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CHAPTER I 

INTRODUCTION 

Tweedie [ 19] characterized inverse statistical variates by inver-

sion of the logarithm of moment generating functions and discussed 

examples of inverses to Binomial, Poisson and Normal variates. This 

has led to the distribution of inverse to the normal variate known as 

inverse Gaussian. To put it in the simplest form, one may say that the 

inverse Gaussian is to the normal as (i) the negative Binomial is to the 

Binomial and (ii) the exponential is to the Poisson. This relationship 

between any such pair of random variables can also be described in 

terms of physical phenomena and its study constitutes the subject 

matter of the theory of stochastic processes. The physical aspect of 

the inverse Gaussian is inherited in the Brownian motion, and this has 

been matp.ematically established in detail, among others, by Cox and 

Miller [3]. Briefly, it says that the time X for a particle to cover a 

given distance d along a line in a diffusion (Gaussian) process for the 

first time is described by the density function 

f(x) = d 
2 

-(d -vx) /2!3x 
e ' x>O 

~ 
v'G'IT·(:SX-

where 13 is a diffusion constant. and v is the velocity associated with 

the particle movement. 

l 
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While dealing with the same structure but with different situa .. 

tions, Wald [22] and Feller [7] also derived this distribution in an 

asymptotic way. But the family of such distributions lurked completely 

until Tweedie [20], [21] published s0me interesting results on its 

statistical properties. In fact, the development on sampling distribu-

tions given in his papers became the milestone for further statistical 

inferential investigation on the inverse Gaussian distribution. Recently, 

Wasan and his associates have elaborated on some analytical and 

characteristic properties of this distribution in its vadous forms 

including limiting cases. Wasan [23] has also formulated an. inverse 

Gaussian process. 

In this thesis, our main objective is to investigate some problems 

of statistical inference related to the inverse Gaussian distributi0n and 

to draw attention to some useful areas for its applications. Among its 

various equivalent forms often found in the literature, we will consider 

the form which has become almost standard. A random variable X is 

distributed as inverse Gaussian if its density function is given by 

A(X - ~) 
2 

I 2,r).x3 

2 
f(x; µ, A) = e 2µ x 

x > 0 ( l) 

= 0 , otherwise 

where µ and A are assumed to be positive and these constitute a pair 

of independent parameters. See Chapter II for further properties. 

Our interest in the inverse Gaussian distribution derives mainly 

from its direct relationship with the normal distribution and. its skew-

ness property, especially in the case of large variance. We note that 
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this distribution shares with the Gamma and log-normal distributions 

the asymptotic convergence to normality when the variance gets small. 

We also demonstrate another common feature of the inverse Gaussian 

and the log-normal as life-time distributions in Chapter VII. 

In Chapter II, we give some properties of this distribution. 

Chapter III consists of some distributions related to the inverse 

Gaussian. The problem of testing statistical hypotheses on the para­

meters µ and >... of (1) is discussed in Chapter IV and optimal test 

procedures are derived. Chapter V is a follow-up on the interval 

estimation. 

In Chapters VI and VII, we propose to investigate the inverse 

Gaussian as a life-time distribution as to various aspects of reliability 

theory. Since this distribution arises as a distribution of first-passage 

time in a Gaussian process, its applicability to a life-testing or a life­

time situation is a natural consequence. Many distributions, including 

log-normal, have been studied for their use in reliability problems; 

but no such study seems to be available on the inverse Gaussian as a 

life-time distribution. 

Notations being adopted here are often given in any standard texts 

on topics of this the sis. As a result of its general nature as to the study 

on inverse Gaussian distribution and a coverage of different aspects of 

statistical inference, it was not possible to introduce a topic and 

discuss it beyond our needs for its applications to the inverse Gaussian 

distribution. However, we feel that the discussion of the material is 

self-explanatory to those who are acquainted with the area of statistical 

inference. Otherwise, a slight refuge in references given at the end, is 

sufficient to overcome the initial difficulty. 



CHAPTER II 

SOME ST AT !ST !CAL PROPER TIES OF THE 

INVERSE GAUSSIAN DISTRIBUTION 

In this chapter we outline briefly some properties of the inverse 

Gaussian distribution given by (l) in Chapter I. For more details, see 

Johnson and Kotz [11], Tweedie [20] and Wasan [24]. 

Tweedie [20] showed that the distribution is unimodal, with its 

mode at 

1 

21C)2 
4A. 2 

Next, the characteristic function of an inverse Gaussian random 

variable X is given by 

and all moments exist. The rth moments about O is given 

and, in particular, 

r 
= µ 

E[X] = µ 

r-1 
1: (r-l+s)! 

s=O s!(r-1-s)! 

and Var (X) -

4 

( l) 

(2) 

(3) 

(4) 
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The density curve is positively skewed, and :\. is a shape parameter. 

Further, we list the following properties that either have been 

established earlier or can be easily proved. 

Property (additive) 1: Let x 1, x2 , ... , Xn be n independent inverse 

Gaussian random variables, and X. is distributed ace ording to ( l) in 
1 

n 
Chapter I with µ = µ., :\. = :\.. (i = 1, 2, .•. , n). Then ~ X. is an 

1 1 l 1 

inverse Gaussian distributed random variable if and only if 

same for all i , where 
2 

; . = :\.. /µ. (i = l, 2, ... , n). 
1 1 l 

Letting 
n 

;. are the 
1 

;. = £ 
1 

(i=l,2, •.. ,n), the distribution of ~ x. 
l 1 

is the inverse Gaussian with 

parameters 
n 
~ µ. 
l 1 

and ;(f µi)2 

2 
Property 2: If Z = :\.X/µ , then Z has inverse Gaussian distribution 

with parameters cp and cp2 , where cp = 'A./µ. Moreover, E[Z] = cp 

and Var [ Z ] = cp • 

Wasan and Roy [25] have tabulated the percentage points of the distribu­

tion of Z for different values of cp. Also, Wasan [23] has formulated 

an inverse Gaussian process on such properties of a random variable. 

Note that Fi; is the coefficient of variation for both random 

variables X and Z . 

Property 3: Let Y = (Z - cp) I (z. Then (i) Y 2 has a x2 distribution 

with l degree of freedom, and (ii) Y has a non-linear weighted normal 

distribution given by ( I. 2), Ch.apter III. 

Property 4: The distribution of X is asymptotically normal with mean 

µ and variance as (This result is due to Wald [22].) 
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Property 5: The density function f(x; µ, :i...) as in ( l) of Chapter I is 

T P 2 (Total positive of order 2) but it is not PF 2 (Polya frequency 

function of order 2) . (See Karlin [ 12] for definition of TP 2 and PF 2 . ) 

Wasan [23] establishes only the TP2 property. 

Property 6: The family of inverse Gaussian density functions is com~ 

plete. (See Wasan [23].) 

For a sample X = (X 1, x 2 , .•. , Xn) from an inverse Gaussian 

pop1,1lation with parameters µ and A , Tweedie [20] obtained maximum 

likelihood estimates (MLE's) of µ and >... given by 

/\ 
µ = 

l n 
~ x. 

n 1 1 
and 

/\ /\_ l 
He also proved that µ and A are stochastically independent; and 

/\ 
(i) µ has inverse Gaussian distribution with parameters µ and n:i..., 

(5) 

. A-1 
and (ii) n:i... >... is distributed as x2 with n-1 degrees of freedom. 

( n n i) 
~ x., ~ x~ 
1 l l l 

is a minimal sufficient statistic for (µ,A). Further-

more, Tweedie developed an analogue of the analysis of variance for 

nested classification. 

The distribution given by ( l) in Chapter I can equivalently be 

written as 

f(x;µ,cp) e 
2 

-cp(x-µ) /2µx x>O 

where µ and cp are positive. For µ = l, (6) reduces to the form 

known as the Wald distribution, an alternative name used in Russian 

literature. 

(6) 



The MLE's of µ and cj> are 

/\ 
µ == 

1 n 
~ X. 

n 1 1 
and 

/\ 
It can be shown that the density function of cj> is 

/\ 
p( cj> ; µ ,cj>) 

where 

K (z) 
±0! 0 ~u f Joo 

0 

2 
z 

-(a+l) -(t+-:rr) 
t e dt 

as given by Watson [26, pg. 183]. Also 

E[{i;r] (1Y ~ 
r 

(r+s)! 2 
~ = 

I n~ l ) s=O s! (r - s)! (2n cj>) 

and 

E[;-r] ~ r-1 (r-l+s)! 2 r 
~ = 

s 

(n~)r 
I n~ l I s=O s! (r - 1 - s)! (Zn cj>) 

Consequently 

s 

E[~] 
(\ 2 2 

= n 1+1 and Var (cj>) = 
2 n 2 + n{n+l)1+2(n -2) 

n-3 2 (n-3) (n-5) 

7 

(7) 

(8) 

(9) 

( 10) 

( 11) 



and 

n-1 
ncp 

and 
I\ -1 

Var(cp) = (n-1)(2ncj>+n+ 1) 

n3 cp3 

Next, the correlation coefficient between~ and ~ is given by 

p = 2 2 
Zn cp + n(n+l)cp+?(n~2) 

n(n-5)cp 

For large n, we have approximately 

1 ~· I\ -1 
n Var ( q, · ) = 2 + l 

cp2 cp3 

and 

l 
p = 

JzcJ>+l · 

8 

(12) 

( 13) 

( 14) 

(15) 

(16) 

Results in (14) and (16) are also given by Johnson and Kotz [11]. The 

discussion in this section is useful toward an investigation of statistical 

inference associated with the parameter cp or a function of cp. For 

example, approximate confidence bounds on the coefficient of variation 

~ can be constructed on the basis of results in (14) and (15) when 

n is large. 



CHAPTER III 

DISTRIBUTIONS RELATED TO THE 

INVERSE GAUSSIAN 

In this chapter, we will derive the distributions of some functions 

of the inverse Gaussian distributed random variables. These distribu-

tions are slight variants of some well known distributions. 

A Non-Linear Weighted Normal Distribution 

We first prove the following theorem. 

Theorem I: Let X be an inverse Gaussian random variable with the 

density function 

f(x;µ,X.) = Jx./21rx3 exp [x.(x - µ) 2 /zµ 2x], O<x<co 

µ > 0' X. > 0. 

- 0 otherwise ( L l) 

Consider Y = J>:" (X - µ)/µ.jx". Then the random variable Y has the 

following density function, 

g(y; µ' X.) = 
I 

F 
--;:::::=====-]. exp [- Y2

2 J , -co < y < co . 

j~~ + y2 
r (L 2) 

Proof: The transformation y = J>: (x - µ) /µ ,F is one -to-one and as 

x varies from O to a:i, y varies from -oo to +co. Inversely, we find 

9 
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that 

Since ye (-OJ,0) < > xe (O,µ) and ye (0,0J) ~ > xe (µ,OJ), it can 

easily be seen that 

Also, 

dx 
dy 

= 2µx3/2 

[i:(x + µ) 

So the density function of Y is given by 

g(y;µ,X.) 

Thus, 

dx = f(x; µ, X.) dy 

g(y; f.L' X.) = 
1 

y2 

~-p]e-z 
This establishes the theorem. 

( I. 3) 

-OJ < y < OJ • 
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The result of Theorem l is of much significance as it establishes 

a relationship between a normal density function and an inverse Gaussian 

density function. 

The result of Shuster [18] and Zigangirov [28] for evaluating the 

inverse Gaussian distribution from the normal can now easily be 

obtained because 

where y = F(x -µ)/µF and 

2 2 fy z fy z 
1 - 2 dz 1 z -z 

F y(Y) = e e 

F F /4: +z2 -aJ -aJ 

To evaluate the second term on the right side, let u = /~'A../µ+ z 2 . 

Then 

2'A.. 
2 

u 

dz. 

Joo e µ l -z 
if y:::_ 0 e du, 

F 
2nd term c:: 

J4: +yz 

2'A.. 
2 JP 2 Joo u f -~ e µ l - 2 du , if y > 0 e - e du 

F 
ff % 

2>.. 

= e µ ~(/4~ + y2) -aJ < y < a) • 
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where 

2 

cj>(a) = 1 !co e- ~ r:;:: du. 
v2rr a 

Thus, 

2X. 

F y(y) = <p(-y) + e µ <p (j4: + v2 ) , ( l. 4) 

or 

( I. 5) 

the form given in Shuster [18] and Zigangirov [28]. The distribution 

function of Y given in (l. 2) or (1. 4) will be called the non-linear 

weighted normal distribution, This distribution contains a parameter 

~, which is the inverse of the square of coefficient of variation for the 
f.l 

inverse Gaussian random variable. We may write 
X. 

g(y; -) 
f.l 

for the 

density function. 

X. 
g(y; -) is monotonically decreasing for 

f.l 
The density function 

y < 0 and increasing for 

X. 

tX. 
y > 0 with respect to - ; and asymptotically 

f.l 

standard normal as - __., OJ • A sketch of its curves for some values of 

X. 

f.l 

µ 

is given in Figure l. 

The moments of this distribution are finite for all r. How-

ever, it is not possible to write a simple expression for v • 
r 

For r 

even number, 

where µ is 
r 

v = µ , and for r odd , - -2
1 fµT;: µ + 1 < v < 0 , r r v·· ., r - r -

the rth moment of the standard normal distribution. 



Figure 1. 

In fact, 

1(y; 11.1.,., 
•S 

1'.11,L = 1 

·Z 

. · l 

-1 0 z 3 

The Non-Linear Weighted Normal Distribution, 
Density Curve for >../µ = 1, 8, 20, 100 

),._ 

E(Y) = - /2µ.X. eµ. [K (~) -K (~)] {rr lµ Oµ.' 

13 

where K (z) stands for a modified Bessel function of the second kind 
CJ! 

(see Chapter II, pg. 7). Since extensive tables are available for 

z 
e (K0 (z) and (see Watson [26]), E(Y) can be found for a 

given value of 
µ. 

Observe that the variance of Y is not greater than 

1 • Furthermore, an exact expression for v can be written in terms 
r 



of Bessel functions K (z). 
a 

It can be easily seen that (i) the random variable / Y / has the 

standard half .. normal distribution, and (ii) the random variable Y2 

has the X 2 ... distribution with 1 degree of freedom. 

14 

Many papers have been written in the past on the linear combina-

tion of normal distributions; especially the linear combination of two 

normal distributions. One of the reasons for doing this was to seek 

substitutes for a normal distribution for a non-normal situation. How-

ever, little attempt has been made on the study of non-linear combina-

tion of normal distributions. 

Results (i) and (ii) in the above paragraph suggest the useful-

ness of this distribution for statistical applications. In fact, the basis 

of statistical inference obtained in the following chapters is the one-to-

one relationship which exists between an inverse Gaussian distributed 

random variable and random variable Y of ( 1. 2). 

A Non-Linear Weighted Student's t Distribution 

First, we give the following theorem without proof. 

Theorem 2: Let Y, Y 1, ... , Y n be (n + 1) independent and identically 

distributed random variables, each distributed according to (l. 2). 

Consider Z = f Y 1
2 and U = FY/ Jz. Then the random variable 

U has its density function given by 



A 
h(u · -) = 'µ 

1 

1 

[ 
2] n;l 

l+~ 
n 

15 

1 . u 2 

/

00 I .. 2(1 + -n-)z 
u z e 

n+l ---~~---2------ dz 

Jn2-2-1 n;1' O )4: + u_n z 

-CXJ < u < !X) • (2. I) 

It may be noted that the distribution of U is unimodal but unsym-

metrical, slightly skewed to the right. This property is a direct con-

sequence of the 1.;msymmetry in the distribution function of Y. Next, 

the behavior of the distribution function of U is the same as that 0f Y 

as to their common parameter A •. d - , an· 
µ 
A 
- ~ 00. 
µ 

Student's t density function as 

A h(u, -) 
µ 

is asymptetically the 

Though it is not pus sible to write P[U < u] in any known closed 

form, it can be "approximately" expressed as a non-linear combina-

tion of Student's t distributions with n degrees of freedom. So, the 

distribution of U with density functi0n in (2. l) will be called the non-

linear weighted Sutdent I s t distribution. 

It is easy to see that all moments of this distribution exist; even 

moments are the same as that of the Student's t distribution with n 

degrees of freedom and odd moments are all non-positive. Further­

m0re, (i) the random variable / U / has the truncated Student's t 

distribution on the positive real line, and (ii) the random variable u2 

has the F distribution with l and n degrees of freedem, Next, it 

follows that if Y 1, ... , Y n, Z 1, , .. , Zm are (n + m) independent and 

identically distributed random variables, each distributed accerding to 
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( 1. 2) and 
n 2 m 2 t 

; :::: :E Y . , 11 :::: :E Z . , then ( i) has F distribution with 
1 l l l '!"J 

n and m degrees of freedom and (ii) ; i 11 has Beta distribution with 

parameters n and m. See Chapter 18, Cramt!r [4] for details. 

As an application of Theorem 2 , consider a random sample 

x 1, x2 , ... , X~ from an inverse Gaussian population with density 

- n 
function in (l. 1). Then, it is known that X = :E X. /n and 

l l 

V = - 1-. ~(-1- - ..!..) are independently distributed, where X has an 
n-1 l xi x 

inverse Gaussian distribution with parameters µ. and n\., and 

has a x 2 distribution with n-1 degrees of freedom. Since \. V 

be expressed by 

\.V = l 
n-1 

2 
\.(X. - µ.) 

1 

2 
µ. x. 

l 

- 2 J _ n\.( X - µ) 
2- ' 

µ. x 

we can apply Theorem 2 to the transformed random variables 

F(X-µ.) 

µ.ijX 

and 

and conclude that the random variable 

i=l,2,, .. ,n. 

\.V 

can 

(2, 2) 

is distributed according to (2. 1) with n replaced by n-1 and n\. 

instead of \. 

First, we note that the random variable U 1 is the same as the 

test statistic given by (2. 27), Chapter IV for a test of hypothesis 

regarding µ when \. is unspecified. Secondly, the distribution of U 1 
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depends upon nuisance parameter X. , whereas its conditional distribu-

tion given T(X) , where T(X) = ~ (X. + Xl ) , is independent of X. (see 
1 1 i 

Lemma 2, Chapter IV). This further suggests that X. is not a scale 

parameter in the usual sense. 

Since 
2 n 2 

(n-1) s = ~ (X. - X) can be expressed as 

2 
(n-1) s 

1 l 

2 
2 _ n (X. - µ) 

= (n-1)µ XV- ~--1--
1 xi 

we have from (2. 2) 

{n(X-µ) 

n (X. - µ) 2 
~ 1 (X-X.) 
1 xi i 

Letting 

y = 
n 

l 
n 
~ 

n-1 I 

2 
(X. - µ) 

1 

x. 
l 

( x - x.) 
1 

it can be easily shown that E(Y ) = 0 and 
-1 

Var (Y ) = 0 (n ) , 
n 

so, 

n 

Y converges to O in probability. 
n 

Let t = Jn (x - µ)Is . 

and 

Then 

it follows from (x) and (xiv), Rao [15, pages 102-104] that u 1~t 

converges to O in probability. Hence U 1 is asymptotically equivalent 

to t in the sense that both have the same limiting distribution. 

Next, we have also derived two more distributions, a non-linear 

weighted non-central X 2 distribution and a non-linear weighted non-

central t distribution. However, these will not be discussed here. 



CHAPTER IV 

OPTIMUM PROCEDURES OF TESTING 

STATISTICAL HYPOTHESES ON 

PARAMETERS 

Let X = (X 1, x 2 ,.,., Xn) be a sample from an inverse Gaussian 

population with parameters µ and A . Then, the density functions of X 

constitute a two-parameter exponential family. We will investigate the 

problem of testing various hypo theses on parameters µ and A of ( 1), 

Uniformly most powerful (U. M. P.) or uniformly most powerful 

unbiased tests will be obtained and the test statistics will be derived so 

that a test can be easily performed for a given size of the test {i.e., 

level of significance). More emphasis will be placed on the problem of 

testing hypotheses on µ with both X. known and A unknown. Presently, 

we will not discuss the power of these tests. However, the power of 

tests concerning hypotheses on A can be obtained explicitly in berms of 

x 2 -distributions. 

Uniformly Most Powerful Te st Procedures 

Consider the problem of testing a statistical hypo the sis on a 

parameter of (l) when the other parameter is specified, In this case, 

18 
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(1) reduces to a one-parameter exponential family. Consequently, (1) 

possesses the monotone likelihood ratio [MLR] property. It then 

follows that a U. M. P. size a test exists for one-sided hypothesis, 

say, 

vs H (ll) ·. \ > '\ k /\. I\.O , µ nown 

or 

Hb2): µ ~ µo VS Hl2): µ > µo , X. known . 

(i) For testing H( 1) 
0 

vs H( l) 
1 ' 

the U. M. P. size a test is 

{: . if XE A 
cj>(x) = ( L 1) 

otherwise 

where 

{x = 

2 n (x. - µ) 
A (xl' ... ,xn): ~ 

l 
= 

i= 1 
x. 

l 

""o 2 2 and c 1 = -·- c = x (n) , the a percentile of a x distribution with n 
2 Q! 

µ 
degrees of freedom. 

(ii) For testing HbZ) vs HiZ) , the U. M. P. size a test is 

~(x) = {: • 
if x EB 

(L l) 
otherwise 

where B = {x = (x 1, ... , xn): x > k} , and k depends upon size a of 

the test and is the solution of the following equation 



lO 

( 1. 3) 

where 

t2 

I e --y dt 

In fact, if n arid X. are not small, k is approximately (1 - a) percen-

tile of the standard normal distribution. 

Uniformly Most Powerful Unbiased 

Test Procedures 

Two-Sided Hypotheses on a Parameter When the Other is Known 

Let f(x; e) , e e@, be the probability density function of a 

random variable X , where 0 may be a real vector-valued parameter. 

For testing a hypothesis Ho: 0 e ©o vs H l: 0 e (91 with (90 U ®1 = © , 

a size a test <j> is said to be unbiased if the power function 

As the UMP test does not exist in the case of a two-sided 

hypothesis on a parameter of (1), we will find UMP unbiased tests 

instead. 

(i) Let X = (X 1, x2 , ... , Xn) be a sample from an inverse 

Gaussian population with parameters µ and X. , where µ. is assumed 

to be known. Then the density function of X is 

f(x; X.) = (~)n/Z(~ x~3 / 2) exp [- l ~ 
2'11' I i 2µ. 2 I 

2 
(xi - µ.) J . 

x. 
1 



Clearly, 

n 
T(X) = ~ 

i= 1 

2 ex. -µ) 
1 

x. 
1 

21 

is sufficient for :\ , and is distributed as a 
2 2 y X - random variable 

with n degrees of freedom. It follows from Lehmann [14] that an UMP 

unbiased test of the hypothesis 
l l 

vs Hl: f -:f. X.O 

if T(x) :'.S_ k 1 or T(x) > k 2 

otherwise 

is 

(2. l) 

where, for a given size a of the test, c 1 = (~ k 1) and c 2 = (~~ k2) 
µ µ 

are determined by 

1 - a and n(l - a) (2. 2) 

with 

n-2 t 
l t-2- e -z 

t > 0 • 

The first condition in (2. 2) can be written in terms of the x2 distribu-

Hon with n degrees of freedom, F 2 (a) as 
x (n) 

F 2 (c 2 ) - F 2 (cl) = l - a 
X (n) X (n) 
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and the second condition as 

This form of the second condition follows due to integration by parts in 

(2. 2) since t gn (t) = n gn+2 (t) . c 1 and c 2 can also be easily obtained 

from tables of the x 2 - distribution due to the following relationship. 

F (c ) 
x2(n+2) l 

and each is equal to 1 - a, Further, as it is pointed out in Lehmann 

[14, p. 130] regarding a similar situation, we may actually conclude 

that the equal tails test given by 

g (t) dt 
n 

g (t) dt 
n 

a 
= 2 

is a good approximation of the above test, provided n is large or \. is 

not small compared to µ . 

(ii) Consider a sample X = (X 1, ..• , Xn) from the inverse 

Gaussian with parameter µ and \. (known). The density function of X 

is 

Clearly, T(x) = ~ X. is a sufficient statistic for µ . Then a UMP 
l 

unbiased test of the hypothesis H 0 : µ = µ 0 vs H 1 : µ f:. µ 0 exists and 

has the form 
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cp(x) ::: {1 ' 
0 ' 

if x < k 1 or x > k 2 

(2. 3) 

otherwise 

where, for a given size a of the test, the constants k 1 and k 2 are 

determined by 

g(t) dt ::: 1 - Q:' and (2. 4) 

with 

g(t) =~ 
1 

t3 /2 e 
t > 0 • 

For simplifying conditions in (2. 4), let 

y = 

Itisaone-to-onetransformation lte(O,oo) implies ye(-00,00), and 

inversely, 

Then, the first and second conditions in (2. 4) can respectively be 

reduced to 



and 

where 

c. = 
1 

F (ki-µO) 

µof;-

l - a 

dy = l - a 

i = 1, 2 

and they are different from zero, provided a > 0 . It follows that 

c 1 = -c2 and c 2 = z 1 _ a/Z, the (1 - a/2) percentile of standard 

normal distribution. Hence, the UMP unbiased size a test of 

if / y / > c 
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cj>(x) = { 
l • 

(2. 5) 

0 ' otherwise 

where c is ( 1 - a /2) percentile of standard normal distribution and 

y = 
F(i"-µo) 

µo/-;z 
(2. 6) 

Testing Hypotheses on a Parameter When the Other is Unknown 

In this section we will consider both one-sided and two-sided 
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hypotheses on a parameter of (1) when the other is unspecified and will 

obtain UMP unbiased test criteria. The theory of hypotheses testing 

given in sections 3 and 4, Chapter IV, Lehmann [14] will be applied to 

find such tests. First, we define a few concepts associated with the 

subject and show that these hold for the family of inverse Gaussian 

density functions given in (I). 

Definition l: A size a test cj> of H 0 : 0 6 @ 0 vs H 1: 0 e @1 is said to be 

similar on the boundary @B = e90 (') © l if E 0[cj>(X)] = a for all 

e e (9B • 

Definition 2: A test cj> satisfying E 0 [cj>(X)] = a for all e e @B , is 

said to have Neyman structure if E[cj>{X) /T = t] = a , a. e. [pT], with 

T as sufficient statistics for e e @B • ( p T is the family of distribu­

tions induced by T for e e @B) , 

Definition 3: A statistic T is complete (boundedly complete) for 

e e (9B if E 0 [f(T )] = O for all 0e@B implies 
T 

f(t) = 0, a.e. [p ] , 

for any real ... valued function (bounded function) f . 

It follows from Theorem 2, Lehmann [14, p. 134], that the 

bounded completeness of a sufficient statistic T ensures a similar test 

with Neyman structure which is easier to construct as compared to an 

unbiased test. Since the class of similar tests contains the class of 

unbiased tests, we obtain an UMP unbiased test by constructing an 

UMP similar test with Neyman structure whenever the power function 

of each test for a given family of distributions is continuous. 

Let be a sample from an inverse Gaussian 

population with parameters µ and },., . Then 
n 
~ X. and 
l l 

n ( I I ) ~- --
1 xi x 
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n 
are sufficient statistics for µ and A with ~ X. having the inverse 

1 l 

n ( I I ) Gaussian distribution and A~ - - -
1 xi x h . th 2 d" t "b . av1ng e X · 1s ri ut1on 

with (n-1) degrees of freedom. Because of inverse Gaussian and x 2 

distribution being complete families of distribution functions, 

dence of 
n 
~ x. 
1 l 

and ~(-1- - 1 ) implies that 
1 xi x 

indepen-

is a complete sufficient statistic for µ and A In fact, it is boundedly 

complete, 

Now we shall discuss the following hypotheses on parameters µ 

and A 

( i) Hbl): A < AO - vs Hi 1): A > AO ' 0 < µ < co 

(ii) Hb2): A = A 0 
vs Hi2):A -1- AO ' 0 < µ < co 

(iii) Hb3): µ ~ µo vs Hi3): µ > µo , 0 < A < ro 

(iv) H(4). µ -· µo vs Hi4): µ # µo , 0 < A < co 0 . 

For any other hypothesis, the treatment of the problem is 

similar to one of these four hypotheses, and hence will not be discus-

sed. 

(i) By Theorem 3 (Chapter IV) in Lehmann [14], an UMP un­

biased size a test of H(l) vs H(l) exists and the rejection region 
O l 

given by 

{ 
n l _} 

R= x=(x 1, ... ,x):~-<k(x), 
n 1 xi 
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is determined by EX. [IR (X) Ix] = a . Due to stochastic independence 

if h " . . b . 
of X and f ( ii - x) , t e reJectlon region can e written as 

where c is independent of x· and is determined by EX. [IR (X)] = a 

Since A f (;,i - ~) has a / distribution with (n - I) O degrees of 

2 
freedom, it follows that c 0 = x. 0c is the a percentile of the x (n-1) 

distribution. 

(ii) Similarly, the UMP unbiased test of H(Z) 
0 

shown to have the rejection region 

where c 1 and c2 are determined by 

with 

vs H(Z) 
l 

l - a 

g{t) = 1 
t > 0 . 

n-1 

2-2-1 nzl I 

can be 

(2. 7) 

For further simplification, follow the argument as given in (i) of the 

previous subsection. Moreover, it has also been discussed by Roy and 
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Wasan [16]. 

Tests in (i) and (ii) are identical to those obtained earlier with 

1) n Z 2 - x in place of ~ (x.-µ) /µ x. and (n-1) degrees of free-
! l l 

dom instead of n. The reason is obvious because a UMP unbiased 

test in (i) or (ii) depends only on the statistic ~(-1- - l) whose 
1 xi x 

distributions are independent of µ, and constitute an exponential 

family in X. • Hence, the problems are reduced to the corre spending 

ones for a one -parameter exponential family which have been discussed 

earlier. 

Next, we establish the following two lemmas which will be useful 

in obtaining conditional distribution functions of test statistics in (iii) 

and (iv). 

Lemma 1: Let x 1, •.. , Xn be i. i. d. random variables distributed as 

the inverse Gaussian with parameters µ and X. with µ = 1. Consider 

the functions U and V of X's given by 

n 
U = ~ X. 

1 l 
and 

n n 1 
v = ~ x. + ~ -x 

1 1 1 i 
(2. 8) 

Then, the conditional density function of U for a given value of V 1s 

given by 

n-3 

n l ZJ-2 (u-n) 
u(v - Zn) 

Ju3 (v - Zn) 

- l < u-n < 1 
/u(v - Zn) 

= 0 :i otherwise (2. 9) 
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Proof: Since U and 

V _ "E, 1 n 
n [ J 1 - l xi - "£ xi 

2 
are independently distributed, and V 1 = V - [U + ~ ] , the joint density 

of U and V is 

Next, 

n-1 n-3 

= jn2 A l 
2'1T 372 

u 

-A(u-n? /2u A-z- [ .· ( + n 2 )]. -z-
e n-1 v - u u 

/nz1'2-y-

= 

e. }[v. (u+ n:)J 

n A n/2 enA 

Fl n~l I 2n/2 

1 
3/2 u 

n-3 

[v. (u+ n:)J 2 e ->. v/2 
2 

u > 0 and v > u + ~ 
u 

n (X.-1) 2 

V = "£ 1 + Zn , 
1 xi 

n 
and A "E, (X. -1 )2 /X. has a X 2 distribution with n degrees of freedom. 

1 l 1 

So the marginal distribution of V is given by 

n-2 
(v _ Zn)_2_ e -A(v - 2n) /2 , v > 2n. 

Then 



n 

1 [1 -n 
= ~G, nil) ju3 (v - 2n) 

0 < 

This establishes the lemma. 

Lemma 2: In Lemma 1, let 

n-3 

1 
E- (u+ ~)J_2_ 

u 3 /2 n-2 
[v - 2n]_2_ 

2 r23 (u - n) 
u(v - 2n) 

2 
(u - n) < l . u(v - 2n) 
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W = p U .. n /[1-
Ju(V - Zn) 

1 

(U - n)z 12 
U(V - 2n)j . 

(2.10) 

Then, the conditional distribution of W, given V = v, is given by 

Pw I V=v(w) = 
1 1 

1 -
w/(v - 2n)/n-l 

2 
4n + (v + Zn) w 1 n-

-a, < w < co • 

1 

(2. 11) 

Proof: w is a monotone non-decreasing function in u and inversely, 

we obtain 



and 

where 

and 

du 
dw 

1 
u+n = 

3 

1 2 Jv - 2n u 

u+n 

3 
2 2]2 (u - n) 

u(v - 2n) 

2 
2(1+:.1) 

2 
w 

4n+(v+2n) -- +w 
n-1 

2 
v - 2n [ w J n-l 4n+(v+2n) n-l 

1 
2n 1 -

w j( v - 2 n) In - 1 

2 
4 n + ( v + 2 n) w 1. 

n-

2 
(u - n) 1 ~ --'----'--,.,-

u ( v - 2n) 

31 

By making these substitutions in (2. 9), the result in (2. 11) follows. 

Hence, the proof is complete. 

Observe that W if expressed in X's, has the simple form 

where, 
n 

X = .!_ ~ X. 
n 1 1 

W = Jn(n-1) 
X - 1 (2. 12) 
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Now we shall discuss the problem of statistical hypo theses con­

sidered in (iii) and (iv). Since f(x;µ,A) = µ- 1£(x/µ;l,A/µ) in (1), 

without loss of generality, assume µ 0 = l in H63 ) and H64 ). Next, 

we can write ( 1) in the form 

with 

Furthermore, 

with 

A 
- 2' 

and 

n 
T 1(x) = ~ x. , 

l 1 

n 1 
T (x) = ~-

2 l x. 
1 

T(x) 
n n 

= ~ x. + ~ _l_ 
l 1 1 xi 

Then the hypotheses in (iii) and (iv) are equivalent to the following 

ones. 

(1··1·1·) H 01 ( 3 )._ 8 < 0 H' (3 ) 8 > 0 vs l : , 

(iii) By Theorem 3 (Chapter IV), Lehmann [14], an UMP un­

biased test of Ho (3 ): 8 < 0 VS HJ. (3 ): 8 > 0 exists and is of the form 
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if tl > k(t) 

= 

< 

where, for a given size a of the test, k(t) and 't'(t) are determined by 

E 0 =0 [cj>(T I1 T) IT= t] = a for all t . 

By Lemma 1 and 2, it follows that the test is equivalently given by the 

rejection region 

R = 

which can be explicitly obtained by the condition 

a = 

where 

p(w It) = 
l 

~ (1 n-1) vu-J. '3 2' -2-

J"' p(w It) dw 

c(t) 

l -
w ~t - Zn)/n-1 

2 
w 

4n+(t+2n) - 1 n-

-oo < w < <Xl • 

(2. 13) 

(2. 14) 

1 

(2.15) 

The condition (2. 14) can be expressed in terms of student's t distribu-

tion 
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~ (1 n-1) vu-,. f3 2 '-2-

After the change of variable 

2 
u = 4n+(t+2n) wl 

n-

dy 

in the second term of (2. 15), the condition (2. 14) reduces to 
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a = [ t + 2n] I -l ( J 2 ) 
Ft,n-l(c) - t-2n Ft,n-14n+(t+2n)c . (2, 16) 

For a known a and t, one can easily find c from student's t tables by 

iteration because Ft,n-l(c) and Ft,n-l(j4n+(t+2n)c2 ) are both 

monotonically decreasing with respect to c. In fact, (2. 16) can be 

written in terms of Beta distribution for which extensive tables are 

available and, hence, iteration can be more accurately carried out. 

By further simplification in (2. 13) and (2. 16) we find that the 

UMP unbiased test of H 0 : µ :::_ 1 vs H 1 : µ>I has the rejection region 

where 
I n 

x == - ~ x. and 
n 1 1 

(2,17) 

1 n(l l) v = -- ~ ---. - -=- , and c is obtained from 
n-1 I x. 

1 X 



n 2 
E (x.+1) /x. 

n-2 
-2-
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(x.+1)2 l l 1 

n 2 a = Ft, n-l(c) - F t, n-1 
l 

x. 
l 

• (2. 18) 

E (x. -1) /x. 
l 1 1 

For the general case of testing H 0 : µ < µ 0 vs H 1 : µ > µ 0 , the 

rejection region corresponds to 

t I (x) = 

where k is determined by 

n 2 
E(x.+µ 0) /x. 
l 1 1 

n 2 
E (x. - µ 0 ) /x. 
l 1 1 

n-2 
-2-

F 

(2. 19) 

t, n-1 

Observe that the rejection region in (2. 19) is reduced to (2. 17) by 

transforming to the variables X/µ 0 (i = 1, 2, .•. , n) . 

(iv) For testing H0(4 ): a = 0 vs H1 (4 ): a # 0, the existence of 

an UMP test follows again from Theorem 3, Chapter IV, Lehmann [14] 

and is of the form 

0 , otherwise , 

where, for a given size a of the test, constants k 1 (t), k2 (t) and 

y 1 (t), Yz (t) are determined by 
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and 

By incorporating the results of Lemma l and 2 above, the test is given 

by the rejection region 

with c 1 (t) and c 2 (t) are given by conditions 

J c 1(t) /c:o 
p(w It) dw + p(w It) dw :.:: a 

-c:o c 2 (t) 

and 

/
c 1 (t) /c:o 

q(wlt)dw+ q(wlt)dw -

-co c 2 (t) 

where p(w It) is given in (2, 15) and 

1 
q(wjt) = ------

C-: (1 n-1) vn-J.132,-2-

l + 
w J( t - 2 n) / n - l 

2 
w 

4n+(t+2n) n-l 

q(wlt)dw 

l 

-co < w < co • 

(2.22) 

(2. 23) 

(2. 24) 
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The simplification of the second condition, as in (2. 23), can be 

realized due to transformation of Lemma 2 which in the present nota-

tions leads to the relation 

Recognizing that 

! co 

q(w/t)dw = 1 ' 
-co 

it follows from (2. 22) and (2. 23) that c 1 (t) and c 2 (t) do not depend 

on t, and c 1 = -c 2 • Moreover, these are different from zero pro-

vided QI > 0 and c 2 is the ( 1 - QI /2) percentile of student's t 

distribution with (n-1) degrees of freedom. 

Thus, it follows from (2. 21) that the UMP unbiased size a test 

Of H (04 )._11 -- 1 vs H(l4 )._11 -1. 1 h 't . t' ' . b , , -,. as i s reJeC ion region given y 

where 
1 n 

x = - ~ x. 
n 1 1 

v = 1 ~(__!_ - ~) 
n-1 1 x. 

i x 
and c = t 1 _ a I 2 , the 

(2. 2 5) 

{l - QI /2) percentile of student's t distribution with (n-1) degrees of 

freedom. 

As mentioned in the case of one -sided hypothesis, similar argu-

ment leads to the existence of UMP unbiased size QI test of H 0 : µ = µ 0 

vs H 1:µ t µ 0 and its rejection region is given by 

/t'(x)/ > c (2.26) 
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where 

t' (x) (2. 2 7) 

and c = t 1 _ a 12 , the ( 1 - a /2) percentile of student I s t distribution 

with (n-1) degrees of freedom. 

As discussed in Chapter III, for statistics t' = ljn(X- µ)/µ/xv 

2 l n - 2 
t = T;; (X-µ)/s, where s = --1 Z:: (X. - X) , t 1 -t converges Vu n- l l 

and 

to O in probability. Next, it can easily be shown that conditionally or 

otherwise, t' has asymptotically the standard normal distribution. 

Since the asymptotic distribution of the student's t is also standard 

normal, it follows that, for large sample, the test statistic t'(X) 

corresponding to (2.19) and (2.27) can be replaced by t= Jn(X-µ 0)/s 

distributed as student's t with (n-1) degrees of freedom. 



CHAPTER V 

INT ERV AL ESTIMATION 

We will examine the problem of confidence intervals for the para­

meters and the reliability function associated with the inverse Gaussian 

distribution. However, the discussion on confidence intervals for :>,. 

will not be included here because these are easily obtained from the 

X 2 distributions. Instead of confidence bounds on the reliability 

function, we will briefly discuss the tolerance limits. 

Confidence Bounds on Parameter µ 

Since there is a direct relationship between confidence sets and 

families of tests of hypotheses, the results of the last chapter can be 

used to derive the confidence intervals on µ . In order to have this 

direct relationship between the two, we first formulate the concept. 

Definition l: A family of subsets { S(X)} of the parameter space (9 

is said to be a family of confidence sets at the confidence level ( l - a) 

if 

Next, we define an optimal criterion for the choice of a family of con­

fidence sets such that there is a small probability of covering false 

values of the parameter. 

39 
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Definition 2: A family of confidence sets at the confidence level ( l - a) 

is said to be uniformly most accurate (UMA) if 

P 9,{ 9 e S(X)} ::: minimum for all 9, 9' e &i • 

By Theorem 1, section 5. 8, Ferguson [8], a UMP test leads to a 

UMA family of confidence sets. Due to the non-existence of UMP 

tests in many situations, we cannot obtain confidence sets with the UMA 

property in a large number of cases. This suggests restricting atten­

tion to confidence sets which are unbiased. 

Definition 3: A family { S(X)} of confidence sets at the confidence 

level ( l - a) is said to be unbiased if 

for all 9, 9 1 E &) 

By Theorem 2, section 5. 8, Ferguson [8], a UMP unbiased test leads 

to a UMA unbiased family of confidence sets, For greater details, 

see sections 4 and 5 in Chapter V, Lehmann [ 14]. 

With these considerations, we now obtain UMA or UMA unbiased 

confidence bounds at the confidence level ( l - a) for µ in the following 

cases: 

(i) Two-sided bounds when >._ is known. 

{ii) Two-sided bounds when \. is unknown. 

(iii) Lower bound when \. is known. 

{iv) Lower bound when \. is unknown. 

The cases for the upper bound can be dealt with in a manner analogous 

to the treatment in (iii) and (iv), Exact results are given for (i) and 

(ii), and approximate results are given for (iii) and (iv). 
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(i) If X = (X 1 , ... , Xn) is a sample from the inverse Gaussian 

population with parameters µ and X. (known), the UMP unbiased size 

a test of H 0 : µ = µ 0 vs H 1 : µ f. µ 0 has the acceptance region given by 

< 2 1-a/2' ( 1. l) 

where z 
I-a /2 is the (l - a /2) percentile of the standard normal, 

[See (2. 5) and (2. 6) in Chapter IV], Then the confidence set S(x) 

consists of all µ' s satisfying ( I. l) with µ = µ 0 . Accordingly, this 

set is given by the interval 

Since we are co.ncerned with a population of positive real values, 

it is appropriate to take max(i -Jx/nX. zl-a/2 ,o) for the lower 

bound. Hence, the UMA unbiased confidence interval for µ at the 

confidence level (I - a) is given by 

where z 
1-a /2 

is the (l-a/2) percentile of standard normal distri-

bution. 

(ii) For a sample X = (X 1,.,., Xn) from an inverse Gaussian 

population with unknown parameter 'A. , the UMP unbiased size a test 

of H 0 : µ = µ 0 vs H 1 : µ I µ 0 has the acceptance region given by 
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< tl-a/2' ( 1. 3) 

where v= _1 ;(_l _ ~) 
n-1 1 x. 

l x 
and t 

1-a /2 is the ( 1 - a /2) percentile 

of the student's t distribution with (n-1) degrees of freedom. [See 

(2. 26) and (2. 27) in Chapter IV]. Similar to the case in (i), it can be 

easily concluded that the UMA unbiased confidence interval for µ at 

the confidence level ( I - a) is given by 

( 1. 4) 

where tl-a/2 is the (1- a/2) percentile of the student's t distribu­

tion with (n-1) degrees of freedom. 

(iii) By (1. 2) and (1. 3) in Chapter IV, the acceptance region of 

the UMP size a test of H 0 :µ ~µ 0 vs H 1 :µ > µ 0 is 

( 1. 5) 

where c(µ 0) is determined by 

( I. 6) 

with cp{a) denoting the probability that the standard normal variate 

exceeds a . It follows that the confidence set S(X) consists of all 

µ's satisfying the inequality in (I. 5) with µ = µ 0 ; or, we may write 
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( 1. 7) 

But the determination of c(µ) depends on the knowledge of both µ a:nd 

a as can be seen from (1. 6). Thus, we fail to find a lower-bound for 

µ However c(µ) can be approximated by 

. 
a cp( c) , 

provided n and X. are not small. Then, from (I. 7) an approximate 

lower confidence bound for µ is given by 

( 1. 8) 

where z 
1- a 

is the ( 1 - a) percentile of standard normal. 

Next, we give another approximate but slightly more conservative 

lower confidence bound for µ when the sample size is large. Let 

x 1, ••. , Xn , n large, be a sample from an inverse Gaussian popula­

tion, with parameters µ and X. , where A.. is assumed to be known. 

Then X has asymptotically the normal distribution with mean µ and 

3[ ]-1 variance µ nX. • By the convergence theorem, 6 a. 2 (i), Rao [15], 

[ -x]-1/2 it follows that has asymptotically a normal distribution with 

-1/2 1 mean µ and variance [4nX.t , It implies that 

J4n' l[i-x]-1/2 _ [u]-1/2] I\. ~ r has the standard normal distribution 

asymptotically. By this fact, a lower confidence bound at level (1 ~ a) 

can be obtained as 

( l. 9) 
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where Z is the 
l-QI ( I - QI) percentile of the standard normal distri-

bution. 

(iv) To obtain a lower confidence bound for µ , consider the 

acceptance region 

(1. 10) 

obtained for the UMP unbiased size QI test of H 0 : µ .:::_ µ 0 vs H 1 : µ > µ 0 

in (2. 19) and (2. 20) of Chapter IV, where, 

n 2 
~ (x. + µo) /x. 
I 1 1 

n 2 
~ (x. - µ.o) /x. 
I 1 1 

n-2 
2 

F 
t, n-1 

2 n 
4n + c I-Lo~ 

I 

Here Ft n-l (a) denotes the probability that the student's t, with 
' 

{n-1) degrees of freedom, variate exceeds a. By a similar argument 

as, for example in (iii), we do not obtain an exact confidence bound 

from (1. 10). However, an approximate lower confidence bound for µ. 

at level ( l - a) is obtained as 

(l. 12) 

provided n is not small. 

As a result of the last paragraph in Chapter IV, another approxi-

mate lower confidence bound for µ in the case of large sample can be 

obtained by 
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µ ~ x-t _s_ 
1-a F (1. 13) 

In ( 1. 12) and ( 1. 13 ) , t 
1-a 

is the ( 1 - a) percentile of the student's 

t distribution with (n-1) degrees of freedom. 

Tolerance Limits 

With the results in the previous section, one may attempt to 

obtain confidence sets for the reliability function R(x; 9) , or to find 

the tolerance limits, e.g., find L(x) such that P 9 [R(L(x);9) > p] = '{ 

for some specified probabilities p and '{ , on the basis of confidence 

bounds given for µ or A • See the following lemma for the definition 

of R(x; 9) . An exact solution of such a problem depends on at least 

two conditions. First, (i) there exists a function g(9) of 9 such that 

R(x; 9) is a monotone function in g(9) for all x, and secondly, 

(ii) exact confidence bounds are available for g(9). Since R(x; 9) 

does not have a simple closed form, the tolerance bounds are difficult 

to express in terms of given parameters µ and X. . For example, it 

can best be obtained by the quantity µ + ~ [z! + zpjz~ + 4X./µ J for an 

upper tolerance bound for a proportion p of the inverse Gaussian popu-

lation with given parameters µ and X. , where Z is the p percentile 
p 

of the standard normal distribution and this bound is not the greatest 

lower upper bound, This suggests that the condition (i) is hard to be 

met for a general treatment of the problem for the inverse Gaussian 

distribution. Consequently, it is not feasible to have an exact solution 

of the problem unless it is restricted to a rather simple case. Hence-

forth, our discussion will be limited to the case of one-sided tolerance 
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limits. These limits will have optimal properties analogous to the 

UMA property of a confidence bound given in the previous section. 

Refer to Faulkenberry [6] for a general discussion on UMA tolerance 

limits. 

First we prove the following lemma. 

Lemma: For any given x > 0, let R(x; 8) = E[I( )(X)], where X is x, CX) 

the inverse Gaussian random variable with a density function f(x; 8) 

and 8 = {µ, :\) . Then (a) R(x; 8) is a monotone non-decreasing 

function in µ for a fixed A and (b) R(x; 8) is a monotone non-

increasing function in A for a fixed µ . 

Proof: R(x; 8) is an analytic function in 8 = {µ, \.) and differentiation 

can be performed under the integral sign. 

(a) Differentiating R(x; 8) with respect to µ, we have 

3 

A.2 fro 2 2 
aR(x; 8) .!...:..I:!:.. -\.(t - µ) /2µ t dt = e aµ rz; µ3 [t3 x 

= ; vro t 
f(t, 8) 

dt-j R(x;0) R(x; 8) 
µ x 

\. [E8[x /x > x] - E[xJJ R(x; 8) . - 3 
µ 

Clearly, the right side is non-negative for all x > 0 . Thus, the 

monotonicity of R(x; 8) in µ follows. 

{b) Once again, differentiating R(x; 8) with respect to :\. , we get 



oR(x;9) = 
ax. 

2 
_L 
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l 
= 2A 

l a) 

1 2 
-- (1 -y ) 

F F(x-µ)lµJx 

1---~-

j4~ + y2 
e 2 dy 

by the transformation y = {i: (t - µ) /µ Jt . Also see Theorem l , 

Chapter III. Letting 

and dy ' 

oR(x; 9) 
ax. = 2~ [1 - J~n .{_m y 2 ·· g(y; )-/µi/F(u) dy J F(u) 

= 2~ [1 - E[U2 I U > u]J F(u) , 

~ 

-ijhere U = ~ (X - µ) /µ Jx is the transformed random variable with 

the density function 

g(u, X./µ) = 
1 

F 
-a:i < u < co • 

Since E[U 2 ] = 1 , we have 



48 

Thus, R(x; 8) is a monotone non~increasing function in A, thus com-

pleting the proof of (a) and (b). 

As a result of this lemma, one -sided confidence bounds at a 

given confidence level can be easily obtained for R(x; 8) when 

(i) 8 = µ, A is known and (ii) 8 = A, µ is known on the basis of one-

sided confidence bounds on µ given in the last section and those of A, 

respectively. Such confidence bounds will be exact in the case of 

R(x; A) and will be approximate in the case of R(x; µ). For one...:'sided 

tolerance limits, we first outline the procedure and then give results 

for cases (i) and (ii) . 

Suppose 9* (X) is a lower confidence bound for 8 at confidence 

level 'I , i.e. , P[8*(x) < 8] =". Consider * L(x) 3 R(L(x); 8 (x)) = p • 

If R(x; 8) is a monotone non..,decreasing function in 8, we can con-

~:, 
elude that R(L(x); 8) > p < => 8 > 8 (x), so, 

P [R(L(X) ; 8) > p] = 'I . (2. l) 

Then, a lower tolerance limit L(x) is obtained by solving the equation 

. ~'< 
R (L(x), 8 (x)) = p (2. 2) 

for L(x). However, such a limit would be approximate unless we get 

an exact solution from (2. 2). 

Now we consider cases (i) and (ii). 

(i) Suppose 8= µ and A is assumed to be known. Then, from (l. 8), 

we have approximately 



and so, it follows from (2. 2) and the above lemma that 

p = cj> ~ ( \(x) - 1) J L(x) µ. (x) 

where 

_ e2">,../µ,:, (x) cj> j A ( ~(x) + 1~ 
L(x) ,,, 

µ. (x) 

t2 
--y 

e dt . 
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(2. 3) 

(2. 4) 

(2. 5) 

From (2. 4), we cannot express L(x) explicitly as a function of other 

quantities. But for A large, the second term on the right side of (2. 4) 

is small, since ~ = e µ. (x) cj> 2 A/µ>,, (x) is small and the second 2A/ * ( ·- ) 

term is not greater than ~ . It can be concluded that the solution of 

(2. 4) for L(x) is bounded by 

2 
* * µ (x) 

µ. (x) + 2A 

Here, Z and 
p 

[ z 2 + z z 2 +4\./1/:'(x) J < L(x) 
p p p r -

[ 2 2 * J zp +~ + zp +~ zp +~ + 4A/µ (x) . (2. 6) 

denote the ( 1 - p) and (1-p-~) percentiles 

of standard normal distribution. 

(ii) Suppose 0 "'\. and µ. is assumed to be known. A lower confidence 

1 
bound for ~ at confidence level y is easily obtained as 
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A (x) = ~ µ x (n) , [ * J-1 n (xi-µ)2/2 2 

1 xi Y 
(2. 7) 

where x2 (n) is the y percentile of the x2 distribution with n degrees 
y 

of freedom, From the lemma, R(x; 8) is a monotone non-decreasing 

f t . · l d d (2 2) h unc ion 1n ">: , an so, · ue to . , we ave L(x) as a solution of 

the equation 

p = cp( A*(x) ( L(x) _ i)) _ e2A,:,(x)/µ cp( A,:,(x) ( L(x) + i)) (Z, S) 
L(x) µ L(x) µ ' 

where cp(a) as in (2. 5). By a similar argument as above in (i), 

L(x) is bounded by 

+ µ µ ,•, 
2A' (x) 

[ z 2 +z z 2 +4A'\x)/µJ< L(x) p p. p -

< µ+ ~ [z~+.6.'+zp+.6.' 
2\ {x) 

2 ,~ J Zp+.6.' + 4}. (x)/µ (2. 9) 

Though we are unable to express L{x) in (i) and (ii) exactly in 

terms of known quantities, these exact solutions can directly be 

obtained from {2. 4) and (2. 8) by iteration using the standard normal 

table. 



CHAPTER VI 

MINIMUM VARIANCE UNBIASED ESTIMATION 

OF RELIABILITY 

Our aim is to obtain the minimum variance unbiased estimate 

(MVUE) of the reliability function R(x; 8) = E[I( )(X)] when X is an x, CXJ 

. inverse Gaussian random variable. Here, IA ( ·) denotes the indicator 

function of the set A and 8 is the set of unknown parameters associated 

with a distribution function of a random variable. The method of esti-

mation is that given by Kolmogorov [ 13] and, again, by Basu [2]. It is 

based on finding the conditional distribution of a sample observation 

given the sufficient statistic. Then, making use of the Lehmann-Scheffe 

and Rao-Blackwell theorems, the unique MVUE of the reliability 

function R(x; 8) is obtained. 

Recently, Sathe and Yarde [17] and Eaton and Morris [5] have 

derived MVUE' s of similar parametric functions by con side ring 

ancillary statistics independent of complete sufficient statistics. 

Though their approach is elegant, it falls short as a technique, since 

it does not provide any method of constructing ancillary statistics 

whose distributions are utilized for acquiring such estimates. 

Let X = (X 1, x2 , ... , Xn) be a sample from an inverse Gaussian 

population with parameter 8 = (µ, A) . is an unbiased 

estimate of R(x; 8). If T(X) is a complete sufficient statistic, the 
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MVUE of R(x; 9) is given by E [I [x, co /X 1) IT (X)], and it will be 
/\ 

denoted by R(x; 9). 

We will consider the problem of estimation for all three cases. 

They are, namely: (1) µ unknown and A known, (2) µ known and A 
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unknown, and (3) both µ and A unknown. Our results will be given in 

the forms which can be evaluated by using the standard normal table 

for case (1), and by use of the student's t table for cases (2) and (3). 

These forms will be obtained by following the technique given in Folks, 

Pierce and Stewart [9]. 

MVUE of R(x; 9) When 9 = µ 

The sample mean 
n 

X = ~ X. /n 
1 l 

is a complete sufficient statistic 

and its distribution is inverse Gaussian with parameters µ and nA, 

where A is assumed to be known. To derive the MVUE of R(x; µ) 

using the above method, we first find the conditional density function 

of x 1 , given X=x. 

The joint density function of random variables X 1 and 
n 

Y = ~ X./(n-1) is 
2 l 

f(x 1, y) = 3 
-2 

2,r ( x l y) 

[ A {(xl-µ/ + (n-l)(y-µ)2}] 
exp - --2 x -

2µ 1 y 

With the transformation Y = (n X - x 1) I (n-1), we obtain the density 

function of x 1 and X as 



n(n-l)X. 
3 

2,r[xl(nx-xl)] 2 

0 < x 1 < nx 

We already know that the density function of X is 

g( x) - 2] nX.(x-µ) 
2- ' 2µ x 

x > 0 
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so the conditional density function of x 1 , given X = x , is given by 

3 
-2 (n -1) x nX.(x 1 - x) 

[ 
- 2 ] 

Hence, we derive the MVUE of R(x; µ) as 

x>O 

with h(x 1 / x) in ( l. l) . 

0 < xl < nx 

( I. 1) 

( 1. 2) 

Next, we will express the right side of (l. 2) in the form in which 

the standard normal table can be used to evaluate R(x; µ) for all 

x > 0. 

Let w = F (xl -x) /jxlx(nx -xl) We have a one-to-one 

transformation, and w varies from -oo to oo as x 1 varies from O to 
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nx. Then 

dx1 = [~J-1 = 
dw dx 1 Jnx. x [(n-2) xl + nx] 

(L 3) 

Inversely, it can be found that 

1 

-r - 2 ~ I I [ - 2J2] xl(2nx.+nxw )± vnx w 4(n.,.1)x.+nxw. 

2[nX.+ x w 2 ] 
x = 1 

Since we(-m,O) ~>x1 e(O,x) and we(O,m) ~>x1 e(x,nx), we 

can write 

x = 1 

Also, 

xl 
(n-2) - + n 

x 

l 
-1. - 2 f::: [ - 2]2] x L( 2 n "A. + n x w ) + \] n x w 4 ( n - 1 ) "A. + n x w 

= 4n(n-l)X. +~2 ~ w2 [l + (n-2) w F l 
2 (n"A.+xw) J4n(n-l)X.+n2 xw2 J 

After substitution in (1.2) from (1.1), (1.3) and (1.4), 

( l. 4) 

m 2(n-J)[nHXw2 ] exp[-'{] 
i(x; µ) = Jff ------------------- dw, 

( 2- 2) EJ 2- 2 w' 4n(n-l)X.+n xw +(n-2)wvx, 4n(n-l)X.+n xw 

where 
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w' :::: 
~ (x-x) 

Jxx(nx-x) 
( I. 5) 

After further simplification, we have 

I\ 
R(x; µ) = ] 

w2 
(n-2)wjx --y-

-;::==============- . e d w ( L 6) 
J 2- 2 

4n(n-l)\.+n xw. 

with w' in (1.5). The integral in (1.6) canbeevaluatedfromthe 

standard normal table for a given value for w' . Separating the inte-

grand, we have 

2 2 

Joo w fro w 
/\ l -y n-2 w -T dw R(x; µ) = e dw e rz; nrz; 4(n- l )\. + w2 wl w' 

nx 

To eavluate the second term on the right side, let 

u - 4(n- l )\. + w2 

nx 

Then, by a similar argument as given on page 11, Chapter III for 

evaluating a similar integral, 

n-2 
2nd term= 

n 

where 

eZ(n-1)~/n;z <p( -co < wt < co • 
nx 
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<I>( a) 

So, 

/\ 
R(x; µ) = 

n-2 
<j>(w') - - n 

2(n-l)X./nx 
e 

4(n-l)X. 
-m < w' < m. 

nx 

Hence, the MVUE of R(x; µ) is 

where 

0 ' x > nx 

/\ 
R(x; µ) = 1 , x < 0 

w' = 

<j>(w') _ n~Z eZ(n-l)X./nx <j>(w 11 ) , otherwise 

p:: (x-x) 

Jxx (nx -x). 
and w11 = 

~ (nx + (n-2) x) 

Jnx x(nx -x) 

MVUE of R(x; 0) When 0 = X. 

( 1. 7) 

The statistic 
n 2 

T(X) = E (X. - µ) /X. is completely S\lfficient and 
1 l ~ 

X.T(X)/µ 2 has the 'X. 2 distribution with n degrees of freedom. First, 

we find the conditional density function of x 1 , given T(X) = t . 

The joint density function of random variables xl and 

Y(X) 
n 2 

= E (X. - µ) /X. is z l l 



f(x; y) = 

Since 

n 

A.2 

Y(X) = T (X) -

n-3 
-2-

2 
(X 1 - µ) 

x1 

e 
-~t+ 2µ 

the joint density function of x 1 and T(X) is 

f(x 1, t) = 

2 
(xl - µ) 

0 < ----

The density function of the random variable T(X) is 

g(t) = 
n 

2 2 n~· 
µ 12 

At 
- 2µ. 2 

e t > 0 • 

< t • 

So, the conditional density function of X 1 given T(X} = t is 

n-3 

1 2]-2 _(xl - µ) 

tx 1 
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< t • 

(2. l) 
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As shown earlier, we can now obtain the MVUE of R(x; X.) and it is 

given by 

/\ 
R(x; X.) 

with h(x 1/ t) in (2. 1). 

x > ~ [2µ +t - J 4µ t +t 2 J 
(2. 2) 

/\ 
Next, we simplify (2. 2) so that R(x; 1-1) can be evaluated using 

a student's t table. Let 

w = /f-
It is a one-to-one transformation and - 1 < (x 1 - 1-1) / ;-;;;;_ < l implies 

w e ( - oo , oo ) • Next, 

3 2]2 (x l - 1-1) 

tx ' l 
(2. 3) 

and 

or 
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4 t (1 + w2 ) + t2 w2 
µ n-1 n-1 

(2. 4) 

since we (-m, m) < => XI e (L, µ) and we (0, m) <: ;:::> xl e (µ, U) where 

By substitution in (2, 2) from (2. I), (2. 3) and (2. 4), we have 

/\ 
R(x; :\) = 4µ 

~ 2]-~+l . !"' I+ ;;::I 

w' 14 (1+ .L)+ t .LJ + w Lµ n-1 n-1 0-
dw 

,--~~~~~~~~ 

4 t (1 + w2 ) + t2 w2 
µ n-1 n-1 

where 

w' = 
F (x-µ) 

/tx-(x-µ) 2 

(2. 6) 

The integrand can further be simplified and then 

w 

/\ 
R(x; :\) 

2 2 
ii:!-. (1 + ~) + ~ t n-1 n-1 

dw 

2 2 
+w ~ Jn 

n_-1 (2.7) 



60 

where w' is given by (2. 6). The right side in (2. 7) can be expressed 

in terms of student's t distribution, 

l du 

With the change of variable 

u= p (l+~)+~ n-1 n-1 

the second term on the right side in (2. 7) can be simplified to 

Accordingly, 

-co < w' < co 

with w' in (2. 6). Hence, the MVUE of R(x; A) is 

o x > :l- [2µ +t) + /4µt +t2J 
A 
R(x; µ) = 1 x < 1 [(2µ + t) - j4µt + t 2 J 

~ -1 

F (w')-[t+ 4µ] 2 F (w"), otherwise 
t,n-1 t t,n-1 

(2. 8) 



where 

w' = 
F (x-µ) 

Jtx-(x-µ) 2 

w" = 
p(x+µ) 

jtx -(x - µ)2 

n 2 
t = :E (x. - µ) I x. is obtained from the sample observations 

l 1 1 
and 

Xl' X2' • • • 'Xn • 

MVUE of R(x; 0) When 0 = (µ, X.) 

The statistic T(X) = ( X, V), where 

n 
x = .!_ :E x. 

n 1 1 
and n ( 1 1) 

v = ~ xi - x 

forms a complete sufficient statistic. Tweedie [20] further showed 
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that X and V are stochastically independent; and (a) X has the inverse 

Gaussian distribution with parameters µ and nX., and (b) X. V has the 

x2 distribution with (n-1) degrees of freedom. To find the MVUE, 

we first want to find the conditional distribution of x 1 given T{X). 

Let 

l n 
y = -1 :Ex. 

n- 2 1 
and vl = ; (-1- - 1) . 

2 xi Y 

The joint density of random variables x 1 • Y and V 1 is 

n _n .. _4 -~ [(x 1-µ? + 
p X.2 v/ 2 2 xl 

--------- e µ 

- 2] X.v (n-l)(y-µ) __ l 
- 2 
y 

~ jzn 3 -3 I z 1T x1 y 



Consider the transformation 

xl = x1 

X = [(n-l)Y+X 1]/n 

v n - -

Then, inversely, 

Y = (nX - X 1) /n-1 

- 2 
n(X 1 - X) 

= V- -------

and the Jacobian of the transformation is _.E_ So the joint density n-1 ' 

function of r. v.'s x 1 , X and V is 

f(x 1,x,v) = 

n 

n(n-1) x.2 

l { 2 
X. (xl-µ) 

· exp - - 2- + 
2µ xl 

nx 

n(x 1 - x) _ 2 Jn;4 

------
xlx(nx-xl) 

- 2 
n(x 1-x) 

0<-----­
x x(nx-x) l 1 

< v • 

The density function of statistics T(X) = (X, V) is 
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g(x,v) -
1 

- 2 
nA. ( x - µ) 

- 2µ 2 x 
e 

A.V 
T 

Hence, the conditional density function of x 1 given T(X) = ( x, v) is 

Jn (n-1) 
h(x 1/T(x)) = ----

~(~ , n;2) 

n x 1 - x) 
[ 

( _ 2 ] n24 

x 1 E (L, U) (3. l) 

where 

n[2 +vx] - j - 2 2 -2 4n(n-l)vx+n v x 
L = x 

2[n+vx] 

(3. 2) 

n[2+v~] + j - . 2 2 -2 4n(n-l)vx+n v x 
u = x 

2[n+vx] 

Accordingly, the MVUE of R(x; µ A.) is 

(3. 3) 

with h(x 1/ T(x)) in (3. 1) and U in (3. 2). 

I\ 
Next, we simplify (3. 3) so that R{x; µ 1 A.) can be evaluated 

using a student's t table. Let 
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w = 

1 

F (xl -x) I I, n(xl -x) ]2 
-J-;:v===x=

1
:::;::x::::(=n::;:x:::::::-=x=

1
=) - L -_v_x_

1
_x_( n_x ___ x_

1
_)_ 

We have a one-to-one transformation and, inversely 

n2(l+w )+vxw +w 4n(n-l)vx(l+w )+n v x w [ 2 - 2] j - 2 2 2 -2 2 

2 - 2] 2 [n( 1 + w ) + v x w 

In addition, 

2 vxxl(nx-xl) / - 3 - 3 

{n x[(n-2)xl + nx] 

and we (-a:,, a:,) as x 1 e (L, U). From (3. 1) and (3. 3), after substi-

tution 

/\ ., 
R(x; µ, ) = 

4(n- l) 

·/CX)-:--~~~---~~~-:[_n~(l_+~w_
2

_)_+_v_x,=w=
2=]==================== 

( . 2 2 - 2) I - 2 2 2-2 2 
w' 4n(n-l)(l+w )+n vxw +(n-'2)wv4n(n-l)vx(l+w )+n v x w 

dw 

Equivalently, 
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I\ 
R(x;µ,A) = 1 /co [l _. (n-2) w .r ~ dw 1 ' 

( 1 n-2) j 2 2 - 2 I, ~!:..:.._ 13 2 , - 2- wt 4n(n-1)(1 +w ) +n vxw ~ +wj 2 

(3. 4) 

where, 

w' = 
Jn (x -x) 

(3. 5) 

J - - -2 vxx (nx -x) - ri(x -x) 

I\ 
R(x; µ, A) can further be expressed in terms of student's t distribution,, 

co 
1 J du 

(1 n-2) ~ 2]~ Jn -2 13 2 ' -2- c 1 + ....£__ 2 
n-2 

The first term on the right side in (3, 4) is equal to Ft, n-z(w'), and 

with the change of variable 

u = 4(n-l)(l+w2 ) + nw2 

vx 

we obtain the second term equal to 

n-3 l 

n-2 [ i + 4 ( n - 1 )J _2_ F - t,n-2 
nvx 

2]2 + nw' 
n 

where w' is given by (3, 5), Hence, the MVUE of R(x; µ, A) is 
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0 ' x > u 

I\ 
R(x;µ,X.)= 1 x < L 

~ Jn-3 
F ( w, ) _ n- 2 1 + 4 (n - 1 ) -2- F ( w 11 ) 

t,n-2 2 , - t,n-2 ' 
nvx 

otherwise, 

(3. 6) 

where 

w' = 
F (x -x) 

w" = nx + (n-2) x 

vxx (nx -x) - n(x -x) J - - - 2 

and 

L 
x 

[n(Z+vX) j - 2 2 -2 J = 4n(n-l)vx + n v x 
2(n+vx) 

[ - ; - 2 2 -2 ] u x 
= n(2+vx)+ 4n(n-l)vx+n v x . 

2(n+vx) 

Comparison of these estimates as given in (1. 7), (2. 8) and (3. 6) 

with those of their counterparts for the Gaussian distribution (see 

Folks, Pierce and Stewart [9]) shows a remarkable similarity. Not 

only are their MVUE's commonly expressed in terms of the same 

distributions, standard normal and student's t, but these estimates 

are also similar in character as to the form and the respective para-

meters involved. Of course, the obvious difference that MVUE' s 

obtained for the inverse Gaussian are expressed as the non-linear 

combination of standard normal distributions or that of student's t dis-

tributions is expected since the inverse Gaussian distribution is itself 

a non-linear weighted normal distribution (see (l. 5), Chapter III). 



CHAPTER VII 

SOME RELIABILITY ASPECTS 

Considering a physical phenomenon with some dynamic stress 

operating on a device or unit under normal use, assume that the device 

or unit will fail at a given level of stress. If the level of stress obeys 

the Gaussian law, it can be proven that the life-time T of the device is 

described by an inverse Gaussian model. This is a known result in 

terms of a first passage time random variable for the Gaussian proc­

ess. It is, therefore, appropriate to consider the inverse Gaussian 

distribution as a mathematical model re pre sen ting some life-time 

distribution and to undertake its investigation as to its failure rate and 

other aspects of reliability theory. 

In Chapter VI, we have already given MVUE 1 s of the reliability 

function. In the following section, we will show that the inverse 

Gaussian distribution has a non-monotone failure rate. In addition, a 

brief description on the mean residual life-time will be given. The 

present discussion is for the case of a single component device or unit 

and is only of preliminary nature. 

Failure Rate 

We define the failure rate of a life-time distribution F with the 

density function f(t) by 
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r ( t ) = lim P[ T E ( t, t + h) / , > t ] , t > 0 
h-o 

or equivalently, 

r(t) = f(t) 
t E (0, CXl) , ( 1) 

1 - F(t) ' 

Let f(t) be unimodal and let t be the modal point. Clearly, 
m 

r ( t) is non-decreasing for t E (0, t ] . 
m 

It is therefore sufficient to 

re strict our investigation for t E (t , oo). Assuming that r(t) is 
m 

differentiable, it is seen from (1) that 

~- f'(t) [[1-F(t)]+f2(t)J 
r(t) - f(t)[l - F(t)] f'(t) 

provided r(t) > 0, Letting p(t) = -f'(t)/f(t) , we have p(t) > 0 for 

t E (t . , oo) and have (2) written as 
m 

r'(t) = 
rTtf 

p(t) 
1 - F(t) [/ 

00 ~ dx + _iill] 
p(x) p(t) 

t 

(2) 

(3) 

Assume that p(t) is non-decreasing for t e (t , oo) • Then it follows 
m 

from (3) that 

r'(t) > 
r(t) 

p(t) l I f(t) 
[ /

(X) J 
1 - F(t) p(t) t f (x) dx + p{t) 

implying r' {t) 2:_ 0 because 

/

(X) 

f' (x)dx = - f( t) . 

t 
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Hence, r(t) is monotone non-decreasing for all t. On the other hand, 

suppose p 1 (t) ~ 0 does not hold for all tE(t ,OJ). 
m Then, assuming 

without loss of generality that p(t) is unimodal, there exists a t 0 

SUCh that p 1(t) ~ 0 for t E (tm' t 0 ] and p 1(t) < 0 for t E (t0 , OJ). 

Accordingly, it can be easily deduced from (3) that r'(t) ~ 0, t et ,t ) 
~ m n 

and r 1 (t) < 0, t e (tn• OJ) , where tm ~ tn ~ t 0 • Thus, r(t) is not 

monotone as it is increasing for t E (t , t ) 
m n 

and is decreasing for 

te (t ,OJ). Observing that 
n 

of t greater than t and 
m 

d2 
only if --2 log f(t) < 0 for 

dt 
theorem. 

t is a solution of r'(t) = 0 only for values 
n 

d 
p(t) = - dt log f(t), we have r'(t) ~ 0 if and 

t E (t , OJ) • This establishes the following 
m 

Theorem: Let F be a life-time distribution with the unimodal density 

function f(t) , the mode at t 
m 

Then F is an increasing failure rate 

(IFR) distribution if and only if log f(t) is a concave function for 

te(t ,OJ), 
m 

Next, if the mode of f(t) is at O or f(t) has infinite value to 

begin with, then as in the proof of the above theorem it can be shown 

that F is a decreasing failure rate (DFR) distribution if and only if 

log f(t) is a convex function for all t . 

It may be noted that the concavity of log f(t) does not hold if 

f(t) decreases slowly enough as t gets large. We see such behavior 

in the density function of many distributions, e.g., log-normal, inverse 

Gaussian, Pareto, Gamma and Weibull, etc., depending on their para-

metric values. 

Clearly, the inverse Gaussian is not a DFR distribution, We 

show further that it is not, in general, an IFR distribution as well. 
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Considering an inverse Gaussian life -time distribution with para-

meters µ and X. , we can write 

log f(t) 3 
= k - 2 log t 

Then 

d2 
- 2 log f(t) = 
dt 

(3t - 2X.) 

2t3 

k = constant . 

and so due to 
d2 

- 2 log f(t) > 0 
dt 

for 
2 

t = 3 X. , a value greater than the 

mode, the result follows from the above theorem. 

The failure rate is given by 

r (t) 

where <j>(a) denotes the probability that the standard normal variate 

exceeds a . It can be seen that r(t) is increasing for * t E (0, t ) and 

is decreasing for * * t e (t , m) , where t is the solution of the equation 

and 

* 

* r(t ) 

r(t ) < co 

r(t) 

is the maximum value r(t) can achieve. Observe that 

unless * But t - co only if X.-+- co , and then r(t) 

is monotone non-decreasing for all t. Since f(t) is asymptotically a 

normal density as x.- co and the normal distribution is IFR with the 

failure rate becoming infinite as t- co , the same conclusion is 

reached. 
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Bounds on Failure Rate 

The failure rate r(t) for an inverse Gaussian distribution can 

be expressed as 

1 
r(t) 

2 
3 \. {( ) µ (x - t)} 
2 - --2 x - t - tx 

(..!) e 2µ 
x 

Letting x - t = z, it can be simplified to 

l 
r(t) 

\. 

1 
3 
2 

(1 + % ) 

- --2 z 

Sl. nee e 2 fl < 1 for all z > 0 
' 

\. . z 
--/(1+-) 

dx. 

1 
r (t) 

~!co < e2t 1 
3 
2 

( 1 + ~) 

2t t 
e dz 

0 

Consequently, we can obtain a lower bound of r(t) given by 

where 

h(a) =Ia 

0 

l 

2 
u ·z 

e du. 

(5} 
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For any fixed t > 0 , 

1 

1 + ~ 
t < 1 . (7) 

So from (5), we have 

x. - --z 
2 2 

e µ. dz = 

The last term can be expressed as an infinite series, and approximating 

it by finite number of terms, we get an upper bound given by 

r(t) < X. 
2µ2 

(8) 

In fact, another lower bound follows due to the last inequality in (7) and 

it is given by 

(9) 

This bound is more conservative than the one in (6). 

From (8) and (9), it is noted that r(t) - 0 as t-+ 0 and 

x. r(t)-+ - 2- as t- a, • Hence, the failure rate for the inverse Gaussian 
2µ 

distribution first increases up to a certain point depending on para-

metric values, and then decreases monotonically to some constant 

value. There is similar behavior with the failure rate of the log-

normal distribution except there it finally decreases to O. Due to this 



73 

similarity and serious attempts made in representing life-time distri-

butions by the log-normal distribution in the past by many authors, we 

feel that the inverse Gaussian distribution is a good competitor of the 

log-normal and, in fact, it could be better as it is more natural to 

have some failure rate than no failure rate in the end. 

.. Mean Residual Life-Time 

The failure rate r(t) of a life-time distribution is closely 

related with the conditional expectation of the remaining life-time under 

the assumption that the item. did not fail up to a certain instant T. Let 

s be the random variable for the residual life-time; that is, the period 

from an instant of time T until the instant of failure under the condition 

that there was no failure prior to the instant T. Then from ( 1) it can 

be seen that the distribution of s is obtained by 

P[•<t] = 1- exp ({t+T r(x)dx). 

Consequently, the mean residual life-time 

J oo (/t+T 
µT = exp -

O T 
r(x) dx) dt . (10) 

Clearly, µT decreases (increases) monotonically for the life-time 

distribution with IFR (DFR). However, if r(t) first increases and 

* then begins to decrease monotonically at some instant t , as the case 

with the inverse Gaussian, we have µT > µ.T 
2 1 

That is, the mean residual life-time will increase from some instant 



74. 

onward. The increase in the mean residual life-time after the instant 
,:c 

t is explained by the fact that the items with a high rate of wear can 

fail and the rate of wear of the surviving items is relatively small 

resulting in a higher longevity. Based on such considerations, Watson 

and Wells [27] have examined the log-normal distribution, among 

others, for the possibility of improving what they call 11mean useful 

life of items" instead of mean residual life-time. A similar investiga-

tion of the inverse Gaussian distribution, which also has non-monotonic 

failure rate, is warranted. 

We conclude this chapter with a description showing the appro-

priateness of incorporating ideas mentioned in the preceding section. 

In the past, reliability investigators have most often, attempted to 

represent a life-time phenomenon by a probability distribution with 

IFR property. This is undoubtedly adequate in a situation which mainly 

involves the cause of the aging or the wearing out process. But failure 

of a unit may be due to various causes other than the aging process, 

such as a technological defect, improper usage; or, say, instantaneous 

injury. See Gertsbakh and Kordonskiy [10] for details on causes of 

failure. In order to deal with these unavoidable causes, an appropriate 

measure as to the model of failure and possible methods of improve-

ment should be adopted. 

Consider, for example, a manufacturing process with is0lated 

random flaws which may lead to the occurence of weak spots in an item. 

The weak spots may remain unnoticed unless items are subjected to a 

test for a certain period of time. As a result, a fraction of the product 

will fail and the fraction of the product surviving will, on the average, 

have higher longevity. Consequently, the probability that an item will 
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fail during (t, t +~), given that it did not fail for time t is less than 

the probability of its failure during (0, ~). For this reason, it is 

desirable to have a testing period for items of a product before these 

are released to the market. However, this will lead to the decrease in 

the life-time of an item because the testing period may not be short 

since a defective item may n0t show its weakness immediately. But, 

if the defective items are eliminated, the residual life-time in the 

fraction of items that do not fail should, on the average, exceed the 

average life-time of the initial product so as to compensate for the 

testing period. This is possible when a life -time model can be repre­

sented by a probability distribution that has non-monotonic failure rate. 

Hence, with the consideration of the inverse Gaussian as a model of 

failure due to reasons mentioned in the beginning of this chapter, this 

study on the inverse Gaussian distribution can lead to interesting 

applications in reliability theory. 



CHAPTER VIII 

SUMMARY 

Our study is devoted to the discussion of the inverse Gaussian 

distribution with an emphasis on the theory of its statistical inference. 

Problems of testing statistical hypotheses and interval estimation for 

its parameters µ and :>.. are investigated in detail. Further, its devel­

opment in the area of reliability is suggested and various results are 

established. 

As the inverse Gaussian density functions constitute a two­

parameter exponential family, a comprehensive account of optimum 

test procedures is developed for testing hypotheses on parameters µ 

and :>.. by exploiting the theory of testing statistical hypotheses, as 

given in Lehmann [14]. Test statistics of UMP unbiased tests of 

Ho:µ = µo VS Hl: µ -/: µo when (i) A is specified and (ii) A is 

unspecified, are shown to have standard half-normal and truncated 

student's t distributions, with their domain on the positive real line, 

respectively. We note that similar results are well known in the case 

of testing hypotheses on the mean of a normal population with two-sided 

alternatives. Exact optimal test procedures for such one -sided 

hypotheses are also derived. Next, we have discussed the problem of 

uniformly most accurate (UMA) confidence bounds on µ. Exact 

results in the case of desiring two-sided confidence bounds and 

76 
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approximate results in the case of de siring one -sided confidence bounds 

are given. A discussion on tolerance limits is appended. 

As an application, we have indicated a theoretical reasoning to 

consider inverse Gaussian as a life -time distribution. Minimum vari-

ance unbiased estimates of its reliability function, 

R(x; µ, \.) = E[I( )(X)] are obtained for all different cases; namely, x, co 

( 1) µ unknown, \. known, (2) µ known, \. unknown and (3) both µ and 

\. unknown. Interestingly, these estimates and similar such estimates 

in the case of normal distribution have certain common features and, 

consequently, it helps visualizing more on the characteristics of para-

meters µ and \. . As to other concepts of reliability, it was proved 

that its failure rate is a non-monotone function and, thereby, the mean 

residual life-time for an inverse Gaussian distribution first decreases 

and then begins to increase after an instant, depending on the para-

metric values, On this basis we have suggested an application of the 

inverse Gaussian as a model of failure. Furthermore, bounds on its 

failure rate are given and its comparison with the log-normal distribu-

tion is made. 

For more insight into the inverse Gaussian distribution theory, a 

relationship between its density function and the normal density function 

is established. As a consequence, we have been able to derive some 

related dist.ributions, This has led this author to a better understanding 

of the silent features of the family of inverse Gaussian distributions 

and of the statistical inference discussed in this thesis. 
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