E 
n<x 

k k 
E { a - (a - 1) } , 

Pain 

which can be regrouped as follows: 



since there are [;a] values of n < x which are multiples of a 
p . 

51 

Separation of this sum into two sums, one for a= 1 and the other for 

a > 2, results in 

T(x) -

k k ( x ) + ~ { a - (a - 1) } a - r , 
pa<x p 
a>2 

where ;a O [;a] + r and O<r<l. Using the notation in 

Lemma 3. 3, this last expression, then, is equal to 

so that 

( 14) 

The first term in the dght member can be replaced by 

xloglogx + A 1x + o(i0;x)• by Theorem 3. 2. The last term can be 

replaced by o(i 0;x), by Lemma 3. 1. By Lemma 3. 4, the summa-

-a ( 1 ) ~ Rp + O logx · 
p 

tion in the middle term can be replaced by 

Therefore, a>2 
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T (x) = x log log x + A 1 + o(-1 x ) + x{ ~ R p -a+ o(-1 
1 )\ + o(-1 x ) . 

ogx p ogx) ogx 

a>2 

Now A 1 is equal to B 0 , as defined in the statement of the theorem, 

since 

( 15) 

Thu1;1, 

{ -1 -1 -1} B 0 = y + ~ ( 1 - p ) a0 (p ) + log ( 1 - p ) 
p 

= y + ~ { ( 1 - p - l) ( P - ~ 1) + log ( 1 - p - l)} 
p 1-p 

= y + ~ { p -- l + log ( 1 - p - l)} 
p 

T(x) • xlog logx + x { B0 + ; Rp-a} + 0(10;x) 

a>2 

using Lemmas 1. 4 and 1. 2. By Lemma 3. 3 and (15), 

B O + ~ ~ R p .. a = y + ~ { p - l + log ( 1 - p - l)} 
P a>2 P 

{ -1 -1 -1 +~ (1-p )Gk(p )-p} 
p 

-1 -1 -1} 
= y + ~ { ( 1 - p ) Gk(p ) + log O - p ) 

p 

Therefore, T(x) = x log log x + Bkx + o(i0 ; x) • 



The Average Based on Divisors 

r a. 
1 Let n :;: IT p. . 

k=l l 

0 < b. < a. • Then 
- 1 - 1 

r b. 
I 1 

If d n, then d = II p. , where 
i= 1 1 
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For each i, there are ai + 1 divisors of n which have some power 

of pi as a factor, Then in the summation ~ (bt + ... + bt) there 

T(n) k k k 
are (a.+ l) expressions 1 + 2 + ... + ai • Thus, 

1 

( 16) 

k k 
T(n)(l + .. ,+a 1 ) 

a 1 + 1 + ... + 

r 
= T(n) ~ 

i= 1 

k k 
(1 +.,.+a.) 

1 

a.+ 1 
1 

For example, let 
2 n;::2,3 I whence a 1 = 1 

divisors of n, other than 1, are 2 , 2 · 3 , 

T(n) = (1 + 1)(2 + 1) = 6. Then 

T(n)(lk + ... +a k) 
r 

a + 1 
r 

and a 2 = 2 . The 

2,3 2 , 3 and 3 2 , and 

~ Qk(d) = Qk(l) + Qk(2) + Qk(2. 3) + Qk(2. 32) + Qk(3) + Qk(32) 
d/n 

There are T(n) = 
(a 1 + 1) 

are T~n) = £. = 2 
(a2 + 1) 2 

6 
2 = 3 of 1 k associated with 2, and there 

of lk+2k associated with 3. 

Let ak(n) = H(n), for h(n) = Qk(n). Thus, by the definition of 



r 
= ~ 

i= 1 

k k 
1 + •.• + a. 

l 

a.+ l 
l 

1 
and hence, since ai + 1 > 2, ak(n) :5. 2 nk+ 1 (n), for k :::, 0. But 
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k~ 1 k k-1 k k k k 
for any a > 0 , a .~ a • Thus a :5, 2 ( 1 + 2 + , .• + (a-1) ) + a , 

k k-1 k k k 
so, a + a < 2( 1 + 2 + , .• + a ) or 

k-1 k k k a (a+ 1) .:5_ 2(1 + 2 +, •. +a). Therefore, 

Hence, 

r 
~ 

i=l 

k-1 a. 
], 

2 

k k k 
< 1 +2 + •.• +a 
.,.... a+ 1 

r 
< ~ 

i= r 

k k k 
1 + 2 + , .. + a. 

l 

a.+ 1 
l 

which implies 
1 
2 nk-l (n) < ak(n), for k > 1, Now 

and 

r 
= ~ 

i= 1 

a. 1 
For each i, 1 > -(a.+l) --2 

l 

1 
a O ( n) > 2 n O ( n) • Then 

(l+ .•• +l) 
(a.+ 1) 

l 

1 r. 
= 2 ~ 1 = 

i= 1 

r a. 

r 1 
~ 2 

i= 1 

l 

hence ~ ( + 1) > ~ 2. 
i=l ai i=l 

That is, 
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1 
and therefore, ~ ak(n) ""' 2 x log logx; that is, the average order of 

1 n<x 
ak(n) is rloglogn, for all k. 

With the previous theorem, it is easy to obtain an exact expres-

sion for Bk as a sum over the primes, providing the value of k is 

small. The procedure is cumbersome though, if k is large. In a 

later article, Duncan [6] develops an asymptotic formula for Bk. 

Theorem 3, 4. Let Gk(x) and Bk be as in Theorem 3. 3. Then 

( 1 7) 

Proof: By definition, 

{ -1 -1 -1 } =-y+~ (1-p )Gk(p )+log(l-p) 
p 

-1 -1 -1 = 'Y + ( 1 - 2 ) Gk(2 ) + log ( 1 - 2 ) 

+ -1 -1 -1 
~ {(1-p )Gk(p )+log(l-p )} 

p>2 

1 -1 l -1 -1 -1} =-y+ 2 Gk(2 )+log 2 + ~ {(1-p )Gk(p )+log(l-p) 
p.>2 

CXl 

By (13), Gk(Z- 1) = ~ nkz- 1 , thus 
n=l 

1 o:> k -n -1 -1 -1 
Bk = 'Y - log 2 + 2 ~ n 2 + ~ { ( 1 - p ) Gk (p ) + log ( 1 - p )} . 

n=l p > 2 

Now 
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I m k -x log 2 d 
x e x. 

0 

It is known that 

( 18) aP p-1 -ax 
r (p) x e dx = 1 , 

where r is the gamma function, and a and p are greater than zero. 

Then, if a = log 2 and p = k + 1 , 

J m k -x log 2 d 
x e x = r(k+l) /m 

logk+l 2 0 

1 k+. l 2 k 1 2 og -x og d 
r (k + 1) x e x 

0 

= r (k + 1) 
logk+l 2 

= 
kl 

logk+l 2 

1 -1 
Since 2 < 1 - p < 1 , it follows that 

-1 -1 -1 -1 -1 
-log2 < log(l -p ) < 0 < p . Also, (1-p )Gk(p ) < Gk(p ). 

These inequa,litie s make it pas sible to write 

{ -1 ..,1 -1 -1 -1 
~ (1-p )Gk(p )+log(l-p )}~ ~ {Gk(p )-p }. 

p>2 p>2 

Replace Gk by ( 13) so that the right hand side becomes 

~ 

p>2 
{ m k -1 n -1} ~ n (p ) - p = 

n=l 

= 

= 

00 k -n 
~ ~ n p 

p > 2 n=2 



= ~ -2 {2k + 3k -1 + 4k -2 + } p p p ..• 
p>2 

Since p > 2 implie $ 

Now 

co ( )( IX) ) 
-2 k -n -2 k -n 

~ p ~ (n + 2) p ~ ~ p ~ ( n + 2) 3 • 
p>2 n=O p>2 n=O 

; (n+2t3-n = 2k30+ 3k3-l + 4k3-2 + ... 
n=O 

As a result of this reduction, 

-1 -1 -1 
~ { ( 1 - p ) Gk(p ) + log ( 1 - p )} 

p>2 

Because 
-2 

~ p converges, and because 
p>2 

IX) 

"" k -n 
kl n 3 < /

co k -x 
x 3 dx, 

0 n=2 

it follows that 

9( ~ p-2)(; nk3-n) = 0(/
0

00 
xk3-xdx) 

p > 2 n=2 
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From (18), with a= log 3 and p = k+ 1, it follows that 

and 

Thus, 

or 

/
00 xk 3 -x dx = 

0 

r (k + 1) 

logk+ 1 3 
= k! 

logk+l 3 

{ -1 ~l -1 
l: (1-p )Gk(p )+log(l-p)} 

p>2 
= o( ~i 1 ) · 

log 3 

Bk = y - log 2 + k~+ 1 + 0 ( ~~ 1 ) 
2 log 2 log 3 
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The results in this chapter have involved considerable manipula-

tive detail. The early work in this area is largely due to G. H. Hardy 

and the generalizations are mostly due to R. L. Duncan, The investiga-

tion of additive functions from a completely different point of view is 

presented in the chapter to follow. 



CHAPTER IV 

SMOOTH ADDITIVE FUNCTIONS 

Since the function clog n is a familiar example of a monotone 

completely additive function, it is natural to ask whether there are 

other such functions. In general one might ask under what conditions is 

an additive function closely related to log n. The class !8 of functions 

is defined to be the set of functions of the form f(n) = clog n, i.e., 

f(n) is a constant multiple of log n. One segment of the literature 

about additive functions deals with the problem of determining the 

conditions on the additive function f under which f is also in !8 • 

In his initial article,. Erdcls [9] set forth some conditions under 

which this might be true. Some he proved, others he had to leave as 

conjectures, Since that time some of his conjectures have been proved, 

whereas others are still open. Also, in the intervening time, other 

conditions have been set forth - some proved, some not. In this 

chapter, the author will try to coalesce this information, Unless stated 

otherwise, the additive functions to be considered will be real-valued. 

Conditions on Additive Functions 

The first theore,m to be considered shows that essentially the only 

nondecreasing additive function is the logarithmic function. The proof 

presented here is a simplification of the proof in Erdcls' article and is 

attributed to Moser and Lambek [ 40]. 
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Theorem 4. 1. Assume that f ea and f(n + l) ~ f(n) for every 

n . Then f e f8 • 

Proof: Let g(n) = ef(n). Then g is multiplicative and 

g(n+ 1) > g(n), since f is nondecreasing. It is shown first that, since 

g is a nondecreasing multiplicative function, g(n) = nk. Then 

ef(n) = nk and hence, the conclusion of the theorem follows. 

Let a be a fixed integer greater than 1. For t a positive 

integer, let R(t) and S(t) be defined by: 

( 1) R(t) t t-1 =a+a +.,.+a+l, 

and 

(2) S(t) = t t-1 
a-a - ... -a-1. 

Note that R(t) - l = a R(t - 1), so that the multiplicative property of g 

ancl the fact that (a, R(t)) = 1 fo/ any t, imply that 

g(R(t) - 1) = g(a) g(R (t - 1)) • 

This, t0gether with g nondecreasing yields 

g(R(t)) > g(R (t) - 1) = g(a) g(R (t - 1)) 
t > ... > (g(a)) . 

Similarly, (a, S(t)) = 1 and 

(3) 

t 
g(S(t)) ~ g(S(t) + 1) = g(a) g(S (t + 1)) ~ ••• ~ (g(a)) • 

Let n be given and let r be the integer determined by 

r < r+l a n < a 



so that r < l0g n < r + 1. Equations (1), (2), and (3) im_ply, then, a -

that for a > 1 , R(r - 1) < n, and for a > 2 , 

S(r+2) > ar+Z _ 2ar+l > r+l > a n • 

From these two inequalities, it is seen that for a > 1, 

(4) 
log n-2 

g(n) > g(R(r - 1)) > (g(a){- 1 :::_ (g(a)) a , 

and for a > 2 , 

(5) 
r+Z log n+2 

g(n) < g(S(r + 2)) < (g(a)) < (g(a)) a • - ~- -
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Now both (4) and (5) hold for all a> 2, so in the following discussion 

let a, b > 2, and let log n + 2 = a log n and logbn - 2 = 13 log n . a . 

( 4 ) and ( 5 ) imply 

(g(a))a > g(n//logn :::_ (g(b))\13. 

Since log n = log n/log a, a log n = (log n/log a) - 2 and 
a 

a log a = 1 - 2 log a/log p. • Thus a log a < 1 and a < 1 /log a. A 

Then 

similar reduction yields 13 :::_ 1 /log b. So, if a is replaced by some-

thing larger and 13 is replaced by something smaller, the inequality 

remains the same, i.e., 

(g(a))l/loga > (g(b))l/logb. 

Now a and b are interchangeable, which implies these two quantities 

1/logn . are equal. Thus, for n > 2, (g(n)) 1s a constant c. 
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If c ::: 0, then g(n) = 0 for all n, which contradicts g 1. z. 

Thus 
k k 

c ::: e and so g(n) ::: n , for n > 2, Also, since g is multi-

plicative, g(l)::: 1. In addition, since 
k 

g(6) ::: g(2) g(3), g(Z) = 2 . 

k 
Therefore, g(n) = n for all n. Since f(n) ::: log g(n), it follows that 

f(n) ::: k log n, i, e., f(n) is a constant multiple of log n. 

A weaker condition was conjectured by Erdl:1s [9, p. 3] and later 

proved by Ka'.tai [23, p. 411] in which the conclusion follows if the 

monotonicity condition holds for almost all n, i.e., for all n except 

for a sequence of density O. By the density of a sequence S of natural 

numbers ni < nj I for i < j , is meant 

lim 1 
n-+-a:i n 

~ 1, 
n.E S 
n~<n 

l 

if thLs limit exists. A sequence has density O if 

lim sup 
1 

~ 1 0 = 
n-a:i n n. ES 

l 
n.<n 

l 

If a sequence of natural numbers has density O, then the complement 

of that sequence with respect to the natural numbers has density 1 . 

Theorem 4. 2. Suppose, for f e G and for an increasing sequence 

of natural numbers A= {ni} having density 1, f(ni+l) > f(ni) holds. 

Then fel.8. 

Proof: For n a natural number, consider the equation 

( 6) (n + 1 )x - ny ::: 1 . 
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All the integral solutions of (6) are given by x = 1 + nk and 

y = 1 + (n+ 1) k. Consider the congruences nk = a - lmod (n+ 1), 

where (a,n+l) = 1, and (n+l):::b-lmodn, where (b,n) = 1. 

Since (n, n + 1) = 1, each of these congruences has a solution. Thus, 

for some m 1 and m 11 1 

k m 1 mod (n + 1) 

k m 11 modn. 

By the Chinese Remainder Theorem [1, p. 110). there is an infinite 

set of values of k which are congruent mod n(n + 1) and which satisfy 

these simultaneous congruences. 

1 
For any rn 1 and m 11 , the density of the set of k 1 s is 

n(n + 1) 

[43, p. 6] and is, therefore, positive. Since the density of S is 1, 

there exist infinitely many solutions x and y for which all of x, y, 

(n + l)x, and ny are in S. From (6), (n + l)x > ny, and hence 

f( (n + 1 )x) > f(ny) • Because of the additivity of f, this implies 

f(n + 1) ... f(n) > f(y) ... f(x) > 0 , 

since y, x e S and y ~ x, Hence f(n) is nondecreasing on the whole 

set of natural numbers. Theorem 4. 1 implies, then, that f(n) is a 

constant multiple of log n. 

If, instead of the monotonicity condition, the condition 

(7) lim f ( n + 1 ) - f ( n) = 0 
n-co 

is used, f is again as sured of being in !13 • The conclusion holds as 

well for complex-valued functions under this condition. 



Theorem 4. 3. If f e G and f satisfie·s (7) , then f e 18 • 

Proof; Consider the sequence {P.}, where 
l 

P. is either a 
l 

prime or a power of a prime, and P. < P. 
l, J 

for i < j. Let 

(8) 
f(P.) 

l 
lim sup log p. = c , 

i-oo 1 
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be the sequence of primes, where p, < p. for i < j . Now, 
l J 

c is either finite or infinite, so consider the following cases. 

Case I: Let c be finite and assume for infinitely many primes p 
i 

there exists an. a. such that 
l 

Let 

a. 
f(p .. l) 

l 

a. 
l 

log p. 
l. 

a. 
l 

P . = Q. , and order the Q. 
l l l. 

f(Q 1) 

logQ 1 

> c . 

by 

> ... > c , 

so that lim f(Q.) /log Q, = c. Thus there exists a J0 such that 
l l 

f(Q 1) 

logQ 1 
= 

= f(Qj-1) 
log Q. 1 J -

f(Q.) 
> log Q. 

J 

Let Nk = a 1a 2 , · · Qk, for k > j; let c 1 = f(Q 1)/logQ 1 and 

ck = f(Qk) /log Qk ~ where c < ck < c 1 and k > j . Hence 

c 1 = c 2 = ... = cj-l > cj::::, cj+l > 

and since f is additive, 

Now (Q.,Q.) = 1 for i i-j, 
l J 



Now Qj1(Nk - 1), for j ·.'.::, k. Since ck< c 1 for k ::_ j and 

f(Nk) > ck log Nk, ck is the large st value such that 

f(Nk - 1) < cklog (Nk - 1). Then 

Since cklogNk - cklog(Nk-1) = cklogNk/(Nk-1) > 0, and 

(c 1 -c}logQ 1 = o>O, 

which contradicts f(n + 1) - f(n)- 0 • 

Case II: Assume next for c finite there are a finite number of p. 
1 

such that 

a. 
f(p. ],) 

1 

a. 
1 logp. 

1 

> c • 

Let 
a. 

l 
p 1, •.. , pj be these primes and let pi = Qi for 
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Define N. = a 1 a2 ,,, Q .• 
J a. a. J 

primes, f(p. 1 ) /log p. 1 < 
l l -

~< log n - c ' 

f(N.) 
Now l - c > c For all other log N. - 0 ' 
, J 

c; and given any n such that (n, N.) = 1 , 
J 

Let n 1 be the least n such that 

f(m) 
logm 

f(n 1) 
< log n 1 ' 
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for m < n 1 and (m, N} :;: 1, Let n2 be the least integer greater 

than or equal to n 1 such that 

Then m < n 1 and 

obtain a sequence 

f(m) < f(nz) 
logm log n2 

Continue in this fashion to 

{n.} such that n. < n. 
l l J 

and (m,N.) = (n.,N.) = 1. 
J l J 

f(m) < 
logm 

f(n.) 
l 

log n. 
l 

for i < j , 

Let n. be large and let r be the least prime which is greater 
l 

than. N.. An integer u is chosen in such a way that u < 2r and 
J 

but 

This implies 

n.l'{. - u 
l J 

Omod r 

2 
n. N. - u 't:. 0 mod r , 

l J 

n.N. - u = r:x;, for some :x;, . Now (r, :x;) = 1 
l. J 

because 
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r I (n.N. - u) and r 2 1(n.N. - u). Also, since rx < n.N. and r > N., 
lJ lJ lJ J 

it follows that x < n .• 
l 

f (n.) 
l 

Let 1 :; c, < c, Also, since r -:/: Q. , 1 < i :::_ j, og ni 1 - 1 
f(r) 
log r < c. Then, since f is additive, 

f(rx) = f(r) + f(x) < clogr + c.logx. 
- l 

Thus, 

f(n.N.) - f(n,N. - u) = f(n.N.) - f(rx) 
l J 1 J l J 

= f(n.) + f(N,) - (f(r) + f(x)) 
l J 

> c.logn. +c 0 logN.-clogr -c.logx 
- l l J l 

- clog r - c. log x 
l 

(
n.N.) 

> (c 0 - c) log N. + c. log _.!.-..1. , 
- · J 1 xr 

since c > ci. Let (c 0 - c) log Ni= 6 > 0. Then 

f(n.N.) - f(n.N. - u) > 6 
l J l J 

for each n. , And since 
1 

f(n.N.) - f(n.N ... u) = f(n.N.) - f(n.N. - 1) + f(n.N. - 1) 
lJ lJ lJ lJ lJ 

- f(n.N. - 2) + •. , + f(n.N. -u+ 1) 
l J l J 

- f(n.N. - u) > 6 , 
1 J 



there is a contradiction that f(n+ 1) - f(n)-0. 

Case III: Assume, now, for all 

c = + co is allowed, 

Q.' 
l 

f(Qi) 

log Q. < c · 
l 

In this case, 

The construction as in Case II, using all the integers, gives a 

sequence {n.} where 
l 

f(rn) < 
logm 

f(n.) 
l 

log n. ' 
1 

f(n.) 
for m < n .. 

1 

l 
It follows from (8) that lim sup log n. = c. Also, 

1 

th . t a assume ere ex1s s a p. 
1 

such that 

Let 

but 

a 
n. > 3 p. 

l l 
and choose 

a 
f(pi ) 

a 
log p. 

l 

a u < 2p. 
1 

such that 

n. - u 
1 

a 
Omodp. 

l 

a+l 
n. - u ':t. 0 mod p. 

l 1 
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Then a 
n. - u = p. x 

l l 
and x < n .• 

l 
Let 

f(n.) 
l 

log n. 
l 

= c .. 
l 

f(x) 
Then logx < ci. 

Also 

f(n.) - f(n. - u) 
1 1 

= f(n.) .. f(p.a) f(x) 
l l 



Since c 1 < c , pick n1 
1 

such that C - Ci< 2 (c-c 1). Then 

( n.) 1 a 
= c .. log -·- + ( c. - c 1) log p. . 

1 a, 1 1 
P. :x: 

I.. 

Let (c. - c 1)logp.a = 6 > O. Because c.log(n./p.ax)-0, it follows 
l. 1 l l l 

that f(n.) - f(n. - u) > 6, a contradiction that f(n + 1) - f(n)--+ 0. 
l l 

Thus, for all Qi, f(Qi)/log Qi= c -- the only possibility left 

or f(n) is a constant multiple of log n , 

In the year prior to Renyi's artide, Erdl:1s [10, p. 48] stated a 

generalization which includes both Theorems 4. 1 and 4. 3, The 
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generalization states that if lin inf f(n + n .,. f(n) :::, 0, for f additive, 

then f is a constant multiple of log n . This generalization means 

that if f(n) is not a constant multiple of log n , then f(n + 1) - f(n) 

has both positive and negative limit points, These limit points may be 

either finite or infinite, Both Katai [21], [24] and Atilla Mate [37] 

have established proofs of this theorem, with Mate's proof presented 

here, But before the generalization is proved, it is necessary to 

establish some inequalities. Recall, also, from Theorem 2. 8 that if 
t 

f is additive and g(n) = lim f(~ ) 1 ai, t- a:i , then g is completely 

additive. 

In the next two theorems, let e be an arbitrary positive quantity, 

and c(n, e:) be a quantity which depends only on n and e: • Let 

H(e) = {n: f(n+ 1) ,.,. f(n) < -e:}. Note that the set Ii(e:) is finite if 

lim inf f(n + 1) - f(n) > 0. Define c(e:) = - I:: [f(n + 1) - f(n)], where the 

sum is over all n in H(e). Now for an arbitrary set S of natural 



numbers with r elements, by the definition of c( e:), 

(9) 

( 10) 

( 11) 

I: f(n+l) - f(n) > -re: - c(e:). 
nES 

Theorem 4, 4. If f e G, then 

k 
f(n).., kf(n) ~ c 1(n,e:) - kne:, 

k 
f(n ) ... kf(n) :::, c 2 (n, e:) + k ne: . 
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Proof: Proof of both the inequalities depends on (9). To prove 

the first inequality, consider f(nk) - kf(n) and employ the familiar 

trick of adding and subtracting the same quantities: 

k 
k [ k k ] [ r r-1 ] f(n )-kf(n) = f(n) - f(n -1) + I: f(n -1) - f(n -1) - f(n) 

r=2 

+ [f(n - 1) ... f(n)] 

k 
= [f(nk) - f(nk- l)] + I: [f(nr - 1) - f(nr - n)] + [f(n - 1) - f(n)] 

r=2 

k k n- l 2 . 2 . 
= [f(n) - f(n -1)]+ I: [f(n -1) -f(n -1 -1)] 

i= 1 

n-1 
+ I: [f(n3 - i) - f(n3 - i -1)] + .•. 

i= 1 

n-1 
+ I: [f(nk - i) .., f(nk - i - l)] + [f(n - 1) - f(n)] 

i= 1 

k k k 
= [f(n ) - f(n - l)] + I: 

r=2 

+ [f(n - 1) - f(n)] . 

n-1 
I: [f(nr - i) - f(nr - i -1)] 

i= 1 
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In the first two terms of this last expression there are (k - l)(n - 1) + 1 

natural numbers of the form f(m+ 1) - f(m) so that, by (9), 

f ( n k) - k f ( n ) > ,,. ( kn - n - k) e: - c ( e: ) + f ( n + 1 ) - f ( n) 

> -kne: - c(E) + f(n + 1) - f(n) = c 1 (p., e:) - kne: • 

The proof of ( 11) is similar if 

k 
f(n ) - kf(n) 

k 
= [f(nk) - f(nk+ l)] + ~ [f(nr + 1) - f(nr-l + 1) - f(n)J 

r:;::2 

+ [f(n + 1) - f(n)] 

is reduced in the same manner as above. 

As a result, it can be seen that f(nt) = t f(n), since Theorem 4. 4 

implies that Jf(nk) - kf(n) J < c 3 (n,e:) + kne. That is, 

for every e: > 0, or 

and hence, 

lim sup f({) - f(n) I < n e: 
k-oo 

~_i.~ I r,(, _ f(n) I = o . 

k 
lim ~ = f(n). 
k-lX) k 

Then, by Theo:rem 2. 8, f is completely additive, a fact whic;h will be 

needed later. 
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Theorem 4. 5, Let f e G,, and let 2k ~ n < 2k+l. Then 

(12) f(n) ~ -ke - c(e) + kf(2), 

(13) f(n) ~ (k+l)e + c(e) + {k+l)f(2). 

Proof: Define a finite sequence of integers {xk} , where 

1 
x 0 =n and xr+l=Zxr'• for xr' theevenoneof xr and xr-1. 

Now since 2k < x 0 < zk+l, it follows that 

zk-l < x 1 < 2\ ..• , 2k-k ~ xk < zk-(k-l), Since xk is an integer 

such that 1 ~ xk < 2, xk must be equal to 1 , and since f is com-

pletely additive, f(xk) = f( 1) = 0, Then 

k-1 k-1 
= ~ [f(x ) - f(x 1 )] + ~ [f(x ') - f(x +l)] 

r=O r r r=O r r 

= ~ [f(x ) - f(x 1)] + ~ f{2) , 
r r 

by the additive property of f. Hence, f(n) > -ke - c( e) + kf(2), by 

(9) • 

Again, define a finite sequence of integers {Yk+l}, where 

1 
y O = n ancl yr+ 1 = 2 yr I , for y I 

r 
the even one of y and y + 1 . 

r r 

By reasoning similar to above, Yk+l = 1 and f(yk+l) = 0. Thus, 

since f is completely additive, (9) implies 

f(n) < (k+l)e + c(e) + (k+l)f(2). 
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Combining the inequalities in (12) and (13) yields 

/f(n) - kf(2)/ ::_ 2ke + c(e) + /f(2)/. 

But since , k < log2 n < k+ 1 , 

( 14) /f(n) - £(2) 1og4n/ < 2e 1og2 n + c(e) + 2 /f(2) I . 

With these :results i,t: is now possible to establish the following condition 

for a function to belong to !8. 

Theorem 4. 6. Let f e (l, If litn inf f(n + 1) - f(n) ~ 0, then 

f E ll3 , 

Proof, Replacing n, in (14), by nt results in 

Since £ is completely additive, f(nt) = t f(n) ; dividing by t produces 

/f(n) - f(2)log 2n/ < 2elog2n + ~ {c(e) + 2 /f(2) /}. 

If t -+ co , then 

for every e > 0, which shows 

f (n,) f(2) . 
= £(2) log2 n, = log 2 log n .. 

Hence f(n) is a con!;ltant multiple of log n . 
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It was also conjectured by Erdl:ls thaf 1£...tpe condition in Theorem 

4. 3 is replaced by the condition 

(15) lim .!. ~ I f(n + 1) - f(n) I = 0 , 
x-a:i x n <x 

the conclusion folLows, The proof of this theorem was published by 

Ka'.tai [29] in 1970. A conjecture, which is still open, made by 

Ryavec [45] is that f is in l8, if f E G and 

(16) lim inf 1 ~ j f ( n + 1 ) - f ( n) I = 
x-a:i x n <x 

0 . 

In the same paper, Ryavec proves a weaker version of this conjecture, 

in which f is in l8 if, for f E a,. f satisfies ( 16) and f(n) = 0 (log n). 

Another condition which assures that f is in l8 is the following: 

f(n) > 0 and 

( 1 7) 

This is also proved by Ryavec. 

Conditions on Completely Additive Functions 

The functions in l8 are all completely additive, since they are 

constant multiples of the completely additive function log n. Up to 

now attention has been focused on conditions on additive functions to 

assure they are in 18.. Since not every completely additive function is 

in l8, what about conditions on these functions so they will be in l8 ? 

Wirsing [49], in the process of proving a theorem conjectured by 
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Erdl:ls, provides such a condition. Wirsing' s theorem is stated here 

without proof, and the reader is referred to his article for the proof. 

Theorem 4. 7. If f is completely additive and fulfills 

f(n + 1) ~ f(n) + K, for all n I with K a constant, then f E !8 • 

Another condition which a1;1sure s that a completely additive 

function is in !8 was set forth, and proved, by Katai [25]. 

Theorem 4. 8. If f E G, such that f is completely additive, and 

(18) f(2n+ 1) - f(n)-K, 

with K a constant, then f E !8 • Further, for 
K 

f(n) = clog n, c = log 2 • 

Proof: Since f and the log function are completely additive, 

then so is the function g(n) = f(n) - ~~;~ n If f(2n + 1) - f(n)-. K, 

then g(2n+ 1) - g(n).-O. Thus, the problem can be restated as: f 

completely additive and f(2n t 1) - f(n) .- 0 implies f(n) = 0. 

Given f completely additive, K = 0 and (18) implies 

f(2n+l) - f(2n) = f(2n+l) - f(n) - f(2)--f(2), 

which implies 

( 19) f(Zn+ 1) - f(2n) = -f(2) + o(l). 

Let N be a large number of the form 

where a 1 > a 2 > .•. > ak, and let X..(N) = k, the length of N. Then 
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a a -a a -a 
N = 2 k(2 1 k + 2 2 k + . . . + 1) 

and 

a a -a a -a 
f(N) = f(2 k) + f(2 l k + 2 2 k + ... + 1) 

a a -a a -a 
= f (2 k) + £(2 1 k + ... + 2 k-1 k + l) 

a -a a -a 
_ f(2 1 k + ... + 2 k-1 k) 

a -a a ~a 
+ £(2 1 k + ... + 2 k-1 k) 

Since f is completely additive, formula ( 19) makes this expression 

become 

f(N) 

( 
a -a a -a -a +a ~ 

=akf(2)-f(2)+f2k-l k(21 k k-1 k+ ... +l))+o(l). 

The additivity of f implies 

a -.a a -a 
f(N) = akf(2) - f(2) + o(l) + f(2 k-l k) + f(2 1 k-l + •.. + 1) 

a -a a -a 
-£(2 1 k-l+ •.. + 2 k-2 k-1) 

a -a a -a 
+£(2 1 k-l+ .•. + 2 k-2 k-1). 

Again the complete additivity of f and (19) produces 

f(N) = akf(2) - f(2) + o(l) + (ak-l - ak) £(2) - £(2) + o(l) 

a -a a -a 
+ f(2 1 k-1 + ... + 2 k-2 k-1) . 
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Simplification yields 

a .... a a -a 
f{N) = (ak + ak-l - ak) £(2) .. 2f{2) + 2o(l) + f(2 1 k-l + .. , + 2 k-2 k-1) 

This process is repeated a total of k times, the length of N, so that 

after the la st but one reduction, 

a -a 
f{N) = ai(2) - (k-l)f(2) + (k-l)o{l) + f(2 1 2 + 1), 

Applying the reduction one last time produces 

a -a 
f(N) = a 2£(2) - (k- 1) £(2) + (k- 1) o{l) + f(2 1 2 + 1) 

. a -a a -a 
- f( 2 1 2) + f (2 1 2) 

= a 2f(2) - (k - 1) £(2) + (k., 1) o0) - f(2) + o{l) + (a 1 - a 2 ) f(2) . 

Therefore, 

(20) f(N) = a 1f{2) - kf(2) + ko(l), 

a 1 a 1+1 
By the definition of N, 2 < N < 2 Thus 

a 1 log 2 :::_ log N < a 1 ldg 2 + log 2 , 

and 

a 1 log 2 a 1 log 2 log 2 
< 1 < + ,_,,_..,_"""="""' 

logN logN logN 

Hence, 



a 1 log 2 
0 < 1 - < log N 

log 2 
logN ' 

From this, it follows that 

= 1 - log2 + o(l). 
log N 

_ log N o( 1) log N 
So, al- log2 -l+ log2 

To show f(2) = 0, let Nt = 2 + 2 3 + •.• + 2 2H 1, for t > O. 

Then 

3Nt = (2 + 1)(2 + 23 + .•. + z2t+l) 

= 2·2+2-23 + ... + 2.z2t+ 1 + 2+2 3 + ... + z2t+l 

= 2 + 22 + 23 + .•. + z2t+l + ?t+2 . 

It follows that A(Nt) = -} (2t + 1 + 1) = t + 1 , and 

A(3Nt) = 2t + 2 = 2A(Nt). From the fact that 2t + 1 = a 1 , with a 1 

given above, it follows that 

2t = 
logNt o(l)logNt 

- 2 +----log2 log2 

and 

logNt o(l)logNt 
t= -l+----

2log2 2log2 
or t + 1 

logNt o(l)logNt 
= + --=--,--...,,.--

2 log 2 2 log 2 

Because (3, :N) = 1 and f is additive, £(3 Nt) = f(3) + f(Nt), 

and the ref ore, 
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= (2t+2)f(2) - (2t+2)f(2) + (2t+2)o(l) - (2t+l)f(2) 

+ (t+l)f(2) - (t+l)o(l), 

after substituting into (20), Thus, 

f(3) = -tf(2) + (t+ 1) o(l) 

(
logNt o(l)logNt) (logNt 

= - 2 log 2 - 1 + 2 log 2 f( 2 ) + 2 log 2 
o(l)logNt) 

+ 2log2 o(l) 

-f(2)1ogNt ( ) 
= 2 log 2 1 + o( 1) + f(2) + o( 1) , 

by Lemmas l. 5 and 1. 6. This last expression approaches oo if 

f(2) i- 0, a contradiction that f(n + 1) - f(n) ...... co • Thus, f(2) = 0. Then 

(2 1) Um f(N) = o . 
N ...... oo log N 

Since f is completely additive, (21) implies 

Hence f(N) = 0. 

f(N) 
logN 

Decomposition 0f Additive Functions 

So far interest has been centered on the conditions under which a 

real-valued additive function will be in 18. It is of interest now to 

focus attention on the matter of decomposing an additive function into a 

sum of two additive functions, 0ne of which is a completely additive 



80 

function (in particuhi.r, a constant multiple of log n) and the other, a 

bounded function. 

Ertle.ls [9, p. 3] conjectured that if an additive function f is such 

that f(n + 1) - f(n) is bounded, then f decomposes into the sum of a 

constant m.1..1.ltiple of log n and a bounded function. 

Theorem 4. 9. .Assume for f e a 7 f(n + 1) - f(n) < c 1 , for all n. 

Then 

(22) f(n) = clog n + g(n) 

where I g(n) I < c 2 , for c1,ll n. 

The proof of this theorem was published in 1970 by Wirsing [ 49]. 

The converse of this theorem is also true. For if f ea and g 

is a bounded function such that (22) is true, then 

f(n+ 1) - f(n) = clog(n+ 1) + g(n.+ 1) - clogn - g(n) 

~ c (log (n + 1) - log n) + 2c2 

n+l = clog~+ 2c 2 

< clog 2 + 2c . 
2 

Thus the set of differences f(n + 1) - f(n) will be bounded. 

Eclrs Ma'.te [38] proves a more general, and somewhat weaker, 

form of this conjecture. Instead of a constant multiple of log n , his 

decomposition involves a completely additive function, and the decom-

position is unique, Assuming the existence of such a decomposition, 
t 

the completely additive function is h(n) = lim f(~ ) (see Theorem 2. 8) 

and the bounded function is g(n) = f(n) - h(n). 
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Theorem 4, 10. If f E CL /f(n+ 1) - f(n) / < M, for every n and 

(n-1,s)=l, then /f(ns)-sf(n)/<2sM. 

Since 

Proof: Consider 

/f(ns) - sf(n) / = /f(ns) - f(ns - 1) + f{ns -1) - sf(n) / 

< / f (n s - 1) - sf(n) I + M 

s-1 
s = :E 1 _ 

i=O 

( 
s-1 .) 

= / f (n - 1) . :E n 1 - sf(n) / + M . 
i=O 

s-1 . (s-1 . ) l 1 
:E n mod ( n - 1) , :E n , n - 1 = 1 , 

i=O i=O 

and since f is additive, 

( s-1 .) I 
/f(ns)-sf(n)/:::_M+/f(n-1)-f{n)/+ f i:

0
n 1 -(s-l)f(n) 

I (s-1 .) (s-2 ") (s-2 .) I <2M+f _:En 1 -f _:En1 -f(n)+f _:En 1 -(s-2)f(n) 
1=0 1=0 1=0 

{ (s -1 .) (s -2 ') } 
= 2M + f i:O n 1 - f i:O n1 - f(n) 

{ ( s .. 2 .) (s-3 ') } (s-3 .) + f _:E n 1 -f _:E n1 -f(n) +f _:E n1 -
1=0 1=0 1=0 

(s-3)fi(n) . 

( 
s -( s -1) ') 

This process is repeated until f _:E n 1 - (s - s + 1) f(n) 
1=0 

is reached. 

This then can be replaced by 

( 1 ') ( 0 ') f _:E n 1 - f _:E n1 - f(n) , 
i=O i=O 



since f(.i ni) is equal to f(l) = 0. Therefore 
1=0 

/ f(ns) - sf(n) / < 2M + ~;/ {f(_i rii) - f(~;l ni) - f(n)} 
J=l 1=0 1=0 

Because l 
(n, !: n ) = 1, the additive property of f implies 

( j-1 ") ( j-1 ") ~(j ") ) f _!: nl. + f(n) = f n • _!: n 1 = f _2: n1 - 1 
i=O 1=0 1=0 

With this substitution, 

< 2M+ (s-l)M = (s+l)M < 2sM. 
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Theorem 4, 11. If f e G and / f(n + 1) - f(n) / .:5. M, for each n, 

then for any two integers k > 0 and n > 0, 

k Proof: If n is even, then (2 , n - 1) = 1 so that Theorem 4. 10 

can be used with 2(2k)M < 4(2k)M. Using this result for n odd, 

I zk k I f(n ) - 2 f(n) = I (rcn2\ + £(22 \) - rcz 2 \ - (zkf(n) + Zkf(Z)) + Zkf(Z) I 

= I r(czn) 2k)- f(2 2 k) - Zkf(Zn) + 2kf(2) I 

since (2, n) = 1 and f is additive. Hence, 



f (nz\ - 2kf(n) :'.:. £((2n)2k) - 2kf(2n) + £(22\ - 2k£(2) I 

< 2(2k)M + 2(2k)M 

k = 4(2 )M , 
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Theorem4.12, If f~Q and lf(n+l) - f(n)l .:'5. M, for each n, 

then for any two positive integers s and t, 

Proof; There is no loss in generality in assuming t > s; then 

1£(nt) .. f(ns)I = lf(nt) .. f(nt-l)+f(nt-l) ... f(ns)+f(ns-1)-f(ns-l)I 

~ 2M+ lf(nt-1) .. f(ns .. 1)1, 

since I f(n + 1) - f(n) I < M for any n .. Because t > s, add and sub­

i-1 tract the quantity f(n - 1) - f(n) for i strictly between s and t. 

This results in 

t 
= 2M+ I~ {f(ni .. 1)-f(ni-l_l)-f(n)}+(t-s)f(n)I 

i=s+l 

t 
I i i-1 I I I < 2M + ~ f(n - 1) - f(n - 1) .. f(n) + (t - s) f(n) 

i.== s+ 1 

t 
= 2M+ ~ lf(ni-1) - f(ni-n)I + (t-s) lf(n)I 

i=s+l 

t 
by the additivity of f. The summation ~ I f(ni - 1) - f(ni .. n) I is 

i=s+l 
equal to 
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/f(ns+l - 1) - f(ns+l - n) + f(n 6 +2 - 1) - f(n 6 +2 - n) 

+ , .• + f(nt- 1) - f(nt- n)/ 

which is less than or equal to 

/f(ns+l - 1) - f(ns+l ... 2) I + I f(ns+l - 2) - f(ns+l - 3) I 

+ •.. + I f(n s+ 1 - (n - 1)) - f(n s+ 1 - n) I 

+ ... + /f(nt-1)-f(nt ... 2)/ +.f.+ /f(nt-(n-1))-f(nt-n)/ 

For i in the given range there were (n - 1) terms added and then sub-

tracted. Also there are (t .. s) values of i. Thus, given 

I f(n + 1) .., f(n) I bounded by M , 

t 
~ I f(ni - 1) - f(ni - n) I .:::_ (n - l)(t - s)M. 

i=s+l 

In addition, 

f(n) = [f(n - 1 + 1) - f(n .. 1)] + [f(n - 1) - f(n - 2)] t ... + [£(3) - £(2)] 

t [£(2) - £(1)], 

since £(1) = 0. With /f(n+ 1) - f(n) I bounded, it follows that 

n-1 
I f(n) I .:::_ ~ I f(i + 1) - f(i) I < (n - 1 )M . 

i= 1 

Using these results yields 

I f(nt) - f(ns) I ~ 2M + 2(t - s)(n - l)M .:::_ 4(t - s)nM. 
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With Theorems 4. 10 ... 4. 12, which yield some significant 

bounds in their own right, the theorem which guarantees the decomposi-

tion of an additive function can now be proved, . 

Theorem 4. 13, Suppose that for f E G., the difference 

f(n + 1) - f(n) is bounded. Then there e-'(:ists a decomposition 

h(n) + g(n) of f(n), where h is completely additive and g is 

bounded. 

f(n t) 
Proof: Consider the sequence defined by t If t runs over 

numbers of the form 2k, then for any k and h, 

. 1 { ~ 2k2h 

2k+h 2k2h 
Since n ::: n 

2k+h 
f(n ) is equal to either 

k h 
f((n2 )2 ) or 

zh zk 
f((n ) ) , so that Theorem 4. 11 is applicable. The last expression 

of the above inequality, then, is less than or equal to 

Thus, 

k 
f(n 2 ) 

2k .. 
· ( 1 . 1 ) ~ 4Mk +h . 

.2 2 

As k and h approach co, this last expression approaches O. Hence 



the sequence, for t of the form 2k, is Cauc:hy. Thus, 

h(n) 

k 
= lim f(n2 ) 

k..+co 2k 

exist1;1, and in particular, 

(23) 

k 

f(n 2 ) I < 4M 
2k - h(n) - 2k 

Let k be large fixed integer. If s runs over the primes less 
zk 

than or equal to n - 1 , then 
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k k 2k 2k 
f (: s ) - h ( n) I = I f (: s ) -~ f ( n s 2 ) + ~ f ( n s 2 ) - f ( n k ) + f ( n k ) -h ( n )I 

s2 s2 2 2 

By Theorem 4, 11, the first term is less than or equal to 

(24) 

By Theorem 4. 10 1 since 

than or equal to 

(2 5) 

4M 
s 

1, s) = 1, the second term is less 

~ (zsM) = 
s2 

2M 

~ 



By (23), the last term is less than or equal to 

Thus, for 

(26) 

zk 
s < n ,...... 1 and s prime, 

4M 
le' 2 

Consider 
2k 

s < t < s + n • Then the difference 

by Theorem 4, 12. For any t, then, 

These yield 

f(n t) 
_,..,....... - h(n) 

t 
:: I f(n;) .. !. f(ns) + !. f(ns) - h(n) I 

t t s t s 

1 6M 
< t • 4(t.., s)nM + le . 

. 2 

Let t-+ <Xl. . Then s - m , k-+ <Xl , s -1 
t 

and 

t 
lim sup f(nt.· ) - h(n) < 6Mk . 

t-+m ..,.. 2 

The left member does not depend on k, so by making k-+ m , 

loo I ur-:up ~ · h(n) = 0 . 

Therefore, 
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ffnt\ 
lim ~t. = h(n) 
t-+ex> 

exists, and by Theorem 2. 8,. h is completely additive. 

Let g(n) = f(n) - h(n). If, in (23), k = 0, then 
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I f(n) - h(n) I ~ 4M. Hence, I g(n) I < 4M and g is bounded. There-

fore, the theorem follows, 

The material presented here is by no means all inclusive. 

Additional conditions are set forth by Katai, Erd8s, and others. But 

the proofs of these are beyond the scope intended for this paper, It is 

intended only to give some insight: into the types of investigation which 

can be carried.out in this area, and an introduction to the methods by 

which these results can be established. 
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APPENDIX 

A list of additive functions which appear in the dissertation is 

included here for the convep.ience of the reader. Let 

n = 
r a. 

l 
II P~ = 

. 1 l 
1.= 

1. z(n) = 0 , for all n, 

r 
2, w(n) = ~ 1 = number of distinct prime divisors of n. 

i= 1 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

r2(n) = 

'Y(n) = 

'Yk (n) = 

s(n) = 

r 
~ a. = number of prime divisors of n. 

. 1 l 1= 

r k 
~ a. ' 

i= 1 1 

r 
~ a.p. 

. l 1 1 1= 

r 
k 

~ a.p. 
i= 1 l l 

r 
~ p .• 

i= 1 1 

r k 
~ p. 

. 1 l 1= 

k > 0. 

(Chawla I s function). 

k > 0 (generalization of Chawla's function). 

k > 0 • 

log !eJEl = 
n 

r -1 
~ log(l-p. ), where <P 

i= 1 1 
is Euler's function. 
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1 
10. H{n) = T(n) ~ h(n), where h is additive {average based on 

djn 
divisors). 

11. h(n) = 

12. h{n) = 

n 
~ µ(d) TH( d), where H is additive. 

djn 

a+l 
~ log (a+l) 

pa lln aa 
, where H(n) = log T(n). 
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n n 
13. (f * gh)(n) = ~ f(d) g( d) h( d), where f and g are multiplicative, 

d/n 
h is additive, u 0 (n) = 1 and f ):< g = u 0 • 

t 
14. g(n) = lim f(~ ) where f is additive. 

t-+a:i 

15. 
a 

L/{n) = ~ Lf{p ) , where f is multiplicative, Lf(l) = logf(l) 
pa lln 

-1 n 
and L f(n) = ~ f(d) f ( d) log d , for n > 1. 

djn 
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