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A STUDY OF THE JOB STREAM THROUGH A CLINICAL LABORATORY 

FORMULATED AS A COMPLEX QUEUEING NETWORK

CHAPTER I 

INTRODUCTION

Overview of Clinical Laboratory Development 

The modern clinical laboratory over the past ten years has 

witnessed an Information explosion due to the technological breakthroughs 

In the development of new automated test equipment and a workload which 

has been doubling every five years for the past two decades.

In 1962, Peacock [28] reported a 10-25% yearly Increase In most 

progressive laboratory test loads. He also reported that the technologi­

cal solution of automatic Instrumentation has provided the means of ab­
sorbing the rapid rate of growth over manual methods, but poses the re­

lated problem of handling large amounts of data generated by the auto­

mated test equipment.

Since that time. It has been well documented that the workload 

In the clinical laboratory has doubled approximately every five years 

during the past two decades. Kinney [22], Chairman of the 1966 Quail 

Roost Conference on Automation and Clinical Chemistry, Identified the 
future trend In automation of clinical laboratories as that of Incorpo­

rating automatic data processing and machine-readable data handling In
1



2
all phases of the analytic process, from the physician's order, to the 

receipt of the patient’s laboratory result.

Wattenburg [34] reports that the volume of clinical tests in 

the hospital laboratory is increasing at a rate of 20% yearly and while 

automated instruments have reduced the manual manipulation the techno­
logist has to perform, he now spends an increased percentage of his time 

performing a clerical function of data handling.

This multifaceted set of events has a dramatic effect on the 

clinical laboratories. The once small, well-organized, efficient and 
properly staffed laboratory has now become a large, well-equipped labora­

tory, but inefficient in handling the surging volume of patient test data. 

Due to the heavy demand of the daily workload, most laboratories have 

purchased equipment based on their projected growth rate in number of 

tests per patient day, ignoring the concomitant increase for data col­

lection, control and dissemination. The technological solution of auto­

matic instrumentation poses the related problem of handling large amounts 
of data generated by automated instruments. The current dilemma of most 

modern laboratories is that they possess archaic systems to handle ef­

ficiently the increased pool of information as well as the rate in which 

information is derived from new clinical laboratory test equipment. An­
other dilemma is the lack of planning tools to aid the operation of the 

laboratory in optimizing the total equipment utilization in order to 

minimize job throughput time.

Since the work performed by the clinical laboratories provides 

valuable information toward confirmation of a physician’s diagnosis, the 

time element in obtaining the desired information is a critical factor in
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the physician's ability to confirm the diagnosis and begin a therapeutic 
plan.

Even with highly sophisticated test equipment, Constandse [7] 

reports that 30-40% of the technologist's time is devoted to a clerical 
function of calculating test results, preparing worklists, transcribing 

of test results and generating patient reports. Paxton [27] confirms 

this percentage by stating that 3 to 3 1/2 hours per day, per techno­

logist, is expended in working with pencil and paper in his hospital 
laboratory.

The logical questions which are facing clinical laboratory 

directors, pathologists and hospital administrators of today are:

1. Can an information handling system significantly reduce the 

clerical function of the laboratory technologist, thereby 

Increasing his capacity to perform additional tests?

2. Can this system expedite accurate test Information to 

attending physicians?

There exist many automated Information systems in operation 

today In various hospitals and medical centers across the country, i.e., 
Johns Hopkins, University of Kentucky, University of Washington, Uni­

versity of Missouri, University of Wisconsin, Youngstown Hospital and 

others. A common criteria for justifying this type of system Is as 

follows:
1. Laboratory demand for services will continue to rise 20% 

annually.
2. The pool of available trained technologists is not in­

creasing.
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3. Current Clerical demand of the technologist's time is about 

30%.

4. Automated information handling techniques can provide sig­

nificant reduction in the clerical function and increase the 

work capacity of the laboratory all within a constant labor 

force.

Ammer [1], et al, have investigated the productivity of clini­

cal laboratories by relating skills and training of laboratory techno­

logists to output. From a work sampling study, they were able to obtain 

basic data from which operational characteristics could be determined by 
the size of the laboratory. The results of this scudy indicated larger 

laboratories achieve a more efficient division of work, but that organi­

zational structure and working environment have a strong influence on the 

laboratory's ability to produce. Another interesting result is that 80% 

of the laboratory technologist's time is spent on activities that cannot 

be directly related to any useful output.

Since 20% of their time is totally related to output, an in­

crease in productivity can be realized by an increase in their capacity 

to process more work during their productive time without a degradation 

of accuracy or quality of work. We are interested in determining the 
measures of effectiveness by which job streams processed by a repre­

sentative clinical laboratory model can be characterized.

Statement of the Problem

The scope of the problem is to develop a model representative 

of the functional elements whose behavior is characteristic of a large 
clinical laboratory. The model representing the large laboratory consists
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of both parallel and series service centers working in conjunction with 

each other to provide a prescribed sequence of services for each customer.

Classical queueing theory is used to develop an analytical 

formulation of the model and/or formulation of a simulation model. One 

of the problems is to measure the effect that automatic data acquisition 

will have on the job stream throughput. Another problem is to measure 

the operational characteristics of the various combinations of service 

channels found in clinical laboratories. Priorities of work are common 

constraints which can have an effect on the job stream throughput as 

well as overall operation. The behavior of the simulation models are 

observed after alteration of these constraints.

An attempt is made to derive the expected transient queueing 

time for the single server model with constant service time and relate 

this measure of effectiveness to the queueing time derived by methods of 
simulation. Another consideration is determining whether the behavior 

of a small segment of a complex system studied in isolation can contribute 

information about the total complex system.
Three dynamic simulation models representing the work flow 

through a clinical laboratory at different levels of complexity are also 

developed to identify those events or activities which may inhibit opti­

mal throughput.



CHAPTER II 

REVIEW OF PREVIOUS RESEARCH

The clinical laboratory can be envisioned as a network of inde­

pendent service channels, each performing a separate function. Customers 

entering the system may require service from one or more of the service 
channels. Each service channel may have one or more service centers. 

Customers arriving at a service center constitute the input, and the 

amount of time spent in servicing the customer is a factor in determining 

the output rate from the service center. In most cases the output from a 

service center forms the input to future servers. In other cases the 
output forms the output of the total production process. In either case 

one is concerned with determining expressions for various measures of 
effectiveness related to both the input and output process.

The single server system is the smallest component of the total 

network whose behavior can be studied in isolation. A review of previous 

research reveals that measures of effectiveness for classical single 

server Markovian queueing models have been generally determined under 

conditions of steady state. Kendall's [20] notation is used when refer­

encing Markovian type systems. Some of the measures which have been used 

to describe system behavior are expected arrival time, expected queueing 

time, expected queue length, expected service time, expected departure
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time, etc.

In determining the behavior of the queueing network under con­

sideration the output process from the single server is an important 

characteristic to analyze, since the output of one server serves as the 
input to another.

Burke [4] and Reich [31] show that for an M/M/1 queueing system 

the output process is again a Poisson process with the same parameter as 

the input process. Finch[14] measures the output of the single server 

model in terms of departure intervals. He shows that, under the appropri­

ate conditions, two successive departure intervals are independent, in 

the limit, and that the queue size left behind by a departing customer is 

independent, in the limit, of the length of the interval since the previ­

ous departure.

Disney [11] expands Burke's [4] and Finch's [14] work by showing 

that, under the appropriate conditions, the sequences of departure times 
are independent, identically distributed random variables, i.e., the 

process is a renewal process. He points out that in queueing networks, 
one cannot in general, treat the isolated server under the assumptions of 

classical queueing theory except perhaps in the case where all servers 

are Markovian and all waiting line capacities are infinite.

The behavioral problems of the M/M/1 system in series aim at 

providing some understanding in the study of a total complex queueing 

network. Jackson [18] considers a queueing system with K phases where 

the output from the (K-lst) phase forms the input to the Kth phase. He 

assumes a negative exponential service time distribution at each phase as 

well as a Poisson output and/or input at each phase. Using a differential-
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difference technique, he develops closed form steady state expressions for 

the average number of customers waiting for service, the average number 

of customers being served, and the average total number of customers in 

the system. Steady state solutions are also determined for the case when 
the queue size is finite.

The expected waiting time in the queue is another measure of 

effectiveness which has been used in describing the behavior of series 

queueing systems. Reich [31] shows that if the first queue has an expo­

nential service time and Poisson input and each following queue has an 

exponential service time, then subsequent queues have a waiting time 

distribution of the same type as that of the initial queue in equilibrium. 
Ghosal [15] obtains the same results when the service time for the first 

queue is a Gamma distribution and the second is a negative exponential 

distribution, i.e., if the service time in each of the first K-1 queues 

follows an exponential distribution, but the Kth queue is the same as 

would have been obtained if the service time in the first queue had been 
the same as that in the Kth queue. Sacks [33] shows the conditions for 

which the joint distribution of waiting times for customers waiting in 

two queues in series converges to a probability distribution.

Part of the queueing network that we are interested in consists 

of M/D/1 type systems in series. Frabhu [30] shows that the integral 

equation for the waiting time distribution, developed by Erlang [13] using 
a heuristic argument, can be transformed to a polynomial form. He also 

develops a closed form expression for the expected number of customers in 

the queue during the busy period and shows that if the traffic intensity
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is greater than one, there is a positive probability that the busy period 
will continue indefinitely, whereas if the traffic intensity is less than 

one it will terminate.

Our representative laboratory model consists of both series and 

parallel service centers which are inter-related in that a specific set 

of service centers are required to meet each customer demand. Similar 
systems which have been studied are multi-purpose production systems. In 

these systems, customers arrive from time to time, each with a routing, 

which is an ordered list of service channels and are provided a specific 

type of service. An arriving customer joins the queue of the first 

service channel on his routing, regains in the channel until his service 

is completed, then goes to the second channel on his routing and remains 

until service has been completed, so on, until all his specific routing 

assignments are completed, at which time he leaves the system. Jackson 

[17] considers job-shop like "networks of waiting lines", which are 

representative of multipurpose type production systems. He assumes that 

jobs may arrive from within the system or from outside the system and 
service center M is assigned to contain servers of identical charac­

teristics. Job arrivals from outside the system are assumed to be Poisson 

with mean Service discipline is assumed to be first come, first
serve. The service time at each service center is assumed to be negative 

exponential distribution with mean 1/Pĵ . Upon completion of service at 
center M, the job is transferred instantaneously to another center K, 

where K M and with probability P^. A closed form expression is 

derived, under steady state conditions, for determining the probability 

that jobs are at service center M. The results indicate that the
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centers behave independently since the probability of the total number in 

the system is a product of the individual probabilities. As shown also 

by Burke [4] and Reich [31], these results rest squarely on the assumption 

that if the arrival and service rates at each center are independent of 

arrivals and service rates at other centers, the system behaves as if they 

were independent elementary systems.

In the analysis of the various models reviewed, we clearly 

identify the Importance of the basic queueing assumptions in developing 

closed form expressions for measures of effectiveness under steady state 
conditions; that is, the arrival process to the queue and the service 

process are each renewal processes and the arrival process and service 
process are independent of each other. Based on these assumptions,

Disney [11] shows that for the M/G/1 queue with infinite capacity, the 

departure process is uncorrelated if and only if G = M. This lends some 

credence to his assertion that in queueing networks, one cannot view the 

isolated server as a classic queueing problem except in the case that all 

servers are of the M type and all waiting line capacities are infinite. 

This assertion was also confirmed by Jackson [19]. Disney [11] also 

explores the covariance structure of the M/G/1 queue with finite waiting 

capacity. He concludes that the results derived from the analysis of the 

departure process of these systems have implications with respect to the 

design and analysis of integrated systems. The implications he identified 

are as follows:
1. In queueing networks one cannot, in general, treat an

isolated server under the assumptions of classic queueing 

theory. Except for the special case in which Burke's
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theorem Is valid, the departure process from a server is 
not a renewal process.

2. In general, the departure from a single server is a Markov 

Renewal Process.

3. In the case N = » and G = M  one can use classical queueing 

theory to study the queueing behavior of a server whose 
arrivals are the output of the given server.

4. In systems in which storage is not possible, N = 1, the 

departure process is always a renewal process.

5. The N > 1 departure processes are not a renewal process, 

except possibly N * 2 and G = D; hence, for the finite 

capacity storage system, classic queueing results are not 

adequate.

6. For finite capacity service systems with negative exponen­

tially distributed service time, the covariance for any 

pairs of inter-departure intervals is non-zero except for 

the special case N = 2; hence, the departure streams cannot 
be considered a collection of independent observations.

One of the characteristics of the arriving, servicing and 

departing of customers in a clinical laboratory is their dependence on 

time; therefore a time dependent analysis of the complex network of queues 

representative of a clinical laboratory would have more relative value in 

attempting to relate to the actual laboratory behavioral characteristics 

than would a steady state analysis.
Clarke [6], Bailey [2] and Saaty [32] consider transient 

behavior of the M/M/S type, whose solutions are derived by using the
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standard generating function technique. The work of Saaty [32] indicates 

that it is not feasible to obtain explicit transient solutions of even 

the simple M/M/S queueing model.

Neuts [26] and Frabhu [30] consider time dependent analysis for 

two queues in series for cases of finite and infinite waiting room.

Neuts [26] shows that these systems can be studied in terms of an imbedded 

semi-Markov process. Equations for time dependent distributions are 

given. Neuts [25] discusses the transient and limiting behavior of a 

system of queues consisting of two service units in series. He studies 

this system in terms of a Markov Renewal Branching Process. His remarks 

on the computational procedures necessary for determining the queue length 

distribution and virtual waiting time distribution are worth restating. 

"The system of two units in series with a finite intermediate waiting 

room is one of the simplest queueing networks conceivable. Nevertheless, 

a complete discussion of the time-dependent behavior of such a system is 

extremely involved and few of the results obtained in our work can be 

called explicit. The theoretical results yielded properties of the 

limiting behavior of the system and one can, with a little extra effort, 

obtain moments of the asymtotic queue length distribution and the limiting 

virtual waiting time distribution. Asymptotic results of interest also 

follow from general limit theorems for functionals defined on Markov 

Renewal Processes. It is obvious that inversion of any of the compli­

cated transforms, which we obtained for the transient and limiting distri­

butions, is practically impossible."

Another technique used in the study of time dependent queueing 

systems is that of computer simulation. While the method of computer
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simulation cannot replace analytical formulation and solutions, it can 

provide characteristic information as to the behavior of a model for a 
particular set of variables when the results of the analytical solution 

becomes extremely complex and unwieldly. Our approach in analyzing the 

complex laboratory models considers a combination of analytical and 

simulation methods.



CHAPTER III 

ANALYTICAL DEVELOPMENTS

In order to understand the complexity of mathematical solutions 
used in the analysis of a large scale clinical laboratory, it is necessary 

to develop some new results. It became clear; however, that even with the 
over-simplified assumptions of this discussion this approach is not 

practical except to check certain portions of the simulation. The as­

sumptions of a Poisson distribution simplifies the computation, but in 
Chapter IV a discussion is given in which it is demonstrated that the 

actual case of input streams do not in general satisfy this condition.
Consider the M/D/1 system. This system has been studied 

extensively by Crommelin [9], Erlang [13], Khintchine [21] and Pollaczek 

[29]. It should be noted that in general, they consider only steady state 
cases. Since the behavior of the clinical laboratory is so highly time 
dependent, we are interested in obtaining transient results.

Assume that L customers are present in the queue at time t̂  

and that they are served on first come, first serve basis. We are inter­
ested in determining the expected transient queueing time in the system. 
Define
q^ ■> queueing time for the ith customer, 
t^ * arrival time for the ith customer.

“ li^ber-arrival time. 
c = constant service time.

14
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If L customers are in the system at t^ = 0, then 

... = 0 
To = Ti . Tj ... Tl_i - 0

hence = tj^+i

The queueing time for the ith customer is represented by two distinct

states:

as
f for T^<q^+c

9i+l = < (1)
 ̂ 0 for Ti>qi+c

Let = 1, represent the state when Tĵ <qĵ +c for i&L 

then

9i+l = qi+c-Ti 

and = 0 be the state when Tĵ iq̂ +c for i>L 

and define 

ii+i = “
The total state of the system after L+n arrivals can be represented by a 

sequence of states

^1^2 ••• %

where is the state after the L+nth arrival.

There are four cases for which changes of states can be identified:

Case 1 represents k successive states each of which is = 1 

for i = 1, 2 ... k.

Case 2 represents k successive states each of which is = 0 

for i = 1, 2 ... 1.
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Case 3 represents k successive states each of which is E£ = 1

for i = 1, 2 ... i and k+1 state of = 0.
Case 4 represents k successive states each of which is e^ = 0

for i = 1, 2 ... k and k+1 state of = 1.
For Case 1 the total state of the system is represented as =1,
G2 = 1, ... G}j = 1, which implies T^<q+c for i = 1, 2 ... k.

If the system contains L customers at t^, then the queueing time for Lth 

customer is

q^ = (L-l)c. (2)
Now for Case 1

qi+i = (L-l)c+c-T^ for

= Lc-T^ T^<Lc

^L+2 “ ̂‘̂”'̂l‘̂*̂ "'̂ L+1 TL+i<Lc-T^+c

= (L+1)c-VTl+i TL+l<(L+l)c-TL

^L+k " (h+k-l)c-T^-T^_^^ ... for T^+^_i<(L+k-l)c-T^-T^+i (3)

... T?'L+k-2'
The total queueing time is given by: 

L+k
Q = J  qj (4)

j=L

- ... -2Vk-2-\*-r
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To find the probability for the total system to be ix\ this sequence of 

states for Case 1 under the assumptions that the T's are independent and 

identically distributed with distribution function G(T) having density 

function g(T), it is convenient to make the following substitution.

Let = cu^ for 0<u^<L (5)

V \ + l  ' ^“2

W i  ••• V k - i ° ‘=\

conversely

’'l * “ l

T = c(u -u ) L+1 2 1

T = c(u -u ) L+2 3 2

T = c(u -u ).
L+k-1 k k-1
The probability of k successive states of type = 1 is given by

L L+1 L+k-2 L+k-1

/  ••• /  :'=("k-l-"k-2''
0 u u u1 k-2 k-1

(6)

... g[(cu )]du du ... du .1 k k-1 1

For the case of negative exponential distribution of inter-arrival time
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g(x) = I le if 0<x<“
if x<0

where 1 is a positive constant.
Therefore,

-Xcufc
8 l c ( v V l ^ ^ ® ^ ‘̂ ^ V r \ - 2 ^ ^  ••• g[cu^] = 1 e 

then
L L+1 L+k-1k

P(e =1, e “1 ... e =1) = (Xc) f  f ... f e du ... du . (7)1 2  k J J k k-1 1

L L+1 L+k-1
Define I (f) * ( f ... ff(u )du ... du . (8)k J J k k 1

(—s)Let f be defined by

X
(-s) r (—s+1)f (x) = f (t)dt where S is constant usually 6 = 0 ,  -»

(0)for s>0, and f = f
thus 

b
r (-1) (-1)j f(t) = f (b) - f (a).

Let f(u^) = 1 in (8) and integrating the Kth term of (7), we have 

L W  L+k-2
Iu(l) = j I ••• I (L+k+1) - f (u )]du , ... du ,V , J J k-1 k-i 1

“ “l "k-2

where 1 is used for the function defined by 1: x+1 and X is defined
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by X; x->x.

Hence, recursively
I (1) = (L+k-l)I (1)-I (x) (10)k k-1 k-1

2 2 
(L+k-l)I (1) - I (1) + I (|_)

k—1  ̂ kr-2 k-2 ^

(L+k-i)i (1) - (1) + I (1)k-1 2 k-2 3! k-3

k-2 / k-1 k-1 k-1
( # T

where

k-1 k
I (2-----) = li1 (k-1)! k!

Now let c = I (1), k k

and then from (10)

\  c„. (11)

where c = 1. 0
Hence from (11)

^  s s-1
c = \  (L+k-s) (-1) c (12)
k <- si k-ss=l
It can be seen by a very simple induction argument that a solution to 

(12) when c^ = 1 is unique. It will be shown that
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k-1
_ L(L+k) ig a solution and hence the solution. This solution k (k-1)!

was determined by observing the first few cases. It is more convenient 

to write (12) in the form

I  V ,  - 0. (13)
s=0

s—k—1
Then if c = L(L+k-s) then

(k-s)!

s I  ^  s s-k-1
y  (Ptk±) (-1) c = y  L_(L+k-s) (14)
Z -  si  ̂ k-s 4- s!  ̂ (k-s) !s=0 s=0

= ^  (-1) f j (L+r) where r = k-s.
r=0

In order to show that this sum is zero, 
k

let F(x) =
r=0

k-1 L k = (-1) X (1-x) .
h t  h tThen since (XD) X = t X where D is derivative operator and 

n /
(XD)k Y  i j  ^= y a, .X D for some constants a, ..Z_ h] h]

kk-1 k-r-l k-1 L+r
It follows that (XD) F(x) = (-1) f j (L+r) x (16)

, k-1 and (XI) F(x)

r=0
k

= y  (-1)
^=1 r 4

k-r-l /, \ k-1
■ (L+r) (17)
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k-1
But (XD) F(x)

k-1 k-1 L k
= (-1) (XD) X (1-x)

x=l
(18)

x=l

and all derivatives involved have time (1-x) to a positive power; hence, 

each term is zero at x = 1.

Therefore the prescribed values for c, _ furnish the solution to (12)
k-1 ®

and I (1) = c = L(L+k) k k k!

For the general function, define

L L+k-1 L+k-1
... /f(Uj^)du^du^_j ... du^.

0 u uk-1

(19)

Hence
(—1) (—1)Iĵ (f) = f (L+k-1) I^_^(l) - I^_^(f )

(-1) k-1 (-k) k (-k)
= f (L+k-l)I (1) ... (-1) f (L)I (1) + (-1) f (0) k-1 0

Since I (1) = L(L+k)
k k!

k-1

then

s-1 k-s-1 (-s) k (-k)
I (f) = y  (-1) L(L+k-s) f (L+k-s) + (-1) f (0).

(k-s)!

k —XcxLet f(X) = I (Xc) e if 0<x< “

0 if x<0

where Xc is a positive constant.

(20)
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Then

-s k-s s -A.CX
f (x) = (Xc) (-1) e and

—k k
f (0) = (-1)

using (20), (7) is seen to be

^  k-s k-s-1 -X(L+k-s)c
P(e =1, E =1 ... e =1) = 1 - ) (Xc) L(L+k-s) e . (21)

s=l '

Let j = k-s 

then
k-1

-XcL \  —Xc jP(e =1, e =1 ... e =1) = 1 - e y L(L+j) (Xce ) . (22)
'  h  i'

The second case to be considered is where the system remains in state

= 0 for k successive customers.

From (1)

q = 0  for T iq +c and i>L.i+1 i i
With L customers in the system, the queueing time is given as q^ = (L-l)c,
and

q = 0  for T_>(L-l)c+cL+1 L

q = 0  for T >cL+2 L+1

q = for T >c.
L+k L+k-1
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“XxSince g (x) = Xe if 0<x<«
0 if x<0

the distribution function is 

G(x) = f l-e~^^ if 0<x<"

0 if x<0

The probability of T > Lc or q = 0  is given as:L Lxl

[l-G(Lc)]
and probability for the remaining k-1 terms being zero or

T .2c for i = 2, 3 ... k-1 L+i
k-1is [l-G(c)] .

Hence the probability for k successive customers to be in = 0 state is 
given as

k-1P(e^=0, £^=0 ... £^=0) = [l-G(Lc)][l-G(c)] (23)

The third case to be considered is a change of state after k customers 

in £^ = 1 for i = 1, 2, ... k to £^^^ = 0 state.

The probability for the system to be in this sequence of states is given

as
k-1

P(e =0, £ =0 ... £ =0, £ =1) = [l-G(Lc)][l-G(c)] G(c). (24)1 2  k k+1

The remaining case to be considered is a change in state from

£^ =1 for i = 1, 2 ... k to £^^^= 0.

The queueing time for the k+1 customer is

q = 0  for T >q +cL+k+1 L+k" L+k
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Hence the probability is seen to be

P(e =1, e =1 ... G =1, E = 0) = (25)1 2 k k+1

L L+1 L+k-1 «
/  /  ••• /  - \>1 s(»iMVi ••• '“"i-
° “ i  V i

Since g(u) = | le 0<u<“
I u<0

then P(e^=l, e^rl ... e^=l, = 0) (26)

^ , I L L+1 L+k-1 “
= (XC) I I  ... I

0 u. u L+k1 k-1

k -Xc(L+k) L L+1 L+k-1
= (Xc) e ' ' J  j  ' "  f  " • ' *̂“l

°  “ i  V i
and from (26) it follows that

k -Xc(L+k)
P(e^=l, £^=1 ... G^=l, = 0) = (Xc) e (1)

k -Xc(L+k)
= (Xc) e . L(L+k) .

k!
Thus probabilities are established for the fourth case.

The expected value of the total queueing time for the first

case can be shown as follows

from (4) and using transformations in (5)
L+k
V" q = (L-l)c+Lc-cu + (L+l)c-cu + ... (L+k+1)c-cu j 1 2  k
j=L

= c[ (k+1) (2L+k-2) _ (u^ + Ug + ... û )̂]
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Using the probability of k successive states of type = 1 from (7) we 
have

, 1 L L+k-1 ,
E(Q) - j  . . .  j - [(k+lXHAzgi . + U; ...

k-1

Let A = (WI2L+k-2)

simplifying (27) and using results obtained in (22), we have
k-1If-4-1 If —.1

E(Q)
j=0 

L k+k-1
c X y* ... jT e ^^(u^+U2+ ... U^) du^ ... du^. (28)k+1 k ^  y. —Xcuĵ

° V l
From (28) the integral may be expressed as follows:

k , L L+k-1K r f —Xcuk

h = i  "  V l
For 6 = 0 it is well known that 

X s-1
= j" (Sri

when 
f (x) :

k -Xcx (Xc) xe for 0<x<“

0 x<0

= (Xc)^ f
J (s-1)!

)]

du ... du . (27)k 1

V  (̂ c) r ... r u e du du ... du (29)2 _  J J h k k-1 1  ̂ /
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From the commutativity of the convolution product 

= (Xc)^ /  h 1 2  (x -u ) g-Ac(x-u)ay
0 C-i):

then

f ̂ \x) = i A £ ^  e ^^*^x f u^  ̂e^" du  - f  du] .(s-1)! J J
0 0 

To integrate the functions within the brackets of (30)
X ^

Let *^^x) = J' u ê "̂  du 
0

and integrate by parts, to obtain

/  u“ r  du = /  u“
0 0

k ax , ,X e k  I k-1 au ,- a J u e du.

(30)

(31)

a a

Then
k ax ,

*k(%) = (32)

= ^ k(k-l)x^ (-1)^ \(k-l)"2 , , .2 3 k-1 *(.%).a a a a
For k = 1

ax , X 
(j) (x) = —  f  e du1 a a J

0
ax ax , 

a a a
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and define (k)^ = k(k)^ ^ where (k)^ = 1

and from (32)

*%(%) = y  (-1)  ̂ + (-1)^~^\! .
8=0 s+1 k+1a a

(33)

Let s = r and k = s-1 
then from (30)

f^~^\x) = (Ac)^e (s-1)!
Y  (_l)r[(s-l)r-(s),J xS-r^lc%Z .   E T T -
r=0 (̂ c)

(34)

s s+1
+ (-1) (s-1)! _ (1) s!

s s+1(Xc) (Xc)

Substituting (34) into (20) and let x = L+k-s

then (f) can now be written as:

+—  s-1 k-s-1 s k-s -Xc (L+k-s)
Ik (f) = ^  (-1) L(L+k-s) (-1) [(xc) (L+k-s)e

s=l (k-s) ! (35)

k-s-1 -Xc(L+k-s) k-s-1+ s(Xc) e ] + ^  ^  (-1) L(L+k-s) [
s=l r=0 (k-s) !

k-r-l
^  , (-1)’' [(s-1)^ - (s) J  (L-k-s) ].

s-r
(s-1)

To simplify (35)

let (s-1) - (s) = “(s-1) rr r r-1
(s-1) (s-1) (s-r)!r-1
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and s - r = t

hence the double sum of (35) can be written as

k-s-1 \  t tL[(L+k-s)Ac] / (-1) Xc(L+k-s) .
s=l

Therefore

(k-s)! t=0 t!

' I
8=1

s-1 k-s-1 s k-s -Xc(L+k-s)(-1) L(L+k-s) (-1) [(Xc) (L+k-s)e (36)

k-s-1 -Xc(L+k-s)+ s(Xc) e I] + ; L[L+k-s) c]
(k-1) !

k-s-1 V  t *) (-1) Xc(L+k-s)
A  t!s=l ’ t=0

The remaining terms of the multiple integral in (28) can now be integrated 

as follows 

(29) can be represented as follows:

L L+h-1
(Xc) / / u.

0 u.h-1

L+h

I  “
u.

L+k-1
f -Xcuk, ,

h + i " - J  ^ ■*“ • • • ' " V l
^k-1

(37)

du ... du .h 1

Now let 

k
J (f)
h+1

L+h L+h+1 L+k-1
= j  f   ̂ du, ... du,̂k' k h+1 (38)

^h "h+1 uk-1

L+h L+k-2r r (-1) (-1)
I J (L+k-1) - f (u, ,)] du, , ... duk-1'' k-1 h+1
u uh k-2

(—1) ^  ̂ (—1)= f (L+k-1) J (1) - J (f )
h+1 h+1
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^  . T— S-1 (-s) k-h -(k-h)J (f) = > (-1) f (L+k-1) J (1) + (-1) f (n),
h+1 h+1 ^s=l

h
where J (1) is defined to be one 

h+1

and

c =ruh
when f = 1
(-s) s

f (L+k-1) = (L+k-s) .
s !

Hence

h ^  s-1 s k-h k-hJ (1) = ) (-1) (L+k-s) J (1) + (-1) u . (39)
s=l ®* (k^h)!

In simplifying and combining terms in (39), 

let
d = k-h 

and
r = k-h-s = d-s 

and
h+r

3L = J (1) 
h+1

and

u =

then 
dTT—  d-r d-r , d d\  (-1) (L+h+r) X = (-1) u .
4- (d-r)! d!r=0

(40)
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Now, let L+h = a, and

d-r r dmultiply the left side of (40) by t t and right side by t and

-(a+r)t r „ -ut e t = e ,

summing from r = 0 to «> yields 
00I
r=0

and rearranging terms gives
CO

%  ( t V “ )  X ,  ( u )  -
r=0

From Leibnitz's formula, 
k

(41)

_ r -rt D t e
■ .5 (!) ■

r-k+j -rt e (42)

and therefore at t = 0 

k 

t
r -rt D t e k<r

k-r k-r(-1) r r! k>r .
If both sides of'(4l) are differentiated k times with respect to t and 

the results evaluated at t = 0 then 

k ,

r=0

(k-r) k-r k(-1) r r! Xj. = (a-u) . (43)

The sum for k>0 can run from 1 to k. 

Now, define
a =f kj r* for k,r>l, 
kr I r

and

Y = (-1) r! Xj.
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For the matrix A whose elements are a, let b be the element of thekr rj—1inverse A .

Then

Z "jk V  ■ »jr
jikir

(44)

where

I" 0 if r f j 
']̂ 1 if r = j

From (43)
j

Y
i k=l
j ■ X  ”jk

Since A is lower triangular with non-zero diagonal terms, the inverse exist 

and is unique.

Now assume b.■ra H-]
(45)

then
k
iv..- II;
r=l r=l

ki r-1 r-J -J
j-1 I

j r (-1) r . (46)

The expression is zero if r<k. If k = j the only non-zero term occurs when

\ |k-li k k-k -kr = k = j, and the expression I , : , ^Ik (-1) k =1.\ ; \k-ii
If k>j then

r-l'
j-1

I

=r k! H  ___ (£-111 1 [(k-illj] = ir̂ ! (k-r) ! J *■ (j-1) ! (r-j) I-* (k-j)!j r

and the sum is

k\ /k-jl
j lk-r|

' (!) I |£:i
j^r^k
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and setting r-j = i. Then as in the process for solving (22)

k-j
V
Z.
i=0

fk-j 
1 iV

k-j-1 i 
(j+1) (-1) =

 ̂ i+i (-1) X for X = 1

which reduces to

k\ k-j-1 j k-j(xD) X (1-x) for X = 1.

As before with k-j>0 every term involves a positive power and thus the 

expression vanishes at x = 1. Therefore ̂ &kr^rj ~ B is the inverse
of A.

From the definition of u^, and (45) thus
h+r r r
J (1) = X. = r (-1) = 1
h+1 r -, I P

j=l
r"-j(a-u)j. (47)

Since

f(X) = r--lex

i'

OSx<“

x<0

and
-s 8 -s -Xcxf (x) = (-1) (Ac) e

and let x = L+k-1

then from (45), (38) reduces to 
, k-h

hfl
V' s-1 k-s -Xc(L+k-1) (f) = ^  (-1) (Xc) e
s=l (k-h-s)!

(48)



33

r
/ k-h-s-1

j-:

The formulations for determining the probability of the T’s 

when the system is in each of the four cases are given by equations (22), 
(23), (24) and (26).

Let P(T^^^ be the probability of the T's in the state defined 

by ck where c = 1,2,3,4 defines the four cases and k the state after n 

arrivals. Since we assume the T ’s are independent and identically 

distributed and T^ = 0,then the probability for the system to be in any

sequence of k states can be determined from the product of the proba­

bilities representing the four types of cases. For example, to determine 

the probability for the T's for which the system is in the following 

sequence of states 

^1=0, £2=0, £^=0, £4=1, £5=1 , Eg=0, Ey=l, Eg=0, £g=0, £20=1 , 

we examine the sequence beginning at the kth state. The partitioning of 

the sequence of states into the four types of cases is shown as follows:

1. The states £g are equal to case 3 with k = 1.
2. The states £ e are equal to case 4 with k = 1.7 8
3. The states £, e e are equal to case 4 with k = 2.4 5 6
4. The states £^ e  ̂are equal to case 2 with k = 3.

The probability of the T's for which the system is in this sequence is 

given by

P(Tiq) = PClgg) P(T^2) P(Tg^) which can be determined from (49)
equations (23) and (26).

Let represent the total queueing time for a sequence of k
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states and let represent the total queueing time under the conditions 
represented by ck.

The conditional expected value of the queueing time if the system 

is in the sequence of states expressed by case 1 is derived from equations 

(28), (36) and (46) and is given by

E(Q/e =1, e =1 ... e ) = (50)1 2 k=l

- (WlI(2Ljt-2) ^  . ^-AcL Y  ICLtlx'' (,ce-AC)j]
2 j=a i

r s—1 k-s-1 s k-s -Xc(L+k-s)- C \  (-1) L(L+k-s) (-1) [(Xc) (L+k-s)e
s=l

s=l t=0

- y. Ih k y yfk-h-s-i\4 H" A (k-h-s), j-1 j

a+h-u„)^ + (-l)"-\Ac)V"h] / 1 . ,-AcL Ÿ  ^»if>(Xce-'‘=)3
j=0

To simplify the numerator in (50)

k k-h h —I Qit̂
let (f) = m̂ ĵ  + (-1) (Xc) e

represent equation (50) with m^^ denoting the constant terms. 

From (11)

1^(1) . (L+k-l)I^_^(l) - I,_,(x)
k-1

and let x = u and I (x) =h k k!
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hence

I. (u ) = (L+h)Lq+h)̂   ̂ - L(L+h+1)^ 
h! (h+1)!

= [(L+h) (h+1) - (L+h+1) ] (51)

The Ijj(x) term in (46) can be represented as

^h (™kh"h ("1)^ ̂ (Ac)^Uj^e ^^"^). (52)

(51) and (52) are used to simplify (50) as follows

... s^.l) . ( k + l ) i ^ )  [1 . (53)

j=0 h=l s=l

^  /k-h-s-lx r^-^-s-j[L+h-Uj^]j  ̂(L+h) (h+1) - (L+h+D^)J
j=l ' '

k h
k-h s-1 h-s-1 s h-s -Xc(L+h-s)- L(L+h-s) (-1) [(Xc) (L+h-s)e  ̂ ^

h=l s=l

+S(Xc)""-\-"= + YL(L+h-s)c''-" y  (-1)' XcOdfcs)'
s-1 (h-1)! ^  t-

i=0
The expected queueing time for case 2 is given

E(Q/e =0,e =0 ... e ) = .Qtl-G(Lc)]J_l_j^G(c)_]
 ̂ 2 [l-G(Lc)][l - G(c)]

= Q
(L-l)c
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The expected queueing time for case 3

00 00 00 Q

E ( Q / e ^ = 0  ... ej^=0,e^^^=l) = |  |  . . . f  f  (Lc-T^^^) (54)
Lc c c 0

••• ••• \

r'= Lc - J ug(u)du
0_______
cI g(u)du 
0

/ \ , -XcxIf g(x) = Xce

then G(x) = 1 - e

hence 
cJ udG(u) = cG(c) - J G(u)du 
0 0

. - f a -  a'^^hdx
J  

0
2

1 1+Xc ->̂ ceXc Xc
therefore

2 \ ^1 , l+XcE(Q/ti-0 ... - Lc - e (55)

For case four
If L L+k-1 «> r  5

E(Q/e^=l ... E^=1,E^^^=0) = c(Xc) J" ... I' J" (A - ^u^)e
0 u, , L+k ^=1 k—1

^\+l d"i,/ P(Ci=l'C2=l \+l"°) (56)
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/

E(Q/e^=l ... = c 1 [a\ ( D  - X  \ ( \ )
\ • h+1h+1

k-1

From the example represents the total queueing time given this 

sequence of states, hence

G(Qlo/El=0 ^2"° ^3=0 G4=l Eg=l £g=0 Ey=l Eg=0 Eg=0 £10=1) =  j  Q^gfCT)

J f(T)dT

" J V < " 2 3 >  / V < \ 2 >  + / W  + / V < " 3 2 >

ECQz,) + ECQ^,) + ECQ^i) + ECQ,;)
PCTgg) P(Tĵ ,) P(T^^) PCT^g)

All the formulas necessary to calculate E(0 /e,, e,„ ... e ) have beenK 11 12 1]
previously derived; hence, the total queueing time can be obtained as 

follows:

E(Q^)= ^ E ( Q ^ / E )
T

where £ = [c/E is a possible state of the systenij



CHAPTER IV 

SIMULATION METHODS AND TECHNIQUES

The concept of simulation involves the construction and study of 

a model of an operating system without any direct action on the system. 

Simulation attempts to describe properties or behavior of a system without 

being its exact analog. The first step in defining the behavior of any 

system is to isolate the system’s elements and formulate the logical rules 

governing their interaction. These rules may be a set of mathematical 

expressions for which the solution determines the behavior of the system. 

These types of models must be capable of being described in mathematical 

terms and the equation developed capable of solution.
There is, however, a large class of systems which cannot be 

modeled by using physical and mathematical techniques without making 

simplifying assumptions to reduce the complexity of formulation into more 

manageable terms. Some large complex systems such as complex manufactur­

ing systems, transportation networks, large computer systems and manage­

ment information systems are some examples. Digital simulation is a 

powerful tool for the evaluation of such systems. In using the digital 

computer simulation, the investigator can describe the various components 

and rules governing the interaction of these components to a computer by 
means of a computer program. Special simulation languages such as GPSS

38
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(General Purpose System Simulator), Simscript or Simula, GASP (Generalized 

Activity Simulation Program), and many others have been developed to aid 

in the translation of problem definition into computer executable form.

GPSS is a simulation language which has a rigidly defined data 

structure in terms of special purpose blocks which are used to construct 

flow charts describing the system structure and decision rules. The 

language utilizes queueing theory to measure the various attributes of 
the system modeled.

The mechanics of the flow of work through a clinical laboratory 

are not unlike those of a multi-purpose production system composed of 

special-purpose service centers. These systems have been extensively 

studied by Jackson [16], Saaty [32], Elmaghraby [12] and others.

The major difference between Jackson's [16] jobshop-like 

queueing network and the actual behavorial characteristics of the labo­
ratory lies in the assumptions that:

1. The service time is distributed as Poisson.

2. The output from each service facility form the input to the

next service facility in the routing and is distributed as

Poisson.

3. There exist a probability associated with choosing the next 

service facility.

4. Only one routing is required to determine the total customer 

service required.
5. The system is in steady state.

The input into the clinical laboratory is a function of the

time the physician sees his patient. In a teaching institution such as
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the University of Oklahoma Hospital, physician contact with the patient 

is usually during the morning and the evening hours. Table 1 reflects the 

distribution of the request for service by type of clinical test at one 

hour intervals. The tests are divided into two groups, those whose 

processing requires automated techniques and those requiring manual 

methods. Since requests for several tests may be incorporated in one 

request for service form, a breakout of the types of request for services 

and the priority of the request is shown under the request for service 

section. During the hours 0800 to 1700,the actual distribution of the 

total number of tests was tested against a Poisson distribution to 

determine the Goodness of Fit. The probabilities for a Poisson distri­

bution are given by:

P(x=k) = — ---- where k = 0 , 1, 2 ... .k!
2Let X = Efx be the estimate of the mean y and variance a , where f is 

Zf
the observed frequency and x the observed value.

2To test the Goodness of Fit, x is an appropriate test cri­

terion where ^  (Observed. - Expected^ for N-1 degrees of freedom.
N-i Expected

From Table 2, the degrees of freedom are 9, and the estimate of the mean
2X = 1.95. Since the x value for the first term is so large, the compu­

tations were terminated. The critical value for the 5% error level is 
2X = 15.5; hence, we reject the hypothesis that the unknown distribution

is equal to a Poisson.

After the morning rounds by the physician, the laboratory 
receives requests for services based on patient demand which can be 

assumed to be random and independent. The Goodness of Fit Test was
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TABLE 1

DISTRIBUTION OF TESTS ORDERED BY TIME OF DAY AT THE 
UNIVERSITY OF OKLAHOMA CLINICAL LABORATORIES 

FOR THE MONTH OF NOVEMBER 1969

-Automated Tests- 3 _ C

Time Elect. Bun Glu. CA Phos. Phos. SCOT CPK LDH Bill.
Uric
Acid

7-8a,m. 27 18 6 1 1 5 9 3 2 9 1
8-9a.m. 462 445 250 73 58 144 166 23 41 215 33
9-lOa.m. 61 53 62 15 12 9 13 1 3 21 12
lO-lla.m. 73 70 43 20 11 14 17 1 3 25 11
11-12 Noon 60 47 38 10 • 8 18 18 3 6 30 8
12-lp.m. 29 20 15 7 5 6 9 0 0 12 5
l-2p.m. 53 66 64 17 14 21 22 2 7 23 19
2-3p.m. 62 62 44 13 6 22 23 5 5 35 10
3-4p.m. 39 51 51 19 17 12 15 0 1 20 13
4-5p.m. 46 44 51 11 12 15 12 0 0 13 9
5-6p.m. 25 26 15 6 6 4 1 0 1 3 1
6-7p.m. 22 15 15 4 3 7 7 0 0 15 1
7-8p.m. 16 9 19 1 0 3 2 0 0 7 0
8-9p.m. 12 7 9 0 0 0 0 0 0 5 0
9-10p.m. 14 10 7 1 1 0 1 1 1 6 0
10-llp.m. 16 13 13 1 1 2 2 0 0 5 0
11-12 Mid. 6 3 5 0 0 0 0 0 0 1 0
12-la.m. 8 6 5 0 0 0 0 0 0 4 0
l-2a.m. 8 3 4 1 0 0 0 0 0 2 0
2-3a.m. 0 0 1 0 0 0 0 0 0 2 0
3-4a.m. 2 2 2 1 0 1 0 0 0 2 0
4-5a.m. 2 0 0 0 0 0 0 0 1 2 0
5-6a.m. 2 3 2 0 0 0 0 0 0 1 0
6-7a.m. 1 1 __1 0 0 0 0 _0 0 1 0

Total 1,046 974 722 201 155 283 317 39 71 459 123
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TABLE 1— Continued

— Manual Tests- Request for Service-
iSP Choi.

Acid 
Phos. Amy.

Total
Tests Auto Manual Both Stat Today Total

0 1 0 2 85 38 5 8 7 1 51
0 37 4 40 1,991 1,025 75 70 67 2 1,170
0 7 0 15 284 140 34 18 42 1 192
2 10 0 10 310 155 32 24 50 1 211
3 5 0 5 259 117 26 21 43 0 164
0 2 0 2 112 51 11 24 31 1 86
1 11 3 4 327 150 24 35 28 2 209
3 10 1 6 307 134 35 31 32 5 200
2 8 1 6 255 115 23 23 24 2 161
0 7 3 6 229 121 12 21 32 1 154
0 0 1 2 91 51 4 2 15 3 57
0 2 0 3 94 39 8 9 24 2 56
0 0 0 1 58 35 3 5 22 0 43
0 0 0 0 33 20 6 1 20 2 27
0 0 0 0 42 25 6 0 18 0 31
0 0 0 1 54 29 4 3 26 0 36
0 1 0 3 19 10 4 1 8 0 15
0 0 0 0 23 16 1 0 15 0 17
0 0 0 0 18 10 1 1 10 0 12
0 0 0 0 3 1 2 0 3 0 3
1 0 0 0 11 3 1 2 4 0 6
0 0 0 0 5 2 2 0 4 0 4
0 0 0 1 9 5 2 0 2 0 7

_0 0 _0 0 4 2 __1 0 3 J, 3

12 101 13 107 4,623 2,294 322 299 530 23 2,915
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TABLE 2

GOODNESS OF 
CASE

FIT TEST 
1

Interval
Coded

Interval
Observed
Frequency Probability

Expected
Frequency

(0-E)
E

8-9 0 1170 FO = e"^ = .1422 362.2 1800.0

9-10 1 192 Fl = ■^0 = .2772 706.0 374.2

10-11 2 211 ?2 = ÜP-I = 
2

.2702 688.2 330.9

11-12 3 164 P3 = JiPo =
3 ^ .1756 447.2 179.3

12-13 4 86 '■f3 ' .0856 218.0 79.9

13-14 5 209 P5 . Ï P 4 = .0333 84.8 181.9

14-15 6 200 :6 “ f s  = .0108 27.5

15-16 7 161 F7 = -^ 6 = .0030 7.64

16-17 8 154 P8 "fp? - .0003 .764

17 9 0 1 ■-J P ,0000 0
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applied to the distribution of input for 1000 to 1700 Hrs. The critical 
2X =14.1 for 6 degrees of freedom at the 5% error level. From Table 3, 

we again reject the null hypothesis that the unknown distribution is 

equal to a Poisson distribution.

A second difference in basic assumption is that the service time 

for most service centers in the clinical laboratory is essentially constant 
for those fully automated centers and more likely normally distributed for 

those centers requiring human intervention.

The third difference is that customers entering into the labo­

ratory have a prescribed route through the laboratory and usually require 

several service centers to meet the total service demands. In most modern 

laboratories the expense of multiple service centers performing the same 

function is prohibitive; hence, either the customer remains queued up to 

that service center or his only alternative is a manual method which has 

entirely different service characteristics. While it is desirable to 

develop mathematical models whose characteristics describe the behavior 

of the desired system and whose mathematical formulation renders ana­

lytical solutions, simulation does provide an alternate means of 

determining characteristic behavior for a particular system for which some 

restrictive assumptions can be relaxed.
The results of simulation give a direct qualitative impression 

of what the behavior of the system should look like under the conditions 

postulated.

The simulation model must take into consideration the varieties 
of conditions present in the system under study. The various conditions 

in the clinical laboratory can best be defined by following a customer
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TABLE 3

GOODNESS OF FIT TEST 
CASE 2

Interval
Coded
Interval

Observed
Frequency Probability

Expected
Frequency

(o-e )̂
E

10-11 0 211
-UPO = e = .0528 62.56 353.29

11-12 1 164 PI = %>o = .1552 183.91 2.15

12-13 2 86 P2 = .2281 270.29 125.65

13-14 3 209 P3 = ̂ P2 = .2235 264.84 11.75

14-15 4 200 P4 = -|P3 = .1642 194.57 1.51

15-16 5 161 P5 = ^ 4 = .0965 114.35 19.0

16-17 6 154 P6 = fP5 = .0472 55.93 32.9

17 7 0
91 - IP = .0350 41.46 41.46

587.71
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through the various stages within the laboratory operation.

Customer arrival patterns can best be described by referring to 
Table 1. After the customer arrives at the laboratory, his total service 

demands are determined and a route through the required service channels 

is established. Each service channel is composed of one or more service 

centers in series. Since the service channels perform independent 

functions, the customer is partitioned into segments required by the par­

ticular service rendered at the various service channels. A customer 

number is assigned to correlate all the partitions as they proceed through 

each service center within the service channel. Customers are then dis­

patched to their respective service channels. There are basically two 

types of service channels, which possess high speed test equipment 

capable of processing large numbers of customers in a relatively short 

period of time and those which provide service predominantly by manual 
means. Due to the nature of some clinical laboratory tests, technology 

has not yet developed to the point of being economically feasible to 

automate these procedures.

At the service channel human intervention can be defined by 

three distinct activities.

1. Identify and rank the customers into some prescribed 

sequence or priority.

2. Monitor the test instrument during operation.

3. Record and convert raw test determinations into final 

determination results.

The time required to perform these activities is a function of 

human variability and can be attributed to difference in training, skill
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and motivation. A human factors study would have to be performed within 

each laboratory in order to determine valid estimates of these variables.

However, a constant time per activity per customer is considered a
reasonable estimation in the development of our simulation model.

After the customer leaves his respective service channel, he 

enters a data collection service channel in which all the various services

rendered to any one customer are recorded. After his total service has

been completed and recorded, he exits the system.

The GPSS simulation language is designed for systems whose 

operation can be described as special purpose blocks. These blocks can 

function as decision rules or activities which relate to the desired 

system structure. A sequence of these blocks can be developed to describe 

the many service centers of various types and the conditions by which 
customers utilize these service centers within the operation of a clinical 

laboratory.
The attributes which are measured during the operation of a 

simulation are defined as follows:
1. Block Counts

A. Current - Number of transactions in each block which 

the system is currently processing at the time of print­

out .

B. Total - Total number of transactions which have been 

processed by the block.

2. Facility Attributes

Cumulative time integral
A. Average Utilization - Relative clock time since last

reset.
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B. Number Entries - Number of transactions processed by
facility.

Cumulative time integral
C. Average Time/Transaction - Number of entries.

D. Cumulative Time Integral - The sum of time the facility

is in use.

3. Queue Attributes

A. Maximum Contents - Maximum number of transactions in 

the queue during simulation.

Cumulative time integral
B. Average Contents - Relative clock time since reset.

Cumulative time integral
C. Average Time/Transaction - Total entries

Cumulative time integral
D. $ Average Time/Transaction - Number of non-zero delay

entries
E. Total Entries - Total entries into the queue.

F. Zero Entries - Number of entries which had zero delay

time in the queues.

4. Mean Waiting Time - Defines the mean of waiting time distri­

bution of entries in the queue.

From this point on in the discussion of the simulation language,

transactions will be synonymous with customers and/or job streams. The
transactions are first generated at the Generate block and are moved from 

block to block in a similar manner in which the units of traffic that they 

represent progress in the real laboratory system.

Each such movement is an event that is due to occur at some 

point in time. The program maintains a record of the times at which these 

events are due to occur, then proceeds by executing the events in their
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correct sequence. An invariant sequential clock is maintained in order 

that the total simulation time can be determined and related to the time 

of the real system. Customer arrival time and service time can be 

determined by use of a random number generator and user defined distri­
butions which are randomly sampled.



CHAPTER V 

SIMULATION MODELS

In this chapter, we formulate three different models representa­

tive of a clinical laboratory which vary in complexity, the series queue 

model, the simple model and the complex model. The series queue model is 

an over-simplification of a total laboratory system but could realisti­

cally represent one type of service function. The purposes of this model 
are to illustrate the methodology used in constructing a simulation model 

and to demonstrate the type of parameters used in determining the be­

havioral characteristics of the model. The model is run in various modes 

to determine the effect of starting the system empty or starting the 

system with customers already present in the system.
The simple model addresses its formulation to the basic 

functions found in clinical laboratories. This model demonstrates the 

power of simulation over analytical techniques when the analytical formu­

lation is beyond those characteristics of the classical single server 

models with Poisson input and negative exponential service time. These 

analytical limitations have been clearly demonstrated by Disney [11],

Cox [8] and Neuts [25]. The simple model requires that each customer 

has a predetermined route through the system. This model allows customers 

to be partitioned into sub-customers and independently routed through the

50
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required service centers while maintaining queue facility statistics on 

the sub-customers as well as on regrouped sub-customers. A priority 

system is introduced into the model to determine the difference between 

the behavior of models with priority and those without priority.

The complex model represents an extension of the simple model 

by increasing the magnitude of the various functions as well as routes 

available to any customer in the system. The data collection function 

at the various service centers is altered to reflect a high speed data 

acquisition function relative to a computer. The effect these changes 

have on the overall behavior of the model is evaluated.

Notations and terminology used in this chapter :

Terminology

Transaction or Customer - a specimen for which service is rendered in the
laboratory,

Queue - a line of customers or transactions waiting for service.

Service Center - function which performs or renders some type of service 

on one customer at a time.

Service Channel - a type of service rendered. It may have one or more 

service centers.

Automated Service Channel - a special class of services rendered

especially by those instruments in the labo­

ratory which are capable of processing several 

customers per hour.

Manual Service Channel - a special class of services rendered by tech­

niques requiring predominantly human inter­

vention in the service rendered.
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Data Collection - function which represents the manipulation of, or 

acquisition of data.

Processing - function which is necessary to determine and prepare

customers for cycling through the laboratory system in 
relation to their service requirements.

Notations

Q1 - Queue - number or type.

QlAl - Queue - service channel - type of service - queue number.

SCI - Service center - number or type.
SCIMI - Service center - service channel - type of service - service

center number.

T - denotes the number of customers or transactions.

Series Queues

The construction of the model for two service centers in series 

represent one of the simplest configurations in the complex model and is 

presented here to illustrate the simulation methodology and techniques 
used. Figure 1 represents a series queue system with T customers ar­

riving at service center SCI to be immediately serviced or waiting in Q1 

to be serviced. Upon completion of service at SCI, the customer enters 

the second queue to be immediately serviced or must wait in Q2 to be 

serviced. After completion of SC2, he exits the system.
The construction of the model for the two service centers in 

series is used to illustrate the power and flexibility of the GPSS 

language in simulation as well as the behavior of a common combination 

of service centers found in the clinical laboratories. The formulation



Customer 
Pool

Enter 1 Qi SCI L_. Q2 SC2 Exit
Ln
U )

Series Queues 

Figure 1
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of the model is shown in Figure 2.

Assume 200 customers represent a normal day of operation for the 

modeled laboratory. The inter-arrival time between customers in exponen­

tially distributed with parameter and the service time is also expo­

nentially distributed with parameters and Vg. Let the parameters 
assume the following values:

= 144 seconds which represents an arrival rate of 25 
customers/hour.

= 60 seconds which represents mean service time for SCI.
= 90 seconds which represents mean service time for SC2.

The model was run in three modes. Mode 1 partitioned the input 

customers into groups. The first group of 25 customers is run through the

model, and then a group of 25 customers is added to the original group,
and the model is rerun. The customers completing the service are counted 
as they exit the system. Each successive group acquired an additional 

25 customers until the group size reaches 200 customers. Table 4 reflects 

the queue and facility attributes resulting from each group run. Mode 2 

partitions the customers into larger groups of 100, 150 and 200 customers, 
and the model is reinitialized after each group is run. Reinitialization 

has an effect on the average time per transaction in that the cumulative 

time integral is set to zero, but the number in the queue at the time of 

reset is maintained; therefore, the average time per transaction in the 

queue will be less than or equal to the mean waiting time which reflects 

the mean of the actual waiting time distribution which is not effected by 

the reinitialization condition. Table 5 indicates the run statistics for 

Mode 2.
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Generate
l^Vl, Expon^ 200

Queue

Seize A
Depart

Advance
V2, Expon.

\vRelease V

Queue

Seize A
/ i \

Depart

Advance 
V3, Expon.

Terminât

200 transactions will be generated with the 
inter-departure time being exponentially 
distributed with mean

Transaction enters queue block and queueing time 
is recorded if queue contents is not zero. If 
zero, the transaction proceeds to next sequential 
block immediately.

Seizes the first facility so that no other trans­
action can enter until processing is complete.

Calculates time the transaction spent in first 
queue.

Assigns positive time delay to each transaction 
entering the block based on exponential service 
time of mean Vg.

Releases the advance block in order that other 
transactions may seize the facility.

Same as above except defines second queue.

Same as above except for second service center, 

Same as above except for second queue.

Second service center.

Same as above except for second center.

Terminates simulation when the number of trans­
actions specified by generated block has entered.

Figure 2



TABLE 4

SERIES QUEUE 
MODE 1

Number of Transactions Completed
25 50 75 100 125 150 175 200

Clock Time 4146
Facility Attributes 
Avg. Utilization 
SCI .476
SC2 .580

Avg. Time/Trans.
SCI 68.172
SC2 96.199

Queue Attributes

5529

.458

.869
52.833
96.099

11983

.390

.534

61.500
85.333

15379

.366

.592

56.349
91.099

16834

.407

.764
54.007

102.959

20872

.480

.652

67.716
90.839

23704

.495 

. 666
66.401
90.331

27388

.412

.575
55.886
78.789 Cn

ON

Avg. Cent.
Ql .477 .259 .408 .220 .165 .618 .363 .409
Q2 .584 3.578 .389 1.265 1.384 1.183 1.239 .825

Zero Entries
Ql 13 26 41 61 74 78 92 113
Q2 12 2 29 39 33 53 55 86

Avg. Time/Trans.
Ql 61.843 30.574 64.355 34.252 22.000 87.216 48.909 55.731
Q2 86.535 388.000 61.447 192.693 182.046 164.659 166.948 111.866
$ Avg. Time/Trans.
Ql 104.157 68.428 139.742 89.236 52.716 184.399 102.476 127.295
Q2 151.431 439.733 99.361 313.903 245.284 254.628 242.834 194.801

Mean Waiting
Time Ql 63.896 33.255 64.355 34.252 22.000 87.216 48.909 55.731

Mean Waiting
Time Q2 86.359 399.299 63.306 192.569 181.543 168.813 167.417 110.244
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TABLE 5

SERIES QUEUE 
MODE 2

Number of Transactions
100 150 200

Clock Time 13813 23224 26377
Facility Attributes 
Average Utilization

SCI .433 .380 .461
SC2 .679 .574 .755

Average Time/Transaction
SCI 58.72 58.87 60.85
SC2 93.83 88.90 99.649

Queue Attributes 
Maximum Contents

Ql 4 4 11
Q2 8 11 11

Average Contents
Ql .286 .333 .497
Q2 1.678 .997 1.643

Zero Entries
Ql 56 85 109
Q2 30 56 52

Average Time/Transaction
Ql 38.44 51.93 65.32
Q2 229.53 153.37 216.73

$Average Time/Transaction
Ql 84.25 120.90 142.72
Q2 326.52 243.78 292.88

Mean Waiting Time
Ql 38.19 52.36 65.59
Q2 231.48 154.53 216.80
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Mode 3 changes the service time distribution from negative ex­

ponential to a constant service time. Again input customers of group 

sizes 100, 150 and 200 are run against the model and Table 6 reflects the 

statistical attributes for this mode of operation.

Discussion of Series Queues Simulation Model

Review of Table 4 indicates no significant change in the results 

which would identify a change from the transient state to the steady state. 

By the time the model has processed 100 transactions, we assume that steady 

state has been reached. As seen from the Table, the queue and facility 

attributes for the second service facility in the case of 50 transactions 

is significantly greater than any of the other cases. This large differ­

ence could be attributed to random number generation selecting clustered 

samples from the extreme ends of the exponential distribution. Above 

average service time in SC2 would cause the output from SCI to find SC2 

busy more of the time. This can be seen from the fact that only 4% of 

the customers leaving SCI found SC2 idle while 52% of the customers 

entering the system found SCI idle.

Comparing the results for simulation Modes 1 and 2 from Tables 

4 and 5 at the levels of 100, 150 and 200 transactions indicates the 

difference can be attributed to sampling variation, the number of trans­

actions remaining in the system at the time of termination, and the effects 

of reinitialization.

Comparing Mode 3 with Mode 2, one can see the effect that 

constant service time has on the queue attributes. More customers ar­

riving at the first and second queues find the queues empty; hence, the
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TABLE 6

SERIES QUEUE 
MODE 3

Number of Transactions
100 150 200

Clock Time 14406 . 22847 26698

Facility Attributes 
Average Utilization

SCI .416 .396 .449
SC2 .624 .590 .674

Average Time/Transaction
SCI 60. 60. 60.
SC2 90. 90. 90.

Queue Attributes 
Maximum Contents

Ql 4 3 4
Q2 3 2 5

Average Contents
Ql .161 .106 .245
Q2 .272 .184 .708

Zero Entries
Ql 60 103 98
Q2

Average Time/Transaction
39 72 55

Ql 23.20 16.09 32.76
. Q2 39.20 27.90 94.04

$Average Time/Transaction
Ql 68.04 50.64 64.25
Q2 64.36 53.33 129.47

Mean Waiting Time
Ql 23.21 16.09 32.76
Q2 39.25 27.88 94.63
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number of zero entries is increased under Mode 3 type operation. A sig­

nificant decrease in average time per transaction and mean waiting time 
can also be attributed to an improved processing time due to the constant 

service rate.

Simple Model

The purpose of the simple model shown in Figure 3 is to in­

crease the complexity of the series queue model and approach the basic 

characteristics of the clinical laboratory. Customers arrive at the first 

test channel, SCI, which represents a processing station. If the service 

channel is busy, they wait in Ql until it is free. In SCI, they are 

assigned routes A, B, or A and B through the remaining service channels 

which are required to meet their total service demands. There are two 

service channels, one represents the automated and the second represents 

the manual test stations. Customers may require service at any one or 
both channels. The manual channel, SC2, consists of one service center 

which represents test setup and the instrument operation function. The 

automated channel consists of two service centers, SC3 and SC4, the first 

of which represents the instrument operation function and the second, the 

data collection function. Customers completing service at SC3 must enter 

SC4. After the customer completes either or both of these service 

channels, he enters the final service channel, SC5, which represents the 

data collection function for his total service. After completion of this 

channel, he exits the system. The service time of all service centers is 

assumed to be constant.
Customers are generated based on a random sampling from a nega­

tive exponential density function, with a mean inter-arrival time of 1/X
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or an arrival rate of A customers/hour. The model was run under the set 
of conditions shown in Table 7.

One condition which is inherent in every clinical laboratory is 

that of servicing priority customers. A priority customer is defined to 

be that customer whose requirement for service is ranked above another 

customer's. Three priority levels were established in this model to 

represent:

1. Immediate service required - highest priority.

2. Service required today - 2nd highest priority.

3. Routine service required - lowest priority.

The number of transactions assigned to each priority level is as follows: 

10% - highest priority.

5% - 2nd highest priority.

85% - lowest priority.

Customers arriving at SCI were assigned Routes A, B, or A and 

B based on distribution estimates derived from Table 1, which reflects 

the number of customers requiring automated service only (Route A), manual 
service only (Route B) and both automated and manual service Routes A and

B. The allocation of routes is accomplished by randomly selecting a route 

from a table of routes which weights the routes accordingly:

37.5% of total routes are for Route A.

37.5% of total routes are for Route A and B.

26% of total routes are for Route B.

The simulation was run in normal mode (no priorities) and priority mode.

Both simulation runs use a 100 customer pool to warm up the model before 

processing the desired 200 customers. The results of the attributes
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TABLE 7

SIMPLE MODEL RUN CONDITIONS

Service Time Parameters in Seconds 
Run Number Arrival Rate/Hr . SCI SC2_____ SC3______SC4______SC5

1 25 90 58 58 43 237
2 25 90 58 58 43 144

3 25 90 58 58 43 90

4 25 90 58 58 43 60

5 40 90 58 58 43 • 144
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measured on each run in normal mode are shown in Tables 8 and 9. Tables 
10 and 11 reflect the priority mode results.

Discussion of Simple Model Simulation Results

The results of this model clearly indicate that the input and 

output service centers apply the only constraints on the transaction 
throughput. Transactions receive immediate service from the service 

channels and delays only occur at the processing and data collection 

service centers. The utilization of the service centers remains approxi­

mately constant except when the arrival rate is increased by 60%; then the 

utilization increases for each service center by 30-40%. Figure 4 

approximates a negative exponential reduction in queueing time as the 

service rate is increased. By decreasing the service time at SC5 by 65%, 

a 98.7% decrease in waiting time can be acquired. This basically is a 

balance of the input which is 25 transactions per hour; therefore, the 

mixed service rates of the other service centers have a degrading effect 

on the arrival rate to the last service center even though transactions 
are not required to wait for service. When the input rate and the service 

rate are increased for SC5, in run #5, the service center is always busy, 

whereas for the same service rate and reduced input rate as in run #2, the 

service center has available idle time.

The output from the model run in priority mode was not different 

from the normal mode except in run #5 where the arrival rate is increased. 

The priorities appear to have the effect of prolonging the queueing time.

Complex Model

In the complex model, we represent the clinical laboratory as a
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TABLE 8

SIMPLE MODEL FACILITY ATTRIBUTES

Facility
Service
Time

Average
Utilization

Number
Entries

Average 
Time/Trans.

Run
No.

SCI 90 .621 329 89.537 1
SCI 90 .637 212 89.311 2
SCI 90 .641 203 89.467 3
SCI 90 .641 202 89.905 4
SCI 90 .981 315 89.704 5

SC2 58 .212 175 57.67 1
SC2 58 .216 111 58.00 2
SC2 58 .221 108 58.00 3
SC2 58 .221 108 58.00 4
SC2 58 .341 170 57.85 5

SC3 58 .367 301 57.81 1
SC3 58 .378 194 58.00 2
SC3 58 .379 186 57.747 3
SC3 58 .378 185 58.00 4
SC3 58 .578 288 57.87 5

SC4 43 .272 301 42.95 1
SC4 43 .280 194 43.00 2
SC4 43 .280 185 43.00 3
SC4 43 .279 185 42.83 4
SC4 43 .429 288 43.00 5

SC5 237 1.0 200 237.00 1
SC5 144 .969 200 144.00 2
SC5 90 .635 200 90.00 3
SC5 60 .423 200 60.000 4
SC5 144 1.000 200 144.00 5



TABLE 9

SIMPLE MODEL QUEUE ATTRIBUTES

Queue
Max.

Contents
Avg.

Contents
Total

Entries
Zero
Entries

Average
Time/Tran.

$ Average 
Time/Tran.

Mean
Waiting
Time

Run
No.

Ql 6 .638 328 118 92.20 144.01 92.33 1
Ql 6 .552 211 81 . 77.76 126.22 77.76 2
Ql 6 .552 205 79 76.32 124.17 75.53 3
Ql 6 .548 206 80 75.42 123.30 73.70 4Ql 22 11.07 331 6 963.42 981.21 982.42 5
Q2 1 G 175 175 0 0 0 1
Q2 1 0 111 111 0 0 0 2Q2 1 G 108 108 0 0 0 3Q2 1 G 108 108 0 0 0 4
Q2 1 G 170 170 0 0 0 5
Q3 1 G 301 301 0 0 0 1Q3 1 0 194 194 0 0 0 2
Q3 1 G 186 186 0 0 0 3
Q3 1 G 185 185 0 0 0 4
Q3 1 G 287 287 0 0 0 5
Q4 1 G 300 300 0 0 0 1Q4 1 0 194 194 0 0 0 2
Q4 1 G 185 185 0 0 0 3
Q4 1 G 185 185 0 0 0 4Q4 1 G 288 288 0 0 0 5
Q5 197 13G.58 397 . 0 15590.73 15590.73 18551.35 1
Q5 17 6.55 215 6 905.54 931.54 894.614 2
Q5 1 .013 200 . 191 1.93 43.00 1.93 3Q5 1 .003 200 192 .519 13.00 .519 4Q5 171 111.65 371 0 8667.8 8667.8 10241.81 5

c\
ON
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TABLE 10

SIMPLE MODEL FACILITY ATTRIBUTES WITH PRIORITY

icility
Service
Time

Average
Utilization

Number
Entries

Average 
Time/Trans.

Rui
No

SCI 90 .672 355 89.78 1
SCI 90 .681 219 89.65 2
SCI 90 .663 203 89.61 3
SCI 90 .662 202 89.90 4
SCI 90 1.000 321 89.71 5
SC2 58 .233 191 58.00 1
SC2 58 .233 116 58.00 2
SC2 58 .228 108 58.00 3
SC2 58 .228 108 58.00 4
SC 2 58 .350 174 58.00 5
SC3 58 .399 327 57.94 1
SC3 58 .403 201 57.75 2
SC3 58 .391 186 57.74 3
SC3 58 .391 185 58.00 4
SC3 58 .592 295 57.80 5

SC4 43 .296 327 42.90 1
SC4 43 .300 201 43.00 2
SC4 43 .290 185 43.00 3
SC4 43 .289 185 42.83 4
SC4 43 .438 294 43.00 5

SC5 237 1.000 200 237.00 1
SC5 144 1.000 200 144.00 2
SC5 90 .656 200 90.00 3
SC5 60 .437 200 60.00 4
SC5 144 1.000 200 144.00 5



TABLE 11

SIMPLE MODEL QUEUE ATTRIBUTES WITH PRIORITY

]ueue
Max.

Contents
Avg.

Contents
Total
Entries

Zero
Entries

Average
Time/Tran.

$ Average 
Time/Tran.

Mean
Waiting
Time

Rui
No

Ql 5 .558 354 128 74.73 117.05 74.73 1
Ql 4 .585 219 78 77.05 119.68 77.22 2
Ql 4 .523 205 77 70.07 112.22 69.88 3
Ql 4 .521 204 77 70.09 112.59 68.82 4
Ql 49 30.48 356 0 2466.26 2466.26 2524.54 5
Q2 1 0 191 191 0 0 0 1
Q2 1 0 116 116 0 0 0 2
Q2 1 0 108 108 0 0 0 3
Q2 1 0 108 108 0 0 0 4
Q2 1 0 174 174 0 0 0 5
Q3 1 0 327 327 0 0 0 1
Q3 1 0 200 200 0 0 0 2
Q3 1 0 186 186 0 0 0 3
Q3 1 0 185 185 0 0 0 4
Q3 1 0 294 294 0 0 0 5
Q4 1 0 326 326 0 0 0 1
Q4 1 0 201 201 0 0 0 2
Q4 1 0 185 185 0 0 0 3
Q4 1 0 185 185 0 0 0 4
Q4 1 0 294 294 0 0 0 5
Q5 222 148.94 422 0 16730.05 16730.05 16722.30 1
Q5 31 17.80 231 0 2219.98 2219.98 2300.00 2
Q5 1 .019 201 187 2.67 38.42 2.68 3
Q5 1 .005 • 200 189 .71 13.00 .71 4
Q5 . 171 110.32 371 0 8564.51 8564.51 8655.05 5

00
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network of both series and parallel service centers. Customers arrive at 
the first service center for preprocessing and to obtain their service 

route through the system. There are five service channels in parallel, 
each composed of three service centers. These service channels represent 

the functions incorporated in the simulation of the automated instrumen­

tation found in the clinical laboratory such as continuous flow analyzers 

and spectrophotometers and other laboratory instrumentation. The three 

service centers in each channel represent the functions, test setup, 

processing and data collection.

In parallel to the automated service channels there exist six 

service centers which represent the different manual test equipment such 

as colormeters, flame photometers, pH meters, etc. The test setup 

function is different for each type of test, but the processing and data 

collection function is common to all manual tests.
Customers completing either manual, automated or both service 

channels must enter the final data collection service center for re­

cording of total service demands. Figure 5 illustrates the total complex 
model indicating the customer flow through the system as well as the vari­

ous queues a customer may encounter within the system.

Determination of Parameters Used in the Model 
The arrival pattern of customers to the laboratory was based on 

Table 1, which reflects a relatively constant arrival during the first 

1 1/2 to 2 hours and an undetermined arrival pattern during the remainder 

of the day. The arrival rate was set at 60 second intervals up to the 

first simulated 11/2 hours or a maximum of 70 customers during the time 

interval. After this time, a Poisson arrival rate of approximately 12
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customers per hour was assumed.

Prior to customers arriving at the first service centers, 
customers are assigned one of three levels of priority - 0, 1, and 2 with 

2 being highest priority. These priority levels represent the normal 
range of priorities found in most laboratories, i.e., routine, emergency, 

and as soon as possible. The percentage of priorities assigned at each 

level is based on the actual percentages reflected in Table 1. This is 

as follows:

18% were assigned priority 2 
5% were assigned priority 1 

77% were assigned priority 0

At the first service center, the customer's route through the 

system is established. Customers may be routed through any one service 

channel or a combination of channels. Customers entering a service 

channel must be processed by all service centers within the channel before 

entering another channel. Customers whose service requires multi-channel 
use are partitioned into the desired number and sent simultaneously to 

each required service channel. Partitioned customers are re-grouped at 
the data collection service center before service is determined complete. 

Customers may require service from automated channels, manual channels 
or both channels. The percentage of types of channels required for the 

total customer input was based on data from Table 1, and is as follows:

11% assigned to manual services only.

79% assigned to automated services only.

10% required both types of service.

The customer directed to either or both types of services can
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use one or a combination of service channels within the specific service. 

The number of channels used by each customer is based on a weighted 

distribution of the tests reflected in each type of service indicated in 

Table 1. A function was developed based on these weights which randomly 
assigns the number and type of service channels required to meet its spe­

cific service demand. The customer's total service demand is the service 
demand rendered by both the automated and manual service sections. A 

negative exponential distribution function shown in Figure 6 was randomly 

sampled to determine the inter-arrival time of the next customer after 

the generation of the first 70 customers. The variables used to estimate 

service time are shown in Table 12.

Customers are generated from an infinite source, but when 150 

customers have completed service, the running is terminated and the fa­
cility and queue attributes are calculated. One hundred and fifty 

customers were used to estimate the number of customers processed during 

the operation of the real laboratory. These attributes are shoim in 

Tables 13 and 14.
In order to determine the effect of an automated data acquisi­

tion system on system throughput, the data collection variables were 

changed as follows:
Data Acquisition 

Service Center Normal Service Time Service Time

A1SC3 90, 10 10, 0

A2SC3 90, 10 10, 0

A3SC3 90, 10 10, 0

A4SC3 90, 10 10, 0

A5SC3 120, 30 10, 0

ClSCl 120, 60 30, 0
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TABLE 12

SERVICE CENTER VARIABLES

Service 
Type Service Center

Service Time 
Mean

in Seconds 
S.D.

Tests/
Hour Function Test Simulated

Processing PSCl 180 60 20 - All
Automated AlSCl 120 30 30 Setup Electrolytes

A1SC2 90 0 40 Processing Electrolytes
A1SC3 90 10 40 Data Collection Electrolytes
A2SC1 120 30 30 Setup Bun/Glucose
A2SC2 60 0 60 Processing Bun/Glucose
A2SC3 90 10 40 Data Collection Bun/Glucose
A3SC1 120 30 30 Setup Ca/Phos.
A3SC2 60 0 40 Processing Ca/Phos.
A3SC3 90 10 40 Data Collection Ca/Phos.
A4SC1 120 30 30 Setup Alk/Phos/SGOT
A4SC2 60 0 60 Processing Alk/Phos/SGOT
A4SC3 90 10 40 Data Collection Alk/Phos/SGOT
A5SC1 120 30 30 Setup CPK
A5SC2 120 30 30 Processing CPK, LDH
A5SC3 120 30 30 Data Collection CPK, LDH
A6SC1 120 30 30 Setup LDH

Manual MlSCl 150 20 25 Setup Bilirubin
M2SC1 240 30 15 Setup Uric Acid
M3SC1 180 30 20 Setup BSP
M4SC1 120 20 30 Setup Cholesterol
M5SC1 90 10 40 Setup Acid Phos.
M6SC1 120 30 30 Setup Amylase
M1SC2 60 10 60 Process/Data Collection (All Manual Tests)

Data Collection ClSCl 120 60 30 Total Data Collection All

Ln
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TABLE 13

COMPLEX MODEL FACILITY ATTRIBUTES

Facility
Average

Utilization
Number
Entries

Average
Time/Tran.

PSCl .977 150 182.253
MlSCl .095 18 148.222
M2 SCI .149 17 246.294
M3 SCI .006 1 177.000
M4SC1 .033 8 117.375
M5SC1 .029 9 90.555
M6SC1 .034 8 121.375
M1SC2 .070 33 59.363
AlSCl .588 136 121.117
A1SC2 .437 136 90.000
A1SC3 .441 136 90.720
A2SC1 .398 92 121.293
A2SC2 .197 92 60.000
A2SC3 .295 92 89.967
A3SC1 .408 95 120.178
A3 SC 2 .203 95 60.000
A3SC3 .306 95 90.157
A4SC1 .249 58 120.310
A4SC2 .124 58 60.000
A4SC3 .187 58 90.517
A5SC1 .112 27 117.037
A6SC1 .116 27 120.555
A1SC2 .117 27 121.703
ClSCl .670 150 125.086



TABLE 14

COMPLEX MODEL QUEUE ATTRIBUTES

Queue
Max. 
Cent.

Avg.
Cont.

Total
Entries

Zero
Entries

Average 
Time/Tran.

$ Average 
Time/Tran.

Mean Queueing 
Time

QP 50 25.776 150 1 4807.058 4839.320 4807.058
QlMl 1 .011 18 13 17.111 61.599 17.111
Q2M1 1 .025 17 14 42.411 240.333 42.111
Q3M1 1 .000 1 1 .000 .000 .000
Q4M1 1 .000 8 8 .000 .000 .000
Q5M1 1 ■ .003 9 8 10.777 97.000 10.777
Q6M1 1 .004 8 7 16.750 134.000 16.750
Q1M2 1 .002 33 30 2.090 23.000 2.090
QlAl 1 .003 136 . 128 .742 12.625 .742
Q1A2 1 .000 136 136 .000 .000 .000
Q1A3 1 .000 136 136 .000 .000 .000
Q2A1 3 .122 92 63 37.097 117.689 37.097
Q2A2 1 .000 92 92 .000 .000 .000
Q2A3 1 .000 92 91 .032 3.000 .032
Q3A1 4 .216 95 53 63.884 144.500 63.884
Q3A2 1 .000 95 95 .000 .000 .000
Q3A3 1 .000 95 94 .010 1.000 .010
Q4A1 2 .037 58 49 18.051 116.333 18.051
Q4A2 1 .000 58 58 .000 .000 .000
Q4A3 1 .000 58 58 .000 .000 .000
Q5A1 1 .009 27 25 10.000 135.000 10.000
Q6A1 1 .001 27 26 1.629 44.000 1.629
Q5A2 1 .000 27 26 .555 15.000 .555
QC 2 .166 150 90 30.986 77.466 30.986
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The model terminated after 150 customers had been serviced. Tables 15 

and 16 reflect the system’s attributes with these variables changed.

Discussion of Results

The data reflected in Table 13 indicates that the processing and 

total data collection service centers are busy more than 50% of the time 

which is representative of a normal laboratory operation. Even though 
MlSC2 received input from six different service centers, the idle time 

remains greater than 93%. The automated service channels are busy less 
than 60% of the time. From observing the overall utilization of the 

complex model, one can infer that input for the automated service center 
could be increased by 60% before saturation and the manual service center 

could support a twenty-fold increase. The only major constraints are the 

first and last service centers whose service time could be reduced by 

increasing the number of servers performing this service.

Table 14 indicates that most transactions are not held up 

waiting in the queue except for OP and OC. Some transactions are held up 

for more than one hour in QP. This is due to the high influx of customers 
during the first two hours of operation and the low service time in re­

lation to input.

The effect of imposing conditions representative of data acqui­

sition at the various data collection service points is reflected in 

Tables 15 and 16. The utilization of these service centers was drasti­
cally reduced which was to be expected. This reduction provides equal 

increase in the idle time to those functions requiring manual inter­

vention or increasing the workload at the service center to compensate 

for the increased idle time. The two service centers preceding the data
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TABLE 15

COMPLEX MODEL FACILITY ATTRIBUTES 
WITH DATA ACQUISITION

Facility
Average

Utilization
Number
Entries

Average 
Time/Trans.

PSCl .997 152 179.144
MlSCl .116 21 151.904
M2SC1 .168 19 242.000
M3SC1 .006 1 183.000
M4SC1 .049 11 122.909
M5SC1 .036 11 90.636
M6SC1 .037 9 112.222
M1SC2 .075 35 58.571
AlSCl .596 133 122.368
A1SC2 .435 132 90.000
A1SC3 .048 132 10.000
A2SC1 .390 89 119.842
A2SC2 .193 88 60.000
A2SC3 .032 88 10.000
A3SC1 .414 93 121.688
A3SC2 .204 93 60.000
A3SC3 .034 93 10.000
A4SC1 .251 58 118.327
A4SC2 .125 57 60.000
A4SC3 .020 57 10.000
A5SC1 .118 26 124.730
A6SC1 .118 26 124.346
A5SC2 .009 26 10.000
ClSCl .164 150 30.000



TABLE 16

COMPLEX MODEL QUEUE ATTRIBUTES 
WITH DATA ACQUISITION

Queue
Max. 
Cont.

Avg. 
Cont.

Total 
Ent.

Zero 
Ent.

Average 
Time/Trans.

$ Average 
Time/Trans.

Mean Queueing 
Time

QP 46 28.971 164 1 4821.003 4850.582 5115.957
QIMI 1 .005 21 19 6.571 69.000 6.571
Q2MI 2 .043 19 13 61.947 196.166 61.947
Q3MI 1 .000 1 1 .000 .000 0.000
Q4MI 1 .004 11 9 10.454 57.500 10.454
Q5MI 1 .002 11 10 7.272 80.000 7.272
Q6MI 1 .003 9 8 10.333 93.000 10.333
QIM2 1 .002 35 32 1.571 18.333 1.571
QlAl 1 .004 133 124 .849 12.555 .849
Q1A2 1 .000 132 132 .000 .000 .000
Q1A3 1 .000 132 132 .000 .000 .000
Q2A1 3 .125 89 66 38.337 148.347 38.337
Q2A2 1 .000 88 88 .000 .000 .000
Q2A3 1 .000 88 88 .000 .000 .000
Q3A1 4 .291 93 55 85.473 209.184 85.473
Q3A2 1 .000 93 93 .000 .000 .000
Q3A3 1 .000 93 93 .000 .000 .000
Q4A1 2 .038 58 49 18.000 116.000 18.000
Q4A2 1 .000 57 57 .000 .000 .000
Q4A3 1 .000 57 57 .000 .000 .000
Q5A1 2 .009 26 23 9.769 84.666 9.769
Q6A1 1 .002 26 22 2.730 17.750 2.730
Q5A2 1 .000 26 26 .000 .000 .000
AC 1 .003 150 144 .639 16 .000 .639

00o
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collection service center on the automated service channel can be totally 

saturated and the data collection function will still have idle time.

This is due to the fact that a 50% utilization in the first two service 

centers only requires a 5% utilization in the data collection service 

center.

The data acquisition conditions had a 30 to 1 reduction in the 

waiting time a Qc, hence 96% of the customers entering ClSCl did not 

have to wait for service.
We can conclude from the results shown in Tables 15 and 16 that 

the average throughput time is not significantly improved, but the average 

idle time per service center is increased.



CHAPTER VI

SUMMARY

Our first approach was to develop an analytical formulation 

which could provide some measure of effectiveness for a complex queueing 
model. In reducing the complex system to the classical case of the 

single server system with Poisson Input but constant service time in lieu 

of negative exponential distribution of service time, we were able to 

develop a complex expression for the expected total queueing time. Neuts 

[25], Cox [8], Disney [11], and others have previously discussed the 

difficulty in obtaining closed form expressions for measures of ef­

fectiveness when one deviates from the classical Poisson Input and service 

time conditions or when transient solutions are desired. Since the ana­

lytical approach proved to be unmanageable in the formulation as a means 
of formulating the rules governing the behavior of the system, the GPSS 

simulation language was used to translate the problem definition into 

computer executable form by which measured service center and queue 

attributes could be quantized.

Three simulation models were developed. The first model repre­

sents the simplest queueing subsystem, i.e., two service centers in series, 

within the total complex network. Customer input into the system was 
augmented by a group of 25 and the model run for each size group up to 200 

customers. There appeared no significant change in the measured

82
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attributes which would identify a change from transient state to steady 

state. Customers were then grouped in sizes of 100, 150 and 200 and com­

pared with the first run. The differences indicated can be attributed to 

sampling variation and the effects of reinitialization. The service time 
was changed from value sampled from a negative exponential distribution to 

a constant service time. The measured attributes indicated a significant 

decrease in mean waiting time as well as queueing time per transaction.

The second model represents the basic subsystem in combination 

of series and parallel configurations which increases the complexity of 
the first model. The results of this model indicate that the input and 

output service centers provide the only significant constraints on the 
customer throughput. A 63% increase in output service center service rate 

decreased the queueing time per transaction by 98%. The model was also 
run in priority mode and the effect of priorities appears to be related 

to an increase in queueing time.

The third model is the complex model which represents the oper­
ational characteristics of a clinical laboratory. The model consists of 

multiple service channels whose service centers are in both series and 

parallel. Each service channel can be related to a particular service 

function found in the clinical laboratory. The parameters used in the 

model were derived from samples taken from the operation of the University 

of Oklahoma Clinical Laboratory. The results of running the model clearly 

indicated that certain key points in the job processing cycle require 

customers to nearly always wait before receiving service and other points 

are primarily idle. A bottle neck appears at the input center which can 

be related to the distribution of the input job stream which is constant
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for the first two hours and then approximates a Poisson arrival rate for 
the remaining period.

The effect of imposing conditions representative of automatic 

data acquisition at various data collection points in the processing 

cycle, reduced service center utilization but did not significantly 

improve overall throughput time. This indicates that the laboratory could 

improve its capacity to handle more jobs without sacrificing job through­

put time.
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