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CHAPTER I 

INTRODUCTION 

Among the topics encountered in real analysis are limits, 

continuous functions, differentiable functions, integrals, sequences, 

series and functions defined by power series. A discussion of any of 

the ab.ove relies heavily upon the absolute value function, The 

absolute. value function is an example of a larger class of non-negative 

real valued functions called valuations, 

Definition 1.1. Let F be a fiel,d and R be the real field. · A 

mapping ~: F + R is a valuation on F if and only if each of the 

following properties is satisfied: 

i. Hx) > 0 for. every x e: F· 
' 

ii. ~(x) = 0 if and only if x = O; 

iii. ~(xy) = Hx)Hy);. 

iv. Hx + y) 2. Hx) +Hy). 

Example 1. 2, (a) The absolute value function is a valuation on the 

field of rational numbers. 

(b) The modulus function is a valuation on the. complex field. 

The following theorem is easily established from the definition of 

valuation, 

1 



2 

Theorem .1.3. If cj> is a valuation on the field F, then: 

i. cj>(l) = cj>(-1) = l; 

ii. cj>( -x) = cj> (x) for eve.ry x e; F; 

iii. cj>(x - y) ~:<l>(x) + cj>(y);. 

iv. <1>( ; ) = :~;~ · provided 4>(y) f o. 

Non-Archimedean Valuations. 

One property :of the real number system with absolute value is.that 

given any .. two non-zero numbers a and b, there is a posit;ive integer 

n such .that . , Ina I· > I b I • This property is called the Archi~edea:n 

Property of .the re.~ls.. In particular, for every positive integer 

n. > .l, .. lnl > 1. It will be se~n t!'!.at not·all valu,ations have tqis 

property. 

Definition 1. 4. ·· Let; 4> , be a V'aluatiot1 on field . F. If, for every 

n = i + l + • • • + ,l, 4> 1(n) ~ ·l, then cj> is ·a non-archimedean 

· valuation on F. 

The following th.eorem prc:.,vide.s a c~mmonly used characterization o:1; 

a non-archimedean valuation. The proof can b~ found in Snook (16]. 

Theorem 1.5. Let cj> be a valuation on fie~d F •. Then. 4> is a 

non-archimedean valuation if and only if cj>(a + b) ~ max{cj>(a),cj>(b)} 

for an;y pair• a,b e; F •. 

The ·.property cj)(a + b) ~ max{cj>(a) ,cj>(b)} is called the 

non-archimedean property. It is clear that the .non-archimedean property 

implies the triangle inequality cj>(a + b) ~ cj>(a) + cj>(b). Usually, when 



the. valuation is non-archimedean, property iv. of Definition 1.1 is 

replaced by the non-archimedean property. 

Theorem 1. 6, If cp is a non..,..archimedean valuation, . then 

cp (x + y) = max{cp(x) ,cp(y)} whene:ver cp(x) :/, cp(y) [16, p, 54], 

Definition 1. 7, A field F with non-archimedean valuation cp is 

called a non~archimedean field, 

Outline of Study 

Since non-archimedean valuations and absolute .value have similar . 

properties, it is reasonable. to cqnsider concepts of ana],.ysis relative 

to a .non-archimedean field, This. type of study is presented in an 

expository paper by Palmer [14] ent.itled "Some Analysis in a 

Non-Archimedean Field." 

3 

The present study cG>.nsiders analysis in an algebraically closed 

ext~nsion of a non-archimedeail field. It is accurate to consider this 

study as a sequel to Palmer's, and his work will be referenced. 

frequently. Those results .essential to the present study are listed as 

needed. 

The· backgJ;"ound required for this study includes analysis through 

advanced. calculus (complex variables would be helpful but not essential), 

algebra at the level of Herstein [9] and. number theory as presented in· 

Agnew [2J, 

In the .remainder. of this chapter a particular non-archimedean 

field called the p-aci:Lc numbers is discussed and some of Palmer's 

results relative to this field are listed. Also, some special topics 

to be utilized later are presented here. Chapter II pertains to 
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continuous and differentiable functions. That chapter also includes a 

non-archimedean analogue of Weierstrass' Approximation Theorem of real 

analysis. In _Chapter III, an algebraically closed extension of the 

p-adic numbers is considei:ed. The major accomplishment of that 

chapter is the demonstration that the non-,,archimedean.valuation extends 

to the algebraically closed field. In Chapter IV, power series are 

considered in some. detail, A geometric device called Newton's polygon. 

is developed and employed to determine the radius of convergence and to 

help locate the. zeros of a power series •. That chapter _culminates with 

a non-archimedean form of Weierstrass' Factorization Theorem, The last 

chapter shows that by a suitably defined analogue of the complex line 

integral, analogues of several standard theorems of complex analysis 

can be established. Included are Cauchy's Integral Theorem, Cauchy's. 

Integral Formula, the Maximum Modu],us Principle and Liouville '.s Theorem. 

The p-adic Number Field 

The_ non-,.archimedean field upon which this study is based is called 

the field of p-adic numbers_ and is denoteq by Q • p Some of the 

i~portant properties of are listed below. For a complete 

development, the reader is referred to Agnew [2]. 

(1) Each · a £ Q ca1n be uniquely expressed in the form 
·p 

where O <.a < p - 1 for each n = 0,1,2, ••• , a0- :/: 0 and k 
- n -

is a ration~! integer. This is called the canonical representation 

of a. 
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(2) The non-archimedean valuation on 

( Pl )k la·lp = where a is given 

Qp is denoted by I Ip and 

in the canc,Ij•al representat:1,on 

above. 

(3) The set 0 = fo e: Q : lalp ~ 1} is the ring of p,adic integers. p p 

The units in 0 are those-elements of 0 such that· lal , = 1. p p p 

(4) The field Qp is complete with respect,. to the. valuation I Ip. 

(S). The field Qp is a discrete field~ that is, its value group given. 

by v .. i Ix I = x e: Q ' x :/: O} is an infinite cyclic group with 
Qp p p 

generator 1/p. 

The Ordinal Function 

The remainder of this chapter _is devsted ta several special topics 

_which will be utiliz.ed in later chapterei. The first of these is a real 

valued function defined on an arbitrary non-archimeciean field. There. 

is no assumption that the field is discrete. 

Defip.it!icm 1.8. Let F be a field with n~n-archimedean valuati9n 4>. 

The ardinal function is defined on F by . 

Fo.r example, 

k , ( lp )k, I <P e > I = p 

ord(x) • 

let a.= 

1...;lag <l>(x) . p 

00 

if x 'f' 0 

if x = 0 

k 
p e where. e is a unit in 

theri, ( 
k 

ord a = -logp ! ) = k. 

Q • 
p 

Theorem 1.9. If· x,y e: F, then ord xy = ord x + orc'l y. 

Sin~e 



Proof: This follows ·from 

ord xy = :-logpcp(xy) = -[logp<l>(x) + lo8t,<l>(y)] 

Theorem 1.10. 

if and only if 

= ord x + ord y. 

Suppose x ri/, 0 
n 

lim ord x = 00 • 
n 

fc,,r n = 1,2, •••• Then lim x = 0 
n 

6 

Proof: ·. Suppose lim x = O. Then, given any M > 0 
n 

there. exists 

an N such that cp (x ) < 
n 

-M p · when.ever n > N. Thus , 

-M log cp(x ) < log_. p = -M 
p n ~P 

so that ord x > M whene:ver. n > N. 
n 

Convers·ely, suppose lim ord xn = 00 •. Then, given any_ e such that 

1 > e > 0 , . choose an M such, that 
-M P < e. There exists. an N such 

that .. ord x . > M so that 
n 

-M -log cp(x) > -log p >-loge. It ·follows p n p - p 

Thea1;em 1.11. If x,y e: F, . then 

ord(x + y) .::_ min{ord x, ord.y}. 

Proof: .. Since F is non-archimedean, <l>(x + y) ~ max{cp(x) ,cp(y) }. 

It follows 'that· log cp(x + y) < max{log cp(x), bg cp(y)} so that 
p -. p p 

ord(x + y) = -log cp(x + y) 
p 

> min{-log <l>(x), -logpcp(y)} 
-. p 

= min{ord x, ord y}. 

Coroilary l.J.2. If ord x :/: ord y. then. ord(x + y) "'min{ord x, ord,y}. 

Proof: .. The proof , follows from Thea rem 1.11 and Theorem l. 6. 



In .later chapters there will be .occasion to determine ord n I • 

Palmer [14] shqwed that 

where. the. canonical form of 

n - t. 
n ord.nl = --..,...;. 

p - 1 

Example 1.13. Let· p = 5 and n = 87. Since 2 87 • 2 + 2p + 3p , 

then and ord 87! = 87 - 7 a 20 5 - 1 ... • 

Theorem 1.14. Let M a~d N be rationa~ integers with M > N and 

m 
canonical. representatiqns given by· M = a0 + a1p + • • • + !:lmP and 

k 
N .= b0 + ;b1p + • • • + bkp. • Then 

where o = 0 -1 . and. for i > 0 

~{: if ai <bi+ 0i-1' 
oi 

if· ai ..::.. bi + oi-.J.. 

Proof:. Let the canoni~al representati·on of M ..... N be given by 

m 
M - N = c0. + c1p + ••• + cmp where it is understood that so~e of .the 

last c1 may be.zero. It follows that 

7 



for j = 0,1,2, • • •, m. Let o . = 0 and, for i ~ 0, -1 

{ 1 if ai <bi+ 0i-l' 
'o = i 

0 if ai ~bi+ 0i"'."1· 

Then for i = 0,1,2, ••• , m, ci + bi - ai = oip - oi;..l so that: 

Thus, 

Since 

m 
= (p - 1) L 

i=O 
o. + o . 

1 m 

( ; ) = -N-l """(M_M_~-N-)-1 it follows that 

ord ( : ) = ord Ml - ord NI - ord(M - N) I 

M - t M N - tN (M - N) - tM-N 
= p - 1 p - 1 p - 1 

( M ) m om 
ord N = L o i + - 1 • 

i=O p 

It.remains to show that o = o. 
m 

If M = N, 

all i so that o = o. 
m 

If M > N, then there is a subscript r 

such that a > b 
r r 

and for r<i<nr, It follows that 

o = O. This completes the proof of the theorem. 
m 

8 



Example -l.15. Let M = 212, N = _108 and p = 5. ·Then· 

M =:2 + 2p + 3p2 + lp3 and N = 3 + lp + 4p2 so that 

3 
I t\ - 1 + o +.1 + o ... 2. 

i•O 

Hence, ord . ( f ~! ) = 2. 

Example 1.16. Let M'"" 
k+j 

and N • p 
k 

Then:· oi p . 
0 < i < k and· o = 1 i 

for k < i < k + j so. that 

= .. o 

ord. 

for 

( ;:+j ) • j. 

The next theor.em shows .that . M can . be replace:d by any p-,.adic 

integer. 

TheQrem l, 17. Let a e: .0 and N be a rational integer with . 
p 

cano~ical represenu.ati.ons given by 

i 

'then_, 

where 0 -1 = 0 

ord 

and for i ~ o, 

0 = 
i {: 

00 

I 01 
i=O 

if ai < bi+ 0i-l' 

if ai ~bi+ 01-1· 

9 
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Proof: Suppose the canonical representation of a is infinite. 

Since· the canonical representation of N is finite, .there exists a. 

first non-zero coefficient of a beyond call it Let 

It will be shown that· 

/ 

To establish the first of these note that ord(a. - i) = ord(M - i) for 

each i = Oil,~, •.• , N-1. Thus, 

N-1 N-1 
ord 7T (a - i) • ord 7T (M - i) 

i=O i=O 

To ~stablish that 

note that o = 0 
i 

for every i.:..k+j so that 

f • o. = -k+~l o = ord ( M \}• 
i=O i if6 i N 

Nmw suppose. a has a finite canonical representation. · In this 

case a is a rational integer M. If M > N then Theorem 1.14 

applies •. If M < N, then (:) = 0 and 
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~ 15 = 00 = ord O = ord ( M ) • ~ i ·· N 
i=O 

This complete,s the proo;f of Theo:t:'_em L17 .. 

Example 1.18. For p = 5 the canonical representation of 1/2 is 

3 + 2p + 2p2 + • • • + 2pn + The following is a list of ordered 

pairs ( N, ord ( 1, 2 ) ) for 

N = 0,1,2, .. ~ ' 15: (-0,0), (1,0), (2,0), (3 ,-0) ' (4,1), 

(5,0), (6,0), (7 ,O) ' (8 ,_O) , (9 ,1), 

(10,0), (11,_Q), (12,0), (13~0), 

(14 ,2) , (15,1). 

Elemeµtary Synunetric Polynomials 

The, final remarks in this introductory chapter concern elementary 

synunetric polynomials. Suppose 

n n-1 n-·2 Then f(x) = x - o1x · + a2x -

f{x) = .(x - a1)(x - a 2) ••• (x - an). 

- • • • + (-l)ncr . where 
n 

cr • a + ~ +•••~a 
1 1 2 · n '. 

cr = ~a · a. 
m· LJ i 1. 1 2 

. • .. 

the .sum .taken over . all possible cqmbinatic>ns of subscr:J,pts, 

• • • < i < n. m- The polynomials cr 1 ,a 2, ••• , O' n . are 

called the elementary symmetric polynomials for 

example, if n = 4, then the. synunetric polynomiais are 

... ' a • ·n 
For 
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For each . k a 1,2, , , , , let 

s = k 

It can be sh.own that the following relationships hold: (See 

Van der Waerden, [17), p, 101.) If 1 .::_ k ..:. n, then 

and if k > n then 

The importance of symmetric polynomials relative to this study. 

concerns root;s. of unity. Suppose a1 ,a2 , , •• , an are the nth roots of 

unit;y in an algebraically closed field. Since· 

xn - 1 = (x - a1) (x - a 2) • • • (x - an) 

= xn - olxn-1 + ••• + (-l)non, 

Then, by equating coefficients, it follows that 01.· = 02 =.••• = 0 = 0 · n-1 

and ~ = (-l)n+l. Th f f h k h h 1 k v ere ore, or eac sue tat < < n, 
n 

sk = O, that is, 



for k = 1,2, ,i,, n-1, Also, since and 

CJ ·-- (-l)n+l, i f 11 h O . t o ows tat s - n = .. 
n n 

Thus, 

~· n 
Li ai = n. 
i=l 

Example 1.19. The four 4th roots of unity in the complex plane are 

1, i, -1, -i. Then s1 = 1 + i + -1 + -i = O, 

s 2 = 1 + -1 + 1 + -1 = O, s 3 = 1 + -i + -1 + i = 0 and 

84 = 1 + 1 + 1 + 1 • 4, 

13 



CHAPTER II 

CONTINUOUS FUNCTIONS 

This chapter begins with a summary of-some results. from Palmer [14} 

which are pertinent to later work. The· chief contribution is the 

presentation of the p-adic :counterparts of certain reals sit.uations not 

discussed in Palmer. Henceforth, .the p-adic val~ation I Ip will be 

denoted by 11 • 

Definition 2. L Suppose .. f: A -+ B . and· a is a limit point of A. 

Then 

lim 
x -+ a f(x) .. a 

if and only if for any e > 0, there is a cS > 0 such that 

Ix - a I ..:: cS' x e A implies If (x) - a I < e • 

Whenever.the limit,exists, it must be unique. 

The usua1 characterization of limit in terms of convergent 

sequences. holds, th.at is., 

lim 
x -+ a 

f(x) .. a 

if and only if-for every sequence {a} in A cGnverging to a with 
n 

a . .;. a,· 
n 

lim 
n _.+ co 

f (a ) = a. 
n 

la 



15 

Theorem 2.2. Suppose f: A+ B and a is a limit point of A. Then 

lim f(x) exists if and only if for any € > O, there is a o > 0 x + a 

such that lx-yj <8 implies jf(x)-f(y)j <€. 

Definition 2. 3. Let f: A + B. · The function is continuous at point 

a£ A if and only if. 

lim 
x + a 

f(x) = f(a). 

The function is continuous ~ the ~ A if and only if it is 

continuous at each point of A. 

Theorem 2.4. If f and g are each continuous at point a then 

f + g and fg are each continuous at a and f/g is continuous at 

a· provided g(a) # O. 

Theorem 2. 5. If f is continuous at a and g is continuous at 

f(a), then the composition go f is continuous at a. 

Definition 2.6. A sequence of functions· {f} defined on set A 
n 

converges to .! function f if and only if for each x £ A 

lim 
f (x) ... f (x). 
n n + oo 

The function f is called the limit· function of the sequence {f }. 
n 

Definition 2. 7. A sequence of functions {f} defined on set A 
n 

converges uniformly ~ .! function f if and only if for any . € > 0, 

there is an intege:rr ~ such that n > N implies If (x) - f(x)j < € 
n 

for every x £ A. 



Theorem 2.8. A sequ~nce of functions {f} defined on a set A 
n 

cqnverges uniformly to a function f if and only · if for any e: > 0 

16 

there. is an integer N such that n > N implies I fn+l (x) - fn (x) I < e; 

for each · x e: A. 

Theorem 2.9. Suppose {f} 
n 

converges uniformly to f . on A. If for 

each n; f. is continuous at a, 
n 

then f is continuous at a. 

Definition 2.10. Suppose {f} 
n 

is defined on A. 

converges to a limit function f defined on · A if and only if 

lim ~ 
N -+ 00 6 f (x) = f (x) 

nml n 

for each x. e: A. 

Definition 2.11. A series ~fn(x) converges uniformly to a limit 

function f if and only if 

{ f fn (x) ·}
00 

n=l . N=l 

converges uniform+y·to f(x). 

Theorem 2 .12. The series L)n (x) converges uniformly on set . A if 

and only if for every e; > 0 there is an N such that n > N implies 

jf (x) I < e; for every x e: A. 
n 

Theorem 2.13. Suppose, ~fn(x) converges uniformly to f(x). If for 

each n, f is continuous at a, then f is continuous at a. 
n 
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Theorem 2.14. Let {bn} be a sequence in Qp such that limb = O. 
n 

converges uniformly on A. 

Uniform Approximation 

Definition 2.15. A set A in is compact if every open -cevering 

of A contains a finite subcovering. 

Theorem 2.16. Let 

closed and bounded. 

Kc:: Q • p 

[16]. 

Then·· K is cempact if and only if K is 

Since any two discs in Qp are either disjoint or nested, it 

follows that every compact subset in Qp can be partitioned into a 

finite number of pairwise disjoint subset.a. This allows the following 

definition of a step function on a compact set in Q • 
p 

Definition 2.17. Let D be a disc in Q. A function f defined on 
p 

D is a step function~ D if and only if there. is a partition of D 

by a finite collection of discs Di. such that, for each i, 

i = _1,2, ••• , n, the function f is constant on Di. If K is a 

compact set in Qp' a function f is a step function ori K if and 

only if there is a step function F· on a disc D such that F is an 

extension of· f. The collection of discs 

the partitioq associated with the step function F. 

... ' D } 
n 

is called 

Char.acteristic functions are often used to designate a step . 

function. For example, if f is a step functien on a disc D with the 

collection {D1 ,D2 , ••• , Dn} as. the associated par ti ti,on, . then 



n 
f (x) .. L ai!i)i (x) 

i=l 

wher.e ai 

characteristic·function of. Di. 

is the. constant value 0f f on Di and !ili 

18 

is the 

Definition 2 .18. Suppose Ac::: K and f is a function defined on A. 

If, given € > O, there is a function F defined on K such that for 

every x e: A, IF(x) - f(x) I < €, then F is a uniform approximatfon 

of f on A, Equivalently, F uniformly approximates the function f 

on A. 

The next theorem shows that·a continuous function on a.bounded set 

has a step function whi_ch approximates it uniformly, 

; 

Theoretn 2.19. Let A be a subset of a compact 'Set Kc= Q • 
p 

If f is 

a continuous function defined· on A, then there is a step function F 

defined on K such that F approximates f uniformly on A. 

Proof: . Since K is compact, there is a disc D containin~ K. 

If it is shown that there is a p-adic step function F defined on. D 

suclt that F uniformly approximates f on A, then F restricted 

K is the desired function. Thus, it suffices to assume in the 

beginning that K is a disc. Let € > 0 be chosen. .. 

Since f is continuous 0n A and A is compact, there is a 

positive integer N such that x,y e: A and Ix - YI < p-N imply 

lf(x) - f(y) I < €, Furthermore, it may be assumed without loss of 

generality that -N 
p is less than the radius of the disc K, 

is partitioned by a finite number of discs of radius Let 

Now K 

to 



D1 , ••• , Dn . denote the discs .that have .a non"'.".empty intersection with 

A. The step function F. is defined as follow;s: 

19 

For each i = .1,2, ••• , .n pick x1 e: D1 n A. Then F (x) =. f (x1 )_ 

if x e: D1 , 1 • 1,2, ••• , n · and F(x) = 0 if 

n 
x e: K ...._ LJ Di. 

1=1 

Since F. is constant on each of a finite. number of discs in.a 

partition of . K, F is_ a step function on_ K. By _the way in .which the. 

discs are determined, x .e: . A implies I f (x) .- F (x) I = If (x) - f (x1) I 
for some i such that -, x and xi are in the same disc · D1 of radius 

p-N •. Therefore, jf(x) ·- F(x) I < € so that the step funct;ion. F 

approxil!l8.tes the function f · uniformly on the set A. 

The above result is. not.essentially different from its real 

analysis counte;rpart, but the, next. result will di_splay an interesting 

cqntr~st. In the case of re~l step functi~ns, the endpoints of tlie · 

subintervals are general1y points of discontinuity for the step 

functio~. · The reason fqr this is that an endpoint is a point of 

accumulation of·two dist~nct; subinteryals. In thep-adic situation, 

this does no.t ·occur since _discs_ in Qp are :both open ;ind closeq.. 

Theorem 2~20. If A is a _comp~ct subset of Qp and f is a step 

function on A,. then f is c~ntinuous on A. 

Proof: Pick € > .0. For any x _e: A, the definition of step 

function implies there_ is a disc D such, tha~ x ·e: D and· f is 

constant on D n A. Suppose the radius of . D is o. Let y. be, any 
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point of D n A. Then, since any point of. D may be taken as its 

center, Ix - yj < o. But y,x ED imply lf(x) - f(y) I = 0 < E so 

that · f is continuous on A. 

An Extension Theorem 

As stated earlier, a major objective is the proof of Weierstrass' 

Approximation Theo.rem. Thet'.e are two more preliminary results to 

establish. The first is concerned with extending a contin:uous function 

to a larger compact set. 

Theorem 2. 21. Let· K be a _compact subset of Qp and A be a closed 

subset of K. If· f is a continuous p-adic function defined on A, 

then there is a continuous function F defined on K such that F 

extends· f, that is, for every x E A, F(x) = f (x). 

Proof: · The proof will be accomplished by constructing a uniformly. 

convergent sequence of continuous functions {f} such that the limit 
n 

function F extends f. In particular, each function f will be a 
n 

step function that uniformly approximates f. 

By Theorem 2.20, there is a step functiQn f 1 defined on K such 

that lf1 (x) - f(x)j < 1 for every x EA. According to the definition 

of step functicm, there is a finite collection of pairwise disjoint 

discs ~o covering A and such that. fl is constant ~n each member of 

~o· For each D e ~o such that nn A:/: 0, Theorem 2.20 again implies 

there is a step function gl defined on D such that 

lg1 (x) - f(x)j < p-l for every x e A. Furtherm~re, it may.be assumed 

that the norm of the partition of D associated with g1 is not· 
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greater than the no-rm of ~O. (Th~ norm of a ._partition by discs is the 

radius of the largest disc in the _partitiot1. It is denoted by N~).) 

Define f 2 on K as follows: Let x EK. Since $'.l0 covers K, 

x ED for some De ~ 0 . Then 

and 

Since I g1 (x) - f (x) I < p-l ··. and f 2 (x) a g1 (~) for eacl:i. x E A, 

it follows that jf2 (x) - f(,x)I < p-l for every x EA. Also, since 

the members of $'.lo are pairwise· disjoint and £2 is defined to be 

con$tant on each member of a.finite partition by discs of each. member of 

$'.l0 , i~ follows that.: £2 is a step functio~ on K. Let $'.ll denote the· 

partition associated with f 2 • Then N(~1) ~ N($'.l0). 

Now suppose f 1 , ... , fn-l have been defined so that Jor each i: 

a) fi is a step ,function on K such that x .E A implies 

jfi(x) - f(x) I < p-i; 

b) if $'.li denote_s ·the partition of K associated with fi, 

then · N{t)i) ~ ,N($'.li-l). 

Then for each D E ~n-l such. that; D n A ,t, (i'l, · let 

fun·ct;f.on on· D such that: . 

1) I , I -n gn\X) - £(x) < p for every x.e A; and 

g be a step n . 

2) the nortn of the partition of D associ_ated. with g is less 



Define f on K as follows: Let x e K so that x e D for 
n 

some. D e tln-l' Then 

f (x) = g (x) if D n A ,t, ~ 
n n 

and 

fn (x). = fn-l (x) if D n A = 0. 

Thus, f is a step function on K such that for each x e A, 
n 
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Therefore, a sequence of step functions on K has been defined by 

induction. Each step function is continuous. It remains to show that 

f converges uniformly to an extension of f, 
n 

Two cases .need to be. consiµered. If x e A, then 

Jfn(x) - fn"'."1 (x)I = Jfn(x) - f(x) + f(x) - fn"'."l(x)J 

If x ~ A, 

..:_ max{ J fn (x) - f(x) I,. I f(x) - fn-l (x) J} 

-(n"'."'1) 
< p • 

then either f (x) ~ f 1 (x) n n- or x e D where D e ti 
n n n 

and Dn n A 'f 0, · In the latter case, there is a disc Dn-l e tln--l such 

that D c D .l' Let x be an .element in D n A. Since f (x) n n- n. n n 

agrees with the step function g (x) 
n 

on D , 
n 

Similarly, fn-l (x) = gn-l (x) = gn_1 (xn), Then 

f (x) = g (x) = g (x ), .n n n n 

jfn(x) - fn"'."1 (x)I = lfn(x) - f(xn) + f(xn) - fn-"l(x) I 

= I gn (x) - f (xn). + f (xn) - gn-l (x) I 
= Jg (x) - f(x) + i(x) - g 1 (x )j n n n · n n- · n . 

..:. max{ lgn(:x:n) - f(xn) I, jf(xn) - gn.;.l (xn) I} 
-(n-1) 

< p by the definition of . gn and gn-l' 



Thus, it has been established that the sequence of step functions 

is uniformly convergent on K, Let F = limit f' 
n -+ 00 n 

function fn is continuous,. F is continuous. 

Sine~ each step 

f 
n 
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It remains to prove that F extends f. For any € > 0, there. is 

an N such that I fn (x) - f (x) I < € and I F(x) - fn (x).j < € whenever 

n > N, Cons.ider 

IF(x) - f(x) I = IF(x) - fn(x). + fn(x) - f(x)I 

2_ max{jF(x) - f (x) I, jf (x) - f(x)j} 
n n 

< €. 

Since IF(x) - f(x) I < € for every E, F(x) - f(x) = 0 and th.e proof 

of Theorem 2.21 is complete. 

Weierstrass' Approximation Theorem 

Since Weierstrass' Theorem deals with the approximation of a 

function by a polynomial, it is reasonable that a polynomial with 

somewhat predictable behavior may be useful. The next lemma provides 

some information about the polynomial h(x) = 1 - xp-l which will be 

utiliz.ed in the proof of Weierstrass I Approximation Theorem. 

Lemma2.22. 

and 

p-1 Suppose h(x) = 1 - x · . Then 

n n 
i(h(x))p I = lxl(p-l)p if !xi > 1, 

n n 
I (h<x>>P I ~ P -p it !xi = 1~ 

n 
I Ch<x>l - 11 2. p 

-n 
if I xi < 1. 



Proof: Suppose Ix I > 1. Then 

n 

(h(x))pn = ( 1 - xp-l )p 

k 
p-1 ) -x • 

n For each · k, . 0 < k < p , 

( :n ) x (p-l)k < 
(p-l)k 

x < 

Therefore, 
n 

l<h<x))p I 
n 

= lx<p-l)p I whenever 

n (p-l)p 
x • 

!xi > L 
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Suppose lxl = L Then x = ao + alp + ••• ' 

O and xp-l = ap-l + pl3 

with Thus, 

x = ao + pa where Ci. e: 
p O 

Since O < a0 < p, by F~rmat's Theorem, p-1 -
ao = 1 

for some. 13 e: 0. 
p 

mod p. Combining 

P-1 p-1 this result with x = a + pl3, it is seen that there is an 0 
n n-

n e: 0 such that h(x) = 1 - xp-l = pn, Thus, {h(x))P = pp n' 
p 

where n I E: Q 
p 

so that 
n n 

l<h<x))P I.:. P-p whenever lxl = 1. 

' Finally, suppose lxl < L Then · x = pa for some. a e: O 
p 

so that_ 

Xp-1 p-1 p-1 
= p Ci. • This implies 

i ( p ) then Pp! ( kp ) pk(p-l) Snee 1 = p, for every k = 1,2, • , , , p, 
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Thus, for some Se O from which it follows 
p 

that 

p kp ak n-1 ). 
k p I-' • 

n 
To complete the proof of I (h(x).>P - 11 < L it suffices to show 

that 

for each n-1 k=-1,2, .••• ,p 

~n-1) 

- n 
p 

kp 
p 

Suppose. p ,f, k, 'l'hen according to Theor.em 1.14, 

Thus, pn I ( tn-l ) pkp whenever p 'f k. 

~n-1) = n. 

Suppose k = pjm where (m,p) = 1 and j > 0. Then, by . 

Theorem 1.14 again, ord( ~n-l) = n - j - 1. Therefore, since 

ord pkp = kp = mpj+l, then 

( n-1) 
ord k 

kp 
p 

Since. mpj+l > j + l, 

= ord ( kn-l ) + .ord pkp = n - j - l + mpj+l. 

it follows that kp 
p when.ever 

This .completes the proof of Lemma 2. 22. 

pjk. 

Theorem 2.23, (Weierstrass' Approximation Theorem for the p-adic field 

Let K be a compact subset of the p-adic field Q • 
p 

If f is a 
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continuous fun.ction from K into Qp' then, for any E > O, there .is 

· a polynomial function g with coefficients in . Qp 

I f(x) - g(x) I < .E for every x e: K. 

such that· 

Proof: . The proof will be accomplished by establishing each of the 

following: 

1. The·characteristic function of a disc in Qp can be uniformly 

approximated by a polynomial. 

2. The functicln f extends to a uniformly.continuous ·function F 

on a disc containing the given ,compact set K. 

3. The function F can be uniformly approximated by a polynomiaJ,.. 

Let ll be in Qp and let r and s be two rational integers 

such that r. < s. Let 0 be the characteristic function of the disc 

-s Since the dis.c -s is contained disc D(a,p ). r < s, D(a,p ) in the 

-r It will be shown by induction on the differenc~ that D(11,p ). s - r 

the ch;aracteristic function 0 on the smaller disc -s D(a,p ) 

uniformly.approximated on the larger disc by a polynomial. 

can be 

Since the disc 
-r 

D(a,p ) is the image under a translation of 

-r 
D(O,p ), assume a~ O. 

Suppose s - .r = l and E > o. For each n > 0 define a 

(h(p,r:x) l 
n 

polynomial g (x) = where h is the polynomial defined 
n 

-r 
Lemma 2.22. It will be shown that for every X E D(O,p ), 

10 (x) - g (x)I < .L so that, by choosing n > -log E, the function 
n - n 

p 
is. uniformly approximated on 

- p 

D(O,p-r) by· g. 
n .. 

in 

If x :e: 
-s D(O,p ) then lxl .::_ p-s = p-(r+l) so that jp-rxl .< L 

n 
By Le1111ll.a.2.22, this implies it(x) - g (x)j = jl ~ (h(p~rx))p I 

n. 
l 

< -. 
- n 

p 



If 
-r -s 

x g D(O,p ) 'D(O,p ), then 0(x) = 0 and, since 

s ~ r = 1, Jxl = pr so that jp-rxl = 1. Therefore, 
n 

l~<x). - g cx)I = jg cx)I = l<h(p-rx)l I< .L. 
n n - n 

p 
This completes the first step of the in.duct ion since, for 

s - r = 1, the fun.ction 0 . is uniformly approximated on 

the polynomial gn whenever n is such that 1n < €. 
p 

-r 
D(O,p ) 

Now suppose s - r.= k and assume that for every pair of discs 
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by 

-r' -s' 
D(O,p · ) and D(O,p · ) with O < s' - r' < k, the function defined 

-s'· 
to be identically . 1 on D(O ,P ) and zero elsewhere can be uniformly· 

approxi1na ted on 
-r 

D(O,p ) by a polynomial. It will be shown that the 

above assumption implies that the function 0 which is 1 -s 
on D(O,p ) 

and O 
-r -s on D(O,p ) 'D(O,p ) is uniformly approximated on the disc 

-r 
D(O ,P ) by a polynomiaL 

Let € be chosen such that · 0 < € < 1. Consider the discs 

D(O ,P ""'s) and D(O ,P -s+l). By assumption,. there exists a polynomial h1 

such tha:t for 
-s x .. € D(O,p ), and for 

-s+1 -s. I < I x g D(O•p ) 'D(O,p ), h1 x) < €. Since the set 

-r -s+l 
D(O,p ) , D(O,p ) is closed. and bounded, it is compact. Therefore, 

the. polynomial function h1 is bounded there so that there is a 

positive real number M > 1 such that· jh1 (x) I ..::_ M for every 

-r -s+l 
x g D(O,p ) 'D(O,p ). Again; by the inductive assumption, there is 

a polynomial h 2 such that .for every x € D(O,p-s+l), 

and for every 
-r -s+l x g D(O,p ) 'D(O,p ), Now consider 

-s thepolynomial g(x)=h1 (x)h2 (x). If x·gD(O,p ), write 

g(x) = i - (1· - h1 (x}) - (1 - h 2 (x)) + (1 - h1 (x)) (1 - h2 (x)) so that 

jg(x) - 11 ..::_ max{ jl - h1 (x) I, ll - h 2(x) I, I (1 - h1 (x)) (1 - h 2(x)) I}. 

-s -s+l € 2 Sin.ce D(O,p ) c D(O,p ) , - < € and € < €, · the above M-
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inequality implies / g(x) - 1 j < E for every -s x E D(O,p ). If 

-s+l -s x E D(O,p ) -..... D(O,p ) 

that I g(x) I .::_ max{ jh1 (x) /, 

this implies / g (x) I < E • 

write g(x)= h1 (x) - h1 (x)(l - h2(x)) so 

]h1 (x) (1 - h2 (x)) I}. Again, sinc.e ~ < E, 

Finally, if x E D(O,p-r), D(O,p-s+l) then 

I g(x) I = jh1 (x)h2 (x) I < M • ~ = E. This completes the proof by 

induction. 

It follows .from the ab.ove argument that for any a e; Q 
p 

and any· 

two discs -s D(a,p ) and 
-r 

D(a,p ) .. with 

function of the smaller disc -s D(a,p ) 

r < s, the characteristic 

is uniformly approxif\lated on 

the disc 
-r 

D(a,p ) by some polynomial. Furthermore, since any point of 

a disc in may be taken as its center, if -r 
a E D(O,p ) and. s > r, 

and the characteristic function of -s D(a,p ) 

is uniformly approximated on -r D(O,p ) by some polynomial. 

From the hypothesis of Weierstrass' Thec,rem, f is a continuous 

function defined on a compact.set K. Let 
-r 

D(O,p ) be a disc 

containing K. By Theorem 2.21, there is a function F defined on 

-r D(O,p ) such that F extends f, that is, F(x) ""f(x) for every 

x EK, .and, furthermore, F is uniform+y ccmtinuous on -r D(O,p ), 

Thus, if E > 0 and 
-r 

x E D(O,p ), then there is a disc D(x,p-8 ) 

such that ,for every -s y E D(x,p ) , I F ( x) - F (y) I < E • N@w the 

collection of all such discs covers -r -r D(O,p ) , and, since D(O,p ) 

compact, there is a finite collection 
-:s,1 -s 

{D(xl ,p ':)' •• •' D(xn ,P n)} 

is 

covering 
-r D(Q,p ). Furthermore, since any two discs in Qp are either 

disjoint or nested, it may be assumed that the discs 
-s -s 

1 n D(x1 ,p ), .•• , D(xn,P ) are pairwise disjoint, 
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Since F extends f, the objective of uq.iformly.approximating f 

on K will be accomplished when F_ is uniformly approximated on 

-r D(O,p ) by some polynomial g. Let 0i denote the characteristic 
-si 

'function of the disc D(x.,p ) 
l. 

approximates 

and gi 

-r 
0i on the disc D(O,p ), 

given by 

a polynomial that uniformly 

The candidate for g is 

In particular, let -r gi be such that for every x E D(O ,p . ) ; . 

lsi (x) - 0/x> I < E.. where 
M 

the compact.set 
-r. 

D(O,p ), 

-r F on D(O,p ) , suppose 

F(x) - g(x) = 

Now ,, 

l0i (x)F(x) - F(xi),gi (JI:) I 

= 

M is an upper bound of jF(x) j on 

To prove that g uniformly approximates 

-r Then; X E D(O,p ). 

2: 0i(x)F(x) - l: F(x.)gi(x) 
i=l i=l l. 

= j(,ili (x)F(x). - (i\(x)F(xi) + ~\(x)F(xi) - F(xi)gi (x) I 
.::, max{! (,il i (x) (F (x)· - F (xi)) I , IF (xi) ((,il i (x) "'" gi (x)) I }. 

By the way in which the discs were chosen and. the fact. 
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that ~· is the chara_cteristic function on i 
-si 

D(xi,p ), it follows 

that I~\ (x) (F(x) - F(xi)) I < E for every -r 
x E D(O,p. ). Also, since 

gi uniformly approximates (ili, 

Thus, for each i = 1,2, ••• , n, l0i (x)F(x) - F(xi)gi (x) I < E for 

every x E D(O,p-r). This implies IF(x) - g(x) I·< E for every 

-r 
x E D(O,p ) so that: the polynomial g uniformly approximates the 

function F on the disc D(O,p-r, which in turn implies that the 

given function f is uniformly approximated by a polynomial. This 

completes the proof of Weierstrass' Approximation Theorem. 

Differentiable p-adic Functions 

Since the concept of differentiation stems fr©m the definition of 

limit and since the basic properties of limits are unaffected by the 

non-archimedean ~roperty, .it is not surprising that a great many of the 

definitions and theorems relating to derivatives carry over.unchanged 

from elementary calculus •. Some of these are listed below. 

Definition 2.24. Let f: A+ B. The function f is differentiable at 

lim f(x) - f(a) 
x+a x-a exists. If the limit.exists, it a if and only if 

is denote_d by f' (a) and is called the derivative of f at a. If 

f'(a) exists for every a EA, then f is differentiable on A~ 

Theorem 2.25. If f is differentiable at· a then f is continuous 

at a.· 



Theorem 2, 26. · Let f and g be differentiable at a., Then: 

1, (f + g) I (a,) = f'.(a,) + g 1 (a,); 

2. (fg)'(a.) = f(a.)g'(a.) + g(a.)f'(a.); 

f(tt) g(a.)f' (a.)· - f(a.)g' (a.) 
3 •. g(a.) = g(a.>2 

provided g ( a.) :/- 0 ; and 

4, (f o g)'(a.) = f'(g(a.))g'(a.), provided f is differentiable 

at . g(a.), 

A particularly well-behaved class of functions are.those 

represented by power series, Pi:l~mer [14] shows that; a power series 

2)n (x - a)n converges for all x such that 

Ix - al < P ~ 1 
u:; 'llbJ 

The real number p is called the radius of convergence of the given 

power .series where it is understood that; p = 0 if lim ~ = ?" 

and p =.oo if lim ~"" O. 

Definition 2. 27. A· function . f defined by 

00 

f(x) = I b (x - a)n 

n=O 
n 

is an analytic function, 

Theorem 2.28, Suppose· 

00 

f(x) L b (x n = - a) 
n=O 

n 

31 
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has a non~zero radius. of convergence p. Then each of the following is 

true: 

1. f(x) is continuous at each x such that Ix - a I < p. 

2. The series .2)n (x - a)n converges uniformly for each x · 

such that Jx - al < t < p. 

3. The derived series '\1nb (x - a)n:-l converges for 
L..J n 

Ix - al < p. 

4. If Ix - al < P, then f '() = li.mit.f(x + h) - f(x) 
x h ~ 0 h 

and is given by the derived series. 

exists 

5. The usual rules of differentiation hold for sums, products, 

quotients, and compositions of analytic _funct~ons. 

6. For each n, b 
n 

f (n) (a) 
= 

n! 

7. If f and g are both analytic in D (a, r) with f' (x) = g' (x) 

for x . in · D(a,r) then .there is a constant - c such that 

f(x) = g(x) + c for each x in D(a,r). 

Proof: Proofs are given by Palmer for an arbitrary non-archimedean · 

field in_ [ 14] • 

Several analytic functions discussed by Palm~r will be referred to 

in later chapters. For reference, some of these are listed .in the. 

following table. 



Name 

Geometric 

Binomial 

Logarithm. 

Exponenti~l 

TABLE I 

ANALYTIC FUNCTIONS . . 

Representation 

co 

(1 .".'" x)-1 = L xn 
n=O 

(1 + x) a = f ( : ) xn, 
n=O 

a e; 0 
p 

co 

log(l + x) = ~ 
n=l · 

(-l)n-lxn · 

n 

co n 
exp (x) = "1 x 

LJ n'. n=O . 

p 

1 

-1/(p-1) 
~p 

1 

-1/. (p-1) p . 

In real analysis, two functions whose derivatives are the same 
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function must differ by a constant. While Theorem 2.26 shows that this 

property .holds for analy_tic p-adic ·functions, it does not hold. for all 

pairs of differentiable p-adic functions •. In ·the following example, a 

function is given which· is not constant on any disc and yet its 

derivat_ive is zero everywhere .• 

Example 2.29. Let x · e; 0 have the c~nonical represent.ation 
p 

x = ao + alp + 
2· 

f(x) = a0 + a1p + 

n + a p + • • .. ·n 

••• + a P2n + 
n 

Define f: 0 
p 

-+ 0 
p 

by 

py· uniqueness of the canonical representation of a,p-adic integer, 

it follows that f is one.-to-one so that f i~ not the c9nstant 

function on arty disc. To see that· f has a derivati·ve equal to zero 



everywhere, suppose x,y E O 
p 

such that Ix - yJ 
-N = p 
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Then the 

first N coefficients of the canonical representations for x, and y 

must .. agree. It follows that Jf(x) f(y) I -2N Therefo.re, - = p 

f (x)· - f (i:) -N lim f(x) - f(x) = p so that = 0 for every 
x - y y + x x - y 

This cqapter will be concluded. with an example of a p-adic 

function which is continuous everywhere in O but is nowhere 
p 

differentiable. 

Example 2.30. For _each 

2 2 
f (x) = a 0 + a 1p + • • • + 

X E O , 
p 

2 n 
a p + 

n 

. define · f (x) by 

where 

n 
x = a0 + a1p + • • • + anp + · • • is the canonical representatio"Q. 

Since it follows that 2 n lim a p = 0 
n 

so that the. 

X E 0 p 

function f is well defined. To. see that f is continuous. at a. E O , 
p 

let E > 0 be chosen and_ pick N such that 

$ E O , 
p 

f(a. + h) 

it follows that 

-N p < E • Then-for any 

so tihat Jf(a. + h)_ - f(Q:)J,:. p-N < E. Therefore, f is continuous at 

a.. 

To prove th.at f is not diff~rentiable anywhere in O , 
p 

suppose 

to the cont~ary that f'(a) exists for some a. E O. 
p 

Then for a~y E 

such that 1 > E > O, there is a o such that whenever JhJ < o, 
f(a. + h) - f(a.) _ f'(a) 

h < E • 

. 



Pick N such that 
-N. 

p < 0, If p :/: 2 then there. exis.t two 

rational. integers k1 and k2 such that .. k1 :/: k2 , neither k1 nor 

k 2 equals aN, and O ..::_ ki < p for i = 1,2. 

N 
and. h 2 = . (k2 - ~) p so that 

for i = 1,2. It ·follows tha~ 

f (a. + hi) - f (a.) 

h. 
J. 

i = ·l , 2. Hence, 

f(a. + hl) - f(a.) 
= 

hl' 

f(a. + h2) - f(a.) 

h2 

f(a. + hl) - f(a.) 

hl 

< E • 

- f (a) } 

This is a contradiction since . E < 1. It follows that f . is not 

differentiable at any point of 0 . 
p 
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CHAPTER III 

AN ALGEBRAICALLY CLOSED NON-ARCHIMEDEAN FIELD 

In previous.chapters the p-adic field Qp has been the major 

focus of attention, Comparisons with the·real field R have shown that 

and R have nia.ny similarities as well as many interesting contrasts. 

In this chapter the analogies will be carried further. In particular, 

since the .real field is embedded in the complex field C, it is natural 

to seek a field. in which Qp is . embedded and which may have properties 

analogous to those of C. This chapter is devoted to the development of 

such a field, 

The following plan will be adopted. Since any field has an 

extension field in which every polynomial has a root, . there is a field 

extending the p-adic field Qp such.that every polynomial over 

has a root in It will be shown that the non-archimedean 

c 
p 

valuation on extends to C. Finally, it will be established that 
p 

if necessary, the field c 
p 

can be completed to form a complete 

non-archimedean valuat.ed field T 
p 

in which. every polynomial has a 

root. 

Extension Fields 

Some concepts -related to field extensions are needed. 

Definition 3,1, A field K is an extension field of field k if k 

is isomorphic . to a sub field of K. (Henceforth, k will be identified . 
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with its isomorphic copy in K.) An extension field K is an 

algebraic extension of k if every element of K is algebraic over. k, 

that is, every element of K. is a root of some polynomial f(x) E F[x]. 

Defini~ion 3,2, A field K is algebraically closed if every 

non-collstant polynomial in K[x] has at least one root in K. If· K 

is an algebraically .closed algebraic extension of field k . then K is 

an algebraic closure of k, 

Example 3,3, The complex field C is an algebraic closure of the real 

field R, 

To see this, recall the Fundamental Theorem of Algebra which states 

that every non-constant polynomial in C[x] has at least one .root in C. 

Also, since the real field is isomorphic to.a subfield of C, the 

complex field is an extensi<Dn field of the real field R, Finally, 

given any a= a+ bi EC, a is a root of x2 - 2ax + a2 + b2 E R[x]. 

It follows that C is an algebraic closure of R, 

The above example provides motivation to seek an algebraic 

closure of the p-adic field. Q • 
p 

One of the standard results in a first year coµrse in Abstract 

Algebra is that, given any irreducible polynomial g(x) E k[x], there 

is an algebraic extension K of k such that g(x) has a root in K. 

The field K is called a _simple algebraic e~tension of k, This 

process can be repeated until an extension K' of k is obtained such 

that all roots of the original polynomial g(x) are contained in K'. 

In fact, by using arguments involving Zorn's Letnma or one of its 

equivalent forms, it can be shown that given any field k, there exists 

an algebraic extension of k which contains all roots of all 



polynomials in k[x]. That is, any field ha,s an algebraic closure. 

For a proof using Transfinite. Induction, the reader is referred to 

Vander der Waerden [17). 

The next several theorems are essentially tho~e found in 

McCarthy [12], pages 84-87, For brevity, .some will .be sta,ted without 

proof, The first of these shows that any algebraic extension of Qp 

contains a subring having at least some of the properties anticipated 

for a ring of i~tegers in a valuated field. 
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Theorem3.4. Let K be an extension field of a,non-archimedean field 

k. Then there is a subring $) of K such that. 

i. ti contains the ring of integers of k. 

iL ti ,/: K. 

iii. If a EK then either a E ti or -1 
a. E $). 

Since ti is a sub ring of K containing the integers of k, ti 

contains 1. But, ti I, .K so that $) has both units and non-units, 

Let ~ be the set of non-units iA ti, that is. 

-1 l i8 = {a E ti: a If- ti}. 

It can.be shown that i8 is an ideal of ti. 

* elements and Let K denote the group of non-zero of K let UK 

* denote the group of units in ti. Since· .. UK is a subgroup of K ' it 

* makes sense to consider the quotient group K /UK. Similarly, consider 

* * Now the mapping h: k /Uk-+ K /UK defined by 



is a homomorphism. Also, since h(aUk) e: UK if and onlyif a e: Uk' 

* 
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h is an isomorphism. Thus, k /Uk may be considered as a subgroup of 

* K /UK. 

* Let· Vk = {lxlk: x e: k, Ilk the valuation}. The set Vk is 

called the value group of k. The valuation Ilk is a homomorphism and 

Vk is a multiplicative subgroup of the positive reals. Since the 

kernel of Ilk is the group of units Uk' there is an isomorphism ~ 

* from the quotient group k /Uk onto the group Vk such that 

~(auk)= lalk' 

Definition 3. 5, An. abeli,an group G is an ordered abelian group if 

there is a linear order < defined on G such .that. for a, b, and c 

in G, if a< b then ac < be, 

Since Vk is a subgroup of the positive reals, . - . . 
Vk is an ordered 

abelian group. The next definition provides a linear ordering on the 

* quotient. group k /Uk so that it will be an ordered abelian group, 

Definition 3.6. Let auk and bUk be elements of * k /Uk' Define 

< bU if .and only if. 
-1 

is an integer in k, auk k 
ab 

* Theorem 3. 7. The quotient group k . /Uk is an ordered abelian group 

with respect to the linear ordering < , 

Proof: . First it will be shown that the relation < . is a linear 

* ordering of k /Uk' Suppose auk< bUk and bUk < cUk, Then 

ab -l e: ('}. and be ~l · e: © where. © denotes the se.t of integers in k. 

-1 -1 -1 
Then ac = (ab )(be ) e: © so that auk< cUk, Next·suppose 

auk< bUk and bUk < cUk' Then ab-! e: © and ba-l e: ~ and, since 
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-1 
ab. e: Uk. Thus,- . aUk .1.· bUk. Fina:1:J.y, suppose· 

· auk ,:f,: bUk . so that ·. ab -l ~ Ok. Since .either ab -l e: (9 or . ba-:1 e: (9 ·,-

thet1 either auk< bUk or bUk < auk. 

ordered by < • 

To cqmplete the proof, suppose aU:k' bUk and cUk are el,emen1;:s it1 

k*/uk with auk< bUk. Then ab-le: (9 so that ac(bc)._-l e: (9. Thus, 

This establishes that * k /U 
k 

is an orc;lered abelian group. · 

* Next; an ordering on K /UK will _be defined such that;, when·· 

* restriqted .to. k /Uk' .. the ordering co_incides with that given in 

Definition., 3.6. Anticipating this, the same symbol will be used. 

Definition 3.8. Let· au 
K 

* . and bUK be elements in K /UK. · Then 

aUK < b UK . if and only if ab-le:~. 

* Theorem 3.9. The quotiet1t gr~up K /UK is an .ordered. abelian group 

with respect to .the linear. ordering < • 

Proof: . The proof. is ·identic.al wi.th the proof of Theorem _3. 7 with 

(9 replaced by ~. 

Recall that ,the pr_esen:.t obj_ective is. tG> prove. that the 

no:n-archimedean valuatipn on., ki extends to at1 arb:Ltra:r;y extension field 

K. Th~re· are still a _few prel:Lminary :i:-esult_s which mus_t be :established. 

An isomorphism ~ from one ordered apelian group to another _.is order 

p~eserving if 4>(a) < 4>{b) whenever a < b •. 'rhe· ne~t theorem states 

that under suitable conditions, an ord_er preserving ise~orphism defip.ed 

on a subgreup extenqs to the group. 
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Theorem 3.10, Let G be an ord~red abelian group and H be a 

subgroup of G such tha.t: 

i, there is an ord.er preserving isomorphism . <P from H into. 

the multiplicative of positive reals, + and group R.' 

ii. for each a. e: G, there is a positive integer n such that· 

n H. a e: 

Then there is an order . preserving isomorphism ip from G into R+ 

such that . ip (a) = <P (a) for every ae:.H. 

Proof: . See McCarthy, page 86, 

The following lemma.and its corollary are used in the proof of the 

major result of this section, 

Lemma 3, 11. Let K be an algebraic extension of a nen'-archimeciean 

* field k. For a, b and c in K with a+ bf O, if aUK < bUK 

then (a+ b)UK < bUK. Furthermore, if aUK 1' bUK then 

(a + b)UK = bUK, 

Proof: -1 -1 m 
If aUK < bUK'. then ab e: ~ so that· ab + 1 e: ..:v, 

Then, since (a + b)b-l = ab -l + 1, (a + b)b -l e: ~ and it fol:J.ows that 

(a+ b)UK < bUK. In particular, 

[(a+ b) - a]UK <. (-a)UK aUK 

and 

((a+ b) '- a]UK < (a+ b)llJK, 

Now suppose. hUK 1' aUK. Since bUK =[(a+ b) - a]UK' there are 

two cases to consider. In one case, (a+ b)UK < atJK. But then 
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bUK = · [ (a + b) - a]UK < aUK < bUK which ;implies aUK = bUK, Since 

this .is contral'y to the hypothesis, the other case must hold, namely, 

aUK < (a + b)UK. Thus., · bUK = [ (a + b) - a]UK'. < (a + b)UK. Since also 

(a.+ b)UK < bUK, the lemma is established. 

Corollary 3 .12. * ••• , a E K be such that 

• · • + a. 1' 0 n 
and 

n 

.. • + a 1' O. 
n 

If aiUK < a 1uK and 

+ an)UK = alUK. 

Proof: Lemma 3,11 establishes this result far· n = 2, Suppose it 

holds for n = j, j 2:_ 2. Then 

By the inductipn hypothesis, (a1 + • • • + aj )UK = a1 UK and 

aj+lUK < a1uK 'F a.j+lUK. It follows from Lemma 3.11. that 

(a1 + • • • + aj. + aj+l)UK = a 1 UK. 

Extension of the Valuation 

Finally, the major objective of this section ca.h be reali:ted. The 

next theorem shows that .the non-ar.chimedean valuation defined on. Qp 

extends to aqy algebraic ex.tens.ion of· Q • In particular, it extends to 
p 

the algebraic closure c . 
p 

Theorem 3,13. Let k be a non-archimedean field 'With valuation Ilk 

and let K be any algebraic extension of. k, Then there is a 

non-archimedean valuation I IK on K such that· lalK = lalk far every 

a£ k. 
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Proof: The proof will utilize Theorem 3 .10. It will- be shown that . 

the quotient groups * and k /Uk satisfy the hypothese_s of -that 

theor_em •. First, it must be shown that there is an order preserving 

* isomorphism from k /Uk into R+_ Recall the isomorphism ~ given by 

~ (auk) = lalk wher_e Ilk is the valuation on k. Suppose. auk < bUk, 

then 
-1 

ab is an integer in k so that lab-llk .::_ 1 - and, therefore, 

is an order preserving isomorphism. 

* Next., it must _be shown that given any aUK e: K /UK, . there_ is a 

positive integer m such :that In view of the 

* *· m 
identification of k /Uk in -K /UK'. it suffices to show that a e: k 

* * To this end, let aUK e: K /UK. Since a e: K · an4 K is an algebraic 

extension of k, a is a root of some polynomial in kfxl, Let g(x) 

be the minimal polynomial of a,. that is, g(x.) is the monic, 

irreducible polynomial of least degree such that g(a) = o~ Suppose 

g(x) 

so that and c, = 1. 
U' 

There are two cases to conside_r. In one case, there may be two 

integers i and j with 0.::_i < j.::_n such that ci 'f O, cj 'f O 

* 

-1 i-j 
so that c.c. a e: UK 

J. J 

. 

it follows that 

case, for each choice_ of i and j ' 

* K /UK ie:; linearly ordered by < ' there 

is a positive integer· q such that 

i :/= q. Also, 
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n 
(c1a + ••• + cna )UK= (-c0 )UK, Since g(x) is the minimal polynomial 

of a, 

n 

I 
i=l 
i;'q 

Thus , by Corollary 3 .12 

cqaquK = · (-c0)uK •. Then. 

(c a+ • • • + c an)U = c aqU so that; 
1 n K q K 

* Therefore, for any aUK e: K /UK' there is a positive integer m such 

that 

Since the hypotheses of Theorem 3.10. are sa.tisfied, there is an 

order preserving isomorphism ijJ from K* /UK into R+ such that . 

ijJ(aUK) = lalk for every. a e: k. Define a mapping 

the reals R as follows: 

lalK = iJJ(aUK) if a;' O• 

laJK = 0 if a= O. 

11 from K into 
K 

It will be shown that I IK is a non-archimedean valuation on. K. 

Certainly JalK.:. 0 and lalK = 0 only if a= 0. It remains to. 

be shown that JablK = JaJKlbJK and that· ia+.blK.::_max{laJK,lblK} 

for every a,b e: K. ·. Suppose one of a or b is zero. Then. 

neither a nor b is zero. Then 



lablK = ~(abUK) = ~[(aUK)(bUK)] 

= ~(aUK)~(bUK) = lalKlb.lI<· 
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Thus, in all cases, I ab Ix = I a IK lb IK whe.never a and b · are in K. 

Now suppose neither a nor b. is zero but a + b = 0. Then 

la+ blK < max{laJK,JajKL. Finally, assume a+ b =f, 0 and, without 

loss of generality, lalK .::_ jblK· Then, since.~ is order preserving, 

aUK < bUK. By Lemma. 3.12, (a+ b)UK < bUK so that 

~[(a+ b)UK] .::_ ~(bUK) and, hence, la+ blK'.::_ lblK = max{jaJK,lblK}. 

Thus, .it has been established .that. I JK is a non-archimedean valuation 

on the algebraic extension f:i_eld K of k. And, since lalK = Jalk 

whenever a e k, the theorem is proved. 

Allthough Theorem.3.13 establishes the existence of an extension of 

a non-archimedean valuation to an arbitrary algebraic e:ictensicrn, it does 

not.settle the question of uniqueness. Pa~mer. [14] included results 

which state that; in the case of a finite algebraic.extension of a 

complete non-archimedean field, the extension of the valuation is uniqµe. 

These results are stated. in th.e next theorem. 

Theorem 3.14. If k :Ls a compiete non-archimedean field with valuatiori. 

Ilk and if K is a finite algebraic ·extension of k, then there is a 

unique extension of Ilk to a non-archimedean valuation I IK on .K. 

Furthermore, K is complete with respect to I JK. 

Proof: See Palmer; pp. 126-129. 

Under similar hypotheses, the question of uniqueness of the 

valuation on an algebraic cl.osure is settled by the next. theorem. 



46 

Theorem 3.15. Let k be a complete non-archimedean field. If. K is 

an algebraic closure of k, then· the extension of the va.luat_ion J J k 

on k to a valuation on K is unique. 

Proof: Suppose 111 and 112 are distinct extensions of I Jk. 

Then there is an element a e: K such that Jail 'f Jal2· Let k' be a 

finite algebraic extension of k containing a. Since k' is a 

subfield of K, the valuations J J 1 and J J 2, restricted to k', are 

distinct non-archimedean valuations on a finite extension of k, But, 

according to Theorem 3.14, this is impossible. Thus~ the extension o:f a 

valuation to an algebraic closure of k · is uniq1.,1e. 

Completion of the Algebraic Closure 

Now it may happen that an algebraic cl,osU1;:-e is not comple1=e with 

respect to the unique valuation extending J lk. Howe.ver, any problems 

created by thi~ can be resolved if it can be shown that.the completion 

of an algebraic closure is algebraically closed. This is the final 

objective of this chapter. 

Lemma 3.16. Let k be a complete non-archimedean field. Then the 

mapping cp: k [xl + R defined by 

is a non-archimedean valuat_ion on the ring of polynomials k[x]. 

Proof; Certainly for f (x) e: k [ xl, · <j>(f (x)) = 0 if and only if 

f(x) is the zero polynomial in k[x]. Now suppose 
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and 

g (x) · = b + b x -+ • • • + b xm 0 1 m 

where, without loss of generality, it is assumed. that ..• m .:._ :n and, 

therefore, b j = 0 for j > m. Then 

\ 
max j I max . I I } =max · a b 

O~i..:,n . i ' O..:,i~n . i 

= max{<j, (f (x)) ,<P(g(x))}. 

To complete the proof of the lemma; it must. be shown ,that : 

<P(f(x)g(x)) = <P(f(x))<P(g(x)). 

Now f(x)g(x) + CliX + ... + 
m+n 

where I a. b .• = co c x ct = m--n 
i+j=t 1 J 

Note first th~t <P(f(x)g(x))..:, <j,(f(x))<j,(g(x)). 

Le.t f (x) = f 1 (x) + f 2 (x) where a term 
k 

of f(x) akx is a term 

of f 1 (x) if an,d only if l~I 
max 

{ lai I} and ajJ is term of = a O<i<n 

f 2 (x) if and only. if la. I < max 
{Ia. IL Similarly, let 

J O<i<n 1 

g(x) = g1 (x) + g2 (x) where g1 (x) contains alJ- terms of g(x). with 

maximum.valuation. Thus, 

Now q,(f1 (x) g/x)) ~ <P (f1 (x) )<P (g2 (x)) < <P(f1 (x) )<P(g1 (x)). Similarly, 

<j,(f2 (x)g1 (x)) < <j,(f1 (x))<j,(g1 (x)) and <j,(f2 (x)g2 (x)) < <j,(ff(x))<j,(g1 (x}). 



+ c xp+q. Then 
p+q 

I cp+q I = I apb q I = I ap I lb q I =·I ai I lbj I for. every pair of coefficients 

a1 and bj of f 1 (x) and g1 (x), respectively, · It ·follows_ that; 

L 
i+j=t 

ab < max{ 
i j - i+j=t a,b. } 

]. J 

Acco:rding to the definit:ion of the mapping ~' 

a b 
p q 

= c. • 
p+q 

max {Jct!}= le+·· J. 
O~t.::_p+q . · p q 

Since I cp+q I = I ap l lb q l = Hf1 (x) )¢<~1 (x)), it follows, .that_ 

4>(f1 (x) g1 (x)) = HfJJ (x)) Hg1 (x)). Since ¢(f(x)) = Hf1 (x)), . 

~ (g (x)) = ~ (g1 (x)) and 

it follows that 

This completes the proof of Lemma 3 .16,, 

Lemma 3.17 •. If· K is algebraically closed and f(x) and g(x) are 

48 

monic polynomials of degree n · in K[x] such that . Hf (x) - g(J<:)) < E 

then for any root S of g(x) there is a rqot o. of f(x) such that: 

IS - o. J. < A n£ where A is .~ upper bound of the valuations of the 

coefficients of f (x) and g (x), 
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Proof: · Note first that t~e valuation of any root .of g (x) (ot of 

f(x)) is bounded above by A. To see this, suppose Isl > A. Then 

Since lbiSil..:, Al Sil < lsi+ll for i = 0,1, ..•• , n-1, it follows that 

lg(S) I = JsnJ #- O, coµtradicting the fact that S is a root, 

Now suppose cj>(f(Ji:) - g(x)) < E. Since K is algebraically closed, 

there exist n roots of f(x), 

of g(x), 

I f(S) I "" I f(S) - g(S) I 

a.1,a.2' • '.' a. • 
n 

Then·if s is a root 

I n-11 = a0 - b0 + (a1 - b1)S + • • • + (an-:1 - bn_1)S 

..::. 0<:::-1 { lai - billsil}. 

Since Is J ..::_ A and A;:._ 1, then lsil < An •. Also since 

cj>(f(x) - g(x)) < E then la. - b.l < E for each i = 0,1, ... , ·n-1, 
]. . ]. 

It follows that jf(S) I < EAn. 

Now. 

so that 

n 
f(x) = 7T (x - a.k) 

k=l 

n 
f ( S.) = IT I S - a.k I < EA n . 

k=l 

Therefore, there is at least one root, a. of f (x) · vthich- satisfies the 

relation IS - a.I < A nfi. This completes the proof. 
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The final obje.ctive of proving the existence o~ an al.gebraically . 

closed extension of the p-adic field Qp whic}:l is complete with respect 

to an extension of the non-.archimedean valuation on Qp is at last 

within reach. 

Theorem 3.18. Let K be an algebraically closed non-archimedean field. 

A 

Then the completion K is algebraically closed. 

Proof: Let f(x) = a 0 + a x + · • • • + a xn be an irreducible · 1 n 

polynomial in · K[x]. Without loss of generality it may be assumed. that 

f(x) is monic, that is, a = 1. 
n 

The proof . will be accomplished by 

showing that f(x) has a root in I<, and this will be done by· 

producing a Cauchy sequence in K whose limit is the .desired root •.. 

" Since ai E K, then for each i = O·,l, ••• ; n-1 the~e is a 

Cauchy sequence 

in K such that 

{ } 

co 

b .. 
1.,J j=l . 

{b . . } converges to ai. Let fj (x), be the 
l. ,J 

polynomial in K(Jt] given, by 

n x . 

Now choose .. M1 such that · O< mi:nx _1 { I b ; - ai I } < 1/ 2 for every 
-·- i,m . 

m.::.. M1 • Similarly, for each integer k > 1, choose. ~ such that 

1\ > 1\-i and 0<~:-1 .{Jbi,ni: - ail}< (1/2)k for every m 2:.1\· 
Let A= max{Ja0 j,Ja1 J, ••• , Ja0_1 J, l} + l. Then, by the way in 

which · ~ was cl)oseI)., A is. an upper -boun4 of the valuations of · the 

coefficients of fi. (x) 
m 

for every m.::.. M1 • Thus, by successive 



applications of Lemma 4.19, if 

there is a root sk of f~ (x) 

Sk-l is a root of · fM. (x), then 
-1<.-l 

· n k 
such tha.t . I sk - sk-11 < A ( ./1/ 2) •. 

Therefore, {Sk} is a Cauchy sequence .in K. 
A, 

Since K is the 
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completion of K, there is a S in K such that . {Sk} converges to 

s. 
By the way in which the polynomials fj(x) a:r;e defined, 

{fj(S)} converges to f(S). Since {fj(S)} converges to. zero, 13 

must be a root of f(x). This completes the proof. 

Since the completion of a field with respect to a non-archimedean 

valuation is again a non-archimedean. field, the final objective of this 

chapter has been accomplished. Let 

closed extension of the p-adic.field 

T denote a complete algebraically 
p 

Qp. · In lat~r chapters analogies 

between . T and the complex field C will be explored. 
p 



CHAPTER IV 

POWER SERIES 

The theory of infinite series over a non-.archimedean field has been 

well developed in several sources. Actually, there are only a few 

significant differences between thenon-archimedean and real sitt1ations. 

Perhaps the most notable distinction is that for convergence of a series 

Lan in a non-archimedean field, it is sufficient that the sequence 

{a} converge~ to zero. Of course, this is not the case for real 
n 

series as the harmonic. series L 1/n shows. Also, the . theory of power 

series with coefficients in a non-archimedean field offers few surprises. 

For a good exposition of power series and functions defined by power 

series, that is, analytic functions, the reader is referred to 

Palmer [14], Chapters 4 and 5. 

This chapter will cqnsider analytic functions on an algebraically 

closed extension '!' 
p 

of the p-adic field Q . 
p 

In particular, the first 

objective will be the development of a device called Newton's Polygon. 

Then Newton's Polygon will be used to examiua analytic functions 

including the determination of the domain of convergence and the 

location of zeros. 

Consider analytic funct.ions defined by 

00 

f(x) = I 
n=O 

n 
b (x -- a) 

n 
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where a,bo ,bl'· are in T . As in rea_l ser:ies, the :radiu_s of .· p 

convergence p is given by_ 1/p = lim ~ where it is understood 

that :the se;ries converges for every x e: T. if lim~ = 0 and p 

converges only fot x = a if li_m~ = CC). 

Newton Diagram 

In order to develop Newton's Polygon for power series, it is 

necessary to cQnsider first a ~et of points referred to. as the ·Newton. 

diagram for the power series. For definiteness, it will be assumed.that 

the analytic functions ~n question are expressible as power series with. 

co-efficients in th,e p-adic. field 

Recall that for each x ·::f, 0 
. ' 

Q • p . 

ord x is defined by erd x = -log x • 
p 

Definition 4.1. Let a function f be defined by a pGwer series ove:r 

CC) 

f (x) = L b (x - a) 0 • 

n=O n 

The .set of points in the Carte,i;ian plane given by 

T = {(n, ord b ): n = 0,1,2, ••• , 
n 

is ,called the Newton diagram for the _series •. 

b · ::f, O} n . 

The next theorem shows. tha~ the radius of convergence of the _power. 

series can be.~xp;ressed in terms of the slopes of lines joining the. 

origin to _the· points. of the Newton diagram. 



Theorem 4.2. Let the power series 

have a radius 

then 

if 

then 

and if 

then 

Proof: 

Then, since 

f 
n=O 

n 
b (x - a) n . 

of convergence. p. If 

ord b 
-oo < lim n 

< 00' n 

ord b 
log p lim n 

p n 

ord b 
lim n = -oo 

n ' 

p = O; 

ord b 
lim n 

= 00 

n ' 

p = 00. 

Suppose 

ord b 
-co< lim n 

< 00. 

n 
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it follows that 

Thus,. 

so that 

It follows that 

Now suppose 

This implies 

ord b 
n 

ord b 
n 

l = lim( l ) n p . p 

ord b 
n 

p = lim p --n--

ord b 
log p = 

p 
lim ___ n_ 

n 

ord b 
lim _____ n_ = -00 • 

n 

ord b 
n 

so that p = O. Finally, .if · 

then 

ord b 
n 

lim --- = oo, n 
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so that p = oo, 

ord b 
n 

Palmer [14] showed that the radius of convergence of the 

exponential series 

00 

L 1 n -x 
n! n=O 

is given by -1/(p-1) 
p = p • The following exampl~ shows that 

Theorem 4,2 may be used to obtain the same result, 

Example 4,3, Radius of convergence of 

Let n = a0 + a1p + ••• + 

t = a + a + • • • + a. then n O 1 K 

k 
~p' 

n - t 
ord nl = n 

p - 1 

so that 

ord n! 
n = 

and 
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k 
Now . n ~ p implies k < log n. and, since 

~ p t < (k + l)p, . it follows 
n 

that 



Therefore, 

so that limit ord n! 
n-+ 00 n 

t p log n 
......!!. < (k + l)p < p + .P. 
n n n n 

1 

limit tn 
-= 0 

n-+ 00 n 

= -p---1 . Si 'b 1 nee n = n! , 

ord b limit ord n! n -lim = n n -+ oo n 

-1 
= . p - 1 

Therefore, the radius of convergence -1/(p-l) 
p = p 
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it follows that 

as expected. 

Figure 1 shows the first few points in the Newton diagram for the series 

when p = 3. 

• • • 

00 

·"·. 1 n I -x 
' I n! 

n=O 

• • • 

• • • 
• • • 

• • • 

Figure 1. Newton Diagram for Exponent~al Series 
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Newton Polygon 

The Newton polygon for a power series will be developed by a 

construction utilizing the _Newton diagram. Once defined, it will be 

shown that the Newton polygon determines the _radius of convergence and 

also provides informatio'Q about the location of the zeros of the power 

series. The definition of a,lower support line for a given set is 

needed. 

Definition 4. 4. Suppose T is a subset of the plane and that L is a 

non-vertical line with equation y = mx + b. Then L is a lower 

support .line of T if and only if: 

1. for every (xl ,yl) e: T' y1 ~ rnx1 + b, and 

2. if b' > b, then there is a point (xO ,y O) e: T such· that 

Yo < rnxo + b I• 

Note.that if T is a finite set and L is a lower support line, 

then L contains at least one point of T. On the other hand, if T 

is infinite, . then T may have a lower support line which does not 

intersect T. For example, if T is·the right branch of the hyperbola. 

then the asymptote. y = 

not intersect T. 

b 
a 

2 2 
~+L= 1 
a2 b2 ' 

is a lower support line of T which_ does 



Consider a power series 

00 

) ·, n 
. 1 bn (x - a) , 

n=O 
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It will be assumed that b0 ~ 0 and that there is at least one other 

non-zero coefficient, It will be shown that if the Newton diagram T 

has a lower support line, then it has a lower support line through the 

point B0 = (0, ord b0). To see this support line L with equation 

y = mx + b is a lower support line T. If BO is on L, then the 

conclusion holds. If BO is not on L, then BO is above L, that 

is, ord bo > b. Let point B be the intersection of line L and the 

vertical line x = 1. Then the line 

a lower support line of T. 

Figure 2. Lower Support Line 
Through the 
First Point 

Figure 2 

L' through BO and B is also 

illustrates the situation. 

If all points of T are 
above line L, then all 
points of T are above L'. 



It should be noted that a Newton diagram T need not have any 

lower support·line. For example, consider the series 

Then 

(X) 

~ 
n=O 

2 
-n n 

p x • 

. 2 
T = { (n , -n ) : n = 0 , l'.,.2 , , , , }. Since for aq.y choice of m and 
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b, an n can be found large enough so that 2 -n <mn+b, there is no 

lower support line for T, · By Theorem 4.2, 

ord b 
n lim ~~~ = lim -n = - 00 

n 

so that the .. radius of convergence is O, 

Now suppose a Newton diagram T has a lower support line. Consider 

the set of all lower support.lines through. B0 = (O, erd b0). Since 

there is a paint in T besides B0 , there is a lower support line L0 

having maximum slope m0 , It may happen that T has no lower. support 

line with slope greater _than m0-. In this case, the Newton polygon 

consists only of the ray 

which is denoted by 

On the other hand, suppose T has. a lower support line with slope 

m > m0 • It will be shown that L0 contains at least two but only a 

finite number of pCllints in T, . :t-low the· equation of line L0 is 

y = m0x + ord b0 and the equation of line L is· y = mx + b. Since 

L0 has maximum slope, it follows that b < orci. b0 , It will be .shown 
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first that L-
0 contains on_ly finite;J..y many points of T. Suppose 

otherwise_ and pick N such that N(m_- m0) > ord bo - b. Sine~ LO 

contains !nfin;itely many points pf T there is an n' > N- such that -

Therefore, 

ord.b , -_µin' = -ord b , - n'.(m0 + (m - .m0)) n - · n 

= ord bn' - n'm0 - n' (m - m0) 

= Ord b0 - n I (m - m0) 

< ord bo - (ord·bo - b) 

= b. 

ord b , < n' m + b so. that y = inX + b 
n 

is not. _a lowe_r 

support. 1:i;ne of T. Thus, -if - T has a lo:wer. support line with slope, 

greater than m0 , then-line L0 has only finitely many pE>ints of T, 

Since B0 is dn L0 , it;, r~mains to be shown_ that 10 contaiµs at_ 

leas_t one more point of T. As _before, L is a lower -support line of 

T having equation y • mx + b with m > m0 and b < ord b0 • Le;t 

po:t.nt Ga,c) be ·the. int~:i:section of L and 1 0 • By _considering the 

minimum vert;ical distance between. the line L0 and the po_ints 

(n, _ord bn) of· T for 1 < n < [a] + 1, as well as the, vertical 

distance between L0 and L at ___ x = [al + 1, it -may be verified t4at 

if B0 is the only point. of T on L0 , then tli,ere is a lower support 

line_ through.; B0 with slope greater than m0 • (Se~ Figure 3.) Since 

this contrl:!,dicts -the "!ay Jn which L0 is determined, it follows that if 
' 

T has a lower support line with slqpe greater than m0 then L0 has 

at least two pc.>in ts of- T •. 

The construction of the Newton polyg~n in the case I has a 

lowel;:' support. line with slope m > m0 can now be cont:t.nued_ as follows. 



Figure 3. Lower Support Line Contains 
Finitely Many Points 
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Let B1 be the point in T and on 10 having maximum abscissa. Then 

if T has no points with abscissa greater than that of B1 , the power 

series is a polynomial in which case let 11 denote the vertical ray 

upward with endpoint B1 • In this case, the Newton polygon consists of 

the segment together with the ray 

If T has points with abscissa greater than that of B1 , then 

there is a lower support line 11 of T through B1 and having 

maximum slope m1 • The above argument can be repeated so that either 

T has no lower support line with slope greater than m1 or else there 

is a lower support line L having slope m > m1 • In the first case, 

let L+ 
1 

denote the ray on 11 having endpoint Bl, In this case, the 

Newton polygon consists of BOBl U 
+ In the second 11, case, 11 

contains at least two but finitely many points of T. Let B2 be the 

point of T on 11 having maximum abscissa. The above discussion can 

be repeated to find either a ray + 1 2 or else a segment 

lower support line 1 2 • 



Now suppose there is a lower support .line L 
n 

through point B 
n 

of T such that L has maximum slope m. If there is no lower n n 

support line of T with slope greater than m and let L+ denote n n 

63 

the ray on L with endpoint B and such that the points on L+ have n n n 

abscissas greater than that of B • If there is a lower support line n 

with slope greater than mn, then there is a point on L 
n 

in T having maximum abscissa. If T has no point with greater 

and 

abscissa than that of. Bn+l' then let +· L denote the vertical ray n+l 

with endpoint Bn+l' If T has points with greater abscissa than that 

of Bn+l' then let Ln+l be the lower support line through Bri+l 

having maximum slope. 

The following definition can be given as a summary of the above 

discussion. 

Definition 4,5, Let T be the Newton diagram for a power series 

f b (x - a)n 
n n=O 

such that b0 #:- 0 and 'the series is not a constant function. The 

Newton polygon for the series is defined as follows: 

1. If for every positive integer. n there is a lower support line 

L 
n 

cqntaining B 
n 

and 

union of line segment~ 

then the Newton pqlygon is the 
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2. If T has no lower support line with slope greater than that 

of L, the lower support line through 
n 

diagram is the union B0B1 U B1 B2 U • • • U 

B then the Newton 
n 

B 1B U L+. 
n- n n 

3. If T has no point with abscissa greater than that of B 
n 

then the Newton polygon is the union B0B1 U • • • U B~-l Bn U 1:. 

The segments BnBn+l are_ called sides of the Newton polygon, and 

the ray L+ is called the terminal side. 
n 

If a Newton polygon.does not 

contain a terminal side, then it is called an infinite Newton ·polygon; 

otherwise, it is called finite. The Jollowing example shows that an 

infinite Newton polygon does exist. 

Example 4.6. The Newton polygon for 

00 

2= 
n=l 

n x . 

The Newton diagram T =.{(n, -ord n): n = 1,2, •.• }. Now 

ord n = k whenever and k+l L Le· t L p 1 n. k denote the line 

through the points k 
(p ,-k) and (pk+l ,-k - 1). It ~ill be shown that 

Lk is a lower line of support of T for each k = 0,1, ... The 

equation of Lk is 

-1 y + k = ~~~~-
k + 1 

p 

To show that L· 
k 

is a lower support line for T, let n = pjn . 0 where 

(n0 ,p) = 1, that is, n0 and p are relatively prime. Then, since 

ord n = j, it suffices to show that 
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-1 j , k 
-j + k > k+l k (p no - p) 

p - p 

or, equivalently, 

Let q =j - k. If q = O, then;since, n0 ..::_ l, 

__ .... l ...,__ (pjrio - pk_) = 1 (n - 1) > 0 = 
k+l k p - 1 0 , 

p - p 
q •. 

If q < ©, then 

1 · j k 1 q· 
k+l k Gp no - P)..::. p - 1 (p - !) > -l..::. q. 

p - p. 

Finally, suppose q > 0. Now q 

hence, pq..::_pq. Since q..::.l, 

therefore, p : 1 _ (pq - -1) .:_ q. 

- 1,.:. logpq so.that pq-l ..::_ q and, 

it follows that __ pq ~ 1..::. pq - q and, 

Since· 

1 . ( j k) 1 ( q ) _k_+_l ____ k p .no, - p > . P ,_ 1 
-·p - 1 . ' 

p - p 

it has been established that 

1 j k 
j .. k ~ k+l k. (p no - p ) • 

p - p 

Therefore, for any k = 0,1,2, . . . ' the line ~ , is a lower line of . 

support for the Newt~n diagram T. 



Since the slope of Lk is given by 

-1 m. • 
K k ' 

p (p - 1) 

it is clear that the Newton polygon contains a countably infinite 

number of line segments. Figure 4 illustrates the Newton polygon for 

oo (-l)n n I n x 
n=l 

when p = 3. 

10 ,, u· 2.7 10 "" 
• • • • • • • 

• . ' 

Figure 4. Newton Polygon for Logarithm Series 

By the way in which the Newton polygon is defined, if {mi} is 

the sequence of slopes of the sides, then 

increasing. 

{m,} is monotonic 
]. 

The major result of this section can now be established. This 

theorem shows how the radius of convergence can be obtained from the 

slopes of the sides of the Newton polygon. 
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Theorem 4. 7. Let · {mi} be the sequence of slopes for the Newton 

polygon of the power series 

co 

L 
n=O 

n b (x - a) · 
n 

having radius af convergence-. p > O. Then · lag p = limit ;m if the 
p i-+a> i 
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Newton polygon is infinite, .and logpp = mn if m is the slope of the 
n 

terminal side + 
L ·• n 

Proof: . If the Newton pqlygon haE! a verJ:ical side, then the power 

series is si:mply a polynomial so tha.t the radius of convergence is 

inf~ni te. Thus, . the theorem holds in this special case. 

In view of Theorem 4. 2, .it suffices to show that . 

o:i.d b 
lim n = 

n 

Let 

limit· 
m = · m 

i-+ 00 i and 
ord b 

n a i= lim · 
n 

Assume first that both m and a. are finite and that m-r/- a. Let L 

be a line with equation y = m + a 
2 

x. If a .< m, then 
fu + a 

a < 2 . < m. 

Since 
m+a m-a. 

2 . = a + 2 · , . the· definition of lim implies. there are 

infinitely many n su.ch that 

ord.b ___ n __ <m+a 
n 2 

Thus, there are infinitely many points of tl1,e Newton ,diagram T which. 

are below the line L. 



On the other hand, since 

m+ a. < implies there is a 
2 m 

m + a. But this implies ~> 2 

T below L which contradicts 

a. > m. 

{m.} is an increasing sequence, 
]. 

lower . support line Lk with slope· 

there are only finitely many points 

the previous statement. Therefore, 
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of. 

If a. > m m + a. then . 2 > a. so that, according to the definition of 

lim, there is an N such that 

ord b 
---· n_. > m + a. 

n 2 

for'.every n > N. This. implies .that B ET is above the line L for 
n· 

every n > N, Since there are only finitely many points B ET with k 

k < N, there is a lower.support line of T with slope m + a. 
2 

> m. But 

the sequence of slopes is a monoton.ic increasing sequence so that there 

is no lower support line of T with slope greater than m. Hence, 

a. < m. It follows that a. = m. 

Now suppose .. m is finite, and a. is not finite. Then let L 

have. equation y = (m + l)x if a.= 00 , and y = (m - l)x if a.= -oo, 

Then essentially the same arguments as before yield contradictions. 

Finally, suppose m = 00 , Let L be the line y = (a + l)x if a. is 

finite, arid let L be the line y = x if a= - 00 • Again the 

definition ot lim implies there are infinitely many points of T 

below line L. But since .there is a lower support .line with slope 

greater than that. of L, this is a contradiction. Since whenever a 

Newton polygon exists, either 
limit m > - 00 or else the slope of 
i+oo i. 

is greater than -oo, The proof of Theorem 4,7 is complete. 

The following examples utilize Theorem 4,7, 



Example 4.8. The radius of cqnvergence of 

co 

r 
n=l 

n x • 

According to Example 4. 6, the slopes of the. sides of the Newton 

polygon are given ,by 

-1 
11\ = k . 

p (p - 1). 
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so that ~i:i ! 11\ = 0. Thus, by Theorem 4. 7, p = 1. To see that this 

agrees .with Theor.em 4.2, note that 
ord n 

n .:. p so that .. log n > ord n . p -

and, hence, 

logpn > ord. n 
n n 

Since 

n -+ co 

limit logpn = o, 
n 

it follows that 
limit ord n 

--- = o. n -+ co n 
Thus, 

ord b 
log P = .lim n = lim -ord n = O 

p n n 

so that p = 1. 

Example 4. 9. The radiu~ of convergence of the binomial series · 



The coefficients are given by ( na ) (a-l)(a-2) ••• (a-n+l) 
n! 

where a. may be any p~adic integer, If a is a positive rational 

integer than the series is actul:l.lly a polynomial and the series 

converges for all x. If, on the other hand, a is a p-adic integer 

which is not ,a non:-neg<\ltive rational integer. then the canonical 

representation of a is infinite, ~ay 
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It was shown by Palmer [14] that in this case the radius of convergence 

is at least -1/(p-l) 
p • By .applying Theorem 4,7, it can be established 

that; the radius of convergence p is equal to 1. lit suffices to show 

that the x-axis is the terminal ray in the Newton polygon for 

f ( ~ ) 
n=O 

n 
x • 

Recall that according to .Theorem 1.17, given the .rational integer 

where Q = 0 
-1 

Thus, for every 

k + bkp and the p-adic integer. 

k 
+ ~P + then 

( ; ) 00 

ord = L Qi 
i=O 

and 

= ~ 
1 if ai < bi + 

Qi 
0 if ai..::. bi+ 

k °k = ao + alp + • • • + ~ p ' 

Qi-1 

Qi-1 



Since ord ( 
a. 

> 0 for n 

( 
ordl 

\ 

every 

• o. 

n, and there are infinitely many 

choices for n such that ord ( a. 
/ 

= o, it follows that the x-axis n 

is the terminal side of the Newton polygon for the binomial series 

00 
-:::-, I 

,1:_, I, 

n•O 

f 

a. \: n 
n i x 

! 

whenever a. is a p-adic integer having an infinite canonical 

representation. Thus, log pm O and, therefore, 
p 

Figure 5 illustrates the Newton diagram for 

f 1 
( l/2 )\ n 

~~o \ n x 

p .. 1. 

where p = 3. Recall that the canonical representation of 1/2 is 

2 3 
2 + 1·3 + 1·3 + 1•3 + ··· . Thus, for example, since 

2 ! 1/2 \ 
25 = 1 + 2·3 + 2·3 , then ord l = 0 '+ 1 + 1 = 2. Similarly, ,, 25 ! ·. 

since 37 1 + 0·3 + 1-i + 1·33 , then ord 1/2 
= 0 + 0 + 0 + 0 = 

37 
= 
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o. 

'I 
3 

.2. 
• • • 

••• 
• • • ••••••••• • • • 

s 10 ,r 30 '{0 

Figure 5. Newton Diagram for Binomial Series 
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Hensel's Lemma· 

As indicated earlier, Newton's polygon is useful in locating the. 

zeros of certain power.series. Before thi~ topic can be discussed, it 

will be necessary to prove an important theorem called Hensel's Lemma 

for power series. Palmer [14) proved a form of Hansel's Lemma whi~h 

states that under suitable concl.itions a polynomial in 0 [x] 
p 

can be 

written as the product of two non-constant polynomials. The form to be 

established here states that under similar conditions,. a convergent 

power series with coefficients in the p-adic integers 0 
p 

can be wdtten 

as the product .of a polynomial and anoth;er convergent power series. 

Several definitions, .lemmas and theorems are needed first. 

Definition 4 .10. Let A be the ideal pnO and let n be the 
n p 

canonica.l homomorphism from O onto O I A • Then 
p p n 

n : 0 [x) + 0 /A [x]. is defined by 
n p p n 

Since n is a homomorphism, it follows that nn is a 

homomorphism. 

Definition 4.11. If 

00 

f(x) = L 8itxk 
k=O 

are power series over 0 
p 

and A 
n 

00 . 

and g (x) = L bkxk 
k=O 

is the ideal pnO, then define 
p 

f = g mod.An if and only if for every k..::.. O, Pnl <2it - bk)• 
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Note. that in the above definition one or botp. of f and g may. be. 

polynomials. It is immediate that the relation 

equivalence-relation. 

= mod A n 
is an 

Theorem 4.12. If f is a power·series over. 0 
p 

and is a sequence · 

of polynomials such that f = 8n mod An for every n ..::_ 1, then the · 

sequence converges uniformly.and lim g = f. 
n, 

Proof: Since f = g mod A , . then for every x in the domain .of n · n 

f, f (x) = g (x) mod pn. For E > 0, . choose · an N > 0 such that ·· for 
n· 

all n ..::_ N, 
n 

1/p < E • Since pnj(f(x) - g (x)) 
n 

for every n, then 

for n ..::_ N, J f (x) - gn (x) J ..:_ 1/pn < E for every x. Therefore, the 

sequence gn converges uniformly to f. 

Theorem 4.13. If. {g} 
n 

is a sequence of polynomials with coeffi.cients 

in 0 
p 

such that for each n = 0,1,2, ... , gn = gn+l mod An' · then· 

{gn} converges uniformly · on . Ix I .:::. 1 to a function g such that g 

is · represented by a power sari.es with coefficients in 0 • 
p 

·~f: Since .. gn - gn+l mod An implies pn · divides every 

coefficient of the polynomial ·· gn - gn+l' it follows that for every 

E > 0, there is an N such that whenever n .::. N, th.en 

I gn (x) - gn+l (x) I < E for every Ix I .:::. 1. For functions defined on a 

non~archimedean field, this is_ a sufficient conditiori. for uniform 

convergence. Thus, the sequence {g} 
n 

converges uniformly on, !xi < 1. 

Let g be the limit function, Te see that g is represented by a 

power series suppose the polynomial gn is given by 

s(n) 
g (x) = a +a. x +•••+a x n n,O n,l · n,s(n) • 
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Then gn - gn+l mod An implies pn I (a . - a ·+1 . ) 
n ,J n ,J 

for each j > O. 

Therefore, every sequence 

converges to a point in 

Then the power se.ries 

0 . 
p 

is the limit of the sequence 

For each . j ..:. 0, 

g(x) 

g • 
n 

00 

= ~ 
n=O 

lim let a 
h -+ 00 n ,j 

Corollary 4.14, If for each n, gn is a manic polynomial of degree s, 

then the limit function g is a manic polynomial @f degree s. 

Proof: Since a = 1 n,s fer every n and a = 0. for every n 
n,j 

and j > s' then b = 1 
s 

and b = 0 
j 

for j > s. 

Corollary 4.15, For every n, g - gn mod An, 

Proof: As in the proof of the Theorem, let 

where bk is the. p-adic limit of the coef;ficients of k x 

polynomials g (x) =a. 0 + a 1x + .... + s Then for a x . n n, · n, n,s 

N, pn l·(bk - 8N k) and, since gn - gn+l mod A for every 
' n 

follows that pn I (an,k - aN,k) so that Pn I (bk - a k), n, 

in the 

large enough 

n, it 
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The next two lemmas will be used in_the proof of Hensel's Lemma. 

Their. proofs are· found i~ the Appendix._ 

Leltll!la 4.16. Let G and H be polynomials in 0 [x]. with G monie?. p 

Then G and H are relatively prime in O [x] if and only if n (G) p n 

and· n (H) are relatively prime in - 0 /A [x] for n ·= 1,2,3, ... . n . - p n 

Proof: See Appendix. 

Lemma 4.17. Let G and H be tW;O polynomials with coefficients in 

ring R. If G is monic and G and H are relatively prime in R[x] 

with deg G = s, th~n fo+ every non-zero polynomial Q e R[x], there 

exists a unique,pair of polynomials U and V· such that· Q = _UG + v:a 

with V = 0 or deg V < s. 

Proof: · See_ Appendix_. 

For convenience, when n = J., the homom<Drphism n . n ef 

Definition 4.10 will be denoted by 

In the next defii:lition, this notation is extended to power seri.es. 

Definition 4.18. If 

is a power series over 0'' p 

f(x) = 

the11 · let f denote . _the power. series over · 



Lemma 4,19. If f and g 

f(x) 

()Q 

~ -n = 6 ax. 
n=O n 

are power series _over·. 0 , 
p 

f + g = f .+ g and fg = _f g. 
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then 

Proof:. If· 2k, and bk are corresponding coefficients of f and 

g; respectively, then 2k, +bk= ak + bk and 

imply f + g = I + g and f g = I g. · 

If 

f(x) = f 
n=O 

n 
a x 
n 

converges .for every. x such that lxl ~ 1, then, in particular, the 

series 

converges~ Therefore, the sequence {a } 
n· 

is.a null sequence in 0 
p 

so 

that for every non-negative integer . k there exists a positive integer . 

k,· Nk such :that .. p an 

finite number of k 

definition. 

whenever. n ~ Nk. 

such that pk ,r a .• 
n 

Thus, there exists only a 

This allows _the following 



Definition 4.20. Let 

f(x) 
00 

= ~ 
n=O 

n 
a x 
n 

converge for every x such that Ix I ~ 1. For each non:negative 

integer· k, define yk to be the _largest subscript n such that 

k+l L 
p -r an. 

Since k+ll p a 
n 

implies it follows that 

k = 0,1,2, 

To illustrate the definition of suppose 
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for 

f(x) · 2 3 2 3 3 4 4 5 
= (1 + p) + x + (p + p )x + px + (p - p )x + a5x + ••• 

where n 
for n > 5. Then = 1, Yl = 3, Y2 = 3, a = p Yo n 

Y3 = Y4 = 4, and if n > 5 then Yn = n. 

Consider the _power. series 

00 

f(x) .~ 

n 
= a x 

n=O n 

convergent for all x such that· !xi < 1. Let Qk be the polynomial 

of degree yk defined by 

yk 
Qk(x) = L n a x . 

n=O n 

k+ll In view of Defini tton 4 .11, .and· since. p an for every · n > yk, it 

follows·that Qk+l::; Qk mod ~+l. and f = Qk mod ~+l" 



Finally, Hensel's Lemma can be established. Throughout the 

statement and proof, $) will denote the set .,of all x such tha:t 

!xi ~·1. 

Theorem 4, 21. (Hensel' s Lemma) Let 

00 

f(x) = L 
n=O 

n 
a x 
n 
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be a power series which converges everywhere in ~. Suppose there. ex:i,st 

two polynomials G and H in O[x] = 0 /A1 [x] such that;: p p . 

i, G is manic of degree s. 

ii. G and H are relatively prime, 

iii. f = GH. 

Then there exists a pair g,h such that: 

i I ' g is a mcmic polynomial of degree s in 0 [x] and g = 
p 

ii I' h is a power series which converges everywhere in ~ and 

h = H, 

iii I, f = gh, 

Proof:. The overall plan is to define by induction two convergent. 

sequences of polynomia.1,.s in 0 [x], 
p 

{g} 
n 

and {h } , · such that their 
n 

limit. functions g and h have the properties i', ii', and iii 1 , 

Specifically, the sequences {g} and {h} will have the 
n n 

following properties: 

(1) For every n 2:._ O, g0 is monic of degree s, g = G and 
n 

G. 
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(2) For every n2:._0, h = H, h - hn+l.mod An+l· n n 

(3) f - gnhn mod \i.+l for n > o. 

(4) deg h = Yn - s. n 

Suppose for the moment that sequences and. {h } 
n 

satisfying 

properties 1, 2, 3 and 4 have been obtained. Then, by Theorem 4.13 

{g} 
n 

converges uniformly to a function g. 

whicl:i. is expressed as a power. series. Also, according to Corollary 4 .15, 

g = gn mod Art for every n. This, in turn, implies g = gn mod A1 • 

In other words, g = g = G for n = 1,2, •••• 
n 

By Corollary 4.14, g 

is a manic polynomial of degree s. Similarly, {h} 
n 

converges to a 

power series h such that h = H. Also, . deg h .. = y - s and n n 

deg g = s. imply deg h g = Yn· Finally, by Theorem 4.12 if 
n n n 

- f mod A 
n 

then .the sequence {g h } 
n n 

converges to 

gh = f. 

To begin the definition of. the sequences. {g } 
n 

the polynomials go and ho by. go (x) = bo + bl x + 

where the given polynomial in Op/A1 [x] is 

and 

--. s-1 + s + b 1x x 

and 

where 

ct # O. Clearly, g =.G, 
0 

s-

-t + c x . 
t ' 

h0 = H and, since f = GH, 

f, Thus, 

{h} define 
n 

+ b xs-1 + xs 
S"'."1 · 

then 
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f = g0h0 mod A1 • Since f • GH, it follows that 

deg H = deg I - deg G = .y0 - s •. Therefore, since deg h0 • deg H, 

deg h • ·Y - s. · 0 .. 0 

In order to. obtain polyn~mials g1 and h1 , consider the 

polynomial Q1 consisting of the first y 1 + 1 terms of the power 

N series f, Q1 (x) = a0 + a1x + ••• + 8Nx., whe.re N .. y1 • Since 

y1 .::_ y0 , then f = Ql" i\cco:rding to .Lemma 4.17, there· exists. a unique 

pair of polynemials u1 , V 1 such that - Q1 - g0h0 = U 1 g0 + V 1 h0 with. 

deg v1 < s = deg g0 . Since f = g0h0 , then 

Ql - Soho.~ - goho = I - goho = O, so that UlgO + Viho = o. Since 

g0 . and h0 are re1ative;Ly prime, u1g0 + v1h0 = 0 implies either 

u1 "" v;:- = O or ·else g0 lv1 • If. g0 lv1 , then· 

deg ~ 2, deg v1 ~ deg v1 < s = deg g0 = deg g0 • This. is a contradictiG>Q. 

so th_at ~ = v = (i). 
l 1 

The _polynomia;l.s s1 and h1 may now be defined as follows: 

To see that_property:(l) for n = 1 is satisfied, note first that· 

Since is 

mon:l.c, g1 is monic~_ Also, v1 = 0 impl:l,es s1 = g0 mod A1 and that 

Property (2) for n ·= l is easily shown since U = 0 1 
implies. 



To prove property (3) for n = 1, note that 

g1h1 = .(go + v1)(ho + ul) 

= goho + u1go + v1ho + v1u1 

= Ql + v1u1. 

Since u1 = 0 mod A1 and v1 = 0 mod A1 , then u1v1 = 0 mod A2. 

Therefore,, g1h1 = Q1 mod A2. Since f .= Q1 mod A2 , it follows that 

It -remains to be shown that deg h1 = y 1 - s. Since 

g1h1 = Q1 + v1u1 , then 

or 

with equality holding if y 1 =/: deg V 1 + deg u1 •. On ·the other hand, 

since Q1 = g0h0 + g0u1 + h0v1 and deg Q1 = y1 , then 

yl ..::_ max{deg g0h0 , deg g0u1 , deg h0V1 } 

= max{s + Yo - s, s + deg u1 , Yo - s + deg V 1 }. · 

Since deg Vl < s, then yl..::. max{y0 , s + deg u1} with equality 

holding if y0 =/: s + deg u1 • 

Suppose y0 > s + deg u1 • Then y1 = y0 and, sirtce 

s + deg u1 > deg v1 + deg u1 , it follows that y1 > deg v1 + deg u1 

so that s + deg h1 = Y1 • 
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Suppose Yo< s + deg u1 • • Then yl • s + deg u1 > deg v1 + deg u1 

so that again s + deg h1 = Yi· 

Finally, if y0 = s + deg u1 , then Since, also, 

yl..:. y0 , then ·. yl = Yo = s + deg u1 > .deg V1 + deg u1 so that again 

s + deg h1 = y1 . Therefore, in all cases 

This completes the induction step for n = 1. 

To complete the definition of the sequences 

suppose polynomials ••• , h 
n 

and {h } , 
n 

satisfying 

properties (1), (2), (3) and (4) have been constructed. Let 

Qn+l(x) = ao + alx + 
N 

+ aNx where N = Yn+l and consider 

Qn+l - g h e: 0 [x] , 
n n p 

By Lem1I1a 4.17, there exist polynomials 

in O [x] such that 
p Q - g h = u g + v h n+ 1 n n · n+ 1 n n+ l n 

deg Vn+l < s or Vn+l =.O. By .the induction hypothesis, 

with 

and 

f = gnhn mod An+l and by the definition of Qn+l' f = Qn+l mod An+2 . 

It follows that ~+l - g0 hn = 0 mod An+l and, therefore, 

By Lemma 4.16, the images of and 

hn are relatively prime in 0/An+l[x]. As in the proof of 

u = 1 v = o, 1 . it follows that un+l = 0 mod An+l and vn+l - O mod An+l' 

Define gn+l = gn + vn+l and hn+l = hn + Un+l' It remains to 

show that properties (1)' (2) ' (3) and (4) hold. 

Now deg Vn+l < s implies deg gn+l = s and since gn is lilonic, 

is manic. Also, Vn+l = 0 mod An+l implies 

and g -g +V -g -G n+l - n n+l - n - ' Thus, (1) is satisfied fpr n + 1. 

Similarly, Un+l = 0 mod An+l implies hn+l = hn mod An+l and 

hn+l = hn+ Un+l = h0 = H. This proves property (2), 



To prove that deg hn+l. = Yn+l - s,. note that. 

This implies 

gn+l hn+l = (gn + vn+l) (hn + un+l) 

= Qn+l + vn+lun+l· 

with equality if Yn+l I deg Vn+l + deg Un+l' 

Thus, it suffices to show that Yn+l > deg Vn+l + deg Un+l' To 

see that this is the case, note that Q = g h + g u + h v n+l n n n n+l n n+l 

implies Yn+l .::_ max{yn' s + deg Un+l} with equality if 

yn I deg Un+l + s. With essentially the same arguments used in the 

case n = 1, it is seen that 

Yn+l..:. s + deg Un+l > deg Vn+l + deg Un+l' 
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Therefore, s + deg hn+l = Yn+l so that property (4) is established for 

the case n + 1, 

The proof of property (3) for n + 1 follows from 

g h = Q + u v . . 
n+l n+l. n+l n+l n+l 

since Dn+l = 0 mod Ari+l and Vn+l = 0 mod An+l .imply 

Un+lvn+l = 0 mod An·+z th t h - Q d A Since s~ a gn+l n+l = n+l me n+2' 

~+l = f mod An+Z' it follows that f = gn+lhn+l mod An+Z' 

This completes the definition by induction of the sequences {gn} 

and {h } having properties (1), (2), (3) and (4). As indicated 
n 
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earlier, Hensel's Lemma now follows from Theorems 4.12 and 4,13 and its 

corollaries. 

Zeros of a.Power Series 

The next objective of this chapter is to.locate as far as possible 

the zeros of certa:i,n power series. As in complex analysis, if x = a 

is a zer·o of. f(x), then there is a positive integer m such that 

00 

f (x) = (x - a) m L 
n=m 

b (x - a)n-m 
n 

where b 'F o. m 
Thus, it suffices to consider the zeros. of a power 

series of the form 

where b0 =r .o. 

Also, since 

00 

~ 
n=O 

n 
b (x - a) 

n 

00 

= L n 
b (x - a) 

n n=O 

has a zero at x = x0 if and anly _if 

F(x) = 
n=O 

~ n 
L-i b x n 

has a zero at. x = x0 - a, only power series of the form 

00 

I 
n=O 
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with b0 :/: 0 need to be considered. 

The next result applies to. any convergent power series with 

coefficients in Q • It provides a sufficient condition for a. power 
p 

series to have no zeros on a given circl,e. 

Theorem 4,22, Suppose 

f(x) = 

has a non-zero radius of convergence, · b E Qp and b0 .,, o. Suppose, n 

also, that line L with slope m is a lower support line of the 

Newton diagram T. If L contains exactly one point of· T, then f(x) 

.the ci.rcle {x E lxl 
m 

has no zeros on c = T : = p }. -m p 

Proof: .. Let Aj =. (j' ord bj) be the point: of T on L, Then 

the equation of L is .Y = mx + ord bj :-- mj' To prove that: f(x) has 

no zeros on c suppose XO E c so that ord XO = -m, Since. -m -m 

ord j 
bjxO = ord bj + j ord x0, the equation for line L can be written 

as y = (-,-ord x0 )x + ord bJx6. Since A. is the only point of the 
J 

Newton diagram on L; then for n ,:f, j, 

Thus, ord b xn > ord j for all 'F j. This implies n O bjxO n 

jbnx~I < lbjx~ I for a.11 n 'F j which in turn implies 

Since Aj E T implies, lb .1 
J 

'F 0 and x· E c 
0 -m implies xj 

0 'F o, 

follows that; lf(x0) I = lb xJJ 'F o. Thus, if there is exactly one 
j O 

of T on L, . then no point of c is a zero of f(x) • -m 

it 

point 
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By applying Theorem 4.22, it may be quite easy to_ show that 

f(x) = b0 + b x + · • · + b xn e: Q [x] 1 n p 
has no zeros in Q • 

p 
Since m 

p 

is in the value group of Qp if and only if m is a rational integer, 

it follows that f has zeros in Qp 

side having rational integral slope. 

only if the Newton polygon has a 

2 Thus, px - 1 has no roots in 

Qp for any p _ since the slo:pe of the only segment in the Newton . 

polygon is 1/2 and 1/2 
p is not in the_ value group of Q • 

p 

A similar application of Theorem 4.22 settles the question of 

whether T is a discrete non-archimedean field. 
p 

Theorem 4.23. Let. T 
p 

be a complete non-,.archimedean field which is an 

algebraic closure of 

cyclic group. 

Proof: Suppose. 

with 0 < TI < 1 such 

1 < !/TI so th_at 0 < 

such that 0 < 1/k < 

Q • 
p 

. Then .the va_lue group v 

T is discrete. Then there p 

that· TI generates the value 

log (1/TI) = -log TI. Choose a p p 

-log TI. Consider the polygon p 

of. T 
p 

is a real 

group v. 

positive 

is not a 

number 

· Then 

integer 

k f (Ji:) = px - 1 

TI 

so 

that the Newton diagram for f(x) has two points (0 ,O) and (k ,1) , 

and the only side has slope 1/k. Since T is algebraically closed, 
p 

f(x) has k zeros in T p 

the circ1e c-1/k = {x e: T p 

obtained by showing that p 

Suppose p 1/k is in 

such that 
l/k . 

p = TIJ • Then 

and; 

: lxl 
1/k 

in view of Theorem 4.22, all are on 

= pl/k}. A contra4iction will be 

is not in the value group v. 

v. Then there is a rational integer j 

1/k = j log TI p and, since 1/k > 0 and 

log TI < 0, 
p 

this implies j < O. On the other hand, 1/k < -log 71' 
p 

implies so that j > -1. In view of th;i.s 

k 



contradiction, it follows that T 
p 

is not·a discrete non-archimedean 

field. 

By an argument similar to the above, it can be shown that·the 

value group of T must in.elude at least the set 
p 

.{ r p : r is a rational number}. 

The final objective of this chapter is to prove an analogu~ of 

Weierstrass' Factorization Theorem. Several lemmas and theorems are 

needed first. 

The first of _these shows that under suitable condit_ions a power 

series over can be transformed into a power series 

such .that f 1 is a polynomial. 

Lemma 4.24. Let 

f (x) 
00 

= I 
n=O 

n· 
b x 

n 

over 0 
p 

be a power series over Op with b0 ~ 0 and having radius of 

convergence p . .;,. 0. If L is a lower support line containing a side 

BNBN+l of the Newton polygon for f, then there is a power series 

over. 0 such that 
p 

with a. ~ 0. 
J 
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Proof: Let. L be the line of slope m contain.ing the given side 

of the Newton polygon. Let Aj = (j, ord bj) = B and N 

i\ -(k' ord bk) = BN+l' If XO e: c ' then; as in the proof of -m 

Theorem 4.22, ord bk= (-:-ord xo)k + ord bjxi. It follows that 
k . 

ord bkxO = ord bjx6• Also, since L is a lower line of support, 

ord bn..:. ,(-ord x0)n + ord bjxi for every n = 0,1,2, ... so that 

ord bnx~ .:. ord bkx~ for every n = 

Define the power series f 1 by 

0,1,2,. 

00 

~ 
n=O 

n a x 
n 

that is; 

a 
n 

The following observations show that the lemma has been 

established. 

1. For every n .:::_ O, ord a > 0 so that a e: 0. 
n - n p 

2. The coefficient ~ = 1 so that ~ = 1. 

3, Since then a; =/: O. 

4. If O..::_n<j or n > k, 

for O < n < j or n > k, 

then ord a > 0 
n 

S<il that a = 0 
n 

Corollary 4.25. There is a one~to-one correspondence between the 

zeros of f on C and the zeros of 
-m 

Proof: According to the way in which. f 1 is defined, 

is a zero of f if and only if is a zero of on 

x e: c -m 



The next lemma.shows. that for a given power series f over· O 
p 

there is a polynomial g such that· .all the zeros of f · on c0 are 

also zeros of. g. 

Lemma 4.26. Suppose 

f(x) 

is a power series over. 0 such p 

<X> 

= ~ 
n=O 

that 

n a x 
n 

a = 0 n mod p for 

0 .::_ n..::. j 1, aj is a unit in 0 p' ak t O mod p and a - 0 for 
n 

n > k = j + s. Then f has s zeros on the unit circle co. 

Proof: . Consider 

f(x) = -a xj + -a-xj+l + • • • + xk 
. ·+1 J J ' 

j- - s 
= x (aj + aj+l x + • • • + x ) • 

and apply Hensel's Lemma. Let 

Since a. ;i O mod p, 
J 

G(x) = aj + aj+lx + • • • + xs and 

aj f -0 so that the polynomials 

and H are relatively prime. Furthermore, since f = GH, all the 

G 

hypotheses of Hensel's Lemma.are satisfied. Therefore, there exist a 

monic polynomial g e: 0 [x] 
p 

of degree k - j = s and a power series 

h such that g = G, h = H and the power series f = gh. 

Suppose g (x) = c0 + c1 (x) + ..• + s-1 s 
c. 1x + x • s- Then g = G 

implies c0 = aj f O. It will be shown that the only zeros of the 

power series f(x) on the unit circle c0 are also zeros of the 

polynomial g. Let 

h(x) = f 
n=O 

n c x 
n 
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Then. h(x) = xj implies ord c. = 0 and ord c > 0 
J n 

for every· 

n :/: .j. Thus, the x-axis is a lower, support line containing exactly 

one point of the Newton diagram for the power series h(x). Then, 

according to Theorem 4.22, the power series h(x) has no zero on c0 . 

Therefore, the original po~er series f(x) and the polynomial g(x) 

have exactly the same zeros on the unit circle c0 . 

Since T is algebraically closed, the polynomial g has s 
p 

zeros in T • Let a be a zero of g. It will be shown that I ci I = 1. 
p 

Suppose otherwise, that is, suppose . I a. I "F l. If I a. I < 1, then, since 

On 

lg(a.)! = max{lc0 1, lc1a. + ••• + a.sl} 

= I c0 I = 1 .,;. o . 

the other hand, if I a. I > 1, then jg(a.) I a I a. Is ,;. 0. It follows 

that all zeros of g are on co and, therefore, the power series f 

has s zeros on the unit .circle co. 

The results of the preceeding lemmas can be used to show that a 

powe:i;- series has only fil'!,itely many zeros inside a given circle with.in 

the circle of convergence. 

Theorem 4.27. Let 

00 

f(x) a ~ 
n=O 

be a ,power series over Qp with radius of convergence p " o. If. 

* m < log p, then f has finitely many zeros, a.1,a.2, ... ' a.k inside p. 

or on c -m*· Furthermore, there is a power series h such that 



k 
f(x) = TT (x - a .)h(x) 

i=l J. 

where h has. radius of convergence p. 

Proof: Let m be a slope of a side such that m < m*. By the 

Corollary 4.25, the.re is a power series f 1 such that f 1 has the 

same number of zeros on c0 as there are zeros of f on C • 
-m 

Lemma 4.26, there are only .a finite number of zeros of f 1 on c0 . 

Thus, for each m < m* - ' the set of zeros of f on C is finite •. -m 

Since m* < log p, there are only_a finite number of sides having 
p 

slopes less than m*. It follows that there are only finitely many 

zeros of f inside or on the circle c *" -m 

To prove the second part, note_ that if a is a zero on C of 

the poY1er series f, then the,power series given.by 

where 

ao = 

al = 

a- = 
n 

00 

h1 (x) = .I; 
n=O 

ho 
a 

-( :1 +:n 

n a x 
n 

c b 1 b0 ) n n-- -+-+ •••. +--
a 2 n+l-a a 

-m 
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is such that f(x) = (x - a)h1 (x) where h1 has radius of convergence 

p. Similarly, there is a power series h2 such that if S is a zero_ 
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of h1 then. h1 (x) = (x - S)h2(x) so that f(x) = (x - a.)(x - S)h(x). 

It follows by induction that if fo1 ,a.2 , ••• , a.k} is the set of zeros 

of f inside or on C *' then -m 

k 
f(x) = 'IT (x - a..)h(x) 

i=l J. 

where h has no zeros inside or on C and h has. radius of 

convergence. p, 

Theorem 4.28. If 

f (x) 

CX) 

= L 
n=O 

-m 

b xn 
n 

with radius of convergence p .J. 0 has no zeros inside or on the circle 

c ' -m then the function 1 
f 1 (x) = f(x) is analytic inside c • -m 

Proof: Without loss of generality, assume b0 = 1, It can be 

shown that 

where 

ao = 

al = 

a2 = 

a3 = 

1 

-b 
1 

-b 2 

CX) 

f 1 (x) = ~ 
ri=O 

+ b2 
1 

-b3 + 2blb2 -

n a x 
n 

3 
al 



the second sum taken over all subscripts such that 

i 1 + i + ••• + i = n. 2 k 

In order to show that.the radius of convergence is at least p, 

it suffices to show that 

ord a· 
n 

n 
> m 

for every n. Equivalently, it suffices to show that I I -nm 
a . < p 
n 

for every n, Now 

a < ma:x; J 
n - l bib. 

1 1 2 

Since f has no zeros inside or on the circle c -m' then·the Newton 

polygon has no si.de with slope. less than or equal to. m. Therefore, 

for every j SO. that 

i 1 + • • • + ik = n, then 

bib. 
1 1 2 

.... 

ord bj 

j 

-jm 
< p 

> m 

for every 

-i m -i m 1 2 
< p p 

j. Thus, if . 

-i m 
k 

p 
-nm. .. p 

I I -nm 
so that. an < p as required. This completes the proof, 

93 
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Definition 4. 29. If the rad.ius of convergence of al'). analytic function 

f is infinite, then f is an entire function. 

The next theorem shows that the only entire functions having no 

zeros in T 
p 

are constant functions. 

Theore111 4.30. If f is an entire function having no zeros, then f 

is a constant function. 

Proof: Suppose 

00 

f(x) = ~ 
n=O 

n 
b x • 

n 

Since· f has no zeros, then for any m there is no side of the Newton 

polygon having slope less than or equal to m, It follows that the 

only possible side is a terminal ray which is vertical. Thus, there is 

only one non-zero coefficiel').t in the power series and, since f has no 

zeros, that coefficient must be. b0 . 

In. contrast to the above theorem, there exist non-,.constant 

functioll,s which have no zeros. The expc,mential series of Example 4. 3 is 

not an entire funct;i.on since its radius of convergence is p-l/(p-l). 

It can be shown that 

exp(x) 
00 

= '\1 L xn. 
6 n! 

ri=O 

has no zeros in T. To see this, consider the line L with equatioI). 
p 

.... 1 y= .· ... x; Since 
p - 1 
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p -
= -ord l._ =·-( I . n. 

n -

it follows that 
1 -], 

ord n ! . > p _ 1 n for every n > O. Thus, (O,O) is 

the only point of T on L and, by .Theorem 4.22, there are no zeros 

of exp (x) on the circle c = {x E T : !xi = pm} where -m p 

m = -1/(p - 1). By .the same theorem, there are no zeros on any circle 

of smaller radius, and since the series fails to converge at every 

point x such that I I > -1/ (p-1) 
x p ' it follows that 

has no zerGs in T. p 

00 

L 1 n -x 
n! n=O 

Weierstrass' Factorization Theorem 

Finally, the major result of t4is section can be established. The 

following theorem, which may be considered as an analogue of Weierstrass' 

Factorization Theorem of complex analysis, shows that an ant.ire function 

can be expressed as the product of .linear factors involving all its 

\ 
zeros. Also, given a sequence. of points in T whose valuations 'tend 

p 

to infinity, there is an en.tire function having precisely those points 

as zeros; 

Theorem 4, 31. Let 

f(x) = 'vb xn, · 6 n 

b E Q be an entire function. If f has infinitely many zeros which n p 

are different from zero, say .. " , Ci. ' n ... ' then 



96 

f(x) 

where the infinite product·converges uniformly in every bounded subset. 

of T, 
p 

is a constant in T. 
p 

Conversely, if fo } 
n 

is a sequence of non-zero elements of T 
p 

such that then there .is an entire function having 

zeros at each a such that 
n 

00 

Hx> = IT 
i=l 

Proof: , The se,cond part will be es tablishad first. Let fo } be 
n 

any sequence of non-zero elements in T 
p 

such that {Ia I} 
n 

is 

monotonic increasing and 11m I a I = co, 
n 

It will be established that 

co 

IT 
i=l 

defines an entire function having zeros at each Cl. • 
n 

It will be shown 

first that the sequence of pa~tial products, 

converges uniformly to a function ~(x) in a bounded set 

S c:: D = { x e: T : I x I ..:_ 'r }..,_ Let 
r p 

N 
= TT 
'i=l 



so that 

wher.e cr1 ,cr2 , ••• , crN are the elementary symmetric functions. The 

above expression for cj>N(x) can be written as 

••• + 

where 
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In view of the way the symmetric functions are defined, it follows that 

ak,N = (-l)N-k I--·-1 __ _ 
0 i ai · · · 0 i 

1 2 k 

the sum taken over k subscripts i 1 , ••• , ik such that 

• • • < It will be shown that the sequence 

converges for each k •. To see this, note that 

ak,N+l - ~,N = 

the sum taken over k - 1 subscripts such that . 1 ..::_ i 1 < • • • < .ik-l ..::_ N. 

Then, since {Ja J} 
n 

is an increasing sequence, 



;Jk,N+l - 1\.,N 
< 

limit I I It follows that for each k > 0, a - a. = 0 . N -+ co k,N+l · k.,N so that 

the sequence. 

converges. Let limit 
8ic, "" N -+ 00 ak , N for k > 0 and, let 

It will be shown that the power series given by 

defines an entire function cp (x) by showing that · 

limit ord ak 
k-+ 00 k 

= oo. 

Since lim la I = 00 , 
n 

then there are finitely many a inside the 
n· 
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unit circle. a such that . 
n 

I an I .:, 1. Pick j > t su.ch that 

Then, for k > j , 

ll 
t+l 

1 < 



1 
'\,N < = - °'1°'2 a· k. 

< .l 
< 

°'j+l ... °'k 

Since· limit '\ = N + CX) '\ N', ,. 

so that 

1 

Ol.1 

1 --
°'j+l 

'\ < 

°'t 

k-j 

1 

°'j+l 
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1 1 

°'t+l °'t °'j+l °'k. 

Since . ord 8Jt = -logpli\l, it follows that ord ak ~ (k - d)logpl°'j+ll 

and, therefore, 

Now,: as k + CX)' 

since j can be 

follows that 

ord.'\: 

k 
Ck - j) I I 

> k logp °'j+l. 

the right 

chosen so 

hand ~ide approaches 

that . iogp I °'j+1 I 

limit ord '\ 
k + CX) k = =. 

is 

logP I °'j+1 I· 
arbitrarily 

Therefore; ~(x) is an entire function. 

And 
. ' 

large, -it 

Since are the zeros of it follows that 

has zeros at a for every n. 
n 

To 'co111plete the proof of the first part of the theorem, it must be 

shown tha.t the convergehce. is uniform on each bounde!i set in T • p 
It 

suffices to show that, given .any € > 0, then, for sufficiently large 



N, l<l>N+l (x) - 4>N(x) I < E for each x e: S. Now 

r 

for each x e: S. Since 

r 

approaches zero as N approaches· 00 , it suffices to show the 

existence of an M such that, for sufficiently large N, 

I <1>N(x) I ~ M for each x e: S. As before, for some fixed but 

sufficiently large j , 

1 k-j 

1\.,N 
< -·-

whenever k > j . This implies 

for each x e: s. It follows that for sufficiently large k, say. 

k > k0 , 11\.,Nxkl < L for each x e: S. Thus, 

for each x e: s and every N > ko. Let M' be an upper bound of 
ko 

lao,N + al Nx + ... + ak Nx I for x e: s. Finally, let 
' O' . 
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·· M = max{M' ,l}. Then 

cpN(x) < 

k 
O k N k Ia x+ > ax 

k=O. K,N k=lt'.+l k,N 
0 

< max{M' ,l} = M, 

for each x e: S. Therefore, cpN converges uniformly to cp on S, 

This completes the proof .of the second part of Theorem 4.31. 
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To prove.the first.part, recall that an analytic function can .have 

only.finitely many zeros inside any disc D = {x e: T : lxl ~ r}. 
r p 

Therefore, it may be assumed that the infinite set of zeros can be 

ordered such that iJa I} 
n 

is monotonic increasing witlh lim Ja I = co, 
n 

Let 

from zero. 

be the set of zeros of f in D 
r fol'a2 , ... , aj} 

Then, if f has a= 0 as a zero of multiplicity 

k j 
f (x) = x 7T (x - ai)h(x) 

i=l 

where h(x) is an entire function having no zeros in Dr• By · 

Theorem 4, 28, the. function ~ is analytic inside 

h1 (x) = (-l)ja1a.2 ,,, ·ajh(x), Then 

f (x) = xk fr ( 1 - :i ) hl (x) 
i=l 

D ' r 
Let 

and h1 (x) is an analytic function having no zeros in .. D , 
r 

Let· f 1 be the function given by 

00 

= xk 7T 
i=l 

different 

k, 



Then f1/f can.be represented. as 

fl 
f (x) = 

Now both 

g(x) = and h1 (x) 

are analytic inside 

analytic inside D 
r 

D ·r and neither has zeros there. 

and has no zeros there. Since is · 

independent of r, it follows that ·. f 1 /f is an entire function 
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is 

having no zeros in T ' p 
By Theorem 4.30, is a non-zero constant 

function, say l/A0• Thus, 

as required. 

co 

f (x) = A0xk TT 
i=l 



CHAPTER V 

SOME p-ADIC ANALOGUES 

The field T was developed in Chapter III as a complete 
p 

non-archimedean field whicl;i_ is an algebraic closure of tl;ie p-adic. field 

Q • p 
Since this_ relationship between T 

p 
and resembles the 

relationsh:i,p between the coml>lex field C and the real field R, it 

seems reasonable .to consider analogues of some concepts fi::om complex 

analysis. Some of these were developed in Chapter IV, The first 

objective of this _chapter is to develop the Schnirelman. Integral, a 

p-adic -analogue .of the complex line integral. With the aid of the 

Schnirelman integral analogues of standar_d results such as the Cauchy. 

Integral Formula, and the Maximum Modulus Principle can be formulated. 

For each positive integer n such that p :/: n, consider the 

polynomial g (x) = xn - 1, 
n 

Since -T 
p 

is algebraically closed, 

can be factored into n - linear factors 

g (x) = (x - a · . ) (x - a ) • • • (x - a ) . n l,n 2,n n,n 

It is easy to show that Ja.i nJ = 1 for i = 1,2,3, ••• , n~ To 
' 

see this, note that g(a.i n) = 0 implies Jan - 1J = o. On the 
' i,n _ 

other hand, if J a~ ,n J 'f 1, then - Jan -
i,n 11 = max{Jct° J i ,n.' l} :/: o. 

follows that I a.i I = 1. ,n 

The next definition is analogous to determining n complex 

numbers equally _spaced around a circle in the complex plane. 

, n-:i 

It 



Definition 5 .1. 

a.l ' ••• ' ,n a. n,n 

Let (3 and o be fixed points in T and 
p 

be the zeros of The set 

cs+ oa.1 , s + oa.2. , 
,n ,n •ti•, f3 + oa. } 

n,n 
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is called the discrete circle with center S and radius r = lo!. The 

discrete cir~le is_ denoted by C (S, o ,n). 

It is cl.ear that _the discrete c~rcle C (S ,o ,n) is a finite set of 

points on the ordinary circle C (S, Io I) in T • Since. T is a p p 

non~archimedean field, the center of C(S,lol) is not unique. On tlle 

other hand, the following lemma shows that the center of a discrete 

circle is unique. 

Lemma 5.2 .• Suppose Isl - S2I < lol with sl 'F S2· Then 

C(S1 ,o,n) # C(S2 ,o,n). 

Proof: Suppose to the contrary that C(S1 ,o,n) = C(S2 ,o,n)-. Then 

for each i = 1,2, •.• , n there is some j such that· 

s1 + oa.. = s2 + oa.. • Th~s, 
i ,n · J ,n 

sl - S = o ( a. . - a.. ) so that · 2 J,n i,n 

I s1 - s2 I = I a II a.j - a.. I • ,n J. ,n Since Isl - S2I < lo!, it follows 

that. I a.. - a.. I > 1. But I a.. - a.i . I ~ max{ I a.. I , I a.i I} = 1. J,n · i,n J,n ,n J,n · ,n 

This contradiction shows that the discrete circles C(S1 ,o,n) and 

C(S2 ,o,n) are distinct subsets of C(S,lol) whenever s1 'F s2 • 

The Schnire.:).man Integral 

Definition 5.3. Suppose for each n such that p { n. the function f 

is defined on tl:ie discrete circle. C(S ,o ,n). Then [ f is defined 
S,o 

by 



= limit 1 · ~ 
n-+ 00 n µ 

I, i=l 
p 1 n 

f(S+oa.) 
J. ,n 

provided thi~ limit exists. When J f exists, it .is called the 
S,o 

Schnirelman integral of .the functi.on f on the circle C(S, Io I), 
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The next theorem shows that the Schnirelman Integral exists for a· 

constant function, 

Theorem 5.4. If f(x) = c for every x on C(S,joj) thetl 

1 f = C, 

S,o 

n 1 2: Proof: , Since L c = nc implies - c = c, it follows that· 
i=l n i=l 

1 f = limit l f f(S + oa. ) .... limit. c = C, 

S,o n ~ oo n i=l i,n n: oo 
p 1 n p 1 n 

Henceforth, 

limit.,! 'ii f(S + oa. ) 
n too n i=l i,n 
p 1 n 

will be written simply as 

n 1 ~ . 
lim - Li f ( S + o ai ) 

n i=l ,n 

or, by letting y. = S + oai , as · i,n ,n 
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1 n 
lim - '>1 f(y. ). 

n f='l J. ,n 

Sometimes a translation is helpful, 

Theorem 5,5. If g(x) = f(x + 13), then 

f g. 
0, cS 

Proof: This follows immediately since 

= lim .! 'vg(oai ) = f g. 
n Li ,n O ,o 

The following theorem shows that the Schnirelman Integral has a 

linearity property expected of an integral. 

Theorem 5.6. Suppose f and g are functions such th~t ff and 

sJ g 

13, cS 

exist, If cl and c2 are constants in T ' then p 

exists and equals 

Proof: It suffices to show each of the following separately: 

a) If c is a constant, then J c f = c f f ; and 
s,o s,o 
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b) f f + g = f f + J g. 
S,8 S,8 S,8 

Part (a) . follows from 

liml f cf(y, ) =.c lim.!. !; f(yi .. ) 
n i=l i,n n i=l ,n 

where Yi,n = S + 8ai,n' Similarly, 

1 ~ 1 ~ 1 ~ 
- ~ (f + g)(yi ) = - ~ f(yi.) + - ~ g(y, ) 
n i=l . ,n n i=l ,n n i=rl J. ,n 

a-q.d; since the Schnir~lman integrals of both f and g exist, part (b) 

is established. Thii; completes the proof of the theorem, 

Corollary 5.7. 

exist for i = 1,2, , , .. , k, then 

f ± cf: 
S,8 i=l ii 

are constants in T 
p 

and 

Proof: · The· proof is by induction and the above theoreIJ,1., 

The next. theG>rem shows that the Schnirelman integral of a 

f 
S,8 i 

polynoniial is quite easy to. evaluate. In fact, the integral of a 

polynomial. is simply the value of tbat polynomial at the center: of the 

circle. 

Theorem 5,8, If 

coefficients in 

k 
f (x) = a0 + a1 x + · · · + akx is a polynomial with 

T 
p 

then for any s and in T 
p 
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Proof: In view of the preceding corollary and the fact·the 

Schnirelman Integral of a constant is that; constant:, it _suffices to 

show that / xk = Sk for each pos:f,.tive integer k. 
S,o 

Consider 

1 n 
am-· l: f(yi ) 

n i=l ,n. 

Now 

n 
= lim .!_. Li (S + oai l 

n i=l ,n 

= lim ~ [ (S + oa1 ,n)k + (S + oa2 ,n)k 

+···+(S+oa. )k]. n,n. 

(S + oa1 ,n)k + (S + oa )k + • • • + (S + oa l 2,n n,n 

= sk + ( ~ ) 

sk + ( ~ ) k-1 + S oa2 ,n 

+ ( ~ ) 

( k ) k k 
+ k O aZ,n + 

sk + (\t J sk-:loan,n + ••• + ( 
k ) okak 
k n,n 

~' -~~ 

nSk + ( 
k ) k-1 

n 
( k ) 6k-2 0 2 f = S 6 I a , + 

1 
i=l 

i,n 2 i=l 

2 a. 
i,n 

+ ••• + ( k ) sk-j oj f a~ + ... + ok f k 
j a. 

i=.1 i ,n i=l i ,n 

Since the sum of the kth powers of the n. root!;! 0f unity is zero 

for k < -n, then for each j = 1,2, ... , n-1, 

. 



Therefore' J xk = . lim ! sk 
S,o 

Corollary 5.7~ 

n 

k 
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a.j = 0. 
i,n 

so that the theorem follows .from 

The next. theorem shows .. that ·the integ~al is bounded by the maximum 

value of the function on the circle, 

Theorem 5,9, Suppose S and o 

that: 

a) for all x e: C (S, Io I ) , 

b) ff exists, . then s ,.o 

s£ f 
where c = C(S, lo I>, 

Proof: Since 

< 

are in T and f is a fun~tion such 
p 

f(x) is defined; and 

max. 
- x e: c f (x) 

1 n 
= 1im - I f(yi. rt> 

n i=l ' 

where the limit is taken over positive integers relatively prime to p, 

it follows that 

Now, 

f f = lim 
S,o 

= lim 



Therefore, 

n 

I f <Yi,n) 
i=l 

< max 
- ·x e: C 

} 
< max 
- x e: c f (x) • 

f (x) , 

The following theorem shows tha.t, as in complex analysis, a 

uniformly convergent series can be integrated term by term. 

Theorem 5,10. Suppose 
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converges uniformly to f (x) on the circle C(S ,r) "" {x: Ix - BI = r} 

where r ::a I c I for some c e: T . If, for each p 

Schnirelman Integral a£ fi 
exists, then . ff 

S,c 

Proof: Let E > 0 be chosen. Let 

By Corollary 5, 4, . 

F = 
m 

f m J F = L c f • 
BFc m i=l i B,c i. 

Thus, it suffices. to show that 

i = l,2, . .. , the 

exists and 



limit f f - j F = O. 
s,o s,o m m -+ oo 

To see that this is the case, note that uniform convergence of the 

series implies there is an M such tha-t · for any x e: C, 

I f(x) - F (x) I < € whenever m > M. An application of Theorem 5.9 m 

yields 

It follows that 

and, therefore, 

J (f - F ) 
S,o m 

limit 
m + oo 

< max., 
-·x e: C 

f (x) - F .(x) 
m 

J f .- f Fm = 0 
s,o s,o -

f 00 f f=-Ic-. f. 
s,o i=l i s,o i · 

< €. 

It was shown in Theore111 5, 8 that .the Schnire,1.man Integral of a 

polynomial over T 
p 

is the value of the polynomial at the center of 
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the discrete circles. This result extends to. convergent power.series. 

Theorem 5,11, .. ·- pea power series 

with the non-zero _radius of convergence r. If Isl < r and lei < r, 

then ff exists and 
S,o 

Proof: Since· Is I 

is conta:!,ned in the disc 

< 

J f = f(S). 
S,o 

r and Io I < 

D = {x: lxl < 

series c()nverges unif()rmly·on C(S,lol) 

r' . then the circle C (S, Io I) 

r}. Therefore, the power 

so that ·Theorem 5, 10 implies 
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= f a. 
i=O 1 

f x· 
S,cS i 

f (S), 

The above. result shows that .the Schnirelman Integral of a 

convergent power series depends only on the center of the circle 

C (S, I cS I) and not upon the .choice of cS, This may. seem surprising 

since the center .of a circle is not unique, Reca.11, however, that. the 

Schnirelman Integral is defined in terI11S of a sequence of discrete 

c:1,rcles, Each circle in this sequence has the same center, .and the 

center .of a discrete circle is unique. 

Cauchy's Integral Theorem 

A fundamental result encountered early in the study of complex 

variables is Cauchy's Integral The0rem, This states that the complex 

line integral around a.simple closed curve in the complex plane is zero 

provided the f1,1nction is analytic inside and on that .curve. In view of 

Theorem 5 .11, Cau.chy' s Integral Theorem has no exact analogue in this 

setting. However, the following might be .considered as a p-adic 

analogue of that theorem, 

Theqrem 5.12. If 

00 

f(x) =. L aixi 
i=O 

is a power series with radius of convergence r > 0 and if Isl < r 

and lol < r, theri J (x - S)f(x) = 0, 
s 'cS 
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Proof: f (x - S)f(x) = f x f(x) - S f f(x). Since x f(x) 
S,8 S,8 S,8 

is a power. series with rad.ius of convergence r, Theorem 5, 11 yields 

J x f(x) ... S f(S), Since f f(x) = f(S), it follows that 
S,8 S,8 

J (x ·- S)f(x) = S f(S) - S f(S) = O. 
S,8 

Cauchy's Integral Formula 

.Another basic result.;i.n complex analysis is Cauchy's Integral 

Formula. This theorem assumes that f analytic inside and on a simple. 

closed curve C. Then 

f(a) = -Lj f(z) dz, 
27Ti C z - a 

where a is on the interior of C. The striking feature of this 

theorem is that the values of the function on the interior of C are 

completely determined by the va1ues on C. 

In the work that. follows, .a p-adic analogue to Cauchy's Integral 

Formula will be developed.. The following special case .will be 

established first. 

Theorem 5.13. If k is a rational integer and k > 0, · then· 

if . I a I < I 8 I 

if Jal> J8J 
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Proof: Consider 

Since the radius of cqnvergence of the binomial series is 1, it follows· 

that the series converges for !xi < I a 1. Therefore; if lal > IO I , 
Theorem 5.11 implies 

J 1 1 ( -! r. a)k = = 
(O k 0 ,o (x - - a) 

Now suppose. !al< lol so that lxl-= lol implies ,~, < 1. 
x 

Then 

-k -k( (x - a)· •.x 1 f ( -k ) L( ~ · )j 
j=O j xk x 

and the series converges uniformly on Ix J = I cS I . Therefore, 

Theorem 5 .10 applies so that .it suffices to consider . 

j .:. 0, According to t4e definition . 

f x-(j+k) 

0 ,cS 

= lim .!. f (cSai )-(j+k), 
n i=-1 ,n 

I X--(j+k). 

0, cS 

Since the nth roots .of unity form an Abelian group, the set 

for 

-1 -1 
fol ,az ' ,n ,n ... ' -1 . 

a } 
n,n coincides with the set fo1· · , a 2. , . , , , , a } , 

,n ,n n,n 

Therefore, 

2: 
i=l 

Since. 

(cSa. )-(}+-k) 
i,n = cS-(j+k) ~ ·~· 

i=l ' 

n 

I 
i=l 

aj+k = 0 
i,n 
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for every n > j .+ k, it follows that . f x-(j+k) = 0 for every 

J k O,o 
j .:. 0 and, therefore, (x - a.) - = 0 whenever I a. I .. < Io I . This 

O,o 
completes the proof of Theorem. 5.13. 

Corollary 5.14. If k > o, then 

./-1 0 if la. - SI < I a I J . 1 
1 

la. - sl > I a I S, o (x - k 
if 

(S - a.) 

Proof: By Theorem 5.5, 

•>k - {:a 

if la. - SI < la I 
f l k = f 1 1 I a. sl Io I if > S, o (x - a.) 0,o (x + S - k - a.) 

The next theorem may be considered an analogue of the Cauchy 

Integral Formula since the value of an analytic function at.a point is 

given in terms of the Schnireltnan Integral on a ci:tcle about.that point. 

Theorem 5 .15, Suppose 

f(x) .. f 
j=O 

converges for I xi < r and I a. I, IS I, and Io I are all less than r. 

Then 

f f(x)(x - S) = J Of(a.) 
S,o x-a. l 

if 

if 

la - sl < lal 

le1.-sl > Jal 
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Proof: Suppose Ja - sJ < JcJ. Then Ja - 131.:s_ max{Jal ,lsJJ < lei 

so that Ix - a I = J x - 13 I = I c J for all x such that ··. J x - SI • I c J • 

Since 

then 

f(x) = f 
j=O 

f(x)(x - 13) = 
x - a. 

and the series converges uniformly on Ix. - S J = I c I , 

In the other case, I a - SJ > I c j • Then for all x such that 

J x - S I = J c I·, J x - a I = I x - S + S - a J = J a - S I > J c J • Thus , 

Jx ~ 'l < 1 so that 
x - a 

aj~ (x - .s) 

L x - a 

converges uniformly on Ix - S J "" Jc I • 

In either case, by Theorem 5.7, 

J f(x)(x - S) 
S ,c x - a 

Now for j > 0, 

x - a x - a 

Thus,: 

= 2: a. J xj (x - S ). • 
j=O J s,c x - a 



J j -1 j-1 f a.j (x - S) 
(x +•••+a.. )(x - S) + . 

s,o s,o x - a. 

Since x - S = 1 - S - a. it follows that for j ~ 0, 
x - a. x - a. 

If · I a. - SI < Io j , Corollary 5 .14. implies f 1 = 0 so that x - a. S,o 

J f(x)(x - S) = l: a a.j = f(a.). 
S , o x - a. j •O j 
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If la. - sl > lol, Corollary 5.14 implies J 1 = 1 so 
x - a. s - a. S,o 

that for each j > 0 

J xj (x - S) = 
s ,o x - a. 

It follows that. f f(x~(~: S) = O. This completes the proof of 
S,o 

Theorem 5.15. 

As ·in complex analysis, Cauchy's Integral Formula. can be extended. 

to derivatives. The fo11owing lemma,is useful in proving an extension 

of Theorem 5.15. 

Lemma 5.16. Let g be a polynomial such that deg g < k. Then 

/ g (x) k = 0 whenever I a. - S I < Io j • 
S, o (x - a.) 
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Proof: Since deg g < k, 
g(x) 

. · k can .be expressed by partial . 
(x - a.) 

fractions. Thus,- there exist. k constants A1 ,A2 , •.• , ~ such that 

(x _ a.)k • (x - a.)+ (x _ a.)2 + 
-~ 

. • • + ---------.. k I 

(x - a.) 

It ·follows from Corollary 5, 14 that · 

Theorem 5 .17 •. Suppose 

J g(x) k = O. 
13 ,o (x - a.) · 

f(x) • f b xj · 
j~O j 

converges for I xi < r .. and I a. I, I 13 I, and I cS I are all stl'.ictly · 

less than r. If la. - SI < lol, then 

f f(x) (x - S) 
n+l S,o (x - a.) 

L f<n>c. ·> = . I a. • . n. 

Proof: Let n = ·N be fixed. It suffices to assume 13 = O. Then . 

~ j+l 
Li bjx i+l J f (x) x : = f j =O . ~ J X""-- · · 

N N + L bj N • 
O,o (x - a.) O,o (x - a.) j=N+l 0,o (x - a.) . 

According to Le~ 5.16, .the first .integral of the. right ha~d sid"3 is 

zero. Now. for ea.ch j > N, there exist polyll,omi~ls Qj and . Rj such 

that xj+l • (x - a.) N Qj (x) + Rj (x) where Rj . = 0 or deg Rj < N'. 

Thus ,: for each j > N, 



f xj+1 N = f Qj (x) + f Rj (x) N 
O,o (x - a.) O,o. O,o (x - a.) 

= f Q. (x) 
O,o J 

since Lemma 5.16 applies again. Now the last integral equals Qj(O) 

for each j. Thus, it suffices to sum the constant terms of the 
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polynomials Qj for j = N+l, N+2, By actually dividing N+l+h 

by (:it -
N be a.) ' it, can shown that the constant·term of 

( N+hh),,,h given by ... for h = 0,1; ..•. It follows that 

f f(x) x ~ J 
. N+l "" 6 bj Qj (x) 

0. R ( ) . j 1 Q R ,u x - a. =N+ · ,u. 

This completes the proof. 

= L f(N) ( ) 
N ! . a. • 

Maximum Modulus, Cauchy's Inequality,· 

Liouville' s Theorem 

x· 

QN+l+h is 

Analogues of several standard results of complex analysis have· 

already been established. This chapter will be concluded by showing 

three more. In particular, analogues of the Maximum Modulus Principle, 

Cauchy's Inequality, and Liouville '.s Theorem will be established. 

One form of . the Maximum Modulus Principle .of complex analfsis 

asserts that if .a non-constant function f · is analytic insi<;l.e,and on 

a simple closed curve C and if M is an upper bo~d of f on C, 



then J f (z) J < M for every z inside c. The next theorem shows a 

corresponding result in· T. 
p 

Theorem 5, 18. Suppose , , 

converges for JxJ < r. Let O < r 0 < r anq M 2:_ jf(x) J for every 

x e: D[O,r0 ] •. Then either jf(x)I is constant on D(O,r0) or 

jf(x)J < M for every x in the open ~isc D(O,r0). 

Proof:. Suppose a,S e: D(O,r0) with jf(a) I > lf(S)J •. Pick o 
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such that JoJ .~ r 0 • Then la - el< Joi 

and f(S) ... f f(x). Thus, 

and f(a) = J f(x) (x - S) 
S,o x - a. 

S,o 

jf(a) I= jf(a) - f(S)I 

= f f(x)(x - S) - f f(x) 
S,o x - a S,o . 

= f f (x)(a - S) • 
S,o x - a 

Sinc·e J a '- SJ < Io J , then .for every x such that Ix - SI = j o j ,, 

Ix - al = Jx - S + S - al= loJ. · Let c denote.the set 

{x e: T : J x - .s I = Io I}, Then according tc;, Theorem 5. 9, 
p 

f f(x) (a - S) 

S,o x - a 

maximum f(x)(a - S) < . 
- x e: C x - a 

= J_~_..::_ _ _tl max.imum I f (x) J 
~ xe:C 

< 
maximum 

x e: c If (x) I 2. M, 
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Therefore, If (a) I < M. 

As a consequence of Theorem 5.17, the follow:ing analogue of 

Cauchy's Inequality can be established. 

Theorem 5 .19. Suppose, f is analytic in D (O, r) • If O < .r O < r and 

M ~ I f(x) I for every x e: D[O,r0], 

f(n)(x) 
nl 

then for n.• 1,2, . . . , 

Proof: By Theo.rems 5.17 and 5.9, .if· IYI < r 0 then 

f (n) (y) 
n! "". J f(x) x 

n+l O,o (x - y) · 

<. max. 
-·x e: C 

f(x) x 
( ). n+l 
x - y 

where. c • {x:. lxl • r 0}. ·Since- IYI < r 0 , then Ix - YI "'r0 for 

x e: c. It follows that 

max 
x e: c 

f(x) x 
( · )n+l x - y 

= max I f (x) 1. < 11._ 
x e: C n -· n ro ro 

Finally, the p-adic analogue of the Liouville Theorem states that 

any bounded entire function is a constant funct;ion. 

Theorem 5. 20. If f .. is an .entire function and thez:e is a real number 

M such.that· lf(x) I~ M 

f (Jr:) = a0 + a1 x + · • • . 

for every x e: T, 
p 

Proof: It suffices to show that; a • 0 
n 

then f(x) • a0 whe:i;e 

for. n "' 1,2, 

Suppose to the contrary that · a ,/, 0 for some · n > L .. Let o be an 
n 



element in T such that M 
la I· According to Theorem 5 • +9 , --< p 

lo I~ n 

f (n) ~O) < -1!_ 
nl _ .. loln 

But since a. = 
. f (n) ~O) 

n n! 

I I M a <·-< 
n - loin 

This contradiction shows that a .. 0 
n 

for n = 1,2, '• • • • 

Conclusion . 
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While. further -.i,malo_gies between complex and p-adic analysis will 

not be pursued in this study, it ,should be retnarked that others do 

exist. For example, Laurent series can be defined in T 
p 

essentially 

as. in the complex case. Thus; the concept and classification of 

singularities ef analytic functions can be discussed. ~remorphic 

functions have natur~l analogies in T • p 
The residue of a function can 

be de:l;ined in the usual manner and there is a p-adic·analogue of 

Cauchy's Resic;lue Theo:t;"em. The technique of proof; as illustrated 

earlier in thi~ chapter, somewhat parallels·the corresponding proof in 

complex analysis but ut;l..lizes the ·Schnirelman Int~gral. and . its 

properties. 

As a final · reIQark, one quite. significant distincti.en between · 

ana_lys is in T 
p 

and complex _analysis will be noted. In ,cemplex 

analysi1;3 an analytie functien m~y have an analytic .continuation .beyond· 

its circle ef convergence._ That is, if f(z) is a~.analytic function 
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having radi.us of convergence. r, 0 < r < 00' then given a point- zo 

in the circle of convergence, f (z) is analytic at zQ • Thus, f (z) 

can be . expressed as a power seri.es· developed about z = zo and the new· 

circle of convergence may_include points which are not.in the original 

circle of convergence. In th,e p-adic,situation, however, any two _discs 

are either disjoint or _nested. It follows that analytic .continuation. 

in the above sense is. not possible for analytic functi.ons in 

observation conc.:).udes the present study. 

T . 
p 

This 
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APPENDIX 

This appendix supplies, proE>fs of Lemmas 4 .16 and 4 .17. 

Theorem A,l, Let G and H be polynomials in 0 [x] p . with G monic, 

Then G and H are relatively prime in 0 [x] 
p 

H are relatively prime in 0 /A [x] for n > O. 
p n. 

if and only if G and 

Proof: For any polynomial in O [x],. 
p 

let - - - . -s P(x) = a +ax+•••+ ax 0 1 s where a denotes the image of 

a e: 0 ·p under the canonical homomorphism from O 
p onto 0 /A, 

p n Since 

UG + VH = U G + V H and 1 = 1, then G and H relatively prime 

implies G and H are relatively prime. 

Conversely, sup.pose G and H are relatively prime in 0 ,,(A [x]. 
p n 

Let Q e: 0 [x] be such that: QJG and QjH. Then it suffices to show p 

that: Q = 1, Since QJG and Qja, there exist polynomial R and R' 

in O [xl such that G = QR and H = QR'. Furthermore, G is monic 
p 

implies the high ord.er coefficient of Q is a unit in 0 • p Thus, 

deg Q = deg Q, Since G and H are relatively prime in· 0 /A [x], 
P n 

there exist polynomials U and V in O /A [x] 
p n 

1 =GU+ H V =QR U +QR' V 

so that 

1 = Q ( R U + R' V ) • 

such that 

This. implies O = deg Q = deg Q. Since Q is monic, Q = 1. 
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Theorem A.2. Let G and H be two polynomials wit;h coefficients ·in. 

ring R. · If G is monic _and G and H are relatively prime in R(x] 

with deg G = s ,- then for every non-zero p~lynomial Q e R(x] there 

exists. a unique.pair of polynomials U and V such that· Q = UG + VH 

with V = 0 or · deg V < s. . 

Proof: · SuJ>pose G an4 H are_ relatively prime in · R{~]. Then 

there exist polynomials. J and K in· R[x] such that JG+ KH = L 

Thus, if Q is any polyt).omial in . R[x] then Q = ·QJG + QKH. · Suppose_ 

deg QK .::_ s = deg G. Then there exist :Poly"Q.omials A and B in · R(x] 

suc_h tha_t · QK • AG + ,B whe r:e ei the·r B = 0 or deg B < s. Then, 

substi·tuting for QK. in _the· above .~quation, 

Q = QJG +(AG+ B)H = (QJ + AH)G + BH. 

If U = QJ + AH and V = B, then the ·existence part of the theorem is. 

proved. 

To prove uniqueness, suppose there is anot~er pair 0£ polynomials 

.U' ancl V' in R[xJ such that Q = U'GL+ V'H with deg V' < s or 

V' = ·O. Then U'G + V'H = UG + VH implies (U' - U)G = (V - V' )H. 

Since G and H are relatively prime, G!(v - V~)H implies 

Gl(V- V'). Now deg(V - V') ~max(deg v,.deg V') < s. Therefore, 

GI (V - V') implies · V = V' which,, in _turn, implies U = U'. This 

completes ·the. proof. 
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