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CHAPTER I 

ORDINARY LINEAR HOMOGENEOUS 

DIFFERENTIAL EQUATIONS 

Introduction 

This thesi.s is primarily concerned with some oscillatory properties 

of third and fourth order linear ordinary homogeneous differential 

equations, In particular, the dimensions of the oscillatory and 

nonoscillat;ory subspaces are investigated. 

The third order theory started with Birkhoff's paper in 1911, [l], 

in whic.h he studied the oscillation and separation theory, Reynolds, 

[2], extended Birkhoff's work to equations of arbitrarily order n. 

However, the modern theery did not start until ~he late. 1940's. 
v 

Significant cqntributions were made by Gregus, Hanan, Lazer, Rab, Svec, 

and Zlamal. It was shown that many of the asymptotic and oscillatory 

properties of 1:1,near third order ordinary homogeneous differential 

equations with constant coefficients are carried over to those with 

variable coefficients which do not change sign. 

Leighton and Nehari in [3], Howard, Barrett, Lazer, Ahmad were 

among the f;trst to undertake a systematic development of the fourth 

order theory, The dimens:i.ons of oscillatory and nonoscillatory 

subspaces were investigated in the case where the coefficients do not 



In this. paper, we consider the maximum dimensions of oscillatory 

and nonoscillatory subspaces for the third order linear differential 

equation, We will study the case where the maximum dimensions of 

oscillatory and nonosc;l,.llatory subspaces are respectively two and one. 

The relations between the dimensions of subspaces of solutions of 

the differential equation and those of its adjoint are also 

2 

investigated. This paper contains one example which answers a question 

raised by Ahmad [5]. 

Concerning the fourth order ordinary homogeneous differential 

equations, conditions. are given under which all oscillatory solutions 

are bounded. Also are shown some tecqniques of getting from the fourth 

order differential equation 

IV y = Py II + Qy I + Ry ' 

where P > O, Q < O, and R > O, a third order differential equation 

y I I I = py" + qy I + ry, 

where p < O, q > O,. and r < O. 

In the remaining sections of this chapter, we shall state 

propositions which are basic to the development of the succeeding 

chapters. Since these results are all wel.1--known, we shall not prove 

any of them. 

Third Order Linear Differential Equations 

Consider the differential equation 

z''' + P(x)z" + Q(x)z' + R(x)z = O, (1) 
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where 
2 P (x) e; C [a, co) , 1 Q(x) e; C [a,co), R(x) e: C(a,co), and a is a 

real number. The adjoint of (l) is the differential equation given by 

z''' - (P(x)z)" + (Q(x)z)' - R(x)z = 0. (1)' 

The well-known substitution 

z(x} • y(x) exp [- ~ ;:x P(s) ds] 

transforms the d,ifferential equation (1) into 

y''' + p(x)y' + q(x)y = O. (2) 

The oscillatory properties remain invariant under .this transformation. 

Therefore, (2) is not much less general thanl (1). 

In what follows, by a solution of (2) we shall mean a nontrivii!,1 

solution. A solution of (2) is said to be oscillatory if its set of 

zeros is not.bounded above. Solutions which are not oscillatory are 

called nonoscillatory. 
' 

Definition. l~l: The differenti~l equation is said to be oscillatory 

if it has at least one, oscillatory solution. 

Definition 1,2: A subspace of solutions of the differential equation 

is said to be nonosdllatory [strongl.y oscillatory] if and only if 

none of [all] the s.olutions i1;1 the subspace oscillate. 

Definition 1,3: The differential equation (2) is said to have property 

R on [a,) if it has both oscillatory and nonoscillatory solutions, 



and furt'Q.er, it has two _solutions u1 and u2 with W(u1 ,u2)(x) :/, 0 

for x·E [a,oo), where W(u1 ,u2) represents the wronskian of u1 and 

The·orem 1. 4: If (2) has solutions and su~h that 

on [a,oo) and W(u1 ,u2) (x) :/, 0 on [a,oo)' then no solution of (2) . . 

can have more than two zeros on [a,~) (counting multiplicities) 

(see [4]). 

Remark: It follo~s that if (2) has property R and ul and u2 are 

the solutions in Definition 1. 3' then . ul and u2 are both 

O$cillatory. For, suppose u1 (x) 'F O on some interval [b ,"") • Then 

u1 (x). :f, 0 and W(ul. ,u2)(x) 'F O on (1:, ,"") imply by Theorem 1.4 that 

no solution of (2) can have more than two zeros. 

4 

Pefinition 1.5: The differential equation (2) is said to have property 

RO if it has .property. R and a solution of (2) is oscillatory if and 

only, if it is ·a p,ontriv;i.a:j. linear combination of u1 and where 

u1 and u2 are the solut;ions i~ Definition L3. Equation (2) is 

said to have property RN if it has property R and every nonoscilla-
' 

t~ry solution of (2) is a ~onstant multiple of a fixed nonoscillatory 

solution, 

The following three theorems have been established in [5], 

Theorem 1.6: The differential equat.;i.on (2). has property R on [a,00 ) 

if and only if its adjoint has property R on some ·interval · [b , 00 ) for 

some b > a. 
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Theorem 1. 7: Suppose that: equation (2) has solutions u1 , u2 , and v 

such that v(x) :/: 0 for x ..:. a, and u1 and u2 are oscillatory 

with W(u1 ,u2)(x) :/: 0 for x > a. Then (2) has property RO if and 

only if 

lim ul (x) 

x -+ 00 v(x) 
lim u2(x) 

= = o. 
x -+ 00 v(x) 

The-or.em 1. 8: Suppose that ·equatio:n (2) has solutions u1 , u2 , and v 

such that v(x) :/: 0 for x .::_ a, and and are oscillatory with 

W(u1 ,u2)(x) :/: 0 for x > a. Then (2) has property RN if and only if 

every nontrivial linear combination of 

u1 (x) 

v(x) 

is unbounded. above and below. 

and 
u2 (x) 

v(x) 

Theorem 1.9: If equation (2) has property RO on [a,00 ), then its 

adjoint has property RN on some interval [b,00 ), b > a. 

P iti 1 lo I ·,f p(x) _< O, . rp;eos on , : q(x) .::_ O, and y(x) is a solution of 

(2) such that 

XO e: [a,oo), 

and 

(see [3]). 

. y(xo) .::_ 0, y' (x ) 
0 .::. 0' 

then y(x) > o, y' (x) > o, 

lim y(x) .,.,. 
x: + 00 

lim 
x -+ 00 

and y" (x ) 
0 

> 0 for some 

y"(x) > 0 for an x > XO' 

y' (x) 

Definition ], .11: Equation (2) is said to be (1. 2) dis conjugate [ (2 .1) 

disconjugate] if and only if every solution y(x) for which, 
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y(b) = y' (b) = O, y"(b) > 0 (a < b < oo) has the property that 

y(x) > 0 in (a,b) [in (b,oo)], 

Proposition 1,12: Equation (2) is (1,2) disconjugate [(2.1) 

disconjugate] if 2q(x) - p 1 (x) > 0 [iq(x) - p'(x) < O], (See [6]), 

Fourth Order Linear. Differential Equation 

Consider the differential equation 

IV z + P(x)z'" + Q(x)z" + R(x)z' + L(x)z - 0. (3) 

If Q(x), R(x), and L(x) E C[a,01>) and P(x) E c3[a, 00 ), the 

substitution 

z(x) • y(x) exp [ - f ,( P(s) ds] 

transforms (3) into. 

IV y = p(x)y" + q(x)y' + r(x)y (4) 

where p(x), q(x), and r(x) are continuous on [a, 00). The 

oscillatory properties remain invariant under this transformation. 

The techniques in this part were extensively used by Lazer in [7]. 

Later, Lazer and Hasting [8] applied these methods to a simple 

self-adjoint differential equatipn of order four. Ahmad used it also 

for equations of type (4), 

For Chapter IV, we need th.e following lemma (see [3]), 

Lemma 1.13: Let y(x) be a solution of the differential equation (4) 

wher.e p(x), q(x), and r(x) E C[a,00 ), p(x) > O, q(x) < O, and 
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r(x) > O. If y(b) 2:...0, y'(b) ~ O, yll(b) 2:_ O, y'''(b) < 0 fo,r ·some 

b > a, then y(x) > 0, y'(x) < O, y"(x) > O, and y'''(x) < 0 for 

x e [a,b). 



CHAPTER II 

SOME: OSCILLAT:i:ON PROPERTIES OF THIRD 

ORDER LINEAR HOMOGENEOUS 

DIFFERENTIAL EQUATIONS 

Consider the d;f,fferen~ial equation .. 

y''' + p(x)y' + q(x)y = 0 (2) 

1;1n.d its adjo:;Lnt 

y''' + (p(x)y)' - q(x)y = o. (2)' 

1 Thro~ghout this chapter we shall assume that p(x) e C [a,00 ) and 

q(x) e C[a, 00 ) for some fixed real number a. We ·shall study 

suaceJ:1sively the cases: 

(i) p(x) > O, q(x) < O; 

(ii) p(x) < O, q(x) < o. 

We first c~t;>.sider the cas~ when p(x) > 0 and q(x) < o. In the 

case w1'el!'e p and q are constan.t, a .fundamental set of solutions of 

equation (2) co1;>.sists of e -bx ·sin c:x;, -bx e cos c;x:, dx e where b > O, 

c > 0 and d > O. 'l'hel:'et'ore, for the eonstant case, equation (2) has 

property RO. The _question is whether this is the ease when p(x) and 

q(x) are not ne<:1essar:Cl.y constant. The next part answers partially 

this question µnder the supplementary condition that. 2q(x) - p'(x) < 0 
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for x e [a,!!?). The following lemma of Hanan is needed for the proof 

of our first result. 

Lemma 2.1: If u(x) and v(x) are linearly independent solutions of 

(2) such that u(b) = v(b) = 0 for some b > a, and equation (2) is 

(2.1) disconjugate, then the zeros of u(x) and v(x) separate in 

[a,b) (see [9]). 

Theorem 2.2: If p(x) > O, q(x) < 0, 2q(x) - p'(x) < 0 on [a,00 ), 

and equation (2) has an osc:ll],.atory solution y(x), then (2) has. 

another oscillatory solution z(x) such that y(x) and z(x) are 

linearly independent. 

Proof: Let y (x) be an oscill,atory solutio'l'!, of (1). Let b be a 

point at which y(b) ~ 0 and let 
00 

{xi}i=l be an increasing sequence 

of zero• of y(x) such that b < x1 and as i + oo, Let 

z1 (x), z2(x), and :a 3(x) be the fundamental set of solutions of (2) 

such. that 

1 0 0 

W(z1 ,z2,z3)(b) = O 1 0 

0 0 1 

for each integer n, let z (x) be the solutfon of (2) defined by the 
n 

two boundary conditions ' z (b) = 0 
n 

and z (x) = 0. 
n. n. The solution 

zn (x) can .be written as a linear· c0mbination of z1 (x), z2 (x), and 

z3 (x), and since . zn <b) "" 0, it b a linea.r combination of z2 (x) and 

only, Therefore, where and 

c3n a.re red numbers. We ·can choose 0 2n and c3n such that 

2 + 2 
l. The {(c2n' 0 3n)}: .. l is bounded from 0 2n C' = sequence a sequence 3n 
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a compact set. Hence, there exists a sequence of integers {nk} such 

h lim 1 . d 2 2 t at n -+ 00 c2n = c2 , :;Lm c3n = c3 , an c2 + c3 = 1. It follows, 
k k .· k 

by continuity, if we let z(x) = c2 z2 (x) + c3z3 (x), that 

lim · /j) (x\ = z (j \x) 
n-+ 00 n ( ' 

k k 
j = 0,1,2,3. The solution z (x) is a 

nontrivial solution of (2) since and z2 (x) and 

are linearly independent. . The solutions and y(x) have in 

common the ,zero x •. Also, they are linearly independent since 
nk 

z (b) = 0 and y(b) :/. .o. Also, Proposition 1.10 implies that 
nk 

equation (2) is (2.1) disconjugate. Therefore, by Lemma 2.1, the zeros 

of. y(x) and z (x) separate in [a,x ]. 
nk nk 

Ne.xt, we want to show that . z (x) is oscillatory. Let c · and d 

be consecutive zeros of y(x) such that c < d, There exist such 

that nk > d, It follows that 

all nj > nk, . But 

zero in [c,d]. 

(. ) li.m z x = n -+ oo 
k 

z (x) would have a zero in [c,d] 
n. 

J 
z (x); hence, z(x) would have a 
nk 

for 

Therefore, z(x) has a zero between any two consecutive zeros of 

y(x). Hence, . z (x) is als.o oscillatory since· y (x) is. The .solutions 

z(x) and y(x) are linearly independent because z(b) = 0 and 

y(b) 'F o . 

. Th.eorem 2. 3: Every linear combinati.on o;f y (x) and z (:x:) of 

Theore~ 2,2 is oscillatory, 

Proof: . Let v(x) = c1y(x) + c2.z (x), If cl = 0 or c2 = o, then 

v(x) b oscillatory. Suppose clc2 'F O, and assume that v(x) is 

nonoscillatory. Without loss of generality, we can assume that 

v(x) > 0 for x e: [b , 00 ) for some b > a, Since equation (2) is (2, 1) 

disconjugate, the zeros of y(x) and z(x) are all simple zeros. 
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The inequal:l ty v (x) > 0 for x £ [b , 00 ) reduces to 

c 2z(x) > -c1y(x) for x £ [b,00), The zeros of -c1y(x), being all 

simple zeros, implies there exist two consecutive zeros xl and x2 

of y(x) such that b < x 
1 < x2 and -c1y(x) > 0 for x £ (xl,x2)' . 

The :i.nequality c2z(x) > -c1y(x) impl:i.es that c2z(x) has no zero 

[x1 ,x2 ], which is a contradiction to Theorem 2.2. Hence, v(x) is 

oscillatory. 

in 

We can show further that W(y(x) ,z(x)) #: 0 for x £ [b, 00 ) for· 

i;;ome b > a. Suppose not, then there exists x0 £ [a,oo) such that 

W(y(x0) ,z (x0)) = 0. It follows that there exists a nontrivial linear 

combination w(x) of· y(x) and z (x) having a double zero or x = x0 • 

From The~relll 2.3 w(x) is oscillatory. But, this ;Ls a contradiction 

to.the (2.1) disconjugacy of (2), Hence, W(y(x),z(x)) # 0 for 

x £ [b ,~) for some b ..::_ a. 

We will prove the next lemma in order tci show a separation theorem 

for the ,oscil,latory solution y(x) and its derivative y' (x). 

Lemma 2,4: Let p(x)..::. O, 2q(x) - p I (X) < 0 for x £ [a,oo). If y(x) 

is an oscillatory solution of (1)' then F[y(x)] > 0 for all 

[a,oo)' where F[y(x)] 2 2y(x)y"(x) 2 x e = [y I (X) ] - - p(x)y (x). 

Proof: · It can be verified by differentiation that 

F[y(x)] = F{y(a)] + fx [2q(t) - p'(t)]y2 (t)dt. 
a 

It follotvs under the assumption that. 2q (x) - p' (x) < 0 for all 

x e [a, 00 ) that F[y(x)] is .a strictly decreasing function. Suppose 
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now that. y(x) ban oscillatory solution of (2) and let {xi}~=l be 

a sequence of zeros of y (x) such that ~· -+ co as k -+ CIO, Then 

y'(xi)z > 0 since (2) is (2,1) disconjugate, 

From thi1;1, it _follows readily that· F[y(x)] > O for all 

x E [a,~). 

Theorem 2,5: If p(x) > O, 2q(x) - p'(x) < O, and y(x) is an 

oscillatory,solution of (2), then the zeros of y(x) and y'(x) 

separate, 

Proof: Suppose that y(x) is an oscillatory solution of (2), It 

follows ftc;,m Leni:ma 2. 4 that F [ y (x) ] > 0 for all x E [a, co) • The 

funct:f.C:>n F(y(x)] is strictly decreasing and is nonnegative. 

Tb,eref.ore, lim 
x-+ CIO F[y(x}] exists and. is nonnegative. 

Itet ~ be a zero of y '· (x) ; then 

Since· p(~) ~ O, it follo~s that· 

(5) 
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Let now al and a2 be two consecutive zeros of y(x). Without 

loss of generality, we can assume that y(x) > 0 for x E: (al ,a2), 

Rolle' s Theorem, there exists xl E: (al,a2) such that . y'(xl) = o. 

We want to show that x1 is the only zero of y' (x) in [a1 ,a2], 

First, y' (a1) :r O and y' (a2) :r O follow from the fact that 

equation (2) is (2,1) disconjugate. The function y'(x) cannot have 

By 

an infinite number of zeros in the interval [a1 ,a2]. For, if it were 

the case, then there exists a point x* E [a1 ,a2] such that 

y'(x*) = y11 (x*) = 0, At the point x*, F[y(x*)] = -p(x*)y2(x*) < 0 

which. is a contradiction since F [y(x)] is a nonnegative function, 

Suppose now that x2 is another zero of y' (x) such that 

and and are consecutive zeros, The zeros 

and of y I (X) are simple zeros .. For, if not, then again 

F[y(x1)J < 0 and F[y(x2)J < 0, and this is a contradiction. 

Therefore, y11 (x1) :r y11 (x2). This contradicts (5) since 

y(x1)y"(x1) < O, y(x )y11 (x) < 0 and y(x) > O 
2 2 

Therefore, there is only one zero of y'(x) between any two 

consecutive zeros of y(x), and consequently, the theorem is proved. 

For the case when p(x) < 0 and q(x) < O, we will give a 

stifficient condition for equation (2) to have property RO, and give 

an example to answer. the question raised in [5], 

First, we consider the dimension of oscillatory solutions of 

y''' ~ p{x)y' + q(x)y. (2) II 

Lemma 2.6: Let p,q E C[a,oq) with p > 0 and q > 0, If 

1 p E C [a,QO) with p' .:. 0, then all oscillatory solutions of (2) 11 , if . 

there are any, are bounded on [a, 00 ), 



Proof: Let y (x) be any . oscillatory soluti.on of (2)", and_ let . 

x1 be a fixed zero of y' (x). Let x2 be any other zero of y~ (x) 

such that x2 _:;, x1 • If 

x e: [x1 ,x2] , then y' (i) = O. 

Define 

F[y(x).] = [y' (x)] 2 - 2y(x)y"(x) + p(x)y2 (x). 

ay differentiation 

. ·-· . /x 2 /x 2 f[y(x)] = F[y(x1)] + p'(a)y (s)ds - 2. q(s)y (~)ds. 

:,xl Xl 

If x = x1 , then 

X E 

max: 2 2 
[. ] [y(x)] = y (x1). 
Xl,:x2 

-If x1 · ,r:i; x, then 

/ x 2 /x 2 F[y(i)] = F[y(x1)] + p'(s)y (s)ds - 2 q(s)y (s)ds 
. xl xl. 

From (5) and the fact that y' (x) :;:; 0, we have 
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(5) 

(6) 



..... -2 -·- ,.....,2-F[y(x)] = (y'(x)] - 2y(x)y"(x) +p(x)y (x) 

= -2y(x)y"(x) + p(x)y2 (x). 

- - ..,.... 2·..- - 2 - 2--2y·(x)y·"(~) + p(x)y (:ic:) !, f[y(~1)_] + p(x)y (x) - p(x1)y (x) 

Now; by Lemma 2.:1, <:>f [3J, y(x)y"(x) < O, For y(i°)y"(x) > 0 an,d 

y' (x) • 0 'tlroul\i. imply th,at y is nonosq~l.:Latoty, Hence, 

or 

2 - F[y(xl)] 
y (l>C) <; .,.._.;.·..,..._'"'"'"""_ 

- p(xi) ' 

Consequently, 

max . [ ( ) l 2 2 (-) 2 ( ) F (y (xl) l 
[ ' ] y .x 'IF y x ~- y xl + 'p, c·x· -) .· 

X e; . Xl 'X2: . - 1 

~d th.~ l~mma if; proved. _. 

Theorem 2. 7: ~sume that; the _hypo1;:hes:L.s of .Lemn'ia 2~6 holds. Then, 

if (2)" :Ls oscillatory, it has_ property RO. 

15 

P:r;oof; Usiqg t,ni.ma 2,1 of .[7] and the. tecqnique used in the proof. 

of Theorem 2 [lO], it follows that (2)" has _two linearly independent· 

oaeilla.tory solu~ions . u and v whose .. lip,ear combinations are_ also 

osc:t,lla.;ory, Further, W(u ,v) (~) · do~s ·not vanish anywhere. 
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Let z be the solution of (2)" defined by the initial conditions 

z(a) = z'.(a) = O, and z"(a) = 1. Then z is nonoscillatory, Let 

y = c1u + c2 v + c3z by any solution of (2) 1: By Lemma 2, 6, u and v 

are bounded. Also, lim (. ) z x = 00 •. x ,+ 00 
He,nce, y can not be oscillatory 

unless c3 = O. This shows that (2)" has property RO. 

An unresolved question raised in [5] was whether the converse of 

Theorem L 7 is true, We give a counter example to show that _the 

answer is in the negat.ive, But before doing that, we need to prove 

the following lemma. 

Lemma.2,8: If equation (:t) has property RO, then for any three 

linearly independent solutions Di' Dz, V' such that D' 
1 

and D' 
2 

are oscillatory, V' is nonoscillatory, and W(D1,D2)(x) 'f 0 for 

x e: [a,""), it follows that a solution of d) is oscillatory if and 

only if it is a linear combination of D' 
1 and 

Proof: Suppose that (1) has property RO. Then (1) has three 
I . 

linearly independeµt solutions D1 , u2, and V such that D1 and 

u2 are oscillatory, W(U1 ,D2)(x),f,O for xe: [a, 00 ), Vis· 

nonosc:illatory and a· solution is oscillatory if and only if it is a 

linear combination of D1 and D2. 

Let Di, D2, V' be solutions of (1) satisfying the hypothesis of 

the lemma, Since is oscillatory, it must be a linear combination 

Sim:Uarly, D' 
2 

is a linear combination of D1 and 

Ur Since V' is nonoscilla,tory, it is a linear combination of D1 , 

D2, and V with coefficient of V with coefficient of V different 

from zero. Hence,. 



U' = clul + c2U2 1 

U' = klUl + k2U2 2 

V' = m1u1 + m2u2 + V. 

Let z(x) be a linear combination of U'. and U' 1 · · 2' Then it is 

oscillatory since · u1 and u2 are oscilJ,.atory, and W(Ui ,u2) (x) ,:/: 0 

for x e: [a,'.'°), Suppose Z(x) is a solution of (1) which is 

oscillatory. Then Z(x) = n1u1 + n2u2 + n 3v1 • By substituting from 

(7) we have 

Z(x) = n1 (c1u1 + c2u2) + n 2 (k1u1 + k 2u2) + n/m1u1 + m2u2 + V) 

Z(x, = (n1c1 + n 2k1 + n 3m1)u1 + (n1 c2 + n2k 2 + n 3m2)u2 + n 3v 
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(7) 

SiI1fe (t) has property RO, and Z(:ll:) is oscillatory, it must be 

a J.ineal;' combipation of u1 and u2 . Therefore, n3 = 0. Hence, 

Z(x) is a linear co~bination of 

proof ·of.· the lemma, 

Example 2, 9: . Let 
2 u1 = sin x · .. , 

U' 
1 

and 

2 
u2 = cos x, 

This completes the 

and 

v = (2 + 1/x). + (2 - J,./x)cos 4x, x > 0. It follows that v is 

nonoscillatory, W(u1 ,u2)(x) = -2x_< 0 for x > O. Furthermore, 

calculating W(u1 ,u2 ,v), it can be.verified that W(u1 ,u2 ,v)(x) < 0 on 

[a, 00 ) for a .sufficiently large positive number a. Hence, there exists 

an equation of the form (1) with solutions u1 , and v. 

may assume that: u1 , u2 and v are solutions ef (1), 

Consider the adjoint. 

y''' - (py)" + (qy)' - ry = 0 

Thus, we 

(1) I 



of (1). If 

F(x) = e 

f x p(t)dt 
a 

Then . u1 = F (x) W (u1 , v) (x) , u2 = F (x)W (u2 , v)(x) , a.nd 

V = F(x)W(u1 ,u2)(x) are solutions of (l)', (see [1]). Clearly, u1 

is oscillatory since u1 is oscillatory and v is not. S_imilarly, 

u2 is oscillatory and V is nonoscillatory. It is easy to verify 

that 

lim Ul(x) 0 
x + 00 V(x) 'F • 

Hence, it follows from Theorem 2.7 and Lemma 2.8 that (1)' does not 

have prop&rty RO. 
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Let y = c1 sin x2 + c2 cos x2 + (2 + 1/x) + (2 - 1/x)cos 4x, In 

order ,to tShow that (1) has property RN, . we consider four exhaustive 

cases. 

Case I. Suppose 

can be ~ritten as 

c > O, 1- and Then y 

y-=~ci + c~ sin (x4 +a)+ (2 + 1/x) + (2 - 1/x)cos 4x, 

0 ~a..:, TI/2. Suppose y is nonoscillatory. Then for some positive 

number b, y(x) >' 0 for x > b. For, there exist arbitrarily large 

values of x. for which y(x) > 0 sinc.e v(x) > 0 and 2 
x + a = a 

has solutions for any number S ~ a, We note that 

v((2n + l)TI/4) = 8/(2n + l)TI. Consequently, 



Let E = sin 1r/l6, and let N be a number such, that N > b, 

(2N + 1) 1r I 4 > b , and 

8 
-;::=:=:==:-----,.-- < E 

~ci + c~ (2n+1)1r 

for all n > N. In order .to obtain. a contradictfon to the assumptio-q 

it ~s sufficient to show that 

19 

that y(x1 > 0 for x > b, 

sin((2nt1/i /16 + a) < -E for some integer n ' n.>N>b. Thus, it 

is sufficient to find integers n, n > N > b, such that (2n+1)1r/4 > b, 

8 
~------- < E 

~ci + c~ (2n+1)1r 

and 
2 2 • 

sin((2n+l) TI /16 + a) < ~sin 1r/l6. The latter inequality is 

satisfied if 171r/l6 + 2k1r < (2n+1) 21r2/16 +a< 311r/l6 + 2k1r. Sirtce a 

is between O and 1r/2, a.= m,r/16 for some real number .. m, 

0 < m < 8. Thus, it suffices to show the existence of arbitrarily 

large integers· n . satis.fying 

17 + 32k <.(2n+l) 21r + m < 31 + 32k, (8) 

where k is an integer. 

There exist arbitrarily large integers n such that 8n1r can be 

written as. 8n1r = 32p + r, where p is an integer and O < r < 1. 

This follows sine~ for any integer·· n divisible by 4, 

0 < 8n1r - 32p < 1 is equivalent .to O < q1T:.. p < 1/32, q = n/4, which· 
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is certainly certified by arbitrarily large integers q and p. Let 

n be any posit;ive integer such that 8n'TT = 32p + r, p an integer and 

0 < r < 1.. We show that for any choice of m in. the prescribed range, 

one·of the numbers xi= (2i+ 1) 2'TT, i = n,n+l, .... , n+8, satisfies 

2 
(8), Let x. =(Zn+ 1) 'TT= 32k + r', k an integer and O < r' < 32. 

n 
2 

Then . xn+l ((Zn .+ 1) + 2) 'TT 32k + r' + 8n'TT .+ 8'TT. Similarly, each 

x +·' j = 2 ,·3, ... ' 8, can be written in the form n J . 

xn+j = 32k + r' + p. (8n'TT) + q. (8'TT) ' pj and qj integers. Replacing 
J J 

8n'TT by 32p + r and dividing q/8'TT) by 32, we have 

xri+l = 32k1 + r + r' + 25.13272 ••• , 

kl an integer, 0 < r < 1, 0 < r' < 32, 

xn+2 = 32k2 + Zr+ r' + 11. 39816 ... ,. 

xn+3 32k3 + 3r + r' + 22.79632 ... ' 

xn+4 = 32k4 + 4r + r' + 27. 3272 ... ' 

xn+S = 32k 
5 + Sr+ r' + 24.9908 .... ' 

xn+6 = 32k6 + 6r + r' + 15. 78712 ... , 

xn+7 = 32k7 + 7r + r' + 31. 7161 ... ' 

Xn+8 = 32k8 + 8r + r' + 8. 7719 ... . 

By dividing up the range of the values of m into subintervals 

i ~ m .::_ i + 1, i = 0,1, ••• , 7, one can verify that for each value of 

ni, one of the numbers i = n,n+l, . , • , .n+8, satisfies (B). For 

example, suppose. 0 < m < 1. Then if r' < 3, xn+l satisfies (8). If 

3 < r' < 8, then satisfies (8). If 8 < r I ~ 16, then 
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satisfies (8) • If 16 < r' .::_ 17, then either xn+8 or xn+7 -

satisfies (8)' del)ending on whether r < .5 or r > . 5. If 

17 < r' < 30, then x satisfies (2) . If r' > 30, then xn+l n 

satisfies (2)~ 

Case II. Suppose c > 0 .::. 0 ' and 2 2 'F O. Then we ,, 1 - ' c2 cl+ c2 

can write · 

y =Jc~+ c~ cos(x2 - a)+ (2 + 1/x) + (2 - 1/x)cos 4x, 

n/2 .::_.a.::_ TI, If we let '"'€ = cos 9n/16, the same reasoning as in 

Case i reduces our problem to showing the existence of arbitrarily 

large integers n satisfying 

9 + 32k < (2n+l) 2n - m < 23 + 32k, 

where k is an integer and m is a number such that 8 < m < 16. As 

in Case I, it can be verified that for each value of m, some 

i = n,n+l, ... ' n+8, satisfies the above inequality, 

Case IIJ;, -- ' 
Suppose and Then we 

can write 

y = )ci + c; sin(x2 + a) + (2 + 1/x) + (2 - 1/x)cos 4x, 

0 < a < n/2, , If we let E = sin n/16, our praiblem reduces to showing - --
the existence, of arbitrarily large integers n satisfying 

1 + 32k < (2n+l) 2n + m < 15 + 32k, 

where k is an integer and m is a number such that O < m < 8. 



Again, it can be verified that for each val.ue of m, some 

i = n,n+l, ••• , n+S, satisfies the above inequality. 

Case IV. Suppose ..:. 0' .:. 0' and 2 2 'f O. Then cl c2 cl+ c2 .Y 

can be written as 

y = }ci + c~ cos (x2 - a) + (2 + 1/x) + (2 - 1/x) cos 4x, 

rr I 2 ..:. a .:::_ rr. Let € = cos 7rr/ 16. It suffices to show that 

2 -cos(x ' - a) < -e:. It suffices to show the existence of arbitrarily 

large integers n satisfying one of the inequality 

2 32k < (2n*l) rr - m < 7 + 32k 

or 
2 25 + 32k < (2n+l) rr - m < 32 + 32k, 

where k is an int~ger and m is a nu.mber such that 8 < m < 16. 

Again, by considering values of m in subintervals of length one, it 
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can be verified that for each value of m, one of the x 's 
i 

satisfies 

one of the above two inequalities. 



CHAPTER III 

SOME OSCILLATION PROPERTIES OF FOURTH ORDER . 

ORDINARY LINEAR HOMOGENEOUS 

DIFFERENTIAL EQUATIONS 

Consider the differential equation 

IV y = p(x)y" + q(x)y' + r(x)y, (4) 

where. p(x)., q(x), and r(x) are. continuous on [a, 00 ) for some fixed 

real number . a. We will show, in the following two theorems which 

insure the boundedness of oscillatory solutions, and use a technique 

of getting three particular independent solutions of (4) to form a 

fundamental set for a.third linear differential equation, We first 

prove the fqllowing lemma. 

Le.mma 3,1: Let p > O, q > O,. r > O, P, q and 1 r EC [a,oo), 

p'.:, O, q' .::_ O, and r' > 0. Then, if y(x) is any solutfon of (4) 

with y' (b) = y' (c) = 0 where a < b < c, 

max [y(x) ]2 < [y(b) ]2 + M[y(b)] 
x e: [b ,cl r(b) 

where 

2 2 f x 2 2 M[y(x)] = r(x)y (x) + p(x)y' (x) + 2q(x) · y' (s)ds + y" (x) 
a 

- 2y' (x)y'' '(x). 
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Proof: Define 

2 2 /x 2 2 M[y(x)] = r(x)y (x) + p(x)y' (x) + Zq(x) y' (s)ds + y" (x) 
a 

- Zy'(x)y'''(x). (9) 

It can be verified by differentiation that 

/ x 2 /x 2 
M[y(x}] = M[y(a)] + r' (s)y (s)ds +. p' (s)y' (s)ds 

a a 

If max [y(x)i2 = [y(x)] 2 , x E [b,c], then y'(x) = 0. If 
X.E [b,c] 

x = b, then 

max 2 2 
x E [b,c] [y(x)] =y (b). (10) 

If b < x, then 

I x 2 /x. 2 
M[y(x)] = M[y(b)] + r'(s)y (s)ds + p'(s)y' (s)ds 

b b 

/
x 2 

~ M[y(b)] +. r'(s)y (s)ds 
b 

.5_ M[y(b)] + y 2 (x) [r(x) - r(b) ), 

From (9) and the fact that y' (x) = 0, we have 



..... 

~<i)·,'l.ci) + i11(i") /~ yi 2·(i;,;)ds + y 112 (x) 
b . 

i M [ y (b) ] + r (i) y2 (x) 

Hen.oe, 

-r(b):l(i) ~M[y(b)] 

2~ ~-b· Y (x, < ·_· ( . . . • 
- t' b 

mAX [ ( ) ]2 < 2 (,._) + _M_[_I_{]?.}_J_ x !;: . (b. e.l y x . ..... y .,, . ~ • 

. 
ose:il,l+J;t~l!')' tilf>l\l,thns of. (4), if t;here at'~ ~Y-, ;1re 'bou"Q.ded, 
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2 ..
- r(b)y (x) 

(ll) 



'J:hec,r~~ 3,3:. J...et . p,q,r,p' ,J:'' ~ C(a,O?), p ~ O, r )l, O, r' (t) ~ O, 

and p' (t) - 2q(t:) <: o. Then ·all o~cillato;y s,;,lutiQJ:lS of (4), if 

there are any~ ~i, bQun~ed. 

lt call: be.verified byd;t.ffere1;1t:f.a~ioq that 

. j·x 2 G[y(~)J ~ G[y(a)J + r'(s)y(~) ds 
a 

... f t. 2 
(2q(s) ~ p'(s))y' (s)ds. 

a 

iet :xl; a"Qd, x2 be ;a•ros of y~ (:ic:) wh~:i:-e y(x) is a~ osc:1,llatery 

sc,lutiO'll of·(4). 
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(13) 

if ma[x. ~ ~ ] [yi (x)] "".Yl (i), · x e [xl. ,x2J, then y' (x) "" 0. 
x t 1•.n:2 .,..... · · ·max .2 2 

It :,r;1 "" :x;, th,t>. x e; [xl ,~z] (y (~)] "" y (x1). J::e · x1 <: x then using 

(13), 



Hence, 

2 _ G[y(x1)] 
y. (;R:) < .· ( . .·) • - r "11; 1 

lienc:e, it fqtlows that; any oecil.latio.ey S!Oll..\tiop is bounded. 

We finally illust,:-ate the te,chn:f.qu~ . used to obtain a third Ot'der 

d:l.ffet'e-ntial equat:f.."n who1e fu.n!iament;al set:. fcr;,ms a. set ef linearly 

iTI.dependent e;olutions C!lf (4) ·fer the c;ase p > O, q < O and r > O 

in [a,m). 

Coneider, tl;u~ fun.daJQ.e~1,.tal set of .solu1;:ions of (4), Yo, · Y 1 , Y 2 , 

a:nd. y 3 such tqat 

l 0 0 0 

W(yt•Y1 ,y2,y3).(a) • 
0 1 0 0 
0 0 1 0 
a 0 o· 1 
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We. wa-nt; to 1111.l~w that y0 , y1 , and y2 at'e sQltitions of a third 

order different:Lal equati~n of the form 

y, , , "" py11 + qy, + ry' (2) II 

whet~. p < O, q > 0 , and t ,:; O. Ilei,.ce , any propei"ties about the .. 

solutic::,ns a( equJt;l.orl (2) 11 ate also propertiea of equatien (4). Fi:r,st, 
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· .. l 
we show that W(y0 ,}';VYz) (x) ~1 0 for x > a. Suppose. 

W(y0 ,y1 ,y2)(b) = 0 where b > a, Then, there exist constants c0 , c1 , 

and c2, . not aU zeros, such that 

c0y0 (b) + clyl(b) + c2y z'l;>) = 0 

cz0y0 (b) + clyl(b) + c2y 2(b) = 0 

c y"(b) + c y"(b) + C.zY2 (b) = o. O O 1 1 

Let. z(x) 'be·the solution of (4) given by 

The solution 2;(~) is a .nontrivial solution of (4) since 

z(a) ""c0 , z'(a) ~ c:1 , z"(a) • c2 , c;Lnd c0 , c1 ,. and c 2 are not· 

all equal to zero. 

We can assume that • z' '' (b) <; O, 

Then Lemma· 1.13 implies ~"(!x) > 0 for all ·X e; [a,b), But 

~"(a)• b, aµd this is cil contradiction, Hence, W(y0 ,y1 ,.Y 2)(~) 'F O 

for all x ::ii a. Since · W(y0 ,y1 ,y2)(a) • 1, then it follows that 

W(y0,yl'y2)(x) > o for x > a. llence, y0 , v1, and Yz are 

solut:h~s of the thit"d. order difh'.t'EUJ.tia,l. equation given by 

Yo Y1, Y2 y 

y' . 
0 

y' 
1 

y' 
·2 

y' 

y'.' 
0 

y" 
1 

y'' 
2 

y" 

y I I I y I I I Yz" y I I I 

:r.. (y] 
Q 1 

0 ""' W(y O ,yl ,.Y 2) 
= 

or aftet exi,ansiQn of the determinant 



Let. 

a' • 

where. 

y~ 
0 

y' 
0 

. II 

Yo 

y' 
l 

y'·' 
1 

y'-' 0 

y" 
2· 

y"' y"' y"' __ 0 ____ 1 ___ 2 __ . y = O, 

W(yQ ,y l'y2) 

ro yl Yz 

a • y' I y' 
0 yl 2 

y'' I y''' I t t 

0 1 Y2 

Yo Y1 Y2 

a - y" 
0 

y" 1 y" 
2 

Ya" y t I ' 
l 

y''' 2 

y' 
0 

y' 
l 

y' 
2 

y .. y" 
0 

y'' 
l 

y" 
2 

y'' ' 0 y' '' 1 y''' 2 

Yo yl Y2 Yo yl 

Y6 y'' Y2 + y' ., 
1· 0 Y1: 

y''' 
0 

yl I I 

1 
y' It 

2 PYo py" 
l 

Y2 

Y2 

py" 2 

Y" 1 

• ·m + n, · 
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Yo Y1 Y2 

n ... y' 
0 

y' 
1 

y' 
2 < 0 

py" 
0 

py" 1 py" 
2 

and 

Yo Y1 Y2 

m = y" y" y" 
0 1 2 

y"' 
0 

y' I I 

1 
y' I I 

2 

y' 
0 

y' 
1 Yi Yo Y1 Y2 

m' ... ra y" y" + y" y" y" ... ml+ nl, 1 2 0 1 2 

Yo" y' I I y' I I I qy' qy' 1 2 qyo 1 2 

where 

Yo Y1 Y2 

nl - y" y'' y" < 0 
0 1 2 

I qy' qy' qyo 1 2 

y' 
0 

y' 
1 

y' 
2 

ml .. y" y" y" 
0 1 2 

y' I I 

0 
y' I I 

l 
y' I I 

2 

Yo y' 1 y' 
2 Yo yl Y2 

m' '!I y" y" y" = r ' y' Yi <.O. 1 0 1 2 Yo 1 

ryo ryl ry2 II y" y~ Yo l 
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Since -x_ (a) • 0 then. a 1 < O. Benc.e, m' < O. :But m(a) = O. 

Therefore, • < O. Renee:, ia.' < O. But ~(a)' = O. Therefore, 

u < o. 

Consider 

Yo Y1 Y2 

a""' YU. 
0 

y" 
1 

y" 
2 

,. ,-. y~ I· 1 y' I I Yo 1 2 

B • •· By pl,'ev.i,.ous argumeQt m < 0. Hence, J3 < 0. FiQ.ally, y = ~, 

and thus, 9i < O. lherefore, v .,o, and y2 are solutiens of the 

differential equati.oo. 

y' ..... PYH + qy' + ry 

vith p < O, q > 0, and r < O. 



CHAPTER IV 

SUMMARY AND CONCLUSIONS 

The purpose of this paper is the study of some oscillatory 

properties of third and fourth order ordinary homogeneous differential 

equations. 

Chapter II discusses the third order differential equations. It 

contains an example of a differential equation having property RN, 

but its adjoint does not have property RO. One theorem gives a 

sufficient condition under which the differential equation has property 

RO. Also, one case where the dimension of the oscillatory subspace is 

at least two in the oscillatory case is given. 

Chapter III discusses the fourth order linear differential 

equation, and contains .two theorems which insure the boundedness of the 

oscillatory solutions. An example illustrates the case where three 

particular solutions of a fourth order differential equation form a 

fundamental set of a third order differential equation, 

y''' == py" + qy' + ry, 

where p < 0 , q > 0 , · and r < 0 • 

There are questions suggested by this thesis. One might attempt 

a necessary condition for RN to imply RO. Also, one can examine 

the case of RO and RN properties of y''' + py' + qy = 0 when 
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p < 0 and q ~ O. Finally, it appears possible to extend the RO and 

RN properties to the fourth ordet diff~rential equations. 
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