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Abstract: Flame retardant additives, such as phosphorus-based fillers, metal hydroxides, 

metal carbonates, and nanocomposites, have been considered as the most common 

methods to reduce fire hazards of polymers. Specifically, polymer nanocomposites have 

an advantage in reducing fire hazards efficiently even when the additives are at such a 

low concentration as 5 wt% or less, like nanoclay and carbon nanotubes. Nanoscale silica 

particles are a relatively new type of nanofiller. Moreover, in theory, crosslinking 

between the polymer chains by forming additional covalent bonds, can enhance char 

formation of polymeric materials to further promote their flammability, because 

crosslinking creates a carbon-dense structure that is not easy to be volatilized. In this 

study, crosslinked and non-crosslinked polymer nanocomposites composed of low 

concentration of silica-containing flame retardants have been prepared via the in-situ 

method of embedding nanoscale silica particles into the poly (methyl methacrylate) 

matrix (PMMA). The nanocomposite samples were tested by using the cone calorimeter 

at the heat flux of 50 kW/m², and their corresponding fire behaviors under forced-flaming 

conditions were evaluated. Although silica-containing flame retardants tend to negatively 

affect the ignitability and soot production especially at a high concentration, through the 

condensed phase mechanism, the samples of high loading rate of nanoscale silica 

particles show better fire retardancy performance in the aspect of flammability, like 

decreased heat release rate, mass loss rate, total heat release, flame development and 

spread. Additionally, at the low concentration of nanoscale silica particles, crosslinking 

was observed to contribute to the better flame retardancy of crosslinked PMMA samples 

in a certain aspect, like the lowered intensity of combustion. The combination of 

nanoscale silica particles with the modification of the internal structure of the polymer 

nanocomposites might be a strategy to improve fire retardancy. 
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CHAPTER I 
 

 

INTRODUCTION 

Polymers have widespread applications in different industries due to their low cost, light weight, 

ease of processing and applicability, and stable structure [1, 2]. While the advantages of using 

polymers are numerous, consumers must remain vigilant about the potential fire hazards 

associated with these hydrocarbon-based materials. One potential solution to this problem is to 

use inherently thermally-stable polymers. However, the use of those inherently thermally-stable 

polymers is often restricted by their high cost [3]. Another potential solution to reducing risks 

generated from the fire hazard of polymers is to use flame retardants. There are a variety of flame 

retardant additives, such as halogen-containing flame retardants, phosphorus-based fillers, metal 

hydroxides, metal carbonates, and intumescent additives. Nevertheless, most of those traditional 

flame retardants, like halogen-containing flame retardants, have been restricted in their utility due 

to potential damage to human health and environment, and other flame retardants like aluminum 

hydrates are too costly to be widely used in the industry and commerce [4, 5]. Recently, more 

attention has been on research of flame retardant polymer nanocomposites, which are 

environmentally friendly and highly efficient, compared to conventional flame retardants [6, 7].  

Additionally, polymer nanocomposites have also shown significant improvement in terms of 

thermal stability, mechanical properties, optical and electric properties when compared to the 

micro and macro varieties [8]. 
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One of the effective halogen-free flame retardants is silicon-containing compounds, like silica, 

silicate, polydimethylsiloxanes, which are highly resistant to heat, and more importantly will not 

produce toxic and corrosive gases during combustion [9]. For silica particles, they mainly have 

three forms: silica gel, fused silica, and fumed silica. Compared with fused silica, fumed silica 

and silica gel have relatively larger surface area and lower density, which can accumulate near the 

polymer burning surface and tend to produce a silica-rich layer without sinking through the melt 

polymer [10]. The silica layer can act as a heat insulation shield, which can protect the polymer 

from further thermal decomposition [11, 12]. Additionally, the silica layer can also act as a 

physical barrier to the transport of thermal decomposition products through the polymer surface 

to the flame zone [10]. However, fused silica is hard to accumulate on the surface of burning 

polymer and subsequently form a silica-rich protective layer, so that fused silica is not as 

effective as fumed silica and silica gel [10]. Recently, in terms of flame retardancy, polymer 

nanocomposites comprised of organically modified clay dispersed in selected polymer matrixes 

have attracted considerable attention from researchers with the advantage that flame retardant 

additives are highly effective at a low concentration of 5 wt% or less, and also with increased 

thermal stability and mechanical properties, like Young’s modulus and storage modulus [13, 14].  

The physical principle behind this phenomenon is the tremendously larger interfacial area 

between polymer and flame retardants than conventional flame retardant systems. Nanoscale 

silica particle is also a kind of promising flame retardant because of the large interfacial area as 

long as the particles are finely dispersed within the polymer matrix. However, previous research 

by Kashiwagi, indicates that nanoscale silica particles by themselves cannot form a tight and 

continuous silica network, but form loose and granular particles, in which the most majority of 

the polymer is still directly exposed to the external heat flux without enough protection [15]. But 

Kashiwagi also suggests one possible approach to forming in-situ silica network by enhancing the 

formation of crosslinks among the nanoscale silica particles through appropriate surface treatment 

of them [15]. Moreover, there exists a strong correlation between char yield and fire resistance of 
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polymers in fire conditions [16]. Crosslinking between the polymer chains by forming additional 

covalent bonds, if possible, can enhance char formation of polymeric materials, because 

crosslinking creates a carbon-dense structure that is not easy to be volatilized, especially for some 

non-char-forming thermoplastics, like polypropylene and poly (methyl methacrylate) (PMMA) 

[10, 17]. 

In this research, a small amount of nanoscale silica particles (less than 5 wt%) was embedded into 

the poly (methyl methacrylate) matrix via in-situ methods to form polymer nanocomposites. 

Additionally, crosslinking was introduced in the polymer nanocomposites to study whether this 

structure modification of polymer chains could further protect the polymer matrix and hence 

improve fire retardancy during combustion. The reaction of any material to fire is typically 

represented by: the ability to ignite, heat release rate, flame spread, emission of flammable, toxic, 

and corrosive gas etc. [18]. This investigation will mainly focus on the ignitability and 

flammability properties of the low concentration of silica-containing flame retardant polymer 

nanocomposites and their flame retardancy performance based on cone calorimeter analysis.
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CHAPTER II 
 

 

REVIEW ON THE LITERATURE  

In a recent article, Morgan (2013) discussed the application, technology, and future directions of 

flame retardancy of polymeric materials [4]. Apparently, in the case of fire, the most majority of 

energy-dense hydrocarbon-based polymers are easily ignitable and can provide a source of fuel, 

which is a great risk not only to property, but also life safety. The use of flame retardants is often 

preferred to improve the flammability of polymers that are characterized of inherently high 

flammability but low cost. This approach usually means reaching an acceptable compromise 

between cost and the properties of the polymer, but it is also a proven approach and relatively 

easy to implement [19] . So far, a lot of researchers have conducted studies in this field and have 

laid the solid foundation of knowledge to further explore various kinds of flame retardant 

additives.  

Recently, generally six classes of flame retardant chemistries are available: halogen-based flame 

retardants, phosphorus-based flame retardants, mineral filler flame retardants, intumescent flame 

retardants, inorganic flame retardants, and polymer nanocomposites. Depending on their chemical 

nature, different flame retardants function chemically, physically, or both in totally different 

mechanisms to interfere with the combustion process in the gas phase, the condensed phase, or 

both phases. None of these flame retardants can apply universally to any type of polymer. In fact, 

each type of flame retardant is specifically molecularly designed and optimized to a particular 

type of polymer in a specific fire risk scenario, based upon the thermal decomposition  
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mechanism of the polymer, particular property requirements, manufacturing process, 

environmental stability, and sustainability issues.  

Halogen-based flame retardants are molecules that contain such elements as F, Cl, Br, and I from 

group VII of the periodic table. They can have totally different chemical structures, including 

inorganic form, pre-halogenated aliphatic and aromatic carbon subtracts. Among them, 

organohalogen compounds still appear to be the most effective flame retardant additives for 

polymer [20]. To function effectively, halogenated flame retardants are supposed to be able to 

release halogen radical or halogen halide at the same temperature range or even below the 

temperature of thermal decomposition of the polymer [21, 22]. The main mechanism of 

halogenated flame retardants is in the gas phase. Initially, halogen radicals are abstracted from the 

flame retardant when exposed to heat. The halogen radicals immediately react with either the 

polymer or the flame retardant additives to form hydrogen halides. Subsequently, the hydrogen 

halides interfere with the radical chain mechanism, in which highly reactive free radicals, like 

hydrogen or hydroxyl radicals, are consumed by reaction with hydrogen halides and finally 

replaced with less reactive halogen radicals.  Ultimately, the hydrogen halides are regenerated 

through the reaction of halogen radicals with hydrocarbon. In fact, hydrogen halides are actually 

the main functional specie in the aspect of flame retardancy. Additionally, the large heat capacity 

of hydrogen halides and their dilution of fuel gases can lower the mass concentration of 

combustible gases and the temperature of the flame [23]. However, the emission of toxic and 

corrosive hydrogen halides is always a big concern to human and environment.  

Phosphorus-based flame retardants are an important class of halogen-free flame retardants. They 

have totally different structures varying from inorganic to organic forms, and between different 

oxidation states (0, +3, +5), like elemental red phosphorus, inorganic phosphates, organic 

phosphorus-based products, and chlororganophosphates [24]. These compounds mostly function 

in the condensed phase by increasing the formation of carbonaceous residue or char through two 
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mechanisms: (i) redirection of the chemical reactions involved in thermal decomposition in favor 

of reactions yielding carbon rather than CO or CO2, and (ii) formation of a surface layer of 

protective char [11]. However, it is also necessary to note that phosphorus compounds may 

function in gas phase as well, depending on their specific chemical structure and how they 

interact with the polymer when exposed to a fire. More uniquely, it is not so uncommon for a 

particular type of phosphorus compound to be predominately in the gas phase for a particular 

polymer but in the condensed phase for another particular polymer [25, 26, 27, 28]. In the gas 

phase, volatile phosphorus compounds can act as potent scavengers of H· and OH· radicals, 

which is an effective inhibitors of combustion [29]. However, more smoke and CO will be 

produced simultaneously, because phosphorus-based flame retardants mainly help to inhibit 

polymer combustion. 

To improve flame retardany, the most commonly used mineral fillers as additives are metal 

hydroxides and metal carbonates [4]. Generally, mineral fillers function based on three flame 

retardant effects: (i) endothermic decomposition to absorb heat and cool the polymer; (ii) release 

of such inert gas as H2O and CO2 to dilute the combustible fuel gases; and (iii) accumulation of 

mineral filler residues on the decomposing polymer surface to dilute the polymer fuel available 

(in the condensed phase) and act as a barrier of heat and mass transport through the polymer 

surface [30]. Consequently, to be effective, the decomposition temperature of the mineral filler 

should be above the polymer manufacturing temperature, but below the decomposition 

temperature of the polymer. As a result, only limited types of metal hydrates and metal 

carbonates are widely used to meet this requirement, including Al(OH)3, Mg(OH)2, and MgCO2. 

Mineral fillers are environmentally friendly, and in case of fire, smoke and toxic gas emission are 

reduced due to the replacement of polymer fuel with non-flammable inorganic mass. However, a 

high loading rate of mineral fillers is required to achieve an acceptable level of flame retardancy, 

which usually compromise the mechanical properties of the polymer [30]. 
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Intumescent flame retardants are those materials that will swell in response to a fire or heat source 

to form a carbon foam in the condensed phase, which can act as a physical barrier to heat, air and 

pyrolysis products [31, 32, 33, 34]. Typically, an intumescent material formulation is composed 

of three components to work together to function as flame retardants: a char forming agent, an 

acid catalyst to char formation, and a spumific or foaming agent [11]. A classical intumescent 

system mentioned by Morgan is ammonium polyphosphate (acid source), pentaerythritol (char 

forming agent), and melamine (foaming agent) [4]. In principle, to achieve desired flame 

retardancy, intumescent system need to be activated well before the thermal decomposition of the 

polymer has a chance to start. Usually, the temperature range is from 180 to 200 °C, and a few 

can go up to 240 °C, at which temperature the intumescent system need be activated or lower [4]. 

Consequently, while the intumescent systems do provide fire protection, their use is restricted to 

lower-temperature polymer and fire protection barrier.  

Except for inorganic flame retardants included in previous classes, inorganic flame retardants still 

seem to cover a wide range of other chemicals that can retard flame, but actually they are very 

niche flame retardants. So far the only commercially available inorganic flame retardants include 

borates, stannates, and silicates [4]. These chemicals are mainly used to corporate with other 

flame retardants to make them perform better, or address a particular aspect of flame retardancy, 

for example, smoke emission. Recently, they are still used sparingly. However, due to the 

increasingly strict scrutiny associated with halogen and phosphorus based flame retardants, the 

inorganic flame retardants are getting more attention, especially silicon-based flame retardants.  

Polymer nanocomposite is the newest technology in the field of flame retardancy. Generally, 

polymer nanocomposites function in the condensed phase to retard flame, in which a 

nanoparticle-rich protective layer is formed to slow, but never stop, the mass loss rate of polymer 

and heat release rate correspondingly [35, 36, 37]. Recently, nanodispersed montmorillonite 

(MMT) clay, organically treated layered clays, nanoparticles of TiO2, nanoparticles of silica, 
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layered double hydroxides (LDH), carbon nanotubes/nanofillers (CNT), and polyhedral 

silsesquioxanes (POSS) are all reported to exhibit low base flammability and other enhanced 

properties, like mechanical properties [19]. Among them, organically treated layered clays and 

carbon nanotubes/nanofillers are the most commonly used nanoparticles for commercial polymer 

nanocomposites so far [4]. It is important to note that despite the fact that the polymer 

nanocomposite indeed tends to retard flame growth, the nanocomposite by itself is still not 

enough to pass regulatory tests, for example, the relatively poor performance in the UL-94 tests 

and Limiting Oxygen Index (LOI) tests. However, polymer nanocomposite is still a promising 

approach to improving flame retardancy, because polymer nanocomposite seems to be able to 

produce synergistic effects with traditional flame retardant additives.  
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CHAPTER III 
 

 

POLYMER COMBUSTION AND TESTING 

3.1 Polymer Combustion  
 

Polymer combustion is a highly complex process involving both condensed phase and gas phase. 

In the condensed phase, fuel is generated at the surface via endothermic degradation and 

subsequent thermal decomposition of the solid polymer. In the gas phase, the fuel is consumed 

above the solid material when reacting with oxygen in the air, in which a flame is produced and 

heat is released. Part of the released heat can transfer back to the polymer surface by convection 

and radiation, which in turn can continue the thermal decomposition of polymer to produce 

gaseous fuel vapor or volatiles [38]. Namely, polymer combustion is simply regarded as a self-

sustaining process, and the thermal decomposition, or more specifically pyrolysis of the solid 

polymer into smaller fragments, is the driven force of polymer combustion. A general schematic 

of polymer decomposition and combustion behavior is shown in Fig. 1. However, there exist 

some differences between thermoplastic polymers and thermoset polymers. When exposed to heat 

and in fire conditions, thermoplastic polymers tend to drip and flow, which can contribute to 

flame spread. However, thermoset polymers do not have the tendency to drip or flow, and 

pyrolysis gases are produced from the surface of thermoset polymers and then directly released 

into the gas phase.  
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Fig. 1 General Schematic of Polymer Decomposition and Combustion Behavior [4]. 

 

Four general chemical mechanisms are important for thermally induced decomposition of 

polymers [39]: 

1. Chain scission; 

2. Crosslinking; 

3. Side chain elimination; 

4. Side chain cyclization. 

In the term of structure, polymers are composed of chains of atoms (mainly C, H) bonded to each 

other. Based upon the position of atoms involved during the thermal decomposition, these four 

chemical mechanisms can be divided into two groups: main chain reactions and side chain or 

substitute reactions. More specifically, main chain reactions are those thermal decomposition 

reactions involving atoms in the main polymer backbone, including chain scission and 

crosslinking. Side chain or substituent reactions are those thermal decomposition reactions 

Condensed Phase Gas Phase 
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Polymer 
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Melting, Flow 

Diffusion Zone 
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Direction of Feed to Fire 
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involving atoms in the principally side chains or groups, including side chain elimination and side 

chain cyclization. The categories of polymer thermal decompositions are shown in Fig. 2 , and it 

is of great use in understanding a particular decomposition mechanism.  

 

Fig. 2 General Thermal Decomposition Mechanisms [39]. 

 

Technically, the chain scission includes random chain scission and chain-end scission. For 

random chain scission, the polymer decomposes at the random locations in the backbone into 

smaller fragments, which will generate both monomers and oligomers (polymer units with 10 or 

fewer monomer units) [39]. For chain-end scission, the polymer depolymerizes at the chain end to 

produce monomers, which is also known as unzipping [39]. 

Crosslinking is another thermal decomposition mainly involving main chain. Generally, it occurs 

after some stripping of substituents and involves the creation of bonds between two adjacent 

polymer chains. Crosslinking is very important in the formation of chars because it creates a more 

compact structure, which cannot be easily volatilized into gaseous fuel vapor [40].  

As their name indicates, side chain elimination reaction and side chain cyclization reaction are 

reactions mainly involving side chains or groups of the polymer. In elimination reactions, pendant 

Main Chain Reactions 
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Crosslinking 
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side chains break with the backbone of the polymer, but without breaking the backbone. 

Simultaneously, the eliminated side groups often react with other eliminated side groups to 

produce small enough products to be volatile. In side chain cyclization reactions, without 

breaking from the backbone, two adjacent side chains react to form a bond between them. This 

chemical process will produce a cyclic structure, more specifically, double bonds or triple bonds, 

which usually is a carbon-richer structure than the original polymer, and thus is important in char 

formation [39]. 

It should be noted that only a few number of polymers decompose predominately only through 

one mechanism; in most common cases, the thermal decomposition of polymers need to be 

explained in a combination of two or more of the mechanisms above. For example, polyethylene 

and polypropylene decompose predominately via random chain scission, but in the case of 

polyethylene some crosslinking also happens.  

3.2 Polymer Testing  
 

Fire hazard is always a big concern of polymeric materials. For safe application, it is very 

necessary to test those polymeric materials under conditions close to the end-use application in 

reality, or even in real assembly in combination with other materials. Recently, numerous 

flammability tests have been developed to quantitatively or qualitatively evaluate the 

performance of a polymer under a specific fire scenario, entirely covering small scale, 

intermediate scale, and full scale. There are more than 100 kinds of tests in the U.S.A alone and 

other countries also have their own tests.  In those flammability tests, usually, the performance of 

polymeric materials can be evaluated in several aspects [40]: 

 Ease of ignition-how readily a material ignites; 

 Flame spread-how rapidly flame spreads across the surface; 

 Fire endurance-how rapidly fire penetrates a wall or barrier; 
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 Heat release rate/total heat evolved-how much heat energy in total is released and how 

fast it is released;  

 Ease of extinction-how rapidly or easily the flame leads to extinction; 

 Smoke evolution-amount, emission rate, and composition of smoke released during 

different stages of fire; 

 Toxic gas evolution-amount, emission rate, and composition of gases released during 

different stages of fire. 

In the research field, several tests are widely used in the laboratory, like Underwriters’ 

Laboratories UL-94 test, the limiting oxygen index (LOI) test, and the cone calorimeter test. 

These tests are relatively simple and economic, but they are capable to screen the materials during 

product development and quality control in the industrial laboratories, and investigate the 

polymer flammability in the academic community as well. In the subsequent section, these three 

commonly used laboratory tests will be introduced.   

3.2.1 UL-94 Testing 

 

UL-94 tests are conducted on the basis of UL-94, Standard for Tests for Flammability of Plastic 

Materials for Parts in Devices and Appliances. As the standard name indicates, under UL-94 

tests, polymeric materials used for parts in devices and appliance will be exposed to a small flame 

and the ignitability and flame spread will be accessed particularly, which are expected to serve as 

a preliminary indication of their acceptability with respect to flammability for a particular 

application [41]. Based upon their performance in various orientations and thicknesses under UL-

94 tests, polymeric materials can be rated into different classifications, like HB, V-2, V-1, V-0, 

5VB, and 5VA. However, in the field of flame retardancy, V-0, V-1, and V-2 are the 

classifications cited most frequently by researchers, which all belong to vertical burning tests. 

Overall, in UL-94 V-ratings, the polymeric specimen is vertically configured, a small calibrated 
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flame was applied twice on the bottom of the specimen for 10 seconds, and then the time of 

extinguishment is measured and recoded after each flame application as shown in Fig. 3. More 

specifically, the shape of the polymeric specimen is like a bar of 130 mm 13 mm, and during the 

test the specimen is held from the top vertically. The thickness of the specimen can vary 

depending on the intended use of the polymeric materials: 3.2 mm, 1.6 mm, and 0.8 mm 

respectively. According to the knowledge pertaining to fire dynamics, the thinner specimen is 

much more ignitable than the thicker specimen, because surface ignition temperature can be 

reached more easily for the thin specimen, if all other factors are kept the same [42]. 

Thermoplastic materials have the tendency to drip in a fire, which exhibits more fire risks than 

thermoset materials. Accordingly, some surgical cotton is placed 300 mm under the polymeric 

specimen to detect the combustible drips, because the combustible drips can ignite the surgical 

cotton easily. A calibrated Bunsen burner flame (ca. 19 mm) of 50 W is applied under the 

specimen twice for 10 seconds. After the first application of flame, the time of self-sustained 

combustion is recoded. Immediately after the self-extinguishment of the specimen in the first 

application of flame, a second application of flame starts, after which the time of self-sustained 

combustion is recorded as well. A total number of five specimens is required. Based upon their 

performance in these two flame applications, the polymeric materials can be rated accordingly. 

The materials can be rated as V-0, if the specimen is self-extinguished in less than 10 seconds 

after any flame application, additionally the mean combustion time of the five specimens tested in 

totally ten flame applications does not exceed 5 seconds, and no combustible drips is observed. 

The materials can be rated as V-1, if the maximum combustion time is less than 50 seconds, and 

the mean combustion time of those five specimen is less than 25 seconds, and similarly no 

combustible trips is observed. The polymeric materials rated as V-2 are those which have the 

same combustion criteria as V-1, but combustible drips are observed to ignite the surgical cotton.  
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Fig. 3 Experimental Set-up for the UL-94 V Flammability Test (not Scaled) [16]. 

 

3.2.2 Limiting Oxygen Index (LOI) Testing 

 

The limiting oxygen index (LOI) test is another method commonly used in laboratory and is 

recognized as one of the most useful tools for fire retardancy studies of polymeric materials. 

ASTM D2963, Standard Test Method for Measuring the Minimum Oxygen Concentration to 

Support Candle-Like Combustion of Plastics, describes the procedure for measuring the 

minimum concentration of oxygen in an oxygen/nitrogen mixture that will just support flaming 

combustion of a polymeric specimen. Six types of specimens of different dimensions are listed in 

ASTM D2963, specifically depending on the form of material being tested, for example, molding 

materials, cellular materials, and sheet materials.  Among these six types of specimens, the 

commonly used dimension of the polymeric specimen is 100 mm 6.5 mm 3 mm, which falls 

into the range of alternative size for self-supporting molding or sheet materials, when testing rigid 

polymeric materials. During the test, the specimen is held at its base and positioned vertically in 

the center of a glass chimney as shown in Fig. 4. The gas supply of evenly mixed oxygen and 
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nitrogen should continuously purge into the glass chimney at the base. Gas measurement and 

control devices should be equipped properly for measuring the concentration of oxygen in the gas 

mixture entering the glass chimney, by using a paramagnetic oxygen analyzer to continuously 

sample the mixed gas. The flame igniter, like a Bunsen burner, is inserted into the chimney, and 

the test flame is applied at the top of the upper end of the specimen until the entire surface is 

ignited. If the specimen cannot be ignited after 30 seconds of the flame application, the 

concentration of oxygen in the supply gas should be increased correspondingly until the specimen 

can be ignited and burn gently. In most cases, the specimen will exhibit stable candlelike 

combustion. If the specimen could remain burning more than 180 seconds after ignition or the 

burning can extend 50 mm or more below the top of the specimen, the test specimen should be 

replaced by a new specimen and the concentration of oxygen in the supply gas should be 

decreased correspondingly to continue testing. By testing a series of specimens in different 

oxygen concentrations, the LOI value, is obtained from the limiting concentration at which the 

specimens tested self-extinguish in less than 180 seconds, and the burning extends less than 50 

mm below its top. Namely, the result of LOI tests is on a numerical scale, which makes it 

possible to compare the polymers based on flammability. For example, a material rated of high 

LOI indicates that the polymeric material is less easy to be ignited and less flammable under the 

conditions of this test method. Considering the oxygen concentration in ambient condition is 

21%, if a material has an LOI below 21, it is classified as combustible, whereas it is classified as 

self-extinguishing if the material has an LOI above 21 [16].  

Moreover, LOI tests are repeatable, because the typical wide variability of combustion is 

restricted by carrying LOI tests in carefully controlled conditions [43]. However, it should be 

noted that the LOI test results relate only to the performance of the specimens under the LOI test, 

and cannot describe the fire hazards of the polymeric materials in other forms or under other 

conditions, indicating that the LOI test does not represent a real fire scenario.  
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Fig. 4 Experimental Set-up for LOI Measurement (not Scaled) [16]. 

 

3.2.3 Cone Calorimeter Testing 

 

Cone calorimeter is a well-known bench-scaled (medium-sized) instrument for testing of fire 

properties and has been accepted as a standard by International Standards Organization (ISO-

5660) and American Society for Testing and Materials (ASTM E-1354). Cone calorimeter 

functions upon the principle that oxygen consumption is in proportional relationship with heat 

release rate (HRR) which is one of the most important parameters in controlling fire hazards, and 

also a very complex parameter, governed by chemical (reaction kinetics), thermal (heat transfer 

properties), and mechanical (cracking, delamination, etc.) properties [44, 45]. The specimen is 

sized of 100 mm 100 mm in area and up to 50 mm thick. It can be tested either horizontally 

(standard testing) or vertically, but vertical orientation of the specimen is only reserved for 

exploratory studies, because the specimen can drip, collapse, and melt in unpredictable manners, 

especially for thermoplastic materials.  In the experiments, after the calibration of the whole 

equipment, the specimen located in the load cell, is exposed to a constant heat flux generated by a 

Specimen 

Mixture of Gas (N2/O2) 
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conical–shaped irradiation heat source ranging from 0 to 110 kW/m2. The radiant heat flux can 

represent different fire scenarios. The higher radiant heat flux levels can give better 

reproducibility, and more clearly defined ignition phenomena, but they correspond to more fully 

developed fires rather than developing fires exactly. And the lower heat flux levels are more 

consistent with fire protection goals, particularly for fire retardant polymers. Usually, 35 and 50 

kW/m2 are the most widely used heat flux levels in the academic community, which correspond 

to the heat fluxes found in developing fires [46] . Thus this kind of experiments can give a 

reasonable insight into the fire behaviors of a material in developing fires, but with less 

developing time and cost, because a relatively small-sized specimen is prepared and tested [46]. 

When enough combustible fuel volatile fragments are thermally decomposed from the heated 

specimen, the combustion is initiated by a small electrical sparking igniter. Then the ignitability 

parameter is recorded as the time to ignition, which strongly depends on critical heat flux, critical 

mass loss rate for ignition, or critical surface temperature for ignition [46]. Actually, once the 

specimen is ignited, the cone calorimeter test represents a well-defined flaming condition, 

typically for developing fire scenarios, forced by external radiation. During the combustion 

process, the fire is in a well-ventilated condition with a CO2/CO ratio corresponding to equivalent 

ratio, represented as   , between 0.7 and 1 [47]. More specifically, the equivalent ratio is defined 

as  

actual fuel air ratio

stoichiometric fuel air ratio
    

Therefore, if   <1, the flame is a fuel-lean reaction; if   =1, it is a stoichiometric reaction; and if 

  >1, it is a fuel-rich reaction. Besides the time to ignition, the cone calorimeter apparatus can 

also record or compute other fire response parameters for fire performance analysis, like mass 

loss of the specimen, effective heat of combustion of the specimen, smoke and soot production 

pertaining to smoke obscuration, and optionally toxic or corrosion gases, like HCl and HBr. 
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However, fire response properties more typically pertaining to fully developed or post fire 

scenario are not replicated in the cone calorimeter. These data collected are mainly used for four 

distinct purposes [45]: 

1. Comparison between different materials to evaluate their properties and their 

performance; 

2. Obtaining certain thermophysical constants of materials, pertaining to fire properties, like 

the value of thermal inertia of the material, which is an important fire property 

influencing both ignition and flame spread; 

3. Determining input data to fire models, predication of full-scale fire behaviors, or other 

engineering calculations; 

4. For regulatory compliance, for example, in the Building Code of Australia, it is 

acceptable to assess the fire retardant treated wood for use in bushfire-prone area, based 

upon cone calorimeter testing results. 

Generally, different purposes of the application of the cone calorimeter testing results require 

different methods of data evaluation. For example, in the academic field, the end-use condition 

and comprehensive evaluation of cone calorimeter data in all possible aspects are mainly used to 

access the response of a specific material to a fire, compare the properties of different materials 

and then evaluate them accordingly, especially in the fire retardancy field. However, for 

regulatory compliance, the end-use condition, reproducibility, and the exact evaluation of one or 

two well-identified characteristic parameters should be treated more seriously.  

It also should be noted that little consensus has been reached within the community of fire 

researchers and fire scientists on the interpretation of cone calorimeter data. But the demand of 

investigating the properties of new flame retardant materials is true and significant, with cone 

calorimeter data being comprehensively analyzed and evaluated. 
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Generally, a lack of strong correlation is observed between UL-94 V-rating, LOI, and cone 

calorimeter, because they simulate totally different fire scenarios and focus on different fire risks 

or hazards within a specific fire scenario, although to some extent they all measure the 

flammability of polymeric materials [48, 49]. Namely, it is very difficult to compare the fire 

performance of a specific kind of material in different fire scenarios simulated by different test 

methods.  It has to be admitted that all fires are different. Any one of these test methods described 

earlier can only cover a specific range of fire types and corresponding fire response behaviors, but 

if they cooperate together, they can help the fire researchers gain a better understanding of the 

properties of the materials particularly pertaining to fire. In this research, cone calorimeter is the 

tool used to study the flame retardant properties of PMMA-silica nanocomposites.  

 

 

Fig. 5 Experimental Set-up for Cone Calorimeter. 
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CHAPTER IV 
 

 

FLAME RETARDANCY 

Flammability is an inherent risk or hazard of polymeric materials, due to their energy-dense 

hydrocarbon-based structure. Recently, primarily three approaches have been emerged to improve 

flame retardancy of a specific kind of material, or provide some alternative protection of the 

material from a fire [4]: 

 Engineering approaches; 

 Use of inherently low flammable or flame retardant polymeric materials; 

 Flame retardant additives. 

Engineering approach is to find a possible solution to get the polymer out of the scenarios of high 

risk, for example, installing a fire protection shield, or changing the way how the polymeric 

product is used in the end-use application, in which the polymeric product is completely got rid of 

the fire risk scenario.  This approach is easy to implement and usually is an economic option. But 

one drawback of this engineering approach that cannot be neglected in real applications, is that 

one minor defect has the potential to cause the total failure of the engineering protection of 

polymeric materials. For instance, given a fire proof fabric which intends to protect flammable 

foam embedded in furniture or mattress, the foam can involve in fire easily once there is a rip or 

small hole appearing on the fire proof fabric.  

The second approach is to use inherently low flammable or inherently flame retardant polymers, 

which is usually characterized as high resistance to ignition and low heat release rate. Basically, 



22 
 

solely from the consideration of safety, this approach is the most optimum one to reduce or 

eliminate the fire risks or hazards concerning with polymeric materials, because the combustion 

process is hard to start initially no matter what kind of fire risk scenario the polymer is exposed to 

specifically. Moreover, inherently flame retardant polymeric materials are so easy to implement 

even with little fabrication or modification, that they have the potential to be widely applied in the 

industry. However, Lyon’s studies at the Federal Aviation Administration indicate that the cost of 

polymers tends to be inversely proportional to their inherent flammability [50]. Namely, the 

highly aromatic engineering polymers, like PAI (polyamide-imides), which prove to be weakly 

flammable and  highly thermally-stable, are much more expensive than aliphatic polymers, like 

PVC (polyvinyl chloride), which exhibits high flammability and low thermal stability [4, 50]. 

Consequently, their wide-range application is restricted by economic reasons, especially when 

large quantity is needed in the industry. Moreover, another limitation concerning inherently flame 

retardant polymeric materials is recycling and sustainability, because some of low flammable 

polymeric materials are hard to recycle due to their interior structure, especially fiber reinforced 

polymer composites, which can be found in aircraft and mass transportation vehicles [4].  Unless 

the low flammability and high thermal stability is the highest priority, inherently flame retardant 

polymers can hardly compete with other polymers in the market.  

The third approach is to use flame retardant additives particularly to modify and improve those 

polymers of relatively high flammability and low thermal stability, which is also the most 

extensively used approach so far [3]. Generally, commercially available flame retardant additives 

include, but absolutely not limited to, halogenated flame retardants, phosphorus-based flame 

retardants, mineral filler flame retardants, borate flame retardants, and silicon-based flame 

retardants. A lot of fire researchers and fire scientists have done numerous work in this field, and 

hence a large volume of knowledge on this subject has been established and further developed, so 

that the navigation of how to implement these flame retardant additives in polymers can be 
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supported, at least to some degree, by previous research or scientific theory. When tested in a 

single fire scenario, it is possible to incorporate a particular kind of flame retardant additive to 

improve a particular aspect of how a particular kind of polymer responses, and finally make the 

polymer pass the test. But in the end-use application, the polymeric product is still potentially of 

high fire risk, once it is exposed to a different fire scenario, rather than the one simulated by the 

fire test. Moreover, the use of flame retardant additives may also be attacked by other problems. 

The flame retardant additives embedded in the polymers may leach into the environment if they 

finally function in a fire. More importantly, with the addition of flame retardant additives, usually 

a compromise must be reached within polymer between flame retardancy and other properties. 

For instance, for fiber-reinforced composites, the addition of flame retardant additives may 

adversely affect the degree of crosslinking between the monomer and curing agent, which finally 

compromise the mechanical properties of them, although flame retardancy performance can be 

improved in a certain aspect [51]. In spite of these drawbacks mentioned above, flame retardant 

additives are still the most common method of improving fire retardancy of the polymers in the 

market, because flame retardant additives can indeed improve the flame retardancy of polymers, 

and this approach is cost effective and easy to operate.  

4.1 Mechanisms of Flame Retardant Additives  
 

Flame retardant additives, as their name suggests, mean to add some chemicals to the polymers to 

improve flame retardancy performance in a specific fire test. Based upon how the additives bond 

to the polymer, regardless of their chemical structure, flame retardant additives can be simply 

classified into two groups: normal additives and reactive additives. Normal additives are those 

which form physical interaction with the polymer. Usually, normal additives are incorporated 

within the polymer either during polymerization or during melt compounding process of the 

thermoplastic materials, in which normal additives are part of polymer formulation. Normal 

additives usually include mineral fillers, hybrids or organic compounds that can include 
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macromolecules, and they react with the polymer only at higher temperatures at the start of a fire 

[3]. Their application ranges from polymers with pure carbon chain structure such as polyolefin, 

to polymers with a heterogeneous chain such as polyesters and polyamides [17]. Adversely, 

reactive additives are those which are chemically bonded to the polymer backbone and become a 

permanent part of the polymer during polymerization or in a post-processing step. During 

polymerization, reactive additives are introduced into the polymer as a new polymer monomer or 

precursor. In the post-polymerization process, their incorporation into polymers is through 

chemical grafting. Compared with normal flame retardants, reactive flame retardants are tailor-

made products, which are preferred for polymers with a heterogeneous chain such as epoxy resins 

or polyurethanes [17]. Actually, almost all kinds of flame retardant additives have both normal 

additives and reactive additives. However, typically, normal additives are more versatile than 

reactive additives in the real field, because of the advantage of low cost and ease of use, although 

reactive additives can form much more durable flame retardant effect and they do not have the 

potential of blooming out, plating out, or evaporating from the polymer over time. 

The polymer combustion process is comprised of multiple interacted steps involving both 

condensed phase and gas phase. A detailed schematic description of the self-sustaining polymer 

combustion process is shown in Fig. 6 [52]. The theory behind flame retardant additives is that 

these additives may act to prevent, minimize, or even stop any step in the self-sustaining polymer 

combustion process and consequently control the burning rate or even extinguish the flame. The  

possible ways that function in such manners include [3]: 

1. The modification of the thermal decomposition process to lower the quantity of evolved 

combustible volatiles, with normally an increase in the char formation, which can serve 

as a barrier between the polymer and flame;  

2. The isolation of the flame from the oxygen/air supply; 
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3. The introduction into the polymer formulation of those compounds that will release 

efficient flame inhibitors; 

4. The lowering of thermal feedback to the polymer to prevent further pyrolysis.  

 

Fig. 6 General Schematic of Polymer Combustion Process [52]. 

 

Namely, flame retardant additives may act either physically or chemically in the condensed phase 

or gas phase. It should be noted that such actions of flame retardant system will cause chain 

reactions within the self–sustaining polymer combustion cycle in which various individual steps 

occur simultaneously, but with one dominating. The dominating step is the basic mechanism of 

that flame retardant system. Although various flame retardant additives have totally different 

chemical structures, almost all types of flame retardant systems dominate the polymer 

combustion process based upon one or more of three common mechanisms of flame retardant 

actions. These three most common mechanisms are gas phase flame retardants, endothermic 

flame retardants, and char-forming flame retardants [4, 17].  
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1. Gas phase flame retardants: this is the chemical mechanism in the gas phase. When 

exposed to fire, flame retardant additives can release specific radicals, like Cl· and Br·, 

which can react with highly reactive free radicals such as H· and OH· to form less 

reactive or relatively inert molecules. Thus the free radical mechanism of the combustion 

can be minimized or even stopped, and finally heat released into the gas phase from 

polymer combustion is reduced. Usually, halogenated flame retardants function primarily 

based on this mechanism.  

2. Endothermic flame retardants: this is the physical mechanism in both the gas phase and 

the condensed phase. During the thermal decomposition of the flame retardants, a large 

amount of noncombustible gases can be released into the gas phase, such as CO2, H2O, 

and NH3, which can dilute the mixture of combustible gases and lower their 

concentration. Consequently, the occurrence of combustible gases to ignite is limited. 

More importantly, the thermal decomposition of flame retardants is an endothermic 

process. With a lot of heat energy consumed to decompose flame retardants, and heat 

those non-combustible gas, the temperature within the flame zone may be cooled blow 

the polymer combustion temperatures, at least to some degree. Additionally, the lower 

temperature can subsequently slow the pyrolysis rate of polymers. Such endothermic 

reaction is known to act as a heat sink. Usually, metal hydroxides and metal carbonates 

act as flame retardant additives primarily based on this mechanism.   

3. Char-forming flame retardants: this is the condensed phase mechanism. Flame retardants 

can cause char formation at the surface of the polymer by binding up the polymer as non-

pyrolyzable carbon (char, more specifically) through chemical transformation of the 

degraded polymer chain, like crosslinking. Additionally, charring could be promoted by 

catalysis or oxidative dehydrogenation. Char formation can negatively affect the thermal 

decomposition of the polymer and exhibit resistance to combustion from several aspects. 

Char is produced at the expense of other reactions that may form combustible volatile 
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fragments, which may finally limit the total amount of gaseous fuel volatile released to 

support polymer combustion. Additionally, once an adherent and stable char layer is 

formed on the surface of a polymer, this char layer can act as a physical barrier of mass 

transfer from the condensed phase to the gas phase, and simultaneously an insulator of 

heat transfer from the flame to underlying polymer, which may make further thermal 

decomposition process more difficult [40]. However, if the char layer formed is of low 

quality, for example, it has cracks, the char layer may not be effective enough to retard 

heat transfer from the flame to the polymer and diffusion of combustible materials under 

the layer to the flame. Usually, intumescent additives and nanocomposites act as flame 

retardants and mainly function as this mechanism describes. 

Some flame retardants, like aluminum hydroxides, can operate exclusively through a physical 

mode of action. However, no single flame retardants can function exclusively in a chemical 

model of action. Understandably, chemical reaction is always accompanied by corresponding 

physical reactions. Similarly, chemical mechanism is always accompanied by one or more 

physical mechanisms, for instance, the endothermic decomposition of the flame retardants [53]. 

An effective cooperation of several different mechanisms may have synergistic effect on the 

flame retardancy, with using a new flame retardant system that is developed based on a 

designated combination of different flame retardant additives. Namely, the improvement of flame 

retrdancy is larger than that is assumed simply from addition of the separate effects of each kind 

of flame retardant.  

4.2 Selection Criteria of Flame Retardants 
 

There are no flame retardants that can universally work for all polymers. Namely, different 

polymers may need different types of flame retardant systems to achieve the optimum flame 

retardancy performance. One kind of flame retardant may only improve a particular aspect of 
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how the polymer responses in a fire condition. Namely, one kind of flame retardant can aid the 

polymer to pass a certain regulatory test, but may not pass another different fire test. The flame 

retardants must be carefully identified and selected to match each type of polymer in a specific 

fire risk scenario. More specifically, the criteria for the selection of flame retardants are usually 

based on [17]: 

 The efficiency of a particular type of flame retardant in a particular polymer system; 

 Thermal stability at processing temperatures and processing conditions of the polymer; 

 Compatibility and the ability to preserve valuable physical properties; 

 The cost-performance trade-off;   

 Low tendency to bleed out or to evaporate; 

 Color-less and odorless; 

 Resistance to ageing and hydrolysis; 

 No corrosion of equipment; 

 Sustainability and recyclability; 

 Ecological impact of the flame retardant materials and no toxicity.  

In many cases, the existing traditional flame retardants mentioned earlier cannot fully meet the 

criteria above.  For example, halogen-containing flame retardants are being phased out in their 

utility due to their proven or suspected health and environmental concerns; the application of 

aluminum trihydrate and magnesium hydroxides requires so high loading rate of the additives 

within the polymer to achieve an optimum level of flame retadancy that end products are 

characterized as  high density, low flexibility, and low mechanical properties; and intumescent 

systems are relatively expensive and electrical requirements can limit the use of this kind of flame 

retardant polymers [54]. In this condition, polymer nanocomposite has emerged in the field of 

flame retardancy because it has the potential to eliminate or avoid the disadvantages of traditional 

flame retardant systems, at least to some degree.  
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4.3 Polymer Nanocomposites  
 

Polymer nanocomposite is a new class of flame retardant technology. Compared to traditional 

flame retardant systems, polymer nanocomposites are environmentally friendly, highly efficient, 

and capable of imparting polymer’s other properties [7]. By definition, polymer nanocomposites 

are polymer matrix reinforced with nanometric particles that are uniformly dispersed so that the 

majority of the polymer is all interfacial polymer, which can significantly increase the interfacial 

area between the polymer and nanometric particles. This phenomenon is clearly different from 

traditional polymer composite in which the fillers or fibers are quite large in size and the 

interfacial polymer is only a small portion of the whole polymer [4]. The immense interior 

interfacial area within the polymer could enable a considerable reduction of the loading rate of 

the nanoparticles to achieve an acceptable level of flame retardancy. For example, polymer-

layered silicate nanocomposites have been found to possess noticeably enhanced properties even 

at a very low concentration of silicate, usually inferior to 5 wt%, in the aspect of thermal stability, 

gas barrier properties, and flame retardancy [14]. 

In general, polymer nanocomposites primarily function in the condensed phase to improve flame 

retarandcy. In fire conditions, the mass loss rate of the polymer is decreased by the formation of a 

nanoparticle-rich fire protection barrier. Due to the reduction of fuel mass supply, the heat release 

rate and flame growth are also lowered correspondingly, especially the peak heat release rate 

during the combustion process.  However, the total heat release of the polymer nanocomposite 

remains almost constant. Namely, the total heat release of the polymer nanocomposite is just 

spread out over a longer burning time so that the burning process is less intensive. Although 

polymer nanocomposite indeed exhibits certain property of retarding flame growth, polymer 

nanocomposite by itself is still not enough to pass regulatory tests. But with the low base 

flammability of polymer nanocomposite, the incorporation of traditional flame retardant additives 

can further enhance its flame retardancy to pass the regulatory tests more easily. More 
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specifically, the combination of a small amount of traditional flame retardants with polymer 

nanocomposite can achieve the same acceptable level of fire safety as the one provided by 

traditional polymer but of an extremely high loading of flame retardant additives. Depending on 

the specific dimensions of these nanoscale traditional flame retardant particles, they can be 

roughly divided into three groups [14, 16]: 

1. 2 D nanoparticles: only one dimension of the particle is within nanometer range. The 

filler is presented in the form of layer or sheet, such as nanoclay (layered silicate), which 

is one to a few nanometers thick but hundreds or thousands of nanometers wide and long. 

2. 1D nanoparticles: two dimensions of the particle are within nanometer range and the third 

dimension is larger. The filler is presented in the form of fiber or elongated structure, 

such as carbon nanotubes, carbon nanofibers, or cellulose whiskers. 

3. 0 D nanoparticles: all of the three dimensions are within nanometer range. The filler is 

presented in the form of isodimensional nanoparticles, such as spherical silica 

nanoparticles, nanometric titanium oxide, nanoscale ferric oxide, and polyhedral 

oligosilsesquioxane (POSS). 

In the 2D nanoparticles, the polymer nanocomposites composed of clay or layered silicates, also 

named as polymer-layered silicate nanocomposites, have been broadly investigated probably due 

to the fact that the raw materials of clay are widely available and cost effective, and the study of 

their intercalation chemistry has established the fundamental knowledge for commercial 

application. To achieve a fine dispersion of the nanoclay within the polymer matrix, organically 

modified nanoclays are often used [16]. However, thermal instability issues are big concerns 

associated with the organic treatment on the clay surface, which limit the types of polymers that 

the clay can be put in [55, 56, 57]. Usually the poor dispersion of the nanoclay and the 

decomposition of the organic surfactant on the clay limit the wide application of nanoclay to 

flame retardant polymer nanocomposites [7]. 
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Among the 1D nanoparticles, carbon nanotubes (CNTs), potentially regarded as an alternative to 

nanoclay or layered-silicate, are the most widely investigated nanofibrous materials, because the 

acceptable level of flame retardancy can be achieved even with a much lower loading rate of 

nanotubes (1-2 wt%) due to their high aspect ratio, which can form a relatively uniform protective 

network without any cracks or gaps [7]. Carbon nanofibers are another type of 1D nanoparticles. 

However, few reports of the flame retardant performance of carbon nanofibers have been 

available because the formation of carbon nanofibers is of low efficiency when directly mixing 

them with the polymers [58] . Moreover, carbon nanofibers are not as efficient as carbon 

nanotubes, but carbon ninofibers are much more cost-effective [7]. Although carbon nanotubes 

and carbon nanofibers do not have the same thermal instability problem as nanoclay, poor 

interface with many polymers, which makes it difficult to produce desired nanocomposite 

structure, tends to be another limitation of their wide application, besides the high cost of them.  

In 0 D nanoparticles, nanometric titanium oxide, nanoscale ferric oxide, POSS, and spherical 

silica nanoparticles are all relatively new subjects. Some investigations have been done on them, 

in which they all show their potential as nanofillers within flame retardant polymer 

nanocomposites. 

For spherical silica nanoparticles, due to the formation of tightly packed silica particles in various 

polymers that significantly reduce both heat-bound and loosely bound polymer chains around the 

particles, the thermal stability of nanosilica-filled polymer nanocomposites can be improved, and 

subsequently flammability properties [59]. However, in previous research by Kashiwagi, it 

indicates that the overall flame retardancy of nanoscale silica particles appears to be less efficient 

than that of silicate-layered particles [15] . The relatively low efficiency of nanoscale silica 

particles is caused by the failure of formation of network-structured protective layer that covers 

the entire polymer nanocomposite surface during gasification in a fire condition. One potential 

method of forming a desired in-situ silica network during gasification is to enhance the formation 
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of crosslinks among the particles by appropriate surface treatment of nanoscale silica particles. 

However, few studies have addressed this field [53].     
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CHAPTER V 
 

 

EXPERIMENTAL  

Poly (methyl methacrylate) (PMMA), with methyl methacrylate (MMA) as the monomer, is the 

polymer selected in this study. Among all polymers, PMMA is a kind of extensively used 

thermoplastic in the family of poly (acrylic ester)s due to its desirable properties, including 

exceptional optical clarity, good moldability, protection against ultraviolet radiation, high 

strength, and excellent dimensional stability [60, 61]. However, the biggest concern pertaining to 

PMMA is its low heat resistance, poor thermal stability, and high flammability with LOI of 18 

[62]. PMMA nanocomposite also has the potential to improve thermal properties significantly 

and mechanical properties as well, with the addition of a small loading rate of inorganic flame 

retardant particles. 

However, taking it into account that the surface of nanoscale inorganic particles is hydrophilic, 

but on the contrary the polymer matrix is hydrophobic, obviously these two components are not 

compatible in nature, which will result in weak interfacial interaction between them if they are 

directly mixed together to form polymer nanocomposites [63]. Additionally, due to the immense 

surface area of nanoscale inorganic particles and corresponding high surface energy, these 

nanoscale particles are easy to agglomerate and can hardly be finely dispersed within the polymer 

matrix to produce optimum nanocomposites if without any special operations. Consequently, 
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surface treatment of nanoscale inorganic particles emerges as a widely applicable technology to 

overcome the deficiencies described above.  Generally, surface treatment of inorganic particles 

means to create organic coatings over the particles, which can be achieved by utilizing physical 

and chemical interactions between the particles and the surface treatment agents [64]. Coupling 

agent treatment is a kind of chemical method, and coupling agents contain reactive groups to 

form strong covalent bond between inorganic particles and organic matrix. 3-

aminopropyltriethoxysilane (KH 550) and 3-methacryloxypropyltrimethoxysilane (KH 570) are 

two types of saline coupling agents. Their molecular formulas are listed below [65]: 

 

Fig. 7 The Molecular Formulas of Saline Coupling Agents. 

 

Compared with nanoclay or silicate-layered particles, nanoscale silica particle is a relatively new 

type of nanofiller in flammability studies of nanocomposites, and very limited research has been 

done on it. Although previous research indicates that the overall flame retardancy of nanoscale 

silica particles appears to be less efficient than that of silicate-layered particles, one possible 

approach to further improving the thermal stability and subsequently flammability of polymer 

nanocomposites is also identified that enhancing the formation of crosslinks among the particles 

by appropriate surface treatment of nanoscale silica particles, may promote the formation of in-

situ silica network-structured protective layer covering the polymer nanocomposite decomposing 

surface [53].    

Moreover, the flame retardant mechanism of polymer nanocomposites mainly functions in the 

condensed phase and a strong correlation exists between char yield and fire resistance of 

polymers in fire conditions [66]. When exposed to a fire, commonly, linear PMMA 

NH2(CH2)3Si(OMe)3 (KH 550) 

CH2=C(CH3)COO(CH2)Si(OMe)3 (KH 570) 
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depolymerizes to its constituent monomers and almost little carbonaceous is left to yield char, 

which attributes, at least partially, to the low flame retardancy of PMMA [66]. However, it is 

found that PMMA by itself tends to yield more char and internal mass transfer can be noticeably 

reduced if its molecule structure is altered to crosslinked PMMA rather than linear PMMA [67]. 

As the molecular structure of KH 570 shows, when nanoscale silica particles are surface treated 

with KH 570, many vinylidene groups presented as RC=CH2, are also introduced to the 

nanoparticle surface. These vinylidene groups can participate in free-radical polymerization, 

become part of polymer chain, and finally create nanosilica-based crosslinked polymer 

nanocomposites [68]. Namely, KH 570 can act not only as the surface treatment coupling agent, 

but also as the crosslinking agent. However, KH 550 only plays the role of coupling agent, and do 

not involve in polymerization reactions. Moreover, because MMA has the similar functional 

groups to KH 570, polymerization is more likely to happen for MMA than other dissimilar 

monomers, which further makes PMMA a good polymer candidate for this study. 

It is necessary to state clearly that it is Logan C. Hatanaka and Lubna Ahmed from Texas A&M 

University who made the test specimens. The detailed information of materials, synthesis process, 

and sample preparation is presented below. 

5.1 Materials  
 

Methyl methacrylate (MMA) and 1,1'-Azobis(cyclohexanecarbonitrile) (ABCN) were used as the 

monomer and initiator, respectively. Both the monomer and initiator were obtained from 

Polysciences. Two kinds of nanoscale silica particles with different surface treatment agents, 

namely KH 550 and KH 570, were collected from US Nano. The average diameter ranged 

between 20 and 30 nm. Silica surface treated with KH 570 was used for crosslinking nanoscale 

silica particles with the polymer to form crosslinked PMMA nanocomposites, while KH 550 was 
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used to produce the non-crosslinked PMMA nanocomposite products, also known as linear 

PMMA nanocomposites. 

5.2 Synthesis  
 

The monomer MMA was placed in a glass reaction vial with a silicone septum on top. Surface 

modified nanofillers were added to the monomer under magnetic stirring. The amount of the filler 

varied depending upon the loading rate of nanofillers within the nanocomposites. For this study, 

1, 2 and 4 wt% of silica-containing PMMA nanocomposites were prepared. The stirring 

continued for half an hour followed by sonication for another half an hour at room temperature. 

The sonication procedure aided in de-gasification of any dissolved oxygen and enhanced mixing. 

After sonication, the initiator ABCN was added to 0.2 wt% of the MMA. To further remove 

dissolved oxygen, the solution was inerted by bubbling nitrogen gas through it for about ten 

minutes. The solution was continuously stirred while the inerting process took place. After the 

inerting process, the reaction vial was submerged in an oil bath maintained at a temperature of 

70±1 °C while the stirring continued. 

5.3 Sample Preparation 
 

 A method from literature was used to build a mold to prepare 100 mm×10 mm×5 mm samples 

for cone calorimeter analysis [69]. Two glass plates were put in parallel with silicone tubing in 

the middle. The wall thickness of the silicone tube determined the sample thickness. The glass 

plates with the silicone tubing in-between were clamped to keep the mold structure together. The 

polymerization solution was put in the hollow space created in the mold and then the clamped 

mold was sealed at the top with another length of silicone tubing. The mold was then placed in a 

large oil bath for curing for 24 hours at 70 ± 1 °C while the stirring continued. After the curing 

process was complete, the glass plates were removed and the solid mold was cut into the samples 
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with a dimension of 100 mm×100 mm×5 mm. By using this mold and procedure, neat PMMA, 1, 

2 and 4 wt% silica crosslinked and non-crosslinked PMMA samples were all prepared. 

5.4 Cone Calorimetric Measurements 
 

As mentioned earlier, cone calorimeter is a well-known bench-scaled instrument for testing of fire 

properties. While a single parameter is not enough to represent the fire scenario, a cone 

calorimeter can aid in the prediction of the material burning behavior quite decently. Cone 

calorimeter is able to provide some parameters for fire analysis including, but not limited to, heat 

release rate (HRR), peak heat release rate (PHRR), total heat release (THR), time to ignition (tign), 

mass loss rate (MLR), average specific mass loss rate (MLRave), smoke production, specific 

extinction area (SEA), and mean specific extinction area (SEAm), effective heat of combustion, 

mean CO2 yield, and mean CO yield [44].  

A series of samples were tested by using the cone calorimeter, including neat PMMA samples, 1, 

2, and 4 wt% silica non-crosslinked and crosslinked samples. All samples were tested under the 

standard of ASTM E 1354 by the cone calorimeter manufactured by Fire Testing Technology 

Limited (FTT). During the testing, these samples were all evaluated in a horizontal orientation 

and directly exposed to a heater with a heat flux of 50 kW/m² [49]. The unexposed surfaces of 

these samples were wrapped in aluminum foil prior to testing, the samples were placed in retainer 

frame, and a thin wire cross was placed on the exposed surface of those samples to prevent the 

samples from bucking before burning. In addition, the ambient temperature was set from 20.2 °C 

to 20.9 °C, the ambient pressure was set from 97.994 kPa to 98.148 kPa, and the relative 

humidity was in the range of 27% to 28%. 
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CHAPTER VI 
 

RESULTS AND DISCUSSION 

The testing results are presented in Table 1. In the following comparison, neat PMMA samples 

will be used as the baseline to assess the fire behavior of other samples in the aspects of tign, HRR, 

PHRR, average HRR, THR, MLR, MLRave, SEAm, effective heat of combustion, mean CO yield, 

maximum average rate of heat emission (MARHE), and flame spread b value. 

Table 1. Cone Calorimeter Results of All Samples. 

Sample  
tign 

(s) 

PHRR 

(kW/m2) 

MLRave 

(g/s·m2) 

THR 

(MJ/m2) 

SEAm 

(m2/kg) 

Neat PMMA  28 781 24.9 89.3 144 

1 wt% Silica 

Non-

crosslinked 

23 644 20.7 93.1 154 

1 wt% Silica 

Crosslinked 
11 637 18.9 86.2 143 

2 wt% Silica 

Non-

crosslinked 

21 503 18.2 80.1 152 

2 wt% Silica 

Crosslinked 
10 503 16.1 90.7 163 

4 wt% Silica 

Non-

crosslinked 

14 455 17.0 73.9 162 

4 wt% Silica 

Crosslinked 
12 470 16.8 82.4 164 
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Sample 

Effective 

heat of 

combustion 

(MJ/kg) 

Mean CO 

yield 

(kg/kg) 

MARHE 

(kW/m2) 

Average 

HRR 

(kW/m2) 

b 

(m2/kg) 

Neat PMMA 24.0 0.0116 466 363 2.52 

1 wt% Silica 

Non-

crosslinked 

24.0 0.0120 416 305 1.98 

1 wt% Silica 

Crosslinked 
24.2 0.0114 417 282 1.79 

2 wt% Silica 

Non-

crosslinked 

24.3 0.0100 359 225 1.19 

2 wt% Silica 

Crosslinked 
24.3 0.0103 373 229 1.27 

4 wt% Silica 

Non-

crosslinked 

24.0 0.0112 331 269 1.63 

4 wt% Silica 

Crosslinked 
24.8 0.0111 341 242 1.39 

 

6.1 Main Flame Retardant Mechanism 

 

Flame retardants can have totally different chemical structures, but they function mainly through 

three most common mechanisms: gas phase flame retardants, endothermic flame retardants, and 

condensed phase flame retardants [4, 17]. For gas phase flame retardants, the combustion process 

in the gas phase will be changed to consume highly reactive free hydrogen and hydroxyl radicals, 

so that the main combustion product will be changed as will, like the yield of CO2. For 

endothermic flame retardants, they will act as a heat sink to cool the solid polymer and release 

inert gas to dilute combustible fuel in the gas phase, so that commonly the effective heat of 

combustion will be lowered. For all neat PMMA samples and silica-containing PMMA samples, 

the mean effective heat of combustion (calculated heat release rate divided by measured mass loss 
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rate) is almost constant and falls within the range of 24±0.8 MJ/kg, which is consistent with the 

research by Kashiwagi, who indicates that the specific heat of combustion is 24±2 MJ/kg for all 

PMMA and silica-containing PMMA samples [15]. Consequently, considering the unchanged 

values of mean effective heat of combustion and mean CO2 yield (not shown) for all samples, it is 

reasonable to state that the main flame retardant mechanism of silica-containing PMMA samples 

is the chemical and physical processes in the condensed phase. Moreover, from previous research, 

polymer nanocomposites mainly function in the condensed phase to retard flame, in which 

nanoparticles will accumulate near the polymer burning surface to form a nanoparticle-rich 

protective layer as shown in Fig. 8 [35, 36, 37]. For silica-containing PMMA samples, this 

nanoparticle-rich protective layer is composed of nanoscale silica particles. More importantly, 

given the physical and chemical properties of nanoscale silica particles and the purpose of 

introducing the crosslinking structure into polymers, the statement of condensed phase 

mechanism is solidly evident. 

 

Fig. 8 Schematic of Flame Retardant Mechanism (not Scaled). 
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6.2 Time to Ignition 
 

The parameter of time to ignition (tign) is closely related to the ignitability of materials. The lower 

value of time to ignition, the more ignitable the testing materials are, when tested in the same fire 

scenario [70]. Time to ignition, tign, can be precisely expressed as [42]: 

ign py mix chemt t t t     

Where:  

pyt =heating time for the solid to reach pyrolysis temperature; 

mixt =diffusion or transport time needed for the flammable fuel and oxygen to reach the 

ignition pilot; 

chemt =time needed for the flammable mixture to proceed to combustion once at the pilot. 

However, for solid materials, usually, compared with tpy, tmix and tchem are so quick and negligible 

[42]. Time to ignition is closely related to the pyrolysis temperature of the solid material to 

produce sufficient volatiles at the lower flammable concentration, if the radiant heat flux is the 

same. From Table 1, at the same mass concentration of silica within the test range in this 

research, the crosslinked samples have lower tign than the non-crosslinked samples, indicating that 

the crosslinked samples are a little easier to ignite than the non-crosslinked samples. Namely, the 

pyrolysis temperature of crosslinked samples is lower than that of non-crosslinked samples, 

especially at a lower concentration of silica. Moreover, all tign data of silica-containing PMMA 

samples are lower than that of neat PMMA samples, meaning that silica-containing PMMA 

samples are easier to ignite and tend to decompose at a relatively lower temperature than neat 

PMMA samples. This observation reflects that silica-containing flame retardants may negatively 

affect the parameter of tign, which can be further confirmed in Figs. 9-13. The curves of heat 

release rate of silica-containing PMMA samples suddenly start to rise earlier than neat PMMA 
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samples. However, such a disappointing observation is consistent with previous research, in 

which it is found that little influence is identified on the thermal decomposition temperature, and 

tign is not improved for most polymer nanocomposites [4]. Even for some polymer 

nanocomposites, tign is decreased, like this current research. Nevertheless, only with the poor 

performance of ignitibility, it is hard to draw the conclusion that silica-containing PMMA 

samples have bad flame retardancy, because the real meaning of flame retardancy is that one or 

several of fire risks can be under control in a specific fire scenario, not only ignitability.  

One possible explanation to this disappointing observation is that the organic coupling agents 

used in the research, more specifically, KH 550 and KH 570, tend to decompose at a relatively 

low temperature and initiate the flame much earlier than neat PMMA samples. Due to the lower 

tign of crosslinked samples than non-crosslinked samples, possibly KH 570 is easier to decompose 

than KH 550.  Another possible reason is that the pathway of heat adsorption into PMMA 

nanocomposites and thermal decomposition is changed. However, PMMA nanocomposite 

degrades to give only monomers [71]. Considering there is no change in the thermal degradation 

pathway and only monomer is produced, the second reason may not be reasonable enough to 

explain the early time to ignition [72]. 

6.3 Heat Release Rate  
 

Heat release rate (HRR) is defined as the mass loss rate of the material times its heat of 

combustion [44]. HRR is the critical fire reaction property because it is the driving force for 

flame spread and also controls other reaction properties, like the yield of CO and CO2, and the 

decomposition reaction [73]. In the cone calorimeter, HRR is calculated from the oxygen 

concentration in the flue gasses based on the general principle that the heat released from a wide 

range of organic fuels is proportional to the oxygen consumed during combustion [44]. More 

specifically, for the complete combustion of conventional organic fuels, 13.1 kJ of heat energy is 
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released for the consumption of per gram of oxygen, with an accuracy of ± 5% or better [74].  

The peak heat release rate (PHRR) is the maximum amount of heat liberated by a material during 

the combustion process. It often occurs over a very short period of time (less than a few seconds). 

The PHRR is considered to be a critical property controlling the maximum temperature and flame 

spread rate [75]. Compared with neat PMMA samples, all silica-containing PMMA samples are 

observed to have lower values of PHRR. As shown in Figs. 9-13, the peak of the heat release rate 

curve of neat PMMA samples is much higher than other silica-containing PMMA samples. 

Moreover, the good reduction of PHRR confirms the formation of silica-containing PMMA 

nanocomposites, rather than microcomposites [76]. Additionally, from Table 1, at the same mass 

concentration of silica, there is no significant difference between non-crosslinked samples and 

crosslinked samples in the aspect of PHRR.  

 

Fig. 9 Heat Release Rates of Non-crosslinked Samples. 
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Fig. 10 Heat Release Rates of Crosslinked Samples. 

 

 

Fig. 11 Heat Release Rates of 1 wt% Silica Samples. 
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Fig. 12 Heat Release Rates of 2 wt% Silica Samples. 

 

 

Fig. 13 Heat Release Rates of 4 wt% Silica Samples. 
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For all silica-containing PMMA samples, the initial sharp increase of HRR is very similar to that 

of neat PMMA samples, but after the burning goes on, HRR does not go as high as neat PMMA 

samples, and even becomes relatively stable in some period of time, as shown in Figs. 9 and 10. 

Namely, the flame retardanny of silica-containing PMMA samples only takes effect with 

preceding burning. This observation agrees well with the statement about main flame retardant 

mechanism, because the condensed phase mechanism need to be activated by the burning of 

polymer [53].  

From Figs. 12 and 13, the trends of the heat release rate curves are very similar at the same mass 

concentration of silica, 2 and 4 wt% silica respectively, which means there is no significant 

difference between crosslinked samples and non-crosslinked samples at the same mass 

concentration of silica in the aspect of enhancing char layer formation to retard flame. However, 

from Fig. 11, the trend of heat release rate curve of 1 wt% silica crosslinked samples is different 

from 1 wt% silica non-crosslinked samples. Although PHRR of 1 wt% silica crosslinked samples 

appears not only earlier than 1 wt% silica non-crosslinked samples, but also a little earlier than 

neat PMMA samples, the average HRR of 1 wt% silica crosslinked samples is smaller. That is, 

the intensity of combustion of 1 wt% silica crosslinked samples is reduced more by the formation 

of crosslinked PMMA, which is designated to produce more stable nanosilica-containing char 

layer to protect unburned PMMA under it. However, this observation is not so evident for 2 wt% 

and 4 wt% silica-containing PMMA samples. Namely, at the relatively high concentration of 

silica, crosslinked PMMA samples do not show the tendency of forming better char layer to 

retard flame than non-crosslinked PMMA samples. Possibly, the high concentration of nanoscale 

silica particles does not contribute much to, or even negatively affect the formation of crosslinked 

PMMA, due to the unavoidable agglomerate of nanoscale silica particles. For the low 

concentration of nanoscale silica particles, crosslinking appears to contribute more to char 

formation to protect polymer, due to the relative lack of nanoscale silica particles, which are 
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actually only loosely isolated on the decomposing polymer surface and cannot form network-

structured protective layer. 

With the addition of silica-containing flame retardants in PMMA samples, the total heat release 

(THR) of silica-containing PMMA samples tends to decrease a little. The THR of non-

crosslinked samples seems to decrease a little more at a higher mass concentration of silica. This 

observation reflects that crosslinked samples are more completely burned than non-crosslinked 

samples [76]. When plotting heat release rate and corresponding burning time on two axes, the 

total integrated area under the HRR curve over the test period can be represented as the total heat 

release. Therefore, from Figs. 11, 12, and 13, the observations shown above can be confirmed by 

comparing the areas under the HRR curves. Namely, the silica-containing PMMA samples either 

have visually almost the same area as neat PMMA samples, or have a smaller area than neat 

PMMA samples. At a high mass concentration of silica within the experimental range, non-

crosslinked samples have a little smaller area than crosslinked samples. Compared with neat 

PMMA samples, silica-containing PMMA samples tend to yield char at the expense of flammable 

volatiles, and within PMMA nanocomposites combustible polymer is replaced with 

noncombustible nanoscale silica particles, which may combine together to explain the reduction 

of THR. For 2 wt% and 4 wt% silica-containing PMMA samples, the flame duration time of 

crosslinked samples is longer than non-crosslinked samples, in which crosslinked samples have 

more chance to burn more completely and release more heat, although more char tends to be 

yielded by crosslinked samples.   

Besides the fact that even at the same mass concentration of silica, non-crosslinked samples and 

crosslinked samples have different fire behaviors, the different mass concentrations of silica 

generate different effects on the fire behavior of those tested samples as expected. As shown in 

Figs. 9 and 10, with the increase of the mass concentration of silica in those PMMA samples from 

neat PMMA to 4 wt% silica, PHRR of those crosslinked and non-crosslinked samples decreases 
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gradually. For example, neat PMMA samples have the highest PHRR of 781 kW/m2, and 4 wt% 

silica non-crosslinked samples have the lowest PHRR of 455 kW/m2 among the non-crosslinked 

samples, which is 42% lower than that of neat PMMA samples. Similarly, 4 wt% silica 

crosslinked samples have the lowest PHRR of 470 kW/m2 among the crosslinked samples, which 

is 40% lower than that of neat PMMA samples. Actually, compared with 13 wt% nanoscale silica 

particles and a roughly 50% reduction of PHRR in Kashiwagi’s study, 4 wt% silica crosslinked 

and non-crosslinked samples are highly efficient in this current study [15]. With the increase of 

mass concentration of silica in PMMA samples within the experimental range, adversely non-

crosslinked samples tend to decrease their THR uniformly and 4 wt% silica non-crosslinked 

samples have the lowest THR of 73.9 MJ/m2, which is 17% lower than that of neat PMMA 

samples. However, with the increase of mass concentration of silica in PMMA samples within the 

experimental range, THR of crosslinked samples does not change uniformly. 2 wt% silica 

crosslinked samples have the highest THR of 90.7 MJ/m2, and 4 wt% silica crosslinked samples 

have the lowest THR of 82.4 MJ/m2, but the difference between them is not as big as what has 

been observed among non-crosslinked samples.  

6.4 Mass Loss Rate 
 

Mass loss rate (MLR) is closely related to how fast the sample is consumed during the 

combustion process. In cone calorimeter test, MLRave is calculated over period starting when 10% 

of the ultimate specimen mass loss has occurred and ending at the time when 90% of the ultimate 

specimen mass loss has occurred [45]. Generally, with the embedding of nanoscale silica particles 

into PMMA samples, MLRave can be reduced, for both crosslinked and non-crosslinked samples, 

which is consistent with average HRR. But the reduction effects on MLRave are different for 

crosslinked and non-crosslinked samples respectively, as expected, due to the different pathways 

of protective layer formation. For example, the lowest MLRave of the crosslinked samples is 2 

wt% silica samples of 16.1 g/(s·m2), but the lowest MLRave of the non-crosslinked samples is 4 
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wt% silica samples of 17.0 g/(s·m2). As shown in Figs. 14 and 15, the slope of mass loss of neat 

PMMA samples is steeper than that of silica-containing PMMA samples during the combustion 

process, for both crosslinked and non-crosslinked samples. Compared to neat PMMA samples, 

for non-crosslinked samples, the formation of protection layer most likely enhanced by nanoscale 

silica particles, acts as the protective shield to reduce mass transport to the incident flame. 

Moreover, as shown in Table 1, at the same mass concentration of silica within the test range, 

MLRave of crosslinked samples is a little smaller than that of non-crosslinked samples, which 

means that the crosslinked samples have less intensive combustion process than the non-

crosslinked samples. Compared with non-crosslinked samples, besides nanoscale silica particles, 

crosslinked samples seem to have lower MLRave due to the existence of crosslinking of polymer 

chains to further enhance char formation.  

 

Fig. 14 Mass Loss of Non-crosslinked Samples. 

 

One interesting observation is that the mass of neat PMMA samples was completely burned, and 

almost no residue was left. However, for silica-containing PMMA samples, there was a small 



50 
 

quantity of black residue left, which means that the samples were not completely burned, due to 

the fact that nanoscale silica particles are inherently hard to burn. Moreover, the black residue is 

another important evidence of char formation.   

 

Fig. 15 Mass Loss of Crosslinked Samples. 

 

 

6.5 Smoke Property 
 

In principle, specific extinction area (SEA) is determined as the product of the extinction 

coefficient and the volumetric flow rate, divided by the mass loss rate of tested sample [77]. It 

represents the effective optical obscuring area generated by 1 kg of mass loss of specimen. 

Specific extinction area is used to assess how much soot in smoke is released from the 

combustion of different samples [78]. With the addition of silica-containing flame retardants into 

PMMA samples, the value of SEAm of most silica-containing PMMA samples was increased. 

Namely, the soot release of those samples was higher, which will induce optical obscurity and 

reduce visibility, than neat PMMA samples, but except 1 wt% silica crosslinked samples, which 
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have almost the same SEAm value as neat PMMA samples. Additionally, from the cone 

calorimeter test reports, the mean CO yield (kg/kg) remained almost the same for all neat PMMA 

samples and silica-containing PMMA samples. Overall, there is no significant difference 

observed between neat PMMA samples and silica-containing PMMA samples on SEA and CO 

yield. This observation further demonstrates that the improved flame retardancy performance is 

not caused by a process in the gas phase, but actually a modification of the thermal 

decomposition process in the condensed phase [14]. 

6.6 Comprehensive Evaluation of Flame Retardancy   

 

6.6.1 Fire Development and Spread  
 

The average rate of heat emission (ARHE) is defined as the cumulative heat emission divided by 

time. Its peak value is the maximum average rate of heat emission (MARHE), which is a 

parameter included in the cone calorimeter test report to predicate the propensity for fire 

development under real conditions [79]. Generally, all silica-containing PMMA samples have 

smaller MARHE values than neat PMMA samples, and all non-crosslinked samples have smaller 

MARHE values than crosslinked samples especially at the high mass concentration of nanoscale 

silica particles. The MARHE values of all silica-containing PMMA samples decrease with the 

increase of the loading rate of nanoscale silica particles.    

To predicate the propensity of fire spread, Cleary and Quintiere proposed another parameter b 

expressed as [80]: 

"

0.01 1
ign

avg
b

b
t

q
t

    

Where: 
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"

avg
q  : average heat release rate (kW/m2) at a 50 kW/m2 irradiance; 

ignt  : time to ignition(s); 

bt  : duration of flaming from time to ignition to time to flame out.  

If b is less than 0.4, the material shows negligible propensity to spread fire [80]. Those materials 

of higher values of b, show increased hazards of fire spread in full-scale application.  Generally, 

nanoscale silica particles indeed retard fire spread for all silica-containing PMMA samples, and 

reduce their fire hazards in full-scale application. Among all silica-containing PMMA samples, 2 

wt% silica samples have the best potential to control fire spread, rather than 4 wt% silica samples. 

6.6.2 Fire Retardancy Performance 
 

The lower value of PHRR, the lower the maximum temperature and flame spread rate of the 

tested sample is in cone calorimeter. The lower value of THR, the smaller the fire load of the 

tested sample is, which characterizes the propensity of the tested sample to produce a shorter-

duration fire [81]. The lower value of MLRave, the longer the time the tested sample can burn, if 

the tested samples are of the same mass and the same exposed area. To comprehensively evaluate 

the fire retardancy performance of tested samples, an approach is proposed to plot PHRR in units 

of kW/m2 on one axis, which represents the character of causing fast flame spread rate, and plot 

THR·MLRave in units of kg kW/m4 on the other axis, which represents the character of causing 

long-duration fires. The tested samples near the origin point (0, 0) have the most expected and 

successful fire retardancy performance. Adversely, those tested samples, which lie far from the 

origin point, have relatively worse fire retardancy performance when exposed to the same fire 

scenario.  

By plotting PHRR (kW/m2) and THR·MLRave  (kg kW/m4) on two axes as shown in Fig. 16, the 

tested samples are ranked as follows: neat PMMA samples, 1 wt% silica non-crosslinked 
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samples, 1 wt% silica crosslinked samples, 2 wt% silica crosslinked samples, 2 wt% silica non-

crosslinked samples, 4 wt% silica crosslinked samples, 4 wt% silica non-crosslinked samples. 

Consequently, when PHRR, THR, and MLRave are comprehensively considered, 4 wt% silica 

non-crosslinked samples have the best fire retardancy performance, followed by 4 wt% silica 

crosslinked samples. As expected, neat PMMA samples have the worst fire retardancy 

performance. 

 

Fig. 16 Fire Retardancy Performance Evaluation. 
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CHAPTER VII 
 

CONCLUSION  

Through comprehensively considering heat release rate, total heat release, and mass loss rate, it is 

found that the best flame retardancy performance can be achieved by 4 wt% silica non-

crosslinked PMMA samples, followed by 4 wt% silica crosslinked PMMA samples. Neat PMMA 

samples have the worst flame retardancy performance compared with other silica-containing 

PMMA samples. This observation suggests that flame retardant properties can be significantly 

improved by embedding a small amount of nanoscale silica particles into the poly (methyl 

methacrylate) matrix to form polymer nanocomposites, for both crosslinked and non-crosslinked 

nanocomposites. The additional analysis of heat release rate, effective heat of combustion, 

specific extinction area, and the yield of CO and CO2, tends to demonstrate that the improvement 

in flame retardancy performance is caused by the modification of the thermal decomposition and 

combustion process in the condensed phase. Namely, silica-containing flame retardants can form 

one nanosilica-rich protective layer during combustion to protect the polymer matrix from further 

thermal decomposition, and hence improve the fire retardancy performance, which can further be 

promoted by crosslinking polymer chains especially at the low concentration of nanoscale silica 

particles. For the low concentration of nanoscale silica particles, crosslinking appears to 

contribute more to char formation to protect polymer, due to the relative lack of nanoscale silica 

particles, which actually are only loosely isolated on the decomposing polymer surface and 

cannot form network-structured protective layer. For the high concentration of nanoscale silica 

particles, the contribution of crosslinking to fire retardancy is limited by the formation of 

nanosilica-rich protective layer. However, silica-containing flame retardants may negatively 
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affect the fire behavior of PMMA samples in the aspect of ignitability and soot production to 

induce obscurity and reduce visibility. Moreover, the mass concentration of nanoscale silica 

particles in PMMA nanocomposite also has some effects on the flame retardancy. Consequently, 

the combination of nanoscale silica particles with the modification of the internal structure of the 

polymer nanocomposites (i.e., crosslinked and non-crosslinked) would be a potential way to 

improve their flame retardancy performance. 
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