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CHAPTER I
INTRODUCTION

Among the topics encountered in real analysis are limits,
continuous functions, differentiable functions, integrals, sequences,
series and functions defined by powér series. A discussion of any of
the above relies heavily upon the absolute value function. = The
absolute value function is an example of a larger class of non-negative

real valued functions called valuations.

Definition 1.1. Let - F be a field and R be the real field. A
mapping ¢: F > R is a valuation on F if and only if each of the

following properties is satisfied:

i. ¢(x) > 0 for every x e F;
ii. ¢(x) = 0 if and only if x = 0;
il ¢(xy) = ¢(x)d(y);

ive d(x+y) < o(x) + ¢(y).

Example 1.2, (a) The absolute value function is a wvaluation on the
fiel& of rational numbers.

(b) The modulus function is a valuation on -the complex field,

The following theorem 1s easily established from the definition of

valuation.



Theorem 1.3. If ¢ 1s a valuation on the field F, then:
i, ¢(L) = ¢(-1) = 1;
1ii. ¢(-x) = ¢(x) for every x e F;

idl, ¢(x - y) <.0(x) + ¢(¥);
iv. ¢( ?) B ¢(;; provided ¢(y) # 0.

Non-Archimedean Valuations

One property of the real number system with absolute value 1s that
given any . two non-zero numbers a and b, there 1s a.positive integer
n such that_,lnaf > [bl. This property is .called the Archimedean
Property of the reals. In particular, for every positive integer
n >,l,‘_ln] > 1., It will be seen that not all valuations have this

property.

Definition 1.4. -Let ¢ be a valuation on field F. If, for every

n= 1,+ L+ =« +1, ¢(n) <1, then ¢ is a non-archimedean

*valuation on F.

The following theorem provides a commonly used characterization of

a non-archimedean valuation. The proof can be found in Snook [16].

Theorem 1.5, Let ¢ be a valuation on field F.. Then ¢ is a
non-archimedean valuation if and only if ¢(a + b) < max{¢(a),é(b)}

for aﬁy pair. a,b & F.

The -property = ¢(a + b) < max{¢(a),$(b)} 1s called the

non-archimedean property. It is clear that the non-archimedean property

implies the triangle inequality ¢(a + b) < ¢(a) + ¢(b). Usually, when



the valuation is non-archimedean, property iv. of Definition 1.1 is

replaced by the non-archimedean property.

Theorem 1.6. If ¢ 1is a non-archimedean valuation, then

¢(x + y) = max{¢(x),6(y)} whenever ¢(x) # ¢(y) [16, p. 54].

Definition 1.7. A field F with non-archimedean valuation ¢ 1is

called a non-archimedean field.
Outline of Study

Since non-archimedean valuations and absolute value have similar
properties, it is reasonable to consider concepts of analysis relative
to a non~archimedean field. This type of study is presented in an
expository paper by Palmer [14] entitled "Some Analysis in a
Non-Archimedean Field." -

The present study considers analysis in an_ algebraically closed
extension of a non—archimedean f;eld. It is accurate to consider this-
study as a sequel to Palmer's, and his work will be referenced
frequently. Those results essential to the present study are listed as
neeéed.

The»background required for this study includes analysis through
advanced calculus (complex variables would be helpful but not essential), .
algebra at the .level of Herstein [9] and number theory as presented in -
Agnew [2].

In the remainder of this chapter a particular non-archimedean
field called the p~adic numbers is discussed and some of Palmer's
results relative to this field are listed. Also, some special topics

to be utilized later are presented here. Chapter II pertains to



continuous and differentiable functions. That chapter also includes a
non-archimedean analogue of Weierstrass' Approximation Theorem of real
analysis. In Chapter IIIL, an algebraically closed extension of the
p-adic numbers is considered. The major .accomplishment of that
chapter is the demonstration that the non-archimedean valuation extends
to the algebraically closed field. 1In Chapter IV, power series are
considered in some detail. A geometric device called Newton's polygon .
is developed and employed- to determine the radius of convergence and to
help locate the. zeros of a power series. . That chapter culminates with
a non-archimedean form of Weierstrass' Factorization Theorem. The last .
chapter shows that by a suitably defined analogue of the complex line
integral, analogues of several standard theorems of complex analysis
can be established. Included are Cauchy's Integral Theorem, Cauchy's .

Integral Formula, the Maximum Modulus Principle and Liouville's Theorem.
The p-adic Number Field

The non-archimedean field upon which thils study is based is called
the field of p-adic numbers and-is denoted by Qp' Some of the
important properties of QP are listed below. For a complete

development, the reader is referred to Agnew [2].

(1) Each - o e‘Qp can be uniquely expressed in the form

where 0 <a <p-1 foreach n-= 0,1,2, «uvy a, #0 and k
is a rational integer. This is called the canonical representation

of «a.



(2) The non-archimedean valuation on Qp is denoted by ]]p and
k
[alp = ( %#) where a 1s given in the cap@ﬂﬁ%al representation
above.

(3) The set Op ={o € Qp: Iu]p < 1} 1s the ring of p-adic integers.

The units in Op are those elements of Op such that- Ia[p = 1.
(4) The field Qp is complete with respect.to the valuation ]lp.

(5) The field Qp is a discrete field, that 1s, its value group given.
by VQ = {]x]p: X € Qp’ x # 0} 1s an infinite cyclic group with

generator 1/p.
The Ordinal Function

Thé_remainder o6f this chapter i1s devoted to several special topics
which will be utilized in later chapters. The first of these is a real
" valued function defined on an arbitrary non—archimedean field. There

is no assumption that the field 1s discrete.

Definition 1.8. Let F be a field with non-archimedean valuation ¢.

The ordinal function is defined on F by

-logp¢(x) if x#0

ord(x) = .
o if x=0
For exaﬁple, let o = pké where € 1is a unit in- - Q_ . Since-
k k
- (5) (%)
€ ={ = then ord a = -lo - = k.
e =15 ) ) g\ 3

Theorem 1.9. If:  x,y ¢ F, then ord xy .= ord x + ord y.



Proof: This follows from

ord xy =-.-logp¢(xy). = -[logp¢(x) + logp¢(y)1

= ord x + ord y.

Theorem 1.10. Suppose X #0 for n=1,2, ... . Then 1lim x = 0

if and only if 1im ord x, =

Proof: ' Suppose 1lim x, = 0. Then, given any M > 0 there exists
an N such that ¢(xn) < p_M whenever. n > N. Thus,
log ¢(x_.) < log p_M = =M so that ord x_ > M whenever n > N.

P n P n el
Conversely, suppose lim ordkxn = ©, Then, given any € such that
l1>¢ >0, choose an M such that p_M < €, There exists an N such

-M
that ord x, > M so that . logp¢(xn) > logpp > —logpe. It -follows

that ¢(xn) < € whenever n > N.

Theorem 1.11. If x,y ¢ F, then
ord(x + y) > min{ord x, ord.y}.

Proof:. Since F 1s non-archimedean, ¢(x + y) < max{¢(x),¢(y)}.

It follows that- logp¢(x + y) igmax{logp¢(x), logp¢(y)}» so that

ord(x + y) = —logp¢(x +y)

:min{-logp‘b (x), ,-logpsb(y) }

|v

min{ord x, ord y}l.
Corollary 1.12. If ord x # ord y then ord(x + y) = min{ord x, ord y}.

Proof: . The proof follows from Theerem l.ll and Theorem 1.6,



In later chapters there will be occasion to determine ord n!.
Palmer [l14] showed that

n -~ t.
n

! = D
ord n! ma—)

where the canonical formof n 1s n =-a, + a;p + see + akpkv and

tn_= a, + a4 + e + a .

Example 1.13. Let p =35 and n = 87. Since 87 =2+ 2p + 3p2,

= 7 and ord 87! = §%—§—Z = 20.

then t 1

87

Theorem 1.14. Let M and N be rational integers with M > N and

canonical representations given by M = a, + a;p + e + ampm and

k

+b.p+ e+ +b Then

ord (

where 6_1 =0 and for 1 >0

0 1

zZ =

—
i
M=
O

.

1 4f ay <b +8;

0 if: a; z_bi + Gi_

l"
1.

Proof:. Let the canonical representatien of M - N be given by

M-N=c, + CqP + e+ cmpm where it 1s understood that some of the

0
last ¢, may be .zero. It follows that.

j J
i; CiPi = Ez (ai - bi)pi mod pj+l
1=0 =0 '



for j. =0,1,2, ..., m. Let: 641 =0 and, for i >0,

1l if a, <b,  + ¢
i

0 if a, > b, + &

Then for 1 =10,1,2, ..., m, g + bi - ay Gip - Gi;l so that

m
bty t &y "ty =~£Z% (6yp = 8;4)

"
= (p -,l)'éz% 6, 6 .

M M!
Since ( N )—- T -7 it follews that

ord ( . ) = ord M! - ord N! - ord(M - N)!
=M—tM.__N—tN— (M‘N).'tM—N
p-1. p-1 p-1
I =
p-1

Thus,

It remains te shew that Gm =0, If M=N, then a, = bi for
all i so that Gm = 0. If M >N, then there is a subscript r.

such that_-‘ar > br and a, 3_bi for r <i <m It follows that

Gm = 0, This completes the proof of the theorem.



Example -1.15. Let M = 212, N =108 and p = 5. Then:

M=.2+ 2p + 3p2 + lp3 and N =3+ 1p + 4p2 so that

S, =1 +0+1+0=.2,"

‘ 212
Hence, ord.( 108 ) = 2,

Example 1.16. Let M = ~pk+j and N = plé. Then *51 = (0 for.
' k+i
0<i<k and 6 =1 for k<1<k+j so that ord,(Pk )=j..
j P

The next theorem shows that . M can be replaced by any p-adic

integer.

Theorem 1.17. Let o € ‘Op and N be a rational integer with

canonical representations given by

o= Z aipi and N = i b.pi.
; - i
i=0 i=0

J
Then,

i=0
where 6_l=0 and for i >0,
. - 1 if ai<bi+51_l,
i
0 1f a, > b, + 6, ;.
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Proof: Suppose the canonical representation of o 1s infinite.
Since the canonical representation of N is finite, there exists a

first non-zero coefficient of - a beyond a call it a Let

t—] s 00 k k+j . .
M= a + a;p + '+ app + ak+jp . It will be shown that

k+i’

o M
ord ( N ) = ord ( N ) and that

|

To establish the first of these .note that ord(a - i) = ord(M - 1) for
eaCh i = 0’1,2, ¢ 0y N—l. ThuS,
N-1 N-1

T (@=1) =ord || M- 1)
1=0 1=0

ord

; , o M
so that  o¥d ( N ) ord ( N ).

To éstablish that .

note that 6§, = 0 for every i > k + j so that

1
© k+i-1 \
> 5, = % 5, = ord(g).

Now suppose. o has d.finite canonical representation. ' In this .
case o - 1s a rational integer M. If M > N then Theorem 1l.14

applies. . If M < N, then ( g') =0 and
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This completes the proof of Theotem 1.17.

Example 1.18, For p.= 5 the canonical representation of 1/2 is

3+ 2p +“2p2 + oo + 2pn + e+ . The following is a list of ordered

pairs (N, ord ( 11{12' )) for

N=0,1,2, ..., 15:  (0,0), (1,0), (2,00, (3,0), (4,1),
(530), (6,0)3 (7,0)3 (830)’ (931),
(10’0), (11,0), (1290) t) (13’0)’

(14,2), (15,1).
Elementary Symmetric Polynomials

The final remarks in this introductory chapter concern elementary

symmetric polynomials. Suppose f(x) = (x - al)(x - az) cee (x - an).

I N (-1)non where

. n
Then £(x%) X =0y 9

=+, Foeee
9 Tt oy e

0, = 0,0, + a,0, + *** + a

g = 010y T 0404 o, o

1 Q.

+ cce + q O .y

273 n-1'n

the sum taken over all possible combinations of subscripts,

(o are

1 <4, <41, < se0 < im < n. The polynomials 01,02, vees O

called the elementary symmetric polynomials for al,az, sees O For .

example, if n = 4, then the symmetric polynomials are
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cl=al_+ot2+ot3‘+ot4,-

Oy = 0q0, + 0,04 + a0, + Gy0q + G0y + g0y s

o =~alaza3 + ala2a4 + ala3a4 + a2a3a4,

Oy = 0q05040,.

For -each ' k ='1,2, ..., let

It can be shown that the following relatlonships hold: (See

Van der Waerden, [17], p. 101.) If 1 <k <n, then

s, = 8 q0p e+ (D eio (Do = 0

k k-1"1

and if k >n then

+ oo+ (=18 = 0.

Sp T Sk-1%1 k-n’n

The - importance of symmetric polynomials relative to this study.
concerns roots of unity. Suppese al,az,_..., an. are the nth roots of

unity in an algebraically closed field. Since.

L]
1
[N
[]

(k- a)(x=ay) o0 (x - a)

n n-1l
=x - clx + e + (fl)ncn,

Then, by equating coefficlents, it follows that Gy = 0y =" =0 =
and o, = (—l)n+l. Therefore, for each k such that 1 < k <.n,

S, = 0, that is,



n

21 a? = 0
i=

for k=1,2, .,., n-1. Also, since s, + (-l)nnon = 0 and

o, = (—l)n+l, it follows that s - n = 0. Thus,

Example 1.19. The four 4th roots of unity in the complex plane are

l, 4, -1, -i, Then s, =1+ i+ -1+ -1.=0,

1

s,=1l+-1+1+-1=0, s;=1+-1+-1+1i=0 and
s, =l+1+1+1=4d,

13



CHAPTER TI
CONTINUOUS FUNCTIONS

This chapter begins with a summary of -some results from Palmer [14]
which are pertinent to later work. The chief contribution is the
presentation of the p-adic counterparts of certain reals situations not
discussed in Palmer. Henceforth, the p-adic valuation llp willl be

denoted by l].

Definitlion 2.1. Suppose. f: A > B and o  is a limit point of A.
Then

lim

X > o f(x) = 8

if and only if for any € > 0, there isa 6 > 0 such that

[x - a]l <8, xe A 1implies |f(x) - B| <e€.

Whenever .the limit exists, it must be unique.
The usual characterization of limit in terms of convergent

sequences holds, that is,

lim
X > a

f(x) = B

1f and only if .for every sequence {an} in A cenverging to o with
an- # Gy

lim

n > w

f(an) = B,

14
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Theorem 2.2, Suppose f: A+ B and o 1is a limit point of A. Then
xli@a f(x) exists if and only if for any € > 0, there isa & > 0

such that |x - y| < & implies [f(x) - £(y)]| < €.

Definition 2.3. Let £f: A+ B. The function is continuous at point

¢ € A if and only if.

lim

SR = £(a).

The function i1s continuous on the set A if and only if it is

continuous at each point of A,

Theorem 2,4, If f and g are each continueus at point o then
f+ g and fg are each continuous at o and f/g is continuous at

o - provided g(a) # 0.

Theorem 2.5. If f i1is continueus at o and g is continuous at

f(a), then the composition g o f is continuous at o.

Definition 2.6. A sequence of functiens - {fn} defined on set A

converges to a function f if and only if for each x e A

lim

n - «©

fn(x) = f(x).

The function £ is called the limit function of. the sequence {fn}.

Definition 2.7. A sequence of functions {f } defined on set A

converges uniformly to a function £ 1f and only if for any. € > O,

there is an integer N such that n > N implies ]fn(x) - f(x)I < €

for every x € A.
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Theorem 2.8. A sequence of functions {fn} defined on a set A
converges uniformly to a function £ if and only if for any € > 0
there is an integer N such that n > N implies |fn+l(x) - fn(x)| < €

for each  x € A.

Theorem 2,9. Suppose {fn} converges unifermly to f on A. If for

each n, fﬁ is continuous at o, then f 1s continuous at oa.

Definition 2.10. Suppose {fn} is ‘defined on A. The series zzfn(x)

cdhvergesvto a limit functien f defined on ‘A if and only if

lim

N > o

Y
Z, £.(x) = £(x)
n=1.

for each x. e A.

Definition 2.11. A series Ean(x) converges uniformly to a limit

function f 1if and onlyiiﬁ

o]

g £ (x)

n=1 N=1

converges uniformly to f(x).

Theorem 2.12. The series Ejfn(x) converges uniformly on set. A if
and only if for every € > O there is an N such that n > N implies

Ifn(x)l < e for every x € A.

Theorem 2.13. Suppose, Zan(x) converges uniformly to £(x). If for

each n, fn is continuous at o, then f is continuous at a.
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Theorem 2.14. Let -{bn} be -a sequence in Qp such that lim bn =0,
If for each n, Ifn(#)l_i Ibnl for each x 't A, then Zan(x)

converges uniformly on A.
Uniform Approximation

Definition 2.15. A set A 1in Qp is compact if every open covering

of A contains a finite subcovering..

Theorem 2.16. Let Kec Qp' Then - K is compact 1f ‘and only if K 1is-

closed and bounded. [16].

Since .any two discs in Qp are either disjoint or nested, it
follows ‘that every compact subset in Qp can be partitioned into a
finite number of pairwise disjoint subsets. This allows the following

definition of a step function on a compact set in Qp'

Definition 2.17. Let D be a disc in er. A function f defined on

D is a step function on D if and only if there is a partition of D

by ‘a finite collection of diges 'Di such that, for each i,

i=1,2, ..., n, the function £ 4is .constant on D If K is a

1

compact ‘set in Qp, a function f 1s a step function en K if and
only if there is a step function F- on a disc D such that F is an
extension of  f. The collection of discs {Dl’DZ’ veay Dn} is called

the partition associated with the step function F.

Characteristic functions are often used to designate a step
function. For example, if f 1s a step function on a disc D with the

collection {Dl,Dz, ooy Dn} as the associated partition,.then
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Tl
f(x) = a @, (x)
EZQ i~i

where a, is ‘the constant value of f on Di and ¢i is the

characteristic function of ‘Di'
Definition 2.18. Suppose AcC K and f 1is a function defined on A.

If, given € > 0, there is a function F defined on K such that for

every X € A, ,F(x) - f(x)l < €, then F is a uniform approximation

of £ on A. Equivalently, F uniformly approximates the function f

on A.

The next theorem shows that a continuous function on a bounded set

has a step function which approximates it uniformly.

Theorem 2.19. Let A be a subset of a comﬁact:set Ke Qp. If £ is
a continuous function defined on A, then there is a step function F

defined on K such that F approximates f uniformly on A.

Préof:{ Since K 1is compact, there is a disc D containing K.
If it is shown that there is a p-adic step function F defined on. D
such that F uniformly approximates f on A, then F restricted to
K 1is the desired function. Thus, it suffices to assume in the
beginning that K is a disc. Let € > 0 bé chosen.

Since f 1s continuous on A and A is compact, there is a
positive integer N such that x,y € A and |x - yl < pr imply
|f(x) - f(y)| < €, Furﬁhermore, it may be assumed without ‘loss of
generality that p-N is less than the radius of the disc K. Now K

is partitioned by a finite number of discs of radius p‘N. Let
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D Dn ~denote the discs that have a non-empty intersection with

l’ I."
A. 'The step function F . is defined as follows:

For each i =1,2, ..., n pick Xy
i=1,2, ..., n and F(x) =0 I1if

€ Di N A, Then F(x) =-f(xi)
if x ¢ Di’

n
xek ~U »

i=1 &

Since F .i1s constant on each of ‘a finite number of discs in . a

partition of K, F 1is a step function on K. By the way in .which the.

discs are determined, x € A implies ]f(x) - F(x)l = lf(x) - f(xi)]
for some 1 such that . x and X, are in the same disc - Di of radius
p_N. . Therefore, [f(x) - F(x)l < ¢ so that the step function F

approximates the function £  uniformly on the set A,

The above result 1s not-essentlally different from its real
analysis counterpart, but the next result will display an interesting
contrastL - In the case of real step functipns,_tﬂe_endpoints of the:
subinte;Vals are generally points .of discontinuity for the step
function. The reason for this is that an endpoint is a point of
accumulation of two distinct subintervals. In the p-adic situatien,

this does not-occur since discs in Qp are both open and clesed.

Theorem 2.20. If A is a compact subset of Qp and £ is a step

function on A, then f 1s continuous on A.

Proof: Pick € > 0. For any x € A, the definition of step
function implies there is a disc D such that x'e D and f is

constant on D N A, Suppose the radius of D 1is dJ. Let y. be:any
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point of DN A. Then, since any point of D may be taken as its
center, |x - y| <38. But y,xe D imply |[f(x) - £(y)] =0 <€ so

that - £ 1s continuous on A.
An Extension Theorem

As stated earlier, a major objective is the proof of Weierstrass'
Approximation Theorem. There are two more preliminary results to
establish. The first is concerned with extending a continuous function

to a larger compact set.

Theorem 2.21. Let K be a compact subset of Qp and A be a closed
subset of K., If f 1s a continuous p-adic function defined on A,
then there is a continuous function F defined on K such that F

extends- f, that is, for every x e A, F(x) = f(x).

Prooef: ' The proof will be .accomplished by constructing a uniformly.
convergent sequence of continuous functions {fn} such that the limit
function F  extends £. In particular, each function fn ~will be ‘a
step fﬁnction that uniformly ‘approximates - f.

By Theorem 2.20, there is a step function fl defined on K such
that ’Ifi(x) - f(x)l <1 for every x € A. According teo the definition
of step function, there is a finite_collection of pairwise disjoint

discs 590 covering A and such that . f is constant on each member -of

1

® For each D e€®, such that DN A # @,  Theorem 2.20 again implies

0
there is a step function 81 defined on D such that
|gl(x) - fx)]| < p—l"for every x € A. Furthermore; it may be assumed

that the norm of the partition of D associated with 8, is not-
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greater than the norm of EO' (The norm of a partition by discs is the
radius of the largest disc in the partition. It is denoted by N@®).)

Define f, on K as follows: Let- x € K. Since. @0 covers K,

2

x e D for some D¢ EO. Then

fz(x) = gl(x)‘ if DNA#9

and
fz(x) = fl(x) if DN A= 0.

Since lgl(x) - f£(x)]| < p—l"and fz(x) = gl(x)‘ for each x € A,
it folleows that lfz(x) - f(x)]| < p-l for every x € A. Also, since

the members of Sb are pairwise disjoint and f2 is defined to be

constant on each member of a finite partition by discs of each member of

D it follows that . £, 1s a step function on K. Le't,_fDl denote the -

0’ 2

partition associated with f Then N(®,) j_NCDO).

2.
Now suppose fl, e ney fn—l have been defined se that for each 1i:

a) fi is a step function on K such that x e A implies

’fi(x) - f(x)] < p-i;

b) if 9y denotes the partition of - K associated with fi’

).

then  N(®,) < N(®,;_;)

Then for each D e Eh_ such that DN A # @, let g, be a step

l

function on- D such that:
1) .lgn(x) - f(x)| <p ™ for every x.€ Aj and

2) the norm of .the partition of D asseociated with g is less

than N(Eh_l).
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Define fn on K as follows:. Let x e K so that x e D for

some. D e Dn_ Then

l-

£(x) =g (x) if DN A4 ¢

and -
fn(x)k= fn_l(x) if Dn A=4d.

Thus, fn is a step functien on K such that for each x g A;

Ifn(x) - f(x)] = ]gn(x) f(x)] <p and NC@n) j.NCDn_l).
Therefore, a sequence of step functionsvoﬁ K has -been -defined by

induction. Each step function is continuous. It remains to show that

fn converges uniformly to an extension of f.

Two cases need to be considered. If x € A, then

Ifn(X).- fn_l(X)l Ifn(X) - f£(x) + £(x) - fn_l(x)l

A

max{lfn(x)~— £(x)|, |£(x) - fn_l(x)l}

< p— (n-,-.l) .

If x ¢ A, then either fn(x) = fﬁ-l(x) or x E‘Dn where Dn € Ih

and D N A# ¢, In the latter case, there is a disc D ed such -
n n-1 n-=1

that D < D . Let x be an element in D N A. Since £ (x)
n n-1 n n n.

agrees with the step function gn(x)i on Dn’ ﬁn(x) = gn(x) = gn(xn).

Similarly, fn_l(x) = gn_l(x) = gn_l(xn). Then

|£ (x) - fn_l(x)l = Ifn(x) E(x) + £(x) - fn_l(x)|.

lgy (). = £(x) + £(x) - g, _;(x)]

= le (xy) - £0x) + £(x) - g (x)]

[

max{|g (x) - £G) |, [£(x) - g x|}

< p~® D 4y the definition of g and g__.
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Thus, it has been established that the sequence of step functions fn

is uniformly convergent on K. Let F = iizi:'fn. Since each step
function fn is continuous,  F is continuous.

It remains to prove that F extends f.. For any € > 0, there is
an N such that: !fn(x) - f(x)| <e¢ and |F(x) - fn(x)j < € whenever

n > N, Consider

|[F(x) -~ £(x)]| = |F(x) - £.(x) + £ (x) - £(x)| .

| A

max{ |F(x) - £, lfn(x).— £(x) |}

< €.

Since |F(x) - f(x)| < € for every €, F(x) - £f(x) = 0 and the proof

of Theorem 2.21 is complete.
Weierstrass' Approximation Theorem

Since Weierstrass' Theorem deals with the approximation of a
function by a polynomial, it is reasonable that a polynomial with -
somewhat predictable behavior may be .useful. The next lemma provides

p-1

some information about the polynomial h(x) =1 - x which will be .

utilized in the proof 6vaeierstrass' Approximation Theorem.

Lemma. 2.22., Suppose h(x) = 1 - xp_l. Then

n n
)P | = x| PVP gr ] > 1,
n n
[P [ <p™P 1f x| =1,

and

n
@) - 1] <p™ if [x] < 1.
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Proof: Suppose |x| > 1. Then

n
(h(x))P

I
TN
'—I
i

"o

(o
S
o

n
x(p-l)p .

<

x(P—l)k

n n
Therefore, l(h(x))‘p | = lx(p-l)p | whenever |x| > 1.

Suppose . |x| = 1. Them x = a, + a;p + -—-; with a  # 0. Thus,

0

x = a, 4+ po where o € Op and xp—l = ag—l + pR for some. B € Op'
Since 0 < ay < P by Fermat's Theorem, ag_l’f 1 mod p. Combining
this result with xp—l = ag—l + p8, it is seen that there is an

_l=

n
n e Op such that h(x). = 1 - xp__ pn. Thus, (h(x))P = pp n'

[
=

n n
where n' € OP so that |[(h(x)P | j_p_p whenever . |x|
Finally, suﬁpose ]xl < 1l. Then ' x = po for some o ¢ 0p so tﬁatg

xp_l = pp_lap-l. This implies
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p-1 \P P
Thus, ( l1-x ) =1+ p*R for some B ¢ Op from which it follows

that

" Pn Pn—.l
(h(x))P- = < 1~ xp_l ) = ( 1+ pPB )

Pn—l \ kp Lk
= K p - B,
k=0

n .
To complete the proof of ](h(x))p - 1] i-lE , 1t suffices to show

J

that
n-1
n k
p"| ( v ) p P

for each k = 1,2, ..., p~ =,

Suppose p # k. Then according to Theorem 1.14, oni( in_l ) = n,
Thus, pn] ( ié—l-) pkp whenever p # k.

Suppose k =.pjm where (m,p) =1 and Jj > 0. Then, by
Theorem 1.14 again, ord< pn-l_> =n -3 = 1. Therefore, since

k
ord pkp = kp = mpj+l, then

n=1 n-1- .
ord ( i ) pkp = ord(' i ) + ord pkp =1 . - j - 1 + mpJ+l.

j+1 n n-1 k
Since . mp > 4+ 1, it follows that p I ( i ) P P whenever. p[k.

This completes the proof of Lemma 2.22.

Theorem_2.23{ (Weierstrass' Approximation Theorem for the p-adic field

Qp) Let K be a compact subset of the p-adic field Qp' If £ is a
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continuous function from K dinto Qp, then, for any € > 0, there is
‘a polynomial function g  with coefficients in ‘Qp such that -

lf(x) - g(x)l <€ for every x ¢ K.

Proof:. The proof will be accomplished by establishing each of the

following:

1. The characteristic function of a disc in Qp can be unifermly

approximated by a polynomial.

2, The function £ extends to a uniformly continuous function F

on a disc containing the given compact set- K.
3. The function F can be uniformly approximated by a polynomial,

Let o be in Qp and let r and s be two rational integers
such that r < s. Let @ be the characteristic function of the disc
D(a,p_s). Since r < s, the disc D(a,p_s) is contained in the disc
D(a,p‘r). It will be shown by induction on the difference s - r. that .
the characteristic function @ on the smaller disc D(a,p—s) can be
uniformly .approximated on the larger disc by a polynomial.

Since the disc D(a,p_r) is the image under a translation of
D(O,p_r), assume o = 0.

Suppose s - r=1 and € > 0. For each n > 0 defina a
polynomial gn(x) = (h(p"?rx))pn where h is the polynomial defined in
Lemma 2.22, It will be shown that for every x € D(O,p_r),
|¢(x) - gn(x)] :{la- so that, by choosing n z_—logpe,- the function ¢

P -
is uniformly approximated on D(0,p r) by - g,

® - p_(r+l) so that Ipfrxl < 1.
i

=
p

If x¢ D(O,p_s) then _|x| :_p_

_ n
By Lemma.2.22, this implies [@(x) - gn(x)l = |1 = (hip rX))p l<i
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If x ¢ D(O,p_r) ~ D(O,p_s), then @(x) = 0 and, since

s -r=1, le = pr so that Ip—rxl = 1. Therefore,
n
- | = = T, p --l—-
8(x) - g | = lg (0] = [GGTx" | <= .

%
This completes the first step of the induction since, for
s - r.=1, the function ¢ 1s uniformly approximated on D(O,p_r) by

the polynomial g, whenever n 1is such that i; < €,

P
Now suppose 8 - r.= k and assume that for every pair of discs

) _—
D(0,p r ) and D(O0,p 8 ) with 0 < s' - r' < k,; the function defined

to be identically 1 on D(O,p_s')_ and zero elsewhere can be uniformly-
approximated on . D(O,p—r) by a polynomial. It will be shown that the
above assumption implies that the function @ which is 1 on D(O,p_s)
and 0 on D(O,p_r) ~ D(O,p_s) is uniformly approximated on the disc
D(O,p_r) by a polynomial,

Let '€ be chosen such that -0 < € < 1. Consider the discs

+1.

D(O,pis) and D(O,p—s ). By assumption, there exists a polynomial h

1
such that for x.e D(0,p °), |1 - hl(x)|'< € and for

X syD(O,p_s+l) ~ D(O,p-s); Ihl(x)] < €, Since the set

s+1

D(O,pfr) ~ D(O,p—, ) 1is closed and bounded, it is compact. Therefore,

1 is bounded there so that there is a
positive real number M > 1 such that- ]hl(x)] <M for every
+1

the polynomial function h

X e‘D(O,pfr) ~ D(O,p"-s ). Again; by the inductive assumption,  there is

+1

a polynomial h2 such that for every x ¢ D(O,p“S ), |1 - hz(x)l <‘%

and for every x € D(O,p °) ~ D(O,P_S+l)

» by | <§ . Now consider
the polynomial g(x) = hy(x)hy(x). If x.& D(0,p "), write

glx) =1 - (1 - hi"‘” - - hz‘cx)) + (L - hy(x)(1 - hy(x)) so that
Ig('x) - 1| < max{|1 - hl(x)|», |1 - h2-(x)|, @ - hy ()@ - hz(x»))l}..

Since D(,p °) D(O,p_s+l), %j_ ¢ and €2 < €, ' the above
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inequality implies |[g(x) - 1| <€ for every x e D(0,p °). If

x € D(O,p %) ~ D(0,p7%) write g(x) =h (x) - By (0 (1 - hy(0)  so
that [g(®)| < max{|n (0], |h (D) (L - hy(x))|}. Again, since £ <ce,
this implies |g(x)| <e.

+l) then

Finally, if x ¢ D(O,p-r) ~ D(O,p,_S
lg(x)| = lhl(x)hz(x)] <M --% = €, This completes the proof by

induction.

It follows from the above argument that for any o ¢ Qp. and any-
two discs D(q,p—s)' and D(a,p—r),_with r <. s, the characteristic
function of the smaller disc D(a,p_s) is uniformly approximated on
the -disc D(q,p_r) by some polynomial. Furthermore, since any point of
a disc in Qp may be taken as its center, if a € D(O,p-r) and s > r,
then D(a5p_s) C?D(O,p_r) and the characteristic function of D(a,p-s)
is uniformly approximated on D(O,p-r) by some polynomial.

From the hypothesis of Weierstrass' Theorem, f is a continuous
function defined on a compact .set K. Let D(O,p-r) be a disc
containing K. By Theorem 2.21, there is a function F defined on
D(O,p—r) such that F extends f, that is, F(x) = f(x) fo:‘every
x € K, .and, furthermore, F is uniformly“continuous on D(O,p_r).
Thus, if € >0 and x ¢ D(O,p_r), then there is a disc. D(x,p—s)
such that for every y € D(x,p_s), [F(x) - F(y)l < €, Now the -
collection of all such discs covers D(O,p_r), and, since D(O,p_r) is
compact, there is a finite collection {D(xl,pfqi), ceey D(Xﬁ,p_sn)}
covering D(O,p-r). Furthermore, since-any two discs in Qp are either
disjoint of,nested, it may .be assumed that the discs

-S4 -s
D(xl,p' l), vees D(xn,p n) are pairwise disjoint.
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Since F extends £, the objective of uniformly.approximating f
on K will be accomplished when F is uniformly approximated on

D(O,p_r) by some polynomial g. Let ¢i denote the characteristic .
~-8
‘“function of the disc D(xi,p i) and g, a polynemlial that uniformly.

approximates . @ on the disc D(O,p—r). The -candidate for g 1is

i
given by -
n

g(x) = > F(x)g, (x).
:I.Z='lii

In particular, let 8y be such that for every x e D(O,pfr),_
Lgi(x) - ¢i(x)l < %E where M 1is an upper bound of lF(x)l on
the compact set D(O,p_r). To‘prdve that g uniformly approximates

F on D(0,p 7), suppose x € DO,p T). Then,

n

@, (x)F(x) - F(x,)g, (x)
fgi 1 | ;Za it

F(x) - g(x)

o
ééi B, COFG) - Flx,)g; (0)

max

18, 0F() - F(x g, (01
Now ,
8, GIFG) - Fxg (0]
= 10, GOFG), - B (OFGx) + B ®F(x) - Flxpg (]

< max{|@, (x) (FGx) - Fx )|, [F(x) (B, (x) - g, )|}

-5 .
By the way 1n which the discs D(xi,p i) were chosen and the fact.
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that ¢i is the characteristic functien on D(xi,p ), it follows
that - l(bi'(X) (F(x) - F(xi))[ <e for every x e D(0,p '). Also, since-
g uniformly approximates Qi,

|Px) (0, - g, G| = [P0, - g )] <M« F=c.

Thus, for each 1 = 1,2, ..., ny |¢i(x)F(x) - F(xi)gi(x)l < ¢ for
every x € D(O,p_r). This implies |F(x) - g(x)| < e for every

X € D(O,p_r) so that the polynomial g uniformly approximates the
function F  on the disc D(O,p—r) which in turn implies that the-
given functien £  1is uniformly approximated by a polynomial. This

completes the proof of Weierstrass' Approximation Theorem.
Differentiable p-adic Functiens:

Since the concept of differentiation stems from the definition of
limit and since the basic propefties of 1limits are unaffected by the
non—-archimedean ﬁ;operty,_it is not surprising that a great many of the
definitions and theorems relating to derivatives carry over .unchanged

from elementary calculus.  Some of these are listed below.

Definition 2.24. Let f: A > B. The function f 4is differentiable at

o 1if and only if Um  £(x) - f(Q). exists, If the limit. exists, 1t
- X > X - a

is denoted by f'(a) and is called the derivative of  f at ao. If

f'(a) exists for every o-'e A, then f 1is differeﬁtiable‘gg A,

Theorem 2,25. If f is differentiable at o then f is continuous

at a.'
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Theorem 2.26. Let f and g be differentiable.at o. Then:
1. (f£+ g)'(a) = £'(a) +.g8"(a);
2. (fg)'(a) = fla)g'(a) + g(a)f'(a);

3-_ ] ZEZ; = 'g’(a)f (a;(;>§(a)& (a) s prov_ided g(a> # 0; and

by (fog)'(a) = £'(g(a))g'(a), provided f is differentiable

at g(a). :

A particularly well-behaved class of functions are those
represented by power series. Palmer [14] shows that a power series

zzbn(x - a)n converges for all . x such that

1

Tﬁn/lbn| .

'x—al<p=

The ‘real number p 1s called the radius gi_conveféence of the given

power- series where it is understood that p = 0 if 1im n/lbﬁ] = o

and o == if im /[b_| = 0.

Definition 2.27. A function £ defined by

£ = 2, b (x - &)

n=0 -

is an analytic function.

Theorem 2.28. Suppose-

=]

£(x) = 2, b (x - a)"

n=0
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has a non-zero radius of convergence p. Then each of the following is

true:

1.

f(x) ~ 1s continuous at each - x such that |x - a| < ».

The series Ean(x - a)n converges uniformly for each x'

such that " |x - a] <t < p.

The derived series z;nbﬁ(x - a)n'_l converges for

]x'— a| < p.

limit . £(x + h) - f(x)
h—+0 h

and is given by the derived series.

If lx'- al < p, then f£f'(x) = exlsts

The usual rules of differentiation hold for sums, products,
quotients, and compositions of analytic functions.

£
n ° na!

For each n, b

If £ and g are both analytic in D(a,r) with f£'(x) = g'(x)
for x . in D(a,r) then there is a constant  c such that

f(x) = g(x) + ¢ for each x. in D(a,r).

Proof: Proofs are given by Palmer for an arbitrary non—archimedean

field in [14]. -

Several analyti; functions discussed by Palmer will be referred to

in later chapters. For reference, some of these are listed in the

following table.
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TABLE I

ANALYTIC FUNCTIONS

\

Name Representation 0
Geometric ; (1 - x)_l = z; % 1
n=0
Binomial - 1+ x%= 2; ( @ )xn, ae0 > p_l/(p—l)
. n P =
n=0
, \ o _1yn-1.n-
Logarithm log(l + x) = :8 1L22—;—§— 1
n=1 .
S X -1/ (p-1)
Exponential exp(x) = :Z 'ﬁ? P P
n=0

In real analysis, two functions whose derivatives are the same
function must differ by a constant. While Theorem 2.26 shows that this
property holds for analytic p-adic -functions, it does not hold for all
pairs of differentiable p-adic functions. In ‘the following example, a
function is. given which- is not constant on any disc and yet its

derivative is zero everywhere.

Example 2.29. Let x'e 0p have the canonical representation
0
x = a, + a;p + + ap + . Define f: 0p > 0p by
2 2n
f(x) = ag + a;p + + a P + .
By uniqueness of the canonical representation of a p-adic integer,
it follows that f 1s one-to-one so that f is not the constant

function on any disc. To see that f has a derivative equal to zero
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everywhere, suppose X,y € 0p such that Ix - yl = p_N. Then the
first N coefficients of the canonical representations for x .and vy

" must.agree. It follows that If(x) - f(y)[ = p—ZN. Therefore,

£(x) - £(y) =»p_N so. that lin 1200 - £G) | 0 for every x e O_,
X -y y > x xX-y

This chapter will be concluded with an example of a p-adic
function which is continuous everywhere in. 0p but is nowhere

differentiable..

Example 2.30. For each x ¢ Op,_ define - £(x) by .

2 n

f(x) = a2 + aip + o + a.p + ¢+ where

0

x=a + ap + 0 + anpn 4+ -+« 1s the canonical representation.

0
Since |an|‘i,1, it follows that 1im_aip9 = 0 so that the

function f is well defined. To see that  f i1is continuous at o ¢ Op,

let € > 0 be chosen and pick N such that p-'N < €, Then for any

h = pNB where B ¢ Op, ,iﬁ-follows that

2 2 2 N-1

; N
0 + alp + 4+ aN—l P

2
f(a +h) = a + (ag + b)) p

. 2 N+k
+ + (A, ThIT P e

so ﬁha£>¢|f(u + h) - £(a)] j_p-N < €. Therefore, f 1is continuous at
Qe

To prove that f 1is not differentiable anywhere in Op,, suppose
to the contrary that £'(a) exists for some a € Op., Then fqr any €

such that 1 > ¢ > 0, there is a 6 such that whenever ]hl < 8,

f(a. + h) - f(a)

. - f' ()| < €.
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Pick N such that p-N <8, If p #.2 then there exist two

rational integers kl and k2 1

and 0 j_ki <p for i =1,2. Let: hl‘= (kl<_ aN)p

such that_;kl>#;k2, neither k., nor

k, equals a N

N
and hz»- (kz - aN)p ~ so that

N’

N+1

N-1 u
1P T

—3 e o0 - N
x+ h, = g + a;p + + an-1 p + kip_ + a

i

for i =.1,2. It follows that

Ea+n) - £ G2 - adp"

h, B _ N
i ) (k; - aQ)dp

=~ki + ays .

i=1,2. Hence,

1= }kl -k, =k +a) - Kk, +oa)]

f(o + hl) - f£(a) fla + h2) - f(a)

by h,

f(a + hl) = f(a)

by

f(o + h2) - f(a)

h,

< max s

< €,

This is a contradiction since € < 1. It follows that f  is not

differentiable at any point of Op.



CHAPTER III
AN ALGEBRAICALLY CLOSED NON-ARCHIMEDEAN FIELD

In previous chapters the p-adic field Qp has been the major
focus of attention.. Comparisens with the real field R have shown that
Q. and R have many similarities as well as many interesting centrasts.
In this chapter the analogies will be carried further. In particular,
since the real field is embedded in the complex fiéld C, it is natural
to seek a fileld in which Qp is -embedded and which may have properties
analogous to those of C. This chapter is devoted to the development of
such a field.

The following plan will be adopted. Since any field has an
extension field in which every polynomial has a root, there is a field
Cp extending the p-adic field Qp_ such .that every polynomial over Cp
has a roet in Cp.‘ It will be shown that the non-archimedean
valuation on. Qp extends to Cp. Finally, it will be established that
if necessary, the field C can be completed to form a .complete
non-archimedean valﬁated field Tp in which every polynomial has a

root.

Extension Fields
Some concepts related to field extensions are needed.

Definition 3.1. A field K is an extension field of field k if k

is isomorphic to a subfield of K. (Henceforth, k will be identified .

36
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with its isomorphic copy in K.) An extension field K is an

algebraic extension of k i1if every element of K 1s algebraic over. k,

that is, every element of K 1is a root of some polynomial f£(x) e F[x].

Definition 3.2. A field K 1is algebraically closed if every

non-constant polynomial in K[x]' has at least one root in K. If. K
is an algebraically closed algebraic extension of field k  then K 1is

an algebraic closure of k.

Example 3.3. The complex field C 1is an algebraic closure of the real
field R,
To see this, recall the Fundamental Theorem of Algebra which states
that -every non-constant polynemial in C[x] has at least one root.in C.
Also, since the réal field is isomorphic to a subfield of C, the
complex field is an_extensioﬁ field of the real field R. Finally,
2

given any o =a +bi e Cy, o 4is a root of x2 ~ 2ax + a” + b2 e R[x].

It follows that C 1is an algebraic closure of R.

The above example provides motivatien te seek an algebraic
closure of thé p—-adic field Qp.'

One of the standard results in a first year course in Abstract
Algebra is that, given any irreducible polynomial g(x) e k[x], there

is an algebraic extension K of k such that g(x) has a root in K.

The field K dis called a simple algebraic extension of k. This
process can be repeated until an extension K' of .k is obtained such
that all roots of the original polynomial g(x)v are contained in K'.

In fact, by using arguments involving Zorn's Lemma or one of its
equivalent forms, it can be shown that given any field k, there exists-

an algebraic extension of k which contains all roots of all
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polynomials in k[x]}. That is, any field has an algebraic closure.
For a proof using Transfinite Induction, the reader is referred to
Vander der Waerden [17].

The next several theorems are essentially those found in
McCarthy [12], pages 84-87. For brevity, some will be stated without
proof, The first of these shows that any algebraic extension of Qp
contains a subring having at least some of the properties anticipated

for a ring of integers in a valuated field.

Theorem. 3.4, Let K be an extension field of a non-archimedean field

k. Then there is a subring ® of K such that

i. ® contains the ring of integers of k.
ii., ® # K.

iii. If a e K then either a ¢ ® or afl e D

Since ® 1is a subring of K containing the integers of k, 9
contains 1. But, ® # K so that ® has both units and non-units,

Let B be the set of non-units in P, that is.

B ={acD: a-l 4:,59}.

It can be shown that B is an ideal of 9.

* ‘
Let K denote the group of non-zero elements of K and let UK

*
denote the group of units in- ®. Since U, is 4 subgroup of K., it

K
*
makes sense to consider the quotient group K /UK, Similarly, consider
* ' * *
k /Uk' Now the mapping h: k /Uk + K /UK defined by

h(aUK) = aUK
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is a homomorphism. Also, since h(aUk) € UK- if and oenly if a e U,

*
h is an isomorphism. Thus, k /U

K may be considered as a subgroup of

*
K /UK.

*
Let - Vk‘= {lek: xek, ‘Ilk the valuation}. The set. v, is

called the value group of k. The valuation is a homomorphism and

N
ka is a multiplicative subgroup of the positive ‘reals. Since the

kernel of I] is the -group of units U there is an isomorphism ¢

k k?

*
from the quotient .group k /Uk‘ onto the group V, such that .

k
¢(aUk) = Ia]k.

Definition 3.5. An abelian group G 1is an ordered abelian group if

there is ‘'a linear order < defined on G  such that for a, b, and c¢

in G, if a < b then ac < bec.

Since Vk is a subgroug of the positive reals, Vk is an ordered

abelian group. The next definition provides a linear ordering on the -

* .
quotient. group k /Uk so that it will be an ordered abelian group.

*
Definition 3.6. Let al, and bU_ be elements of k /Uk. Define

aUk < bUk if and only if ab—l is an integer .in k.

* : .
Theorem 3.7. The quotient group k /Uk is an ordered abelian group

with respect to the linear ordering < .,

Proof:, First it will be shown that -the relation <. is a linear

: *
ordering of k /Uk. Suppose al, < bUk and bUk < cUk.‘ Then

ab”l € & and bcfl's ® where © denotes the set of integers in k.

Then _ac_l'= (abfl)(bc_l) e 6 so that aUk <’cUk. Next ‘suppese

| -1 -1
aUk < bUk and bUk,<.cUk. Then ab ~ € & and ba = € 6 and, since
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(ab’l)'l = ba"l,' abfl e U. Thus,"aUk é'bUk. Finally, suppose
‘aUk # bUk' so that ab_lvé Uy« Since either - a.b_l EG or ba—l’é 6,
. *
then either al, < bU_ or bUk < alU, . THerefore, k /U. is linearly

k k k k
ordered by < .
To complete the proof, suppose aUk, bUk and cUk are elements in

% v - -
k /Uk with aUk,< bUk7 Then ab 1 €8 so that ac(be) L € 6. Thus,

*
acUk < bCUk' This establishes. that k /Uk 1s an ordered abelian group.

: *

Next, an ordering on K /UK will be defined such that, when-
.

restricted to k /U _, the ordering coincides with that given in

Definition 3.6. Anticipating this, the same symbol will be used.

*
Definition 3.8. Let aU, and bU, be elements in K /U,. - Then

K K*

al, < bU, if and only if abt ¢ .

&
Theorem 3.9. The quotient group K /UK ~1s an ordered abelian group

with respect to the linear ordering < .

Proof: The proof is identical with the proof eof Theorem 3.7 with

& replaced by 9.

Recall that the present oﬁjective 1s to prove.that the
non-archimedean valuation on E extends to an arbitrary extension field
K. There are still a few preliminary results which must be established. -
An isomorphism ¢ from one ordered abelian group to another is érder
p;eserving if ¢(a) < ¢(b) whenever a < b. The next theorem states
that un&er_suitable conditions, an order preserving isomorphism defined

on a subgroup exténds to the group.
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Theorem 3.10. Let G be an ordered abelian group.and H be a
subgroup of G such that:
i. there is an order preserving isomorphism ¢ from H into
the multiplicative group of positive reals, Rf, and

ii, for each a & G, there is a positive integer n such that-

a € H.

Then there is an order preserving isemorphism ¢ from G into R+

such that V(a) = ¢(a) for every a e .H.
Proof: See McCarthy, page 86.

The following lemma and its corellary are used in the proef of the

major result of this section.

Lemma 3,11. Let K be an algebraic extension of a non—archimedean

%*
field k. For a, b and ¢ in K with a+ b # 0, if aly < bUy

then (a + b)UK < bU,.

g+ Furthermore, if alUp # bU, then

_1 S —l S
K < bUK" then: ab € so that- ab + 1 e ®,
Then, since (a + b)b—l =,ab_l'+ 1, (a+ b)b_l e® and it follows that

Proof: If aU

(a + b)UK < bU In particular,

g
[(a+b) - a]UK <.(—a)UK = aUK

and

[(a + b) = a]UK < (a + b)UK.

Now suppose.vaK # aU Since bUK = [(a+ Db) - a]UK, there are

K
two cases to consider. In one case, (a + b)UK'< aUK. But then



42

bU, = [(a + b) - a]Uy < aU, < bU which implies aly = bU,. Since
this is contrary to the hypothesis, the other case must hold, namely,
al, < (a + b)UK, Thus, bU, = [(a+Db) - a]UK < (a +.b)UK. Since also

(a .+ b)UK < bUK, the lemma is established.

%
Corollary 3.12. Let ,al,az, eay an € K be .such that

a, ta,+ert+a, # 0 and a, + rcc +a #0. If a, U < alUK and

aiUK # alUK for i.=2,3, ..., n, then (al + e + an)UK = alUK.

Proof: Lemma 3.1l establishes this result for n = 2., Suppose it

holds for =n =j, j 2 2. Then
(al 4 oeee aj + aj+l)UK = ((al + oo + aj) + aj+l)UK'

By the induction hypothesis, (al + e + aj)UK’= alUK and

a. U # a

aj+lqK < ay K ‘j+lUK' It follows from Lemma 3.1l that

(ay + oov +ay +a, U = a U

Extension of the Valuation

Finally, the major objective of this section can bé realized. The
next theorem shows that the non-archimedean valuation defined on - Qp
extends to any algebraic extension of- Qp. In particular, it extends to
the algebraic closure _Cp.

Theorem 3.13. Let k be a non-archimedean field with valuation ||k
and let K be any algebraic extension of k. Then there is a

non-archimedean valuation 'IK on K such that- laIK = |a|k for every

ac k.
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Proof: The proof will utilize Theorem 3.10. It will be shown that
the quotient groups K*/UK and k*/Uk satisfy the hypotheses of that
theorem. First, it must be shown that there is an order preserving
isomorphism from k*/Uk into Rf. Recall the isomorphism ¢ given by

¢(aUk) = |a|k where is the valuation on k. Suppose aU. <'bUk,

Hk k
then ab_l is an integer in k so that lab_l|k < 1l and, therefore,

]alk :_Iblk. Thus, ¢(aUk) §_¢(bUk)' whenever al, < bUk. so that ¢ -

is an order preserving isomorphism.

% )
Next, it must be shown that given.any aU, € K /U,,. there is a

K
*
positive integer m  such .that_A(aUK)m e k /Uk' In view of the
* % *
identification of k /Uk in -K /UK,_ it suffices to show that _am ek .

* * :
To this end, let - aU, € K /UK. Since. a e K "and K 1s an algebraic.

K
extension of k, a 1s a root of some polynomial»in k[x]. Let g(x)
be the minimal polynomial of a, that is, g(x) 1s the monic,

irreducible polynomial of least degree such that g(a) = 0. Suppose

_ Ve n-1 n
g(x) = ¢ +ocyx + tc ¥ +c x.

0 and c¢. =1,
so that <y # n 3
There are two cases to consider. In one case, there may be two

integers i and j with 0 < i < j <n such that ci'#,O, cj,# 0

i _ e i Fy=1 g -1 i-j
and c,a UK cja UK. Then c;a (cjg ) € UK so that cicj a’ € UK
-1 _ j-i -1, * »
and, hence, cicj UK a UK” Since-_cicj UK,E k /Uk, it follows that

- *
(aUK)J T ek /Uk', In the other case, for each choice of i and j,

*
cy K Then, since K /UK is linearly ordered by < , there

is a positive integer - q such that cialUK < cqa?UK for 1 <iz<mn,

i b
a UK # cja U

i #q. Also, c,a + ree + cﬁan = -c, # 0 so that
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n - — .
(cla + e+ ca )UK = ( co)UK. Since g(x) 1is the minimal polynomial

of a,

c
i=1
i#q

i .
12 # 0.

- e 0 n = q
Thus, by Corollary 3.12 (cla + s + c @ )UK cqa UK so that

dn = (. , .
cqa UK ( co)UK. Then

(aUK)q'= aly = (-c

-1 *
X cq )UK € k_/Uk.

0

*
Therefore, for any aUK e K /UK,- there is a positive integer m such
™k
that (aUK) € URD
Since the hypotheses of Theorem 3,10 are satisfied, there is an

*
order preserving igomorphism ¢ frem K /U_ into >R+"such that .

K

w(aUK) ='1a|k for every a e k. Define a mapping Il from K into

K

the reals R as follows:

|a|K = w(aUK) if a#0-
]aIK =0 if a = 0.
It will be shown that IIK is a non-archimedean valuation on K.
Certainly. ]a]K >0 and ]a[K =0 only if a = O.. It remains to
be shown that ]ablK = ]a]Klblk and that |a +'bIK g_max{la]K,lb|K}

for every a,b € K. Suppose one of a or b is zero.  Then .

IabIK =0 = |a|K|b|K ~and la + bIK = max{|alK,lb|K}. Now suppose

neither a nor b 1is zereo.  Then
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|ab]y = ¥(abU) = ¥I(aU) (bU) ]

= W@V = |al [b],.

Thus, in all cases, |ab]_K = |a|]_|b|, whenever a and b arein K.

K' 'K

Now suppose neither a nor b, is zero but a+ b = 0. Then
|a .+ blK < max{la]K,]alK}., Finally, assume a + b # 0 and, without
loss of generality, |a|K i_lb]K. Then, since ¢ 1is order preserving,

aUK < bUK' By Lemma.3,12, (a + b)UK < bU, so that

K

y[(a + b)UK] j_w(bUK) and, hence, |a +_b|Kfi Ib|., = max{]afK,|b| }.

K K"

Thus, it has been established that . is a non-archimedean valuation -

| Ix
on the algebraic extension field K of k. And, since |a|K = Ialk

whenever a ¢ k, the theorem is proved.

Although Theorem,3.13 establishes the existénce of an extension of
a non-archimedean-valuatioﬁ to an arbitrary algebraic extensien, it does
not .settle the question of uniqueness. Palmer. [l4] included results
which state that in the case of a finite algebraic extension of a
complete non-archimedean field, the extension of the wvaluatien is unique.

These results are stated in the next theorem.

Theorem 3.1l4. If k is a complete non-archimedean fiéld with wvaluation

||k and if K is a finite algebraic -extension of k; then there is a

unique extension of llk to a non-archimedean valuatien on K:

g

Furthermore, K is complete with respect to

In

Proof: See Palmer, pp. 126-129.

Under similar hypotheses, the question of uniqueness of the

valuation on an algebraic closure is settled by the next.theeorem. .
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Theorem 3.15. Let k be a complete non-archimedean field. If K is
an ‘algebraic cleosure of k, then the extension of the valuation I]k

on k to a valuation on K 1is unique.

Proof: Suppose 'Il and ]]2‘ are distinct extensions of ],k'
Then there is an element a & K such that Ia]l # ]a]z., Let k' be a.
finite algebraic extension of k containing a. Since k' 1is a

subfield of K, the valuations and I|2, restricted to k', are

1,
distinct non—~archimedean valuations on a finite extension of k. But,

according to Theorem 3.14, this is impossible. Thus, the extension of a

valuation to an algebraic.closure of k  is unique.
Completion of the Algebraic Closure

Now it may'happen that an algebraic closure is not complete with
respect to the unique valuation extendipg llk' However, any proﬁlems
created by this can bé resolved if it can be shown that the completion
of an algebraic closure is algebraically closed. This is the final

objective of this chapter.

Lemma 3.16. Let k be a complete non-archimedean field. Then the

mapping ¢: k[x] > R defined by
d(ay + ajx ko coe ¥ anxn)‘='max{lao|;lalls vees lan]}

is a non-archimedean valuation on the ring of polynomials k[x].

Proof: Certainly for £(x) e k[x], - ¢(£(x)) = 0 if and only if

f(x) 1is the zero polynomial in k[x]. Now suppose
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= LI ] n
f(x) = a, + a;x + + a_x
and
= - Y m.
g(x)f—_bo + blx + + bmx

where, without loss of generality, it is assumed that.m <n and,

therefore, bj =0 for j > m. Then

B(EX) + g(0) = (235 ([a, + b} < (2% {max(la,],[b, )}

max max -
oo {2l G225, Iyl

max{¢ (£(x)),¢(g(x))}.

To complete the proof of the lemma, it must be shown that ;

$(£(x)g(x)) = ¢(£(x))o(g(x)).

0 1 m-n
Note first that ¢(£(x)g(x)) < ¢(£(x))¢(g(x)).

Now f(x)g(x) =c, +c,x+ **° + ¢ xm+n:'where, c, = _z; aib..

Let - f(x) = fl(x) + f2(x) where a term a xk of f(x) is a term

k
max
0<i<n -

{Iail},; Similarly, let

of £,(x) if and only if.v|ak] = {Iail} and aij_ is a term of

max

fz(x) if and enly. if Iaj| < 0<i<n

g(x) = gl(x) + gz(x) where gl(x) contains all terms of g(x). with

maximum, valuation. Thusy,

f(x)g(x) = fl(X)gl(X) + fl(X)g2CX) + f2(X)gl(X) + fZ(X)gZ(X)-

Now ¢(f; (x)g,(x)) j;¢(fl(X))¢(g2QX)) < ¢(fl(X))¢(gl(x)). Similarly,

b (£, (08 (0) < ¢(£,(0)0(g (M) and (£, (N)gy(x)) < $(E(x))6 (g (1))
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Consider fl(x)gl(x) = ¢y +c,x+ *e + ¢ xp+q; Then

1 ptq”
|cp+q| =.|apbq[ = |ap||bq| =-|ai|]bj, for every pair of coefficients
a; and bj of fl(x) and gl(x), respectively. ' It follows that
max
c. | = a,b,{ <., ,.° a,b, =lab [=]c .
t i+§':=t i3] — 1+j=t{ i’j } P q pHq.

According to the definition of the mapping ¢,

max

6(5, (X8 () = o ron, o

{|ctl} = Icp+ql'

Since Icp+q|

o(£1(x) g (%)) = ¢(£;,(x))d(g) (%))« Since ¢(£(x)) = ¢(£;(x)),.

= 'ap]|bq] =~¢(fl(x))¢(gl(x)), it foellows  that .

6(8(x)) = ¢(g,(x)) and
6(£, ()81 (0) > (] (Rgy () + £,(0)E; (X + £, (08, (1)),

it follows that

B(£(x)g(x) = 6(£, (Mg, (1)) = 0(£; () o(g (M) = $(£(X))b((x).

This completes the proof of Lemma 3.16.

Lemma 3.17. If K is élgebraically closed and f(x) and g(x) are
monic polynomials of degree n in- K[x] such that - ¢(£(x) - g(x)) <¢€
then for any root B of g(x) there is a reot o of £(x) such that
|8 = a] <A & where A is an upper bound of the valuations of the.

coefficients of  f(x) ' and g(x).
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Proof: Note first that the valuation of any root .of g(x) (or of

f(x)) 4is bounded above by A. To see this, suppose ]B| > A, Then

_ o n-1 n -
g(B) = by +DbB+ -0 + bp1f B
Since |bi611 :_AlBll < 161+lf for i=0,1, ..., n-1, it follows that-
lg(B)| = |8%] # 0, contradicting the fact that B is a root.

Now suppose ¢(f(x) - g(x)) < €. Since K is algebraically closed,

there exist n roots of £f(x), G sOins wees O o - Then if R . is a root
of g(x)’A
|£B) | = |£(8) - g(B)]
n-1; .
= ,ao - b0 +,_(al —.bl)B + + (anfl - bn_l)B |
max i
= 0<i<n-1 tlay - by[ 187}

Since |[B] <A and A > 1, then IBi| i A", Also since
d(£(x) - g(x)) <€ then _|ai - bi] < € for each i =-0,1, ..., n-1.

It follows that |£(B)]| < €A™,

Now .
n
f(x) = M x - ak)
k=l .
so that
e n
£(8) = TT |8 - akl < eA .
k=1

Therefore; there is at least one reot. o of £(x) which satisfies -the

relatien |B - a] < A™e, This completes the proof.,
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The final objective of proving the existence of an algebraically
closed extension of the p-adic field Qp which is complete with respect
to an extension of the non-archimedean valuation on Qp is at last

within reach.

Theorem 3.18. Let K be an algebraically closed non-archimedean field.

Then the completion R is algebraically closed..

Proof: Let £f(x) = agt ax+ooee 4 anxn be an irreducible -
polynomial in - R[x]. Without loss of .generality it may be assumed that
f(x) is monic, that is, a, ='1l.. The proof will be accomplished by
showing that f(x) has a root in R, and this will be done by -

producing a Cauchy sequence in K whose limit is the desired root.

Since a; e ﬁ, then for each i =01, ..., n-1 there is a

b, .
{ i’J}j=_l-

in K such that {bi j} converges to a,. Let 'fj(x), be ‘the

J

Cauchy sequence

polynomial in K[x] given by

fj(x) = b +b X+ *** + b n-1 + x°.

0,j . 1,3 n-1,3"

max ,
Now choo»se”Ml such that 0<i<n-1 {lbi,m

m > M. Simiiarly, for each integer k > 1, choose, Mk such that

1
Mo>M and 0<$i:_1'{|bi " aiJ} <;(1/2)k for every m > M .
A s

Let A = max{laol,lall, cees |aﬁ_1|,'l} + 1. Then, by the way in

- ai|} < 1/2 for every

which - M1 was chesen, A is an upper-bound of the valuations of -the

coefficients of fm(x) for every m_i~Ml. Thus, by successive
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applications of Lemma 4,19, if Bk—l is a root of - £ (x), then

Mo

Therefore, {Bk} is a Cauchy sequence in K. Since E is the

-1

there is a root Bk of £  (x) such that-: IBk —’Bk-ll <.A(nVl/2)k.'

completion of K, there is a B in K such that,,{Bk} converges to
Bo

By the way in which the polynomials £, (x)- are defined, -

3

{fj(B)}’ converges to f(B). Since ' {f,(B)} converges to zero, B

3

must be a root of £(x). This completes the proof.

Since the completion of a field with respect to a non-archimedean
valuation is again a non-archimedean field, the final objec;ive of this
chapter has been accomplished. Lethp denote a complete algebraically
closed extension of the-p—adic;field Qp.- In later chapters analogies

between . Tp and the complex field C will be explored.



CHAPTER IV
POWER SERIES

The theory of infinite series over a non-archimedean field has been .
well developed in several sources. Actually, there are only a few
significant differences between the non-archimedean and real situations.
Perhaps the most notable distinction is that for convergence of ‘a series
Zzan in a non-archimedean field, it is sufficient that the sequence
{an} converges to zero. Of course, this is not the case for real-
series as the harmonic series z;l/n shows. Also, the theory of power
series with coefficients in a non—archimedean field offers few surprises.
For a good exposition of power series and functions defined by power
series, that is, analytic functions, the reader is referred to
Palmer [l4]}, Chapters 4 and 5.

This chapter will consider analytic functions on an algebraically
closed extension Tp of the p-adic field Qp. In particular, the first
objective will be the development of a device called Newton's Polygon.
Then Newton's Polygoﬁ will be used»to.examine_analytic‘functions
including the determination of the domain of convergence and the
location of zeros.

Consider analytic -functions defined by

0

£x) = 2, b (x-- )"
=0

82
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where a,b are in Tp. As in real series, the radius of .

0’ bl" s
convergence p 1is given by 1/p = lim n/Ibn] where it is understood
that the series converges for every x ¢ Tp if lim n/ibnl =0 and

converges only for x =a if lim n/lbnl = =,

Newten Diagram

In order to develop Newton's Polygon for power series, it is
necessary to consider first a set of points referred to as the Newton
diagram for the power series. For definiteness, it will be assumed that .
the analytic functions in question are expressible as power series with
coefficients in the p-adic.field QP.

Recall that for each x # 0, ord x is defined by ord x = —1ogpx.

Definiﬁion 4,1, Let a function £ be defined by a power series over

Qp,

o

f(x) = Z bn(x - a)n.

n=0
The set of points in the Cartesian plane given by

T={(,ordb): n=0,1,2, ..., b #0}

is ‘called the Newton diagram for the series.

The next theorem shows that the radius of convergence of the power
series can be expressed in terms of the slopes of lines joining the .

origin to the points of the Newton diagram.



Theorem 4.2.

Let the power series

00

PRNCEE

n=0

have .a radius of convergence p. If

then

if

then

and if

then

Proof:

Then, since

ord b

-0 < lim——-—n<oo’
D n

ord b
n

Suppose
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it follows that

Thus,

so that

It follows that

Now suppose

This implies

so that p =0.

then

oi
L}
=
H. l
8
TN
o |-
~—
=]

©
li
=
&
8
o)

ord b
lim ——2 = =,
n

ord b
—_—T1

n

Iim */|b_| = 1im<-l— )
n P
Finally, if -

ord b
lim —— = o,
—_— n
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so that p = =,

Palmer [14] showed that the radius of convergence of the

exponential series

28 1l n

= x

=0 n

is given by p-=-p—l/(p—l). The following example shows ‘that:

Theorem 4.2 may be used to obtain the same result.

Example 4.3. Radius of convergence of

1
;Z% nl xg.:

k
Let n = a07+ a,p + + &P, a # 0 and

tn = a0 + al_+ LK ak then

n-=t
ord n{ =

so that

ord n! 1 ( tn )
= l - .
n p-1 n

Now . n z_pk implies k :_logpn. and, since £, < (k + 1)p, . it follows

that
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t : p log n
-n  (k+Dp P, R
n n - n n
Therefore,
Umit fo _
n->on
' !
so that limit ord n! _ _ 1 . Since b = L s it follows that
n-+o n p -1 n n! ,
ord bn limit - ord n!
lim ——— = ————
n n > n
o -1
p-1°
Therefore, the radius of convergence p = p_l/(p_l) as expected.

Figure 1 shows the first few points in the Newton diagram for the series

00

1 n
Zoqr X
n=0
when p = 3.
b [ ] ] [
N L [ ] [ J
3 [ ] [ ] [ J
> L) [ [ J
b L [ ] [ ]

Figure 1. Newton Diagram for Exponential Series
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Newton ‘Polygon

The Newton polygon for a power seriles will be developed by a
construction utilizing the Newton diagram. Once defined, it will be
shown that the Newton polygon determines the radius of convergence and
also provides ‘information about the location of the zeros of the power
series. . The definition of a lower support.line for a given set.is-

needed.

Definition 4.4, Suppose T 1s a subset of the plane and that L is a
non-vertical line with equation y = mx +b. Then L is a lower

support line of T if and only if:
1. for every (xl,yl) e T, ¥y 2 mxg + b, and

2. if  b' > b, then there is a point (xo,yo) e T such that

!
Yo < mX + b,

Note that if T 41is a finite set and L 1is a lower support line,
then L contains at least one point of T. On thé other hand, if T
is infinite, then T may have a lower support line which &oes-no;

intersect T. For example, 1f T 1is-the right branch of the hyperbola.

Stz
a b

then the asymptote. y = - is a lower support line of T  which does

o o

not intersect T.
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Consider a powér series
};'bn(x - a)™,
n=0

It will be assumed that bO # 0 and that there is at least one other
non-zero coefficient. It will be shown that if the Newton diagram T

has a lower support line, then it has a lower support line through the

point BO = (0, ord bo). To see this supbort line L with equation
y =mx + b is a-lower support line T.. If BO is on L, then the
conclusion holds. If BO is not on L, then BO is above L, that
is, ord b, > b. Let point B be the intersection of line L and the

0

vertical line x = 1. Then the line L' through B, and B is also

0

a lower support line of T, Figure 2 illustrates the situation.

o _ If all points of T are
above line L, then all
points of T are above L'.

Figure 2. Lower Support Line
Through the
First Point
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It should be noted that a Newton diagram T need not have any-

lower support line, For example, consider the series

Then T = {(n,—nz):-n = 0,1,2, ...}. Since for any choice of m and:
b, an n can be found large enough so that -nz <m + b, there is no

lower support line for T. - By Theorem 4.2,

ord b
lim ——E——E-= lim -n = -~

so that the radius of convergence is 0.
Now suppose a Newton diagram T has a lower support line. Consider
the 'set of all lower support,iines'through- BO = (0,‘®rd bo). Since-

there is a point in T besides BO’ there is a lower. support line L0

having maximum slope m It may happen that T has no lower support

Oo

line with slope greater than m In this case, the Newton polygon

0‘.

consists only of the ray

{(X’Y): (x:'Y) € LO,- Ax z 0}

which is denoted by Lg.

On the other hand, suppose T has a lower support line with slope

m > m,. It will be shown that . L., contains at least two but only a

0 0

finite number of points in T. Now the equation of line LO is |

y = myx + ord bO and the equation of line L is y = mx + b. Since

L. has maximum slope, it follows that b < ord b It will be shown

0 0"
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first that L contains only finitely many points of T. Suppose

0

otherwise and pick N such that N(m - mo) > ord b0 - b. Since L0

contains infinitely many points of T there is an n' > N such that-

ord bn' = m.n' + ord b

0 0 Then,-fothhat' n',

ord‘bn.‘-_mn' = ord bn' - n'v(,m.0 + (m -,mo)),
= ord,bn, - n'mo_- n'(m - mO)
= ord b, - n'(m - my)
< ord b0 - (ord'b0 - b)

= bl

Therefore, ord bn' <n'm+b so that y =mx +b is not-a lower
support. line of T, Thus, if - T has a lower support line with slope.

greater than My then line -LO has only finitely many points of T.

Since B, is on L it remains to be shown that L

0 0’ 0

least one more point of T. As before, L 1is a lower support line of

contains at

T having equation y = mx + b with m > m and b < ord bO' Let -
point (a,c) be the intersection of L and LO. By considering the
minimum vertical distance between the line LO and the points

(n,~or& bn) of T for 1 <n < [a]+ 1, as well as the vertical
distance between L, and L at  x = [a] + 1, it may be verified Fhat
if B0 is the only point of T on LO, then there is a lower Supﬁort
line through.‘BO with slope greater than my. (See Figure 3.) Since
this contradicts the way in which L0 is detefm?ned, it follows that if
T has a lower support line with slope greater than m, then ’LO has
at least two points of T.

The construction of the Newton polygen in the case T has a

lower support line with slope m > m, can now be continued as follows.
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Figure 3. Lower Support Line Contains
Finitely Many Points

Let Bl be the point in T and on L0

if T has no points with abscissa greater than thét of Bl’
+

series is a polynomial in which case let L, denote the vertical ray

having maximum abscissa. Then

the power

upward with endpoint B In this case, the Newton polygon consists of

1

the segment BOBl together with the ray ﬁ{.

If T has points with abscissa greater than that of Bl’ then
of T through B

there is a lower support line L and having

1 1

maximum slope m The above argument can be repeated so that either

1
T has no lower support line with slope greater than m, or else there

is a lower support line L having slope m > m, . In the first case,

let ﬁ+ denote the ray on L. having endpoint B In this case, the

1 1
Newton polygon consists of BOBl U LI. In the second case, L1

1°

contains at least two but finitely many.points of T. Let B2 be the

point of T on L1 having maximum abscissa. The above discussion can
S - N _ .

be repeated to find either a ray L2 or else a segment BZBB on the

lower support line L2'
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Now suppose there is a lower support line Ln through point Bn
of T such that Ln has maximum sloepe mh. If there is no lower
support line of T with slope greater than m ~and let L: denote
the ray on Ln with endpoint Bn and such that the points on L:’ have
abscissas greater than that of Bﬁ' If there is a lower support line

on L and

with slope greater than mn,. then there is a point Bn+l L

in T having maximum abscissa. If T has no point with greater -

1
with endpoint Bﬁ+l' If T has points with greater abscissa than that

+
abscissa than that of B then let Ln+ denote the vertical ray

n+l’

of B then let Ln+l be the lower support line through Bn+

n+1? 1

having maximum slope.
The following definition can be given as a summary of the above

discussion.

Definition 4.5. Let T be the Newton diagram for a power series

oo

2, b_(x - )P

n=0

such that b0 # 0 and the series is not a constant function. The

Newton polygon for the series is defined as follows:

1. 1f for’every‘positive integer . n there is a lower support line

Ln containing Bn' and Bn+ then the Newton polygon is the

1

" union of line segments

J:é Ban+l '
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2, If T has no lower support line with slope greater than that

of Ln’ the lower support line through Bn then the Newton

—
diagram is the union B0B1;U BB, U eee U B 1B, U L.

3. If T has no point with abscissa greater than that of Bﬁ

, — —
then the Newton polygon is the -union BOBl U U Bn—an U Ln'

The segments are called sides of the Newton polygon, and

Ban+l
the ray . L: is called the terminal side. If -a Newton polygon .does not

contain a terminal side, then it is called an .infinite Newton polygon;
otherwise, it is called finite. The following example shows that an

infinite Newton polygon does exist.

Example 4.6. The Newton polygon for

ji (_1)n—1 xn
n=l n .

The Newton diagram T =.{(n, -exrd n): n = 1,2, ...}. Now

ord n = k whenever pk]n and pk+l + n. Let L, denote.the line

k

through the points (pk,-k) and (pk+l,—k - 1). It will be shown that-
Lk is a lower. line of support of T for each k = O,i, ¢«es +» The-
equation of Lk is
_ -1 k
yrk=gg x &-P
- P
To show that Lk is a lower support line for T, let n =,pjn0 where

(no,p) =.1, that is, n and p are relatively prime. Then, since

0

ord n = j, it suffices te shew that
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-1

. = k
It kzoagr o (g - P
p - P

or, equivalently,

1

i k
ks g (g - ).
P - P

1. d. _ kyo_ 1 _ B
pk+l—pk(pn° P)=3-1 @~-D20=q
If q <0, then
1 i _ k q _
pk+l_ék€pn0 P?ip_l(p 1) > -1 > q.

Finally, suppose q > 0. Now q - llz_logpq so that pq—l'z_q and,

hence, pd > pq. Since q > 1, it follows that p% -1 > pq - q and,

therefore, 5 E 1 (pq - 1) > q. Since-

1 i k
Bk (PR TP
P =P

% - 1),

>

gt has been established that

; 1 i ky
3ok gy (g - ).
P -Pp

Therefore, for any k = 0,1,2, ..., the line Lk~ is a lower line of

support for the Newton diagram T.



Since the slope of L, 1is given by

k

.
k

p(p-1)

=
y
7

it is clear that the Newton polygon contains a countably infinite

number of line segments. Figure 4 illustrates the Newton polygon for

when p = 3.

Figure 4. Newton Polygon for Logarithm Series

By the way in which the Newton polygon is defined, if {mi} is
the sequence of slopes of the sides, then {mi} is monotonic
increasing.

The major result of this section can now be established. This

theorem shows how the radius of convergence can be obtained from the

slopes of the sides of the Newton polygon.
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Theorem 4.7. Let {mi} be the sequence of slopes for the Newton

polygon of the power series

o0

2. b (x - a)F
n=0
having radius of convergence p > 0. Then -logpp,= iifi:ﬂmi if the

Newton polygon is infinite, and logpp =m if m is the slope of the

terminal side L:.

Proof:. If the Newton polygon has a vertical side, then the power
series 1s simply a polynomial so that the radius of convergence is
infinite. Thus, the theorem holds in this special case.

In view of Theorem 4.2, it suffices to show that .

L .ord bn _ limit .
=BT R
Let
p = Limit: and o = 11m-2ff;35
"1+ T=="n

Assume first that both m and o are finite and that m # a. Let L

m +
be a line with equation y = E—%—g x. If o <m, then a < o 2~a < m.
Since m-;_a = o+ ; a_;‘ the definition of lim impiies there are

infinitely many =n such that

ord\bn < m+ o

n 2

Thus, there are infinitely many points of the Newton dlagram T which

are below the line L.



68

On the other hand, since {mi} is an increasing sequence,

m+ o

2 K
m > I ; a + But this implies there are only finitely many points of.

‘< m.. implies there is a lower support line L. with slope:

T below L which contradicts the previous statement. Therefore, -

o > m.

2 ; 25> a0 so that, according to the definition of

If o > m then

lim, there is an N such that

ord bn ., m + o.

n 2

for every n > N. This implies that Bn<€ T 4s above the line L for

every n > N. Since there are only finitely many points Bk e T with

k < N, there is a lewer support line of T with slope mAZ > m. But

tﬁe sequence of slbpés is a monotonic increasing sequence so that there
is no lower support,line of T with slope.greater than m. Hence,
@ <m. It follows that o = m.

Now suppose. m is finite, and o is not finite. Then let L
have equation y = (m+ L)x if o=, and y= (m - 1l)x 1if o = -=,
Then essentially the same arguments as before yield contradictiens.
Finally, suppose m =, Let L be the line y = (a + 1)x if o is
finite, and let L be the line y = x 1if a = -», Again the
definition of lim implies there are infinitely many points of T
below line L.. But since there is a lower suppprt;line with slope

greater than that of L, this is a contradiction. Since whenever a

limit

. ‘ +
Newton polygon exists, either PRI > - or else the slope of Ln,

is greater than -».  The proof of Theorem 4.7 is complete.

The following examples utilize Theorem 4.7.
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Example 4.8, The radius of convergence of

According to Example 4.6, the slopes of the sides of the Newton

polygon are given by

. S
. :
P (p - 1)
so that iifi:' = 0. Thus, by Theorem 4.7, p = 1. To see that this
agrees with Theorem 4.2, note that n Z_pord % g0 that Ilogpn > ord n
and, hence,
1ngn N ord . n
n - n
Since -
limit 1O8"
—P =,
n-+« n
it follows that limit 95943 = 0. Thus,
n-—>o n
ord b —ord
log_p = lim L= 1im =252 = 0
— n n

so that p = 1.

Example 4.9. The radius of convergence of the binomial series



70

(a-l)(a—Z) s (a—n+l),

The coefficients ( z > are given by =

where o may be any p-adic integer. If o  d1s a positive ratienal
integer than the series is actually a polynomial and the series
converges for all x. If, on the other hand, o 1s a p-adic integer
which is not.a non-negative rational integer then the canonical

representation of o is infinite, say
a=a,+ap+a 2 + ocee + k + oo
0" &P T & e Tt

It was shown by Palmer [14] that in this case the radius of convergence

is at least ‘p_l/(p-l).

By applying Theorem 4.7, it can be established
that the radius of convergence p 1is equal to 1. It suffices to show

that the x-axis is the terminal ray in the Newton polygon for

Recall that according to Theorem 1.17, given the rational integer
N = bO +-blp + e + bkpk and the p-adic integer.

. ' k .
o= a, + a;p + . + ap. + , then

ord ( e ) = jé' 5,

i=0
where 6_1 = 0 and
5 - 1 if ai < bi + 6151 |
i »
0 if _ai Z-bi + 61_1
k

Thus, for every n, = a, + a;p 4 eee + ap s
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Since ord < z } > 0 for every n, and there are infinitely many

/ \
choices for n such that ord ( g P = 0, it follows that the x-axis

is the terminal side of the Newton polygon for the binomial series

31 3 \
Sa )V n
P X

n=0

whenever o 1s a p—-adic integer having an infinite canoniéal

representation. Thus, 1ogpp = 0 and, therefore, p = 1.

Figure 5 illustrates the Newton diagram for
2
J

£d
n=0

T
(=}

where p = 3.
2

2+ 123+ 1+3° + 1:37 4 «.»

25 =1+ 2-3 + 2'32,

Recall that the canonical representation of 1/2 1is

3 Thus, for example, since
l1/2 :
then oxd | 25 | % 0+1+1=2. Similarly,

since 37 =1+ 0-3 + 1-32 + 1-33, then ord! %éf =0+0+0+0=0.
‘/.
3r oo
2- » » 8
tF . . & & 0 © 9 o * » ¢ o9
R A e M e
Figure 5. Newton Diagram for Binomial Series
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Hensel's Lemma -

As indicated earlier, Newton's polygon is useful in locating the
zeros of certain power.series. Before this topic can be discussed, it
will be necessary to prove an impertant theorem called Hensel's Lemma
for power series. Palmer [1l4] proved a form of Hensel's Lemma which
states -that under suitable conditions a polynemial in Op[x] can be-:
written as the product of two non—constant‘polynemials. The form to be
established here states that under similar conditions, a convergent
power series with coefficients in the p-adic integers 0p can be written
as the product .of a polynomial and another convergent power series.

Several definitions, lemmas and theorems are needed first. .

Definition 4.10. Let An be the ideal pnOp and let n be the
canonical homomorphism from 0p onto Op/Ah' Then

n* Op[x] - Op/An[x]. is defined by

s 1 ' e o o s
nn(aO + a;x + e +fanA) = n(ao) + n(al)x + +>n(as)x

Since n is a homomorphism, it follows that Mn is a

homomorphism.

Definition 4.11. If

f(x) = Z X and g(x) =- Z b, x
e k k=0 ¥

are power series over 0p and A.n is the ideal pnop, then define

= . ‘ n _
f=g mod_An if and only if for every k > 0, p ](ak bk)'
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Note that in the above definition one or beth of f and g may.be.
polynomials. It is immediate that the relation = mod Aﬁ is an

equivalence relation.

Theorem 4.12. If f 1is a power series over. Op and g, is a sequence-
of polynemials such that £ = g, mod An for every n .> 1, then the-

sequence converges uniformly.and lim g, = f.

Proof: Since f = g, mod An" then -for every x 1in the domain of
£, f(x) = gn(x) mod pn. For € > 0, choose an N > 0 such that-for
all n >N, l/pnv< €. Since pnl(f(x) - gn(x)) for every n, then:
for n'> N, |£(x) - gn(x)] j_l/pn'< € for every x. Therefore, the

sequence g  converges uniformly to f£.

Theorem 4.13., If {gn} is a sequence of polynomials with coefficients

in Op such that for each n = 0,1,2, ... mod An’ " then -

> & = gn+l

{gn} converges uniformly on. |x]| <1l to a function g such that g

is represented by a power series with coefficients in Op..

- Proof: Since._g‘n = mod An- implies pn‘ divides every

gn+l

coefficient of the polynomial - gn‘— it follows that for every

gn+l_’
€ >0, there 1s an N such that whenever n > N, then

,gn(x) - gn+l(x)| <€ for every |x| < 1. For functions defined on a
non-archimedean field, this is a sufficient condition for -uniform
convergence. Thus, the sequence {gn} converges uniformly on ]xl_i 1.
Let g be the limit function. Te see that g is represented by a
power serles suppose.the polynomial &, is given by

s(n)

X

gn(x) =a % 3, 1% + e+ 3, s(m)
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- n
Then g = g . mod A .implies P I(an’ ) for each j > 0.

37 Zntl,j

*d Jn=0

converges to a point in OP. For each . j > 0, let

Therefore, every sequence

lim

n-)ooan’j:b

g

Then the power series
g(x) = z: b x"
n
n=0

is the limit of the.sequence;‘gn.

Corollary 4.14, If for each n, g, ~1s a monic polynomial of degree s,

then the limit function g is a monic polynomial eof degree s.

Proof: Since a =1 for every n and a = 0. for every n

n,s n,J.

and j > s, then bS =1 and bj =0 for j.> s.

Corollary 4.15.‘ For every n, g = g, mod,An.

Proof: As in the proof of the Theorem, let
S k
gx) = 2, b, X
k=0

where b, is the p-adic limit of the coefficients of & in the

S .
polynomials gn(x) = an’0,+van’lx‘+ + an’sxv. Then for large -enough
n _ ' . . ,
N, p |-(bk _‘aN,k) and, since 8 8.1 mod An for every n, it

follows that _pn[(an‘k - ay k) so that pnl(bk - a k).
’ k] k]
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The next two lemmas will be used in the proof of Hensel's Lemma.

Thelr proofs are found in the Appendix.

Lemma 4.16. Let G and H be polynomials in Op[x} with G moniec.
Then G and H are relatively prime in Op[x] if and only if nn(G)

and nn(H) are relatively prime in - Op/Ah[x] for n=1,2,3, ... .

Proof: See Appendix.

29335-4.17. Let G and H be two polynomials with coefficients in

ring R. If G 1s monic and G and H are relatively prime in R{x]
with deg G =.s, then for every non-zero polynomial Q € R[x], there
exists a unique pair of polynomials U and V- such that Q = UG + VH

with V=0 or deg V < s.
Proof: See Appendix.

For convenience, when n = 1, the homomerphism nn of

Definition 4.10 will be denoted by

s —_ = —. 8
+ + e 4+ =a_ + 4 oeee .
nl(a0 a;x a_x ) a, a;x a_x

In the next definition, this notation is extended to power series.
Definition 4.18. If

f(x) = za anxn

n=0

1s a power series over Op, then let f denote the power seriles over -

op/Al such that .
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f(x) = PR

n=0 o

Lemma 4.19, If f and g are power series over. Op’ then

£+ g = T+ g and fg = E“E.

Proof: 1If a and b, are corresponding coefficients of f and

k
g, respectively, then a + bk~= ;;'+ E;' and

fx) = za a &
n
n=0
converges for every x such that |xf < 1l, then, in particular, the

series
o0
2 &
n=0

converges. Therefore, the sequence _{an} is a null sequence in 0p s0
that for every non-negative integer 'k there exists a positive integer .

N such that_,pk]an whenever. n > N Thus, there exists only a

k k'
finite number of k such that pk +’aﬁ. This allows the following

definition.
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Definition 4.20. Let

©
n
f =
(%) Z ax.
n=0
converge for every =x such that le_:'l. For each non-negative

integer  k, define Vi to be the largest subscript n such that

ktl
P 4 a .

k+1 k|
Since p lan implies p Ian, 1t fellows that Yk-i Yk+l for
k =0,1,2, ...
To illustrate the definition of Yk’ suppose .
f(x) = (L+p) +x+ (p2 + p3)x2‘+ px3 + (.p3 - p4)x4 + asx5 + e

n
where a =7p for n > 5. Then Yo = i, Yy = 3, Yy = 3,
Y3 =Y, = 4, and if n > 5 then Y, = B

Consider the power series

f(x) =-;§ a x

convergent for all x such that . le < 1. Let Qk be the polynomial -

of degree Vi defined by

Tk
n
n=
s k+1 , .
In view of Definition 4.11, .and since p Ian for every n > Yy it

follows that - Qupp SQ mod A . and £ =Q mod A ,.
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Finally, Hensel's Lemma can be established. Throughout the

statement and proocf, P will denote the set of all x such that

x| <1

Theorem 4.21. (Hensel's Lemma) Let

S on
f(x) = 25 a X
n=0
be a power series which converges everywhere in ®. Suppose.there exist

two polynomials G and H in ngx] = OP/Al[xl such that:

i. G 1is monic of degree s.

ii. G and H are relatively prime.

iii, f = GH.
Then there exists a pair g,h such that:

i'. is a monic.polynomial of degree s in Op[x] and g = G.

g
ii'. h 4is a power series which converges everywhere in ® and

=

= H.

1ii'. f = gh.

Proof:. The overall plan is to define by induction twe convergent
sequences of polynomials in _Op[x], {gn} and {hn}, “such that their
limit functions g and h - have the propérties i', ii', and iii'.

Specifically, the sequences {gn} and {hn} will have the

following properties:

(1) For every n >0, g, is monic of degree s, E; = G and

mod-A.n+l for n > 0.

gn = gn+l
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(2) For every n > 0, h =H, h =h mod An+

(3) £ = gnhn‘mod Ah+l

(4) deg hn = Yn‘f s.

Suppose for the moment that sequences {gn} and . {hn} satisfying
properties 1, 2, 3 and 4 have been obtained. Then, by Theorem 4.13
g, = 8. +1 mod An implies {gn} converges uniformly to a function g.
which is expressed as a power series. Also, according to Corollary 4.15,
g = g, mod Aﬁ for every n. This, in ‘turn, implies g = &, mod Al'
In other words, 'E = E;.= G for n=1,2, ... . By Corollary 4.14, g
is a monic polynomial of degree s, Similarly, {hn} converges .to a
power -series h such that h = H. Also, .. deg hn,= Y, ~ 8 and

deg g, = s dmply deg hngn = Y, Finally, by Theorem 4.12_if

it

gh f mod A_ then the sequence {g h } converges to £. Thus,
n n n n n

gh = £,
To begin the definition of.the sequences. {gn} - and {hn} define

s~-1 P

the polynomials g, and hy by g;(x) =by+bx+ =+ +b_ _;x x

where the given polynomial_in Op/Al[x] is

G(x) =by +byx+ +o + bs_lxs 1, .8
and
ho(x) = c, + clx 4 ece + ct}.{.t
where
H(x) = E-o- + qx + oeee qxt’,

c. # 0. Clearly, E; =.G, E; = H and, since f = GH, then
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f = goho mod Al' Since f = GH, it fellows that
deg H = deg T - deg G =Yg " S- . Therefore, since deg ho = deg H,
deg ho = Yy " S-

In order to obtain polynomials 81 and hl’ censider the
polynomial Ql consisting of the first Yy + 1 terms of the power

N .

series f, Ql(x) = a, + a;x + eee + ax , where N Yyt Since
Yq 3;Y0’ then T = 6;. According to Lemma 4.17, there exists a unique

palr of polynomials Ul-,Vl such that -Ql - gOhO = Ulg0 + VlhO with

deg V, < s = deg 8g* Since T = goh then

1 0’
Ql - goho = Ql;— goho = f - goh0 = 0, so that: UlgO + VlhO = 0. Since
EE‘ and EE are relatively prime, UlgO + Vlho = 0 - implies either

Ul = Vl = 0 or else gOIVl. If golvl, then:

deg Ea_i‘deg Vl < deg Vl < g = deg g = deg Ea. This is a contradiction

so that Ul = Vl = 0,

The polynomials g1 and hl may now be defined as follows:

gl=gO+Vl and hl'ﬂ hO+Ul.

To see that property (1) for n =1 is satisfied, note first that-

deg V., < s = deg,go implies deg g = deg(gO + Vl) = g, Since 89 is

1
monic, 81 is monic. Also, 'VI = 0 implies g = g, mod Al and that

gl = 'go = G.

Property (2) for n'= 1 41is easily shown since EI = 0 dimplies

hl =-h0 + Ul = h0 = H and also hl = hO mod Alf



To prove property (3) for n. =1, note that

gohov+ Ulgo + VlhO + V1Ul

= Ql + VlUl.

Since Ul = 0 mod Al and Vl z 0 mod Al’ then U1Vl = 0 mod A2.

Therefore,. glhl B Ql mod A2‘ Since f = Ql mod A2, it follows that

£ = gh; mod A,. -

It remains to be shown that deg hl =y, " s Since

glhl = le+ VIUI’ then

deg_gl + deg h, < max{deg Q> deg V, + deg Ul}

1

or

s +degh j{max{yl, deg V. + deg Ul}

1 1

On the other hand,

with equality holding if Y, # deg v+ deg.Ul.‘
since. Ql = goh0 + g0U1v+ hovl and deg Ql =Y then
Y{ < max{deg goho» deg gyU;, deg hOVll
= max{s + Yo = 8» S + deg Ul, Yo = @ + deg Vl}.‘

Since deg V, <s, then ¥, f_max{YO, s + dengl} with equality

holding if YO,# s + deg Ul.

Suppose > 8 + deg Ul' Then Y1 =Yg and, since

it follows that Yy > deg V

Yo

s + deg U, > deg V. + deg U

1 ’+ deg U

1 1 1 1

so that s + deg hl = Yqe
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1t Then Yy =8 + deg Ul.> deg V ‘+ deg Ul

Suppose Yo < s+ deg U 1

so that again s + deg hl =Yy

Finally, if YO = s+ deg U then yl_:_y Since, also,

Ol
+ deg U

l’

Y1 2 Yy the-n,yl =Yy =S + deg,Ul > deg V so that again

1 1

s + deg h Therefore, in all cases

1- "
deg hl =¥y -
This completes the induction step for n'= 1.
To complete the definition of the sequences {gn} and {hn},
suppose peolynomials B198ys +res B and hl’h2’ ceey hn satisfying

properties (1), (2), (3) and (4) have been constructed. Let

N -
Qn+l(x) = a; + a x + + agX where . N = A and consider
Qn+1 - gnhn € Op[x]. By Lemma 4.17, there exist polynomials Un+l and
Vn+l in Op[x] such that Qn+l - gnhn = Un+lgn + Vn+lhn» with

deg Vn+1 < s or Vn+l = 0. By the induction hypothesis,

f = gnhn mod An+1 and by the definition of Qn+l" f = Qn+l mod An+2'

It follows that 'Qn+l-- gnhn = 0 mod An+ and, therefore,

1

U +V ,-h =0 mod An+ By Lemma 4.16, the images of g, and

1°

n+18n n+l n 1
hn are relatively prime in Op/An+l[x]' As ‘in the proof of
U_l\= '\7; =0, it follows that U, =Omod A . and V ., =0 mod At
Define B+l = & + Vﬁ+l and hn+l = hn +'Un+l' It remains to

show that properties (1), (2), (3) and (4) hold.

Now deg Vn+ < s dmplies deg B4l = S and since g, 1is monic,

1

gnfl is monic. Also, Vn+l = 0 mod A.n+l implies 841 = &, mod An+1
and gn+1 =g, + Vn+l =g, = G. Thus, (1) is satisfied for n + 1.
Similarly, Un+l Z 0 mod Ah+l implies hn+l = hn med An+l and

hn+l = hn + Un+l = hﬁ = H. This proves property (2).
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To prove that deg hn+l_= Y - s,. note that

nt+l

gn+lh_n+l é (gnﬂ+ Vn+l)(hn + Un+l)

Qn+l f Vn+lUn+l°

This implies

s + deg hn+l j_max{yn+l, deg Vﬁ+l + dengn+l}

with equality if vy ., # deg Vo4 T deg U ..

Thus, it suffices to show that Yn+l,?'d?g Vn+l + deg Un+l' To
see that this 1s the case, note that Qn+l = gnhn + gnUn+l + hnvn+l
implies Y41 S max{Yn, s + deg Un+l} with equality if

Yo # deg Un+l +.s. With essentially the same arguments used in the

case n =1, it is seen that
Yo+l > s + deg Un+l > deg Vn+l + deg Un+l°

Therefore, s + degh so that property (4) is established for

o+l Yo+l

the case n + 1.

The proof of property (3) for n + 1 follows from

+

Bot1Potl = Ynt1 b Unti Va1

11

since Un+l = 0 mod A.n+ and Vn+ 0 mod Ah+ _imply

1 1 1

= 0 mod Ah+ so that gn+lh = Since

Un+an+l 2 n+l Qn+l
Qn+l = f mod Ah+2’ it follows that . £ =

mod_Ah+2.

h mod_Ah+

En+1n+1 2°

This completes the definition by induction of .the sequences {gn}

and {hn} having properties (1), (2), (3) and (4). As indicated
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earlier, Hensel's Lemma now follows from Theorems 4.12 and 4.13 and its

corollaries.
Zeros of a.Power Series

The next objective of this chapter is to.leocate as far as possible
the zeros of certain power series. As in complex analysis, if x = a
is a zero of. f(x), then there is a positive integer m such that

(o)

£ = (x - )" ) b (x - &)
n=m
where bm # 0. Thus, it suffices to consider the zeros of a power

series of the form.

(2]

2, b (x - &)t

n=0

where bO # 0.

Also, since

(2]

£) = 2, b (x - a)°

n=0

has a zero at x = X, if and only if.
S :
F(x) = Z, b_x"
n.
n=0

has a zero at. x only power series of the form

!
»
!
W



85

with b0 # 0 need to be considered.
The next result applies to any convergent power series with
coefficients in Qp. It provides a sufficient condition for a.power

series to have no zeros on a given circle.

Theorem 4.22, Suppose

f(x) = i bnxn

n=0

has a non-zero radius of convergence, - bn € Qp_ and b0 # 0. Suppose,
also, that line L with slope m 1is a lower support line of the

Newton diagram T. If L contains exactly one point of - T, then - f(x)

™.

has no zeros on the circle C_m = {x ¢ Tp: le = p

Proof:. Let A.j = (j, ord bj

the equation of L 1is y =mx + ord b

) be the point of T on L. Then

- mj. To prove that £(x) has

h|
no zeros on C suppose x. € C so that ord x, = -m. Since.
~m 0 -m 0
ord bjx0'= ord bj,+ j ord x,, the equation for line L can be written

as y = (-ord xo)x 4+ orxd bj 3. Since A.j is the only point of the

Newton diagram on L; then for n #.j, ord bn > (-ord xo)n + ord bjxé.

Thus, ord bnx8'> ord bjx% for all n # j. This implies

[byxg] < [byxJ| for all n# 3§ which in turn implies

h|
bjx0

. ; . y i
Since A.j € T implies [bjl # 0 and x5 € C_ implies x5 # 0, it
follows that |f(x0)| = [bjxgl # 0. Thus, if there is exactly one point

of T on L,  then no point of C_m is ‘a zero of f(x).
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By applying Theorem 4.22, it may be .quite easy to show that
f(x) = by + byx + eee + bngn € Qp[x] has no zeros in Qp. Since p"
is in the value group of Qp if and only if m 4is a rational integer,
it follows that f has zeros in Qp only if the Newton polygon has a
side having rational integral slope. Thus, ‘px2 - 1 has no roots in
Qp for any p since the slope of the only segment in the Newton

polygon is 1/2 and pl/2

is not.in the value group of Qp.»
A similar application of Theorem 4.22 settles the question of

whether Tp is a discrete non-archimedean field.

Theorem 4.23. Let‘vTp be a complete non-archimedean field which is an
algebraic .closure of Qp. ~Then the value group V of Tp is not a

cyclic group.

Proof: Suppose Tp is discrete. Then there is a real number
with 0 < 7 <1 such that w generates the value group V. Then
1 <1/7 'so that' 0 < logp(l/n) = —logpn. Choose a positive integer k-
such that 0 < 1/k < -logpn. Consider the polygon £(x) = pxk’— 1 so
that tﬁe Newton diagram for f(x) has two points (0,0) and (k,1),
and the only side has slope 1l/k. Since Tp is algebraically closed,
f(x) has k =zeros in T_ and; in view of Theorem 4.22, all are on

1/k

the circle ={x e Tp: |x| = p~'"}. A contradiction will be

C_1/k

obtained by showing that pl/-k is not in the value group V.
Sdppose‘ pl/k is in V. Then there i1s a rational integer j
such that pl/k = qmd., Then 1/k = ] logpn and, since 1/k > 0 and

logpn < 0, this implies j < 0. On the other hand, 1l/k < —logpn

implies j logpn < = logpn so that j > -1. In view of this
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contradiction, it follows that Tp is not-a discrete non-archimedean’

field.

By an argument similar to the above, it cam be shown that the
value group of Tp must include at least the set
'{pr: r 1s a rational number}.

The ‘final objective of this chapter is to prove an analogue of
Weierstrass' Factorization Theorem. Several lemmas and theorems are
needed first.

The first of these shows that under suitable conditions a power
series over Qp can be transformed into a power series fl over Op

such that EI is a polynomial.

Lemma 4.24. Let

- o o
f(x) = z; bnx
n=0
be a power series over . Op with b0 # 0 and having radius of
convergence p # 0. If L 1is a lower support line containing a side

BNBN+l of the Newton polygon for f, then there is a power series -

fl(x) = zganxn'

over . Op such that

- It j+1
fl(x) .ajx + aj+lx +

eve xj+s

with E{J‘ # 0.
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Proof: Let L be the line of slope m containing the given side

of the Newton polygon. Let Aj = (j, ord bj) = By and
Ak = (k, ord bk) = BN+lf If X, € C—m’ then; as in the proof of

Theorem 4.22, ord b, = (-ord xo)k + ordfbjxg. It follows that
k
0

ord bkx = ord b,xJ; Also, since L 1is a lower.line of ‘support,

j’o0

ord Bnlz_(—Ord xo)n + ord bjx%- for every n =.0,1,2, ... so that
n k

ord bnx0 > ord bkxo' for every n =.0,1,2, ... .

Define the power series fl by

-1 -k = n
fl(x) = bk X, f(xo,x)\- ZS a x,
n=0
that is,
n
a = bnxo
n k °
beXg

The following observations show that the lemma has been

established.
1. For every n >0, ord a. >0 so that a_ e O_.
- n — n P
2. The coefficient a =1 so that Ta; = 1.

= 3 L3 a2
3. Since ord aj ord bjx0 ord bkx0 0, then_'aj #50.

4, If 0<n<j or n >k, then ord a > 0 so that Z;.= 0

for 0 <n<j or n >k

Corollary 4.25. There is a one-to-one correspondence between the

zeros of £ on C° and the zeros of £, on C..-
-m 1 0

Proof: According to the way in which fl is defined, x € C

is a zero of f 1if and only if xxol‘ is a zero of fl on CO'
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The next lemma.shows that for a given power series f - over 0p
there is a polynomial g such that all the zeros of f on CO are

also zeros of  g.

Lemma 4.26. ' Suppose

@

£(x) = 2 ax"

n=0

is a power series over Op such that a = 0 mod p for
0<n<j-1, 3 is a unit in Op, a, Z0 mod p and a =0 for

n>k=3+s. Then f has s zeros on the unit circle CO.

Proof:. Consider

-.— =_j __j+l L N k
f(x) ajx + aj+lx + + x
= j_ e S
x_(aj + aj+lx + + x.).
and apply_Hensel's-Lemma. Let G(x) = ;;-+ aj+lx + +co + x° and
H(x) = xj. Since aj Z 0 mod p, Z; # 0 so that the polynomials G

and H are relatively prime. Furthermore, since f = GH, all the
hypotheses of Hensel's Lemma are satisfied. Therefore, there exist a
monic¢c polynomial g ¢ Op[x] of degree k - j = s  and a power series

h such . that A§.= G, h =H and-the power series - £ = gh.

S-l ]

Suppose . g(x) = <y + cl(x) +oeee Fo X +x. Then g=G
implies ZE.= ;;‘#-0. It will be shown that the only zeros of the
power serles f(x) on the unit circle CO are also zeroes of the
polynomial g. Let

_ n
h(x) = ZS c X

n=
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Then Ekx) = xj impligs ord Cj =0 and ord . > 0 for every’

n #.j. Thus, the x~axis is a lower support line containing exactly

one point of the Newton diagram for the power series h(x). Then,

according to Theorem 4.22, the power series h(x) has no zero on CO.

Therefore, the original power series f(x) and the polynomial g(x). |

have exactly the same zeres on the unit circle CO.
Since Tp is algebraically closed, the polynomial g has s

zeros ‘in Tp. Let o be a zero of g. It will be shown that  |d| = 1.

Suppose .otherwise, that i1s; suppose Ial # 1., 1If |a| < 1, then, since

g € Op[x] with lcol =1,

|g(a)| = max{]|c o+ cee + a®]}

OI" Icl
= |c0| =1 # 0.

On the other hand, if la| > 1, then |[g(a)] = Ials # 0. It follows

that all zeros of g are on C and, therefore, the power series f

0

has s zeros on. the unit circle CO.

The results of the preceeding lemmas can be used to show that a

power series has only finitely many zeros inside a given circle within

the circle of convergence.
Theorem 4.27. Let

£(x) = i b_x"

n=0

be a power series over QP with radius of convergence p # 0. If.

k

or on C_m*. Furthermore, there is a power series - h such that

*
m < 1ogpp, then f has finitely many zeros, GpsQgs eoey O inside



k
£(x) = ] (x - aph(x)
1=1

where h has radius of convergence p.

Proof: Let m be a slope of a side such that m < m*, By the

Corollary 4.25, there is a power series fl such that fl has the

same number of zeros on CO as there are zeros of £ on C o By -

Lemma 4.26, there are only a finite number of zeros of fl on »CO.
Thus, for each m < m*, the set of zeros of f on C_, 1is finite..
Since m* < logpp, there are only a finite number of sides having
slopes less than m*. It follows that there are only finitely many
zeros of f inside or on the circle C e

To prove the second part, note that if o is a zero on C_m of

the power series f, then the power series given by

n
hl(x) =.§; a_x
n=0

where
LD
0 (]
b b
e .0
al - ( o + 2 )
o
b b b
- _| _n n-1 0
an:_ <a+ 2+ +n+l~>
(o] o

is such that  f(x) = (x —,a)hl(x) where h. has radius of coenvergen

1

p. Similarly, there is a power series h2 such that if B 1is a zer
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ce

0.
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of h, then 1hl(x) = (x - B)hz(x) so that f(x) = (x - a)(x - B)h(x).

1
It follows by induction that if {al,az, ey ak} is the set of zeros

of f inside or on C_ ., then
=

_ k
f(x) = T (x - ai)h(x)
i=1

where h has no zeros inside or on C_m and h has radius of

convergence .
Theorem 4,28, 1If

f(x) = il bnxn

n=0

with radius of convergence o # 0 has no zeros inside or on the circle

- ‘ 1 . .
C_m, then the function fl(x) oo is analytic inside _C_m.

Proof: Without loss of generality, assume _b0 = 1. It can be

shown Ehat
n
XEEP
n=0
where
aO =1
a, = —bl
_ 2
a2 = b2 + bl
= -b. + 2b.b. - a>
83 3 1°2 7 31
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.
a_ =-% GO 1;111312 bik,.

the second sum taken over all subscripts such that

il + 12>+ e + i, =n.

In order to show that the radius of convergence is at least o,
it suffices to show that .

ord a -
S !

> m
n

for every n. Equivalently, it suffices to show that - Ianl < p—nm

for every n. Now

an imax bib. c--:bl

1 1 Ty 2 k

:il+i +-o-+i'=n

Since f has no zeros inside or on the circle C_m, then -the Newton

polygon has no side with slope.less than or equal to m. Therefore,

ord b
.

for every j so that lbj| < p-jm for every j. Thus, if

il + e + ik =n, then

so that ,Ianl < p-nm as -required. This completes the proof.
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Definition 4.29. 1If the radius of convergence of an analytic function

f 4is infinite, then f 1s an entire function.

The next theorem shows that the only entire functions having no

zeros in Tp are constant functions.

Theorem 4.30. If f 1s an entire function having no zeros, then- f

is a constant function.

Proof: Suppose

O n
f(x) = é;b bnx .
Since: f has no zeros, then for any m there is no side of the Newton
polygon having slope less than or equal to m. It follows that the
only possible side is a terminal ray which is vertical.  Thus, there is
only one non-zero coefficient in the power series and, since f has no

zeros,; that coefficient must be bo.

In contrast to the above theorem, there exist non-constant
functions which have no zeros. The exponential series of Example 4.3 is
-1/(p-1)
P P .

not an entire function since its radius of convergence is

It can be shown that

IH

exp (x) = Z

n -
T X
n=0

=]

has no zeros in _Tp. To see this, consider the line L with equation

- X Since.
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1 oo~ tﬁ n tn
oxdr="\3-1 |- "p-1t3-1°
1 -1
it follows that - ord T —) n for every n > 0. Thus, (0,Q) is-

the only point of - T on L' and, by Theorem 4.22, there are no zeros
of exp(x) on the circle C_, = {x € Tp: 1x| = pm} where

m = -1/(p - 1). By the same theorem, there are no zeéros on any circle
of smaller radius, and since the series fails to converge at every

—l/(p-l),

point x -such that |x| >p it follows that

has no zeres in Tp.

Welerstrass' Factorization Theorem

Finally, the major result of this section can be established. The
following theorem, which may be considered as an analogue of Weierstrass'
Factorizétion Theorem of complex analysis, shows that an entire function
can be expressed as -the product of linear factors invelving all its‘
zeros. Also, giv}n,a sequence.of‘points in Tp whose valuations tend
to infinity, there is an entire function having precisely those points

as zeros.

Theorem 4,31. Let

£(x) = anxn,

bn € QP be an entire function. If £ has infinitely many zeros which

are different from zero, say al,az, ey an, +esy then
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f(x) = onk T (l - %:—)

i=1

where the infinite product converges uniformly in every bounded subset .

of T, and. A, 1is a constant in T_.
P 0 ’ ’ P
Conversely, if {an} is a sequence of non-zero elements of T
such that lim Jan1 = o, then there is an entire function ¢ having

zeros at each a such .that

o(x) = T (l —5—>.
i=1 %5

Proof: . The second part will be established first. Let {an} be
any sequence of non-zero elements in Tp such that {]an|} is

monotonic increasing and lim lan| = o, It will be established that

T 1--“—‘)
i=1 ( %

defines an entire function having zeros at each an. It will be shown

first that the sequence of partial products,

N
i (en))
i=1 i

converges uniformly to a function ¢(x) in a bounded set

SseD_={xeT: |x| <t} Let
r P -

(=1
¢(x)—l|< x)——————rc-w
N i=1 * G0 ter Oy qal
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so that-
b (%) = (_l)N [xN —o et (—l)Nc ']
N G0y wee Oy 1 ‘ N
where 01,02, ey ON are the elementary symmetric functions. The

above expression for ¢N(x)' can be written as

— N e e 0 N
¢N(x) aO,N + al’Nx + + aN’Nx
where
(—l)N_koN Xk
%,N - .o e O
O R S

In view of the way the symmetric functions are defined, it follows that

Nk 1 |

the sum taken over k subscripts il’ ray ik such that

1 < il < 12 < eee < ik < N. It will be shown that the sequence

o o

converges for each k.. To see this, note that

1 » 1
Qo ZS o, o ves O ’

a . -
k,N+1 = %k,N
N+1 1,%, o1

the sum taken over k - 1 subscripts such that -1 :_il < s <‘ik—l'i-N'

Then, since {laﬁ‘} is an increasing sequence,



< .

T o I R

It follows that for each k > O,

thé sequence.

v

converges. Let a =N s w d N for k> 0 and let a
: ’

limit

It will be shown that the power series given by

defines an entire function ¢(x) by showing that -

limit

k >

Since lim ]anl = o, then there are finitely many @ inside the

unit circle. Let {al,az, ..;,‘at} be the set of all @

|an[ <1, Pick j > t such that

t+1 b

Then, for k > j,

1

Oy (@129

o ees O

LI 2N a‘
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Iak,N+1-- ak,NI = (0 so that:

= ll

such that .
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{ak < 1 - 1 ‘ 1 -1
N | — GUgly wee O Gy eee Oy Uipp vor O aj+l cre O
k-j
¢ 1 < | L. .
aj+1 oo Oy aj+l
Since - o limit
REE A TN o N0
k-]
1
<
'ak %4+1

so that
1
1 (k- 1 .
og la | < (& - 1) ogp,-]-—-,-ajﬂ

Since ord ay = —1ogplak{, it follows that ord ap > (k —.j)logplaj+l[

and, therefore,

ord.ak K -
K 24 kj) Log loy, |-

Now, as k - =, the right hand side approaches logplaj+l . And,

since. J can be chosen so that logpla 1s arbitrarily large, it -

-
follows that

limie 0% %
ke« k )
Therefore, $(x) 1is an entire function.
Since Gg 5055 eens Oy are the zeros of ¢N’ it follows that ¢’
has zeros at & for every n.
To complete the proof of the first part of the theorem, it must be
shown that the convergence is uniform on each bounded set in Tp. It

suffices to show that, given any € > 0, then, for sufficiently large
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N, |¢N+1(X) - ¢N(x)| <€ for each x ¢ 8. Now

g (). = oy () oot

= dy (%)

<o (=) | T '
—{N “"‘N+1l

for each x € S. Since

r

E™™

approaches zero as N approaches =, 1t suffices to show the
existence of an M . such that, for sufficiently large N,
|¢N(x)] <M for each x € S. As before, for some fixed but

sufficiently large . J,

< .
ak,N aj+l
whenever k > j. This implies
k
ki k r
o ] < lay I

e
R

for each x € S. It follows that for sufficiently large k, say.

: k
k > kO’ _lak,Nx I <1l for each x € S. Thus,

N

for each x ¢ S and every N > ko. Let M' be an upper bound of

k
X+ +or + a. xOI

IaO,N +-al,N ko’N'v for x € S. Finally, let
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"M = max{M',1}. Then

k

0 K
o(0 | 2 1<Z=:0 Nt T

< max{M',1} = M,

for each x ¢ S. Therefore, converges uniformly to ¢ on S.

d>N
This completes the proof of the second part of Theorem 4.31.

To prove . the firsﬁ-part, recall that an analytic function can have
only finitely many zeros inside any disc Dr = {x¢€ Tp: le <r}.
Therefore, it may be assumed that the infinite set of zeros can be
ordered such that {]anl} is monotonic increasing with 1lim ]anl = o,

Let {al,az, vy aj} be the set of zeros of f in D different

from zero. Then, 1f f has o = 0 as a zero of multiplicity k,

k 3
f(x) = x ] (x -.ai)h(x)
i=1

where h(x) 1is an entire functien having no zeros in Dr. By -

Theorem 4.28, the‘funbtion %- is analytic inside Dr' Let

h(x). Then

e QO

By () =.(—1)jala2 )

3

i ‘
k X
£ =x T (1-7- | b
i=1 i
and hl(x) is an analytiq function having nb_zeros in . Dr'

Let »fl be the function given by

fl(x) = xk'TT' <1 - X >.
1=1



Then fl/f

Now both
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can be represented as

7, (%)
5 (x) = 1=itl %1
£ h, (x) '

gx) = T <1—5-> and h,(x) -
1=!;||+1. % 1

are analytic inside Dr and neither has zeros there. Thus, fl/f, is

analytic inside Dr and has no zeros there. Since fl/f is -

independent of r, 1t follows that,}fl/f 1s an entire function

having no zeroes in Tp.; By Theorem 4.30, fl/f is .2 non-zero constant

function, say l/AO. "Thus,

as required.

f(x) =A0xk M <l—5—>
i=1



CHAPTER V
SOME p-ADIC ANALOGUES

The field Tp was developed in Chapter IiI as a .complete

non-archimedean field which 1s an algebraic closure of the p-adic field

Qp.' Since this relationship between Tp and Qp resembles ‘the
relationship between the complex field C and the real field R, it
seems reasonable to consider analogues of some concepts from complex
analysis. Some of these were developed in Chapter IV. The first
objective of this chapter is to develop the Schnirelman Integral, a

p-adic analogue .of the complex line integral. With the aid of the

Schnirelman integral analogues of standard results such as the Cauchy.

Integral_Formulé, and the Maximum Modulus Principle can be formulated.

For each positive integer n such that  p # n, consider the-
polynomial gn(x) =x - 1. Since Tp is algebraically closed, g,

can be factored into n - linear factors

gnCX)‘= (x - ai’ﬂ)(x'— az’n) vee (x - dn,n)'

It is easy to show that Iai‘nl =1 for i 1,2,3, ..., no To
>

) =0 implies |a: n " 1| = 0. On the
E4

‘ n
0" 1| = max£|ai’n|, 1} # 0.

see .this, note that g(a,
i,n

other hand, 1f [of | # 1, then |[o]
] L]
follows that Iai |‘= 1.
o0

The next definition is analegous to detérmining n complex

numbers equally spaced around a circle in the complex plane.

1N2

It
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Definition 5.1. Let. 8 and § be fixed points in Tp and

a s ey O ~ be the zeros of x" - 1. The set
1,n n,n : :
+ ' ceny :
{B Gal,n’ B + 6a2,n’ .y B+ 6an,n}
is called the discrete circle with center B and radius r = IS]. The

discrete circle is denoted by C(8,S8,n).

It is clear that the discrete circle C(8,8,n) 1is a finite set of
points on the ordinary circle C(8,|8|) in Tp. Since-_Tp is a
non-archimedean field, the center of C(B,[SI) is not -unique. On the
other hand, the following lemma shows that the center of a discrete

circle is unique,

Lemma -5.2. Suppose ]Bl - le < |8] with B, %vBZ. Then

C(Bl,G,n) # C(62,5,n).

Proof:. Suppose to the contrary that C(Bl,ﬁ,n) = C(Bz,d,n)w Then

for each i = 1,2, ..., n there is some J- such that-

Bl + 5ui,n =‘62 + 6aj;n. Thus, Bl - 62 = S(aj,n _-ai,n) so that -

18, - 8,1 = Iﬁllaj;n - ai’n]. since [B; - 8,] < [§], it follows.

that |a, _-oa, | > 1. But o, - o, | <max{|a, |,la, |} =1.
J.n i,n J.n i,n° — J,n" i,n

This contradiction shows that the discrete circles C(Bl,S,n) and

C(Bz,ﬁ,n)' are distinct subsets of C(8,|8]) whenever By #,62.
The Schnirelman Integral

Definition 5.3. Suppose for each n such that p + n the function f£.

is defined on the discrete circle C(8,8,n). Then Jf f dis defined
RSO

by .
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/‘f=11mit;_1_-
n->on

f(B + Sa, )
6,6 ln_
Ptn

b

[
N

provided this limit exists. When ‘jf f exists, it is called the
B,6

Schnirelman integral of the function f on the circle C(8,|6]).

The next theorem shows that  the Schnirelman Integral exists for a-

constant function.

Theorem 5.4.  If £(x) = c for every x on C(B,|§|) then

J/’f = ¢,
B4

n
Proof: . Since zg c
i=1

[

nc.  implies

=N | =

52 ¢ = ¢, it follows that-
i=]

ff»=llmit-l—if(6+6a )Elimit:.‘:=c
s n->on =1 i,n n-—>®

B pin. ptn
Henceforth,
-
limit.l_;ZJ £(8 + 6a, )
n-—>on i,n
i=1
pfn
will be written simply as
1 < -
11m;1-§l £(B + Say )

or, by letting Yin = B + Gai,n, as
3
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n
lim ;E f(Yi n)'
’

i=1

= T

Sometimes a translation is helpful.

Theorem 5.5. If g(x) = £(x + 8), then

[i- [a

BSS 0,¢

Proof: This follows immediately since

1
f £=lim = >E(8 + Soy )

8’6
= lim = Se(sa, ) = /
LEDY CLT RPVALS

The following theorem shows that the Schnirelman Integral has a

linearity property expected of an integral.

Theorem 5.6.  Suppose f and g are functions such that J/’f and
B9

d/ag exist., If ¢ and c, are constants in T_, then
8Ys 1 P

J/’(clf + czg)

B4

exists and equals

Proof: It suffices to show each of the following separately:

a) If ¢ 1is a constant, then J/’c f=c -d/af; and
B¢ B,6
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b) /f.+g=/f+ fg.

850 By - Bs0

Part (a) follows from

. .;.ii 1 &
lim o 2y Cf(Yi,n) c lim‘n éza f(Yi;n)

where Yin "~ B +,6ai nt Similarly,
s

= N 1o

1 1 <
TS T S

& 0y ) =3 & Oy *a £ g(v; 5

and, since the Schnirelman integrals of both f and g exist, part (b)
is established. This completes the proof of the theorem.

Corollarz 5.7. If. CysCos vees O are constants in. Tp and f

8,6 T

exist for 1 =1,2, ..., k, then

u/o ié' é £, = ii c, u/,f .
gl {=1 i7i =1 i i

Proof: ' The proof is by induction and the aboﬁe theoren.

The next theorem shows that the Schnirelman integral of a
polynomial is quite easy to evaluate. In fact, the integral of a
polynomial 1s simply the value of that polynomial at the center of the

circle. .

Theorem 5.8. If £(x) = ao + alx.+ vee 4 akxk is a polynomial with

coefficients in Tp then for any 8 and & in Tp
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- e e k= * e 0 k
J/,f = J/’ao + a;x + + a,x. = ag + alB + + akB .

Proef: 1In view of the preceding corellary and the fact the
Schnirelman Integral of a constant is that constant, it suffices to

show that J/’xk = Bk for each positive integer k.
8,6

‘Consider
n n
1 < k
Um= > £y, ) =lm= D\ (8 + 8o, )
{1 be = 1y
1 k k
1im = [ (B + Gal’n) + (B + 6a2,n)
k
+ + (B + Gan’n) ] .
Now
-k k k
8 + aal,n) + (8 +,6a2’n) + + (B + aan’n)v‘
_ k- k) k-1 .. K k k
=g + ( 1 > B Gal,n + + ( K > 8 ul,n +
k k k-1 k k k
B~+<l>8 ‘5°‘2, + +<k>6°‘2‘,n+
k k k-1 k. \ .k k
o (%%>> S N < k > % n
k k | k-1 i k \ . k-2.2 2
=nB +< >B 8 (03 +< >B § O,
1 &y i 2 & it
+oeee ( k > ghded Dl ad 4 e 4 K ai .
J {=1 i,n {= »

Since the sum of the kth powers of the n roots of unity is zero

for k <-n, . then for each j = 1,2, ..., n-1,
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k

Therefore, J/,xk = 1lim %?Bk =.8" so that the theorem follows from

8,8
Corollary 5.7.

The next theorem shows that-the integral is bounded by the maximum

value of the function on.the circle.

Theorem 5.9. Suppose. B and ¢ are in Tp and f 1is -a function such

that:

a) for all x e C(B,IGI), f(x) 1is defined; and

b) J/,f exists, then
B,S

VA

B5S

max.

—x€eC £

where C = C(B.lél).

Proof: Since

l_n
/f = Um= ) £(ry o)

) i=1

where the limit 1s taken over positive infegers relatively prime to p,

it follows that-

[+

8,6 .

n

- 15 - 11
= lm | o D) £y ) ‘ lim

i f(Yi’n) .

i=1

i=1

Now,
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n
max max
éga f(Yi, )l = 1l<i<n (Yi,n) Zxec f(x) '
Therefore,
,ff :max“ f(X) .
87s xeC

The following theorem shows ‘that, as in complex analysis, a.

uniformly convergent series can be integrated term by term.

Theorem 5.10. Suppose

RS
oy 1d

r}

converges uniformly to £(x) on the circle C(B,r) = {x: |x - 8|
where r = ]6] for some ¢ ¢ T.. If, for each 1 =1,2, ..., the

Schnirelman Integral J/zfi exists, then . J/:f exists and
) B8

Proof: Let € > 0 be chosen. Let

By Corollary 5.4,

.
d/jF = z; c; J/’f .
gl ™ i=1 tgds 1

s

Thus, it suffices to show that
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limit

m > o«

L= [e]-o

B,6 8,9

To see that this is the case, note that uniform convergence of the
series implies there.is an M such that for any x ¢ C,

lf(x) —‘Fm(x)l < ¢ whenever m > M, An application of Theorem 5.9
yields .

. Mmax.

< €.
~x € C

[ s

f(x) - F (%)
BSS n

It follows that

and, therefore,

ff=_z ¢, /fi.
B,d l=l B,é ’
It was shown in Theorem 5.8 that the Schnirelman Integral of a

polynomial over Tp is the value of the polynomial at the center of

the discrete circles. This result extends to convergent power series.

Theorem 5.11. Let f(x) = a, +ax+ a2x2 + <+ be a power series

with the non-zero radius of convergence r, If |[B| < r and 8] < r,

then d/’f exisﬁs and J/,f = f(B).
8,6 B¢

Proof: Since  |B] < r and |8] < r, then the circle C(B,|6§])
is contained in the disc D = {x: |x| < r}. Therefore, the power

series converges uniformly on G(B,IGI) so that -Theorem 5.10 implies
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ff=2 a; ’_/.xi;=z aiBi=f(B)v.
B,6 i1=0 B,0 i=0

The -above result shows that the Schnirelman Integral of a
convergent power series depends only on the center .of fhe clrcle
C(B,[6|) and not upon the choice of &§. This may seem surprising
since the center of a circle is not unique. Recall, however, that the
Schnirelman Integral is defined in terms of a sequence of discrete
clrcles. Each circle in this sequence has the same center, .and the

center of a discrete circle 1s unique.
Cauchy's Integral Theorem

A fundamental result encountered early in the study of complex
variables is Cauchy's Integral Theorem. This states that the complex
line integral around a simple closed curve in the complex plane is zero
provided the function is analytic inside and on that curve. In view of
Theorem 5.11, Cauchy's Integral Theorem has no éxact analogue in this
setting. However, the following might be considered as .a p-adic

analogue of that theorem.
Theorem 5.12. If

i
f(x) =._z§ a x
i=0
is a power series with radius of convergence r > 0 and if ]BI <r

and |6] < r, then f(x— B)E(x) = 0.
§
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Proof: va(x*- BYE(x) = J/,x f(x) -8B J/7f(x). Since x f(x)
B3 6 B5S B 6
is a power serles with radius of convergence r, Theorem 5.1l yields

J/,x'f(x) = R f(B). Since. J/’f(x) = f(B), it follows that
B,G B¢

S - 05 =8 £8) - 8 £8) = 0.
o

Cauchy's Integral Formula

Another basic result.in complex ahalysis is Cauchy's Integral
Formula. This theorem assumes that f analytic inside and on a simple .

closed curve C. Then

where o 1s on the interior of C. The striking feature of this -
theorem is that the values of the function on the interior of C are
completely determined by the values on C.

In the work that follows,.a p-adic analogue to Cauchy's Integral
Formula will be developed. The following special case will be

established first.

Theorem 5.13. If Lk 1is a rational integer.and k > 0, " then-

0 if - fa| < |6
1

0,8 (x ~ a)k ) ( =L

o

k .
) it |a| > |6]
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Proof: Consider

wmotect 5 (3) (2,

Since the radius of convergence of the binoemial series 1s 1, it follows:

that the series converges for lxl < ,a + Therefore, if Ial‘> IGI,

Theorem 5.11 implies

i (3
0,6 (x - a)k (0 —_a)k @

Now suppose. |a| < |8] so that |x| = 8] dimplies l:%l < 1.

Then
. -k © h|
-k ~k a =k V1 [ =a\"
(x - a) = =x ( 1- —-> = za ( >___< oo >
x j=0 3 xk x
and the series converges uniformly on lx] = |6|. Therefore,

Theorem 5.10 applies so that it suffices to consider J/’x_(j+k) for
0,8
J > 0. According to the definition.

fx—(j+k) = lim = i (60Li )_(j+k’).
055 toi=1 da

Since the nth roots of unity form an Abelian group, the set .

1 -1 -1

{al;n’GZ,n’ cees an,n} coincides with the set {al,n’q2,n’ PP an,n}'
Therefore,
. ~(3Hk) _ o~ (k) i i+
ji (sai,n) =3 . gT:n'
i=1 i=1
Since
n
Z oz:.]+k 0
i,n
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for every n > j + k, it follows that x_(j+k) = 0 for every
_ 0,6

j > 0 and, therefore, u/1(x - a) k = 0 whenever |a]. < |6]. This

0,8

completes the proof of Theorem 5.13.

Corollary 5.14. If k > O, then

0 if |a - 8] < |§]

f"‘i'—" 1 '

8% (x - 0% | —E— 15 Ja-8] > |6

® - 0f
Proof: By Theorem 5.5,
0 if |a - 8| < |§]
1 1 .
B,S (x - a)k ) 06 (x + B - a)k‘a —_-L_—TZ if |a - 8| > |§]
’ : ’ : . (B—d)

The next theorem may be considered an analogue of the Cauchy
Integral Formula since the value of an analytic function at.a point is

given in terms of the Schnirelman Integral on a citcle about that point.

Theorem 5.15. © Suppose

converges for |x| < r and |a|, |B8], and |§8] are all less than r.

Then

fﬁM Cf(a) 1f |a - B] < 8]
B8

x-a 0 if |a - 8| > |§]
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Proof: Suppose |o - 8| < |8]. Then |a - 8| < max{|al|,|B|} < |§]
so that |x - a| = |x - 8| = |§] for all x such that. |x - 8] = [5].
Since

o0

£(x) = za a,x]
j=0 -
then
fwa-s  § AT E 8 s -8

X - O J“O

and the series converges uniformly on |x - B| = 18],

In the other case, Ia - Bl > IGI. Then for all x such that
|x - 8] = [6], |x-a| =|x-8+8-a]=]a-8]>]8]. Thus,
B X=8 .1 so that
X'- a

a xi(x - R)
S

converges uniformly on |x - 8| = ]6[.

In either case, by Theorem 5.7,

f(x)(x - B) x” (x - B)
[Hezn. 5. [eacn,

X - o 3=0 h 696 X - a

Now for j > 0,

xj =xJ-aj+,aj_xJ—aj aj
X ~ 0O X - o - x o X - a
‘ - - ]
= % 1 + axj 2 + + aJ'l - i
X - o

Thus 9
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8,6 8,6 856
- fxoB
826 X - Q
8. B -~ a 4

Since 5 1- o ® it follows that for j > O,

A (x - B) 3 1
J/, X - o - o (B - o) BJé,x - 0.

£ Joa - 8| < |§|, Corollary 5.14 implies J/)x E ~ =0 so that
8,8
IETEETN S
X - a — ] e
RS j=0
1 1
If |a - 8| > IGI, Corollary 5.14 implies J/,x s " F - & %°
BsS
that for each j >0
Jeg -

fFG(x - B) _

— This completes the proof of

It follows .that . </ﬁ
B,6

Theorem 5.15.
As in complex analysis, Cauchy's Integral Formula can be extended

to derivatives. The following lemma.is useful in proving an extension

of Theorem 5.15.

Lemma 5.16. Let g be a polynomial such that deg g < k. Then

__ELEQ—E-= 0 whenever |a'- B| < |§].
ByS (x - a)
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Proof: Since deg g < k, 8 can .be expressed by partial .

k
(x - @)
fractions. Thus, there exist k constants Al’AZ’ ooy Ak such that
A A
SLC WA U P,
(x - o) (x - o) (x - a)

It ‘follows from Corollary 5.14 that-

f_&__

§ (x - o)k
Theorem 5.17. Suppose

f(x) = Z bj
J=0

converges for [x] < r . and lal, IBI, and [6[ are all strictly

less than r. If |a - 8| < |§], then

f(x-B) 1 (),
—_———eete = = £ ().
828 (x - a)n+l n!

Proof: Let n =N be fixed. It suffices to assume § = 0. Then

d/’ f(x) x d/7j=0 ji .
0,8 (x ~ a) 0,6 (x - a) J=N+1 j 0,8 (x - a)

According to Lemma 5.16, the first integral of the right hand side is

zZero, Now for each j > N, there exist poelynomials Qj and Rj such

that xj+l = (x - a) Qj(x) + Rj(x) where Rj_E 0 or deg Rj < N,

Thus,. for each j > N,
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0,8 (x_—.a)N 0,8 3 0,86 (x - a)
= Q. x)
o‘,/a’J

since Lemma 5.16 applies again. Now the last integral equals Qj(O)
for each j. Thus, it suffices teo sum the constant terms of the
polynomials ‘Qj for 3 = N+1, N+2, ... . By actually dividing xN+l+h

N ‘ e
by (x - a) ', it can be shown that the constant term of QN+l+h is

given by < N;h'>ah‘ for h = 0,1, ... . It follows that

f_ﬂ.’u‘__a i bj /Qj(.x)

0568

bN+l+h( h

N+h > h
h=0 '

= %T f(N)(a).

This completes the proof.

Maximum Modulus, Cauchy's Inequality, -

Liouville's Theorem

Analogues of several standard results of complex analysis have -
already been established. fhis chapter will be concluaed by showing
three more. In particular, analogues of the Maximum Modﬁlus Principle,
Cauchy's Inequality, and Liouville's Theorem will be estabiishéda

One form of -the Maximum Modulus Principle of complex analysis
asserts that if a non-constant function f  is analytic inside and en

a simple closed curve C and if M 1s an upper bound of £ on C,
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then If(z)] < M for every =z inside C. The next theorem shows a

corresponding result .in - Tp.

Theorem 5.18. Suppose,

f(x)=Z ax
i=0

converges for |x| <r. Let 0 < ro<r and M> |£(x)| for every

x € D[O, rO] . Then either If(x)ln is -constant on D(O,ro) or

|£(x)| < M for every x in the open disc D(O,ro).

Proof:. Suppose a,8 € D(0,r;) with |£(a)| > |£(B)|. Pick 6

such that [8] = xg Then - 8] < |6 and ) - J ERGE=8)
‘, J,

X - a.

and f(B) = d/’f(x). Thus,
8,6

|[£(@) | = [£(a) - £(B)]
fx)(x~-8) _
87 X - a d/,f(x)
- a/’ £(x)(a - B) I
B X = 0

Since |a - B| < |§|, then for every x such that |x - 8| = |§],
lx - o] = |x-8+B8-0a|] =]6]. Let C denote the set

{x € Tp: |x - 8] = |6§|}. Then according te Theorem 5.9,

J/’fgx)(a - B) < maximum | f(x) (a0 - B)
8’6 X.— O — xeC X~ O
_ o - B8] maximum
_'l_TEW—_L xe C ,f(x)l
maximum If(x)l.i-M°

x e C
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Therefore, [f(a)| < M.

As a consequence of Theorem 5,17, the following analogue of

Cauchy's Inequality can be established.

Theorem 5.19. Suppose. f i1s analytic in D(O,r). If 0 < rg <r and

M.Z |£(x)| for every x ¢ p[0,ry], then for n = 1,2, ...,

£ () @ | M
n! — n '
o

Proof: By Theorems 5.17 and 5.9, if |y| < r, then

0
(n) ,
f 21 f(x) x max. fix) x
] ' ~ Z — I
n! 078 (x - y)n+l A xeC (x - y)n+l
where C = {x: [x| = ry}. ~Since |y| < rys then |x -y| = r, for
x € C. It follows that
max f(x) x max {f(x)[ <‘M_
xeC n+l x e C n — n°
(x -y T, ry

Fiﬁally, the p~adic analogue of the Liouville Theorem states that

any bounded entire function is a constant function.

Theorem 5,20, If £ 1s an entire function and there is a real number
M suchvthat,_lf(x)l <M for every x ¢ Tp, then f(x) = a, where

f(x) = a, + a

gt agxt e

Proof: It guffices to show that a = 0 for n=1,2, ... .

Suppose to the contrary that- a # 0 for some n > 1. Let § be an
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element in T_ such that ¥ _ . ]a . According to Theorem 5.19,
P jsf®  °®
£ 0y .M
n! —'"{6'1‘1 :
(n)
But since a_ = f———igl ,
n n!
!an'il ‘n<!n|'

This contradiction shows that a = 0 for n=1,2, .. "

Conclusion .

While further .analogies between complex and p~adic analysis will
not be pursued in this study, it :should be remarked that others do
exist, For example, Laurent series can be defined in Tp essentially
as in the complex case. Thus, the concept and classification of
singularities of analytic functions can be discussed. Meromorphic
functions have natural analogies in Tp. The residue of a function can
be defined in the usual manner and there is a p-adic -analogue of
Cauchy's Residue Theorem. The technique of proof; as illustrated
earlier in thié chapter, somewhat paralleLS‘ﬁhe corresponding proof in
complex analysis but utilizes the Schnirelman Integral and its
properties.

As a final remark, one quite significant distinction between
analysis in Tp dnd complex analysis will be noted. In complex
analysis an analytiec function may have an analytic continuation beyond-

its circle of convergence. That is, if £f(z) is an analytic function
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can be

circle

circle
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radius of convergence r, 0 <r <=, then given a point- 2

circle of convergence, f(z) 1s analytic at zge Thus, £f(z)

.expressed as a power series developed about 2z = z and the new-

of convergence may include points which are not.in the original

of convergence. In the p-adic.situation, however, any two discs

are either disjoint or nested. It follews that analytic continuation

in -the above sense is not possible for analytic functions in Tp' This

observation concludes the present study.
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APPENDIX
This appendix supplies proefs of Lemmas 4.16 and 4.17.

Theorem A.1l. Let G and H be pelynomials in Op[x] -with G menic,
Then G and H are relatively prime in Op[x]' if and only if G and

H are relatively prime in OP/An[x]' fer n > 0.

Proof: For any polynomial P(x) = a, + a;x + s + asxs in- Op[x],;

let P(x) = a, + a;x + oo 4+ E;ks where a denotes the image of

a_e,Op under the canonical homomorphism from 0P onto op/An‘ Since
e+ VE=UG+VH and 1=1, then G and H relatively prime
implies G and H are relatively prime.

Conversely, suppose G and ﬁ._are relatively prime in Op/An[x].
Let Qe Op[x]' be such that Q]G and Q]H.. Then it suffices to show
that Q = 1. Since QIG and Q]H, there exist polynomial R and R'
in Op[x] such that G = QR and H = QR'. Furthermore, G 1is monic.
implies the high order coefficient of Q is a unit . in Op. Thus,
deg'E = deg Q. Since G and H are relatively prime in: Op/An[x],

there exist polynomials U and V in OP/An[x]' such that

1=GU+HV=QRU+QR'V
so that
1=Q(RU+R'V).

This implies O = 'deg Q = deg Q. Since Q is monic, Q = 1.
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Theorem A.2. Let G and H be two polynomials with coefficients in.
ring. R. "If G is monic and G. and H are relatively prime in R[x]
with deg G = s, then for every non-zero polynomial Q € R[x] there

exists a unique pair of polynomials U and V such that Q = UG + VH

with V=0 or deg V < s.,

Proof: ~Suppose G and H are relatively prime in R[x]. Then
there exist polynomials J and K in' R[x] such that JG + KH = 1.
Thus, if Q is any polynomial in R[x] then Q =-QJG + QKH. ' Suppose
deg QK > s = deg G. Then there exlst polynomials A and B in - R[x]
such that QK = AG + B where either B =0 or deg B < s.  Then,

substituting for. QK 1in the above equation,
Q = QJG + (AG + B)H = (QJ + AH)G + BH.

If U=QJ + AH and V = B, then the existence part of the theorem is
proved.

To prove uniqueness, suppose there is another pair of peolyneomials
U' and V' 4in R[x] such that Q = U'G+.V'H with deg V' < s or
V' =-0. Then U'G+ V'H =UG+ VH implies (U' - UG = (V - V')H.
Since G and H are relatively prime, G|(V - VY)H implies
Gl(V - V'), Now deg(V - V') < max(deg V, deg V') < s. Therefore,
G|(V - V') implies V = V' which, in turn, implies U = U'. This

completes the proof.
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