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CHAPTER I 

PROBLEM DEFINITION 

A statement of .the general prqblem is presented.first. The 

specific problem which ie considered in this thesis·. is· then· defined. 

and the results are.disc~sse4. 

The-General Problem 

From theoretic~! considerations it is known that the mathematical. 

var+~tes Y1, Y2 , ••• , Yp and X are related by the equations 

i=l, .••• ,p. (1.1) 

-However, Yi a"Q.d X can only be. measur-ed wi·th error. . Let the measure-

ments be denoted by Yi= Yi+ ei and x = X + e - where -the e. 's and e 
]. 

are the errors of .measurement and E(ei) = .E(e):;::: .0. The parameters 

ai and l3i are not known, and are• to be estimated;. The -relation given in 

equation 1.1 is cl,assified into two, categories. If ,the variables X and 

Y are fixed, the relation is said to be.a functional relation. If X 

and Y are random, the relation is said to be a structural relation.· 

Assume.that n sets of.observations.are recor:ded~for x and y, say 

xj and Yij, (i = 1, ••• -'~ p; j = 1, ••• , n). If x1 is known, i.e. 

oI = 0, then the·classical least squares o-r "7eighted,least squares 

gives the minimum variance, .unbiased estimates. af ~± .and ~-i. If x1 

is not known.and x1 is used to find a least squares estimate, it is 

known.that the esti~tes .of a.1 and 61 are not only biased, they are 



not consistent, Methods other than least squares have been 

considered in an effort to obtain estimates which are at least 

consistent, One such method is maximum likelihood estimation. 

Consider the problem where there is only one relation. Let 

2 

x "'X + u and y = Y + v where u and v are independent normal variables 

with zero means and variances equal to a~ and·a~, respectively. 

If one knows 1) ai, ·2) at, 3) at and at, or 4) A= cri/era, various con­

sistent estimates of the parameters for the functional relation are 

available in the literature. Quite often it is known that if .X = O, 

then Yi= 0. Hence, a.i = 0. This added knowledge has a considerable 

effect on the types of consistent estimates which can be used. 

For the single functional relation where a is known.to be zero, 

a. relative maximum likelihood estimate of the slope parameter has 

already been found. However, little work has been done on the single 

structural relation when a..is known to be zero .. Let .Y = SX and let 

X be a random variable with mean µ(:rO); then E(X) =µ.·.and E(Y) = Sµ, 

Under regularity conditions·. S = y/x is a consistent estimate of S, 

Since cov(xi,Yi) =.f3var(X), information about Sis also available in 

the sample deviations. It.is desirable to combine the information in 

the sample means and covariance so as to obtain one consistent estimate 

of a. 

The Specific Problem 

If X and the measurement error hav.e independent.normal.densities, 

the maximt,im likelihood equations do produce consistent estimates of 

all the parameters .. In this paper relative maximum.likelihood esti­

mates for a single structural relation .. are found when. there is the 



restriction that a "' .O. and ). • cr~/O'ij is known. . The estimates are 

then derived for the case where both cri and aa are known. The results 

are then extended top structural relations. Although .results are 

obtained for specific problems, the.method used to solve what have 

formerly been intractable equations is.the major contribution of this 

paper. 

The key to estimating.all parameters is to first find the 

estimates of the slope parameters. All other estimates .. are readily 

expressed as functions of.these slope estimates. For the single 

structural relation, ~ is found to be the root of a fourth degree 

polynomial. When there are p structural relations,.the.estimates of 

the slope parameters are functions of the roots of p fourth degree 

polynomials. The polynomials are derived for the situation where 

either " = cr~/cr~ is known or both cri and crii are known •.. All of the 

derivations are done in Chapter III. In Chapter IV three problems are 

worked. The first is for a single structural relation and the 

second is for four structural relations. The.last problem is an 

application in econometrics. 

3 



CHAPTER II 

LITERATURE REVIEW 

The following problem has a long history. Two mathematical 

variables, X and Y, are known.to have the relation 

Y =a+ SX (2, 1) 

and we wish to estimate.a and S, If X and Y are fixed, we call this 

a functional relation. If X and Y are random, this is called a 

structural relation, Unfortunately, we are not able to observe either 

X or Y; we observe only the values of the two random variables x and y, 

defined by x = X + u and y .. = Y +. v where u. and v. are. random vari-

ables. For our purposes we will assume that they are stochastically 

independent. Also, we will assume that E(u) = E(v).= 0, var(u) = a~, 

and var(v) = cr 2 • In some way we wish to fit a straight line to the 
v 

observed variables x and y,.soas to obtain estimates of a and S, and, 

where necessary, estimates of a2 and cr 2 • u v 

A:j .. t:hough this might appear to be a problem in regression analysis, 

in general :i,t .is not •. It .must be remembered that .. both variables are 

subject to error. It would be a regression model only if cr 2 = 0 u • 

However, if we were to find the regression of yon x, we would minimize 

the sum of squares of deviations about the fitted.line vertical to 

the x-axis. Since.it may be that cr 2 = cr 2 , it would.be just as rea­
u v 

sonable to minimize the.sum of squares of the deviations vertical to 

the y-axis, A compromise might be to minimize the.sum.of squares of 



deviations normal to.the fitted line. This would not.be unreasonable 

if it is known.that cr~ = cr~, .since we.would not.want.to favor one 

direction over another •. This procedure was suggested.as far back as 

1878. 

Early History 

5 

C, H. Kummel (16) was the.first perso.n to .. find.the best fitting 

line when the deviations .were .measured normal. to .the :fitted line. 

Unfortunately, he published his.results in an obscure.Journal called 

The Analyst, so his solution went unnoticed. .Although.his approach 

was purely mathematical.in.nature,.he effectively assumed.that cr~ = cr~. 

Not knowing of . this .. result, K. Pearson .. (21). tackled . the problem of 

finding the best fitting lines .and planes. Kummel '.s _solution is a 

.special case of Pearson's results. Pearson's approach.also was not 

statistical in nature. Consequently,. his solution .was not. considered 

.to be invariant under a linear transformation. In a.mathematical 

sense this was true, for he also assumed.that the variances of the 

errors did not change. under a. linear .. transformation. This latter fact 

was later pointed out by D. V. Lindley (17). So, at the.time of his 

.publication, his results came under some criticism. 

R. Frisch (8), in 1934, developed a general.theory of regression 

analysis which employed new methods, but was not based.on.probability 

concepts. 

Three years later.a number.of events happened~ T. Koopmans (15) 

combined Frisch's theory with.the.classical one in a new general theory 

based on probability concepts •.. At the same time B. M .... Dent. (6) forrnu­

_ lated the problem as one.of.maximum likelihood estimation, and, 
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objecting to the requirement .. that A = a.i/cr.& .. be .known, .she .solved the 

maximum likelihood equations.for the functional relation .. when the joint 

density is normal and·.nothing.is.known aboutcr~ ora~. Her.estimate of 

a was a = ±46f/&~~ It .. is .consistent only. if. S •fi .. This estimate 

was referred to as the .maximum likelihood estimate .. u:t).til 1969 when 

M. E. Solari (24) proved.that.it.is a saddle point,.not a .. maximum. In 

fact, the necessary. and .. sufficient conditions for. the existence of the 

· maximum likelihood estimate. is ... still an open question. 

Also in 1937, C •. F. Roos. (23).attacked.the .. problem .. from another 

angle in an attempt to .make,. the estimates invariant. under .. linear trans-

formations. He showed.that.the function U"" EQkf(ax.+.b.y.+ c) must be 
k 

minimum in order that.tbe,fitted l~ne ax . .+ .. by + c .. is .. invariant under 

the transformation •... Here, Qk.is.a weighting.factor and f is an 

arbitrary function. He .chose f ==.(ax.+ by + c).~ and .assumed. that A was 

known. His estimate of S was 

where S = E(yi - y) 2 , S 
yy i xx 

-2 -= . 1: (xi - x) . , and .s 
i xy 

(2.2) 

= 1: (y± -- Y) (xi - x) • 
i 

In general, this estimate is .not.consistent •... There .. is also the problem 

that f is not unique and. his. choice was arbitrary. · 

Partly because.of.the.fact.that these estimates.wet"e not consis-

tent, the emphas:i,s was changed.fromtrying .. to.fit.lines .. and,.from them, 

estimate the slope parameter, to.trying to .. obtaip..consis.tent estimates 

of the slope parameter ... Five methods have been.widely.investigated 

which give cons is tent estimates of. S. · They . are .. called . grouping, 

instrumental variables, .analysis.of variance.estimates,-cumulants, and 
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maximum likelihood estimates, 

History of Consistent Estimates 

Grouping 

The method of grouping was introduced by. Abraham.Wald (26) in 

1940. He divided the sets. of. observations into. two gr.oups using some 

criterion that is independent of the data. Eor.N observations the 

first group consisted.of.the variables.x1 through.X .. where m = N/2; the . m 

second. group consisted of .. the remaining variables •... He defined 

x +x + +x -x . .- - ... -x . . 1 . : '. 2, . ~ ~' . ,m m+L. . N 
~= N 

and 

He then defined 

xl + x2 + '· • + xm - xm+l - "· - ~ 
N 

and 

Then he considered the. estimate B = a/a1. He showed:that 

consistent estimate of (3 ... if. lim· inf la1I > o. He.pointed 

A s is 

out 

a 

that 

the variables have a normal.density, .then .the condition.on the limit 

inferior is not satisfied and no consistent estimate.of (3 exists 

unless more information .. is. known about .. the parameters. 

In practice he recommended.that even though.the.grouping often 

if 

has to be based on the data,. acceptable estimates .. of. (3 .. can. be obtained 



8 

if we order the data and divide .the data into-three .. groups: 1) those 

below some interval. (a,b)., .2) .. those within. the .interv.alr .. and 3) those 

above the interval. . The first and .. third groups. can .be .used to obtain 

an estimate of a.in a.form similar to. the two.group estimate. 

In 1950 J. Neyman .. and.E. Scott (20) proved.that.ther.e.have to be 

intervals about a and b.such that.the probability of a value of x 

falling ineither intervalis.zero.in order.to.satisfy.the condition 

on the limit inferior •... So. this method is not .applicable. when u and v 

are normally distributed. 

In 1949 Bartlett (3) .extended. Wald 1.s .. two .. groups to. three groups, 

and. using the line joining._ the. center of gravity .. o.f .. the .. two .. end groups, 

he.showed that the asymptotic.variance of the.new.estimate of a was 

approximately 15% less than. that .. for the .. two ... group estimate. However, 

using sampling experiments, .A •.. Madansky reached the .op.posite. conclusion • 

. . A method similar.to.the.above, .where multiple .. observations are 

.taken.for each value.of.Xi,.was.presented.by.G •. Housner .. and J. Brennan 

. (11) in 1948. Their estimate· .. is .of the form 

E E N.N. (y. - y,) 
ij 1J 1 J 

(2. 3) 

L L N.N.{x, - x.) 
ij 1J 1 J 

h . h b f b . f h .th 1· were N. 1st e num er.a o servat1ons o t e 1 .rep 1cate. 
1 

When the variates .X~ . u, and v have independent normal .. densities, 

all. of ._the above estimates .have .the disadvantage .oLnot .being cons is-:-

tent. They also have the important property.that.they.are not func-

tions of the sufficient .statistics. Hence,. their .rel.ative efficiency 

may suffer. 
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Instrumental Variables 

We will now introduce an estimate which is a.function of the 

sufficient statistics •.. It is due. to R. C. Geary (10) •. Assume that we 

have the supplementary variable z, such that z ... f(X) + w where w 

has an independent normal .. density and X is fixed •. Thus, z is related 

to x and y only through X; and x,.y, and z have a joint normal density. 

Consider the linear combinations of xi and y1 , 1 1 .= ~_zixi and 

12 = tziyi; then 

and 

plim 1 1/N • plim t Xif(Xi) 

N 

plim.L/N • a plim t X/ (Xi) 

N 

where plim is the probability.limit.as N.increases.without bound. 

Therefore, if the limits.exist and.do not equal zero, then .. plim L2/L 1=s. 

Notice that 1 1 and 12 are functions of at least part.of.the sufficient 

statistics. 

This method has.the.disadvantage that if.more than one instru-

.. mental. variable is .available,_ the .problem oLcombining such estimates 

still. exists. However, .if .. all. of. the instrumental.variables are of 

about.the same magnitude~-one.can take their.average,.thus reducing 

the . variance while maintaining .. approximately .. the. same.expected value. 

The error win z.does.not.have to be normally distributed for 

.. the estimate to be consistent •. Let half.of the values.of z be +1 and 

the other half be -:,l; the.resulting estimate.is.Wald's grouping 

estimate. The Housner .and .Brennan estimate is ... also .a. special case of 

the instrumental variable estimate. 



Cumulants 

In 1942 R. c. Geary (9) suggested the use of product cumulants to 

obtain estimates of the relation parameters. He pointed out that, 

under regularity conditions, the product cumulant.of.x is the same as 

the product cumulant of X. He.showed that if Y • SX, then the rth 

10 

cumulant for Y was equal to .. Sr. times the rth cumulant of X. Hence, the 

th 1 f · · 1 °r.i h th 1 f r cumu.ant o y 1s equa .to . .., t mes t er cumu ant o x. If consis-

tent estimates of. the cumulants (of order ~-3). could be found, then S 

could be estimated by the r~~root.of the ratio of.the cumulant 

estimates •.. Unfortunately, . for_ the .normal density. the .cumulants of 

order greater than or-equal-to-three are all-zero •.. Hence, his method 

is not always appropriate. 

Analysis of Variance Estimates 

J. W. Tukey (26).has.indicated.how.to.obtain.consistent estimates 

of the relation parameters, .when.there.is replication.of.the unobserved. 

values, by the use of analysis.of.variancetables. However, M. Dorff 

and J. Gurland (7) have shown.that the replicated values can be put to 

better use by using.them .. to.estimate ;\ and.then.using .. the estimate 

given in equation 2.3. 

Maximum.Likelihood Estimates 

.For the bivariate.normaL.distribution.we.can.he.certain that the 

estimate of the slope parameter is a function .. of - the sufficient statis-

tics.if we use the.maximum .. likelihood estimates .. (MLE).for .. those cases 

where.the joint density.uniquely.determines.the.relation parameters. 

D. V. Lindley (17) was.the.firstto find the.relative maximum 
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likelihood estimates for this.kind of problem •. He considered the 

structural and functional-relations where. all.of .. the .. random. variables. 

have independent normal-densities and either. l or .cl~ is known. His 

results are 

S - AS + }cs - AS ) 2 + 4S2 1 
a yy ·xx Yvy xx XY \k J:) • ...... _______ _.._2""'s...._ ________ ............ · I\ nown, (2. 4) 

xy 

and 

a • (S - av2·)/S , YY . xy 
ai known, (2,5) 

In all .cases he assum•d .. that.,a .was not known. 

It should be noted .at .. this. point. that. the. likelihood .. equations. may . 

. not. yield .the. globaLma~imum. likelihood .estimates, .Dent's estimate 

being such an example •... However, .if .one showed.that the.matrix of 

second order derivatives,.evaluatedusing.the.estimated.parameter~, 

.. is negative . definite, .be .would. v:erify . that .. the. estimates . are, indeed, 

relative.maximum.likelibQQd.estimates. 

In 1967 V. D. Barnett-(2).found the relative.maximum likelihood ... 

estimates when both .cri.a1;1.d_cr~ .:.are. known, .the .. overidentified .case. 

His estimate of the .cslope .parameter .,is.a. root .of. the .fourth degree 

polynomial 

s s a4 - cs2--~.1s~_s:· -~.21s2 )s3 - 31cs s .- is. s )a2 
yy xy yy .xx yy I xy .. yy .xy xy xx 

0 •. (2. 6) 

The solution is the.same.as.in.equation 2.4 and.is.true far.the 

functional and stru~tural relation. 

In 1956 M. A •.. Creasy .. (.?) .added the result. that .. if the. relation is 
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functional, all the densities.are independent normal, X.= 1, and 

a= O, then the relative.maximum.likelihood estimate of a is 

8~ .- S* .+."1(8* - 8* ) 2 + 48*2' e = _·,Y,·Y __ ·_,~·-x_x_. __ ._\l~-__ y_y ______ x_x ________ xy..._ 
28* (2. 7) 

xy 

where 8fj are the sum of squares.and crossproducts.measured about 

zero, not the mean. It.will be,shown in the.first example in Chapter 

IV that this estimate.has.a.very interesting property. 

He also showed.that.if.a,=.0 and no information is available on 

the error variances"~ . then .. a -=;= • y rx is a re.la ti ve . maximum likelihood 

estimate. If A is,known,.he stat~d that the.problem.is intractable. 

This is the problem.that,is.solved in this thesis. 

Problems Encountered~in Estimation 

There are various .. problems .. associated with .the~estimation of f3. 

An article .of .great .importanc.e.te. this .subj.ec.t .. :was .published by 

D •. V. Lindley in 1947 •. _He considered .. the question.of .. regressing y 

on.x.:when the relation.Y .=:= .a."'."-l:<f3X.is .true. He defined y to have a 

linear regression on .. x.if.,..for.any.values of.x,.y.is distributed about 

a mean which is a linear function. of. x •.. He found -the .necessary and 

sufficient condition.to.be.that.the cumulative.function of xis a 

multiple of the cumulative function of u. His most.important result, 

however, is that, even.if,the.regression.is linear,.the.parameters are 

.not the same as those.in.the.original relation unless Oii-= O. It is 

partly because of this .result.that he derived.some.relative maximum 

likelihood estimates in. the .. same article. 
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Another property with which we are concerned is the identification 

of the parameters in the relation, We say that the parameters are 

identifiable if, given the joint distribution of the observed vari-

ables, there is one and only one set of parameters which will produce 

that distribution. Assume the structural relation given in equation 

2.1 is true and the variables X, u, and v have independent normal 

densities. Then both sets of values of the parameters given in Table I 

produce the same mean and covariance matrix, and, hence, the same 

multivariate normal distribution. So, if no restrictions are put on 

the parameters, they are not identifiable only if the joint density is 

multivariate normal. In all other cases they are identifiable. 

0 

-1 

TABLE I 

A TABLE OF UNIDENTIFIABLE PARAMETERS 

µ 

1 1 

1 2 

a2 x 

2 

1 

a2 
u 

4. 

5 

a2 
v 

4 

2 

Neyman (19) proved the existence of consistent estimates of e for 

a structural relation. In 1956 J, Kiefer and J, Wolfowitz (14) showed 

that for the structural relation, if the parameters are identifiable, 

then the relative maximum likelihood estimate of e is consistent under 

regularity conditions. In 1950 J. Berkson (4) pointed out that if xis 
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controlled, that is, predetermined and repeatable, .then standard regres­

sion techniques are applicable,.a most important result • 

.. . Econometrics 

Models similar to,the-one-that has been.discussed so far have wide 

application in the field .. of. econometrics. Econometrics deals with the 

investigation of the.mathematical.and statistical relations between 

economic variables •... For example, .it may be postulated. that there is a 

linear relation between the·.-economic variables Y1 and.Y2 , such that 

Y2 = a. + SY1 + w where w .. is.,a disturbance term and Y1 and Y2 are 

observed values. In gener~l, .Y1 and Y2 may be correlated.with w •. This 

model.can be consider~d.as-equivalent to the.following one. There is a 

linear mathematicaL.relation between the unobserved variables x1 and x2 , 

such that x2 = a. + sx1, .but. the. observed values of the X's are 

Y1.= x1 + u and Y2 .. ::;:.X2 .+-v where u and v are random .. disturbances of 

the .. observed values _around_.the .. unobserved values •. This can be inter­

preted as meaning.that ... we should .. have the relation Y2 .. = a+ SY 1 , but, 

because of the random-nature .. of .. the process, we actually observe 

Y2 :;=.a. +.SY 1 + (v.~.-Su).,.so .. that ,v - Su).is.the disturbance term and 

. iLis_correlated .. with Y1 and Y2 . 

The economics.models are:..further .complicated by.the fact that 

there is usually more .. than .. one.,relation. and .. they.involve more than two 

variables. The variables are,..divided into two categories. Endogenous 

variables are those-measured with error. Exogenous variables are those 

. measured without error •.... Various. methods .of estimating. the parameters 

in the relations have.cbeen proposed.by economists •. If.only one vari­

able.is endogenous,c:least,squares.estimation.may be.appropriate. But 
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when many variables are present, the problem is usually suboptimized in 

some manner. The methods .. that are most frequently .considered by econo-

metricians are indirect. least .. squares, two stage least squares, three 

stage least squares, limited information maximum .. likelihood estimation 

(LIML), and·full information maximum likelihood estimation (FIML'E), 

If some of the .. variables are exogenous, itis.often possible.to 

rearrange the equations so that one can find .. the 0 regression of one or. 

more of the endogenous variable-on some of the exogenous.variables. 

This will give unbiased estimates of functions.of.the parameters. 

These estimates can.then be combined to give consistent.estimates of 

all the parameters •. This.method.is called indirect least squares and 

is applicable only.in.special circumstances. 

A second use of exogenous-variables is.in the.method.of two stage 

least squares. Part of the .. trouble encountered.in .. trying to estimate a 

and S is the fact that.Y1 .and_w are correlated, .... ILY1 .has a linear 

relation with an exogenous_var~able, say Y 1 = .a .. + .bZ .+ e, then it can 

be regressed 

value .. of Y 1, 

against the variable 

A 1' A 
namely Y1 = a + bZ. 

Z to get an estimate:..of.the expected. 

If this .is used .in .. the relation 

Y 2 = a + SY 1 + w, with Y1 replaced .. by ~,. then ~' which varies only 

with .Z,. is independent of w~ So .. least squares c.an .. he.used on this new 

equation. to. obtain .. unbiased .. estimates of. the. remaining parameters. 

Three stage least squares .. is.,.an· ... extension of this basic idea. 

The limited information.maximum likelihood estimators.are found by 

maximizing the likelihood function on a subset of the .. entire set of 

equations. If one considers .. the normal density,. this.method is equi-

valent, say, to using oply the sample deviations to.estimate a para-

meter when information on the parameter is also.available in the distri-
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bution of the sample means.. All of the above methods of estimation are 

suboptimal procedures. 

It would seem desirable.to incorporate all of the information 

available in the sample into the estimates. By using the full informa­

tion maximum likelihood estimation procedure.we are assured of doing 

this, since the estimates will be functions of the sufficient statis­

tics. But the FIML estimates are, in general, .. difficult to evaluate 

since the differential. equations which produce them ,.are nonlinear and 

rather awkward. However, when they can be found they are desirable, 

since, under general conditions, they are consistent and asymptotically 

efficient, .and they are,in,some sense optimal. 

One object of this paper.is.to develop a procedure by which the 

FIMLE equations can .. be.written in a form that is amenable .. to hand cal­

culations, even for.multiple relations. The.results .. of this thesis 

indicate that the complexity .. of the problem of finding -- the_ FIMLE is 

dependent more on the form,.of. the relations than .. on the number of 

relations. 



CHAPTER III 

DERIVATION OF THE ESTIMATES 

A.Single Structural Relation 

Let there be the following structural relation between the two 

random variables x1 and x2 : 

(3, 1) 

where b is unknown •... To ease the :problem of typing 1 the Greek letters 

that were used in the:fir.st.two.chapters wilLbe changed to Roman 

letters. Thus, in equation .. 3.1, -.the letter b .takes the place of f3, 

The problem, then, .is ... stated as. follows. 

Suppose that x1 and x2 can only be. observed with error and let 

these observed values be Y1 .== x 1 + e 1 and Y2 = x2 + e 2 • Also, let 

x1"" NID(m,v*), e1""' NID(O,v1),. and e 2_, NID·(O,v2). Taking pairs of 

observations, Yi= (Yli Y2i), we find 

Y_ ,..., MVN [1., ( m) (~* + v 
i · bm ' bv* 

}· 

' 
-bv* )] 

b2v* + v 

Reiersol has.shown.that.alLparameters.ar.e identifiable in the 

above distribution if.there.exists a relation between v1 .and v2 of the 

form v2 = Av1 where A is ,known •. We shall assume,l :;: 1. There is no 

loss in generality by doing this since one can make the transformations 

. Y~ = Y/fi and b* = b/4i:'. . The. relative maximum .. likelihood estimates in 
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the original problem will then be known functions of the relative maxi-

mum likelihood estimates of the new problem. 

At this point we w:j.sh to find the relative maximum likelihood 

estimates of v*, v1, m, and b. Define 

B .. (t) ' v1 = v, 

and 

A (v* + v bv* ) = 
bv* b2v* +v 

= v*BB' + vl. (3,2) 

Then 

Yi M'MVN(mB, v*BB' + vl), (3.3) 

We also have IAI = v(v*B'B + v). To find the inverse of A, consider 

the following. Assume A-:-.is of the form A-= cBB' + dl. Then 

I (v*BB' + vI)(cBB' + dl). 

Equating coefficients of BB' and I, we get 

cv*B'B + dv* + cv O 

and 

vd = 1. 

So, d 1/v and c = (-v*/v)/(v*B'B + v) -v*/ IAI, Hence, 

-v* 
A- = IAI BB' + vI. (3.4) 

Note that B'B = 1 + b2 • Let the elements of A and A- be functions of a 

parameter, say t. Then 
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where d/dt is defined throughout this thesis to be the partial deriva-

tive with respect tot, The above equation can be rearranged to give 

d(A-) 
= dt 

,_A...:dA A­
dt . (3,5) 

From the preceding equations we can derive some preliminary results. 

dA (~~~ v* ~ El!1 = 2bvv* -= 
db 2bvit db 

dA 0 El& .. 0 -= 
dm dm 

dA BB' AlAl = vB'B -= av~~ dv* 

dA 
I El& = v*B'B + 2v 

dv dv 
(3,6) 

The log likelihood function is 

(3,7) 

where 

k a constant 

D I: (Y. - Y) (Y. - Y) I 

i 1 1 

E = (Y - mB) (Y - mB)' 

s D/N 

and 

F D + NE. 



So, 

Lt dF.A_ 
"'2 I dt ' 

Lett• v*, Then d(lnlAJ)/dv* • vB'B/IAI and dF/dv* • 0, Also, 

_ (-B'Bv* + B'Bv* + v) BB' 
- JAi 

=~BB' 
1A1 • 

So, 

{-v*vB'B 1 r) BB' 
= tr F \ I A 12 + m 

v2 
B 'FB "]Af2"' 

Thus, from equation 3.8 

which implies 

B'FB v 
IAI = B'B N' 

From equation 3.8 we get 
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(3. 8) 

(3.9) 

(3.10) 

(3 .11) 

(3.12) 

(3.13) 

since A- is not a function of m. Now define z = Y - mB. Then E zz' 

and 



dE dz , dz' 
- = - z + z - = -Bz' - zB', dm dm dm 

Thus, 

dE A- tr (-Bz' - zB') ( l~i BB' + i r) tr - = dm 

2v* (B' B) ~B' z2 2B'z = IAI ---v 

2(B'z) [B'Bv* - v*B'B - vj = IAI 

2(B'z) (fu) 
= o. 

So, 

B' z = B' (Y - mB) 

B'Y - mB'B 

= 0 

and 

B'Y 
m = B'B' 

If we substitute equation 3.16 into equation 3.12, we get 

v B I (D + N z z I ) B 
NB'B 

B'SB 
v B'B" 

Taking the partial derivative off with respect to v, we get 

21 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 
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df 
dv = O. (3.19) 

Now, 

tr A- = tr (l~i BB I + ; I) 

-v*B'B + 2(v*B'B + v) 
= JAJ 

tr A 
= "lAT' (3.20) 

Also, from equation 3,5 

(3.21) 

Now, 

= ~tr (1~i BB'+; r) F (1~i BB'+; r) 
= -v*(B'B~(B'FB) + 2v*(B'FB) _ trF 

jAj jAjv -;;z: 

NB'B [ ~ tr F = - -rp;r::· v -v*tr A - ~ • 
1.1:1. Iv v"-

(3. 22) 

So, 

df = ~ [-Ntr A_ v*(tr A)N(B'B) + tr FJ _ O 
dv !Al IAlv ""7 - ' (3. 23) 



But, from the first two terms 

Hence, 

-Nv(tr A) - v*N(tr A)B'B 
IA Iv 

(tr A)N(-v-v*B'B)v 
= . 1Alv2 

.. -N(tr A) 
v2 

tr F tr A = --. 
N 

Now consider equations 3.18 and 3,24, We find 

and 

Rearranging terms we get 

and 

B'SB 
B'Bv* + v = -B'B 

tr F B'Bv* + 2v =--
N 

tr F B'SB 
v=-N--B'B 

2 B'SB _ tr F 
B'B N v* = -~-.,-----

B' B 
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(3,24) 

(3,25) 

(3.26) 

(3.27) 

(3.28) 

It is easy to see that bis the key to estimating all parameters since 

m, v, and v* are functions of b. 

To find b we must solve 

df k:N d(ln!A!) - k:2tr F ddbA- - k:2 db = - 2 .db 

From equations 3.6 we have 

d(ln !Al) 
db 

2bv*v 
!A I • 

dF .A_ 
tr db o. (3.29) 
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Define 

then 

dBB' --·"" db 
(0 1) a BB'Jl + JlBB' 

1 2b b 
(3,30) 

since 

I (0 b) BB Jl = 0 b2 • 

Also, 

dA d(v*BB' + vI) . dBB' 
- - db - = v* -db ' db - (3.31) 

Hence, 

dA- FA- dA A-
tr F db = -tr db 

-v* 
= - tr FA-(BB'J + J BB')A-b 1 1 

(3. 32) 

Remembering that B'z O, so B'FB = B'DB, we get 



= 

where 

(B'DB b 
iA 2v [v*v(-B'B)v* - v*v(B'Bv* + v~ 

BI J IDB r. 
- 1Alv2 Lv*vB'B - v(B'Bv* + v~ 

In a similar manner 

B'A-FA-J B = N(B'B)b2(-v*) + B'DJlB 
1 IAI IAI 

where 

So, 

dA- _ -v* f2N(B'B)b 2(-v*) + 2b(d 12 + bd22)J 
tr F db - b l: I A I · 

Hence, the first two terms of equation 3.29 give us 

I dA- 2Nbv*v + 2v*2(B'B)bN - 2v*(d12 + bd22 ) 
N ;d(ln Al) + 

db tr F db = I A I 

= 

2Nbv*(v + B'Bv*) 
IAI 

2v*(d12 + bd22 ) 

IAI 

2Nbv* 2v*(d12 + bd22) 

v IA I 
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(3.33) 

(3,34) 

(3, 35) 



Now, 

= 2vv* hNb NB'B (S + bS >] L - B'SB 12 22 ' 

dF d(D + Nzz') dzz' 
db= db = N ~ 

= Nd(YY' - mBY' - mYB' + m2BB') 
db 
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(3.36) 

= N -m Y' - mY + m2 • [- ~OJ _ _ (0) I ~B I J 1 + J 1 BB 1 
)] 

1 1 b 

So, 

2N -
= - (m2b - mY ) 

v 2 

since B'Y = mB'B. Thus, 

We also have the relations 

and 

z'z = (Y - mB)'(Y - mB) = Y'Y - 2mB'Y + m~B'B 

= Y'Y - (B'Y)2 
B'B 

tr F tr D + Nz'z, 

(3.38) 

(3.39) 
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Rearranging equation 3.28 and making the proper substitutions, we get 

_. B'SB _ (B'B,_ ( (B'B) (Y'Y) - (B'Y) 2) 
B'Bv* - 2 B'B (Sl1 + S.22) B'B} B'B • (3,40) 

Combining equations 3,40 and 3.37, and finding a common denominator for 

equation 3,37, we find 

[2B'SB - B'B(s 11 + s22 ) - (B'B)(Y'Y) + (B'Y)~ G<B'SB) - B'B(s 12+s22~ -------~------~----------~--~--~~~--=-~--~------~--.....,;;;+ 
v(B'B) 2B'SB 

b(B'!) 2(B'SB) - (B'Y)Y2(B'B)(B'SB) 

v(B'B) 2(B'SB) 
= o. (3,41) 

The numerator of .this equation is at most a fifth degree polynomial in 

b. We now write the numerator of equation 3.41 in the form 

and define 

and 

Then, 

8!2 = 812 + Y/2 

Sh = 811 + Yi 

(3.42) 

(3. 43) 
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a = 0 .5 (3.44) 

where the Sfj are the sums of squares and crossproducts of the devia­

tions measured about zero, not about the mean. 

The author has been unable to discover.a solution for equation 

3.42 which is in a simple form. However, for specific values of the 

coefficients, it can.be solved by methods available in standard ref~r-

ence books. It should be noted that a2 = -3(a0 + a4). 

To get an insight into the structure of .this equation, let us look 

at the limiting values.of tbe coefficients. Since the observations are 

from a normal distribution, .it.follows that 

= plim E(S .. ,)plim E(S,;1.)~ (i,j) 'f (k,l). 
1J. l\. 

So, 

plim a4 = (b2v* +.v)b(v* + rn2) - bv*(v* + m2 + v) 

v* (v* .+ m2)b (1 - b2) + bvm2• 

Similarly, 

plim a3 = -v*(v* + -1n2) El - b2) 2 - 4b~ + (1- b2)m2v 

plim 6v*(v* 
2 2 

a2 = + m )b(l - b) 

plim a 1 v*(v* + Iil.2) ~1 - b2)2 - 4b2] 2 2 + (1 - b )m v 

plim ao v*(v* + m2)b(l 2 2 
= - b ) - bvm • 

Since there are only four independent coefficients, .they can.be com-

bined to get 



2 2 
plim (a4 + a0) = -2v*(v* + m )b(l - b) 

plim (a1 - a3) = 2v*(v* + m2) El - b2) 2 - 4b~ 

2 plim (a4 - a0) = 2bvm 
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2 2 plim (a1 + a3) = 2(1 - b )vm, (3.45) 

Since bis a consistent estimate of the slope parameter, it would 

appear that, in order to eliminate 2 
v*(v* + m) 

2 and vm from any 

solution of the equation, · (a4 + a0) and (a1 - a} would be grouped, as 

would. (a4 - a0) and (a1 + a3), 

To find the relative maximum likelihood estimates when v 1 and v 2 

are known, let v2 • Av1 and v 1 • v. Then, as before, we let b* = 

b/,Jr'. The only difference between the former derivation and the 

.present one is that.df/dv.is not needed, Rearrange equation 3,25 to 

get 

..... ··.;.,*· B'SB - B'Bv 
(B'B) 2 (3.46) 

The estimate of mis the same as in equation 3.17, tn fact, equation 

3,37 is still valid, since there was no use of equation 3.24 in its 

derivation. When equations 3.46 and 3.17 are substituted into equation 

3.37 and the terms are rearranged, we once again obtain a fourth degree 

polynomial, but the new coefficients are 

(3. 4 7) 
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Equation 3.47 can be solved by methods available in standard reference 

books. 

~\11tiple Structural Relations 

The previous results will now be extended to the problem with p 

structural relations and ai = O. There are p.structural relations of 

the form 

i=l, ••• ,p; 

Assume that each Xi is measured with error. Let Yi= Xi+ ei be the 

observed values where ei"'NID(O,v). It is assumecl that x0 is also 

known to have a normal .distribution independent of .. the measurement 

errors. Define Yj = (Y0j Ylj .••• Ypj) and B' = (1 b1 b2 ••• bp). 

Then Y j.,.., MVN (mB, v*BB' + vl) , where · x0 ,..., NID (m, v~) • As ·before, let 

A• v*BB'+ vI. However, .. thedeterminant of.A.is.now changed. 

Define JAi* = v(v*B'B + v). It is inunediately seen that the deri-

vation of A- can be.performed as.done in equation.3.6. Hence, 

We will now prove that 

(3.49) 

The proof is by induction •.. It has already.been shown that equation 

3.49 is true when p = 1. .Let A be the covariance matrix .when there 
p 

are p relations. Let B*' (1 bl b2 ••• 

equation 3.49 is true for,~- -.1. Then, 

Also, A can.be written as 
p 

b 1). Now assume that 
p-

lAp-11 -~ vp-tv*B*'B* + v). 



So, 

Note 

where 

that 

Some 

A - . 
p 

A 
p-1 

v*b B*' 
p 

I 
I v*b B* 
I p 

-'- - - - - -
: v*b 2 + v p 

= jA 1 · 1 (b 2v* + v) - v* 2b2B*' (fvj B*B*' + ..!. r) B*j p-1 p · p A* v 

trace A = v*B1B + (p + l)v. p 

preliminary results follow. 

.!!l!l. = 0 dA {/) -= 
dm dm 

£1& = vpB'B dA BB' -= 
dv* dv* 

£1& = p-1 (p + l)vp dA 
pv v*B'B + -= I dv dv 

£1& = 2b.vpv* dA db, 1 -=. (aijk) 1 db. 
1 

(aijk) is a (p + 1) by (p + 1) matrix and 

b,v*, j 'f k = i + 1 
J 

bkv*, k I- j = i + 1 

aijk = 
2b,v*, j k = i + 1 

1 

0 otherwise 

31 
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We proceed in the same way that we did in the first part of the chapter. 

We find 

d(ln!A!) = 
dv* 

vB'B 
= TKT*' 

dF 
dv* = (1) 

and 

dA A- vBB' 
dv* = "fAl*• 

These are the same results that were derived previously except that !A! 

is replaced with !A!*. So, equations 3.10 and 3.12 are the same with 

!A! replaced by !Al*· Likewise, df/dm does not change form, so 

B'z = 0 and m = B'Y/B'B. Equation 3.18 is rewritten 

IA' *= B'SB. 
v B'B 

There is a change in trace A-, however, for 

tr A- = -,.v*B'B.+ (p + 1) (v*B'B + v) 
iAi* 

= (p - l)v*B'B + tr A 
iAI* • 

But we still have dA-/dv = -A-A-, so 

Hence, 

dA- -B'FB [ 2 
tr F dv = IAl*2 -v* B'B 

.. 

J tr F 
2v*v - --;;z . 

df 1.-rpv*B'B + (p + l)v __ NB'B ( *2B'B + 2 * ) + tr :fl 
dv = ~ IAI* !Al*v v v v v2·J 

= 1-[-N(p + 2)v*vB'B + v*2 (B'B) 2 + (p + l)v2 + tr Fl 
'2 [ I A I *v --;;r J 

= ~[N (p +2 1)v + B'~v* + tr2F] = O. L v v v -J 

(3.50) 

(3.51) 



Thus, 

tr A= tr F/N, 

as before. Combine equations 3.50 and 3.52 to obtain 

and 

v*B'B + (p + l)v = tr F/N 

v*B'B + v = B'SB/B'B, 

tr r/N - B'SB/B'B 
v = ' p 

v* 
(p + l)B'SB/B'B - tr F/N 

pB'B 

33 

(3. 52) 

(3,53) 

(3.54) 

Now, define Ji to be a (p + 1) dimensional square matrix with all 

elements zero except the (i + l)St diagonal element, which is 1. Con-

sequently, 

dBB' 
dbi = 

BB'J + J BB' 
i i 

The previous derivations hold for df/db., except that 
l. 

B'J;DB = B'DJ,B 
l. l. 

So, we have p polynomials of the form 

df -v* ( B'B 
p 81k<) - .!.(m2b. - mY;) db = 7 bi - B'SB ~ 

k=O v l. 
o. (3.55) 

For computational purposes the equation will not be expanded as a 

power series, but will be left in the above form. 



CHAPTER IV 

APPLICATIONS 

Three problems will be considered in this chapter. In the first a 

review will be made of a comparison of various estimates which was 

initially done by Albert Madansky in 1959. The relative maximum likeli­

hood estimate will be found for his example and its asymptotic variance. 

will be compared to those of the other estimates. 

In the second problem it will be shown that a consistent estimate 

of vis possible eventhough all parameters arenot.identifiable. The 

full information relative maximum likelihood estimate for a Keynesian 

economic problem will be obtained in the last example. 

Madansky's Comparison 

In 1959 A. Madansky.published an article in the Journal of the 

American Statistical.Society in which he made a.comparison of the.esti­

mates and the estimated standard deviation of.the.slope estimators 

which were then available •.. The example he used.can-be stated as 

follows. We wish to.estimate the linear relation bet'Ween the Brinell 

hardness and the yield strength of artillery shells •.. Shells were manu­

factured from two different heats of steel, .a random-sample of 25 

shells manufactured.fromeach.of the two heats.of steel.was taken, md 

the Brinell hardness-and.yield strength of the 50 shells.were measured. 

We have been told that v1.andv2 are approximately .. 50 and.7500, respec-

'I /. 
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TABLE II 

MADANSKY 1S DATA 

Low Heat High Heat 

Yield Strength Brinell Hardness Yield Strength Brinell Hardness 

x y x y 

229 845 277 900 
230 810 285 800 
235 750 285 815 
235 750 285 ,815 
235 755 285 925 
235 755 285 965 
235 765 285 970 
235 795 285 970 
235 795 285 975 
235 930 285 975 
239 905 285 975 
241 760 285 1,010 
241 760 285 1,030 
241 760 285 1,045 
241 795 285 1,150 
241 800 285 1,160 
241 805 293 940 
241 815 293 1,005 
241 825 293 1,005 
241 825 293 1,015 
241 835 293 1,040 
241 870 302 935 
241 875 302 1,075 
241 960 302 1,095 
241 1,050 321 1,140 
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TABLE III 

MADANSKY'S RESULTS 

Method Estimate Standard Deviation 
of 8 of Estimate 

Least squares yon x 3.288 ,47 

Least squares knowing cr u 2 3.536 ,41 

Least squares knowing av 2 2.738 .62 

Least squares knowing A= cru2/crv2 3.475 .49 

Least squares knowing cr u 2 and cr v 2 3. 112 .25 

Grouping, pl= P2 = ~ 3.204 .22 

Grouping, P1 = P2 = 17/50 4.256 .60 

Instrumental variable Zi = i 3.969 ,29 

Components of variance 1 3.202 

Components of variance 2 3.142 

Components of variance .3 3.172 

Components of variance 4 3,427 

Cumulants--3rd order 5.660 3.1 

Cumulants--4th order (1) 4.538 

Cumulants--4th order (2) 3.326 

Y2/Y1 3,4343 .04 
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tively. The values of the estimates and their estimated standard devia-

tions are given in Table III. None of the first 15 estimates use the 

assumption that a= O. Only the last estimate, b = Y2/Y1, uses this 

assumption. But this assumption would appear to be valid since one 

would not expect any yield strength if the Brinell hardness was zero. 

If this is considered to be a functional relation and the Y2 's are 

divided by /150 so as to make A= 1, the relative maximum likelihood 

estimate of the transformed slope parameter is 

(s* S* ) + /<s* - s~ )2 + 4S* 21 
ft 22 - · 11 . . 22 11 12 b = ~--.,--~~~--~~.,--.,--.,--.,--.,--.,--.,--.,--

2 Sf 2 
A= 1, (4 .1) 

where 

S* = 11 

S!j measures the deviation about zero, not about the mean. Hence, 

sll + ,Yf, s~2 = s22 + Y~, and Sf2 = s12.+ Y1Y2. So, equation 4.1 

can be written 

b = 

From the data that was presented in his article, we have s 11 = 714.1936, 

s22 = 92.8736, s 12 = 191.7462, Y1 = 263.92, and Y2 = 74.00694, It can 

be shown that the ratio-(~~ - Yi)/(s22 - s 11 ) is greater than 100. 

-2 -2 Hence, Y2 - Y1 is the dominant term. If the deviation terms are, in 

fact, neglected in the expression, the estimate reduces to 

ft Y~ Y~ +J<Y; - Y~) 2 + 4(Y1Y2)
21 

b = ~~~~~~~~~~~.,--~~~~ 
2Y1Y2 
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Upon substitution of the proper values in equation 4.1 and multi­

/\ 
plication by ~150, we find that b = 3.4346. The estimated asymptotic 

standard deviation is also approximately .04, so there seems to be 

little to choose between the two estimates. 

It is interesting now to consider the case where the relation is 

structural. Equation 3,37 can be rewritten as 

(4,2) 

Consider the coefficient of v* in the above equation and equate it to 

zero. If we used this equation to estimate b, the estimate would be 

the same as in equation.4,1, This is the relative maximum likelihood 

estimate if only the deviations.are considered, If we equated the 

coefficient of m2 to zero and used this equation to estimate b, we would 

find 
A -
b = Y/m which is the relative maximum likelihood estimate of b 

if only the sample means are considered. Since we have two consistent 

estimates of b, we might consider c~mbining them in some way, say by 

taking a weighted average •. However, equation.4.2 indicates a possibly 

more interesting way to."combine estimates". Don't combine the esti-

mates directly, but instead combine the equations which give rise to 

the estimates, so as.to obtain new estimating equations. But why would 

we want to weight them proportional to v* and m2? Intuitively, if the 

2 mean was near zero and the deviation of X was large, (m /v* small), we 

would want to increase the effect that deviations had on the estimate. 

2 Similarly, if the deviations were small and the mean large (m /v* large) 

the effect of the sample means should be more pronounced •. For an idea 

as to the value of·· the ratio. m2 /v'I( in this example, . we. again look at 
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TABLE IV 

COEFFICIENTS OF EQUATION 3.42 

ao = -13,018,504 

a 1 = 27,689,940 

a 2 = 74,038,392 

a 3 = -22,575,280 

a 4 = -11,660,952 

TABLE V 

SECOND ORDER DERIVATIVES 

-NB'Bv/jAj 

-N(vB'B) 2/(2jAJ 2) 

-N[2 2tr A 2v1,(B'FB)(tr A) 2 2v*B'FB + 2tr FJ 
'zllAf- jAj 2 - jAJ3 jAJ2 v3 

-Nf]v* 2v*(F12 + bF22 )v*v2b _ 
z[-;- + jAj 2 

2 2v*d(z 1z2 - bz2)/db 

jAj 

2] -v* - - 2 2 2m '"jA"f -2m(Y1 + 2bY2) + m (1 + 3b) +-;-

- 2] -N [zbv* 2v*(F 12 + bF 22)tr A 2mY2 - 2bm 
- + + 2 v2 IAl2 v2 

Nv(Y2 -

-!Fzb -
z[v 

0 

0 
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the ratio which is a consistent estimate of 

m2/v*. We find R ~ 100. This again indicates that we should put more 

emphasis on the means. Since the estimate of busing the deviations is 

3.475 and the estimate of busing only the means is 3.4343, the true 

MLE should.not differ much from 3.4343. Upon solving equation 4.2 we 

find b ~ 3.4345, a difference of less that .01% from Y2/Y1• 

The matrix of second order derivatives with the appropriate 

restrictions on the parameter estimates is given in Table V. Upon.sub~:. 

stitution of the estimated.values of the parameters, we obtain 

-141,125 -4 .• 817 -.3461 -12.98 

INVERSE ASYMPTOTlC -.4817 -.0702 0 0 
= VARIANCE MATRIX -.3461 0 -.000049 -.000046 

-12.98 0 .,..000046 -26.543 

where the orde.r of . the parameters. is b, m, v*, . and. v. . The upper left 

corner of the asymptotic variance matrix, .then, is -.000090231/12.4815= 

-7.22 x 106• Hence,.the estimated asymptotic standard deviation of the 

~ 3 estimate of b in the original problem is Var(b) = if150' • {f":'22' x 10 = 

.0324, about the same as that for Y/Y1 • Since the variance matrix is 

negative definite, the solution is a relative maximum. 

The Bottle Problem 

The investigation.of the. topic considered .. in.this paper was 

originally suggested .. by. the. following problem •... In. 1964 Dr. J. Leroy 

Folks was approached.by a chemistry student and.was.asked for assist-

.. ance in solving a particular statistics problem •... The student had 
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weighed four bottles on seven days. It was realized that there was 

error present in the observations not only as measurement error, but 

also as day-effect variation. The model was postulated as being addi-

tive in measurement error, but multiplicative in day-to-day variation. 

So the model could be written 

where 

i=l, ... ,4, 

Y .. = observed weight 
1J 

j = 1, ... , 7 (4, 3) 

bi = true weight of bottle i, i.e. the weight of the bottle 

in a vacuum 

X, = random.multiplicative factor due to atmospheric condi­
J 

tions during the jth day 

e.. measurement error. 
1J 

The student was not concerned with the true weight of the bottles. He 

only wanted an estimate of the measurement error standard deviation. 

After Dr. Folks presented this problem to the students in one of his 

classes, the author, at Dr. Folks suggestion, was able to furnish the 

student with a consistent estimate of var(e .. ). However, since the 
1J 

distribution of the estimator.was not known, no indication.of the pre-

cision of the estimate could be given. Since the asymptotic variance 

of the MLE is often available,-it.was decided to.consider.the MLE for 

this model. However,_ no information for this model was available in 

.the literature. Hence, this paper. 

Let equation 4.3 hold true;-then a = 0. for.all-i. 
i 

Since the 

bottles are similar.inweight,-we will assume that.the measurement 

error variance is the same .. for .. each bottle •.. We will further assume 

that X. rv NID (m, v*) and .e. ,·-' NID (0, v). Then Yj ,-., MVN (mB_ , v*BB' + vl) 
J 1J 
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where B' • (b 1b2b3b4). Unfortunately, there exists a problem of iden­

tification here, for if we double the values of all the b's, and take 

half the values of m and~, we would still have the same multivariate 

normal density for the Yj 's. However, vis not.effected by this 

process and so is unique. To get around this problem, define b1 = 1 

and A= 1. · Then the parameter space is well identified. Since the b's 

are not sought in this problem, this procedure is permissible, 

The data for the.problem which will now be worked.is presented in 

Table VI. It is not the original data, but was devised so as to be 

useful for this discussion. The original data, which has long since 

disappeared, was given to seven significant digits.and.only the last 

. three. varied in the .. observed. values. This made .. m2 /v~ . on the order of 

10 7, so that the terms .. invo 1 ving .. the mean were dominant. . Hence, if 

YzlY1 were substituted.into.thepolynomials, thevalues.of .the func­

tions would be on the order of .0001, showing.that YzlY1 gives a good 

approximation to the true MLE since if' I ~ l-m2/vJ > 107• In order to 

show the method used to solve the equations, new data was created. 

The method used.to derivethe estimates from the.equations will be 

a modification of the Newton.,,-Ralphson method •.. TheNewton-Ralphson 

procedure is an iterative.process. Let b. k be.the kth estimate of b .• 
1, . . 1 

Then we create new and.hopefully better estimates.by.the relation 

f~(B) 
1 

b. k - f~ I (B). 
1, 1 

For f~ we use the function associated with df/db,:;:: O •. In place of 
1 1 

evaluating f*' at eachiteration,.however, we will.use the fact that 

-,-m2/v is the dominant term inf*'. As our i~itial estimates of b., we 
1 
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TABLE VI 

WEIGHT OF BOTTLES 

Bottle 
Day 1 2 3 4 

1 12.7 15.3 17.8 14.0 

2 . 12. 5 15.0 17.5 13.7 

3 10.8 13.0 15.2 11.9 

4 9.8 . 11.8 13.8 10.8 

5 .10.6 12.7 14.8 11. 6 

6 9.4 11. 3 13.2 10.3 

7 11.1 13.3 15.5 12.2 

TABLE VII 
THE MEAN AND COVARIANCE MATRIX 

10. 9857 1.3355 1. 6057 1.8514 1. 4739 

13.2000 1.6057 1. 9314 2.2271 1. 7728 
y = s = 

15.4000. .1.8514 2.2271 . 2.5686 2.0443 

12.0714. 1.4739 1. 7728 2.0443 l.6278 



~ = 1. 20156 

A 
B'B = 5.616279 

~ = 41.906871 

~ iiB= 7.4616 

0 = 10.3581 
1 

A 
bl = 1. 201605 

TABLE VIII 

SAMPLE CALCUALTIONS 

Original Estimates. 

'b' = 1.40180 
2 

I' m = 10.9857 
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/",. 
b = 1.09883' 

3 

(13.2) 2 ~ (10.9857) 2 ~ 
1.9314 - 1.3355 92 

A 
v = ,00052867 

~ 
- = 2512.8833 
v 

/' 
v* = 
~ 
m 
v 

/:\ f2 = -28.6199 

New Estimates 

/'. 
b2 = 1.401675 

tr F -N-- = tr S = 7.463265 

3 /""'-. 
t ·s2khk = 8.996416 

k=O 

3~ 
E. s3kbk = 10.374800 

k=O 

1.328486 

228, 281. 55 

/\ 
f3 = 19.9430 

/'.. 
b = 1.098915 

3 
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• 
will use bi • Y/Y _' So, our initial estimates are given in Table VIII, 

A /\ 
In one iteration we find that bi changes by less than .01% and tfv= 

.0230. 

An Economic Problem 

A simple Keynesian problem in economics can be stated as follows, 

Let 

C = consumption expenditure 

Y = income 

z nonconsumptio~ expenditure 

u = a stochastic disturbance term 

t time period; 

then it is surmised that the f<;>llowing relations hold: 

and 

Y = C + dZ 
t t t 

These equations can be rewritten in reduced form as 

and 

ct.= .....!!.... + bd z 
1-b 1-b t 

y 
t 

It is assumed that C, Y; and Z are endogenous variables. Thus, we only 

observe c = C + e 1, y = Y + e 2, and z = Z + e 3 where the errors are 

independent normal with zero means and var(e1) = var(e2) = 9 var(e3). 

Although this might not seem to fit the case where a is assumed to be 

zero, it can be transformed so that it does since the intercept terms 

are the same in the reduced equations. Let us make the following 

definitions: 



a* = a/ (1 - b) , 

c* = c - a*, 
t t 

b 1 = d I < 3 - 3b) , b2 = bq/(3 - 3b), 

If we further define Y*' = (z~ y* c*) and B' = (1 b1 b2), then 
t t t t 

Y* ,...,MVN(mB, v*BB' + vI) where Z "'NID(m,v*), Then all of the equa­
t 

tions used in Chapter III are appropriate with Y.replaced by Y*, 
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Consequently, a* is still present in equation 3.37, To eliminate it we 

must set df/da* = 0 .. Since only z (as used in equation 3.38) depends 

on a*, we get from equation 3.8 

(4.4) 

We can rewrite equations.4.4 and 3,17 as 

(4,5) 

and 

(4.6) 

The procedure is as.in the bottle problem except that~ and~ 

are calculated.at the same time. For an initial.estimate of a*, we 

treat z* as though it were an exogenous variable and regress y and c. 

against it, using the.same intercept parameter •... So,.our.initia.l esti-

t . /\* 5682 s. h O 
• • 1 . f 21 * . 24"'0 h ma e is a = • 1.nce t e 1.n1.t1.a estimate o m .. v . is liJ , t e 

sample deviations can be ignored. in. the initial. estimates. The pro,,-, 

cedure is to use equations 4 .5 and ·4. 6, .ami the /.\ - /\ I\ esti~ites b 1 .= (y-a*)/m 

d <\b (- /\*)II\ · ··f (b. Y- I ) o an 2 = c - a m to satis y . - . m = 
l. l. 

in.equation 4,2, 

The sequence.of estimated values of b1 and b2 is given in Table XI. 
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TABLE IX 

UNITED KINGDOM NATIONAL-INCOME DATA 

(Thousands of Pounds in 1954 Prices) 

Year yt c 
t zt 

1948 13,895 10, 706 3,165 

1949 14, 377 10,940 3,359 

1950 14,843 11, 250 3,470 

1951 15,307 11,089 4,166 

1952 15,360 11, 023 4,357 

1953 15,951 11,474 4,404 

1954 16,680 12,023 4,376 

1955 17,237 12,443 4,320 

1956 17,547 12,548 4,408 

1957 17,788 12,802 4,318 

1958 17,699 13,096 3,894 



TABLE X 

TABULATED VALUES 

z* 12,064.6 1,820,226 1,283,008 549,253 

Y • y* • 16,062.2 S • 1,283,008 1;792,985 1,042,172 

-c 11,763.1 549,253 1,042,112 

TABLE XI 

SEQUENCE OF ESTIMATES 

/',. " /\ 
a* bl b2 

5682 . .86041 .50406 

2212.15 1.0861 .76022 

2724. 8 1.1007 .74561 

2773. 71 1.10128 .74499 

2771. 55 1.101309 • 74437 

Initial~= (16062.2 ~ 5682) 2 - (12064.6) 2 ~ 
1792985 - 1820226' 

/\ -Initial m = z* = 12064.6 

694,616 

2400 
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The last iteration, using the sample means and its covariance matrix, 

give -~ = 1.1013089 and 

" /'\ /\ places. Thus, b = h2/h 1 

.I\ 
h2 = .744366, accurate to three decimal 

I\ " /\ = .6759 and a= (1 - b)a* = 897.8. 
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CHAPTER V 

SUMMARY 

The variables Xi' (i .. O, •.• , p), are related by the set of equa-

tions 

i•l, ... ,p; 

and x0 rv NID(m,v*). However, all Si are observed with error, the ob­

served values being Yi= Xi+ ei, where eirv NID(O,v). The relative 

maximum likelihood estimate of b. is determined by 
l. 

where 

and 

-v* f* =­
v 

A 

m = B'Y/B'B 

v = tr F/N - B'SB/B'B 
p 

v* = (p + l)B'SB/B'B - tr F/N 
pB'B 

= 0 (5 .1) 

(5. 2) 

(5. 3) 

(5.4) 

To solve for b., first obtain initial estimates of all b., then evalu-
l. l. 

A ,/\. /' 
ate m, v, and v*. Next, use these estimated values to find a new esti-

mate of b. by using a modified Newton-Ralphson iterative process. 
l. 

Repeat this procedure until the estimates of all the b. become stable. 
l. 

When there is only one relation and A= v2/v1 1, equations 5.1, 

5.2, 5.3, and 5.4 can be combined to g·ive a fourth degree polynomial 
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as the estimating equation for b. The coefficients are given in equa­

tion 3.44, page 27. 

When v2 and v1 are both.known and there is one relation, bis 

found from a fourth degree ·polynomial in b with the coefficients given 

in equation 3.47, page 29. 

In the first example it is demonstrated that the asymptotic stan­

dard deviation may increase considerably if it. .. is known that the inter­

cept parameter is zero, but·thisinformation is not used. 

If all variables.are measured with error, so.that,.in.the classi­

cal regression sense,.there.are.no "independent" variables, there may 

be a problem of identification.of some of the parameters. In the 

second example it is.shown.that a.consistent estimate.of.v exists even 

though the other parameters .. are. not identifiable. 

A Keynesian economics.problem, where intercept parameters are 

present, can be solved.by a modification of the above technique, if it 

is known that the intercepts are the same, as.is demonstrated in the 

third application. 



(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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