ANALYSIS IN AN ALGEBRAICALLY CLOSED

NON-ARCHIMEDEAN FIELD

By
JOHN ELDON ATKINSON
Bachelor of Science Kansas State Teachers College Emporia, Kansas
1957
Master of Science Kansas State Teachers College Emporia, Kansas
1964

Submitted to the Faculty of the Graduate College of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
DOCTOR OF EDUCATION
July, 1972

ANALYSIS IN AN ALGEBRAICALLY CLOSED
 NON-ARCHIMEDEAN FIELD

Thesis Approved:

$$
860352
$$

ACKNOWLEDGMENTS

Abstract

Foremost among those to whom gratitude is due is my thesis adviser, Dr. Jeanne Agnew. Her counsel and encouragement, not only during the preparation of this dissertation but throughout my graduate study at this institution, are greatly appreciated. I also wish to extend thanks to Dr. E. K. McLachlan for his interest in my progress and for his service as committee chairman. My thanks go also to Dr. Douglas Aichele and to Dr. Robert Alciatore for their efforts in my behalf as committee members.

Finally, to my wife Barbara and to my sons John and Keith, a very special thanks for their patience and encouragement during the past few years.

TABLE OF CONTENTS
Chapter Page
I. INTRODUCTION 1
Non-Archimedean Valuations 2
Outline of Study 3
The p-adic Number Field 4
The Ordinal Function 5
Elementary Symmetric Polynomials 11
II. CONTINUOUS FUNCTIONS 14
Uniform Approximation 17
An Extension Theorem 20
Weierstrass' Approximation Theorem 23
Differentiable p-adic Functions 30
III. AN ALGEBRAICALLY CLOSED NON-ARCHIMEDEAN FIELD 36
Extension Fields 36
Extension of the Valuation 42
Completion of the Algebraic Closure 46
IV. POWER SERIES 52
Newton Diagram 53
Newton Polygon 58
Hensel's Lemma 72
Zeros of a Power Series 84
Weierstrass' Factorization Theorem 95
V. SOME p-ADIC ANALOGUES 103
The Schnirelman Integral 104
Cauchy's Integral Theorem 112
Cauchy's Integral Formula 113
Maximum Modulus, Cauchy's Inequality,
Liouville's Theorem 119
Conclusion 122
SELECTED BIBLIOGRAPHY 124
APPENDIX 126

LIST OF TABLES

Table Page
I. Analytic Functions 33
LIST OF•FIGURES
Figure Page
I. Newton Diagram for Exponential Series 57
2. Lower Support Line Through the First Point 59
3. Lower Support Line Contains Finitely Many Points 62
4. Newton Polygon for Logarithm Series 66
5. Newton Diagram for Binomial Series 71

CHAPTER I

INTRODUCTION

Among the topics encountered in real analysis are limits, continuous functions, differentiable functions; integrals, sequences, series and functions defined by power series. A discussion of any of the above relies heavily upon the absolute value function. The absolute value function is an example of a larger class of non-negative real valued functions called valuations.

Definition 1.1. Let F be a field and R be the real field. A mapping $\phi: F \rightarrow R$ is a valuation on F if and only if each of the following properties is satisfied:

$$
\begin{aligned}
& \text { i. } \phi(x) \geq 0 \text { for every } x \in F ; \\
& \text { ii. } \phi(x)=0 \text { if and only if } x=0 ; \\
& \text { iii. } \phi(x y)=\phi(x) \phi(y) ; \\
& \text { iv. } \phi(x+y) \leq \phi(x)+\phi(y) .
\end{aligned}
$$

Example 1.2. (a) The absolute value function is a valuation on the field of rational numbers.
(b) The modulus function is a valuation on the complex field,

The following theorem is easily established from the definition of valuation.

Theorem 1.3. If ϕ is a valuation on the field F, then:

$$
\begin{aligned}
& \text { 1. } \phi(1)=\phi(-1)=1 ; \\
& \text { 1i. } \phi(-x)=\phi(x) \text { for every } x \varepsilon F ; \\
& \text { 1i1. } \phi(x-y) \leq \phi(x)+\phi(y) ; \\
& \text { iv. } \phi\left(\frac{x}{y}\right)=\frac{\phi(x)}{\phi(y)} \text { provided } \phi(y) \neq 0 . \\
& \text { Non-Archimedean Valuations }
\end{aligned}
$$

One property of the real number system with absolute value is that given any two non-zero numbers a and b, there is a positive integer n such that. $|n a|>|b|$. This property is called the Archimedean Property of the reals. In particular, for every positive integer $n>1, \ldots|n|>1$. It will be seen that not all valuations have this property.

Definition 1.4. Let ϕ, be a valuation on field F. If, for every $\mathrm{n}=1+1+\cdots+1, \quad \phi(\mathrm{n}) \leq 1$, then ϕ is a non-archimedean valuation on F.

The following theorem provides a commonly used characterization of a non-archimedean valuation. The proof can be found in Snook [16].

Theorem 1.5. Let ϕ be a valuation on field F. Then ϕ is a

 non-archimedean valuation if and only if $\phi(a+b) \leq \max \{\phi(a), \phi(b)\}$ for any pair $a, b \in F$.The property $\phi(a+b) \leq \max \{\phi(a), \phi(b)\}$ is called the non-archimedean property. It is clear that the non-archimedean property implies the triangle inequality $\phi(a+b) \leq \phi(a)+\phi(b)$. Usually, when
the valuation is non-archimedean, property iv. of Definition 1.1 is replaced by the non-archimedean property.

Theorem 1.6. If ϕ is a non-archimedean valuation, then $\phi(x+y)=\max \{\phi(x), \phi(y)\}$ whenever : $\phi(x) \neq \phi(y) \quad[16, p .54]$.

Definition 1.7. A field F with non-archimedean valuation ϕ is called a non-archimedean field.

Outline of Study

Since non-archimedean valuations and absolute value have similar properties, it is reasonable to consider concepts of analysis relative to a non-archimedean field. This type of study is presented in an expository paper by Palmer [14] entitled "Some Analysis in a Non-Archimedean Field."

The present study considers analysis in an algebraically closed extension of a non-archimedean field. It is accurate to consider this study as a sequel to Palmer's, and his work will be referenced frequently. Those results essential to the present study are listed as needed.

The background required for this study includes analysis through advanced calculus (complex variables would be helpful but not essential), algebra at the level of Herstein [9] and number theory as presented in Agnew [2].

In the remainder of this chapter a particular non-archimedean field called the p-adic numbers is discussed and some of Palmer's results relative to this field are listed. Also, some special topics to be utilized later are presented here. Chapter II pertains to
continuous and differentiable functions. That chapter also includes a non-archimedean analogue of Weierstrass' Approximation Theorem of real analysis. In Chapter III, an algebraically closed extension of the p-adic numbers is considered. The major accomplishment of that chapter is the demonstration that the non-archimedean valuation extends to the algebraically closed field. In Chapter IV, power series are considered in some detail. A geometric device called Newton's polygon is developed and employed to determine the radius of convergence and to help locate the zeros of a power series. That chapter culminates with a non-archimedean form of Weierstrass' Factorization Theorem. The last chapter shows that by a suitably defined analogue of the complex line integral, analogues of several standard theorems of complex analysis can be established. Included are Cauchy's Integral Theorem, Cauchy's Integral Formula, the Maximum Modulus Principle and Liouville's Theorem.

The p-adic Number Field

The non-archimedean field upon which this study is based is called the field of p-adic numbers and is denoted by Q_{p}. Some of the important properties of Q_{p} are listed below. For a complete development, the reader is referred to Agnew [2].
(1) Each $\alpha \varepsilon Q_{p}$ can be uniquely expressed in the form

$$
\alpha=p^{k} \sum_{n=0}^{\infty} a_{n} p^{n}
$$

where $0 \leq a_{n} \leq p-1$ for each $n=0,1,2, \ldots, a_{0} \neq 0$ and k is a rational integer. This is called the canonical representation of α.
(2) The non-archimedean valuation on Q_{p} is denoted by $\|_{p}$ and $|\alpha|_{p}=\left(\frac{1}{p}\right)^{k}$ where α is given in the canonfeal representation above.
(3) The set $O_{p}=\left\{\alpha \in Q_{p}:|\alpha|_{p} \leq 1\right\}$ is the ring of p-adic integers. The units in O_{p} are those elements of O_{p} such that $|\alpha|_{p}=1$.
(4) The field Q_{p} is complete with respect to the valuation $\|_{p}$.
(5) The field Q_{p} is a discrete field, that is, its value group given by $V_{Q_{p}}=\left\{|x|_{p}: x \in Q_{p}, x \neq 0\right\}$ is an infinite cyclic group with generator $1 / \mathrm{p}$.

The Ordinal Function

The remainder of this chapter is devoted to several special topics which will be utilized in later chapters. The first of these is a real valued function defined on an arbitrary non-archimedean field. There is no assumption that the field is discrete.

Definition 1.8. Let F be a field with non-archimedean valuation ϕ. The ordinal function is defined on F by

$$
\operatorname{ord}(x)= \begin{cases}-\log _{p} \phi(x) & \text { if } x \neq 0 \\ \infty & \text { if } x=0\end{cases}
$$

For example, let $\alpha=p^{k} \in$ where ϵ is a unit in Q_{p}. Since $\left|\left(p^{k} \in\right)\right|_{p}=\left(\frac{1}{p}\right)^{k}$, then ord $\alpha=-\log _{p}\left(\frac{1}{p}\right)^{k}=k$.

Theorem 1.9. If. $x, y \in F$, then ord $x y=$ ord $x+$ ord y.

Proof: This follows from

$$
\begin{aligned}
\text { ord } x y & =-\log _{p} \phi(x y)=-\left[\log _{p} \phi(x)+\log _{p} \phi(y)\right] \\
& =\operatorname{ord} x+\text { ord } y .
\end{aligned}
$$

Theorem 1.10. Suppose $x_{n} \neq 0$ for $n=1,2, \ldots$. Then $\lim x_{n}=0$ if and only if \lim ord $x_{n}=\infty$.

Proof: Suppose $\lim x_{n}=0$. Then, given any $M>0$ there exists an N such that $\phi\left(x_{n}\right)<p^{-M}$ whenever $n \geq N$. Thus, $\log _{p} \phi\left(x_{n}\right)<\log _{p} p^{-M}=-M$ so that ord $x_{n}>M$ whenever $n \geq N$. Conversely, suppose \lim ord $x_{n}=\infty$. Then, given any ϵ such that $1>\epsilon>0$, choose an M such that $p^{-M} \leq \epsilon$. There exists an N such that ord $x_{n}>M$ so that $-\log _{p} \phi\left(x_{n}\right)>-\log _{p} p^{-M} \geq-\log _{p} \epsilon$. It follows that $\phi\left(x_{n}\right)<\epsilon$ whenever $n \geq N$.

Theorem 1.11. If $x, y \in F$, then

$$
\operatorname{ord}(x+y) \geq \min \{\operatorname{ord} x, \text { ord } y\}
$$

Proof: Since F is non-archimedean, $\phi(x+y) \leq \max \{\phi(x), \phi(y)\}$.
It follows that $\log _{p} \phi(x+y) \leq \max \left\{\log _{p} \phi(x), \log _{p} \phi(y)\right\}$ so that

$$
\begin{aligned}
\operatorname{ord}(x+y) & =-\log _{p} \phi(x+y) \\
& \geq \min \left\{-\log _{p} \phi(x),-\log _{p} \phi(y)\right\} \\
& =\min \{\operatorname{ord} x, \text { ord } y\} .
\end{aligned}
$$

Corollary 1.12. If ord $x \neq$ ord y then $\operatorname{ord}(x+y)=\min \{\operatorname{cord} x$, ord $y\}$.

In later chapters there will be occasion to determine ord n !. Palmer [14] showed that

$$
\text { ord } n!=\frac{n-t_{n}}{p-1}
$$

where the canonical form of n is $n=a_{0}+a_{1} p+\cdots+a_{k} p^{k}$ and $t_{n}=a_{0}+a_{1}+\cdots+a_{k}$.

Example 1.13. Let $p=5$ and $n=87$. Since $87=2+2 p+3 p^{2}$, then $t_{87}=7$ and ord $87!=\frac{87-7}{5-1}=20$.

Theorem 1.14. Let M and N be rational integers with $M \geq N$ and canonical representations given by $M=a_{0}+a_{1} p+\cdots+a_{m} p^{m}$ and $N=b_{0}+b_{1} p+\cdots+b_{k} p^{k}$. Then

$$
\operatorname{ord}\binom{M}{N}=\sum_{i=0}^{m} \delta_{i}
$$

where $\delta_{-1}=0$ and for $1 \geq 0$

$$
\delta_{i}=\left\{\begin{array}{lll}
1 & \text { if } & a_{i}<b_{i}+\delta_{i-1} \\
0 & \text { if } & a_{i} \geq b_{i}+\delta_{i-1} .
\end{array}\right.
$$

Proof: Let the canonical representation of $M-N$ be given by $M-N=c_{0}+c_{1} p+\cdots+c_{\dot{m}^{\prime}} p^{m}$ where it is understood that some of the last c_{i} may be zero. It follows that

$$
\sum_{i=0}^{j} c_{1} p^{1} \equiv \sum_{i=0}^{j}\left(a_{i}-b_{i}\right) p^{i} \bmod p^{j+1}
$$

for $j=0,1,2, \ldots, m$. Let $\delta_{-1}=0$ and, for $i \geq 0$,

$$
\delta_{i}=\left\{\begin{array}{lll}
1 & \text { if } & a_{i}<b_{i}+\delta_{i-1} \\
0 & \text { if } & a_{i} \geq b_{i}+\delta_{i-1}
\end{array}\right.
$$

Then for $i=0,1,2, \ldots, m, c_{i}+b_{i}-a_{i}=\delta_{i} p-\delta_{i-1}$ so that

$$
\begin{aligned}
t_{M-N}+t_{N}-t_{M} & =\sum_{i=0}^{m}\left(\delta_{i} p-\delta_{i-1}\right) \\
& =(p-1) \sum_{i=0}^{m} \delta_{i}+\delta_{m} .
\end{aligned}
$$

Since $\binom{M}{N}=\frac{M!}{N!(M-N)!}$ it follows that

$$
\begin{aligned}
\operatorname{ord}\binom{M}{N} & =\operatorname{ord} M!-\operatorname{ord} N!-\operatorname{ord}(M-N)! \\
& =\frac{M-t_{M}}{p-1}-\frac{N-t_{N}}{p-1}-\frac{(M-N)-t_{M-N}}{p-1} \\
& =\frac{t_{N}+t_{M-N}-t_{M}}{p-1} .
\end{aligned}
$$

Thus,

$$
\operatorname{ord}\binom{M}{N}=\sum_{i=0}^{m} \delta_{i}+\frac{\delta_{m}}{p-1}
$$

It remains to show that $\delta_{m}=0$. If $M=N$, then $a_{i}=b_{i}$ for all i so that $\delta_{m}=0$. If $M>N$, then there is a subscript r such that : $a_{r}>b_{r}$ and $a_{i} \geq b_{i}$ for $r<i \leq m$. It follows that $\delta_{m}=0$. This completes the proof of the theorem.

Example 1.15. Let $M=212, N=108$ and $p=5$. Then $M=2+2 p+3 p^{2}+1 p^{3}$ and $N=3+1 p+4 p^{2}$ so that

$$
\sum_{i=0}^{3} \delta_{i}=1+0+1+0=2
$$

Hence, ord $\binom{212}{108}=2$.

Example 1.16. Let $M=p^{k+j}$ and $N=p^{k}$. Then $\delta_{1}=0$ for $0 \leq i<k$ and $\delta_{i}=1$ for $k \leq i<k+j$ so that ord $\binom{p^{k+j}}{p^{k}}=j$.

The next theorem shows that M can be replaced by any $p-a d i c$ integer.

Theorem 1.17. Let $\alpha \in O_{p}$ and N be a rational integer with canonical representations given by

$$
\alpha=\sum_{i=0}^{\infty} a_{i} p^{i} \text { and } N=\sum_{i=0}^{k} b_{i} p^{i}
$$

Then,

$$
\operatorname{ord}\binom{\alpha}{N}=\sum_{i=0}^{\infty} \delta_{i}
$$

where $\delta_{-1}=0$ and for $i \geq 0$,

$$
\delta_{i}=\left\{\begin{array}{lll}
1 & \text { if } & a_{i}<b_{i}+\delta_{i-1} \\
0 & \text { if } & a_{i} \geq b_{i}+\delta_{i-1}
\end{array}\right.
$$

Proof: Suppose the canonical representation of α is infinite. Since the canonical representation of N is finite, there exists a first non-zero coefficient of α beyond a_{k}, call it a_{k+j}. Let $M=a_{0}+a_{1} p+\cdots+a_{k} p^{k}+a_{k+j} p^{k+j}$. It will be shown that $\operatorname{ord}\binom{\alpha}{N}=\operatorname{ord}\binom{M}{N}$ and that

$$
\operatorname{ord}\binom{M}{N}=\sum_{i=0}^{\infty} \delta_{i} .
$$

To establish the first of these note that $\operatorname{ord}(\alpha-i)=\operatorname{ord}(M-1)$ for each $1=0,1,2, \ldots, N-1$. Thus,

$$
\text { ord } \prod_{i=0}^{N-1}(\alpha-i)=\operatorname{ord} \prod_{1=0}^{N-1}(M-1)
$$

so that $\operatorname{ord}\binom{\alpha}{N}=\operatorname{ord}\binom{M}{N}$.
To establish that

$$
\operatorname{ord}\binom{M}{N}=\sum_{i=0}^{\infty} \delta_{i},
$$

note that $\delta_{1}=0$ for every $i \geq k+j$ so that

$$
\sum_{i=0}^{\infty} \delta_{i}=\sum_{i=0}^{k+j-1} \delta_{i}=\operatorname{ord}\binom{M}{N} .
$$

Now suppose α has a finite canonical representation. In this case α is a rational integer M. If $M \geq N$ then Theorem 1.14 applies. If $M<N$, then $\binom{M}{N}=0$ and

$$
\sum_{i=0}^{\infty} \delta_{i}=\infty=\operatorname{ord} 0=\operatorname{ord}\binom{M}{N}
$$

This completes the proof of Theorem 1.17.

Example 1.18. For $p=5$ the canonical representation of $1 / 2$ is $3+2 p+2 p^{2}+\cdots+2 p^{n}+\cdots$. The following is a list of ordered pairs $\left(N\right.$, ord $\left.\binom{1 / 2}{N}\right)$ for

$$
\begin{aligned}
N=0,1,2, \ldots, 15: & (0,0),(1,0),(2,0),(3,0),(4,1), \\
& (5,0),(6,0),(7,0),(8,0),(9,1), \\
& (10,0),(11,0),(12,0),(13,0), \\
& (14,2),(15,1) .
\end{aligned}
$$

Elementary Symmetric Polynomials

The final remarks in this introductory chapter concern elementary symmetric polynomials. Suppose $f(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{n}\right)$. Then $f(x)=x^{n}-\sigma_{1} x^{n-1}+\sigma_{2} x^{n-2}-\cdots+(-1)^{n} \sigma_{n}$ where

$$
\begin{aligned}
\sigma_{1} & =\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}, \\
\sigma_{2} & =\alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{3}+\cdots+\alpha_{1} \alpha_{n}+\alpha_{2} \alpha_{3}+\cdots+\alpha_{n-1} \alpha_{n}, \\
& \vdots \\
\sigma_{m} & =\sum \alpha_{i_{1}} \alpha_{i_{2}} \cdots \alpha_{i_{m}},
\end{aligned}
$$

the sum taken over all possible combinations of subscripts, $1 \leq 1_{1}<1_{2}<\cdots<i_{m} \leq n$. The polynomials $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$ are called the elementary symmetric polynomials for $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$. For example, if $n=4$, then the symmetric polynomiais are

$$
\begin{aligned}
& \sigma_{1}=\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4} \\
& \sigma_{2}=\alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{3}+\alpha_{1} \alpha_{4}+\alpha_{2} \alpha_{3}+\alpha_{2} \alpha_{4}+\alpha_{3} \alpha_{4} \\
& \sigma_{3}=\alpha_{1} \alpha_{2} \alpha_{3}+\alpha_{1} \alpha_{2} \alpha_{4}+\alpha_{1} \alpha_{3} \alpha_{4}+\alpha_{2} \alpha_{3} \alpha_{4} \\
& \sigma_{4}=\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4}
\end{aligned}
$$

For each $k=1,2, \ldots$, let

$$
s_{k}=\sum_{i=0}^{n} \alpha_{i}^{k}
$$

It can be shown that the following relationships hold: (See Van der Waerden, [17], p. 101.) If $1 \leq k \leq n$, then

$$
s_{k}-s_{k-1} \sigma_{1}+\cdots+(-1)^{k-1} s_{1} \sigma_{k-1}+(-1)^{k_{k \sigma_{k}}}=0
$$

and if $k>n$ then

$$
s_{k}-s_{k-1} \sigma_{1}+\cdots+(-1)^{n} s_{k-n} \sigma_{n}=0
$$

The importance of symmetric polynomials relative to this study concerns roots of unity. Suppose $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are the nth roots of unity in an algebraically closed field. Since

$$
\begin{aligned}
x^{n}-1 & =\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{n}\right) \\
& =x^{n}-\sigma_{1} x^{n-1}+\cdots+(-1)^{n} \sigma_{n}
\end{aligned}
$$

Then, by equating coefficients, it follows that $\sigma_{1}=\sigma_{2}=\cdots=\sigma_{n-1}=0$ and $\sigma_{n}=(-1)^{n+1}$. Therefore, for each k such that $1 \leq k<n$, $s_{k}=0$, that is,

$$
\sum_{i=1}^{n} \alpha_{i}^{k}=0
$$

for $k=1,2, \ldots, n-1$. Also, since $s_{n}+(-1)^{n} n_{n}=0$ and $\sigma_{n}=(-1)^{n+1}$, it follows that $s_{n}-n=0$. Thus,

$$
\sum_{i=1}^{n} a_{i}^{n}=n
$$

Example 1.19. The four 4 th roots of unity in the complex plane are $1, i,-1,-i$. Then $s_{1}=1+i+-1+-i=0$, $s_{2}=1+-1+1+-1=0, \quad s_{3}=1+-1+-1+i=0$ and $s_{4}=1+1+1+1=4$.

CONTINUOUS FUNCTIONS

This chapter begins with a summary of some results from Palmer [14]. which are pertinent to later work. The chief contribution is the presentation of the p-adic counterparts of certain reals situations not discussed in Palmer. Henceforth, the p-adic valuation $\|_{p}$ will be denoted by $\|$.

Definition 2.1. Suppose $f: A \rightarrow B$ and α is a limit point of A. Then

$$
\lim _{x \rightarrow \alpha} f(x)=\beta
$$

If and only if for any $\epsilon>0$, there is a $\delta>0$ such that $|x-\alpha| \leq \delta, \quad x \in A$ imp1ies $|f(x)-\beta|<\epsilon$.

Whenever the limit exists, it must be unique.
The usual characterization of limit in terms of convergent sequences holds, that is,

$$
\lim _{x \rightarrow \alpha} f(x)=\beta
$$

if and only if for every sequence $\left\{\alpha_{n}\right\}$ in A converging to α with $\alpha_{n} \neq \alpha$,

$$
\lim _{n \rightarrow \infty} f\left(\alpha_{n}\right)=\beta
$$

Theorem 2.2. Suppose $f: A \rightarrow B$ and α is a limit point of A. Then $\lim _{x \rightarrow \alpha} f(x)$ exists if and only if for any $\epsilon>0$, there is a $\delta>0$ such that $|x-y| \leq \delta$ implies $|f(x)-f(y)|<\epsilon$.

Definition 2.3. Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$. The function is continuous at point $\underline{\alpha} \varepsilon A$ if and only if

$$
\lim _{x \rightarrow \alpha} f(x)=f(\alpha) .
$$

The function is continuous on the set A if and only if it is continuous at each point of A.

Theorem 2.4. If f and g are each continuous at point α then $f+g$ and $f g$ are each continuous at α and f / g is continuous at α provided $g(\alpha) \neq 0$.

Theorem 2.5. If f is continueus at α and g is continuous at $f(\alpha)$, then the composition $g \circ f$ is continuous at α.

Definition 2.6. A sequence of functions $\left\{f_{n}\right\}$ defined on set A converges to a function \underline{f} if and only if for each $x \varepsilon A$

$$
\lim _{n \rightarrow \infty} f_{n}(x)=f(x) .
$$

The function f is called the limit function of the sequence $\left\{f_{n}\right\}$.

Definition 2.7. A sequence of functions $\left\{f_{n}\right\}$ defined on set A converges uniformly to a function \underline{f} if and only if for any $\epsilon>0$, there is an integer N such that $n \geq N$ implies $\left|f_{n}(x)-f(x)\right|<\epsilon$ for every $x \in A$.

Theorem 2.8. A sequence of functions $\left\{f_{n}\right\}$ defined on a set A converges uniformly to a function f if and only if for any $\epsilon>0$ there is an integer N such that $n \geq N$ implies $\left|f_{n+1}(x)-f_{n}(x)\right|<\epsilon$ for each $\mathbf{x} \varepsilon \mathrm{A}$.

Theorem 2.9. Suppose $\left\{f_{n}\right\}$ converges uniformly to f on A. If for each n, f_{n} is continuous at α, then f is continuous at α.

Definition 2.10. Suppose $\left\{f_{n}\right\}$ is defined on A. The series $\sum f_{n}(x)$ converges to a limit function f defined on A if and only if

$$
\lim _{N \rightarrow \infty} \sum_{n=1}^{N} f_{n}(x)=f(x)
$$

for each $\mathbf{x} \boldsymbol{\varepsilon}$ A.

Definition 2.11. A series $\sum f_{n}(x)$ converges uniformly to a limit function f if and only if

$$
\left\{\sum_{n=1}^{N} f_{n}(x)\right\}_{N=1}^{\infty}
$$

converges uniformly to $f(x)$.

Theorem 2.12. The series $\sum f_{n}(x)$ converges uniformly on set A if and only if for every $\epsilon>0$ there is an N such that $n \geq N$ implies $\left|f_{n}(x)\right|<\epsilon \quad$ for every $x \in A$.

Theorem 2.13. Suppose, $\sum f_{n}(x)$ converges uniformly to $f(x)$. If for each n, f_{n} is continuous at α, then f is continuous at α.

Theorem 2.14. Let $\left\{b_{n}\right\}$ be a sequence in Q_{p} such that $\lim b_{n}=0$. If for each $n,\left|f_{n}(x)\right| \leq\left|b_{n}\right|$ for each $x \in A$, then $\sum f_{n}(x)$ converges uniformly on A.

Uniform Approximation

Definition 2.15. A set A in Q_{p} is compact if every open covering of A contains a finite subcovering.

Theorem 2.16. Let $K \subset Q_{p}$. Then K is compact if and only if K is closed and bounded. [16].

Since any two discs in Q_{p} are either disjoint or nested, it follows that every compact subset in Q_{p} can be partitioned into a finite number of pairwise disjoint subsets. This allows the following definition of a step function on a compact set in Q_{p}.

Definition 2.17. Let D be a disc in Q_{p}. A function f defined on D is a step function on D if and only if there is a partition of D by a finite collection of discs D_{1} such that, for each 1 , $1=1,2, \ldots, n$, the function f is constant on D_{i}. If K is a compact set in Q_{p}, a function f is a step function on K if and only if there is a step function F on a disc D such that F is an extension of f. The collection of discs $\left\{D_{1}, D_{2}, \ldots, D_{n}\right\}$ is called the partition associated with the step function F.

Characteristic functions are often used to designate a step function. For example, if f is a step function on a disc D with the collection $\left\{D_{1}, D_{2}, \ldots, D_{n}\right\}$ as the associated partition, then

$$
f(x)=\sum_{i=1}^{n} a_{i} \emptyset_{i}(x)
$$

where a_{i} is the constant value of f on D_{i} and \emptyset_{i} is the characteristic function of D_{i}.

Definition 2.18. Suppose $A \subset K$ and f is a function defined on A. If, given $\epsilon>0$, there is a function F defined on K such that for every $x \in A,|F(x)-f(x)|<\epsilon$, then F is a uniform approximation of f on A. Equivalently, F uniformly approximates the function f on A.

The next theorem shows that a continuous function on a bounded set has a step function which approximates it uniformly.

Theorem 2.19. Let A be a subset of a compact set $K \subset Q_{p}$. If f is a continuous function defined on A, then there is a step function F defined on K such that F approximates f uniformly on A.

Proof: Since K is compact, there is a disc D containing K. If it is shown that there is a p-adic step function F defined on. D such that F uniformly approximates f on A, then F restricted to K is the desired function. Thus, it suffices to assume in the beginning that. K is a disc. Let $\epsilon>0$ be chosen.

Since f is continuous on A and A is compact, there is a positive integer N such that $x, y \in A$ and $|x-y|<p^{-N}$ imply $|f(x)-f(y)|<\epsilon$. Furthermore, it may be assumed without loss of generality that $\mathrm{p}^{-\mathrm{N}}$ is less than the radius of the disc K . Now K is partitioned by a finite number of discs of radius p^{-N}. Let
D_{1}, \ldots, D_{n} denote the discs that have a non-empty intersection with A. The step function F is defined as follows:

For each $i=1,2, \ldots, n$ pick $x_{i} \varepsilon D_{i} \cap A$. Then $F(x)=f\left(x_{i}\right)$ if $x \in D_{1}, i=1,2, \ldots, n$ and $F(x)=0$ if

$$
x \varepsilon K-\bigcup_{i=1}^{n} D_{i}
$$

Since F is constant on each of a finite number of discs in a partition of K, F is a step function on K. By the way in which the discs are determined, $x \in A$ implies $|f(x)-F(x)|=\left|f(x)-f\left(x_{1}\right)\right|$ for some 1 such that: x and x_{1} are in the same disc D_{1} of radius p^{-N}. Therefore, $|f(x)-F(x)|<\epsilon$ so that the step function. F approximates the function f uniformly on the set A.

The above result is not essentially different from its real analysis counterpart, but the next result will display an interesting contrast. In the case of real step functions, the endpoints of the subintervals are generally points of discontinuity for the step function. The reason for this is that an endpoint is a point of accumulation of two distinct subintervals. In the p-adic situation, this does not occur since discs in Q_{p} are both open and closed. Theorem 2.20. If A is a compact subset of Q_{p} and f is a step function on A, then f is continuous on A.

Proof: Pick $\epsilon>0$. For any $x \in A$, the definition of step function implies there is a disc D such that $x \in D$ and f is constant on $D \cap A . S u p p o s e$ the radius of D is δ. Let y be any
point of $D \cap A$. Then, since any point of D may be taken as its center, $|x-y| \leq \delta$. But $y, x \in D$ imply $|f(x)-f(y)|=0<\epsilon$ so that f is continuous on A .

An Extension Theorem

As stated earlier, a major objective is the proof of Weierstrass' Approximation Theorem. There are two more preliminary results to establish. The first is concerned with extending a continuous function to a larger compact set.

Theorem 2.21. Let K be a compact subset of Q_{p} and A be a closed subset of K. If f is a continuous p-adic function defined on A, then there is a continuous function F defined on K such that F extends f, that is, for every $x \in A, F(x)=f(x)$.

Proof: The proof will be accomplished by constructing a uniformly convergent sequence of continuous functions $\left\{f_{n}\right\}$ such that the limit function F extends f. In particular, each function f_{n} will be a step function that uniformly approximates f .

By Theorem 2.20, there is a step function f_{1} defined on K such that $\left|f_{1}(x)-f(x)\right|<1$ for every $x \varepsilon A$. According to the definition of step function, there is a finite collection of pairwise disjoint discs D_{0} covering A and such that f_{1} is constant on each member of \mathfrak{D}_{0}. For each $D \in \mathfrak{D}_{0}$ such that $D \cap A \neq \emptyset$, Theorem 2.20 again implies there is a step function g_{1} defined on D such that $\left|g_{1}(x)-f(x)\right|<p^{-1}$ for every $x \varepsilon A$. Furthermore; it may be assumed that the norm of the partition of D associated with g_{1} is not
greater than the norm of \mathfrak{D}_{0}. (The norm of a partition by discs is the radius of the largest disc in the partition. It is denoted by $N(\mathbb{P})$.) Define f_{2} on K as follows: Let $x \in K$. Since \mathbb{D}_{0} covers K, $x \in D$ for some $D \in \mathbb{D}_{0}$. Then

$$
f_{2}(x)=g_{1}(x) \text { if } D \cap A \neq \emptyset
$$

and

$$
f_{2}(x)=f_{1}(x) \quad \text { if } \quad D \cap A=\emptyset
$$

Since $\left|g_{1}(x)-f(x)\right|<p^{-1}$ and $f_{2}(x)=g_{1}(x)$ for each $x \in A$, it follows that $\left|f_{2}(x)-f(x)\right|<p^{-1}$ for every $x \in A$. Also, since the members of \mathfrak{D}_{0} are pairwise disjoint and f_{2} is defined to be constant on each member of a finite partition by discs of each member of \mathfrak{S}_{0}, it follows that $: f_{2}$ is a step function on K. Let \mathbb{D}_{1} denote the partition associated with f_{2}. Then $N\left(\mathcal{D}_{1}\right) \leq N\left(\mathfrak{D}_{0}\right)$.

Now suppose f_{1}, \ldots, f_{n-1} have been defined so that for each 1 :
a) f_{i} is a step function on K such that $x \in A$ implies $\left|f_{i}(x)-f(x)\right|<p^{-i} ;$
b) if \mathscr{D}_{i} denotes the partition of K associated with f_{i}, then $N\left(\mathscr{T}_{i}\right) \leq N\left(\mathscr{D}_{i-1}\right)$.

Then for each $D \in \mathscr{D}_{n-1}$ such that $D \cap A \neq \emptyset$, let g_{n} be a step function on D such that:
1). $\left|g_{n}(x)-f(x)\right|<p^{-n}$ for every $x \in A$; and
2) the norm of the partition of D associated with g is less than $N\left(\mathfrak{D}_{n-1}\right)$.

Define f_{n} on K as follows: Let $x \in K$ so that $x \in D$ for some $D \in \mathfrak{D}_{\mathrm{n}-1}$. Then

$$
f_{n}(x)=g_{n}(x) \quad \text { if } \quad D \cap A \neq \emptyset
$$

and

$$
f_{n}(x)=f_{n-1}(x) \text { if } D \cap A=\emptyset
$$

Thus, f_{n} is a step function on K such that for each $x \in A$, $\left|f_{n}(x)-f(x)\right|=\left|g_{n}(x)-f(x)\right|<p^{-n}$ and $N\left(\mathscr{D}_{n}\right) \leq N\left(\mathscr{D}_{n-1}\right)$.

Therefore, a sequence of step functions on K has been defined by induction. Each step function is continuous. It remains to show that f_{n} converges uniformly to an extension of f.

Two cases need to be considered. If $\mathrm{x} \varepsilon \mathrm{A}$, then

$$
\begin{aligned}
\left|f_{n}(x)-f_{n-1}(x)\right| & =\left|f_{n}(x)-f(x)+f(x)-f_{n-1}(x)\right| \\
& \leq \max \left\{\left|f_{n}(x)-f(x)\right|,\left|f(x)-f_{n-1}(x)\right|\right\} \\
& <p^{-(n-1)}
\end{aligned}
$$

If $x \notin A$, then either $f_{n}(x)=f_{n-1}(x)$ or $x \in D_{n}$ where $D_{n} \in \mathcal{D}_{n}$ and $D_{n} \cap A \neq \emptyset$. In the latter case, there is a disc $D_{n-1} \in \mathfrak{D}_{n-1}$ such that $D_{n} \subset D_{n-1}$. Let x_{n} be an element in $D_{n} \cap$ A. Since $f_{n}(x)$ agrees with the step function $g_{n}(x)$ on $D_{n}, f_{n}(x)=g_{n}(x)=g_{n}\left(x_{n}\right)$. Similarly, $f_{n-1}(x)=g_{n-1}(x)=g_{n-1}\left(x_{n}\right)$. Then

$$
\begin{aligned}
\left|f_{n}(x)-f_{n-1}(x)\right| & =\left|f_{n}(x)-f\left(x_{n}\right)+f\left(x_{n}\right)-f_{n-1}(x)\right| \\
& =\left|g_{n}(x)-f\left(x_{n}\right)+f\left(x_{n}\right)-g_{n-1}(x)\right| \\
& =\left|g_{n}\left(x_{n}\right)-f\left(x_{n}\right)+f\left(x_{n}\right)-g_{n-1}\left(x_{n}\right)\right| \\
& \leq \max \left\{g_{n}\left(x_{n}\right)-f\left(x_{n}\right)\left|,\left|f\left(x_{n}\right)-g_{n-1}\left(x_{n}\right)\right|\right\}\right. \\
& <p^{-(n-1)} \text { by the definition of } g_{n} \text { and } g_{n-1} .
\end{aligned}
$$

Thus, it has been established that the sequence of step functions f_{n} is uniformly convergent on K. Let $F=\underset{n \rightarrow \infty}{\operatorname{limit}} f_{n}$. Since each step function f_{n} is continuous, F is continuous.

It remains to prove that F extends f. For any $\epsilon>0$, there is an N such that $\left|f_{n}(x)-f(x)\right|<\epsilon$ and $\left|F(x)-f_{n}(x)\right|<\epsilon$ whenever $\mathrm{n} \geq \mathrm{N} . \quad$ Consider

$$
\begin{aligned}
|F(x)-f(x)| & =\left|F(x)-f_{n}(x)+f_{n}(x)-f(x)\right| \\
& \leq \max \left\{\left|F(x)-f_{n}(x)\right|,\left|f_{n}(x)-f(x)\right|\right\} \\
& <\epsilon
\end{aligned}
$$

Since $|F(x)-f(x)|<\epsilon$ for every $\epsilon, F(x)-f(x)=0$ and the proof of Theorem 2.21 is complete.

Weierstrass' Approximation Theorem

Since Weierstrass' Theorem deals with the approximation of a function by a polynomial, it is reasonable that a polynomial with somewhat predictable behavior may be useful. The next lemma provides some information about the polynomial $h(x)=1-x^{p-1}$ which will be utilized in the proof of Weierstrass' Approximation Theorem.

Lemma 2.22. Suppose $h(x)=1-x^{p-1}$. Then

$$
\begin{gathered}
\left|(h(x))^{p^{n}}\right|=|x|^{(p-1) p^{n}} \text { if }|x|>1, \\
\left|(h(x))^{p^{n}}\right| \leq p^{-p^{n}} \quad \text { if } \quad|x|=1
\end{gathered}
$$

and

$$
\left|(\mathrm{h}(\mathrm{x}))^{\mathrm{p}^{\mathrm{n}}}-1\right| \leq \mathrm{p}^{-\mathrm{n}} \quad \text { if }|\mathrm{x}|<1
$$

Proof: Suppose $|x|>1$. Then

$$
\begin{aligned}
(h(x))^{p^{n}} & =\left(1-x^{p-1}\right)^{p^{n}} \\
& =\sum_{k=0}^{p^{n}}\binom{p^{n}}{k}\left(-x^{p-1}\right)^{k} .
\end{aligned}
$$

For each $k, 0 \leq k<p^{n}$,

$$
\left|\binom{p^{n}}{k} x^{(p-1) k}\right| \leq\left|x^{(p-1) k}\right|<\left|x^{(p-1) p^{n}}\right|
$$

Therefore, $\left|(h(x))^{p^{n}}\right|=\left|x^{(p-1) p^{n}}\right|$ whenever $|x|>1$.
Suppose $|x|=1$. Then $x=a_{0}+a_{1} p+\cdots$, with $a_{0} \neq 0$. Thus, $x=a_{0}+p \alpha$ where $\alpha \in O_{p}$ and $x^{p-1}=a_{0}^{p-1}+p \beta$ for some $\beta \varepsilon O_{p}$. Since $0<a_{0}<p$, by Fermat's Theorem, $a_{0}^{p-1} \equiv 1 \bmod p$. Combining this result with $x^{p-1}=a_{0}^{p-1}+p \beta$, it is seen that there is an $n \in O_{p}$ such that $h(x)=1-x^{p-1}=p \eta$. Thus, $\quad(h(x))^{p^{n}}=p^{p^{n}} \eta^{\prime}$ where $n^{\prime} \varepsilon O_{p}$ so that $\left|(h(x))^{p^{n}}\right| \leq p^{-p^{n}}$ whenever. $|x|=1$.

Finally, suppose $|x|<1$. Then $x=p \alpha$ for some $\alpha \varepsilon O_{p}$ so that $x^{p-1}=p^{p-1} \alpha^{p-1}$. This implies

$$
\begin{aligned}
\left(1-x^{p-1}\right)^{p} & =\sum_{k=0}^{p}\binom{p}{k}\left(-x^{p-1}\right)^{k} \\
& =\sum_{k=0}^{p}\binom{p}{k}(-1)^{k}(p \alpha)^{k(p-1)} .
\end{aligned}
$$

Since $\binom{p}{1}=p$, then $p^{p} \left\lvert\,\binom{ p}{k} p^{k(p-1)}\right.$ for every $k=1,2, \ldots, p$.

Thus, $\left(1-x^{p-1}\right)^{p}=1+p_{\beta}^{p}$ for some $\beta \varepsilon o_{p}$ from which it follows that

$$
\begin{aligned}
(h(x))^{p^{n}} & =\left(1-x^{p-1}\right)^{p^{n}}=\left(1+p_{\beta}^{p_{\beta}}\right)^{p^{n-1}} \\
& =\sum_{k=0}^{p^{n-1}}\binom{p^{n-1}}{k} p^{k p_{\beta}^{k}} .
\end{aligned}
$$

To complete the proof of $\left|(h(x))^{p^{n}}-1\right| \leq \frac{1}{p^{n}}$, it suffices to show that

$$
\mathrm{p}^{\mathrm{n}} \left\lvert\,\binom{\mathrm{p}^{\mathrm{n}-1}}{\mathrm{k}} \mathrm{p}^{\mathrm{kp}}\right.
$$

for each $k=1,2, \ldots, p^{n-1}$.
Suppose $\begin{gathered}\mathrm{p} \neq \mathrm{k} \\ \mathrm{n}-1\end{gathered}$. Then according to Theorem 1.14, ord $\binom{\mathrm{p}^{\mathrm{n}-1}}{\mathrm{k}}=\mathrm{n}$. Thus, $p^{n} \left\lvert\,\binom{ p^{n-1}}{k} p^{k p}\right.$ whenever $p \neq k$.

Suppose $k=p^{j} m$ where $(m, p)=1$ and $j>0$. Then, by Theorem 1.14 again, ord $\binom{p^{n-1}}{k}=n-j-1$. Therefore, since ord $p^{k p}=k p=m p{ }^{j+1}$, then

$$
\operatorname{ord}\binom{p^{n-1}}{k} p^{k p}=\operatorname{ord}\binom{p^{n-1}}{k}+\operatorname{ord} p^{k p}=n-j-1+m p^{j+1}
$$

Since $m p^{j+1}>j+1$, it follows that $p^{n} \left\lvert\,\binom{ p^{n-1}}{k} p^{k p}\right.$ whenever $p \mid k$. This completes the proof of Lemma 2.22.

Theorem 2.23. (Weierstrass' Approximation Theorem for the p-adic field Q_{p}) Let K be a compact subset of the p-adic field Q_{p}. If f is a
continuous function from K into Q_{p}, then, for any $\epsilon>0$, there is a polynomial function g with coefficients in Q_{p} such that $|f(x)-g(x)|<\epsilon \quad$ for every $x \varepsilon K$.

Proof: The proof will be accomplished by establishing each of the following:

1. The characteristic function of a disc in Q_{p} can be uniformly approximated by a polynomial.
2. The function f extends to a uniformly continuous function F on a disc containing the given compact set K.
3. The function F can be uniformly approximated by a polynomial.

Let α be in Q_{p} and let r and s be two rational integers such that $\mathrm{r}<\mathrm{s}$. Let \emptyset be the characteristic function of the disc $D\left(\alpha, p^{-s}\right)$. Since $r<s$, the disc $D\left(\alpha, p^{-s}\right)$ is contained in the disc $D\left(\alpha, p^{-r}\right)$. It will be shown by induction on the difference $s-r$ that the characteristic function \emptyset on the smaller disc $D\left(\alpha, p^{-s}\right)$ can be uniformly approximated on the larger disc by a polynomial.

Since the disc $D\left(\alpha, p^{-r}\right)$ is the image under a translation of $D\left(0, \mathrm{p}^{-r}\right)$, assume $\alpha=0$.

Suppose $s-r=1$ and $\epsilon>0$. For each $n>0$ define a polynomial $g_{n}(x)=\left(h\left(p^{\dagger r} x\right)\right)^{p^{n}}$ where h is the polynomial defined in Lemma 2.22. It will be shown that for every $x \in D\left(0, p^{-r}\right)$, $\left|\emptyset(x)-g_{n}(x)\right| \leq \frac{1}{p^{n}}$ so that, by choosing $n \geq-\log _{p} \epsilon$, the function \emptyset is uniformly approximated on $D\left(0, p^{-r}\right)$ by g_{n}.

If $x \in D\left(0, p^{-s}\right)$ then $|x| \leq p^{-s}=p^{-(r+1)}$ so that $\left|p^{-r} x\right|<1$. By Lemma 2.22, this implies $\left|\emptyset(x)-g_{n}(x)\right|=\left|1-\left(h\left(p^{-r} x\right)\right)^{p^{n}}\right| \leq \frac{1}{p^{n}}$.

If $x \in D\left(0, p^{-r}\right) \cup D\left(0, p^{-s}\right)$, then $\emptyset(x)=0$ and, since $s-r=1,|x|=p^{r}$ so that $\left|p^{-r} x\right|=1$. Therefore, $\left|\phi(x)-g_{n}(x)\right|=\left|g_{n}(x)\right|=\left|\left(h\left(p^{-r} \dot{x}\right)\right)^{p^{n}}\right| \leq \frac{1}{p^{n}}$.

This completes the first step of the induction since, for $s-r=1$, the function \emptyset. is uniformly approximated on $D\left(0, p^{-r}\right)$ by the polynomial g_{n} whenever n is such that $\frac{1}{p^{n}}<\epsilon$.

Now suppose $s-r=k$ and assume that for every pair of discs $D\left(0, p^{-r^{\prime}}\right)$ and $D\left(0, p^{-s^{\prime}}\right)$ with $0<s^{\prime}-r^{\prime}<k$, the function defined to be identically 1 on $D\left(0, p^{-s^{\prime}}\right)$, and zero elsewhere can be uniformly approximated on $D\left(0, p^{-r}\right)$ by a polynomial. It will be shown that the above assumption implies that the function \emptyset which is 1 on $D\left(0, \mathrm{p}^{-s}\right)$ and 0 on $D\left(0, p^{-r}\right)-D\left(0, p^{-s}\right)$ is uniformly approximated on the disc $D\left(0, p^{-r}\right)$ by a polynomial.

Let ϵ be chosen such that $0<\epsilon<1$. Consider the discs $D\left(0, p^{-s}\right)$ and $D\left(0, p^{-s+1}\right)$. By assumption, there exists a polynomial h_{1} such that for $x \in D\left(0, p^{-s}\right),\left|1-h_{1}(x)\right|<\epsilon$ and for $\mathrm{x} \in \mathrm{D}\left(0, \mathrm{p}^{-\mathrm{s}+1}\right)-\mathrm{D}\left(0, \mathrm{p}^{-\mathrm{s}}\right),\left|\mathrm{h}_{1}(\mathrm{x})\right|<\epsilon$. Since the set $D\left(0, p^{-r}\right)-D\left(0, p^{-s+1}\right)$ is closed and bounded, it is compact. Therefore, the polynomial function h_{1} is bounded there so that there is a positive real number $M \geq 1$ such that $\left|h_{1}(x)\right| \leq M$ for every $x \in D\left(0, p^{-r}\right)-D\left(0, p^{-s+1}\right)$. Again, by the inductive assumption, there is a polynomial h_{2} such that for every $x \in D\left(0, p^{-s+1}\right),\left|1-h_{2}(x)\right|<\frac{\epsilon}{M}$ and for every $x \in D\left(0, p^{-r}\right)-D\left(0, p^{-s+1}\right),\left|h_{2}(x)\right|<\frac{\epsilon}{M}$. Now consider the polynomial $g(x)=h_{1}(x) h_{2}(x)$. If $x \in D\left(0, p^{-s}\right)$, write $g(x)=1-\left(1-h_{1}(x)\right)-\left(1-h_{2}(x)\right)+\left(1-h_{1}(x)\right)\left(1-h_{2}(x)\right)$ so that $|g(x)-1| \leq \max \left\{\left|1-h_{1}(x)\right|,\left|1-h_{2}(x)\right|,\left|\left(1-h_{1}(x)\right)\left(1-h_{2}(x)\right)\right|\right\}$. Since $D\left(0, p^{-s}\right) \subset D\left(0, p^{-s+1}\right), \frac{\epsilon}{M} \leq \epsilon$ and $\epsilon^{2}<\epsilon$, the above
inequality implies $|g(x)-1|<\epsilon$ for every $x \in D\left(0, p^{-s}\right)$. If $x \in D\left(0, p^{-s+1}\right)-D\left(0, p^{-s}\right)$ write $g(x)=h_{1}(x)-h_{1}(x)\left(1-h_{2}(x)\right)$ so that $|g(x)| \leq \max \left\{\left|h_{1}(x)\right|,\left|h_{1}(x)\left(1-h_{2}(x)\right)\right|\right\}$. Again, since $\frac{\epsilon}{M}<\epsilon$, this implies $|g(x)|<\epsilon$.

Finally, if $x: E\left(0, p^{-r}\right)-D\left(0, p^{-s+1}\right)$ then $|g(x)|=\left|h_{1}(x) h_{2}(x)\right|<M \cdot \frac{\epsilon}{M}=\epsilon$. This completes the proof by induction.

It follows from the above argument that for any $\alpha \varepsilon Q_{p}$ and any two discs $D\left(\alpha, p^{-s}\right)$ and $D\left(\alpha, p^{-r}\right)$. with $r<s$, the characteristic function of the smaller disc $D\left(\alpha, p^{-s}\right)$ is uniformly approximated on the disc $D\left(\alpha, p^{-r}\right)$ by some polynomial. Furthermore, since any point of a disc in Q_{p} may be taken as its center, if $\alpha \varepsilon D\left(0, p^{-r}\right)$ and $s>r$, then $D\left(\alpha, p^{-s}\right) \subset D\left(0, p^{-r}\right)$ and the characteristic function of $D\left(\alpha, p^{-s}\right)$ is uniformly approximated on $D\left(0, \mathrm{P}^{-\mathrm{r}}\right)$ by some polynomial.

From the hypothesis of Weierstrass' Theorem, f is a continuous function defined on a compact set K. Let $D\left(0, p^{-r}\right)$ be a disc containing K. By Theorem 2.21, there is a function F defined on $D\left(0, p^{-r}\right)$ such that F extends f, that is, $F(x)=f(x)$ for every $x \in K$, and, furthermore, F is uniformly continuous on $D\left(0, p^{-r}\right)$. Thus, if $\epsilon>0$ and $x \in D\left(0, p^{-r}\right)$, then there is a disc $D\left(x, p^{-s}\right)$ such that for every $y \in D\left(x, p^{-s}\right),|F(x)-F(y)|<\epsilon$. Now the collection of all such discs covers $D\left(0, p^{-r}\right)$, and, since $D\left(0, p^{-r}\right)$ is compact, there is a finite collection $\left\{D\left(x_{1}, p^{-s} s_{1}\right), \ldots, D\left(x_{n}, p^{-s} n_{n}\right)\right\}$ covering $D\left(0, p^{-r}\right)$. Furthermore, since any two discs in Q_{p} are either disjoint or nested, it may be assumed that the discs $D\left(x_{1}, p^{-s} 1\right), \ldots, D\left(x_{n}, p^{-s}\right)$ are pairwise disjoint.

Since F extends f, the objective of uniformly approximating f on K will be accomplished when F is uniformily approximated on $D\left(0, p^{-r}\right)$ by some polynomial g. Let \emptyset_{i} denote the characteristic function of the disc $D\left(x_{i}, p^{-s} i\right.$) and g_{i} a polynomial that uniformly approximates \emptyset_{i} on the disc $D\left(0, P^{-r}\right)$. The candidate for g is given by

$$
g(x)=\sum_{i=1}^{n} F\left(x_{i}\right) g_{i}(x) .
$$

In particular, let g_{i} be such that for every $x \in D\left(0, p^{-r}\right)$, $\left|g_{i}(x)-\emptyset_{i}(x)\right|<\frac{\epsilon}{M}$ where M is an upper bound of $|F(x)|$ on the compact set $D\left(0, p^{-r}\right)$. To prove that g uniformly approximates F on $\mathrm{D}\left(0, \mathrm{p}^{-r}\right)$, suppose $\mathrm{x} \in \mathrm{D}\left(0, \mathrm{p}^{-\mathrm{r}}\right)$. Then;

$$
\begin{aligned}
|F(x)-g(x)| & =\left|\sum_{i=1}^{n} \emptyset_{i}(x) F(x)-\sum_{i=1}^{n} F\left(x_{i}\right) g_{i}(x)\right| \\
& =\left|\sum_{i=1}^{n}\left(\emptyset_{i}(x) F(x)-F\left(x_{i}\right) g_{i}(x)\right)\right| \\
& \leq \max _{i}\left\{\left|\emptyset_{i}(x) F(x)-F\left(x_{i}\right) g_{i}(x)\right|\right\} .
\end{aligned}
$$

Now,

$$
\begin{aligned}
&\left|\emptyset_{i}(x) F(x)-F\left(x_{i}\right) g_{i}(x)\right| \\
&=\left|\emptyset_{i}(x) F(x)-\emptyset_{i}(x) F\left(x_{i}\right)+\emptyset_{i}(x) F\left(x_{i}\right)-F\left(x_{i}\right) g_{i}(x)\right| \\
& \leq \max \left[\left|\emptyset_{i}(x)\left(F(x)-F\left(x_{i}\right)\right)\right|,\left|F\left(x_{i}\right)\left(\emptyset_{i}(x)-g_{i}(x)\right)\right|\right\}
\end{aligned}
$$

By the way in which the discs $D\left(x_{1}, P^{-s}\right)$ were chosen and the fact
that ϕ_{1} is the characteristic function on $D\left(x_{i}, p^{-s}\right)$, it follows that: $\left|\emptyset_{1}(x)\left(F(x)-F\left(x_{1}\right)\right)\right|<\epsilon$ for every $x \in D\left(0, P^{-r}\right)$. Also, since g_{i} uniformly approximates \emptyset_{i},

$$
\left|F\left(x_{i}\right)\left(\emptyset_{i}(x)-g_{i}(x)\right)\right|=\left|F\left(x_{i}\right)\right|\left|\emptyset_{i}(x)-g_{i}(x)\right|<M \cdot \frac{\epsilon}{M}=\epsilon .
$$

Thus, for each $1=1,2, \ldots, n ;\left|\emptyset_{i}(x) F(x)-F\left(x_{i}\right) g_{i}(x)\right|<\epsilon$ for every $x \in D\left(0, p^{-r}\right)$. This implies $|F(x)-g(x)|<\epsilon \quad$ for every $\mathrm{x} \varepsilon \mathrm{D}\left(0, \mathrm{p}^{-r}\right)$ so that the polynomial g uniformly approximates the function F on the disc $D\left(0, p^{-r}\right)$ which in turn implies that the given function f is uniformly approximated by a polynomial. This completes the proof of Weierstrass' Approximation Theorem.

Differentiable p-adic Functions

Since the concept of differentiation stems from the definition of limit and since the basic properties of limits are unaffected by the non-archimedean property, it is not surprising that a great many of the definitions and theorems relating to derivatives carry over unchanged from elementary calculus. Some of these are listed below.

Definition 2.24. Let $f: A \rightarrow B$. The function f is differentiable at α if and only if $\lim _{x \rightarrow \alpha} \frac{f(x)-f(\alpha)}{x-\alpha}$ exists. If the limit exists, it is denoted by $f^{\prime}(\alpha)$ and is called the derivative of f at α. If $f^{\prime}(\alpha)$ exists for every $\alpha \cdot \varepsilon \mathrm{A}$, then f is differentiable on A .

Theorem 2.25. If f is differentiable at α then f is continuous at α.

Theorem 2.26. Let f and g be differentiable at α. Then:

1. $(f+g)^{\prime}(\alpha)=f^{\prime}(\alpha)+g^{\prime}(\alpha)$;
2. $(f g)^{\prime}(\alpha)=f(\alpha) g^{\prime}(\alpha)+g(\alpha) f^{\prime}(\alpha)$;
3. $\frac{f(\alpha)}{g(\alpha)}=\frac{g(\alpha) f^{\prime}(\alpha)-f(\alpha) g^{\prime}(\alpha)}{g(\alpha)^{2}}$, provided $g(\alpha) \neq 0$; and
4. (f $\circ \mathrm{g})^{\prime}(\alpha)=f^{\prime}(g(\alpha)) g^{\prime}(\alpha)$, provided f is differentiable at. $g(\alpha)$.

A particularly well-behaved class of functions are those represented by power series. Palmer [14] shows that a power series $\sum b_{n}(x-a)^{n}$ converges for all: x such that

$$
|x-a|<\rho=\frac{1}{\overline{1 i m} \sqrt[n]{\left|b_{n}\right|}} .
$$

The real number ρ is called the radius of convergence of the given power series where it is understood that $\rho=0$ if $\overline{\lim } \sqrt[n]{\left|b_{n}\right|}=\infty$ and $\rho=\infty$ if $\overline{\lim } \sqrt[n]{\left|b_{n}\right|}=0$.

Definition 2.27. A function f defined by

$$
f(x)=\sum_{n=0}^{\infty} b_{n}(x-a)^{n}
$$

is an analytic function.

Theorem 2.28. Suppose

$$
f(x)=\sum_{n=0}^{\infty} b_{n}(x-a)^{n}
$$

has a non-zero radius of convergence ρ. Then each of the following is true:

1. $f(x)$ is continuous at each x such that $|x-a|<\rho$.
2. The series $\sum b_{n}(x-a)^{n}$ converges uniformly for each x such that $|x-a| \leq t<\rho$.
3. The derived series $\sum n b_{n}(x-a)^{n-1}$ converges for $|x-a|<\rho$.
4. If $|x-a|<\rho$, then $f^{\prime}(x)=\operatorname{limit}_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exists and is given by the derived series.
5. The usual rules of differentiation hold for sums, products, quotients, and compositions of analytic functions.
6. For each $n, b_{n}=\frac{f^{(n)}(a)}{n!}$.
7. If f and g are both analytic in $D(a, r)$ with $f^{\prime}(x)=g^{\prime}(x)$ for x in $D(a, r)$ then there is a constant c such that $f(x)=g(x)+c$ for each x in $D(a, r)$.

Proof: Proofs are given by Palmer for an arbitrary non-archimedean field in [14].

Several analytic functions discussed by Palmer will be referred to in later chapters. For reference, some of these are listed in the following table.

TABLE I

ANALYTIC FUNCTIONS

Name	Representation	ρ
Geometric	$(1-x)^{-1}=\sum_{n=0}^{\infty} x^{n}$	1
Binomial	$(1+x)^{\alpha}=\sum_{n=0}^{\infty}\binom{\alpha}{n} x^{n}, \alpha \in o_{p}$	$\geq p^{-1 /(p-1)}$
Logarithm	$\log (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n}}{n}$	1
Exponential	$\exp (x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$	$p^{-1 /(p-1)}$

In real analysis, two functions whose derivatives are the same function must differ by a constant. While Theorem 2.26 shows that this property holds for analytic p-adic functions, it does not hold for all pairs of differentiable p-adic functions. In the following example, a function is given which is not constant on any disc and yet its derivative is zero everywhere.

Example 2.29. Let $x \in O_{p}$ have the canonical representation $x=a_{0}+a_{1} p+\cdots+a_{n} p^{n}+\cdots$. Define $f: o_{p} \rightarrow O_{p}$ by $f(x)=a_{0}+a_{1} p^{2}+\cdots+a_{n} p^{2 n}+\cdots$.

By uniqueness of the canonical representation of a p-adic integer, it follows that f is one-to-one so that f is not the constant function on any disc. To see that f has a derivative equal to zero
everywhere, suppose $x, y \in o_{p}$ such that $|x-y|=p^{-N}$. Then the first N coefficients of the canonical representations for x and y must agree. It follows that $|f(x)-f(y)|=p^{-2 N}$. Therefore, $\left|\frac{f(x)-f(y)}{x-y}\right|=p^{-N} \quad$ so that $\quad \lim _{y \rightarrow x}\left|\frac{f(x)-f(y)}{x-y}\right|=0 \quad$ for every $\quad x \in 0_{p}$.

This chapter will be concluded with an example of a p-adic function which is continuous everywhere in O_{p} but is nowhere differentiable.

Example 2.30. For each $x \in O_{p}$, define $f(x)$ by $f(x)=a_{0}^{2}+a_{1}^{2} p+\cdots+a_{n}^{2} p^{n}+\cdots$ where $x=a_{0}+a_{1} p+\cdots+a_{n} p^{n}+\cdots$ is the canonical representation. Since $\left|a_{n}\right| \leq 1$, it follows that $\lim a_{n}^{2} p^{n}=0$ so that the function f is well defined. To see that f is continuous at $\alpha \varepsilon O_{p}$, let $\epsilon>0$ be chosen and pick N such that $\mathrm{p}^{-\mathrm{N}}<\epsilon$. Then for any $h=p^{N}$ where $\beta \varepsilon O_{p}$, it follows that

$$
\begin{aligned}
f(\alpha+h)=a_{0}^{2}+a_{1}^{2} p & +\cdots+a_{N-1}^{2} p^{N-1}+\left(a_{N}+b_{0}\right)^{2} p^{N} \\
& +\cdots+\left(a_{N+k}+b_{k}\right)^{2} p^{N+k}+\cdots
\end{aligned}
$$

so that $|f(\alpha+h)-f(\alpha)| \leq p^{-N}<\epsilon$. Therefore, f is continuous at α.

To prove that f is not differentiable anywhere in O_{p}, suppose to the contrary that $f^{\prime}(\alpha)$ exists for some $\alpha \varepsilon O_{p}$. Then for any ϵ such that $1>\epsilon>0$, there is a δ such that whenever $|h|<\delta$, $\left|\frac{f(\alpha+h)-f(\alpha)}{h}-f^{\prime}(\alpha)\right|<\epsilon$.

Pick N such that $p^{-N}<\delta$. If $p \neq 2$ then there exist two rational integers k_{1} and k_{2} such that $k_{1} \neq k_{2}$, neither k_{1} nor k_{2} equals a_{N}, and $0 \leq k_{i}<p$ for $i=1,2$. Let $h_{1}=\left(k_{1}-a_{N}\right) p^{N}$ and $h_{2}=\left(k_{2}-a_{N}\right) p^{N}$ so that

$$
x+h_{i}=a_{0}+a_{1} p+\cdots+a_{N-1} p^{N-1}+k_{i} p^{N}+a_{N+1} p^{N+1}+\cdots
$$

for $i=1,2$. It follows that

$$
\frac{f\left(\alpha+h_{i}\right)-f(\alpha)}{h_{i}}=\frac{\left(k_{i}^{2}-a_{N}^{2}\right) p^{N}}{\left(k_{i}-a_{N}\right) p^{N}}=k_{i}+a_{N},
$$

$i=1,2$. Hence,

$$
\begin{aligned}
1 & =\left|k_{1}-k_{2}\right|=\left|\left(k_{1}+a_{N}\right)-\left(k_{2}+a_{N}\right)\right| \\
& =\left|\frac{f\left(\alpha+h_{1}\right)-f(\alpha)}{h_{1}}-\frac{f\left(\alpha+h_{2}\right)-f(\alpha)}{h_{2}}\right| \\
& \leq \max \left\{\left|\frac{f\left(\alpha+h_{1}\right)-f(\alpha)}{h_{1}}\right|,\left|\frac{f\left(\alpha+h_{2}\right)-f(\alpha)}{h_{2}}\right|\right\} \\
& <\epsilon .
\end{aligned}
$$

This is a contradiction since $\epsilon<1$. It follows that f is not differentiable at any point of O_{p}.

AN ALGEBRAICALLY CLOSED NON-ARCHIMEDEAN FIELD

In previous chapters the p-adic field Q_{p} has been the major focus of attention. Comparisons with the real field R have shown that Q_{p} and R have many similarities as well as many interesting contrasts. In this chapter the analogies will be carried further. In particular, since the real field is embedded in the complex field C, it is natural to seek a field in which Q_{p} is embedded and which may have properties analogous to those of C. This chapter is devoted to the development of such a field.

The following plan will be adopted. Since any field has an extension field in which every polynomial has a root, there is a field C_{p} extending the p-adic field Q_{p} such that every polynomial over C_{p} has a root in C_{p}. It will be shown that the non-archimedean valuation on Q_{p} extends to C_{p}. Finally, it will be established that if necessary, the field C_{p} can be completed to form a complete non-archimedean valuated field T_{p} in which every polynomial has a root.

Extension Fields

Some concepts related to field extensions are needed.

Definition 3.1. A field K is an extension field of field k if k is isomorphic to a subfield of K. (Henceforth; k will be identified
with its isomorphic copy in K.) An extension field K is an algebraic extension of k if every element of K is algebraic over, k, that is, every element of K is a root of some polynomial $f(x) \in F[x]$. Definition 3.2. A field K is algebraically closed if every non-constant polynomial in $K[x]$ has at least one root in K. If. K is an algebraically closed algebraic extension of field k, then K is an algebraic closure of k.

Example 3.3. The complex field C is an algebraic closure of the real field R.

To see this, recall the Fundamental Theorem of Algebra which states that every non-constant polynomial in $C[x]$ has at least one root in C. Also, since the real field is isomorphic to a subfield of C, the complex field is an extension field of the real field R. Finally, given any $\alpha=a+b i \varepsilon C, \alpha$ is a root of $x^{2}-2 a x+a^{2}+b^{2} \varepsilon R[x]$. It follows that C is an algebraic closure of R.

The above example provides motivation to seek an algebraic closure of the p-adic field Q_{p}.

One of the standard results in a first year course in Abstract Algebra is that, given any irreducible polynomial $g(x) \varepsilon k[x]$, there is an algebraic extension K of k such that $g(x)$ has a root in K. The field K is called a simple algebraic extension of k. This process can be repeated until an extension K^{\prime} of k is obtained such that all roots of the original polynomial $g(x)$ are contained in K^{\prime}. In fact, by using arguments involving Zorn's Lemma or one of its equivalent forms, it can be shown that given any field k, there exists an algebraic extension of k which contains all roots of all
polynomials in $k[x]$. That is, any field has an algebraic closure. For a proof using Transfinite Induction, the reader is referred to Vander der Waerden [17].

The next several theorems are essentially those found in McCarthy [12], pages 84-87. For brevity, some will be stated without proof. The first of these shows that any algebraic extension of Q_{p} contains a subring having at least some of the properties anticipated for a ring of integers in a valuated field.

Theorem 3.4. Let K be an extension field of a non-archimedean field k. Then there is a subring \mathfrak{D} of K such that
i. (3) contains the ring of integers of k.
ii. $\mathfrak{D} \neq \mathrm{K}$.
iii. If a $\varepsilon \mathbb{K}$ then either $a \varepsilon \mathfrak{D}$ or $a^{-1} \varepsilon \mathbb{D}$.

Since \mathfrak{D} is a subring of K containing the integers of k, \mathfrak{D} contains 1. But, $\mathcal{D} \neq \mathbb{K}$ so that \mathfrak{D} has both units and non-units. Let \mathfrak{B} be the set of non-units in \mathfrak{D}, that is

$$
\mathfrak{B}=\left\{a \in \mathfrak{D}: \quad a^{-1} \notin \mathfrak{D}\right\}
$$

It can be shown that \mathfrak{B} is an ideal of \mathfrak{B}.
Let K^{*} denote the group of non-zero elements of K and let U_{K} denote the group of units in . Since U_{K} is a subgroup of K^{*}, it makes sense to consider the quotient group. K^{*} / U_{K}. Simllarly, consider k^{*} / U_{k}. Now the mapping $h: k^{*} / U_{k} \rightarrow K^{*} / U_{K}$ defined by

$$
\mathrm{h}\left(\mathrm{aU}_{\mathrm{K}}\right)=\mathrm{aU}_{\mathrm{K}}
$$

is a homomorphism. Also, since $h\left(a U_{k}\right) \varepsilon U_{K}$ if and only if a εU_{k}, h is an isomorphism. Thus, k^{*} / U_{k} may be considered as a subgroup of $K^{*} / \mathrm{U}_{\mathrm{K}}$.

Let $V_{k}=\left\{|\mathbf{x}|_{k}: \mathbf{x} \varepsilon k^{*}, \|_{k}\right.$ the valuation $\}$. The set V_{k} is called the value group of k. The valuation $\|_{k}$ is a homomorphism and V_{k} is a multiplicative subgroup of the positive reals. Since the kernel of $\mid \|_{k}$ is the group of units U_{k}, there is an isomorphism ϕ from the quotient group k^{*} / U_{k} onto the group V_{k} such that : $\phi\left(a U_{k}\right)=|a|_{k}$.

Definition 3.5. An abelian group G is an ordered abelian group if there is a linear order < defined on G such that for a, b, and c in G, if $a<b$ then $a c<b c$.

Since V_{k} is a subgroup of the positive reals, V_{k} is an ordered abelian group. The next definition provides a linear ordering on the quotient group k^{*} / U_{k} so that it will be an ordered abelian group. Definition 3.6. Let $a U_{k}$ and $b U_{k}$ be elements of k^{*} / U_{k}. Define $a U_{k}<b U_{k}$ if and only if $a b^{-1}$ is an integer in k.

Theorem 3.7. The quotient group $\mathrm{k}^{*} / \mathrm{U}_{\mathrm{k}}$ is an ordered abelian group with respect to the linear ordering < .

Proof: First it will be shown that the relation < is a linear ordering of k^{*} / U_{k}. Suppose $a U_{k}<b U_{k}$ and $b U_{k}<\mathrm{cU}_{k}$. Then $a b^{-1} \varepsilon \theta$ and $b^{-1} \varepsilon \theta$ where θ denotes the set of integers in k. Then $a c^{-1}=\left(a b^{-1}\right)\left(b c^{-1}\right) \varepsilon \theta$ so that $a U_{k}<c U_{k}$. Next suppose $a U_{k}<b U_{k}$ and $b U_{k}<c U_{k}$. Then $a b^{-1} \varepsilon \theta$ and $b a^{-1} \varepsilon \theta$ and, since
$\left(a b^{-1}\right)^{-1}=b a^{-1}, a b^{-1} \varepsilon U_{k}$. Thus, $a U_{k}=b U_{k}$. Finally, suppose $a U_{k} \neq b U_{k}$ so that $a b^{-1} \notin U_{k}$. Since either $a b^{-1} \varepsilon \theta$ or $\mathrm{ba}^{-1} \varepsilon \theta$, then either $a U_{k}<b U_{k}$ or $b U_{k}<a U_{k}$. Therefore, k^{*} / U_{k} is Inearly ordered by < .

To complete the proof, suppose $a U_{k}, b U_{k}$ and $c U_{k}$ are elements in k^{*} / U_{k} with $a U_{k}<b U_{k}$. Then $a b^{-1} \varepsilon \theta$ so that $a c(b c)^{-1} \varepsilon \theta$. Thus, $a c U_{k}<b c U_{k}$. This establishes that k^{*} / U_{k} is an ordered abelian group.

Next, an ordering on $K * / J_{K}$ will be defined such that, when restricted to. k^{*} / U_{k}, the ordering coincides with that given in Definition 3.6. Anticipating this, the same symbol will be used. Definition 3.8. Let $a U_{K}$ and $b U_{K}$ be elements in $K^{*} / U_{K^{*}}$. . Then $a U_{K}<b U_{K}$ if and only if $a b^{-1} \varepsilon \mathfrak{D}$.

Theorem 3.9. The quotient group K^{*} / U_{K} is an ordered abelian group with respect to the linear ordering < .

Proof: The proof is identical with the proof of Theorem 3.7 with θ replaced by \mathfrak{D}.

Recall that the present objective is to prove that the non-archimedean valuation on k extends to an arbitrary extension field K. There are still a few preliminary results which must be established. An isomorphism ϕ from one ordered abelian group to another is order preserving if $\phi(a)<\phi(b)$ whenever $a<b$. The next theorem states that under suitable conditions, an order preserving isomorphism defined on a subgroup extends to the group.

Theorem 3.10. Let G be an ordered abelian group and H be a subgroup of G such that:
i. there is an order preserving isomorphism ϕ from H into the multiplicative group of positive reals, R^{+}, and
ii. for each $a \in G$, there is a positive integer n such that $a^{n} \varepsilon H$.

Then there is an order preserving isomorphism ψ from G into R^{+} such that $. \psi(a)=\phi(a)$ for every $a \varepsilon, H$.

Proof: See McCarthy, page 86.

The following lemma and its corollary are used in the proof of the major result of this section.

Lemma 3.11. Let K be an algebraic extension of a non-archimedean field k. For a, b and c in K^{*} with $a+b \neq 0$, if $a U_{K}<b U_{K}$ then $(a+b) U_{K}<b U_{K}$. Furthermore, if $a U_{K} \neq b U_{K}$ then $(a+b) U_{K}=b U_{K}$.

Proof: If $a U_{K}<b U_{K}$, then $a b^{-1} \varepsilon \mathfrak{V}$ so that $a b^{-1}+1 \varepsilon \mathfrak{D}$. Then, since $(a+b) b^{-1}=a b^{-1}+1,(a+b) b^{-1} \varepsilon \mathfrak{D}$ and it follows that $(a+b) U_{K}<b U_{K} . \quad$ In particular,

$$
[(a+b)-a] U_{K}<(-a) U_{K}=a U_{K}
$$

and

$$
[(a+b)-a] U_{K}<(a+b) \mathrm{J}_{K} .
$$

Now suppose $. . \mathrm{bU}_{\mathrm{K}} \neq \mathrm{aU}_{\mathrm{K}}$. Since $\mathrm{bU}_{\mathrm{K}}=[(\mathrm{a}+\mathrm{b})-\mathrm{a}] \mathrm{U}_{\mathrm{K}}$, there are two cases to consider. In one case, $(a+b) U_{K}<a U_{K}$. But then
$b U_{K}=[(a+b)-a] U_{K}<a U_{K}<b U_{K}$ which implies $a U_{K}=b U_{K}$. Since this is contrary to the hypothesis, the other case must hold, namely, $a U_{K}<(a+b) U_{K}$. Thus, $b U_{K}=[(a+b)-a] U_{K}<(a+b) U_{K}$. Since also $(a+b) U_{K}<b U_{K}$, the lemma is established.

Corollary 3.12. Let $a_{1}, a_{2}, \ldots, a_{n} \varepsilon K^{*}$ be such that $a_{1}+a_{2}+\cdots+a_{n} \neq 0$ and $a_{2}+\cdots+a_{n} \neq 0$. If $a_{i} U_{K}<a_{1} U_{K}$ and $a_{i} U_{K} \neq a_{1} U_{K}$ for $i=2,3, \ldots, n$, then $\left(a_{1}+\cdots+a_{n}\right) U_{K}=a_{1} U_{K}$.

Proof: Lemma 3.11 establishes this result for $n=2$, Suppose it holds for $n=j, j \geq 2$. Then

$$
\left(a_{1}+\cdots+a_{j}+a_{j+1}\right) U_{K}=\left(\left(a_{1}+\cdots+a_{j}\right)+a_{j+1}\right) U_{K}
$$

By the induction hypothesis, $\left(a_{1}+\cdots+a_{j}\right) U_{K}=a_{1} U_{K}$ and $a_{j+1}{ }^{U}{ }_{K}<a_{1} U_{K} \neq a_{j+1} U_{K}$. It follows from Lemma 3.11 that $\left(a_{1}+\cdots+a_{j}+a_{j+1}\right) U_{K}=a_{1} U_{K}$.

Extension of the Valuation

Finally, the major objective of this section can be realized. The next theorem shows that the non-archimedean valuation defined on Q_{p} extends to any algebraic extension of Q_{p}. In particular, it extends to the algebraic closure C_{p}.

Theorem 3.13. Let k be a non-archimedean field with valuation $\|_{k}$ and let K be any algebraic extension of k. Then there is a non-archimedean valuation $\left.\left|\left.\right|_{K}\right.$ on K such that $| a\right|_{K}=|a|_{k}$ for every a $\varepsilon \mathrm{k}$.

Proof: The proof will utilize Theorem 3.10. It will be shown that the quotient groups $\mathrm{K}^{*} / \mathrm{U}_{\mathrm{K}}$ and $\mathrm{k}^{*} / \mathrm{U}_{\mathrm{k}}$ satisfy the hypotheses of that theorem. First, it must be shown that there is an order preserving isomorphism from k^{*} / U_{k} into R^{+}. Recall the isomorphism ϕ given by $\phi\left(a U_{k}\right)=|a|_{k}$ where $\left|\left.\right|_{k}\right.$ is the valuation on k. Suppose. $a U_{k}<b U_{k}$, then $a b^{-1}$ is an integer in k so that $\left|a b^{-1}\right|_{k} \leq 1$ and, therefore, $|a|_{k} \leq|b|_{k}$. Thus, $\phi\left(a U_{k}\right) \leq \phi\left(b U_{k}\right)$ whenever $a U_{k}<b U_{k}$ so that ϕ is an order preserving isomorphism.

Next, it must be shown that given any $a U_{K} \varepsilon K^{*} / U_{K}$, there is a positive integer m such that $\left(a U_{K}\right)^{m} \varepsilon k^{*} / U_{k}$. In view of the identification of k^{*} / U_{k} in K^{*} / U_{K}, it suffices to show that $a^{m} \varepsilon k^{*}$. To this end, let $\mathrm{aU}_{\mathrm{K}} \varepsilon \mathrm{K}^{*} / \mathrm{U}_{\mathrm{K}}$. Since $\mathrm{a} \varepsilon \mathrm{K}^{*}$ and K is an algebraic extension of k, a is a root of some polynomial in $k[x]$. Let $g(x)$ be the minimal polynomial of a, that is, $g(x)$ is the monic, irreducible polynomial of least degree such that $g(a)=0$. Suppose

$$
g(x)=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}+c_{n} x^{n}
$$

so that $c_{0} \neq 0$ and $c_{i}=1$.
There are two cases to consider. In one case, there may be two integers i and j with $0 \leq i<j \leq n$ such that $c_{i} \neq 0, c_{j} \neq 0$ and $c_{i} a^{i} U_{K}=c_{j} a^{j_{U}}{ }_{K}$. Then $c_{i} a^{i}\left(c_{j} a^{j}\right)^{-1} \varepsilon U_{K}$ so that $c_{i} c_{j}^{-1} a^{i-j} \varepsilon U_{K}$ and, hence, $c_{i} c_{j}^{-1} U_{K}=a^{j-i} U_{K}$. Since $c_{i} c_{j}^{-1} U_{K} \varepsilon k^{*} / U_{k}$, it follows that $\left(a U_{K}\right)^{j-i} \varepsilon k^{*} / U_{k}$. In the other case, for each choice of i and j, $c_{i} a^{i} U_{K} \neq c_{j} a^{j} U_{K}$. Then, since K^{*} / U_{K} is linearly ordered by $<$, there is a positive integer q such that $c_{i} a^{i} U_{K}<c_{q} a^{q} U_{K}$ for $1 \leq i \leq n$, $i \neq q$. Also, $c_{1} a+\cdots+c_{n} a^{n}=-c_{0} \neq 0$ so that
$\left(c_{1} a+\cdots+c_{n} a^{n}\right) U_{K}=\left(-c_{0}\right) U_{K}$. Since $g(x)$ is the minimal polynomial of a,

$$
\sum_{\substack{i=1 \\ i \neq q}}^{n} c_{i} a^{i} \neq 0
$$

Thus, by Corollary $3.12\left(c_{1} a+\cdots+c_{n} a^{n}\right) U_{K}=c_{q} a^{q_{U}} U_{K}$ so that $c_{q}{ }^{q^{U_{K}}}=\left(-c_{0}\right) U_{K} . \quad$ Then

$$
\left(a U_{K}\right)^{q}=a^{q} U_{K}=\left(-c_{0} c_{q}^{-1}\right) U_{K} \varepsilon k^{*} / U_{k}
$$

Therefore, for any $a U_{K} \varepsilon K^{*} / U_{K}$, there is a positive integer m such that $\left(a U_{K}\right)^{m} \varepsilon k^{*} / U_{k}$.

Since the hypotheses of Theorem 3.10, are satisfied, there is an order preserving isomorphism ψ from K^{*} / U_{K} into R^{+}such that $\psi\left(\mathrm{aU}_{\mathrm{K}}\right)=|\mathrm{a}|_{\mathrm{k}}$ for every a $\varepsilon \mathrm{k}$. Define a mapping $\|_{\mathrm{K}}$ from K into the reals R as follows:

$$
\begin{array}{ll}
|a|_{K}=\psi\left(a U_{K}\right) & \text { if } \quad a \neq 0 \\
|a|_{K}=0 & \text { if } \quad a=0 .
\end{array}
$$

It will be shown that $\|_{K}$ is a non-archimedean valuation on K. Certainly $|a|_{K} \geq 0$ and $|a|_{K}=0$ only if $a=0$. It remains to be shown that $|a b|_{K}=|a|_{K}|b|_{K}$ and that $|a+b|_{K} \leq \max \left\{|a|_{K},|b|_{K}\right\}$ for every $a, b \varepsilon K$. Suppose one of a or b is zero. Then $|a b|_{K}=0=|a|_{K}|b|_{K}$ and $|a+b|_{K}=\max \left\{|a|_{K},|b|_{K}\right\}$. Now suppose neither a nor b is zero. Then

$$
\begin{aligned}
|a b|_{K} & =\psi\left(a b U_{K}\right)=\psi\left[\left(a U_{K}\right)\left(b U_{K}\right)\right] \\
& =\psi\left(a U_{K}\right) \psi\left(b U_{K}\right)=|a|_{K}|b|_{K} .
\end{aligned}
$$

Thus, in all cases, $|a b|_{K}=|a|_{K}|b|_{K}$ whenever a and b are in K. Now suppose neither a nor b is zero but $a+b=0$. Then $|a+b|_{K}<\max \left\{|a|_{K},|a|_{K}\right\}$. Finally, assume $a+b \neq 0$ and, without loss of generality, $|a|_{K} \leq|b|_{K}$. Then, since, ψ is order preserving, $a U_{K}<b U_{K}$. By Lemma 3.12, $\quad(a+b) U_{K}<b U_{K}$ so that $\psi\left[(a+b) U_{K}\right] \leq \psi\left(b U_{K}\right)$ and, hence, $|a+b|_{K} \leq|b|_{K}=\max \left\{|a|_{K},|b|_{K}\right\}$. Thus, it has been established that $\|_{\mathrm{K}}$ is a non-archimedean valuation on the algebraic extension field K of k. And, since $|a|_{K}=|a|_{k}$ whenever $a \varepsilon k$, the theorem is proved.

Allthough Theorem 3.13 establishes the existence of an extension of a non-archimedean valuation to an arbitrary algebraic extension, it does not settle the question of uniqueness. Palmer [14] included results which state that in the case of a finite algebraic extension of a complete non-archimedean field, the extension of the valuation is unique.

These results are stated in the next theorem.

Theorem 3.14. If k is a complete non-archimedean field with valuation $\left\|\|_{k}\right.$ and if K is a finite algebraic extension of k, then there is a unique extension of $\|_{k}$ to a non-archimedean valuation $\|_{K}$ on K. Furthermore, K is complete with respect to $\|_{K}$.

Proof: See Palmer; pp. 126-129.

Under similar hypotheses, the question of uniqueness of the valuation on an algebraic closure is settled by the next theorem.

Theorem 3.15. Let k be a complete non-archimedean field. If. K is an algebraic closure of k, then the extension of the valuation $\|_{k}$ on k to a valuation on K is unique.

Proof: Suppose $\|_{1}$ and $\|_{2}$ are distinct extensions of $\|_{k}$. Then there is an element $a \in K$ such that $|a|_{1} \neq|a|_{2}$. Let k be a finite algebraic extension of k containing a. Since k is a subfield of K, the valuations $\|_{1}$ and $\|_{2}$, restricted to k^{\prime}, . are distinct non-archimedean valuations on a finite extension of k. But, according to Theorem 3.14, this is impossible. Thus; the extension of a valuation to an algebraic closure of k is unique.

Completion of the Algebraic Closure

Now it may happen that an algebraic closure is not complete with respect to the unique valuation extending $\|_{k}$. However, any problems created by this can be resolved if it can be shown that the completion of an algebraic closure is algebraically closed. This is the final objective of this chapter.

Lemma 3.16. Let k be a complete non-archimedean field. Then the mapping $\phi: k[x] \rightarrow R$ defined by

$$
\phi\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)=\max \left\{\left|a_{0}\right|,\left|a_{1}\right|, \ldots,\left|a_{n}\right|\right\}
$$

is a non-archimedean valuation on the ring of polynomials $k[x]$.

Proof: Certainly for $f(x) \varepsilon k[x], \phi(f(x))=0$ if and only if $f(x)$ is the zero polynomial in $k[x]$. Now suppose

$$
f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

and

$$
g(x)=b_{0}+b_{1} x+\cdots+b_{m} x^{m}
$$

where, without loss of generality, it is assumed that $m \leq n$ and, therefore, $b_{j}=0$ for $j>m$. Then

$$
\begin{aligned}
\phi(f(x)+g(x)) & =\max _{0 \leq i \leq n}\left\{\left|a_{i}+b_{i}\right|\right\} \leq \max _{0 \leq i \leq n}\left\{\max \left(\left|a_{i}\right|,\left|b_{i}\right|\right)\right\} \\
& =\max \left\{\max _{0 \leq i \leq n}\left|a_{i}\right|, \max _{0 \leq i \leq n}\left|b_{i}\right|\right\} \\
& =\max \{\phi(f(x)), \phi(g(x))\} .
\end{aligned}
$$

To complete the proof of the lemma, it must be shown that

$$
\phi(f(x) g(x))=\phi(f(x)) \phi(g(x))
$$

Now $f(x) g(x)=c_{0}+c_{1} x+\cdots+c_{m-n} x^{m+n}$ where $c_{t}=\sum_{i+j=t} a_{i} b_{j}$.
Note first that $\phi(f(x) g(x)) \leq \phi(f(x)) \phi(g(x))$.
Let $f(x)=f_{1}(x)+f_{2}(x)$ where a term $a_{k} x^{k}$ of $f(x)$ is a term of $f_{1}(x)$ if and only if $\left|a_{k}\right|=\max _{0 \leq 1 \leq n}\left\{\left|a_{i}\right|\right\}$ and $a_{j} x^{j}$ is a term of $f_{2}(x)$ if and only if $\left|a_{j}\right|<\max _{0 \leq i \leq n}\left\{\left|a_{i}\right|\right\}$. Similarly, let $g(x)=g_{1}(x)+g_{2}(x)$ where $g_{1}(x)$ contains all terms of $g(x)$ with maximum valuation. Thus,

$$
f(x) g(x)=f_{1}(x) g_{1}(x)+f_{1}(x) g_{2}(x)+f_{2}(x) g_{1}(x)+f_{2}(x) g_{2}(x)
$$

Now $\phi\left(f_{1}(x) g_{2}(x)\right) \leq \phi\left(f_{1}(x)\right) \phi\left(g_{2}(x)\right)<\phi\left(f_{1}(x)\right) \phi\left(g_{1}(x)\right)$. Similarly, $\phi\left(f_{2}(x) g_{1}(x)\right)<\phi\left(f_{1}(x)\right) \phi\left(g_{1}(x)\right)$ and $\phi\left(f_{2}(x) g_{2}(x)\right)<\phi\left(f_{1}(x)\right) \phi\left(g_{1}(x)\right)$.

$$
\begin{aligned}
& \text { Consider } f_{1}(x) g_{1}(x)=c_{0}+c_{1} x+\cdots+c_{p+q} x^{p+q} \text {. Then } \\
& \left|c_{p+q}\right|=\left|a_{p} b_{q}\right|=\left|a_{p}\right|\left|b_{q}\right|=\left|a_{i}\right|\left|b_{j}\right| \text { for every pair of coefficients } \\
& a_{1} \text { and } b_{j} \text { of } f_{1}(x) \text { and } g_{1}(x) \text {, respectively. It follows that } \\
& \left|c_{t}\right|=\left|\sum_{i+j=t} a_{i} b_{j}\right| \leq \max _{i+j=t}\left\{\left|a_{i} b_{j}\right|\right\}=\left|a_{p} b_{q}\right|=\left|c_{p+q}\right|
\end{aligned}
$$

According to the definition of the mapping ϕ,

$$
\phi\left(f_{1}(x) g_{1}(x)\right)=\max _{0 \leq t \leq p+q}\left\{\left|c_{t}\right|\right\}=\left|c_{p+q}\right|
$$

Since $\left|c_{p+q}\right|=\left|a_{p}\right|\left|b_{q}\right|=\phi\left(f_{1}(x)\right) \phi\left(g_{1}(x)\right)$, it follows that $\phi\left(f_{1}(x) g_{1}(x)\right)=\phi\left(f_{1}(x)\right) \phi\left(g_{1}(x)\right)$. Since $\phi(f(x))=\phi\left(f_{1}(x)\right)$, $\phi(g(x))=\phi\left(g_{1}(x)\right)$ and

$$
\phi\left(f_{1}(x) g_{1}(x)\right)>\phi\left(f_{1}(x) g_{2}(x)+f_{2}(x) g_{1}(x)+f_{2}(x) g_{2}(x)\right),
$$

it follows that

$$
\phi(f(x) g(x))=\phi\left(f_{1}(x) g_{1}(x)\right)=\phi\left(f_{1}(x)\right) \phi\left(g_{1}(x)\right)=\phi(f(x)) \phi(g(x))
$$

This completes the proof of Lemma 3.16.

Lemma 3.17. If K is algebraically closed and $f(x)$ and $g(x)$ are monic polynomials of degree n in $K[x]$ such that $\phi(f(x)-g(x))<\epsilon$ then for any root β of $g(x)$ there is a root α of $f(x)$ such that $|\beta-\alpha|<A^{n_{e}}$ where A is an upper bound of the valuations of the coefficients of $f(x)$ and $g(x)$.

Proof: Note first that the valuation of any root of $g(x)$ (or of $f(x)$) is bounded above by A. To see this, suppose $|\beta|>A$. Then

$$
g(\beta)=b_{0}+b_{1} \beta+\cdots+b_{n-1} \beta^{n-1}+\beta^{n}
$$

Since $\left|b_{i} \beta^{i}\right| \leq A\left|\beta^{i}\right|<\left|\beta^{i+1}\right|$ for $i=0,1, \ldots, n-1$, it follows that $|g(\beta)|=\left|\beta^{n}\right| \neq 0$, contradicting the fact that β is a root.

Now suppose $\phi(f(x)-g(x))<\epsilon$. Since K is algebraically closed, there exist n roots of $f(x), \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$. Then if β is a root of $g(x)$,

$$
\begin{aligned}
|f(\beta)| & =|f(\beta)-g(\beta)| \\
& =\left|a_{0}-b_{0}+\left(a_{1}-b_{1}\right) \beta+\cdots+\left(a_{n-1}-b_{n-1}\right) \beta^{n-1}\right| \\
& \leq \max _{0 \leq i \leq n-1}\left\{\left|a_{i}-b_{1}\right|\left|\beta^{i}\right|\right\} .
\end{aligned}
$$

Since $|B| \leq A$ and $A \geq 1$, then $\left|B^{i}\right| \leq A^{n}$. Also since $\phi(f(x)-g(x))<\epsilon$ then $\left|a_{i}-b_{i}\right|<\epsilon$ for each $i=0,1, \ldots, n-1$. It follows that $|f(\beta)|<\epsilon A^{n}$.

Now

$$
f(x)=\prod_{k=1}^{n}\left(x-\alpha_{k}\right)
$$

so that

$$
f(\beta)=\prod_{k=1}^{n}\left|\beta-\alpha_{k}\right|<\epsilon A^{\mathrm{n}^{\dot{\prime}}} .
$$

Therefore, there is at least one root α of $f(x)$ which satisfies the relation $|\beta-\alpha|<A^{n} \sqrt{\epsilon}$. This completes the proof.

The final objective of proving the existence of an algebraically closed extension of the p-adic field Q_{p} which is complete with respect to an extension of the non-archimedean valuation on Q_{p} is at last within reach.

Theorem 3.18. Let K be an algebraically closed non-archimedean field. Then the completion \widehat{K} is algebraically closed.

Proof: Let $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ be an irreducible polynomial in $\hat{\mathrm{K}}[\mathrm{x}]$. Without loss of generality it may be assumed that $f(x)$ is monic, that is, $a_{n}=1$. The proof will be accomplished by showing that $f(x)$ has a root in \widehat{K}, and this will be done by producing a Cauchy sequence in K whose limit is the desired root.

Since $a_{i} \in \widehat{K}$, then for each $i=0,1, \ldots, n-1$ there is a Cauchy sequence

$$
\left\{b_{i, j}\right\}_{j=1}^{\infty}
$$

in K such that $\left\{b_{i, j}\right\}$ converges to a_{i}. Let $f_{j}(x)$ be the polynomial in $K[x]$ given by

$$
f_{j}(x)=b_{0, j}+b_{1, j} x+\cdots+b_{n-1, j} x^{n-1}+x^{n}
$$

Now choose.M_{1} such that $\max _{0 \leq i \leq n-1}\left\{\left|b_{i, m}-a_{i}\right|\right\}<1 / 2$ for every $m \geq M_{1}$. Similarly, for each integer $k>1$, choose M_{k} such that $M_{k}>M_{k-1}$ and $\max _{0 \leq i \leq n-1}\left\{\left|b_{i, m i}-a_{i}\right|\right\}<(1 / 2)^{k}$ for every $m \geq M_{k}$. Let $A=\max \left\{\left|a_{0}\right|,\left|a_{1}\right|, \ldots,\left|a_{n-1}\right|, 1\right\}+1$. Then, by the way in which M_{1} was chosen, A is an upper bound of the valuations of the coefficients of $f_{m}(x)$ for every $m \geq M_{1}$. Thus, by successive
applications of Lemma 4.19 , if β_{k-1} is a root of $f_{M_{k-1}}$ (x), then
there is a root β_{k} of $f_{M_{k}}(x)$ such that $\left|\beta_{k}-\beta_{k-1}\right|<A\left({ }^{n} \sqrt{1 / 2}\right)$. Therefore, $\left\{\beta_{k}\right\}$ is a Cauchy sequence in K. Since \widehat{K} is the completion of K, there is a β in K such that $\therefore\left\{\beta_{k}\right\}$ converges to β.

By the way in which the polynomials $f_{j}(x)$ are defined, $\left\{f_{j}(\beta)\right\}$ converges to $f(\beta)$. Since $\left\{f_{j}(\beta)\right\}$ converges to zero, β must be a root of $f(x)$. This completes the proof.

Since the completion of a field with respect to a non-archimedean valuation is again a non-archimedean field, the final objective of this chapter has been accomplished. Let. T_{p} denote a complete algebraically closed extension of the p-adic field Q_{p}. In later chapters analogies between T_{p} and the complex field C will be explored.

CHAPTER IV

POWER SERIES

The theory of infinite series over a non-archimedean field has been well developed in several sources. Actually, there are only a few significant differences between the non-archimedean and real situations. Perhaps the most notable distinction is that for convergence of a series $\sum a_{n}$ in a non-archimedean field, it is sufficient that the sequence $\left\{a_{n}\right\}$ converges to zero. Of course, this is not the case for real series as the harmonic series $\sum 1 / n$ shows. Also, the theory of power series with coefficients in a non-archimedean field offers few surprises. For a good exposition of power series and functions defined by power series, that is, analytic functions, the reader is referred to Palmer [14], Chapters 4 and 5.

This chapter will consider analytic functions on an algebraically closed extension T_{p} of the p-adic field Q_{p}. In particular, the first objective will be the development of a device called Newton's Polygon. Then Newton's Polygon will be used to examine analytic functions including the determination of the domain of convergence and the location of zeros.

Consider analytic functions defined by

$$
f(x)=\sum_{n=0}^{\infty} b_{n}(x-a)^{n}
$$

where a, b_{0}, b_{1}, \cdots are in T_{p}. As in real series, the radius of convergence ρ is given by $1 / \rho=\overline{\lim } \sqrt[n]{\left|b_{n}\right|}$ where it is understood that the series converges for every $x \varepsilon T_{p}$ if $\overline{\lim } \sqrt[n]{\left|b_{n}\right|}=0$ and converges only for $x=a$ if $\overline{\lim } \sqrt[n]{\left|b_{n}\right|}=\infty$.

Newton Diagram

In order to develop Newton's Polygon for power series, it is necessary to consider first a set of points referred to as the Newton diagram for the power series. For definiteness, it will be assumed that the analytic functions in question are expressible as power series with coefficients in the p-adic field Q_{p}.

Recall that for each $x \neq 0$, ord x is defined by ord $x=-\log _{p} x$. Definition 4.1. Let a function f be defined by a power series over Q_{p},

$$
f(x)=\sum_{n=0}^{\infty} b_{n}(x-a)^{n}
$$

The set of points in the Cartesian plane given by

$$
T=\left\{\left(n, \text { ord } b_{n}\right): n=0,1,2, \ldots, b_{n} \neq 0\right\}
$$

is called the Newton diagram for the series.

The next theorem shows that the radius of convergence of the power series can be expressed in terms of the slopes of lines joining the origin to the points of the Newton diagram.

Theorem 4.2. Let the power series

$$
\sum_{n=0}^{\infty} b_{n}(x-a)^{n}
$$

have a radius of convergence: ρ. If

$$
-\infty<\lim \frac{\text { ord } b_{n}}{n}<\infty,
$$

then

$$
\log _{\mathrm{p}} \rho=\frac{\lim }{} \frac{\text { ord } b_{n}}{\mathrm{n}} ;
$$

if

$$
\lim \frac{\text { ord } b_{n}}{n}=-\infty \text {, }
$$

then

$$
\rho=0 ;
$$

and if

$$
\lim \frac{\operatorname{ord} b_{n}}{n}=\infty,
$$

then

$$
\rho=\infty .
$$

Proof: Suppose

$$
-\infty<1 \text { im } \frac{\text { ord } b_{n}}{n}<\infty .
$$

Then, since

$$
\left|b_{n}\right|=\left(\frac{1}{p}\right)^{\text {ord } b_{n}}
$$

it follows that

$$
\sqrt[n]{\left|b_{n}\right|}=\left(\frac{1}{p}\right)^{\frac{\text { ord } b_{n}}{n}}
$$

Thus,

$$
\frac{1}{\rho}=\overline{11 m}\left(\frac{1}{\mathrm{p}}\right)^{\frac{\text { ord } \mathrm{b}_{\mathrm{n}}}{\mathrm{n}}}
$$

so that

$$
\rho=\lim p \frac{\text { ord } b_{n}}{n} .
$$

It follows that

$$
\log _{\mathrm{p}} \rho=1 \text { im ord } b_{\mathrm{n}} .
$$

Now suppose

$$
\underline{\lim } \frac{\text { ord } b_{n}}{n}=-\infty .
$$

This implies

$$
\overline{1 i m} \sqrt[n]{\left|b_{n}\right|}=\overline{1 i m}\left(\frac{1}{p}\right)^{\frac{\text { ord } b_{n}}{n}}=\infty
$$

so that $\rho=0$. Finally, if

$$
\lim \frac{\text { ord } b_{n}}{n}=\infty,
$$

then

$$
\overline{\lim } \sqrt[n]{\left|b_{n}\right|}=\overline{1 i m}\left(\frac{1}{p}\right)^{\frac{\text { ord } b_{n}}{n}}=0
$$

so that $\rho=\infty$.

Palmer [14] showed that the radius of convergence of the exponential series

$$
\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}
$$

is given by $\rho=p^{-1 /(p-1)}$. The following example shows that Theorem 4.2 may be used to obtain the same result.

Example 4.3. Radius of convergence of

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{1}{n!} x^{n} \\
& \text { Let } n=a_{0}+a_{1} p+\cdots+a_{k} p^{k}, a_{k} \neq 0 \text { and } \\
& t_{n}=a_{0}+a_{1}+\cdots+a_{k} \text { then } \\
& \text { ord } n!=\frac{n-t_{n}}{p-1}
\end{aligned}
$$

so that

$$
\frac{\text { ord } n!}{n}=\frac{1}{p-1}\left(1-\frac{t_{n}}{n}\right)
$$

Now $n \geq p^{k}$ implies $k \leq \log _{p} n$. and, since $t_{n}<(k+1) p$, it follows that

$$
\frac{t_{n}}{n}<\frac{(k+1) p}{n} \leq \frac{p \log _{p} n}{n}+\frac{p}{n} .
$$

Therefore,

$$
\operatorname{limit}_{n \rightarrow \infty} \frac{t_{n}}{n}=0
$$

so that $\operatorname{limit}_{\mathrm{n} \rightarrow \infty} \frac{\text { ord } n!}{\mathrm{n}}=\frac{1}{\mathrm{p}-1}$. Since $\mathrm{b}_{\mathrm{n}}=\frac{1}{\mathrm{n}!}$, it follows that

$$
\begin{aligned}
\lim \frac{\text { ord }_{n}}{n} & =\operatorname{limit}_{n \rightarrow \infty} \frac{- \text { ord } n!}{n} \\
& =\frac{-1}{p-1}
\end{aligned}
$$

Therefore, the radius of convergence $\rho=p^{-1 /(p-1)}$ as expected.
Figure 1 shows the first few points in the Newton diagram for the series

$$
\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}
$$

when $p=3$.

Figure 1. Newton Diagram for Exponential Series

Newton Polygon

The Newton polygon for a power series will be developed by a construction utilizing the Newton diagram. Once defined, it will be shown that the Newton polygon determines the radius of convergence and also provides information about the location of the zeros of the power series. The definition of a lower support line for a given set is needed.

Definition 4.4: Suppose T is a subset of the plane and that L is a non-vertical line with equation $y=m x+b$. Then L is a lower support line of T if and only if:

1. for every $\left(x_{1}, y_{1}\right) \in T, y_{1} \geq m x_{1}+b$, and
2. if $b^{\prime}>b$, then there is a point $\left(x_{0}, y_{0}\right) \in T$ such that $y_{0}<m x_{0}+b^{\prime}$.

Note that if T is a finite set and L is a lower support line, then L contains at least one point of T. On the other hand, if T is infinite, then T may have a lower support line which does not intersect T. For example, if T is the right branch of the hyperbola

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

then the asymptote $y=-\frac{b}{a}$ is a lower support Iine of T which does not intersect T.

Consider a power series

$$
\sum_{n=0}^{\infty} b_{n}(x-a)^{n}
$$

It will be assumed that $b_{0} \neq 0$ and that there is at least one other non-zero coefficient. It will be shown that if the Newton diagram T has a lower support line, then it has a lower support line through the point $B_{0}=\left(0\right.$, ord $\left.b_{0}\right)$. To see this support line L with equation $y=m x+b$ is a lower support line T. If B_{0} is on L, then the conclusion holds. If B_{0} is not on L, then B_{0} is above L, that is, ord $b_{0}>b$. Let point B be the intersection of line L and the vertical line $x=1$. Then the line L^{\prime} through B_{0} and B is also a lower support line of T. Figure 2 illustrates the situation.


```
If all points of \(T\) are above line L , then all points of \(T\) are above \(L^{\prime}\).
```

Figure 2. Lower Support Line
Through the
First Point

It should be noted that a Newton diagram T need not have any lower support line. For example, consider the series

$$
\sum_{n=0}^{\infty} p^{-n^{2}} x
$$

Then $T=\left\{\left(n,-n^{2}\right): n=0,1,2, \ldots\right\}$. Since for any choice of m and b, $a n$ n $c a n$ be found large enough so that $-n^{2}<m n+b$, there is no lower support line for T. By Theorem 4.2,

$$
\lim \frac{\text { ord } b_{n}}{n}=11 m-n=-\infty
$$

so that the radius of convergence is 0 .
Now suppose a Newton diagram T has a lower support line. Consider the set of all lower support ines through $B_{0}=\left(0\right.$, ord $\left.b_{0}\right)$. Since there is a point in T besides B_{0}, there is a lower support line L_{0} having maximum slope m_{0}. It may happen that T has no lower support line with slope greater than $\mathrm{m}_{0} \cdot$ In this case, the Newton polygon consists only of the ray

$$
\left\{(x, y):(x, y) \& L_{0}, x \geq 0\right\}
$$

which is denoted by L_{0}^{+}.
On the other hand, suppose T has a lower support line with slope $m>m_{0}$. It will be shown that L_{0} contains at least two but only a finite number of points in T. Now the equation of line L_{0} is $y=m_{0} x+$ ord b_{0} and the equation of line L is $y=m x+b$. Since L_{0} has maximum slope, it follows that b < ord b_{0}. It will be shown
first that L_{0} contains only finitely many points of T. Suppose otherwise and pick N such that $N\left(m-m_{0}\right)>$ ord $b_{0}-b$. Since L_{0} contains infinitely many points of T there is an $n^{\prime} \geq N$ such that ord $b_{n}{ }^{\prime}=m_{0} n^{\prime}+$ ord b_{0}. Then, for that n^{\prime},

$$
\begin{aligned}
\text { ord } b_{n^{\prime}}-m n^{\prime} & =\text { ord } b_{n^{\prime}}-n^{\prime}\left(m_{0}+\left(m-m_{0}\right)\right) \\
& =\text { ord } b_{n^{\prime}}-n^{\prime} m_{0}-n^{\prime}\left(m-m_{0}\right) \\
& =\text { ord } b_{0}-n^{\prime}\left(m-m_{0}\right) \\
& <\text { ord } b_{0}-\left(\text { ord } b_{0}-b\right) \\
& =b .
\end{aligned}
$$

Therefore, ord $b_{n}, n^{\prime} m+b$ so that $y=m x+b$ is not a lower support line of T. Thus, if T has a lower support line with slope greater than m_{0}, then line L_{0} has only finitely many points of T.

Since B_{0} is on L_{0}, it remains to be shown that L_{0} contains at least one more point of T. As before, L is a lower support line of T having equation $y=m x+b$ with $m>m_{0}$ and $b<o r d b_{0}$ Let point (a, c) be the intersection of L and L_{0}. By considering the minimum vertical distance between the line L_{0} and the points (n, ord b_{n}) of T for $1 \leq n \leq[a]+1$, as well as the vertical distance between L_{0} and L at $x=[a]+1$, it may be verified that if B_{0} is the only point of T on L_{0}, then there is a lower support line through. B_{0} with slope greater than m_{0}. (See Figure 3.) Since this contradicts the way in which L_{0} is determined, it follows that if T has a lower support line with slope greater than m_{0} then L_{0} has at least two points of T.

The construction of the Newton polygon in the case T has a lower support line with slope $m>m_{0}$ can now be continued as follows.

Figure 3. Lower Support Line Contains Finitely Many Points

Let B_{1} be the point in T and on L_{0} having maximum abscissa. Then if T has no points with abscissa greater than that of B_{1}, the power series is a polynomial in which case let L_{1}^{+}denote the vertical ray upward with endpoint B_{1}. In this case, the Newton polygon consists of the segment $\overline{B_{0} B_{1}}$ together with the ray L_{1}^{+}.

If T has points with abscissa greater than that of B_{1}, then there is a lower support line L_{1} of T through B_{1} and having maximum slope m_{1}. The above argument can be repeated so that either T has no lower support line with slope greater than m_{1} or else there is a lower support line L having slope $m>m_{1}$. In the first case, let L_{1}^{+}denote the ray on L_{1} having endpoint B_{1}. In this case, the Newton polygon consists of $\overline{B_{0} B_{1}} \cup L_{1}^{+}$. In the second case, L_{1} contains at least two but finitely many points of T. Let B_{2} be the point of T on L_{1} having maximum abscissa. The above discussion can be repeated to find either a ray L_{2}^{+}or else a segment $\overline{B_{2} B_{3}}$ on the lower support line L_{2}.

Now suppose there is a lower support line L_{n} through point B_{n} of T such that L_{n} has maximum slope m_{n}. If there is no lower support line of T with slope greater than m_{n} and let L_{n}^{+}denote the ray on L_{n} with endpoint B_{n} and such that the points on L_{n}^{+}have abscissas greater than that of B_{n}. If there is a lower support line with slope greater than m_{n}, then there is a point B_{n+1} on L_{n} and in T having maximum abscissa. If T has no point with greater abscissa than that of B_{n+1}, then let L_{n+1}^{+}denote the vertical ray with endpoint B_{n+1}. If T has points with greater abscissa than that of B_{n+1}, then let L_{n+1} be the lower support line through B_{n+1} having maximum slope.

The following definition can be given as a summary of the above discussion.

Definition 4.5. Let T be the Newton diagram for a power series

$$
\sum_{n=0}^{\infty} b_{n}(x-a)^{n}
$$

such that $b_{0} \neq 0$ and the series is not a constant function. The Newton polygon far the series is defined as follows:

1. If for every positive integer. n there is a lower support line L_{n} containing B_{n} and B_{n+1} then the Newton polygon is the union of line segments

$$
\bigcup_{n=0}^{\infty} \frac{B_{n} B_{n+1}}{}
$$

2. If T has no lower support line with slope greater than that of L_{n}, the lower support line through B_{n} then the Newton diagram is the union $\overline{B_{0} B_{1}} \cup \overline{B_{1} B_{2}} \cup \cdots \cup \overline{B_{n-1} B_{n}} \cup L_{n}^{+}$.
3. If T has no point with abscissa greater than that of B_{n} then the Newton polygon is the union $\overline{B_{0} B_{1}} \cup \cdots \cup \overline{B_{n-1} B_{n}} \cup L_{n}^{+}$.

The segments $\overline{B_{n} B_{n+1}}$ are called sides of the Newton polygon, and the ray L_{n}^{+}is called the terminal side. If a Newton polygon does not contain a terminal side, then it is called an infinite Newton polygon; otherwise, it is called finite. The following example shows that an infinite Newton polygon does exist.

Example 4.6. The Newton polygon for

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^{n}
$$

The Newton diagram $T=\{(n,-o r d n): n=1,2, \ldots\}$. Now ord $n=k$ whenever $p^{k} \mid n$ and $p^{k+1} \nmid n$. Let L_{k} denote the 1ine through the points $\left(p^{k},-k\right)$ and $\left(p^{k+1},-k-1\right)$. It will be shown that L_{k} is a lower line of support of T for each $k=0,1, \ldots$ The equation of L_{k} is

$$
y+k=\frac{-1}{p^{k+1}-p^{k}}\left(x-p^{k}\right) .
$$

To show that L_{k} is a lower support line for T, let $n=p^{j} n_{0}$ where $\left(n_{0}, p\right)=1$, that is, n_{0} and p are relatively prime. Then, since ord $n=j$, it suffices to show that

$$
-j+k \geq \frac{-1}{p^{k+1}-p^{k}}\left(p^{j} n_{0}-p^{k}\right)
$$

or, equivalently,

$$
j-k \leq \frac{1}{p^{k+1}-p^{k}}\left(p^{j} \mathfrak{n}_{0}-p^{k}\right) .
$$

Let $q=j-k$. If $q=0$, then, since $n_{0} \geq 1$,

$$
\frac{1}{p^{k+1}-p^{k}}\left(p^{j} n_{0}-p^{k}\right)=\frac{1}{p-1}\left(n_{0}-1\right) \geq 0=q .
$$

If $q<0$, then

$$
\frac{1}{p^{k+1}-p^{k}}\left(p^{j} \mathfrak{n}_{0}-p^{k}\right) \geq \frac{1}{p-1}\left(p^{q}-1\right)>-1 \geq q .
$$

Finally, suppose $q>0$. Now $q-1 \geq \log _{p} q$ so that $p^{q-1} \geq q$ and, hence, $\mathrm{p}^{\mathrm{q}} \geq \mathrm{pq}$. Since $\mathrm{q} \geq 1$, it follows that $: \mathrm{p}^{\mathrm{q}}-1 \geq \mathrm{pq}-\mathrm{q}$ and, therefore, $\frac{1}{p-1}\left(p^{q}-1\right) \geq q$. Since

$$
\frac{1}{p^{k+1}-p^{k}}\left(p^{j} n_{0}-p^{k}\right) \geq \frac{1}{p-1}\left(p^{q}-1\right)
$$

ft has been established that

$$
j-k \leq \frac{1}{p^{k+1}-p^{k}}\left(p^{j} n_{0}-p^{k}\right) .
$$

Therefore, for any $k=0,1,2, \ldots$, the 1ine L_{k} is a lower line of support for the Newton diagram T.

Since the slope of L_{k} is given by

$$
m_{k}=\frac{-1}{p^{k}(p-1)}
$$

it is clear that the Newton polygon contains a countably infinite number of line segments. Figure 4 illustrates the Newton polygon for

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} x^{n}
$$

when $p=3$.

Figure 4. Newton Polygon for Logarithm Series

By the way in which the Newton polygon is defined, if $\left\{m_{i}\right\}$ is the sequence of slopes of the sides, then $\left\{m_{i}\right\}$ is monotonic increasing.

The major result of this section can now be established. This theorem shows how the radius of convergence can be obtained from the slopes of the sides of the Newton polygon.

Theorem 4.7. Let $\left\{m_{i}\right\}$ be the sequence of slopes for the Newton polygon of the power series

$$
\sum_{n=0}^{\infty} b_{n}(x-a)^{n}
$$

having radius of convergence $\rho>0$. Then $\log _{p} \rho=\underset{i \rightarrow \infty}{\operatorname{limit}_{i \rightarrow \infty}}$ if the Newton polygon is infinite, and $\log _{p} p=m_{n}$ if m_{n} is the slope of the terminal side L_{n}^{+}.

Proof: If the Newton polygon has a vertical side, then the power series is simply a polynomial so that the radius of convergence is infinite. Thus, the theorem holds in this special case.

In view of Theorem 4.2 , it suffices to show that

$$
\underline{1 \mathrm{~m}} \frac{\text { ord } b_{n}}{n}={\underset{i \rightarrow \infty}{ } \text { imit }^{n} m_{i} .}^{n}
$$

Let

$$
m=\operatorname{limit}_{i \rightarrow \infty} m_{i} \text { and } \alpha=1 \text { im } \frac{\text { ord } b_{n}}{n} .
$$

Assume first that both m and α are finite and that $m \neq \alpha$. Let L be a line with equation $y=\frac{m+\alpha}{2} x$. If $\alpha<m$, then $\alpha<\frac{m+\alpha}{2}<m$. Since $\frac{m+\alpha}{2}=\alpha+\frac{m-\alpha}{2}$, the definition of $11 m$ implies there are infinitely many n such that

$$
\frac{\text { ord } b_{n}}{n}<\frac{m+\alpha}{2} .
$$

Thus, there are infinitely many points of the Newton diagram T which are below the line L.

On the other hand, since $\left\{m_{i}\right\}$ is an increasing sequence, $\frac{m+\alpha}{2}<m$ implies there is a lower support line L_{k} with slope $m_{k}>\frac{m+\alpha}{2}$. But this implies there are only finitely many points of T below L which contradicts the previous statement. Therefore, $\alpha \geq m$.

If $\alpha>m$ then $\frac{m+\alpha}{2}>\alpha$ so that, according to the definition of 1im, there is an N such that

$$
\frac{\text { ord } b_{n}}{n}>\frac{m+\alpha}{2}
$$

for every $n \geq N$. This implies that $B_{n} \varepsilon T$ is above the line L for every $n \geq N$. Since there are only finitely many points $B_{k} \in T$ with $k<N$, there is a lower support line of T with slope $\frac{m+\alpha}{2}>m$. But the sequence of slopes is a monotonic increasing sequence so that there is no lower support line of T with slope greater than m. Hence, $\alpha \leq m$. It follows that $\alpha=m$.

Now suppose m is finite, and α is not finite. Then let L have equation $y=(m+1) x$ if $\alpha=\infty$, and $y=(m-1) x$ if $\alpha=-\infty$. Then essentially the same arguments as before yield contradictions. Finally, suppose $m=\infty$. Let L be the line $y=(\alpha+1) x$ if α is finite, and let L be the line $y=x$ if $\alpha=-\infty$. Again the definition of lim implies there are infinitely many points of T below line L. But since there is a lower support line with slope greater than that of L, this is a contradiction. Since whenever a Newton polygon exists, either ${ }_{i \rightarrow \infty}^{\text {limit }} m_{i}>-\infty$ or else the slope of L_{n}^{+} is greater than $-\infty$. The proof of Theorem 4.7 is complete.

The following examples utilize Theorem 4.7.

Example 4.8. The radius of convergence of

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} x^{n}
$$

According to Example 4.6, the slopes of the sides of the Newton polygon are given by

$$
m_{k}=\frac{-1}{p^{k}(p-1)}
$$

so that ${ }_{k \rightarrow \infty}^{\text {limit }} m_{k}=0$. Thus, by Theorem 4.7, $\rho=1$. To see that this agrees with Theorem 4.2, note that $n \geq p^{\text {ord } n}$ so that $\log _{p} n \geq$ ord n and, hence,

$$
\frac{\log _{p} n}{n} \geq \frac{\text { ord } n}{n} .
$$

Since

$$
\operatorname{limit}_{n \rightarrow \infty} \frac{\log _{p} n}{n}=0,
$$

it follows that $\operatorname{limit}_{\mathrm{n} \rightarrow \infty} \frac{\text { ord } \mathrm{n}}{\mathrm{n}}=0$. Thus,

$$
\log _{p} \rho=1 \text { im } \frac{\text { ord } b_{n}}{n}=1 \text { im } \frac{\text {-ord } n}{n}=0
$$

so that $\rho=1$.

Example 4.9. The radus of convergence of the binomial series

$$
\sum_{n=0}^{\infty}\binom{\alpha}{n} x^{n}
$$

The coefficients $\binom{\alpha}{n}$ are given by $\frac{(\alpha-1)(\alpha-2) \cdots(\alpha-n+1)}{n!}$ where α may be any p-adic integer. If α is a positive rational Integer than the series is actually a polynomial and the series converges for all x. If, on the other hand, α is a p-adic integer which is not a non-negative rational integer then the canonical representation of α is infinite, say

$$
\alpha=a_{0}+a_{1} p+a_{2} p^{2}+\cdots+a_{k} p^{k}+\cdots
$$

It was shown by Palmer [14] that in this case the radius of convergence is at least $p^{-1 /(p-1)}$. By applying Theorem 4.7 , it can be established that the radius of convergence ρ is equal to. 1. It suffices to show that the x-axis is the terminal ray in the Newton polygon for

$$
\sum_{n=0}^{\infty}\binom{\alpha}{n} x^{n}
$$

Recall that according to Theorem 1.17 , given the rational integer $N=b_{0}+b_{1} p+\cdots+b_{k} p^{k}$ and the p-adic integer $\alpha=a_{0}+a_{1} p+\cdots+a_{k} p^{k}+\cdots ;$ then

$$
\operatorname{ord}\binom{\alpha}{N}=\sum_{i=0}^{\infty} \delta_{i}
$$

where $\delta_{-1}=0$ and

$$
\delta_{i}= \begin{cases}1 & \text { if } a_{i}<b_{i}+\delta_{i-1} \\ 0 & \text { if } \\ a_{i} \geq b_{i}+\delta_{i-1}\end{cases}
$$

Thus, for every $n_{k}=a_{0}+a_{1} p+\cdots+a_{k} p^{k}$,

$$
\operatorname{ord}\binom{\alpha}{n_{k}}=0
$$

Since ord $\binom{\alpha}{n} \geq 0$ for every n, and there are infinitely many choices for n such that ord $\binom{\alpha}{n}=0$, it follows that the x-axis is the terminal side of the Newton polygon for the binomial series

$$
\sum_{\mathrm{n}=0}^{\infty}\binom{\alpha}{\mathrm{n}} \mathrm{x}^{\mathrm{n}}
$$

whenever α is a p-adic integer having an infinite canonical representation. Thus, $\log _{\mathrm{p}} \rho=0$ and, therefore, $\rho=1$.

Figure 5 illustrates the Newton diagram for

$$
\sum_{n=0}^{\infty}\binom{1 / 2}{n} x^{n}
$$

where $p=3$. Recall that the canonical representation of $1 / 2$ is $2+1 \cdot 3+1 \cdot 3^{2}+1 \cdot 3^{3}+\cdots$. Thus, for example, since $25=1+2 \cdot 3+2 \cdot 3^{2}$, then ord $\binom{1 / 2}{25}=0+1+1=2$. Similarly, since $37=1+0 \cdot 3+1 \cdot 3^{2}+1 \cdot 3^{3}$, then ord $\begin{gathered}1 / 2 \\ 37\end{gathered}=0+0+0+0=0$.

Figure 5. Newton Diagram for Binomial Series

Hensel's Lemma

As indicated earlier, Newton's polygon is useful in locating the zeros of certain power series. Before this topic can be discussed, it will be necessary to prove an important theorem called Hensel's Lemma for power series. Palmer [14] proved a form of Hensel's Lemma which states that under suitable conditions a polynomial in $O_{p}[x]$ can be written as the product of two non-constant polynomials. The form to be established here states that under similar conditions, a convergent power series with coefficients in the p-adic integers O_{p} can be written as the product of a polynomial and another convergent power series. Several definitions, lemmas and theorems are needed first.

Definition 4.10. Let A_{n} be the ideal $p^{n} O_{p}$ and let η be the canonical homomorphism from O_{p} onto O_{p} / A_{n}. Then $\eta_{n}: O_{p}[x] \rightarrow O_{p} / A_{n}[x]$ is defined by

$$
\eta_{n}\left(a_{0}+a_{1} x+\cdots+a_{s} x^{s}\right)=\eta\left(a_{0}\right)+\eta\left(a_{1}\right) x+\cdots+\eta\left(a_{s}\right) x^{s}
$$

Since η is a homomorphism, it follows that η_{n} is a homomorphism.

Definition 4.11. If

$$
f(x)=\sum_{k=0}^{\infty} a_{k} x^{k} \text { and } g(x)=\sum_{k=0}^{\infty} b_{k} x^{k}
$$

are power series over O_{p} and A_{n} is the ideal $p^{n} O_{p}$, then define $f \equiv g \bmod A_{n}$ if and only if for every $k \geq 0, p^{n} \mid\left(a_{k}-b_{k}\right)$.

Note that in the above definition one or both of f and g may be polynomials. It is immediate that the relation $\equiv \bmod A_{n}$ is an equivalence relation.

Theorem 4.12. If f is a power series over, O_{p} and g_{n} is a sequence of polynomials such that $f \equiv g_{n} \bmod A_{n}$ for every $n \geq 1$, then the sequence converges uniformly and $\lim g_{n}=f$.

Proof: Since $f \equiv g_{n} \bmod A_{n}$, then for every x in the domain of $f, f(x) \equiv g_{n}(x) \bmod p^{n}$. For $\epsilon>0$, choose an $N>0$ such that for all $n \geq N, 1 / p^{n}<\epsilon$. Since $p^{n} \mid\left(f(x)-g_{n}(x)\right)$ for every n, then for $n \geq N, \quad\left|f(x)-g_{n}(x)\right| \leq 1 / p^{n}<\epsilon \quad$ for every $\quad x$. Therefore, the sequence g_{n} converges uniformly to f.

Theorem 4.13. If $\left\{g_{n}\right\}$ is a sequence of polynomials with coefficients in O_{p} such that for each $n=0,1,2, \ldots, g_{n} \equiv g_{n+1} \bmod A_{n}$, then $\left\{g_{n}\right\}$ converges uniformly on $|x| \leq 1$ to a function g such that g is represented by a power series with coefficients in O_{p}.
preef: Since $g_{n} \equiv g_{n+1}$ mod A_{n} implies p^{n} divides every coefficient of the polynomial $g_{n}-g_{n+1}$, it follows that for every $\epsilon>0$, there is an N such that whenever $n \geq N$, then $\left|g_{n}(x)-g_{n+1}(x)\right|<\epsilon$ for every $|x| \leq 1$. For functions defined on a non-archimedean field, this is a sufficient condition for uniform convergence. Thus, the sequence $\left\{g_{n}\right\}$ converges uniformly on $|x| \leq 1$. Let g be the limit function. To see that g is represented by a power series suppose the polynomial g_{n} is given by

$$
g_{n}(x)=a_{n, 0}+a_{n, 1} x+\cdots+a_{n, s(n)} x^{s(n)}
$$

Then $g_{n} \equiv g_{n+1} \bmod A_{n}$ implies $p^{n} \mid\left(a_{n, j}-a_{n+1, j}\right)$ for each $j \geq 0$. Therefore, every sequence

$$
\left\{a_{n, j}\right\}_{n=0}^{\infty}
$$

converges to a point in 0_{p}. For each $j \geq 0$, let $\lim _{n \rightarrow \infty} a_{n, j}=b_{j}$. Then the power series

$$
g(x)=\sum_{n=0}^{\infty} b_{n} x^{n}
$$

is the 1 imit of the sequence g_{n}.

Corollary 4.14. If for each n, g_{n} is a monic polynomial of degree s, then the limit function g is a monic polynomial of degree s.

Proof: Since $a_{n, s}=1$ for every n and $a_{n, j}=0$ for every n and $\mathrm{j}>\mathrm{s}$, then $\mathrm{b}_{\mathrm{s}}=1$ and $\mathrm{b}_{\mathrm{j}}=0$ for $\mathrm{j}>\mathrm{s}$.

Corollary 4.15. For every $n, g \equiv g_{n} \bmod A_{n}$.

Proof: As in the proof of the Theorem, let

$$
g(x)=\sum_{k=0}^{\infty} b_{k} x^{k}
$$

where b_{k} is the p-adic limit of the coefficients of x^{k} in the polynomials $g_{n}(x)=a_{n, 0}+a_{n, 1} x+\cdots+a_{n, s} x^{s}$. Then for large enough N, $p^{n} \mid\left(b_{k}-a_{N, k}\right)$ and, since $g_{n} \equiv g_{n+1} \bmod A_{n}$ for every n, it follows that $p^{n} \mid\left(a_{n, k}-a_{N, k}\right)$ so that $p^{n} \mid\left(b_{k}-a_{n, k}\right)$.

The next two lemmas will be used in the proof of Hensel's Lemma. Their proofs are found in the Appendix.

Lemma 4.16. Let G and H be polynomials in $O_{p}[x]$ with G monic. Then G and H are relatively prime in $O_{p}[x]$ if and only if $\eta_{n}(G)$ and $\eta_{n}(H)$ are relatively prime in $O_{p} / A_{n}[x]$ for $n=1,2,3, \ldots$.

Proof: See Appendix.

Lemma 4.17. Let G and H be two polynomials with coefficients in ring R. If G is monic and G and H are relatively prime in $R[x]$ with $\operatorname{deg} G=s$, then for every non-zero polynomial $Q \varepsilon R[x]$, there exists a unique pair of polynomials U and V such that $Q=U G+V H$ with $V=0$ or $\operatorname{deg} V<s$.

Proof: See Appendix.

For convenience, when $n=1$, the homomorphism η_{n} of Definition 4.10 will be denoted by

$$
\eta_{1}\left(a_{0}+a_{1} x+\cdots+a_{s} x^{s}\right)=\overline{a_{0}}+\overline{a_{1} x}+\cdots+\overline{a_{s}} x^{s} .
$$

In the next definition, this notation is extended to power series.

Definition 4.18. If

$$
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

is a power series over O_{p}, then let \bar{f} denote the power series over $\mathrm{O}_{\mathrm{p}} / \mathrm{A}_{1}$ such that

$$
\bar{f}(x)=\sum_{n=0}^{\infty} \bar{a}_{n} x
$$

Lemma 4.19. If f and g are power series over O_{p}, then $\overline{f+g}=\bar{f}+\bar{g}$ and $\overline{f g}=\bar{f} \bar{g}$.

Proof: If a_{k} and b_{k} are corresponding coefficients of f and g, respectively, then $\overline{a_{k}+b_{k}}=\overline{a_{k}}+\overline{b_{k}}$ and

$$
\overline{\sum_{i=0}^{k} a_{i} b_{k-i}}=\sum_{i=0}^{k} \overline{a_{i} b_{k-i}}
$$

imply $\overline{f+g}=\bar{f}+\bar{g}$ and $\overline{f g}=\bar{f} \bar{g}$.

If

$$
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

converges for every \mathbf{x} such that $|\mathbf{x}| \leq 1$, then, in particular, the series

$$
\sum_{n=0}^{\infty} a_{n}
$$

converges. Therefore, the sequence $\left\{a_{n}\right\}$ is a null sequence in 0_{p} so that for every non-negative integer k there exists a positive integer N_{k} such that $p^{k} \mid a_{n}$ whenever $n \geq N_{k}$. Thus, there exists only a finite number of k such that $p^{k} \nmid a_{n}$. This allows the following definition.

Definition 4.20. Let

$$
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

converge for every x such that $|x| \leq 1$. For each non-negative integer k, define γ_{k} to be the largest subscript n such that $p^{k+1}+a_{n}$.

Since $\left.p^{k+1}\right|_{a_{n}}$ implies $\left.p^{k}\right|_{a_{n}}$, it follows that $\gamma_{k} \leq \gamma_{k+1}$ for $k=0,1,2, \ldots$.

To illustrate the definition of γ_{k}, suppose

$$
f(x)=(1+p)+x+\left(p^{2}+p^{3}\right) x^{2}+p x^{3}+\left(p^{3}-p^{4}\right) x^{4}+a_{5} x^{5}+\cdots
$$

where $a_{n}=p^{n}$ for $n \geq 5$. Then $\gamma_{0}=1, \quad \gamma_{1}=3, \quad \gamma_{2}=3$, $\gamma_{3}=\gamma_{4}=4$, and if $n \geq 5$ then $\gamma_{n}=n$. Consider the power series

$$
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

convergent for all \mathbf{x} such that: $|\mathrm{x}| \leq 1$. Let Q_{k} be the polynomial of degree γ_{k} defined by

$$
Q_{k}(x)=\sum_{n=0}^{\gamma_{k}} a_{n} x^{n}
$$

In view of Definition 4.11 , and since. $p^{k+1} \mid a_{n}$ for every $n>\gamma_{k}$, it follows that $Q_{k+1} \equiv Q_{k} \bmod A_{k+1}$ and $f \equiv Q_{k} \bmod A_{k+1}$.

Finally, Hensel's Lemma can be established. Throughout the statement and proof, \mathfrak{D} will denote the set of all x such that $|x| \leq 1$.

Theorem 4.21. (Hensel's Lemma) Let.

$$
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

be a power series which converges everywhere in (1). Suppose there exist two polynomials G and H in $\overline{O_{p}}[x]=O_{p} / A_{1}[x]$ such that:

1. G is monic of degree s.
ii. G and H are relatively prime.
iii. $\bar{f}=G H$.

Then there exists a pair g, h such that:
i'. $^{\prime} g$ is a monic polynomial of degree s in $O_{p}[x]$ and $\bar{g}=G$.
ii'. h is a power series which converges everywhere in \mathfrak{V} and $\bar{h}=\mathrm{H}$.
iii'. $f=g h$.

Proof: The overall plan is to define by induction two convergent sequences of polynomials in $O_{p}[x],\left\{g_{n}\right\}$ and $\left\{h_{n}\right\}$, such that their Iimit functions g and h have the properties i^{\prime}, ii', and iii'.

Specifically, the sequences $\left\{g_{n}\right\}$ and $\left\{h_{n}\right\}$ will have the following properties:
(1) For every $n \geq 0, g_{n}$ is monic of degree $s, \overline{g_{n}}=G$ and $g_{n} \equiv g_{n+1} \bmod A_{n+1}$ for $n \geq 0$.
(2) For every $n \geq 0, \overline{h_{n}}=H, h_{n} \equiv h_{n+1} \bmod A_{n+1}$.
(3) $f \equiv g_{n} h_{n} \bmod A_{n+1}$ for $n \geq 0$.
(4) $\quad \operatorname{deg} h_{n}=\gamma_{n}-s$.

Suppose for the moment that sequences $\left\{g_{n}\right\}$ and $\left\{h_{n}\right\}$ satisfying properties 1, 2, 3 and 4 have been obtained. Then, by Theorem 4.13 $g_{n} \equiv g_{n+1} \bmod A_{n}$ implies $\left\{g_{n}\right\}$ converges uniformly to a function g which is expressed as a power series. Also, according to Corollary 4.15, $g \equiv g_{n} \bmod A_{n}$ for every n. This, in turn, implies $g \equiv g_{n} \bmod A_{1}$. In other words, $\overline{\mathrm{g}}=\overline{\mathrm{g}_{\mathrm{n}}}=\mathrm{G}$ for $\mathrm{n}=1,2, \ldots$. By Corollary 4.14, g is a monic polynomial of degree s. Similarly, $\left\{h_{n}\right\}$ converges to a power series h such that $\bar{h}=H$. Also, deg $h_{n}=\gamma_{n}-s$ and deg $g_{n}=s$ imply deg $h_{n} g_{n}=\gamma_{n}$. Finally, by Theorem 4.12 if $g_{n} h_{n} \equiv f \bmod A_{n}$ then the sequence $\left\{g_{n} h_{n}\right\}$ converges to f. Thus, gh $=\mathrm{f}$.

To begin the definition of the sequences $\left\{g_{n}\right\}$ and $\left\{h_{n}\right\}$ define the polynomials g_{0} and h_{0} by $g_{0}(x)=b_{0}+b_{1} x+\cdots+b_{s-1} x^{s-1}+x^{s}$ where the given polynomial in $0_{p} / A_{1}[x]$ is:

$$
G(x)=\overline{b_{0}}+\overline{b_{1}} x+\cdots+\overline{b_{s-1}} x^{s-1}+x^{s}
$$

and

$$
h_{0}(x)=c_{0}+c_{1} x+\cdots+c_{t} x^{t}
$$

where

$$
H(x)=\overline{c_{0}}+\overline{c_{1} x}+\cdots+{\overline{c_{t}}}^{x}
$$

$\overline{c_{t}} \neq 0$. Clearly, $\overline{g_{0}}=G, \overline{h_{0}}=H$ and, since $\bar{f}=G H$, then
$\mathrm{f} \equiv \mathrm{g}_{0} \mathrm{~h}_{0} \bmod A_{1}$, Since $\overline{\mathrm{f}}=\mathrm{GH}$, it follows that $\operatorname{deg} H=\operatorname{deg} \bar{f}-\operatorname{deg} G=\gamma_{0}-s$. Therefore, since $\operatorname{deg} h_{0}=\operatorname{deg} H$, $\operatorname{deg} h_{0}=\gamma_{0}-s$.

In order to obtain polynomials g_{1} and h_{1}, consider the polynomial Q_{1} consisting of the first $\gamma_{1}+1$ terms of the power series $f, Q_{1}(x)=a_{0}+a_{1} x+\cdots+a_{N} x^{N}$, where $N=\gamma_{1}$. Since $\gamma_{1} \geq \gamma_{0}$, then $\bar{f}=\overline{Q_{1}}$. According to Lemma 4.17, there exists a unique pair of polynomials U_{1}, V_{1} such that $Q_{1}-g_{0} h_{0}=U_{1} g_{0}+V_{1} h_{0}$ with deg $V_{1}<s=\operatorname{deg} g_{0}$. Since $\bar{f}=\overline{g_{0} h_{0}}$, then $\overline{Q_{1}-g_{0} h_{0}}=\overline{Q_{1}}-\overline{g_{0} h_{0}}=\bar{f}-\overline{g_{0} h_{0}}=0$, so that $\overline{U_{1} g_{0}}+\overline{V_{1} h_{0}}=0$. Since $\overline{g_{0}}$ and $\overline{h_{0}}$ are relatively prime, $\overline{\mathrm{U}_{1} g_{0}}+\overline{\bar{V}_{1} h_{0}}=0$ implies either $\overline{\mathrm{U}_{1}}=\overline{\mathrm{V}_{1}}=0$ or else $\overline{\mathrm{g}_{0}} \mid \overline{\mathrm{V}_{1}}$. If $\overline{\mathrm{g}_{0}} \mid \overline{\mathrm{V}_{1}}$, then deg $\overline{g_{0}} \leq \operatorname{deg} \overline{V_{1}} \leq \operatorname{deg} V_{1}<s=\operatorname{deg} g_{0}=\operatorname{deg} \overline{g_{0}}$. This is a contradiction so that $\overline{\mathrm{U}_{1}}=\overline{\mathrm{V}_{1}}=0$.

The polynomials g_{1} and h_{1} may now be defined as follows:

$$
g_{1}=g_{0}+v_{1} \text { and } h_{1}=h_{0}+U_{1}
$$

To see that property (1) for $n=1$ is satisfied, note first that $\operatorname{deg} \mathrm{V}_{1}<\mathrm{s}=\operatorname{deg} \mathrm{g}_{0}$ implies $\operatorname{deg} \mathrm{g}_{1}=\operatorname{deg}\left(\mathrm{g}_{0}+\mathrm{V}_{1}\right)=\mathrm{s}$. Since g_{0} is monic, g_{1} is monic. Also, $\overline{V_{1}}=0$ implies $g_{1} \equiv g_{0} \bmod A_{1}$ and that $\overline{g_{1}}=\overline{g_{0}}=G$.

Property (2) for $n=1$ is easily shown since $\overline{U_{1}}=0$ implies $\overline{h_{1}}=\overline{h_{0}}+\overline{U_{1}}=\overline{h_{0}}=H$ and also $h_{1} \equiv h_{0} \bmod A_{1}$.

To prove property (3) for $n=1$, note that

$$
\begin{aligned}
g_{1} h_{1} & =\left(g_{0}+v_{1}\right)\left(h_{0}+U_{1}\right) \\
& =g_{0} h_{0}+U_{1} g_{0}+v_{1} h_{0}+v_{1} U_{1} \\
& =Q_{1}+v_{1} U_{1} .
\end{aligned}
$$

Since $U_{1} \equiv 0 \bmod A_{1}$ and $V_{1} \equiv 0 \bmod A_{1}, \quad$ then $U_{1} V_{1} \equiv 0 \bmod A_{2}$. Therefore, $g_{1} h_{1} \equiv Q_{1} \bmod A_{2}$. Since $f \equiv Q_{1} \bmod A_{2}$, it follows that

$$
f \equiv g_{1} \mathrm{~h}_{1} \bmod \mathrm{~A}_{2}
$$

It remains to be shown that $\operatorname{deg} h_{1}=\gamma_{1}-s$. Since. $g_{1} h_{1}=Q_{1}+V_{1} U_{1}$, then

$$
\operatorname{deg} g_{1}+\operatorname{deg} h_{1} \leq \max \left\{\operatorname{deg} Q_{1}, \operatorname{deg} V_{1}+\operatorname{deg} U_{1}\right\}
$$

or

$$
s+\operatorname{deg} h_{1} \leq \max \left\{\gamma_{1}, \operatorname{deg} V_{1}+\operatorname{deg} U_{1}\right\}
$$

with equality holding if $\gamma_{1} \neq \operatorname{deg} \mathrm{V}_{1}+\operatorname{deg} \mathrm{U}_{1}$. On the other hand, since $Q_{1}=g_{0} h_{0}+g_{0} U_{1}+h_{0} V_{1}$ and $\operatorname{deg} Q_{1}=\gamma_{1}$, then

$$
\begin{aligned}
\gamma_{1} & \leq \max \left\{\operatorname{deg} g_{0} h_{0}, \operatorname{deg} g_{0} U_{1}, \operatorname{deg} h_{0} V_{1}\right\} \\
& =\max \left\{s+\gamma_{0}-s, s+\operatorname{deg} U_{1}, \gamma_{0}-s+\operatorname{deg} V_{1}\right\} .
\end{aligned}
$$

Since $\operatorname{deg} V_{1}<s$, then $\gamma_{1} \leq \max \left\{\gamma_{0}, s+\operatorname{deg} U_{1}\right\}$ with equality holding if $\gamma_{0} \neq s+\operatorname{deg} U_{1}$.

Suppose $\gamma_{0}>s+\operatorname{deg} U_{1}$. Then $\gamma_{1}=\gamma_{0}$ and, since $s+\operatorname{deg} U_{1}>\operatorname{deg} V_{1}+\operatorname{deg} U_{1}$, it follows that $\gamma_{1}>\operatorname{deg} V_{1}+\operatorname{deg} U_{1}$ so that $s+\operatorname{deg} h_{1}=\gamma_{1}$.

Suppose $\gamma_{0}<s+\operatorname{deg} U_{1}$: Then $\gamma_{1}=s+\operatorname{deg} U_{1}>\operatorname{deg} V_{1}+\operatorname{deg} U_{1}$ so that again $s+\operatorname{deg} h_{1}=\gamma_{1}$.

Finally, if $\gamma_{0}=s+\operatorname{deg} U_{1}$, then $\gamma_{1} \leq \gamma_{0}$. Since, also, $\gamma_{1} \geq \gamma_{0}$, then $\gamma_{1}=\gamma_{0}=s+\operatorname{deg} U_{1}>\operatorname{deg} V_{1}+\operatorname{deg} U_{1}$ so that again $s+\operatorname{deg} h_{1}=\gamma_{1}$. Therefore, in all cases

$$
\operatorname{deg} h_{1}=\gamma_{1}-s .
$$

This completes the induction step for $n=1$.
To complete the definition of the sequences $\left\{g_{n}\right\}$ and $\left\{h_{n}\right\}$, suppose polynomials $g_{1}, g_{2}, \ldots, g_{n}$ and $h_{1}, h_{2}, \ldots, h_{n}$ satisfying properties (1), (2), (3) and (4) have been constructed. Let $Q_{n+1}(x)=a_{0}+a_{1} x+\cdots+a_{N} x^{N}$ where $N=\gamma_{n+1}$ and consider $Q_{n+1}-g_{n} h_{n} \in O_{p}[x]$. By Lemma 4.17, there exist polynomials U_{n+1} and V_{n+1} in $O_{p}[x]$ such that $Q_{n+1}-g_{n} h_{n}=U_{n+1} g_{n}+V_{n+1} h_{n}$ with deg $V_{n+1}<s$ or $V_{n+1}=0$. By the induction hypothesis, $f \equiv g_{n} h_{n} \bmod A_{n+1}$ and by the definition of $Q_{n+1}, f \equiv Q_{n+1} \bmod A_{n+2}$. It follows that $Q_{n+1}-g_{n} h_{n} \equiv 0 \bmod A_{n+1}$ and, therefore, $U_{n+1} g_{n}+V_{n+1} h_{n} \equiv 0 \bmod A_{n+1}$. By Lemma 4.16, the images of g_{n} and h_{n} are relatively prime in $O_{p} / A_{n+1}[x]$. As in the proof of $\overline{U_{1}}=\overline{V_{1}}=0$, it follows that $U_{n+1} \equiv 0 \bmod A_{n+1}$ and $V_{n+1} \equiv 0 \bmod A_{n+1}$.

Define $g_{n+1}=g_{n}+V_{n+1}$ and $h_{n+1}=h_{n}+U_{n+1}$. It remains to show that properties (1), (2), (3) and (4) hold.

Now deg $\mathrm{V}_{\mathrm{n}+1}<\mathrm{s}$ implies deg $\mathrm{g}_{\mathrm{n}+1}=\mathrm{s}$ and since g_{n} is monic, $\mathrm{g}_{\mathrm{n}+1}$ is monic. Also, $\mathrm{V}_{\mathrm{n}+1} \equiv 0 \bmod A_{\mathrm{n}+1}$ implies $g_{\mathrm{n}+1} \equiv g_{\mathrm{n}} \bmod A_{\mathrm{n}+1}$ and $\overline{g_{n+1}}=\overline{g_{n}+V_{n+1}}=\overline{g_{n}}=G$. Thus, (1) is satisfied for $n+1$. Similarly, $U_{n+1} \equiv 0 \bmod A_{n+1}$ implies $h_{n+1} \equiv h_{n} \bmod A_{n+1}$ and $\overline{h_{n+1}}=\overline{h_{n}+U_{n+1}}=\overline{h_{n}}=H$. This proves property (2).

To prove that $\operatorname{deg} h_{n+1}=\gamma_{n+1}-s$, note that

$$
\begin{aligned}
g_{n+1} h_{n+1} & =\left(g_{n}+V_{n+1}\right)\left(h_{n}+U_{n+1}\right) \\
& =Q_{n+1}+V_{n+1} U_{n+1} .
\end{aligned}
$$

This implies

$$
s+\operatorname{deg} h_{n+1} \leq \max \left\{\gamma_{n+1}, \operatorname{deg} V_{n+1}+\operatorname{deg} U_{n+1}\right\}
$$

with equality if $\gamma_{n+1} \neq \operatorname{deg} V_{n+1}+\operatorname{deg} U_{n+1}$.
Thus, it suffices to show that $\gamma_{n+1}>\operatorname{deg} V_{n+1}+\operatorname{deg} U_{n+1}$. To see that this is the case, note that $Q_{n+1}=g_{n} h_{n}+g_{n} U_{n+1}+h_{n} V_{n+1}$ implies $\gamma_{n+1} \leq \max \left\{\gamma_{n}, s+\operatorname{deg} U_{n+1}\right\}$ with equality if $\gamma_{\mathrm{n}} \neq \operatorname{deg} \mathrm{U}_{\mathrm{n}+1}+\mathrm{s}$. With essentially the same arguments used in the case $n=1$, it is seen that

$$
\gamma_{n+1} \geq s+\operatorname{deg} U_{n+1}>\operatorname{deg} V_{n+1}+\operatorname{deg} U_{n+1} .
$$

Therefore, $s+\operatorname{deg} h_{n+1}=\gamma_{n+1}$ so that property (4) is established for the case $n+1$.

The proof of property (3) for $n+1$ follows from

$$
g_{n+1} h_{n+1}=Q_{n+1}+U_{n+1} V_{n+1}
$$

since $U_{n+1} \equiv 0 \bmod A_{n+1}$ and $V_{n+1} \equiv 0 \bmod A_{n+1}$ imply $U_{n+1} V_{n+1} \equiv 0 \bmod A_{n+2}$ so that $g_{n+1} h_{n+1} \equiv Q_{n+1}$ mod A_{n+2}. Since $Q_{n+1} \equiv f \bmod A_{n+2}$, it follows that $f \equiv g_{n+1} h_{n+1} \bmod A_{n+2}$.

This completes the definition by induction of the sequences $\left\{\mathrm{g}_{\mathrm{n}}\right\}$ and $\left\{h_{n}\right\}$ having properties (1), (2), (3) and (4). As indicated
earlier, Hensel's Lemma now follows from Theorems 4.12 and 4.13 and its corollaries.

Zeros of a: Power Series

The next objective of this chapter is to locate as far as possible the zeros of certain power series. As in complex analysis, if $x=a$ is a zero of $f(x)$, then there is a positive integer m such that

$$
f(x)=(x-a)^{m} \sum_{n=m}^{\infty} b_{n}(x-a)^{n-m}
$$

where $b_{m} \neq 0$. Thus, it suffices to consider the zeros of a power series of the form

$$
\sum_{n=0}^{\infty} b_{n}(x-a)^{n}
$$

where $\mathrm{b}_{0} \neq 0$.
Also, since

$$
f(x)=\sum_{n=0}^{\infty} b_{n}(x-a)^{n}
$$

has a zero at $x=x_{0}$ if and only if

$$
F(x)=\sum_{n=0}^{\infty} b_{n} x^{n}
$$

has a zero at $x=x_{0}-a$, only power series of the form

$$
\sum_{n=0}^{\infty} b_{n} x^{n}
$$

with $b_{0} \neq 0$ need to be considered.
The next result applies to any convergent power series with coefficients in Q_{p}. It provides a sufficient condition for a power series to have no zeros on a given circle.

Theorem 4.22. Suppose

$$
f(x)=\sum_{n=0}^{\infty} b_{n} x^{n}
$$

has a non-zero radius of convergence, $b_{n} \varepsilon Q_{p}$ and $b_{0} \neq 0$. Suppose, also, that line L with slope m is a lower support line of the Newton diagram T. If L contains exactly one point of T, then $f(x)$ has no zeros on the circle $C_{-m}=\left\{x \in T_{p}:|x|=p^{m}\right\}$.

Proof: Let $A_{j}=\left(j\right.$, ord $\left.b_{j}\right)$ be the point of T on L. Then the equation of L is $y=m x+$ ord $b_{j}-m j$. To prove that $f(x)$ has no zeros on C_{-m} suppose $x_{0} \in C_{-m}$ so that ord $x_{0}=-m$. Since ord $b_{j} x_{0}^{j}=$ ord $b_{j}+j$ ord x_{0}, the equation for line L can be written as $y=\left(-\right.$ ord $\left.x_{0}\right) x+$ ord $b_{j} x_{0}$. Since A_{j} is the only point of the Newton diagram on L, then for $n \neq j$, ord $b_{n}>\left(-\right.$ ord $\left.x_{0}\right) n+$ ord $b_{j} x_{0}^{j}$. Thus, ord $b_{n} x_{0}^{n}>$ ord $b_{j} x_{0}^{j}$ for all $n \neq j$. This implies $\left|b_{n} x_{0}\right|<\left|b_{j} x_{0}^{j}\right|$ for all $n \neq j$ which in turn implies

$$
\left|\sum_{n=0}^{\infty} b_{n} x_{0}^{n}\right|=\left|b_{j} x_{0}^{j}\right|
$$

Since $A_{j} \varepsilon T$ implies $\left|b_{j}\right| \neq 0$ and $x_{0} \varepsilon C_{-m}$ implies $x_{0}^{j} \neq 0$, it follows that $\left|f\left(x_{0}\right)\right|=\left|b_{j} x_{0}^{j}\right| \neq 0$. Thus, if there is exactly one point of T on L,. then no point of C_{-m} is a zero of $f(x)$.

By applying Theorem 4.22, it may be quite easy to show that $f(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n} \varepsilon Q_{p}[x]$ has no zeros in Q_{p}. Since p^{m} is in the value group of Q_{p} if and only if m is a rational integer, it follows that f has zeros in Q_{p} only if the Newton polygon has a side having rational integral slope. Thus, $\mathrm{px}^{2}-1$ has no roots in Q_{p} for any p. since the slope of the only segment in the Newton polygon is $1 / 2$ and $p^{1 / 2}$ is not in the value group of Q_{p}.

A similar application of Theorem 4.22 settles the question of whether T_{p} is a discrete non-archimedean field.

Theorem 4.23. Let T_{p} be a complete non-archimedean field which is an algebraic closure of Q_{p}. Then the value group V of T_{p} is not a cyclic group.

Proof: Suppose T_{p} is discrete. Then there is a real number π with $0<\pi<1$ such that π generates the value group. V. Then $1<1 / \pi$ so that $0<\log _{p}(1 / \pi)=-\log _{p} \pi$. Choose a positive integer k such that $0<1 / k<-\log _{p} \pi$. Consider the polygon $f(x)=p x^{k}-1$ so that the Newton diagram for $f(x)$ has two points $(0,0)$ and ($k, 1$), and the only side has slope $1 / k$. Since T_{p} is algebraically closed, $f(x)$ has k zeros in T_{p} and, in view of Theorem 4.22, all are on the circle $C_{-1 / k}=\left\{x \in T_{p}:|x|=p^{1 / k}\right\}$. A contradiction will be obtained by showing that $p^{1 / k}$ is not in the value group V.

Suppose $p^{1 / k}$ is in V. Then there is a rational integer j such that $p^{1 / k}=\pi^{j}$. Then $1 / k=j \log _{p} \pi$ and, since $1 / k>0$ and $\log _{p} \pi<0$, this implies $j<0$. On the other hand, $1 / k<-\log _{p} \pi$ implies $j \log _{p} \pi<-\log _{p} \pi$ so that $j>-1$. In view of this
contradiction, it follows that T_{p} is not a discrete non-archimedean field.

By an argument similar to the above, it can be shown that the value group of T_{p} must include at least the set $\left\{\mathrm{p}^{\mathrm{r}}: \mathrm{r}\right.$ is a rational number\}.

The final objective of this chapter is to prove an analogue of Weierstrass' Factorization Theorem. Several lemmas and theorems are needed first.

The first of these shows that under suitable conditions a power series over Q_{p} can be transformed into a power series f_{1} over O_{p} such that $\overline{f_{1}}$ is a polynomial.

Lemma 4.24. Let

$$
f(x)=\sum_{n=0}^{\infty} b_{n} x^{n}
$$

be a power series over 0_{p} with $b_{0} \neq 0$ and having radius of convergence $\rho \neq 0$. If L is a lower support line containing a side $\overline{\mathrm{B}_{\mathrm{N}} \mathrm{B}_{\mathrm{N}}+1}$ of the Newton polygon for f , then there is a power series

$$
f_{1}(x)=\sum a_{n} x^{n}
$$

over: 0_{p} such that

$$
\overline{f_{1}}(x)=\overline{a_{j}} x^{j}+\overline{a_{j+1}} x^{j+1}+\cdots+x^{j+s}
$$

with $\overline{\mathbf{a}_{j}} \neq 0$.

Proof: Let L be the line of slope m containing the given side of the Newton polygon. Let $A_{j}=\left(j\right.$, ord $\left.b_{j}\right)=B_{N}$ and $A_{k}=\left(k\right.$, ord $\left.b_{k}\right)=B_{N+1}$. If. $x_{0} \in C_{-m}$, then; as in the proof of Theorem 4.22, ord $b_{k}=\left(-\operatorname{ord} x_{0}\right) k+$ ord $b_{j} x_{0}^{j}$. It follows that ord $b_{k} x_{0}^{k}=$ ord $b_{j} x_{0}^{j}$. Also, since L is a lower line of support, ord $b_{n} \geq\left(-\right.$ ord $\left.x_{0}\right) n+$ ord $b_{j} x_{0}^{j}$ for every $n=0,1,2, \ldots$ so that ord $b_{n} x_{0}^{n} \geq$ ord $b_{k} x_{0}^{k}$ for every $n=0,1,2, \ldots$.

Define the power series f_{1} by

$$
f_{1}(x)=b_{k}^{-1} x_{0}^{-k} f\left(x_{0}, x\right)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

that is,

$$
a_{n}=\frac{b_{n} x_{0}^{n}}{b_{k} x_{0}^{k}}
$$

The following observations show that the lemma has been established.

1. For every $n \geq 0$, ord $a_{n} \geq 0$ so that $a_{n} \in 0_{p}$.
2. The coefficient $a_{k}=1$ so that $\overline{a_{k}}=1$.
3. Since ord $a_{j}=\operatorname{ord} b_{j} x_{0}^{j}-\operatorname{ord} b_{k} x_{0}^{k}=0$, then $\overline{a_{j}} \neq 0$.
4. If $0 \leq n<j$ or $n>k$, then ord $a_{n}>0$ so that $\overline{a_{n}}=0$ for $0 \leq n<j$ or $n>k$.

Corollary 4.25. There is a one-to-one correspondence between the zeros of f on C_{-m} and the zeros of f_{1} on C_{0}.

Proof: According to the way in which f_{1} is defined, $x \in C_{-m}$ is a zero of f if and only if x_{0}^{-1} is a zero of f_{1} on C_{0}.

The next lemma shows that for a given power series f over o_{p} there is a polynomial g such that all the zeros of f on C_{0} are also zeros of g.

Lemma 4.26. Suppose

$$
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

is a power series over O_{p} such that $a_{n} \equiv 0 \bmod p$ for $0 \leq n \leq j-1, a_{j}$ is a unit in $O_{p}, a_{k} \neq 0 \bmod p$ and $a_{n} \equiv 0$ for $n>k=j+s$. Then f has s zeros on the unit circle C_{0}.

Proof: Consider

$$
\begin{aligned}
\bar{f}(x) & =\overline{a_{j}} x^{j}+\overline{a_{j+1}} x^{j+1}+\cdots+x^{k} \\
& =x^{j}\left(a_{j}+\overline{a_{j+1}} x+\cdots+x^{s}\right) .
\end{aligned}
$$

and apply Hensel's Lemma. Let $G(x)=\overline{a_{j}}+\overline{a_{j+1}} x+\cdots+x{ }^{s}$ and $H(x)=x^{j}$. Since $a_{j} \neq 0 \bmod p, \overline{a_{j}} \neq 0$ so that the polynomials G and H are relatively prime. Furthermore, since $\overline{\mathrm{f}}=\mathrm{GH}$, all the hypotheses of Hensel's Lemma are satisfied. Therefore, there exist a monic polynomial $g \varepsilon O_{p}[x]$ of degree $k-j=s$ and a power series h such that $\bar{g}=G, \bar{h}=H$ and the power series $f=g h$.

Suppose $g(x)=c_{0}+c_{1}(x)+\cdots+c_{s-1} x^{s-1}+x^{s}$. Then $\bar{g}=G$ Implies $\overline{c_{0}}=\overline{a_{j}} \neq 0$. It will be shown that the only zeros of the power serles $f(x)$ on the unit circle C_{0} are also zeros of the polynomial g. Let

$$
h(x)=\sum_{n=0}^{\infty} c_{n} x^{n} .
$$

Then $\bar{h}(x)=x^{j}$ implies ord $c_{j}=0$ and ord $c_{n}>0$ for every $\mathrm{n} \neq \mathrm{j}$. Thus, the x -axis is a lower, support line containing exactly one point of the Newton diagram for the power series $h(x)$. Then, according to Theorem 4.22, the power series $h(x)$ has no zero on C_{0}. Therefore, the original power series $f(x)$ and the polynomial $g(x)$ have exactly the same zeros on the unit circle C_{0}.

Since T_{p} is algebraically closed, the polynomial g has s zeros in T_{p}. Let α be a zero of g. It will be shown that $|\alpha|=1$. Suppose otherwise, that is, suppose $|\alpha| \neq 1$. If $|\alpha|<1$, then, since $g \varepsilon o_{p}[x]$ with $\left|c_{0}\right|=1$,

$$
\begin{aligned}
|g(\alpha)| & =\max \left\{\left|c_{0}\right|,\left|c_{1} \alpha+\cdots+\alpha^{s}\right|\right\} \\
& =\left|c_{0}\right|=1 \neq 0 .
\end{aligned}
$$

On the other hand, if $|\alpha|>1$, then $|g(\alpha)|=|\alpha|^{s} \neq 0$. It follows that all zeros of g are on C_{0} and, therefore, the power series f has s zeros on the unit circle C_{0}.

The results of the preceeding lemmas can be used to show that a power series has only finitely many zeros inside a given circle within the circle of convergence.

Theorem 4.27. Let

$$
f(x)=\sum_{n=0}^{\infty} b_{n} x^{n}
$$

be a power series over Q_{p} with radius of convergence $\rho \neq 0$. If $\mathrm{m}^{*}<\log _{\mathrm{p}} \rho$, then f has finitely many zeros, $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ inside or on $\mathrm{C}_{-\mathrm{m}^{*}}$. Furthermore, there is a power series h such that

$$
f(x)=\prod_{i=1}^{k}\left(x-\alpha_{i}\right) h(x)
$$

where h has radius of convergence ρ.

Proof: Let m be a slope of a side such that $m \leq m^{*}$. By the Corollary 4.25, there is a power series f_{1} such that f_{1} has the same number of zeros on C_{0} as there are zeros of f on C_{-m}. By Lemma 4.26, there are only a finite number of zeros of f_{1} on C_{0}. Thus, for each $m \leq m^{*}$, the set of zeros of f on C_{-m} is finite. Since $m^{*}<\log _{p} \rho$, there are only a finite number of sides having slopes less than m^{*}. It follows that there are only finitely many zeros of f inside or on the circle $C_{-m^{*}}$.

To prove the second part, note that if α is a zero on C_{-m} of the power series f, then the power series given by

$$
h_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

where

$$
\begin{aligned}
a_{0} & =-\frac{b_{0}}{\alpha} \\
a_{1} & =-\left(\frac{b_{1}}{\alpha}+\frac{b_{0}}{\alpha^{2}}\right) \\
& \vdots \\
a_{n} & =-\left(\frac{b_{n}}{\alpha}+\frac{b_{n-1}}{\alpha^{2}}+\cdots+\frac{b_{0}}{\alpha^{n+1}}\right)
\end{aligned}
$$

is such that $f(x)=(x-\alpha) h_{1}(x)$ where h_{1} has radius of convergence ρ. Similarly, there is a power series h_{2} such that if β is a zero
of h_{1} then $h_{1}(x)=(x-\beta) h_{2}(x)$ so that $f(x)=(x-\alpha)(x-\beta) h(x)$. It follows by induction that if $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\}$ is the set of zeros of f inside or on $C_{-m^{*}}$, then

$$
f(x)=\prod_{i=1}^{k}\left(x-\alpha_{i}\right) h(x)
$$

where h has no zeros inside or on C_{-m} and h has radius of convergence ρ.

Theorem 4.28. If

$$
f(x)=\sum_{n=0}^{\infty} b_{n} x^{n}
$$

with radius of convergence $\rho \nLeftarrow 0$ has no zeros inside or on the circle C_{-m}, then the function $f_{1}(x)=\frac{1}{f(x)}$ is analytic inside C_{-m}.

Proof: Without loss of generality, assume $b_{0}=1$. It can be shown that

$$
f_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

where

$$
\begin{aligned}
& a_{0}=1 \\
& a_{1}=-b_{1} \\
& a_{2}=-b_{2}+b_{1}^{2} \\
& a_{3}=-b_{3}+2 b_{1} b_{2}-a_{1}^{3}
\end{aligned}
$$

$$
a_{n}=\sum_{k}(-1)^{k} \sum b_{i_{1}} b_{i_{2}} \cdots b_{i_{k}}
$$

the second sum taken over all subscripts such that
$i_{1}+i_{2}+\cdots+i_{k}=n$.
In order to show that the radius of convergence is at least ρ, it suffices to show that:

$$
\frac{\text { ord } a_{n}}{n}>m
$$

for every n. Equivalently, it suffices to show that $\left|a_{n}\right|<p^{-n m}$ for every n. Now

$$
\left|a_{n}\right| \leq \max \left\{\left|b_{i_{1}} b_{i_{2}} \cdots \cdots b_{1_{k}}\right|: i_{1}+i_{2}+\cdots+i_{k}=n\right\}
$$

Since f has no zeros inside or on the circle C_{-m}, then the Newton polygon has no side with slope less than or equal to. m. Therefore,

$$
\frac{\text { ord } b_{j}}{j}>m
$$

for every j so that $\left|b_{j}\right|<p^{-j m}$ for every j. Thus, if $i_{1}+\cdots+i_{k}=n$, then

$$
\left|b_{i_{1}} b_{i_{2}} \ldots b_{1_{k}}\right|<p^{-i_{1} m} p^{-i_{2} m} \ldots p^{-i_{k} m}=p^{-n m}
$$

so that $\left|a_{n}\right|<p^{-n m}$ as required. This completes the proof.

Definition 4.29. If the radius of convergence of an analytic function f is infinite, then f is an entire function.

The next theorem shows that the only entire functions having no zeros in T_{p} are constant functions.

Theorem 4.30. If f is an entire function having no zeros, then f is a constant function.

Proof: Suppose

$$
f(x)=\sum_{n=0}^{\infty} b_{n} x^{n} .
$$

Since f has no zeros, then for any m there is no side of the Newton polygon having slope less than or equal to m. It follows that the only possible side is a terminal ray which is vertical. Thus, there is only one non-zero coefficient in the power series and, since f has no zeros, that coefficient must be b_{0}.

In contrast to the above theorem, there exist non-constant functions which have no zeros. The exponential series of Example 4.3 is not an entire function since its radius of convergence is $\mathrm{p}^{-1 /(p-1)}$. It can be shown that

$$
\exp (x)=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}
$$

has no zeros in T_{p}. To see this, consider the line L with equation $y=\frac{-1}{p-1} x: \quad$ Since

$$
\operatorname{ord} \frac{1}{n!}=-\left(\frac{n-t_{n}}{p-1}\right)=-\frac{n}{p-1}+\frac{t_{n}}{p-1},
$$

it follows that ord $\frac{1}{n!}>\frac{-1}{p-1} n$ for every $n>0$. Thus, $(0,0)$ is the only point of T on L and, by Theorem 4.22 , there are no zeros of $\exp (x)$ on the circle $C_{-m}=\left\{x \varepsilon T_{p}:|x|=p^{m}\right\}$ where $m=-1 /(p-1)$. By the same theorem, there are no zeros on any circle of smaller radius, and since the series fails to converge at every point x such that $|x|>p^{-1 /(p-1)}$, it follows that

$$
\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}
$$

has no zeros in T_{p}.

Weierstrass' Factorization Theorem

Finally, the major result of this section can be established. The following theorem, which may be considered as an analogue of Weierstrass' Factorization Theorem of complex analysis, shows that an entire function can be expressed as the product of linear factors involving all its zeros. Also, given a sequence of points in T_{p} whose valuations tend to infinity, there is an entire function having precisely those points as zeros.

Theorem 4.31. Let

$$
f(x)=\sum b_{n} x^{n}
$$

$b_{n} \varepsilon Q_{p}$ be an entire function. If f has infinitely many zeros which are different from zero, say $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \ldots$, then

$$
f(x)=A_{0} x^{k} \prod_{i=1}^{\infty}\left(1-\frac{x}{\alpha_{i}}\right)
$$

where the infinite product converges uniformly in every bounded subset of T_{p}, and A_{0} is a constant in T_{p}.

Conversely, if $\left\{\alpha_{n}\right\}$ is a sequence of non-zero elements of T_{p} such that $\lim \left|\alpha_{n}\right|=\infty$, then there is an entire function ϕ having zeros at each α_{n} such that

$$
\phi(x)=\prod_{i=1}^{\infty}\left(1-\frac{x}{\alpha_{i}}\right) .
$$

Proof: The second part will be established first. Let $\left\{\alpha_{n}\right\}$ be any sequence of non-zero elements in T_{p} such that $\left\{\left|\alpha_{n}\right|\right\}$ is monotonic increasing and $\lim \left|\alpha_{n}\right|=\infty$. It will be established that

$$
\prod_{i=1}^{\infty}\left(1-\frac{x}{\alpha_{i}}\right)
$$

defines an entire function having zeros at each α_{n}. It will be shown first that the sequence of partial products,

$$
\left\{\prod_{i=1}^{N}\left(1-\frac{x}{\alpha_{i}}\right)\right\}
$$

converges uniformly to a function $\phi(x)$ in a bounded set $S \in D_{r}=\left\{x \in T_{p}:|x| \leq r\right\}$ Let

$$
\phi_{N}(x)=\prod_{i=1}^{N}\left(1-\frac{x}{\alpha_{i}}\right)=\frac{(-1)^{N}}{\alpha_{1} \alpha_{2} \cdots \alpha_{N}} \prod_{i=1}^{N}\left(x-\alpha_{i}\right)
$$

so that

$$
\phi_{N}(x)=\frac{(-1)^{N}}{\alpha_{1} \alpha_{2} \cdots \alpha_{N}}\left[x^{N}-\sigma_{1} x^{N-1}+\cdots+(-1)^{N_{\sigma_{N}}}\right]
$$

where $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{N}$ are the elementary symmetric functions. The above expression for $\phi_{N}(x)$ can be written as

$$
\phi_{N}(x)=a_{0, N}+a_{1, N} x+\cdots+a_{N, N} x^{N}
$$

where

$$
a_{k, N}=\frac{(-1)^{N-k \sigma_{N-k}}}{\alpha_{1} \alpha_{2} \cdots \alpha_{N}} .
$$

In view of the way the symmetric functions are defined, it follows that

$$
a_{k, N}=(-1)^{N-k} \sum \frac{1}{\alpha_{i_{1}}{ }_{i_{2}} \cdots \alpha_{i_{k}}},
$$

the sum taken over k subscripts i_{1}, \ldots, i_{k} such that $1 \leq 1_{1}<1_{2}<\cdots<1_{k} \leq N$. It will be shown that the sequence

$$
\left\{a_{k, N}\right\}_{N=1}^{\infty}
$$

converges for each k. To see this, note that

$$
\left|a_{k, N+1}-a_{k, N}\right|=\left|\frac{1}{\alpha_{N+1}} \sum \frac{1}{\alpha_{i_{1}} \alpha_{i_{2}} \cdots \alpha_{i_{k-1}}}\right|
$$

the sum taken over $k-1$ subscripts such that $: 1 \leq i_{1}<\cdots<i_{k-1} \leq N$. Then, since $\left\{\left|\alpha_{n}\right|\right\}$ is an increasing sequence,

$$
\left|a_{k, N+1}-a_{k, N}\right| \leq\left|\frac{1}{\alpha_{N+1}\left(\alpha_{1} \alpha_{2} \cdots \alpha_{k-1}\right)}\right|
$$

It follows that for each $k>0,{\underset{N}{\text { imit }}}_{\text {lim }}\left|a_{k, N+1}-a_{k, N}\right|=0$ so that the sequence

$$
\left\{a_{k, N}\right\}_{N=1}^{\infty}
$$

 It will be shown that the power series given by

$$
\sum_{k=0}^{\infty} a_{k} x^{k}
$$

defines an entire function $\phi(x)$ by showing that

$$
\operatorname{limit}_{k \rightarrow \infty} \frac{\text { ord } a_{k}}{k}=\infty .
$$

Since $\lim \left|\alpha_{n}\right|=\infty$, then there are finitely many α_{n} inside the unit circle. Let $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{t}\right\}$ be the set of all α_{n} such that $\left|\alpha_{n}\right| \leq 1$. Pick $j>t$ such that

$$
\left|\frac{1}{\alpha_{t+1} \cdots} \cdots_{j}\right|<\left|\alpha_{1} \cdots \alpha_{t}\right|
$$

Then, for $k>j$,

$$
\begin{aligned}
& \left|a_{k, N}\right| \leq\left|\frac{1}{\alpha_{1} \alpha_{2} \cdots a_{k}}\right|=\left|\frac{1}{\alpha_{1} \cdots a_{t}}\right|\left|\frac{1}{\alpha_{t+1} \cdots a_{t}}\right|\left|\frac{1}{\alpha_{j+1} \cdots \alpha_{k}}\right| \\
& \quad<\left|\frac{1}{\alpha_{j+1} \cdots a_{k}}\right| \leq\left|\frac{1}{\alpha_{j+1}}\right|^{k-j} \cdot \\
& \text { Since } a_{k}=\operatorname{limit}_{N \rightarrow \infty} a_{k, N}, \\
& \left|a_{k}\right| \leq\left|\frac{1}{\alpha_{j+1}}\right| k-j
\end{aligned}
$$

so that

$$
\log _{p}\left|a_{k}\right| \leq(k-j) \log _{p} \frac{1}{\left|\alpha_{j+1}\right|}
$$

Since ord $a_{k}=-\log _{p}\left|a_{k}\right|$, it follows that ord $a_{k} \geq(k-j) \log _{p}\left|a_{j+1}\right|$ and, therefore,

$$
\frac{\text { ord } a_{k}}{k} \geq \frac{(k-j)}{k} \log _{p}\left|\alpha_{j+1}\right|
$$

Now, as $k \rightarrow \infty$, the right hand side approaches $\log _{p}\left|\alpha_{j+1}\right|$. And, since f can be chosen so that $\log _{p}\left|\alpha_{j+1}\right|$ is arbitrarily large, it follows that

$$
\operatorname{limit}_{k \rightarrow \infty} \frac{\text { ord } a_{k}}{k}=\infty .
$$

Therefore, $\phi(x)$ is an entire function.
Since $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}$ are the zeros of ϕ_{N}, it follows that ϕ has zeros at α_{n} for every n.

To complete the proof of the first part of the theorem, it must be shown that the convergence is uniform on each bounded set in T_{p}. It suffices to show that, given any $\epsilon>0$, then, for sufficiently large
$N,\left|\phi_{N+1}(x)-\phi_{N}(x)\right|<\epsilon$ for each $x \in S$. Now

$$
\begin{aligned}
\left|\phi_{N+1}(x)-\phi_{N}(x)\right| & =\left|\phi_{N}(x)\right|\left|\frac{x}{\alpha_{N+1}}\right| \\
& \leq\left|\phi_{N}(x)\right| \frac{r}{\left|\alpha_{N+1}\right|}
\end{aligned}
$$

for each $\mathbf{x} \varepsilon$ S. Since

$$
\frac{r}{\left|\alpha_{N+1}\right|}
$$

approaches zero as N approaches ∞, it suffices to show the existence of an M such that, for sufficiently large N, $\left|\phi_{N}(x)\right| \leq M$ for each $x \in S$. As before, for some fixed but sufficiently large j,

$$
\left|a_{k, N}\right| \leq\left|\frac{1}{\alpha_{j+1}}\right|^{k-j}
$$

whenever $k>j$. This implies

$$
\left|a_{k, N} x^{k_{k}}\right| \leq\left|a_{k, N}\right| r^{k} \leq \frac{r^{k}}{\left|a_{j+1}\right|^{k-j}}
$$

for each $\mathrm{x} \in \mathrm{S}$. It follows that for sufficiently large k, say $k>k_{0},\left|a_{k, N} x^{k}\right|<1$ for each $x \varepsilon S$. Thus,

$$
\left|\sum_{k=k_{0}+1}^{N} a_{k, N^{k}}\right| \leq 1
$$

for each $x \in S$ and every $N>k_{0}$. Let M^{\prime} be an upper bound of $\left|a_{0, N}+a_{1, N} x+\cdots+a_{k_{0}, N^{x}} x^{k_{0}}\right|$ for $x \varepsilon S$. Finally, let
$M=\max \left\{M^{\prime}, I\right\}$. Then

$$
\begin{aligned}
\left|\phi_{N}(x)\right| & \leq\left|\sum_{k=0}^{k_{0}} a_{k, N^{x}} x^{k}+\sum_{k=k_{0}+1}^{N} a_{k, N^{x}} x^{k}\right| \\
& <\max \left\{M^{\prime}, 1\right\}=M,
\end{aligned}
$$

for each $x \in S$. Therefore, ϕ_{N} converges uniformly to ϕ on S. This completes the proof of the second part of Theorem 4.31.

To prove the first part, recall that an analytic function can have only finitely many zeros inside any disc $D_{r}=\left\{x \in T_{p}:|x| \leq r\right\}$. Therefore, it may be assumed that the infinite set of zeros can be ordered such that $\left\{\left|\alpha_{n}\right|\right\}$ is monotonic increasing with $\lim \left|\alpha_{n}\right|=\infty$.

Let $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{j}\right\}$ be the set of zeros of f in D_{r} different from zero. Then, if f has $\alpha=0$ as a zero of multiplicity k,

$$
f(x)=x^{k} \prod_{i=1}^{j}\left(x-\alpha_{i}\right) h(x)
$$

where $h(x)$ is an entire function having no zeros in D_{r}, By Theorem 4.28, the function $\frac{1}{h}$ is analytic inside D_{r}. Let $h_{1}(x)=(-1)^{j} \alpha_{1} \alpha_{2} \ldots \alpha_{j} h(x)$. Then

$$
f(x)=x^{k} \prod_{i=1}^{j}\left(1-\frac{x}{\alpha_{i}}\right) h_{1}(x)
$$

and $h_{1}(x)$ is an analytic function having no zeros in D_{r}. Let f_{1} be the function given by

$$
f_{1}(x)=x^{k} \prod_{i=1}^{\infty}\left(1-\frac{x}{\alpha_{i}}\right)
$$

Then f_{1} / f can be represented as

$$
\frac{f_{1}}{f}(x)=\frac{\prod_{i=j+1}^{\infty}\left(1-\frac{x}{\alpha_{i}}\right)}{h_{1}(x)}
$$

Now both

$$
g(x)=\prod_{i=j+1}^{\infty}\left(1-\frac{x}{\alpha_{i}}\right) \text { and } h_{1}(x)
$$

are analytic inside D_{r} and neither has zeros there. Thus, f_{1} / f is analytic inside D_{r} and has no zeros there. Since f_{1} / f is Independent of r, it follows that f_{1} / f is an entire function having no zeros in T_{p} : By Theorem $4.30, f_{1} / f$ is a non-zero constant function, say $1 / A_{0}$. Thus,

$$
f(x)=A_{0} x^{k} \prod_{i=1}^{\infty}\left(1-\frac{x}{\alpha_{i}}\right)
$$

as required.

CHAPTER V

SOME P-ADIC ANALOGUES

The field T_{p} was developed in Chapter III as a complete non-archimedean field which is an algebraic closure of the p-adic field Q_{p}. Since this relationship between T_{p} and Q_{p} resembles the relationship between the complex field C and the real field R, it seems reasonable to consider analogues of some concepts from complex analysis. Some of these were developed in Chapter IV. The first objective of this chapter is to develop the Schnirelman Integral, a p-adic analogue of the complex line integral. With the aid of the Schnirelman integral analogues of standard results such as the Cauchy Integral Formula, and the Maximum Modulus Principle can be formulated.

For each positive integer n such that $p \neq n$, consider the polynomial $g_{n}(x)=x^{n}-1$. Since T_{p} is algebraically closed, g_{n} can be factored into n linear factors

$$
g_{n}(x)=\left(x-\alpha_{1, n}\right)\left(x-\alpha_{2, n}\right) \cdots\left(x-\alpha_{n, n}\right)
$$

It is easy to show that $\left|\alpha_{i, n}\right|=1$ for $i=1,2,3, \ldots, n$. To see this, note that $g\left(\alpha_{i, n}\right)=0$ implies $\left|\alpha_{i, n}^{n}-1\right|=0$. On the other hand, if $\left|\alpha_{1, n}^{n}\right| \neq 1$, then $\left|\alpha_{1, n}^{n}-1\right|=\max \left\{\left|\alpha_{1, n}^{n}\right|, 1\right\} \neq 0$. It follows that $\left|\alpha_{1, n}\right|=1$.

The next definition is analogous to determining n complex numbers equally spaced around a circle in the complex plane.

Definition 5.1. Let β and δ be fixed points in T_{p} and $\alpha_{1, n}, \ldots, \alpha_{n, n}$ be the zeros of $x^{n}-1$. The set

$$
\left\{\beta+\delta \alpha_{1, n}, \beta+\delta \alpha_{2, n}, \ldots, \beta+\delta \alpha_{n, n}\right\}
$$

is called the discrete circle with center β and radius $r=|\delta|$. The discrete circle is denoted by $C(\beta, \delta, n)$.

It is clear that the discrete circle $C(\beta, \delta, n)$ is a finite set of points on the ordinary circle $C(\beta,|\delta|)$ in T_{p}. Since T_{p} is a non-archimedean field, the center of $C(\beta,|\delta|)$ is not unique. On the other hand, the following lemma shows that the center of a discrete circle is unique.

Lemma 5.2. Suppose $\left|\beta_{1}-\beta_{2}\right|<|\delta|$ with $\beta_{1} \neq \beta_{2}$. Then $C\left(\beta_{1}, \delta, n\right) \neq C\left(\beta_{2}, \delta, n\right)$.

Proof:. Suppose to the contrary that $C\left(\beta_{1}, \delta, n\right)=C\left(\beta_{2}, \delta, n\right)$. Then for each $i=1,2, \ldots, n$ there is some f such that $\beta_{1}+\delta \alpha_{i, n}=\beta_{2}+\delta \alpha_{j, n}$. Thus, $\beta_{1}-\beta_{2}=\delta\left(\alpha_{j, n}-\alpha_{i, n}\right)$ so that $\left|\beta_{1}-\beta_{2}\right|=|\delta|\left|\alpha_{j, n}-\alpha_{i, n}\right|$. Since $\left|\beta_{1}-\beta_{2}\right|<|\delta|$, it follows that. $\left|\alpha_{j, n}-\alpha_{i, n}\right|>1$. But $\left|\alpha_{j, n}-\alpha_{i, n}\right| \leq \max \left\{\left|\alpha_{j, n}\right|,\left|\alpha_{i, n}\right|\right\}=1$. This contradiction shows that the discrete circles $C\left(\beta_{1}, \delta, n\right)$ and $C\left(\beta_{2}, \delta, n\right)$ are distinct subsets of $C(\beta,|\delta|)$ whenever $\beta_{1} \neq \beta_{2}$.

The Schnireḷman Integral

Definition 5.3. Suppose for each n such that $p \nmid n$ the function f is defined on the discrete circle. $C(\beta, \delta, n)$. Then $\int_{\beta, \delta} f$ is defined by
provided this limit exists. When $\int_{\beta, \delta} f$ exists, it is called the Schnirelman integral of the function f on the circle $C(\beta,|\delta|)$.

The next theorem shows that the Schnirelman Integral exists for a constant function.

Theorem 5.4. If $\mathrm{f}(\mathrm{x})=\mathrm{c}$ for every \mathbf{x} on $\mathrm{C}(\beta,|\delta|)$ then $\int_{\beta, \delta} f=c$.

Proof: Since $\sum_{i=1}^{n} c=n c$ implies $\frac{1}{n} \sum_{i=1}^{n} c=c$, it follows that

$$
\int_{\beta, \delta} f=\operatorname{limit}_{\substack{n \rightarrow \infty \\ p \nmid n}} \sum_{i=1}^{n} f\left(\beta+\delta \alpha_{i, n}\right)=\underset{\substack{n \rightarrow \infty \\ p \nmid n}}{\operatorname{limit}_{n}} c=c .
$$

Henceforth,

$$
{\underset{\substack{n \rightarrow \infty}}{\operatorname{limit}} \frac{1}{n} \sum_{i=1}^{n} f\left(\beta+\delta \alpha_{i, n}\right)}_{\substack{n}}
$$

will be written simply as

$$
\lim \frac{1}{n} \sum_{i=1}^{n} f\left(\beta+\delta \alpha_{i, n}\right)
$$

or, by letting $\gamma_{i, n}=\beta+\delta \alpha_{i, n}$, as

$$
\lim \frac{1}{n} \sum_{i=1}^{n} f\left(\gamma_{i, n}\right)
$$

Sometimes a translation is helpful.

Theorem 5.5. If $g(x)=f(x+\beta)$, then

$$
\int_{\beta, \delta} f=\int_{0, \delta} g .
$$

Proof: This follows immediately since

$$
\begin{aligned}
\int_{\beta, \delta} f & =\lim \frac{1}{n} \sum f\left(\beta+\delta \alpha_{i, n}\right) \\
& =\lim \frac{1}{n} \sum g\left(\delta \alpha_{i, n}\right)=\int_{0, \delta} g .
\end{aligned}
$$

The following theorem shows that the Schnirelman Integral has a linearity property expected of an integral.

Theorem 5.6. Suppose f and g are functions such that $\int_{\beta} f$ and $\int_{\beta, \delta} g$ exist. If c_{1} and c_{2} are constants in T_{p}, then

$$
\int_{\beta, \delta}\left(c_{1} f+c_{2} g\right)
$$

exists and equals

$$
c_{1} \int_{\beta, \delta} f+c_{2} \int_{\beta, \delta} g .
$$

Proof: It suffices to show each of the following separately:
a) If c is a constant, then $\int_{\beta, \delta} c f=c \int_{\beta, \delta} f$; and
b) $\int_{\beta, \delta} f+g=\int_{\beta, \delta} f+\int_{\beta, \delta} g$.

Part (a) follows from

$$
\lim \frac{1}{n} \sum_{i=1}^{n} \operatorname{cf}\left(\gamma_{i, n}\right)=c \lim \frac{1}{n} \sum_{i=1}^{n} f\left(\gamma_{i, n}\right)
$$

where $\gamma_{i, n}=\beta+\delta \alpha_{i, n}$. Similarly,

$$
\frac{1}{n} \sum_{i=1}^{n}(f+g)\left(\gamma_{i, n}\right)=\frac{1}{n} \sum_{i=1}^{n} f\left(\gamma_{i, n}\right)+\frac{1}{n} \sum_{i=1}^{n} g\left(\gamma_{i, n}\right)
$$

and, since the Schnirelman integrals of both f and g exist, part (b) is established. This completes the proof of the theorem.

Corollary 5.7. If $c_{1}, c_{2}, \ldots, c_{k}$ are constants in T_{p} and $f_{i, \delta}$ exist for $i=1,2, \ldots, k$, then

$$
\int_{\beta, \delta} \sum_{i=1}^{k} c_{i} f_{i}=\sum_{i=1}^{k} c_{i} \int_{\beta, \delta} f_{i} .
$$

Proof: The proof is by induction and the above theorem.

The next theorem shows that the Schnirelman integral of a polynomial is quite easy to evaluate. In fact, the integral of a polynomial is simply the value of that polynomial at the center of the circle.

Theorem 5.8. If $f(x)=a_{0}+a_{1} x+\cdots+a_{k} x^{k}$ is a polynomial with coefficients in T_{p} then for any β and δ in T_{p}

$$
\int_{\beta, \delta} f=\int_{\beta, \delta} a_{0}+a_{1} x+\cdots+a_{k} x^{k}=a_{0}+a_{1} \beta+\cdots+a_{k} \beta^{k} .
$$

Proof: In view of the preceding corollary and the fact the Schnirelman Integral of a constant is that constant, it suffices to show that $\int_{\beta, \delta} X^{k}=\beta^{k}$ for each positive integer k. Consider

$$
\begin{aligned}
\lim \frac{1}{n} \sum_{i=1}^{n} f\left(\gamma_{i, n}\right)= & \lim \frac{1}{n} \sum_{i=1}^{n}\left(\beta+\delta \alpha_{i, n}\right)^{k} \\
= & \lim \frac{1}{n}\left[\left(\beta+\delta \alpha_{1, n}\right)^{k}+\left(\beta+\delta \alpha_{2, n}\right)^{k}\right. \\
& \left.+\cdots+\left(\beta+\delta \alpha_{n, n}\right)^{k}\right] .
\end{aligned}
$$

Now

$$
\begin{aligned}
&\left(\beta+\delta \alpha_{1, n}\right)^{k}+\left(\beta+\delta \alpha_{2, n}\right)^{k}+\cdots+\left(\beta+\delta \alpha_{n, n}\right)^{k} \\
&= \beta^{k}+\binom{k}{1} \beta^{k-1} \delta \alpha_{1, n}+\cdots+\binom{k}{k} \delta^{k} \alpha_{1, n}^{k}+ \\
& \beta^{k}+\binom{k}{1} \beta^{k-1} \delta \alpha_{2, n}+\cdots+\binom{k}{k} \delta^{k} \alpha_{2, n}^{k}+ \\
& \vdots \\
& \beta^{k}+\left(\begin{array}{c}
k \\
1 \\
4
\end{array}\right) \beta^{k-1} \delta \alpha_{n, n}+\cdots+\binom{k}{k} \delta^{k} \alpha_{n, n}^{k} \\
&= n \beta^{k}+\binom{k}{1} \beta^{k-1} \delta \sum_{i=1}^{n} \alpha_{i, n}+\binom{k}{2} \beta^{k-2} \delta^{2} \sum_{i=1}^{n} \alpha_{i, n}^{2} \\
&+\cdots+\binom{k}{j} \beta^{k-j_{\delta} j} \sum_{i=1}^{n} \alpha_{i, n}^{j}+\cdots+\delta^{k} \sum_{i=1}^{n} \alpha_{i, n}^{k} .
\end{aligned}
$$

Since the sum of the k th powers of the n roots of unity is zero for $k<n$, then for each $j=1,2, \ldots, n-1$,

$$
\sum_{i=1}^{n} \alpha_{i, n}^{j}=0 .
$$

Therefore, $\int_{\beta, \delta} x^{k}=\lim \frac{1}{n} \beta^{k}=\beta^{k}$ so that the theorem follows from Corollary 5.7.

The next theorem shows that the integral is bounded by the maximum value of the function on the circle.

Theorem 5.9. Suppose β and δ are in T_{p} and f is a function such that:
a) for all $x \in C(\beta,|\delta|), f(x)$ is defined; and
b) $\int_{\beta, \delta} f$ exists, then

$$
\left|\int_{\beta, \delta} f\right| \leq \max _{x \in C}|f(x)|
$$

where $\quad C=C(\beta,|\delta|)$.

Proof: Since

$$
\int_{\beta, \delta} f=\lim \frac{1}{n} \sum_{i=1}^{n} f\left(\gamma_{i, n}\right)
$$

where the limit is taken over positive integers relatively prime to p, it follows that

$$
\left|\int_{\beta, \delta} f\right|=11 m\left|\frac{1}{n} \sum_{i=1}^{n} f\left(\gamma_{i, n}\right)\right|=11 m\left|\sum_{i=1}^{n} f\left(\gamma_{i, n}\right)\right| .
$$

Now,

$$
\left|\sum_{i=1}^{n} f\left(\gamma_{i, n}\right)\right| \leq \max _{1 \leq i \leq n}\left\{\left|f\left(\gamma_{i, n}\right)\right|\right\} \leq \max _{x \in c}|f(x)| .
$$

Therefore,

$$
\left|\int_{\beta, \delta} f\right| \leq \max _{x \in C}|f(x)| .
$$

The following theorem shows that, as in complex analysis, a uniformly convergent series can be integrated term by term.

Theorem 5.10. Suppose

$$
\sum_{i=1}^{\infty} c_{i} f_{i}(x)
$$

converges uniformly to $f(x)$ on the circle $C(\beta, r)=\{x:|x-\beta|=r\}$ where $r=|\delta|$ for some $\delta \varepsilon T_{p}$. If, for each $1=1,2, \ldots$, the Schnirelman Integral $\int_{\beta, \delta} f_{i}$ exists, then $\int_{\beta, \delta} f$ exists and

$$
\int_{\beta, \delta} f=\sum_{i=1}^{\infty} c_{i} \int_{\beta, \delta} f_{i} .
$$

Proof: Let $\epsilon>0$ be chosen. Let

$$
F_{m}=\sum_{i=1}^{m} c_{i} f_{i}
$$

By Corollary 5.4,

$$
\int_{\beta, \delta} F_{m i}=\sum_{i=1}^{m} c_{i} \int_{\beta, \delta} f_{i} .
$$

Thus, it suffices to show that

$$
\operatorname{limit}_{\mathrm{m} \rightarrow \infty}\left|\int_{\beta, \delta} f-\int_{\beta, \delta} F_{m}\right|=0 .
$$

To see that this is the case, note that uniform convergence of the series implies there is an M such that for any $x \varepsilon C$, $\left|f(x)-F_{m}(x)\right|<\epsilon$ whenever $m \geq M$. An application of Theorem 5.9 yields

$$
\left|\int_{\beta, \delta}\left(f-F_{m}\right)\right| \leq \max _{x \in C}\left|f(x)-F_{m}(x)\right|<\epsilon .
$$

It follows that

$$
\operatorname{limit}_{m \rightarrow \infty}\left|\int_{\beta, \delta} f-\int_{\beta, \delta} F_{m}\right|=0
$$

and, therefore,

$$
\int_{\beta, \delta} f=\sum_{i=1}^{\infty} c_{i} \int_{\beta, \delta} f_{i} .
$$

It was shown in Theorem 5.8 that the Schnirelman Integral of a polynomial over T_{p} is the value of the polynomial at the center of the discrete circles. This result extends to convergent power series.

Theorem 5.11. Let $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots$ be a power series with the non-zero radius of convergence r. If $|\beta|<r$ and $|\delta|<r$, then $\int_{\beta, \delta} f$ exists and $\int_{\beta, \delta} f=f(\beta)$.

Proof: Since $|\beta|<r$ and $|\delta|<r$, then the circle $C(\beta,|\delta|)$ is contained in the disc $D=\{x:|x|<r\}$. Therefore, the power series converges uniformly on $C(\beta,|\delta|)$ so that Theorem 5.10 implies

$$
\int_{\beta, \delta} f=\sum_{i=0}^{\infty} a_{i} \int_{\beta, \delta} x_{i}=\sum_{i=0}^{\infty} a_{i} \beta^{1}=f(\beta) .
$$

The above result shows that the Schnirelman Integral of a convergent power series depends only on the center of the circle $C(\beta,|\delta|)$ and not upon the choice of δ. This may seem surprising since the center of a circle is not unique. Recall, however, that the Schnirelman Integral is defined in terms of a sequence of discrete circles. Each circle in this sequence has the same center, and the center of a discrete circle is unique.

Cauchy's Integral Theorem

A fundamental result encountered early in the study of complex variables is Cauchy's Integral Theorem. This states that the complex Ine integral around a simple closed curve in the complex plane is zero provided the function is analytic inside and on that curve. In view of Theorem 5.11, Cauchy's Integral Theorem has no exact analogue in this setting. However, the following might be considered as a p-adic analogue of that theorem.

Thearem 5.12. If

$$
f(x)=\sum_{i=0}^{\infty} a_{i} x^{i}
$$

is a power series with radius of convergence $r>0$ and if $|\beta|<r$ and $|\delta|<r$, then $\int_{\beta, \delta}(x-\beta) f(x)=0$.

Proof: $\int_{\beta, \delta}(x-\beta) f(x)=\int_{\beta, \delta} x f(x)-\beta \int_{\beta, \delta} f(x)$. Since $x f(x)$ is a power series with radius of convergence r, Theorem 5.11 yields $\int_{\beta, \delta} x f(x)=\beta f(\beta)$. Since $\int_{\beta, \delta} f(x)=f(\beta)$, it follows that

$$
\int_{\beta, \delta}(x-\beta) f(x)=\beta f(\beta)-\beta f(\beta)=0 .
$$

Cauchy's Integral Formula

Another basic result in complex analysis is Cauchy's Integral Formula. This theorem assumes that f analytic inside and on a simple closed curve C. Then

$$
f(\alpha)=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{z-\alpha} \mathrm{dz}
$$

where α is on the interior of C. The striking feature of this theorem is that the values of the function on the interior of C are completely determined by the values on C.

In the work that follows, a p-adic analogue to Cauchy's Integral Formula will be developed. The following special case will be established first.

Theorem 5.13. If k is a rational integer and $k>0$, then

$$
\int_{0, \delta} \frac{1}{(x-\alpha)^{k}}=\left\{\begin{array}{ll}
0 & \text { if } \quad|\alpha|<|\delta| \\
\left(\frac{-1}{\alpha}\right)^{k} & \text { if } \quad|\alpha|>|\delta|
\end{array} .\right.
$$

Proof: Consider

$$
(x-\alpha)^{-k}=(-\alpha)^{-k} \sum_{j=0}^{\infty}\binom{-k}{j}\left(\frac{x}{-\alpha}\right)^{j}
$$

Since the radus of convergence of the binomial series is 1 , it follows that the series converges for $|x|<|\alpha|$. Therefore; if $|\alpha|>|\delta|$, Theorem 5.11 implies

$$
\int_{0, \delta} \frac{1}{(x-\alpha)^{k}}=\frac{1}{(0-\alpha)^{k}}=\left(\frac{-1}{\alpha}\right)^{k} .
$$

Now suppose $|\alpha|<|\delta|$ so that $|\mathbf{x}|=|\delta|$ implies $\left|\frac{-\alpha}{\mathbf{x}}\right|<1$.
Then

$$
(x-\alpha)^{-k}=x^{-k}\left(1-\frac{\alpha}{x}\right)^{-k}=\sum_{j=0}^{\infty}\binom{-k}{j} \frac{1}{x}\left(\frac{-\alpha}{x}\right)^{j}
$$

and the series converges uniformly on $|x|=|\delta|$. Therefore, Theorem 5.10 applies so that it suffices to consider $\int_{0, \delta} x^{-(j+k)}$ for $\mathrm{j} \geq 0$. According to the definition

$$
\int_{0, \delta} x^{-(j+k)}=\lim \frac{1}{n} \sum_{i=1}^{n}\left(\delta \alpha_{i, n}\right)^{-(j+k)}
$$

Since the nth roots of unity form an Abelian group, the set $\left\{\alpha_{1, n}^{-1}, \alpha_{2, n}^{-1}, \ldots, \alpha_{n, n}^{-1}\right\}$ coincides with the set $\left\{\alpha_{1, n}, \alpha_{2, n}, \ldots, \alpha_{n, n}\right\}$. Therefore,

$$
\sum_{i=1}^{n}\left(\delta \alpha_{i, n}\right)^{-(j+k)}=\delta^{-(j+k)} \sum_{i=1}^{n} \alpha_{i, n}^{j+k}
$$

Since

$$
\sum_{i=1}^{n} \alpha_{i, n}^{j+k}=0
$$

for every $n>j+k$, it follows that $\int_{0, \delta} x^{-(j+k)}=0$ for every $j \geq 0$ and, therefore, $\int_{0, \delta}(x-\alpha)^{-k}=0, \delta$ whenever $|\alpha|<|\delta|$. This completes the proof of Theorem 5.13.

Corollary 5.14. If $k>0$, then

$$
\int_{\beta, \delta} \frac{1}{(x-\alpha)^{k}}=\left\{\begin{array}{ll}
0 & \text { if }|\alpha-\beta|<|\delta| \\
\frac{1}{(\beta-\alpha)^{k}} & \text { if }|\alpha-\beta|>|\delta|
\end{array} .\right.
$$

Proof: By Theorem 5.5,

$$
\int_{\beta, \delta} \frac{1}{(x-\alpha)^{k}}=\int_{0, \delta} \frac{1}{(x+\beta-\alpha)^{k}}= \begin{cases}0 & \text { if }|\alpha-\beta|<|\delta| \\ \frac{1}{(\beta-\alpha)^{k}} & \text { if }|\alpha-\beta|>|\delta|\end{cases}
$$

The next theorem may be considered an analogue of the Cauchy Integral Formula since the value of an analytic function at a point is given in terms of the Schnirelman Integral on a circle about that point.

Theorem 5.15. Suppose

$$
f(x)=\sum_{j=0}^{\infty} a_{j} x^{j}
$$

converges for $|x|<r$ and $|\alpha|,|\beta|$, and $|\delta|$ are all less than r. Then

$$
\int_{\beta, \delta} \frac{f(x)(x-\beta)}{x-\alpha}=\left\{\begin{array}{ll}
f(\alpha) & \text { if }|\alpha-\beta|<|\delta| \\
0 & \text { if }|\alpha-\beta|>|\delta|
\end{array} .\right.
$$

Proof: Suppose $|\alpha-\beta|<|\delta|$. Then $|\alpha-\beta| \leq \max \{|\alpha|,|\beta|\}<|\delta|$ so that $|x-\alpha|=|x-\beta|=|\delta|$ for all x such that: $|x-\beta|=|\delta|$. Since

$$
f(x)=\sum_{j=0}^{\infty} a_{j} x^{j}
$$

then

$$
\frac{f(x)(x-\beta)}{x-\alpha}=\sum_{j=0}^{\infty} \frac{a_{j} x^{j}(x-\beta)}{x-\alpha}
$$

and the series converges uniformly on $|\mathbf{x}-\beta|=|\delta|$.
In the other case, $|\alpha-\beta|>|\delta|$. Then for all x such that $|\mathbf{x}-\beta|=|\delta|, \quad|x-\alpha|=|x-\beta+\beta-\alpha|=|\alpha-\beta|>|\delta|$. Thus, $\left|\frac{x-\beta}{x-\alpha}\right|<1$ so that

$$
\sum^{a_{j} x^{j}(x-\beta)} \frac{x-\alpha}{x}
$$

converges uniformly on $|x-\beta|=|\delta|$.
In either case, by Theorem 5.7,

$$
\int_{\beta, \delta} \frac{f(x)(x-\beta)}{x-\alpha}=\sum_{j=0}^{\infty} a_{j} \int_{\beta, \delta} \frac{x^{j}(x-\beta)}{x-\alpha} .
$$

Now for $\mathrm{f}>0$,

$$
\begin{aligned}
\frac{x^{j}}{x-\alpha} & =\frac{x^{j}-\alpha^{j}+\alpha^{j}}{x-\alpha}=\frac{x^{j}-\alpha^{j}}{x-\alpha}+\frac{\alpha^{j}}{x-\alpha} \\
& =x^{j-1}+\alpha x^{j-2}+\cdots+\alpha^{j-1}+\frac{\alpha^{j}}{x-\alpha} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\int_{\beta, \delta} \frac{x^{j}(x-\beta)}{x-\alpha} & =\int_{\beta, \delta}\left(x^{j-1}+\cdots+\alpha^{j-1}\right)(x-\beta)+\int_{\beta, \delta} \frac{\alpha^{j}(x-\beta)}{x-\alpha} \\
& =\alpha^{j} \int_{\beta, \delta} \frac{x-\beta}{x-\alpha} .
\end{aligned}
$$

Since $\frac{x-\beta}{x-\alpha}=1-\frac{\beta-\alpha}{x-\alpha}$, it follows that for $j \geq 0$,

$$
\int_{\beta, \delta} \frac{x^{j}(x-\beta)}{x-\alpha}=\alpha^{j}-\alpha^{j}(\beta-\alpha) \int_{\beta, \delta} \frac{1}{x-\alpha} .
$$

If $|\alpha-\beta|<|\delta|$, Corollary 5.14 implies $\int_{\beta, \delta} \frac{1}{x-\alpha}=0$ so that

$$
\int_{\beta, \delta} \frac{f(x)(x-\beta)}{x-\alpha}=\sum_{j=0}^{\infty} a_{j} \alpha^{j}=f(\alpha) .
$$

If $|\alpha-\beta|>|\delta|$, Corollary 5.14 implies $\int_{\beta, \delta} \frac{1}{x-\alpha}=\frac{1}{\beta-\alpha}$ so that for each $\mathrm{j} \geq 0$

$$
\int_{\beta, \delta} \frac{x^{j}(x-\beta)}{x-\alpha}=\alpha^{j}-\alpha^{j}(\beta-\alpha) \frac{1}{\beta-\alpha}=0 .
$$

It follows that $\int_{\beta, \delta} \frac{f(x)(x-\beta)}{x-\alpha}=0$. This completes the proof of Theorem 5.15.

As in complex analysis, Cauchy's Integral Formula can be extended to derivatives. The following lemma is useful in proving an extension of Theorem 5.15.

Lemma 5.16. Let g be a polynomial such that $\operatorname{deg} g<k$. Then $\int_{\beta, \delta} \frac{g(x)}{(x-\alpha)^{k}}=0$ whenever $|\alpha-\beta|<|\delta|$.

Proof: Since deg $g<k, \frac{g(x)}{(x-\alpha)^{k}}$ can be expressed by partial fractions. Thus, there exist k constants $A_{1}, A_{2}, \ldots, A_{k}$ such that

$$
\frac{g(x)}{(x-\alpha)^{k}}=\frac{A_{1}}{(x-\alpha)}+\frac{A_{2}}{(x-\alpha)^{2}}+\cdots+\frac{A_{k}}{(x-\alpha)^{k}} .
$$

It follows from Corollary 5.14 that

$$
\int_{\beta, \delta} \frac{g(x)}{(x-\alpha)^{k}}=0
$$

Theorem 5.17. Suppose

$$
f(x)=\sum_{j=0}^{\infty} b_{j} x^{j}
$$

converges for $|\mathbf{x}|<\mathrm{r}$ and $|\alpha|,|\beta|$, and $|\delta|$ are all strictly less than r. If $|\alpha-\beta|<|\delta|$, then

$$
\int_{\beta, \delta} \frac{f(x)(x-\beta)}{(x-\alpha)^{n+1}}=\frac{1}{n!} f^{(n)}(\alpha) .
$$

Proof: Let $n=N$ be fixed. It suffices to assume $\beta=0$. Then

$$
\int_{0, \delta} \frac{f(x) x}{(x-\alpha)^{N}}=\int_{0, \delta} \frac{\sum_{j=0}^{N} b_{j} x^{j+1}}{(x-\alpha)^{N}}+\sum_{j=N+1}^{\infty} b_{j} \int_{0, \delta} \frac{x^{j+1}}{(x-\alpha)^{N}} .
$$

According to Lemma 5.16, the first integral of the right hand side is zero. Now for each $j>N$, there exist polynomials Q_{j} and. R_{j} such that $x^{j+1}(x-\alpha)^{N} Q_{j}(x)+R_{j}(x)$ where $R_{j} \equiv 0$ or $\operatorname{deg} R_{j}<N$. Thus; for each $f>N$,

$$
\begin{aligned}
\int_{0, \delta} \frac{x^{j+1}}{(x-\alpha)^{N}} & =\int_{0, \delta} Q_{j}(x)+\int_{0, \delta} \frac{R_{j}(x)}{(x-\alpha)^{N}} \\
& =\int_{0, \delta} Q_{j}(x)
\end{aligned}
$$

since Lemma 5.16 applies again. Now the last integral equals $Q_{j}(0)$ for each f. Thus, it suffices to sum the constant terms of the polynomials Q_{j} for $j=N+1, N+2, \ldots$. By actually dividing x^{N+1+h} by $(x-\alpha)^{N}$, it can be shown that the constant term of Q_{N+1+h} is given by $\binom{N+h}{h} \alpha^{h}$ for $h=0,1, \ldots$. It follows that

$$
\begin{aligned}
\int_{0, \delta} \frac{f(x) x}{(x-\alpha)^{N+1}} & =\sum_{j=N+1}^{\infty} b_{j} \int_{0, \delta} Q_{j}(x) \\
& =\sum_{h=0}^{\infty} b_{N+1+h}\binom{N+h}{h} \alpha^{h} . \\
& =\frac{1}{N!} f^{(N)}(\alpha) .
\end{aligned}
$$

This completes the proof.

Maximum Modulus, Cauchy's Inequality,

Liouville's Theorem

Analogues of several standard results of complex analysis have already been established. This chapter will be concluded by showing three more. In particular, analogues of the Maximum Modulus Principle, Cauchy's Inequality, and Liouville's Theorem will be established.

One form of the Maximum Modulus Principle of complex analysis asserts that if a non-constant function f is analytic inside and on a simple closed curve C and if M is an upper bound of f on C,
then $|f(z)|<M$ for every z inside C. The next theorem shows a corresponding result in T_{p}.

Theorem 5.18. Suppose :

$$
f(x)=\sum_{i=0}^{\infty} a_{i} x^{i}
$$

converges for $|x|<r$. Let $0<r_{0}<r$ and $M \geq|f(x)|$ for every $x \in D\left[0, r_{0}\right]$. Then either $|f(x)|$ is constant on $D\left(0, r_{0}\right)$ or $|f(x)|<M$ for every x in the open disc $D\left(0, r_{0}\right)$.

Proof: Suppose $\alpha, \beta \in D\left(0, r_{0}\right)$ with $|f(\alpha)|>|f(\beta)|$. Pick δ such that $|\delta|=r_{0}$. Then $|\alpha-\beta|<|\delta|$ and $f(\alpha)=\int_{\beta, \delta} \frac{f(x)(x-\beta)}{x-\alpha ;}$ and $f(\beta)=\int_{\beta, \delta} f(x)$. Thus,

$$
\begin{aligned}
|f(\alpha)| & =|f(\alpha)-f(\beta)| \\
& =\left|\int_{\beta, \delta} \frac{f(x)(x-\beta)}{x-\alpha}-\int_{\beta, \delta} f(x)\right| \\
& =\left|\int_{\beta, \delta} \frac{f(x)(\alpha-\beta)}{x-\alpha}\right|
\end{aligned}
$$

Since $|\alpha-\beta|<|\delta|$, then for every x such that $|x-\beta|=|\delta|$, $|x-\alpha|=|x-\beta+\beta-\alpha|=|\delta|$. Let C denote the set $\left\{x \in T_{p}:|x-\beta|=|\delta|\right\}$. Then according to Theorem 5.9,

$$
\begin{aligned}
\left|\int_{\beta, \delta} \frac{f(x)(\alpha-\beta)}{x-\alpha}\right| & \leq \underset{x \in C}{\operatorname{maximum}}\left|\frac{f(x)(\alpha-\beta)}{x-\alpha}\right| \\
& =\frac{|\alpha-\beta|}{|\delta|} \underset{x \in C}{\operatorname{maximum}}|f(x)| \\
& <\underset{x \in C}{\operatorname{maximum}}|f(x)| \leq M .
\end{aligned}
$$

Therefore, $|f(\alpha)|<M$.

As a consequence of Theorem 5.17, the following analogue of Cauchy's Inequality can be established.

Theorem 5.19. Suppose f is analytic in $D(0, r)$. If $0<r_{0}<r$ and $M \geq|f(x)|$ for every $x \in D\left[0, r_{0}\right]$, then for $n=1,2, \ldots$,

$$
\left|\frac{f^{(n)}(x)}{n!}\right| \leq \frac{M}{r_{0}^{n}}
$$

Proof: By Theorems 5.17 and 5.9, if $|y|<r_{0}$ then

$$
\left|\frac{f^{(n)}(y)}{n!}\right|=\left|\int_{0, \delta} \frac{f(x) x}{(x-y)^{n+1}}\right| \leq \max _{x \in C}\left|\frac{f(x) x}{(x-y)^{n+1}}\right|
$$

where $C=\left\{x:|x|=r_{0}\right\}$. Since $|y|<r_{0}$, then $|x-y|=r_{0}$ for $\mathbf{x} \in C$. It follows that

$$
\max _{x \in C}\left|\frac{f(x) x}{(x-y)^{n+1}}\right|=\max _{x \in C} \frac{|f(x)|}{r_{0}^{n}} \leq \frac{M}{r_{0}^{n}} .
$$

Finally, the p-adic analogue of the Liouville Theorem states that any bounded entire function is a constant function.

Theorem 5.20. If f is an entire function and there is a real number M such that.. $|f(x)| \leq M$ for every $x \in T_{p}$, then $f(x)=a_{0}$ where $f(x)=a_{0}+a_{1} x+\cdots$.

Proof: It suffices to show that $a_{n}=0$ for $n=1,2, \ldots$. Suppose to the contrary that $a_{n} \neq 0$ for some $n \geq 1$. Let δ be an
element in T_{p} such that $\frac{M}{|\delta|^{n}}<\left|a_{n}\right|$. According to Theorem 5.19,

$$
\left|\frac{f^{(n)}(0)}{n!}\right| \leq \frac{M}{|\delta|^{n}} .
$$

But since $a_{n}=\frac{f^{(n)}(0)}{n!}$,

$$
\left|a_{n}\right| \leq \frac{M}{|\delta|^{n}}<\left|a_{n}\right| .
$$

This contradiction shows that $a_{n}=0$ for $n=1,2, \ldots$.

Conclusion

While further analogies between complex and p-adic analysis will not be pursued in this study, it should be remarked that others do exist. For example, Laurent series can be defined in T_{p} essentially as in the complex case. Thus, the concept and classification of singularities of analytic functions can be discussed. Meromorphic functions have natural analogies in T_{p}. The residue of a function can be defined in the usual manner and there is a p-adic analogue of Cauchy's Residue Theorem. The technique of proof, as illustrated earlier in this chapter, somewhat parallels the corresponding proof in complex analysis but utilizes the Schnirelman Integral and its properties.

As a final remark, one quite significant distinction between analysis in T_{p} and complex analysis will be noted. In complex analysis an analytic function may have an analytic continuation beyond its circle of convergence. That is, if $f(z)$ is an analytic function
having radius of convergence $r, 0<r<\infty$, then given a point z_{0} in the circle of convergence, $f(z)$ is analytic at z_{0}. Thus, $f(z)$ can be expressed as a power series developed about $z=z_{0}$ and the new circle of convergence may include points which are not in the original circle of convergence. In the p-adic situation, however, any two discs are either disjoint or nested. It follows that analytic continuation in the above sense is not possible for analytic functions in T_{p}. This observation concludes the present study.

1. Adams, William W. "Transcendental Numbers," American Journal of Mathematics, Vol. 88, No. 2 (1966), 279-308.
2. Agnew, Jeanne, Explorations in Number Theory. Monterey, California: Brooks Cole, 1972.
3. Amice, Yvette. "Interpolation p-adic," Bulletin de la Societe Mathematique de France, Vol. 92 (1964), 117-180.
4. Artin, Emil. Algebraic Numbers and Algebraic Functions. New York: Gordon and Breach, 1967.
5. Bachman, G. Introduction to p-adic Numbers and Valuation Theory. New York: Academic Press; 1964.
6. Borevich, Z. I. and I. R. Shafarevich. Number Theory, trans. Newcomb Breenlear. New York: Academic Press, 1966.
7. Bruhat; F. Lectures on Some Aspects of p-adic Analysis; Tata Institute of Fundamental Research, Bombay, India, 1966.
8. Dieudonne, M. Jean. "Sur les Fonctions Continues p-adiques," Bulletin des Sciences Mathematique, 2nd Series, Vol. 68 (1944), 79-95.
9. Herstein, I. N. Topics in Algebra. Waltham, Massachusetts: Blaisdell, 1964.
10. Hille, E. Analytic Function Theory. Waltham, Massachusetts: Blaisdell, 1959 .
11. Mahler, K. "An Interpolation Series for Continuous Functions of a p-adic Variable," Journal for the Reine and Ange. Math.; Vo1. 199 (1956), 23-34.
12. McCarthy, P. J. Algebraic Extensions of Fields. Waltham, Massachusetts: Blaisdell, 1966.
13. Monna, A. F. Analyse Non-Archimedienne. New York: Springer Verlag, 1970.
14. Palmer, Leonard L. "Some Analysis in a Non-archimedean Field." Unpublished doctoral dissertation. (Oklahoma State University, 1971).
15. Sato, D. and E. G. Straus. "p-Adic Proof of Non-existence of Proper Prime Representing Algebraic Functions and Related Problems," Journal of the London Mathematical Society, Vol. 2 (1970), 45-48.
16. Snook, Verbal M. "A Study of p-Adic Number Fields." Unpublished doctoral dissertation. (Oklahoma State University, 1970).
17. Van der Waerden, B. L. Algebra, Volume I. Ungar, New York, 1970.

This appendix supplies proofs of Lemmas 4.16 and 4.17.

Theorem A.1. Let G and H be polynomials in $O_{p}[x]$ with G monic. Then G and H are relatively prime in $O_{p}[x]$ if and only if \bar{G} and $\overline{\mathrm{H}}$ are relatively prime in $0_{p} / A_{n}[x]$ for $n>0$.

Proof: For any polynomial $P(x)=a_{0}+a_{1} x+\cdots+a_{s} x^{s}$ in $O_{p}[x]$,
 a εO_{p} under the canonical homomorphism from O_{p} onto O_{p} / A_{n} : Since $\overline{\mathrm{UG}+\mathrm{VH}}=\overline{\mathrm{U}} \overline{\mathrm{G}}+\overline{\mathrm{V}} \overline{\mathrm{H}}$ and $\overline{1}=1$, then G and H relatively prime implies \bar{G} and \bar{H} are relatively prime.

Conversely, suppose $\overline{\mathrm{G}}$ and $\overline{\mathrm{H}}$ are relatively prime in $\mathrm{O}_{\mathrm{p}} / \mathrm{A}_{\mathrm{n}}[\mathrm{x}]$. Let $Q \in O_{p}[x]$ be such that $Q \mid G$ and $Q \mid H$. Then it suffices to show that $Q=1$. Since $Q \mid G$ and $Q \mid H$, there exist polynomial R and R^{\prime} in $O_{p}[x]$ such that $G=Q R$ and $H=Q R^{\prime}$. Furthermore, G is monic implies the high order coefficient of. Q is a unitin O_{p}. Thus, $\operatorname{deg} \bar{Q}=\operatorname{deg} Q$. Since \bar{G} and \bar{H} are relatively prime in $O_{p} / A_{n}[x]$, there exist polynomials \bar{U} and \bar{V} in $O_{p} / A_{n}[x]$ such that

$$
1=\bar{G} \bar{U}+\bar{H} \bar{V}=\bar{Q} \cdot \bar{R} \bar{U}+\bar{Q} \bar{R}^{\prime} \bar{V}
$$

so that

$$
1=\bar{Q}\left(\bar{R} \bar{U}+\bar{R}^{\prime} \bar{V}\right)
$$

This implies $0=\operatorname{deg} \vec{Q}=\operatorname{deg} Q . \quad$ Since Q is monic, $Q=1$.

Theorem A.2. Let G and H be two polynomials with coefficients in ring R. If G is monic and G and H are relatively prime in $R[x]$ with $\operatorname{deg} G=s$, then for every non-zero polynomial $Q \varepsilon R[x]$ there exists a unique pair of polynomials U and V such that $Q=U G+V H$ with $V=0$ or $\operatorname{deg} V<s$.

Proof: Suppose G and H are relatively prime in $R[x]$. Then there exist polynomials J and K in $R[x]$ such that $J G+K H=1$. Thus, if Q is any polynomial in $R[x]$ then $Q=Q J G+Q K H$. Suppose $\operatorname{deg} \mathrm{QK} \geq \mathrm{s}=\operatorname{deg} \mathrm{G}$. Then there exist polynomials A and B in $R[x]$ such that $Q K=A G+B$ where efther $B=0$ or $\operatorname{deg} B<s$. Then, substituting for QK in the above equation,

$$
Q=Q J G+(A G+B) H=(Q J+A H) G+B H
$$

If $U=Q J+A H$ and $V=B$, then the existence part of the theorem is proved.

To prove uniqueness, suppose there is another pair of polynomials U^{\prime} and V^{\prime} in $R[x]$ such that $Q=U^{\prime} G^{\prime}+V^{\prime} H$ with $\operatorname{deg} V^{\prime}<s$ or $V^{\prime}=0$. Then $U^{\prime} G+V^{\prime} H=U G+V H$ implies $\left(U^{\prime}-U\right) G=\left(V-V^{\prime}\right) H$. Since G and H are relatively prime, $G \mid\left(V-V^{\prime}\right) H$ implies $G \mid\left(V-V^{\prime}\right)$. Now $\operatorname{deg}\left(V-V^{\prime}\right) \leq \max \left(\operatorname{deg} V, \operatorname{deg} V^{\prime}\right)<s$. Therefore, $G \mid\left(V-V^{\prime}\right)$ implies $V=V^{\prime}$ which, in turn, implies $U=U^{\prime}$. This completes the proof.

VITA

John Eldon Atkinson
Candidate for the Degree of
Doctor of Education

Thesis: ANALYSIS IN AN ALGEBRAICALIY CLOSED NON-ARCHIMEDEAN FIELD
Major Field: Higher Education
Biographical:
Personal Data: Born in Gypsum, Kansas, January 3, 1935, the son of Ted and Mary Atkinson.

Education: Graduated from Dickinson County Community High School, Chapman, Kansas, in May, 1953; attended Bethany College, Lindsborg; Kansas from 1953 to 1955; received Bachelor of Science degree in Education from Kansas State Teachers College, Emporia, Kansas in May, 1957; attended the University of Kansas in 1959-1960; received Master of Science degree from Kansas State Teachers College, Emporia, Kansas in August, 1964; completed requirements for the Doctor of Education degree at Oklahoma State University in July, 1972.

Professional Experience: Mathematics and science teacher, Douglass High School, Douglass, Kansas, 1957-1959; mathematics teacher, Shawnee-Mission High School, Shawnee-Mission, Kansas, 1960-1965; Assistant Professor of Mathematics, Tarkio College, Tarkio, Missouri, 1965-1972; graduate teaching assistant, Oklahoma State University, 1969-1971; Associate Professor of Mathematics, Tarkio College, Tarkio, Missouri, 1972.

