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CHAPTER I

ORDINARY LINEAR HOMOGENEOUS

DIFFERENTIAL EQUATIONS
Introduction

This thesis 1s primarily concerned with some osclllatory properties
of third and fourth order linear ordinary homogeneous differential
equatioﬁs. In particular, the dimensions of the oscillatory and
ﬁonoscillatory subspaces are investigated.

The third order .theory started with Birkhoff's paper in 1911, [1],
in which he studied the oscillation and separation theory. Reynolds,
[21, extended Birkhoff's work to equations of arbitrerily order n.
However, the modern theory did not start until ;he late 1940's.
Significant centributions were made by Gregus, Hanan, Lazer, R4b, gvec,
and Zlamal. It was shown that many of the asymptotic and oscillatory
properties of linear third order ordinary homogeneous differential
equations with constant coefficients are carried over to those with
variable coefficients which do not change sign.

Leighton and Nehari in [3], Howard, Barrett, Lazer, Ahmad were
among the first to undertake a systematic development of the fourth
order .theory. The dimensions of oscillatory and:nonoscillatory
subspaces were Investigated in the case where the coefficients do not

change sign.



In this paper, we consider the maximum dimensions of oscillatory
and nonoscillatory subspaces for the third order linear differential
equation, We will study the case where the maximum dimensions of
oscillatory and nonoesclllatory subspaces are respectively two and one.

The relations between the dimensions of -subspaces of solutions of
the differential equation and those of its adjoint are also
investigated. This paper contains one example which answers a question
raised by Ahmad [5].

Concerning the fourth order ordinary homogeneous differential
equations, conditioﬁs‘are given under which all oscillatory solutions
are bounded, Also are shown some techniques of getting from the fourth

order differential equation

yIV = Py" + Qy' + Ry,

where P >0, Q <0, and R > 0, 'a third order differential equation

LR 1"

y =py" + qy' + ry,

where p <0, q >0, and r.< 0,

In the remaining sections of this chapter, we shall state
propositions which are basic to the development of the succeeding
chapters, Since these results are all well-known, we shall not prove

any of them.
Third Order Linear Differential Equations
Consider the differential equation

z'""" + P(x)z" + Q(x)z' + R(x)z = 0, @)



where P(x) ¢ C2[a,w), Q(x) = Cl[a,w), R(x) € C[la,»), and a 1is a

real number. The adjeint of (1) is the differential equation given by
z'"'"' - Px)zZ)" + (Q(x)z)' - R(x)z = 0. (1!

The well-known substitution
1 X
. z(x) = y(x) exp| - 3/ P(s) ds
a

transforms the differential equation (1) into
y''"'" +p®y' + qx)y = 0. (2)

The oscillatory ﬁroperties remain invariant under this transfermation.
Therefore, (2) is not much less general than‘(l).

In what follows, by a solution of (2) we shall mean a nontrivial
solution. A solution of (2) is said to be oscillatory if its set of
zeros is not bounded above. Solutions which are not oscillatory are

called nonoscillatory.

Definition 1.1: The differential equation is said to be oscillatory

if it has at least one oscillatory solution.

Definition 1.2: A subspace of solutions of the differential equation

is sald to be nonoscillatory [strongly oscillatory] if and only if

none of [all] the solutions in the subspace oscillate.

Definition 1.3: The differential equation (2) is said to have property

R on [a, ) 1if it has both escillatory and nonoscillatory solutioms,



and further, it has two solutions uy and u, with w(ul,uz)(x) #0

for x'e [a,»), where W(ul,uz) represents the wronskian of uy and
u,.

Theorem 1.4: If (2) has solutions u, and u, such that ul(x) #0

1 2
on [a,») and W(ul,uz)(x) # 0 on [a,~), then no solution of (2)

can have more than two zeros on [a,») (counting multiplicities)

(see [4]).

Remark: It follows that if (2) has property R and uy and u, are
the solutions in Definition 1.3, then Uy and u, are both
oscillatory. For, suppose ul(x) # 0 on some interval [b,»). Then

ul(x) # 0 and W(ul,uz)(x) # 0 on [b,») dimply by Theorem 1.4 that

no solution of (2) can have more than two zeros.

Definition 1.5: The differential equation (2) is said to have property
RO 1if it has property R and a solution of (2) is oscillatory if and
only if it is 'a pontrivial linear combination of uy and Uy where

u, and u, are the solutions in Definition 1.3. Equation (2) is

1 2
sald to have property RN if it has property R and every nonoscilla~-
tory solution of (2) is a constant multiple of a fixed nonoscillatory

solution.
The following three theorems have been established in [5].

Theorem 1.6: The differential equation (2) has property R on [a,»)
if and only if its adjoint has property R on some interval - [b,») for

some b > a.



Theorem 1.7: Suppose that equation (2) has solutions U;s Uy, and v
such that v(x) # 0 for x > a, and uy and u, are oscillatory .
with W(ul,uz)(x) # 0 for x > a. Then (2) has property RO if and-

only if.

lim 91 ® 1im %)
x> © v(ix) x> v(x) =

0.

Theorem 1.8: Suppose that -equation (2) has solutions U, Uy, and v
such that v(x) # 0 for x > a, and v and u, are oscillatory with
W(ul,uz)(x) # 0 for x > a, Then (2) has property RN if and only if

every nontrivial linear combination of

ul(X) ; uz(X)
v ¢ V&)

1s unbounded above ‘and below.

Theorem 1.9: If equation (2) has property RO on [a,®), then its

adjoint has property. RN on some interval. [b,»), b > a,

Proposition 1.10: If p(x) <0, -q(x) £ 0, and y(x) is a solutlon of

(2) such that 'Y(XO) >0, y'(xo) >0, and. y"(xo) > Q0 for some

X, € [a,»), then y(x) > 0, y'(x) >0, y"(x) >0 for all x > Xy
and
11i i
LAty = MRy = e
(see [3D).

Definition 1.1l: Equation (2) is said to be (1.2) disconjugate [(2.1)

disconjugate] if and only if every solution y(x) for which



y(b) = y'(b) = 0, y"(b) >0 (a<b < =) has the property that

y(x) > 0 in (a,b) [in (b,»)].

Proposition 1.12: Equation (2) is (1.2) disconjugate [(2.1)

disconjugate] 1f 2q(x) - p'(x) > 0 [2q(x) - p'(x) < 0]. (See [6]).
Fourth Order Linear Differential Equation
Congider the differential equation

zIV + P(x)z""" + Q(x)z" + R(x)z' + L(x)z.= 0. (3) -

If Q(x), R(kx), and L(x) e Cla,») and P(x) ¢ C3[a,w), the

substitution

1 X
z(x) = y(x) exp[ - = P(s) ds}
e |

transforms (3) into

v "

vy o=pxYy"+ ¢y + r(x)y (4)

where p(x), q(x), and r(x) are continuous on [a,»). The
oscillatory properties remain invariant under this transformation.

The techniques in this part were extensively used by Lazer in [7].
Later, Lazer and Hasting [8] applied these methods to a simple
self~-adjoint differential equation of order four. Ahmad used it also
for equations of type (4).

For Chapter IV, we need the following lemma (see [3]).

Lemma 1.13: Let y(x) be a solution of the differential equation (4)

where p(x), q(x), and r(x) € Cla,»), p(x) > 0, q(x) <0, and



r(x) > 0. If y(®) >0, y'(b) <0, y"(b) 20, y'""(b) <0 for some
b >a, them y(x) >0, y'(x) <0, y"(x) >0, and y'''"(x) <0 for

X £ [a,b) .



CHAPTER II

SOME OSCILLATION PROPERTIES OF THIRD
ORDER LINEAR HOMOGENEOUS

DIFFERENTIAL EQUATIONS
Consider the differential equation
y''t A px)y' + q(x)y =0 (2)
and its adjoint
y''t+ (@Y - q(x)y = 0. (2)'

Throughout this chapter we shall assume that p(x) ¢ Cl[a,w) and
q(x) e Cla,») for some fixed real number a. We shall study

succegssively the cases:

(1) p(x) >0, qx) < 0;

(vi‘i) p(x) <0, q(x) <.0.

We first consider the case when p(x) > 0 and q(x) < 0. In the
case where p and q are constant, a fundamental set of solutiomns of
equation (2) censists of e-'va sin ex, e x‘cos cX, edx where b > 0,
c>0 and d > 0, Therefore, for the constant case, equation (2) has
property RO. The question 1s whether this is the case when p(x) - and

q(x) are not necessarily constant, The next part answers partilally

this ‘question under the supplementary condition that 2q(x) - p'(x) < 0



for x.¢ [a,»), The following lemma of Hanan is needed for the proof .

of our first result.

Lemma 2.1: If u(x) and v(x) are linearly independent solutiens of

(2) such that wu(b) v(b) =0 for some b > a, and equation (2) is
(2,1) disconjugate, then the zeros of wu(x) and v(x) separate in

[a,b) (see [9]).

Theorem 2.2: If p(x) >0, q(x) <0, 2q(x) -p'(x) <0 on [a,),
and equation (2) has an oscillatory solution y(x), then (2) has
another oscillatory solution 2z(x) such that y(x) and 2z(x) are

linearly independent.

Proof: Let y(x) be an oscillatory solution of (1), Let b be a

point at which y(b) # 0 and let {x,} be an increasing sequence

i"i=1
of zeros of y(x) such that b < Xy and X; > © as i > o, Let
zl(x), zz(x), and 23(x) be the fundamental set of solutions of (2)

such that

W(zl,zz,z3)(b) = |0 1 0],

For each integer n, let zn(x) be the solutien of (2) defined by the
two boundary conditiens, zn(b)’= 0 and zn(xn) = 0, The solution
zn(x)‘ can be written as a 1iﬁear'combination of zl(x), zz(x), and
z3(x), and since Azn(b) - 0, it 1s a linear combination of zz(x) and

z3(x), only. Therefore, zn(x) = CZnZZ(x) + c3nz3(x) where Con and

¢y, are real numbers, We -can choose on and Can ~such that
2, 2 _. | op ‘
Con + 30 1. The sequence {(czn,c3n)}n=l is a bounded sequence fromk
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a ‘compact set. Hence, there exists -a sequence of integers {nk} such
lim . _ 2 2 _ '

nk+ ® c2nk o lim c3nk = Cq and ¢, + cy = 1. It follows,

by continuity, if we let 2z(x) = czzz(x) + c323(x),» that

that

Lim . zéJ)(x) = z(j)(x), j=20,1,2,3. The solution z(x) is a
k

n > «
k

nontrivial solution of (2) since c§ + cg =1, and z2(x) and z3(x)

are linearly independent.. The solutions z_ (x) and y(x) have in
« /

common the zero x_ . Also, they are linearly independent since

n
k
zn_(b) =0 and y(b) # 0. Also, Proposition 1,10 implies that
k
equation (2) is (2.1) disconjugate. Therefore, by Lemma 2.1, the zeros
of y(x) and 2z (x) separate in [a,x ].
n, o,

Next, we want to show that z(x) is oscillatory. Let ¢ - and d

be consecutive zeros of y(x) such that- ¢ < d. There exist n, such

that 0 > d, It follows that z (x) would have a zero in. [c,d] for
: | lim J .
all n, > n;-.,  But z(x) = z  (x); hence, z(x) would have a
h| k nk+ o nk

zero in [ec,d].

Therefore, 2z(x) has a zero between any two consecutive zeros of
y(x). Hence, z(x) is also oscillatory since - y(x) d1s. The solutions
z(x) and y(x) are linearly independent because z(b) = 0 and

y(b) # 0.

,Theorgm,2.3: Every,linear combination of y(x) and 2z(x) of

Theorem 2.2 is oscillatory,

Proof:. Let v(x) = cly(x) + czz(x), If e, = 0 or c, = 0, then
v(x) 1s oscillatory. Suppose ¢ ¢y # 0, and assume that v(x) is
nongscillatory. Without loss of generality, we can assume that
v(x) > 0 for x ¢ [b,»)  for some b > a, Since equation (2) is (2.1)

disconjugate, the zeros of y(x) and z(x) are all simple zeros.
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The inequality v(x) > 0 for x & [b,») reduces to
czz(x) > -cly(x) for xe [b,®). The zeros of -cly(x), being all
simple zeros, implies there exist two consecutive zeros X and X,
of y(x) such that b < Xy < x2
The inequality czz(x) > —cly(x). implies that czz(x) has no zero in

and —cly(x) >0 for x ¢ (xl,x2).‘

[xi,xz], which is a contradiction to Theorem 2.2. Hence, v(x) 1is

oscillatory.

We can show further that W(y(x),z(x)) # 0 for x e [b,») for.

some b >-a. Suppose not, then there exists x, e [a,) such that

0
W(y(xo),z(xo)) = 0. It follows that there exists a nontrivial linear
combination w(x) of - y(x) and z(x) ‘having a double zero or x = g
From Theorem 2.3 w(x) 1is oscillatory. But, this is a contradiction
to.the (2.1) disconjugacy of (2). Hence, W(y(x),z(x)) # 0 for

x € [b,®) for some b > a.

We will prove the next lemma in order te show a separation theorem

for fhe‘oséillatory solution y(x) and its derivative y'(x).

Lemma -2.4:  Let p(x) > 0, 2q(x) - p'(x) <0 for x e [a,»). If y(x)
is an oscillatory solution of (1), then Fly(x)] > 0 for all

x e [a,), where Fly(x)] = [y' (1% - y®)y"®) - pG)y? ().

Proof: It can be verified by differentiation that

X. .
Flyl = Fly@1+ /(2008 - p' (0 ly*(e)ee.

a

It follows under the ‘assumption that 2q(x) - p'(x) < 0 for all

x ¢ [a,*) that F[y(x)] is a strictly decreasing functlon. Suppose



now that . y(x) is an oscillatory solution of (2) and let {xi}:=l

a sequence of zeros of y(x) such that X, > as k = «, Then

Pyl = [y' 1% - 2y(x)y" () = pCx)y” ()

L]

Fly(x)] = [y' (xi)]2 > 0.

y'(xi)2 > 0 since (2) is (2.1) discenjugate.
From this, it follows readily that  F[y(x)] > 0 for all

x € [a,»).

Theorem 2.5: If p(x) >0, 2q(x) ~p'(x) <0, and y(x) is an
oscillatory solution of (2), then the zeros of y(x) and y'(x)

separate.

Proof: Suppose that y(x) is an oscillatory solution of (2).
follows froﬁ Lemma 2.4 that F[y(x)] > 0 for all x ¢ [a,»). The

function F(y(x)] is strictly decreasing and 1s nonnegative.
1im

Therefore, X'+ o

Fly(x)] exists and is nonnegative.

Let X, be a zero of y'(x); then
Fly(x )] = [y ()17 = 2y(x)y" (1) - p(x)y" ()
Fly(x) ] = 2y(x)y"(x) = plx )y (x) > 0.
Since - p(xk) > 0, it follows that -

y(r)y" (1) < 0.

12

be

It

(5)
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Let now a; and a, be two consecutive zeros of y(x). Without
loss of generality, we can assume that y(x) > 0 for x ¢ (al,az). By
Rolle's Theorem, there exists X, € (al,az) such that ,y'(xl) = 0.

We want to show that x. is the only zero of y'(x) in [al,az].

1
‘First, y’(al) # 0 and y'(az) # 0 follow from the fact that
equation (2) is (2.1) disconjugate. The function y'(x) cannot have
an infinite number of zeros in the interval [al,az]. For, if it were
the case, then there exists a point x* € [al,az] such that

y'(x*) = y"(x*) = 0. At the point x*, TFly(x*)] = —p(x*)yz(x*) <0
which is a contradiction since F[y(x)] 41s a nonnegative function.

Suppese now that x, 1is another zero of y'(x) such that

2
sze [al,azl, agd Xy and X, are consecutive zeros. The zeros Xy
and x, of y'(x) are simple zeros. For, if not, then again
F[y(xl)] < 0 and F[Y(xz)] < 0, and this is a centradictien.
Therefore, y"(xl) # y"(xz). This contradicts (5) since

y(xl)y”(xl) <0, y(xz)y"(xz) <0 and y(x) >0 for x ¢ [xl,xz].

Therefore, there is only one zero of y'(x) between any two

consecutive zeros of y(x), and consequently, the theorem is proved.

For the case when p(x) <0 and q(x) < 0, we will give a
sufficient condition for equation (2) to have property RO, and give
an example to answer the question raised in [5].

First, we consider the dimension of oscillatory solutions of

y''"' = px)y' + q(x)y. )"

Lemma 2.6: Let p,q € Cla,») with p > 0 and q > 0. If
P e Cl[a,m) with p' > 0, then all oscillatory solutions of (2)", if

there are any, are bounded on [a,x).
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Proof: Let y(x) be any .oscillatory solution of (2)", and let

be a fixed zero of y'(x). Let x, be any other zero of y'(x)

X 2

1

such that x2_> X] . If

max 2 _ — .2
X € [xl’XZ]»[Y(X) = [yx)17,

X € [xl’XZ]’ then y'(x) =0,

Define
Flya)l = [y' G012 = 2y)y" () + px)y2(x). (5)

By differentiation

- x x
Fly(®1 = Fly(x)] + 4 p'(8)y’(s)ds - 2 /}; a(s)y” (s)ds.
1 1

If x= Xy5 then

max. 2 2
X € [xl’xz] [}’(X)] =y (Xl).'

If ‘§ x, . then

—

| _ _
Fy@1 = Fly)l + / pieyieras -2 [ a@yierds

Xl xl
. x
j_F[Y(xl)] +y (x) * o/n p'(s)ds .
1.
= Flyax)] + ¥ @ G - plxp]. (6)

From (5) and the fact that y'(x) = 0, we have
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Fly@] = [y'@1% - 2y@y" & + p@y° @
= 2y (DY@ + p@y @ .
Therefore,

2y @y @ + p@Y @ £ FlyG)] + @y ® - 2y @
or

Py @ - 2y@y"® < Fly(x)1.

Now, by Lemma 2.1 of [3], y&)¥y"(X) < 0. For y(x)y"(x) > 0 and

y'(x) = 0 woulld imply that y 1s nongscillatery. Hence, i

PV @ < Fly(x)],

or
Fly(x,)]
2 ,— 1
A Ten
Consequently,
Fly(x)]
max . 2 2 2 ' 1
x € [x,%,] YT =y () < y7(xp) + p(x)

and the lemma is proved.

Theorem 2.7: Assume that the hypothesis of Lemma 2.6 holds. Then,

if (2)" is oscillatory, it has property RO.

Proof: Using Lemma 2.1 of [7] and the technigue used in the proof
of Theorem 2 [10], it follows that (2)" has two linearly indedpendent
oscillatory solutions ~u and v whose linear combinations are also

oscillatory, Further, W(u,v)(x) does not vanish anywhere.
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Let 2z be the solution of (2)" defined by the. initial conditions
z(a) = z'(a) = 0, and 2z'"(a) = 1. Then =z is nonoscillatory. Let
y = clu + c,v + cqz by any solution of (2)".. By Lemma 2.6, u and v
lim

are bounded. Also, % > @ z(x) = «, Hence, y can not be oscillatory

unless cy = 0. This shows that (2)" has preperty RO.

An unresolved question raised in [5] was whether the converse of
Theorem 1.7 is true. We give a counter example to show that the
answer is in the negative, But before doing that, we need to prove

the following lemma.

Lemma 2,8: If equation (f) has property RO, then for any three
linearly independent solutions Ui, Ué, V' such that 'Ui and Ué
are oscillatory, V' is nonoscillatory, and W(Ui,Ué)(x) # 0 for

x ¢ [a,»), it follows that a solution of kf) is oscillatory if and

only if it is a linear combination of Ui and Ué.

Proof: Suppose that (1) has property RO. Then (1) has three

linearly independent solutions Ul’ U2, an& V such that Ul and

U2 are oscillatory, W(Ul,Uz)(x) # 0 for x e [a,), V dis:

nonoscillatory and a solution is oscillatory if and only if it is a

linear combination of U and U2.

1
Let Ui, Ué, V' be solutions of (i) satisfying the hypothesis of
the lemma. Since Ui is oscillatory, it must be a linear combination
of Ul and U2' Similarly, U2 is a linear combination of Ul and
U2' Since V' is nonoséillatory, it is a linear combination of- Ul’
U2’ and V with coefficient of V with.coefficient of V different

from zero. Hence, .
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| -
Ul = clUl + c2_U2

[r]
N -
it

klUl + k2U2

V' = m,U, + m, U, + V. @)

171 272

Let 2z(x) be a linear combination of Ui  and Ué. Then it is

]

oscilldtory since -Ul and Ué are oscillatory, and W(Ui,Ué)(x) £.0

for x'e¢ [a,»). Suppose Z(x)  1is a solution of (1) which is

oscillatory. Then 2Z(x) = nlUi + ané + n3V' By substituting from

(7) we have

Z(x) = n ( + c, U ) + n, (k U o+ k ) + n, (m U + m U, +V)

¢1Uy 2°2

Z(x§‘='(nlcv *nyky +ngm)U + (aje, +aky +0m)U, + 0¥

Singe (1) has property RO, and Z(x) is oscillatory, it must be

a dinear combipation of Ul and Uz., Therefore, n, = 0. Hence,

Z(x) 1is a linear combination of Ui and Ué. This completes the

pfoof'offthe lemma.

ExamBlé 2.9: Let uy = sin xz,‘ u, = cos xz, and .

= (2 +1/x) + (2 -~ 1/x)cos 4x, x > 0. It follows that v dis
nonoscillatory, W(ul,uz)(x) = -2x < 0 for x > 0. Furthermore,
calculat%ng W(ul,uz,v), it can be verified that W(ul,uz,v)(x) <0 on
[a;») for a sufficiently large positive number a. Hence, there exists

an equation of the form (1) with solutiens u and v. Thus, we

b )

may assume that u u, and v are solutions of (1).

1’ "2
Consider the adjoint.

y''"" - (py)" + (qy)' - ry =20 -
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of (1). 1If

/x p(t)dt

a
e

F(x)

Then U, = F(x)W(ul,V)(x), U, = F(x)W(uZ,v)(x), and

1 2
vV = F(x)W(ul,uz)(x) are solutions of (1)', (see [1]). Clearly, Ul,

is oscillatory since wu, 1is oscillatory and v 1is not. Similarly,

1

U2 is oscillatory and V is nonoscillatory. It is easy to verify

that
1im U1 (®

x > o V(x)

# 0.

Hence, it follows from Theorem 2.7 and Lemma 2.8 that (I)' does not
have property RO.
Let y = ¢y sin x2 + c, cos x2 + (2 4+ 1/%x) + (2 - 1/x)cos 4x. In

order to show that (1) has property RN, we consider four exhaustive

cases.

2, cg # 0. Then vy

Case I. Suppose c¢ >0, and g

can be written as

y. = ci + cg sin (x2 +a) + (2 + 1/x) + (2 - 1/x)cos 4x,

0 <a j_w/Z. Suppose y 1s nonoscillatory. Then for some positive
number . b, y(x) »0 for x > b. For, there exist arbitrarily large
values of x .. for which y(x) > 0 since v(x) > 0 and x2 + 0o =8
has solutions for any number g > a. We note that

v((2n + L)n/4) = 8/(2n + 1)w. Consequently,
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y((2n+l)n/4) = /ci + c§ Sin((2n+l)2ﬂ2/l6 + a) + 8
2

2
c;‘+ c, (2n+l) ™

Let ¢ = sin n/16, and let N be a number such that N > b,
(N + 1)n/4 > b, and

8
/ 2 2
c1>+ sz(2n+l)ﬂ

for all n > N. In order to obtain a contradiction to the assumption

< €

that y(x) > 0 fer x > b, it is sufficient to show that
sin((Zn&l)2ﬂ2/16 + @) < -¢ for some integer n; n > N > b. Thus, it -

is sufficient to find integers n, n > N > b, such that (2n+l)n/4 > b,

8

2 2
/cl + c, (2n+l)

and sin((2n+1)2ﬂ2/16 + o) < -gin 7/16. The latter inequality is

< €

satisfied if 177/16 + 2krw < (2n+l)2n2/16 + o < 31n/16 + 2kn., Since o
is between 0 and 7/2, a = mﬂ/l6 for some real number  m,
0 <m< 8., Thus, it suffices to show the existence of arbitrarily

large integers n . satisfying
17 + 32k < (2a+l)2m + m < 31 + 32k, (8)

where . k is #n integer.

There exlst arbitrarily large integers n such that 8nwm can be-
written as. 8nm = 32p + r, where p is an integer and 0 < r < 1.
This follows since for any integér'ln divisible by 4,

0 < 8w - 32p < 1 is equivalent to 0 < qm - p <.1/32, q = n/4, which
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is certainly certified by arbitrarily large integers q and p. Let
n be any positive integer such that 8nm = 32p + r, p an integer and
0 < r < 1. We show that for any choice of m in the prescribed range,

one of the numbers x = (21 + l)zw, i=nm+l, ..., nt8, satisfies

i
(8). Let x = (2n + l)zw = 32k + r', k an integer and 0 < r' < 32.
Then _xn+l((2n‘+ 1) + 2)2W = 32k + r' + 8nm + 8m. Similarly, each

X ..y 3=2,3, «e., 8, can be written in the .form

x . =32k + r' + p.(8m) + q. (87 ., and ., integers. Replacin
N Py (8am) + q,( ),} P, a4 g P g
8nm by 32p + r and dividing qj(8w) by 32, we have

X

= ' .
1 32kl +r+ 1 + 25.13272 ...,

k. an integer, 0 <r <1, 0 < r' < 32,

1
X 4o = 32k, + 2r + r' + 11.39816 ...,
X g = 32kg + 3r 4+ r' + 2279632 ...,
X = 32k4 + 4r + ' + 27.3272 ...,
X 45 = 32k5,+ 5 + r' + 24.9908 ...,
X e = 3k + 6xr+ r' + 15.78712 ...,
X 47 = 32k, + 7r+ '+ 317161 ...,
X ,g = 32kg + 8r + x' + 8.7719 ...

By dividing up the range of the values ef m 1nte subintervals
i<m<i+1l, 41=20,1, ..., 7, one can verify that for each value of

m, one of the numbers x i=n,n+tl, ..., nt8, satisfies (8). For

i’

example, suppose, 0 < m < 1, Then if r' < 3, x satisfies (8). If

n+l

3<r'<8, then x

< 4 Satisfies (8). If 8 <r' <16, then x

n+2



21

or X_

satisfies (8). If 16 < r' < 17, then either x T

n+8
satisfies (8), depending on whether r < .5 or r > .5. If

17 < r' < 30, then X satisfies (2). If r' > 30, then X 1

satisfles (2).

Case II. Suppose c,; >0, c, < 0, and ci + cg # 0. Then we

can write
y fJ/ci +‘c2 cos(x2 -a) + (2 + 1/x) + (2 - 1/x)cos 4x,

/2 < o < 7m. If we let - = cos 91/16, the same reasoning as in
Case I reduces our problem to showing the existence of arbitrarily

large integers n satisfying
9 + 32k < (2n+l)2ﬂ - m < 23 + 32k,

where k is an integer and m is-'a number such that 8 < m < 16. As"

in Case I, it can be verified that feor each value of m, some X,

i=n,n+l, ..., nt8, satisfles the above inequality.
‘ 2 2
Case IIIL. Suppose ¢y <0, ¢, <0, and ¢y + sy # 0. Then we

can write

y = = c2 + c2 sin(x2‘+ a) + (2 + 1/x) + (2 - 1/x)cos 4x,

1 2

0<a :_ﬂ/2. -If we let € = sin 7/16, ouriproblem reduces to showing

the- exlstence of arbitrarily large integers n satisfying

1+ 32k < (2n+l)2ﬂ + m < 15 + 32k,

where k dis an integer and m is a number such that 0 < m < 8.
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Again, it can be verified that for each value of m; some X, ,

i=n,ntl, ..., nt8, satisfies the above inequality.

>0, and 2+ cg # 0. Then vy

Case IV. Suppose ¢ 1

<0, <,

can be written as

y = - ci + cg cos (x2'— a) + (2.+ 1/x) + (2 - 1/x)cos 4x,

/2 < o < m. Let ¢ = cos 7m/16. It suffices to show that
—cos(xz;— a) € =¢. It suffices to show the existence of arbitrarily

large integers n satisfying one of the inequality

32k < (2n+1)2w -m < 7+ 32k

or
25 + 32k < (2n+1)%7 - m < 32 + 32K,

where k dis an integer and m 1is a number such that 8 < m < 16.:
Again, by considering values of m in subintervals of length one, it
1

can be verified that for each value of- m, one of the X, s satisfies

one .of the above two inequalities.



CHAPTER III

SOME OSCILLATION PROPERTIES OF FOURTH ORDER
ORDINARY LINEAR HOMOGENEOUS

DIFFERENTIAL EQUATIONS
Consider the differential equation

y© = pG)y" + qx)y' + rx)y, %)

where p(x), q(x),‘ and r(x) are continuous on [a,») for some fixed
real number . a. We will show, in the following two theorems which
insure the boundedness of oscillatory.solutions, and use a technique’

of getting three particular independent solutions of (4) to form a
fundamental set for a, third linear differential equation. We first

prove . the following lemma.

Lemma 3.1: Let p >0, q>0, . r>0, p, q and r ¢ Cl[a,w),
p' <0, q' <0, and r' > 0. Then, if y(x) 4is any solutien of (4)

with y'(b) = y'(c) = 0 where a <b < ¢,

max <12 2 . Mly()
X £ [b‘,C]L [Y(x)] < [Y(b)] + t (b) ’

where

<
Mly(x)] = @y @) + p@yY' I + 2q(0) f v'2(s)ds + v (%)
a

_ ZY'(X)}" " (x).
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Proof: Define

X
My ] = 1@y + @y i + 20 ) y'e)ds + v @)
a

-2y (x)y"" T (x). 9)

It can be verified by differentiation that

~ X v X '
Myl = uly@] + [ r'@y’eas + [ p' )y is)as
a

a

X S
+‘/av [Zq'(s) [ y'z(t)dt} ds.

It xvem?:,c] [Y(x)]z = [Y(;)]z, x e [b,e], them y'(x) = 0. If.

X = b, then
N M RER R OF (10)

If b < x, then

x X
Mly(x)] = Mly(b)] + f r'-(s)yz(S)ds + f p'(S)y"Z(S)ds
b b

'y s
+/ [Zq'(S) / y'z(r)dr] ds -
b

a

x
< Mly(b)] + d/ﬁ r'(s)yz(s)ds
b

< My®)] + y2 @@ - r®)].

From (9) and the fact that y'(x) = 0, we have
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; — 0 -._ ;\ —
My@1 = @@ + 20@ /v 2o + y?@.
b

Therefore,

- 2 - . pX
rCX)yz (x) + 2q(x) f y.Z(s)ds + y"z(x)
b

< My + @Y @D - r®)yEE

or
z
eV @ +20® /v ie)ds + yP R < My ®)].
/ .

Hence,

r()yA @ < My ®)]
since q(x) » 0 or

& ¢ Hrell (11)

Therefore, combining (10) and (11)

x e [b,c] [y(x)]" = y7(b) +,,£_}(’_5_),)_J, '

Hence, the lemma is proved.

As a direet consequence of Lemma 3.1, we can state the following

theorem,

Theorem 3.2: Assume the hypothesis for Lemma 3.1, Then all

oscillatory solutions of (4), 1f there are any, are Bounded.

The next theorem gives also a sufficient condition for all

ogcillatery selytions of equation (4) to be beunded.
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. . k ‘ " ] | . !
Theorem 3.3: Let p,q,r,p',r' ¢ C(a,®»), p20, >0, r'(t) >0,
and p'(t) - 2q(t) < 0. Then all oscillatory solutiens of (4), if

there are any, are bounded.

Proof:. Let

eyl = ryA ) - 2y (Oy' @) + ¥y ) + py' @A A2)

It can be verified by differentiation that

X
sy = ly@1+ /' (e)y(s)’as

a
- [ a@ - p )y Ae)as. 13)
a
et x, and x, be zeros of y'(x) where y(x) is an oscillatory

solution of (4).

2 L I W=y @, Fe lxx,), then y'@ = o0.
i S A _
If %, = x, then % € ?i:’le [y (x)l =y (xi). 1f X, ¢ % then using

13,

=

| X | x
Sy = olyxp) + / r'e)Feias - [ Qe - ')y (edas
: | ’x X
1 1

-

<oyl + [ x'@yi(e)de
xl ]

S Clyr)) + Y@@ - )],

From (12) and the fact that y'(x) = Q

r@Y @ + 01 5 6lyxe] + r @Y @ - raxy’ @
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or
Y@ + v < eyl
Hence,
26 < G[y(xi)]
Vs

Therefore, in both cases

Gly(xp)]
max 2 2= .2, 1
x e [x;,%,] [y" () = y7 00 2y"(xp) + (%)

Hence, it follows that any oscillatory solutien is bounded.

We finally iilUStrate the technique used to obtain a third order
differential equation whose fﬁndamental set forms a set of linearly
independenﬁ solutions of (4)'for the case p>0, q<0 and r>0
in [a,»).

Consider the fundamental set of solutions of (4), Yor Vs Yoo

and Yy such that

W(Yijl-yz:ys)(a)'-

OO OKr
O OO
O ©O
HOOO

We want to show that yo, yi, and y2 are solutions of a third

order differential equation of the form

y''"" = py" + qy' + ry, BN

where p < 0,  q >0, and r < 0. Hence, any properties about the

solutions of equation (2)" are also properties of equation (4). First,
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. g
we show that W(yo,yl,yz)(x)azfo for x > a. Suppose..
W(yo,yl,yz)(b) = 0 where b > a, Then, there exist constants Co» Cyps

and c2,, not all zeres, such that

n
o

coyo(b) + clyl(b) + czyz(b)

i
o

(72 ' vy
coyo(b) + °1y1(b) + czyz(b)

[
o

co¥o () + ¢;y7(b) + cyy,(b)

Let  z(x) be the solution of (4) given by

z(x) = eg¥o (®): + ¢y, (%) + ey, (x).

The solution 2z(x) 1s & nontrivial solution eof (4) since
z(a) = cqr- z'(a) T Gys z'(a) = Gy and Co 1 and c, are mot’
all equal to zero.

We can assume that . z'''(b) < O.

Then Lemma 1.13 implies gﬁ(x)‘> 0 for all x ¢ [a,b)., But
z"(a) = 6, and this is a contradiction, Hence, W(yo,yl,yz)(x) ¥ 0
for all x > a., Since -W(yo,yl,yz)(a) = 1, then it follows that,
W(yo,yl,yz)(x)-> 0 for X > a. Hence, Yor Yo and Yy are

solutions of the third order differential equation given by

Yo 4 Yy y

L ] 1 4
YO Yl Y2 y

" [1) 1}) "
YO Y1, Y2 Yy

11y Ty . Tee tere
YQ yl Y2 Yy

yo’yl!YZ

or after -expansion of the determinant



Llyl =y'"'" -

Let

where

Yo ¥y Y, Yo 2 ¥,
Yo Y1 Y3 Yo Y1 Y
y6'| . yi" yél' . Yé" yi" yé'l
: _ + '
W(ygYys9,) y W(y,sYys9y)
Yo Y1 Y3
yg ) Yy
yo' 1! yll- Ty Yé' A
— : —L v =0,
W(ygsyq 7)) y
Y0 b4 )
- ' 1 '
a Yo Y1 )
try tre [ 3R AR B
¥o v Y,
Yo 41 Yy
= " 1"t "
B Yo Y1 Yo
11 11 Tt
M Y1 )
| 1 L}
Yo 71 Yy
" m "
Y= 1Y 71 Y2
yé Tt yl'- Tt Yé [}
" " ' ' 1 - - .
Y1 Y3 *1Y% Yi ¥ m+a,
1t 1t 12} 1 11"
1 ) Pyy PY] PY,

29



and
Yo ¥y v,
= 11" 11 1"
m Yo 1 )
ycl)'l yll-ll yévl
\ " ] |
Yo 71 ) Yo Y1 Y
m= Yy Y ¥, |*tlyg Y] vy | =m
O A I SR
where

1 1 1
¥y ] I,

, Yo b1 )
- 1t " "
™ Yo 71 )
Tt 1t t1?
\ yl \ V
Yo 1 Y2 Yo Y1 Y2

mpo= ¥y oy vy |=r|vyy vy ¥y |<O.

1t 11 11

o TV, TV, Yo Y1 Y
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 Since 'll]._('a) =0 then m, < 0. Hence, m' < 0., But m(a) = 0.
Therefore, m < 0. Hence, a' < 0. But a(a) = 0. Therefore,
a < 0.

Consider

Yo 41 Y,

=% o |-
‘ y(l)'l'I .yill y:l!'l

8 = m. By previous argument m < 0, Hence, 8 < 0. Finally, Yy = m,
and thus, -1 < 0. Therefore, yo, yl, and Yy are solutions of the

differential equation

y'' =yt @'ty

with p<0, q>0, and r < 0.



CHAPTER IV
SUMMARY AND CONCLUSIONS

" The purpose of this paper is the study of s@me oscillatory
properties of third and fourth order ordinary homogeneous'differential
equations. |

Chapter II discusses the third order differential equations. It
contains an example of a differential equation having property RN,
but its adjoint does notkhave property RO. One theérem gives a
- sufficient condition under which the differential equation has property
RO. Also, one case where the dimension of the oscillatory subspace is
at least two in the oscillatory case 1s given.

Chapter III discusses the fourth order linear differential
equation, and contains two theorems which insure the boundedness of the
oscillatory solutions. An example illustrates the case where three
particular solutions of a fourth order differential equation form a

fundamental set of a third order differential equation,

y = py" + qy' + ry,

where p <0, q >0, and r < 0,
There are questions suggested by this thesis. One might attempt
a necessary condition for RN to imply RO. Also, one can examine

the case of RO and RN properties of y''' + py' + qy = 0 when

2N
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p<0 apnd q > 0. Finally, it appears possible to extend the RO and

RN properties to the fourthvorder différentialiequations.
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