
NONLINEAR AND INERTANT ACOUSTIC METAMATERIALS 

AND THEIR 

DEVICE IMPLICATIONS 

 

 

   By 

PRATEEK P. KULKARNI 

   Bachelor of Engineering in Mechanical Engineering  

Birla Institute of Technology 

 Mesra, India 

   2012 

 

 

   Submitted to the Faculty of the 

   Graduate College of the 

   Oklahoma State University 

   in partial fulfillment of 

   the requirements for 

   the Degree of 

   MASTER OF SCIENCE 

   December, 2016 

 

 



ii 

 

NONLINEAR AND INERTANT ACOUSTIC METAMATERIALS 

AND THEIR 

DEVICE IMPLICATIONS 

 

 

Thesis  Approved: 

 

   Dr. James M. Manimala 

 Thesis Adviser 

Dr. James K. Good 

 

Dr. Xiaoliang Jin 

 

 



iii 

Acknowledgements reflect the views of the author and are not endorsed by committee 

members or Oklahoma State University. 

ACKNOWLEDGEMENTS 

 

To failures that teach 

To failures, that inspire to succeed 

To failures that go unnoticed, that go undocumented 

 

To everyone, that failed to help, 

To everyone that I failed to ask for help 

I thank the child me for having stayed with me, as the clock of my life ticked 

 

I thank the initial and boundary conditions my life was subjected to, for having made me 

stand here. 

 

I thank every parameter, every person that has been involved in some way for being 

involved in that very way. 

 

I would like to acknowledge the serene, truly unconditional support from my parents who 

had not the remotest clue of what I was doing and yet smiled in appreciation. I wish to 

never let any of my work go without mention of their struggles. 

 

I thank my sister, Pratima Kulkarni for being there. 

For truly being there all of my life. For being the harsh teacher, and the tender mother at 

times. I could never imagine going past class10 without her support. She in truth has 

given birth and nurtured the engineer in me. She in truth is the godmother of most 

machines I have built, or, will(definitely) build. 

 

This thesis, in particular, has to be a product of a pair of meticulously guiding eyes; that 

of my adviser, Dr. James M. Manimala, who has been a source of inspiration and moral 

support; whose patience exceeds mine; while I thought mine was the limit. 

I will perhaps be indebted to his presence in my life, for he’s been more than a graduate 

adviser perhaps without his own knowledge – a teacher. 

 

I would like to express my gratitude to Dr. James K. Good for the insights he provided 

during and after the ‘Finite Element Methods’ course, which helped me throughout the 

research endeavors. I would also like to thank Dr. Xiaoliang Jin for supporting me with 

manufacturing of the test-article. 

 

I would like to thank Zeel Maheshwari, Arjun Dhamodharan, Barrett Lee, Ryan Aiken, 

Matthew Liao, Vishnu Paidimarri, Aditya Aggarwal, Roy for their support. 

 

I wish the cosmos truly transmits my gratitude to every person involved. 



iv 

 

Name: PRATEEK P. KULKARNI   

 

Date of Degree: DECEMBER, 2016 

  

Title of Study: NONLINEAR AND INERTANT ACOUSTIC METAMATERIALS 

AND THEIR DEVICE IMPLICATIONS 

 

Major Field: MECHANICAL AND AEROSPACE ENGINEERING 

 

Abstract:  

 

Acoustic Metamaterials (AM) are a class of artificial structural materials that derive 

their unique dynamic properties, not just from material constituents but more so from 

engineered local configurations. Tailoring these local configurations have been shown 

to impart unusual mechanical wave manipulation capabilities to AM with potentially 

novel applications in protective structures; acoustic devices for sensing, noise control, 

and energy harvesting; and MEMS devices. Most AM require the presence of 

periodic features that locally exhibit dynamic phenomena like resonance or instability 

within a host material or structure. A key advantage of the AM design approach is the 

latitude to explore new local configurations to further enrich their dynamic behavior. 

The present study focusses on nonlinear and inertant AM configurations and their 

device implications. Using the method of multiple scales applied to a lumped-

parameter effective-mass model, approximate analytical solutions were derived for 

the amplitude-dependent dispersion curve shifts in nonlinear AM owing to the 

presence of cubically hardening or softening nonlinearities in local oscillators. 

Discrete element simulations predict the possibility of realizing passive acoustic 

control devices such as selective filters, amplitude band-pass filters and direction-

biased waveguides using nonlinear AM. A numerical routine to generate root profile 

geometries that enable contact-based hardening response in tip-loaded cantilever 

beam resonators was developed and implemented. Experiments on a structural 

waveguide test article verify the existence and extent of bandgaps and also provide an 

indication of the passive direction-bias phenomenon. Whereas, incorporating inerters, 

which are mechanical elements that display a force proportional to the relative 

acceleration across them, could create structural devices that display frequency-

dependent negative and even extreme effective-mass and stiffness regimes. Such 

devices have implications for passive high-pass filters with ultra-low frequency 

bandgaps that encompass the long wavelength limit and can be realized without the 

use of any mechanical grounding elements and even for structural networks that can 

act as a nearly complete mechanical wave inhibitor. Further research on the 

interactive synergies between nonlinear and inertant configurations and practical 

strategies to scale and fabricate them could have promise for realizing a new class of 

AM with enriched dynamics beyond those found in predominantly locally resonant 

variants that are currently being developed. 
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CHAPTER I 

INTRODUCTION 

1.1 Acoustic Metamaterials 

Starting with the invention of the wheel, mankind has moved significantly forward with 

engineering, considering the successful exploration of celestial bodies once regarded as gods. 

From such humble origins as stones and wood, the human race has grown to an age of self-made 

materials such as plastics. With the proliferation of human life form, there has been an explosion 

in the population of machinery and equipment as well.  

The ever-increasing need for improved materials has brought science to a point of engineering 

materials per requirement by a combination of different materials – composites. With 

advancement in the modern material fabrication process, research on such composite materials 

witnessed a steep rise [1]. We may have made another incremental development to the previous 

statement, however – by designing materials not merely by combination but by strategically 

modifying the defining microstructure itself. This structural modification gives the material the 

ability to display particular desirable dynamic behavior that is otherwise not a property of 

naturally occurring materials. Such materials which draw their characteristic properties from their 

microstructure are called ‘Metamaterials’. Metamaterials exhibit unusual properties that are 

otherwise not present in naturally occurring materials such as negative refractive index. The term 

was used [2] to describe a three-dimensional periodic cellular configuration, not readily available 

in nature. 
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Despite their superior properties over natural materials, composites suffer from the limitation of 

their properties being derived from constituent materials; i.e. their overall behavior is a function 

of constituent materials. 

Systems such as machinery, automobile, space vehicles and such, are in constant interaction with 

dynamic forces inherent in their environment of the application. Terrain topography, wind 

loading, ocean currents are a few examples of sources that induce dynamic load. This results in a 

high demand placed on effects that adversely affect the normal operation of machinery. Vibration 

is one such example. The constant interaction between system and environment; or even the 

internal working mechanisms itself may result in undesirable vibrations induced in the system 

which in some cases may jeopardize normal functioning. Such effects can be suppressed by 

careful design and integration of vibration isolators within the system, which by virtue of their 

natural frequency act as an energy sink for vibration in the close neighborhood of that frequency. 

Another approach is to employ energy harvesting devices in cases wherein, such dissipation of 

energy via stray vibrations is productively utilized by using the harmonic forcing as a means to 

sequester energy by employing tuned mass resonators. 

Further, the traditional limitation imposed on material design is the inverse relation between 

compliance and stiffness. The ability to produce stiff materials with high material dissipation 

capacity has driven the science community to push the range of investigations further, to design 

efficient structures with vibration and shock absorption properties without loss of static stiffness. 

In order to do so, research has inevitably turned toward engineering materials at the structural 

level, more so toward the defining microstructure level imparting unique properties to the 

resulting ‘metamaterial’. This study deals with the case of ‘Acoustic Metamaterials (AM)’ 

wherein, the enriched dynamic properties are studied intensively. 
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With an increased interest in material design and development, investigation of various 

configurations to address specific needs and applications in engineering is an indispensable part 

of science today. 

Studies of metamaterials are a relatively recent development; however, the concepts arose quite 

long back in 1888. The ability to achieve zero velocity for longitudinal light waves were 

suggested by William Thomson to be possible, given that ether could have negative 

compressibility [3]. It should be noted that Ether was considered as an elastic medium in those 

times. Metamaterials have been widely accepted in the field of Electromagnetic (EM) materials, 

followed by acoustic materials. In the year 1968, Veselago [4] first postulated the possibility of 

materials bearing negative magnetic permeability (µ) and electric permittivity (ε), causing the 

refractive index to become negative, which is not a characteristic of naturally occurring materials. 

The concept of metamaterials did not gain much acclaim until after Pendry [5] proposed the 

possibility of making left-handed metamaterials theoretically; after which, there was a surge of 

interest in this field and the investigations to obtain more unorthodox behavior from materials 

continues. This concept of negative properties was a preposterous area of research until the study 

on EM metamaterials concluded such investigations as feasible [6] by providing experimental 

evidence of negative refractive index. The capability of manipulating the intrinsic 

electromagnetic properties mentioned (µ, ε) leads to a theory called ‘transformation optics’ [7], 

allowing an accurate control of wave propagation characteristics of waveguides. The technique 

was used in cloaking of objects from EM radiation [8]. 

The mathematical analogy of acoustic and electromagnetic waves alluded to the possibility of 

such novel properties being realized for applications in acoustic devices. The respective negative 

parameters in the acoustic domain would translate to mass density and modulus. The 

experimental evidence of negative refractive index further motivated investigation to find 

materials with negative mass density and modulus. Studies for the pursuit of attainment of such 
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materials resulted in the investigation of structures containing ordered discontinuities arising from 

the addition of a resonant substructure to the host material. A classic example and the most 

prominently explored of this case is the Locally Resonant Acoustic Metamaterial (LRAM) whose 

nomenclature is self-explanatory – these materials have a resonant mass inclusion to the host 

structure. Martinez et al [9] reported one of the first frequency dependent attenuation of sound in 

a periodic structure with a periodicity ranging from a few centimeters to a meter, where the test-

article was a sculpture by Eusebio Sempere exhibited at Juan March Foundation in Madrid. 

Though theoretical, the unusual dynamic behavior of structures with resonators was known since 

long, as one of the earliest demonstrations of the gap effect for acoustic waves was given by 

Vincent [10] in 1898 using nonlinear oscillators. The sculpture (test-article) employed by 

Martinez et al [9] consisted of hollow stainless steel cylinders distributed periodically in simple 

cubic symmetry. The cylinders were fixed on a circular platform with a 4m diameter. The 

transmission characteristics were found to be a function of the frequency of sound, throwing light 

on the phenomenon of frequency dependent attenuation in bandgaps in periodic structures. This 

study was followed by another experimental investigation of acoustic transmission in a two-

dimensional periodic array consisting of rigid cylinders in two geometrical arrangements – square 

and triangular. Again, a dip in sound transmission (defined by filling fraction in this case) was 

observed depending on the frequency of sound owing to the periodicity and nature of geometry 

under investigation. Liu et al [11]  demonstrated experimentally the existence of frequency 

dependent band gaps in a test-article containing sonic crystals of known resonant frequency (400 

Hz). This test-article consisted of a metal mass inclusion in an epoxy host matrix using a silicone 

rubber layer. The inner core acts as a mass attached by a stiffness provided by the rubber layer. 

Sonic transmission measurements from microphones revealed dips in transmission at 400 Hz and 

1100 Hz. Further, still, the authors make a reference to the resonance induced negative stiffness 

and corroborate the conviction held about possible negative mechanical properties in materials. 

Sun et al [12] state that the negative effective mass is an effect of the modeling method employed 
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to capture the physics of LRAM. In their study [12] they demonstrate that it is due to inaccurate 

modeling that negative effective mass comes into the picture. By using a different modeling 

approach – treating an infinite ‘mass-in-mass’ lattice as a continuum, the effective mass is shown 

to be not necessarily negative for the effect of bandgap to be retained. They further model the 

same lattice using a microstructure continuum model and again demonstrate a bandgap with non-

negative effective density.  Nevertheless, negative effective parameters have been reported in 

many instances both as theoretical investigations and experimental records. The physical 

mechanism that gives rise to the apparent negative mass is based on the phase associated with the 

assumed harmonic motion of a mass – essentially the inclusion mass moving out of phase with 

respect to the external/host structure. 

Many types of research adopted the model [11] described by Liu et al [13-15], where sonic 

crystals were fabricated along the lines of the concept of  locally resonant metamaterials. Lead 

spheres (shown in Figure 1. 1) coated with compliant material acted locally resonant masses, 

which resulted in this material to decay sound waves in the 0.2-2 kHz range. Experimental 

investigation of frequency dependent propagation along a beam on a larger scale include the 

study by Xiao et al [16] wherein beam like resonators are pivoted on a host beam and 

measurements taken with the accelerometer on the two ends of the host beam. The spatial decay 

of waves was reported to be in good agreement with theoretical prediction and numerical analysis 

of the system. Smith et al [17] carried out a study that included a similar set up with resonant 

features. This was attained with the help of nuts and washers mounted on an Aluminum beam via 

a layer of rubber. This system however employed a non-reflective boundary by embedding the far 

end of the beam in the sand (near end subject to harmonic excitations). 

At this point, the frequency-dependent effective-density [11] and modulus [18] which could 

become negative gave rise to adjustable bandgaps [12, 18] and propagation modes with negative 

group velocity [19]. Several other studies on LRAM were carried out, employing different 
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mechanisms to achieve local resonance. Helmholtz resonators were employed to obtain ultrasonic 

metamaterials [20]; elastic membranes arranged as one-dimensional arrays [21, 22]; sonic crystals 

as previously detailed [11] locally resonant features within a host material [23, 24]. Further 

studies including damping in the structures included the investigation of locally dissipative 

acoustic metamaterials [25]. Locally resonant substructures were employed in [26, 27], 

showcasing the ability to use them within a host structure assembly to attain desired performance.  

Simulation and numerical studies were carried out to verify the properties displayed from 

analytical methods. Comparison of attenuation mechanism for LRAM [12, 28] is one such 

example. Further, the existence of double-negativity [29] as viewed from dispersion curve was 

shown through simulations. Small-size sonic crystals displaying strong bandgaps were shown 

through numerical studies [30]. Numerical investigations performed by Narisetti et al by 

employing perturbation approach to reach the dispersion relation of 1-D discrete mass-spring 

chains with nonlinear stiffness included in the system enabled the study to postulate novel wave 

manipulation devices based on amplitude-dependence due to nonlinearity in the system [31]. This 

study proposes two possible devices backed with numerical investigations, showing amplitude-

dependent frequency isolator and a tunable narrow band-pass filter. As a design consideration, the 

diatomic chain with nonlinearity in the host chain, considered in this study may impose 

constraints on the device such as material selection for defined nonlinearity. This is because the 

approach to realize nonlinear stiffness in the chain may demand material nonlinearity, which 

places constraint by depending on choosing from the limited currently available constituent 

materials. Local nonlinear attachments in such case may have been a more favorable contender as 

such features can be created from the many different possibilities of realizing nonlinearity such as 

– geometric nonlinearity, nonlinearity through contact or via magnetic methods in addition to 

material nonlinearity. 
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(a) 

 

(b) 

Figure 1. 1:    Examples of metamaterials using (a) Locally resonant lead spheres [11] and (b) 

Nonlinearity in granular chain [67].  

For a long time, acoustic metamaterials inspired from their electromagnetic counterparts have 

been studied in numerous configurations. These studies employed different constituent elements 

to derive interesting phenomena, which are applicable to diversified scenarios. Association of 

instability, nonlinearity [32, 33], grounded springs and such have been studied to invoke certain 

characteristics so as to address specific engineering problems and applications. The ever growing 

advancement of technology has placed a continual demand on such innovative and specifically 

tailored materials; in which scenario, the study of inclusion of other possible elements is of such 

significance, to the extent of being indispensable. 
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1.2 Background 

Modern industrial age has employed systems such as machinery, automobile, space vehicles and 

so on, which are in constant interaction with dynamic forces inherent in their environment of 

application. Terrain topography, wind loading, ocean currents are a few examples of sources that 

induce dynamic load. This results in a high demand placed on effects that adversely affect the 

normal operation of machinery. Vibration is one such example. The constant interaction between 

system and environment; or even the internal working mechanisms itself may result in 

undesirable vibrations, which in some cases may jeopardize normal functioning. Such effects can 

be suppressed by careful design and integration of vibration isolators within the system, which by 

virtue of their natural frequency act as an energy sink for vibration in the close neighborhood of 

that frequency. 

Another approach is to employ energy harvesting devices in cases wherein, dissipation of energy 

via stray vibrations is productively utilized. This was achieved by using the harmonic forcing as a 

means to sequester energy by employing tuned mass resonator [34]. 

1.2.1 Negative and Nonlinear Stiffness 

In addition to the non-conventional negativity of mass, the other facet of metamaterials – negative 

stiffness is of particular significance. Stiffness is generally associated with the resistance offered 

to an active force and is known to directly influence the displacement of a particle from its 

position. Usually, this stiffness is positive, nonzero for structures to exhibit stable rigidity under 

load. However, some materials have been reported to exhibit negative stiffness under certain 

specific conditions [20]. This drives them to exhibit a large displacement under the action of even 

a slight force in a way to support the force and displace in its opposite direction. Whereas a 

system with a positive stiffness would oppose an externally applied loading, a system with 

negative stiffness would offer a decreasing resistance and can support the deformation even 

further [35]. Thus a negative stiffness system would experience larger deformation in contrast. 
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The buckled beam is a classic example of negative stiffness. Consider the case of a bistable beam 

as shown in Figure 1. 2.  

 

(a) 

 

(b) 

Figure 1. 2:    One approach to obtain negative stiffness from bistable beam [38]. 

The beam is acted upon by an initial displacement given in the form of a compressive load and is 

held in that condition. This beam has three extreme configurations – two stable and one unstable 

position. Within the area of the unstable regime, even a significantly small load applied causes 

the beam to snap into one of its corresponding stable positions depending on the direction of 

application of force. Kashdan et al reported experimental evidence for negative stiffness induced 



 

10 

 

by pre-buckling and pre-compression in a 3-D printed Nylon prototype [36]. A study by Li et al 

[37] presents a theoretical study of nonlinear effects in AM arising from simultaneously negative 

modulus and density with a design based on periodically distributed locally resonant features 

along a pipe. The amplitude-dependence of bandgaps on incident acoustic intensity is reported 

from the theoretical study. Dynamically pronounced behavior such as double negative pass-band 

is shown to be altered due to nonlinearities, resulting in switching of propagation behavior of the 

metamaterial. It has also been shown that negative stiffness improves vibration isolation 

characteristics of a system [38, 39].  

Although capable of displaying unique dynamic behavior, the LRAM depends solely on the 

phenomenon of resonance. Also, only linear stiffness is assumed in the case of LRAM which in a 

physical system may not always be valid. Most systems traditionally treated as linear have some 

degree of nonlinearity in them which can be triggered by specific conditions like amplitude. For 

example, the basis of deriving standard beam deflection expression for a cantilever beam has its 

roots in the assumption of a thin beam. This is to avoid inclusion of nonlinear effects at high 

displacement. Similar is the case of the simple pendulum, where a small displacement assumption 

is made in order to keep the response of the system close to linear. To be technically correct such 

conditions are regarded as ‘quasi-linear’. 

With nonlinearity being an inherent property of physical systems, it carries some value to attempt 

to exploit this characteristic. The ability to explore nonlinearity can possibly result in the 

conception of new phenomena that may prove beneficial to solve engineering problems. 

Studies carried out on structures including nonlinear stiffness enriched the domain of frequency 

dependent behavior of systems, which found particular potential application in vibration isolation 

and energy harvesting. The work from Ali Nayfeh [40] presents a comprehensive study of the 

behavior of nonlinear oscillations with cubic and quadratic nonlinearity. Systems with nonlinear 

stiffness have been known to provide improved vibration isolation capabilities over those with 
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linear stiffness. A linear vibrating system can be rid of unwanted vibration by coupling it to a 

nonlinear attachment. This attachment, called ‘Nonlinear Energy Sink’ (NES) pumps out energy 

from a primary mode of the linear system into higher modes of itself, which are later rapidly 

dissipated due to losses. Cubic nonlinearities in such cases in tandem with zero linear stiffness 

were reported by Quinn et al [41]. They state that the dissipation of vibration energy is 

accelerated by the addition of cubically nonlinear stiffness. Further, it is shown that nearly 99% 

of the energy induced by a shock was dissipated to a specifically modified NES. This NES was 

obtained by a combination of negative linear stiffness and nonlinear stiffness components. A 

quasi-zero stiffness obtained from the negative stiffness of a Euler buckled beam is used to 

determine the vibration isolation characteristics of the passive nonlinear isolator by Liu et al [39].  

Owing to the enrichment of dynamic response by the addition of nonlinear oscillator in an 

otherwise linear system, there has been an increased interest in the field of acoustic metamaterials 

that exhibit nonlinear response [42, 43]. A perspective of looking at not just one or two degrees of 

freedom system for vibration isolation but considering a long lattice chain type system with the 

inclusion of nonlinearity emerged, to study wave propagation through these structures. Querying 

lattice chains with nonlinearities in different configurations gained recognition. Nonlinear 

dispersion relation in a periodic string was experimentally and analytically obtained by 

Manktelow et al [44]. The addition of nonlinearity to the now traditional LRAM was undertaken 

with the help of analytical methods by applying perturbation techniques such as multiple scale 

analysis. Narisetti et al [31] employed a perturbation approach to derive dispersion relation for 

one-dimensional nonlinear periodic structures with nonlinearity introduced in different 

configurations successively. The approach used assumed the first-order correction in frequency 

and provided evidence that introduction of cubic nonlinearity caused the propagation to become 

amplitude-dependent. In addition, dispersion relations obtained from varying configurations of 

lattice chains enabled theoretical postulation of novel amplitude and frequency dependent wave 
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manipulating devices. Amplitude-dependent frequency isolator, which filters frequency content 

of an incident wave depending on its amplitude was modeled in a numerical setting. Another 

novel device implication includes a narrow band-pass filter which employs two hardening 

nonlinear chains of which one is grounded. The devices carry value based on their ability to filter 

out waves in conditions as mentioned but the key challenge lies in realizing a grounded chain in a 

physical system. Other device implications too, such as the one in the context of the current study 

– acoustic diode requires grounded stiffness for direction-bias in wave propagation. However, it 

was shown from simulations that by exploiting the amplitude-dependent wave modifying ability 

of the cubically nonlinear local attachments, a potential direction-bias waveguide can be 

assembled. Starting with simulations from [45] and investigations undertaken as part of this 

research, a possible design is postulated and subjected to experimental testing.  

Unidirectional transmission of waves is of significant value in the area of acoustic switches, 

diodes or rectifiers to allow wave propagation only in a pre-decided direction. Waves propagating 

in the opposite direction are attenuated and ideally completely filtered. There has not been 

mention of experimentally fabricated in literature except [46], where periodic bistable members 

connected with magnetic links were built to mimic a system for strongly linear transition waves. 

A lattice consisting of 20 bistable elements supported by clamps on an aluminum rail forms the 

test-article which is an approximation of a 1-D discrete lattice chain. 

The aforementioned studies motivated the investigation of new locally engineered configurations 

for AM. While on the one hand, the rise of specifically engineered materials and advancement in 

manufacturing technology relaxes the previously constrained design space of AM, on the other 

hand, there exist opportunities to explore new mechanical elements with unique dynamic 

responses. 
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1.2.2 The Inerter 

Inerters are mechanical elements that provide a force response proportional to the relative 

acceleration across them, are an attractive candidate for consideration in acoustic metamaterial 

structures. The force current analogy, where in forces substitute for currents and velocities for 

voltages, had an incompleteness considering the analogy for the non-grounded capacitor. The 

second terminal of mass was assumed to be at the centroid, analogous to second grounded 

terminal of the capacitor. The two-terminal or rather, the non-grounded capacitor which is an 

active component of electrical systems did not have a corresponding mechanical analogue. The 

mechanical analogue would have to relate the acceleration difference across its terminals to the 

applied force. The question is better emphasized through the following Figure 1. 3. 

 

Figure 1. 3:    Missing parameter relating the relative acceleration across the element. 

Postulated by Smith [47] in 2002, the inerter completes the analogy between electrical circuits 

and mechanical networks on the basis of force-current analogy. Forming the mechanical analogue 

of the non-grounded capacitor from the electrical counterpart and completing the analogy as 

shown in Figure 1. 4. 
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Figure 1. 4:    Completed force-current analogy by including the inerter [48]. 

The inerters synthesized in the physical system were reported to display an amplified dynamic 

mass compared to the static, construction mass. With the unit same as that of mass, the inerter is 

denoted by the symbol ‘J’. A practically attainable ratio of inertance to device mass as high as 

300 has been reported [47] through experimental investigations. Two designs proposed to 

practically fabricate inerters have been proposed by Chen et al [48] based on a Rack and Pinion 

mechanism and a ball screw assembly, as shown in Figure 1. 5 and Figure 1. 6 respectively.  

 

Figure 1. 5:    Schematic representing a method to realize an inerter using rack and pinion 

mechanism [48]. 
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Figure 1. 6:    An inerter device manufactured based on ball-screw type design [48]. 

Inerters have been studied as part of vibration isolation systems and their presence has been 

documented to result in improved performance over traditional vibration isolators and shock 

control systems. Chen et al [49] found that the natural frequencies of the single, dual and multiple 

degrees of freedom systems can be lowered due to the addition of inerter. An inerter-based device 

was proposed by Lazar et al [50], for vibration suppression in large-scale base-excited structures. 

The performance of vehicle suspension [51-53] and steering systems [54] utilizing inerters have 

also been studied. While inerters in vehicle passive suspension were studied earlier, Hu et al [55] 

extended the study by investigating the performance of different inerter-spring-damper 

configurations using an optimization approach including suspension displacement as a 

performance parameter simultaneously with other requirements such as tire grip and ride comfort. 

As a result, despite the improved performance offered, the limitation imposed by inerter was 

highlighted. Further, the benefits of employing inerters in semi-active suspension were studied by 
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Chen et al [56] by investigating a combination of inerter based suspension strut and semi-active 

damper using simulations. They have reported improved overall performance by accounting for 

factors as in [55]. Single Degree of Freedom oscillator vibration absorbers employing inerters 

were reported to display superior performance compared to traditional Dynamic Vibration 

Absorbers for the same inertance-mass ratio [57]. From analytical optimization procedures, the 

former were found to have improved performance in addition to exhibiting the characteristic of 

having a larger mass ratio for smaller physical mass and also negated the need to add mass on the 

oscillator [57]. Inerters have also seen cutting edge commercial use, following their adoption 

under the moniker of ‘J-damper’ in Formula One cars. Experiments [58] to measure mechanical 

admittance functions of ball-screw and rack and pinion based inerter designs were conducted to 

gauge their relative performance. Extending the classical vibration control configuration of the 

tuned-mass-damper system by incorporating inerters, tuned-mass-damper-inerter systems [59] 

were shown to outperform them while remaining relatively lightweight. Numerical optimization 

[60] of vibration suppression devices with inerters predict 10 to 20% performance increase in a 

wider frequency band over traditional devices. Although the inerter was explored by many 

researchers in various domains with and majority researchers focusing on their application in 

vibration systems, the behavior of inertant systems in wave propagation has not been explored. 

This study investigates their effect by incorporating the inerter element in the infinitely long 

discrete 1-D lattice system in various configurations – introducing the inerter in both host and 

local attachments. 

By adding nonlinearity, there was a significant impact on the harmonic response of an SDOF. 

Hence, the dynamic behavior of a linear system is enriched by the introduction of nonlinearity. It 

drives the system to display amplitude-dependent behavior. Further, the recently conceived 

inerter demonstrates an amplified dynamic mass. Nonlinearity and inerters are explored in 
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different AM configurations through analytical techniques to investigate new phenomena. This is 

carried out to identify potential device implications. 

1.3 Definition of Objectives 

Motivated by the potential of acoustic metamaterials to display novel phenomena in the context 

of wave propagation, the objectives of this study have been identified as follows. 

 Employ analytical and numerical methods to characterize the amplitude-dependent 

behavior of nonlinear AM, to explore the device implications. 

 To conduct experimental verification of possibility of achieving passive direction-bias in 

elastic wave propagation. 

 To characterize different inertant AM configurations in order to explore device 

implications.  

1.4 Chapter Overviews 

This thesis encompasses analytical, numerical and experimental investigations. Chapter 1 

contains a general introduction to the field of acoustic metamaterials and attempts to draw out the 

advancement of research in this field. The possibility to add to the present body of research by 

investigating the effects of modifying the locally resonant type configurations is presented. In 

consequence, chapter 2 contains a simulation study proposing a direction-bias waveguide device. 

It introduces basic investigation of the nonlinear stiffness in a 1-DOF system, forming the basis 

for the design of a DBWG. Based on the simulation results, device implications are discussed. 

Among these implications, the direction-bias effect was chosen for its potential to make way to a 

fully functional acoustic diode. The direction-bias effect motivates the experimental study 

presented in Chapter 3. In this chapter, the process of translating the design parameters (obtained 

in chapter 2) to the experimental setup is illustrated elaborately. It is followed by a detailed 

description of the test apparatus, specimen manufacturing, and testing methodology. Chapter 4 is 

an analytical study performed by considering various configurations of inertant AM. The results 
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obtained in this chapter are used to postulate some device applications, as wave manipulating 

devices. Finally, conclusions are presented in Chapter 5, along with a succinct account of 

recommendations for future are made. 
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CHAPTER II 

NONLINEAR ACOUSTIC METAMATERIALS 

2.1 Introduction 

Physical systems don’t usually exhibit linear stiffness across the complete range of load 

application and tend to have nonlinearity in them. While this, in general, is disregarded during 

modeling (for simplicity), nonlinearity is rather the norm and linear stiffness is a special case. 

Although nonlinearity has been undesirable since they impart complex, chaotic and unpredictable 

behavior when introduced in a system, it can be exploited to obtain rich dynamic behavior 

targeted towards unlocking peculiar engineering applications. 

The ability to manipulate cubic nonlinearity of a material is of particular interest because it may 

lead to an improved resolution in acoustic imaging [61] and directional bias in acoustic energy 

propagation [62]. There exists another point that interests the engineering community – energy 

dissipation and mechanical system of a material [35]. There usually is an inverse relation between 

these two properties wherein a stiffer material exhibits lesser dissipation and vice versa. It is thus 

of value to design composites which can both exhibit high stiffness with energy dissipation 

capabilities together. This can help develop devices which can isolate acoustical energy from a 

source or a structure.  

Nonlinearity can be achieved in more than one way; it can be induced by one of or a combination 

of – material, geometric, inertial, constitutive, body force or friction. Constitutive nonlinearity is 

when stresses and strains are related by nonlinear function, unlike the linear relationship as given 

by ‘Hooke’s law’, which itself holds for small strains. 
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The relation between magnetic flux and field intensity renders two magnetic bodies to produce a 

force dependent nonlinearly on linear relative displacement. Further, the force of gravitation 

given by Newton is an example of a nonlinear system. Geometric nonlinearity is introduced in 

large strain or large rotation of solid continuum. Also possible is the case of a cantilever with 

varying geometry depending on displacement, which gives rise to a nonlinear stiffness. This 

particular type is adopted in the following work to experimentally design the desired nonlinearity. 

Another type of nonlinearity possible is from friction when the force of friction is a nonlinear 

function of displacement and velocity, as in dry friction or stick-slip friction. 

Hence there are several ways of realizing nonlinearity in practice. Mann and Sims [63] utilized 

magnets to demonstrate a duffing-type nonlinearity to improve the performance of energy 

harvester over a wider range of frequencies. Jutte and Kota [64] propose a method to obtain 

predefined nonlinear stiffness derived from a geometrical arrangement of different stiffness 

elements. 

To offset the limitations placed by engineering a material nonlinearity, a geometrical nonlinearity 

is catered. The nonlinearity is obtained by virtue of the nonlinear stiffness exhibited due to 

features such as contact in a system. A cantilever is designed that demonstrates nonlinear 

hardening behavior at higher amplitudes. It is due to varying effective length because of contact 

of the beam with the root profile. Hence, the term ‘metamaterial’ is justified. The property is 

being derived from the constituent unit-cell structure of a lattice as opposed to relying on the 

intrinsic material property itself. 

In a study based on cubic nonlinearity in stiffness, the duffing oscillator cannot go unmentioned. 

A classic example of such nonlinearity, the duffing oscillator has been investigated extensively in 

relation to its dynamics after Georg Duffing. An in-depth analysis of this type of oscillator and 

other types of nonlinearities are dealt with by Ali Nayfeh and Cook in ‘Nonlinear Oscillations’ 

[40]. The effect of nonlinearity is to bend the displacement-frequency curve to bend away from 
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the traditional Ω=1 line on either side depending on the nature of stiffness – hardening or 

softening. When a softening type nonlinearity is introduced, the curve bends leftward and to right 

for a hardening case. When one notices that the response amplitude is higher for a larger domain 

of excitation frequencies, it becomes apparent that this is favorable for applications such as 

energy harvesting which solely depend on the high amplitude motion of oscillator at a set, the 

narrow frequency band in the close vicinity of the resonance frequency. For the very same reason, 

the duffing type oscillator finds a special place in the field of energy harvesting and vibration 

isolation. Several studies have postulated the use of the duffing oscillator for harvesting energy 

over a wider band of frequencies and some have provided experimental evidence of improved 

performance. The following numerical study has been carried out to both help understand the 

behavior of the cubic nonlinear oscillator and give a sense of completeness to the overall study. 

2.1.1 The Duffing Oscillator 

The objective of the following study is to obtain the response of a mass attached to a rigid support 

through a cubic nonlinear spring when the mass is acted upon by a harmonic force loading. The 

response is plotted in two different scenarios. In the first, frequency is incremented in steps from 

a lower bound up to a higher bound and holding a given frequency for some time before it is 

changed. In the second, the same procedure is applied in the opposite sense – the frequencies are 

decremented from higher to lower bound. The simulation was set up in Abaqus with the 

parameters chosen as – [m, k0, kn, c, f] = [1, 1000, 100, 1, 200]. The excitation frequency is 

incremented from 4.75 Hz to 8.25 Hz in steps of 0.25 Hz, holding each frequency for the 20 s to 

ensure attainment of steady state. The natural frequency of the system, ω0=5.03Hz is included 

within the excitation. The resulting displacement of mass in both cases is plotted against the 

respective frequency of forcing and compared. It can be seen that on incrementing the forcing 

frequency, the response follows the path marked with circles in Figure 2. 5. The case with a 

decrement in frequency causes the response to follow the path marked with an asterisk. The 
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analytical result for the same case with only linear stiffness is plotted to showcase the apparent 

difference in response in comparison in Figure 2. 5. A wider frequency range of high amplitude 

response of the duffing oscillator case is particularly worth noting here, which makes it desirable 

for applications such as energy harvesting over a wider frequency range. 

 

Figure 2. 1:    Schematic diagram of the cubic nonlinear duffing oscillator used for simulation in 

Abaqus. 

 

Figure 2. 2:    Constant amplitude harmonic forcing with incrementally varying frequency. 
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Figure 2. 3:    Displacement time history of mass with decreasing frequency forcing. 

 

Figure 2. 4:    Displacement time history of mass with increasing frequency forcing. 
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Figure 2. 5:    Displacement plotted as a function of amplitude in the case of increasing and 

decreasing forcing frequency. The analytical response of the system with linear stiffness is plotted 

for comparison. 

The characteristic of the Duffing oscillator response is the three-valued solution. This behavior is 

captured in the Figure 2. 5 through the theoretically obtained curve. The simulated response 

reveals that the response exhibited depends on the direction of approach in frequency in the three-

valued region. The response latches onto either branch depending on direction of approach of 

excitation frequency while the third solution is unstable and is not realizable in the simulation. 

It is worthwhile to throw light on the observation that the more desirable high amplitude response 

occurs depending on the direction of approaching this regime. This ‘jump phenomenon’ is a 

characteristic of the cubically nonlinear type duffing oscillator and though the maximum 

amplitude attained by this system is lesser compared to the linear counterpart, the advantage lies 

in the fact that the higher amplitude is retained for a broader band of frequency.  
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2.2 Analytical Model 

A one-dimensional infinite mass-spring chain is considered with periodic local mass attachment 

via a nonlinear stiffness spring. The chain is assumed to have been acted upon by a harmonic 

forcing, F(t) on one end and is studied for wave propagation characteristics. The local 

attachments are assumed to have cubic nonlinearity given by.  

𝑘 =  𝑘0 +  𝑘𝑛𝑥2                                                                       (2.1) 

An infinite periodic chain with a repeating unit cell is considered. This unit cell constitutes of 2 

masses connected by non-linear springs as shown in Figure 2. 6 

 

Figure 2. 6:    Discrete mass-spring lattice model for an AM with local nonlinear attachment. 

ε represents a small parameter called as perturbation parameter. Equations of motion governing 

displacements in the jth unit cell can be expressed as 

𝑚1�̈�𝑗,1 +  𝑘1(2𝑢𝑗,1 − 𝑢𝑗+1,1 − 𝑢𝑗−1,1) + 𝑘2(𝑢𝑗,1 − 𝑢𝑗,2) + 𝜀𝛤(𝑢𝑗,1 − 𝑢𝑗,2)
3

= 0       (2.2) 

𝑚2�̈�𝑗,2 + 𝑘1(𝑢𝑗,2 − 𝑢𝑗,1) + 𝜀𝛤(𝑢𝑗,2 − 𝑢𝑗,1)
3

= 0                               (2.3) 

Based on Lindstedt- Poincare perturbation technique, dispersion relations corrected up to second 

order are solved. Displacements of each mass and plane wave frequency are first stated as 

asymptotic series.  

𝜔 = 𝜔0 +  𝜀𝜔1 + 𝑂(𝜀2)                                                   (2.4) 
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𝑢 = 𝑢(0) +  𝜀𝑢(1) + 𝑂(𝜀2)                                               (2.5) 

Equation 2.1 is substituted in Equation 2.2 and 2.3 and uj is assumed harmonic. Then the first two 

ordered equations obtained are as follows, 

𝜀0: 𝛼�̅�0
2�̈�𝑗,1

(0)
+

𝑘1

𝑘2
(2𝑢𝑗,1

(0)
− 𝑢𝑗−1,1

(0)
−𝑢𝑗+1,1

(0)
) + (𝑢𝑗,1

(0)
−𝑢𝑗,2

(0)
) = 0              (2.6) 

𝜀1:  𝛼 (�̅�0
2�̈�𝑗,2

(1)
+ 2�̅�0�̅�1�̈�𝑗,1

(0)
)  +   

𝑘1

𝑘2
(2𝑢𝑗,1

(1)
− 𝑢𝑗−1,1

(1)
−𝑢𝑗+1,1

(1)
)   +  (𝑢𝑗,1

(1)
−𝑢𝑗,2

(1)
)  

+   �̅� (𝑢𝑗,1
(0)

−𝑢𝑗,2
(0)

)
3

= 0                                                                                             (2.7) 

A plane wave solution is assumed for the ε0 equation. Considering nth generalized coordinates, the 

displacement in the jth cell is expressed as, 

�̇�𝑗,1
(0)

= 𝑖
𝐴1

(0)

2
𝑒−𝑖(𝑘𝑗𝑎)𝑒−𝑖𝛤 + (−𝑖)

�̅�1
(0)

2
𝑒−𝑖(𝑘𝑗𝑎)𝑒−𝑖𝛤                        (2.8) 

�̈�𝑗,1
(0)

= −
𝐴1

(0)

2
𝑒𝑖(𝑘𝑗𝑎)𝑒𝑖𝛤 −

�̅�1
(0)

2
𝑒−𝑖(𝑘𝑗𝑎)𝑒−𝑖𝛤                             (2.9) 

Where k represents the wavenumber, ‘a’ denotes the separation of two m1. Given the cell number 

j and mass position index n inside unit cell, s (j,n) is a function that returns global mass position 

index (integer).  

μ is a wavenumber, where μ=ka. The solution to the ε0 – order equation results in a dispersion 

relationship for the lattice.  

For order- ε1, the updated equation is given by, 

𝛼 (�̅�0
2(−�̈�𝑗,2

(1)
) + 2�̅�0�̅�1(−�̈�𝑗,1

(0)
)) +

𝐾1

𝐾2
(2𝑢𝑗,1

(1)
− 𝑢𝑗−1,1

(1)
−𝑢𝑗+1,1

(1)
) + (𝑢𝑗,1

(1)
−𝑢𝑗,2

(1)
)

+ �̅� (𝑢𝑗,1
(0)

−𝑢𝑗,2
(0)

)
3

= 0                                                                                            (2.10) 

The equation shown above can be written as 
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𝑐1𝑒𝑖(𝑘𝑗𝑎+𝛤) + 𝑐3𝑒3𝑖(𝑘𝑗𝑎+𝛤) + 𝑐. 𝑐 = 0                                        (2.11) 

All terms in the above equation that occur with functional form eiks(j,n)a behave to force the 

updated ε1- order equation at resonance. This leads to unbounded solutions. These terms are 

recognized as secular terms. In order to obtain a bounded solution at order- ε1, these terms must 

be eliminated. 

𝑐1 = 2𝐴1
(0)

�̅�0�̅�1 − �̅� (1 −
1

1 − �̅�0
2)

3

(
3

4
2𝐴1

(0)2
�̅�1

(0)
)                          (2.12) 

This returns an expression for the frequency correction w1 in terms of A(0) and μ.  

Substituting the assumed solution and parameters, solving the system of equations by dropping 

the higher order terms in expansion and equating the constituents of the significant parameter to 

zero yields  

�̅�1 =
3�̅�|𝐴1|2

8𝛼�̅�0
(1 −

1

(1 − �̅�0
2)

 )

3

                                          (2.13) 

𝜔 = 𝜔0 +  𝜀
3�̅�|𝐴1|2

8𝛼�̅�0
(1 −

1

(1 − �̅�0
2)

 )

3

                                  (2.14) 

Dispersion relation of the system is given by Equation 4.3 described in detail in section 4.2.1. The 

dispersion relation with first order correction can be plotted by substituting the value of ω from 

Equation 2.14 into the equation. The obtained result when plotted shows the effect of perturbing 

the system with the perturbation parameter ε. Even for a very small value of ε, it can be seen that 

having a cubically nonlinear hardening stiffness as in this case, the bandgap is slightly smaller 

than the case with linear stiffness in the local attachment. Furthermore, for this particular case of 

modified LRAM, upper bound of  bandgap experiences a larger shift than the lower bound which 

for an LRAM is 𝜔 = 𝜔0. 
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It can be shown that the propagation of a system with nonlinear hardening stiffness has an 

amplitude-dependence and that with increasing amplitude of excitation, the band gap is narrowed. 

Thus in the case of hardening cubic nonlinearity, the cutoff of bandgap increases with increase in 

the amplitude of excitation. The perturbation technique helps analyze similar systems employing 

nonlinearities to a chosen degree of approximation. A few cases that have already been studied 

[31] in the past by this method include – a monoatomic mass-spring chain and nonlinear springs, 

nonlinear diatomic chain, nonlinear stiffness in host chain with linear local attachment. Resulting 

dispersion relation obtained from the technique applied on an established discrete mass-spring 

lattice with local nonlinear attachment are plotted to show the shift in bandgap limits due to the 

introduced cubic nonlinearity. With a nonlinear softening (NLS) local attachment the lower 

bound of the band gap is lowered while by introducing an NLH, on the other hand, causes the 

bandgap to narrow down compared to the limiting case of LRAM. The upper bound is not as 

significantly affected by the introduction of NLS or NLH and hence it provides the potential to 

tune the AM to have a narrow band or specific frequency filtering characteristics. 

 

Figure 2. 7:    Dispersion curves obtained by perturbation method for LRAM type lattice with 

softening and hardening type nonlinearity in the local attachment. The excitation frequency 

normalized with local resonance frequency is plotted against the wave number. 
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2.3 Simulations 

 

Figure 2. 8:   Simulation model set up in Abaqus for LRAM. 

2.3.1 Locally Resonant Acoustic Metamaterial (LRAM) 

Consider a 1-D representation of an LRAM which is modeled as an infinite mass-spring chain 

with local resonant attachment. The system consists of a host mass m1, attached via springs of 

stiffness k1. A mass m2 is attached to m1 through a spring k2. A schematic of this system is shown 

in Figure 2. 8. To obtain the wave propagation characteristics of this system, the equations of 

motion for the two masses are solved for a harmonic forcing. The dispersion relation for the 

LRAM is given in Equation 4.3, the technique to obtain this equation is mentioned in [12] is 

described in section 4.2.1 

The dispersion relation displays a bandgap region, which is introduced due to the introduction of 

local attachment. It can be shown that a wave at a frequency within this bandgap experiences 

spatial attenuation. This is because the wave number at this frequency becomes complex. The 

frequency interval that marks the bandgap limits is given by the Equation 4.2. The limits can be 

expressed as follows 

𝜔0  < 𝜔 <  𝜔0√1 +
𝑚2

𝑚1
⁄                                                                           

A simulation model consisting of 100 unit cells of the LRAM is set up in Abaqus by using point-

mass and stiffness elements available in the program. A harmonic excitation is applied on 1st 

mass and the displacement at the 100th unit cell is recorded. These are referred to as ‘input’ and 
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‘output’ respectively. The displacement of m1 is taken into consideration to do this. The system is 

assumed is assigned with a parametric setting as shown below. Using these parameters, the 

bandgap limits can be obtained as [1115 Hz – 1260 Hz]. An excitation frequency chosen out of 

this range should propagate while that within these bounds should experience attenuation. 

Hence 500 Hz and 1120 Hz are chosen as the former lies outside and the latter within the 

bandgap. The system parameters are chosen with the intent to translate the system to an 

experimental test-article. Hence, manufacturing constraints are taken into consideration. The 

attachment mass and stiffness values are chosen so as to be realized in a physical scenario. The 

output and input displacements are plotted as shown in Figure 2.9. The simulations show a good 

agreement with the theoretically established band gap predictions. 

 

(a) 
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(b) 

Figure 2. 9:    Demonstration of bandgap effect through simulations in an LRAM. 

2.3.2 Nonlinear Local Attachments 

 

Figure 2. 10:    Simulation model set up in Abaqus for LRAM. 

A local nonlinear attachment similar to that discussed in section 4.2 is considered here for 

numerical investigation. The parameters chosen for this system similar to that of LRAM were 

chosen with manufacturing constraints in view. Nonlinearity is a function of displacement 

amplitude. Hence, kn for the system is chosen such that at sufficiently small displacement, it 

behaves close to an LRAM as nonlinearities are not triggered. Therefore, at low amplitude, the 

bandgap limits of this NLAM can be obtained from Equation 4.2 as [600 Hz - 980 Hz]. 
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A simulation model similar to LRAM, as shown in Figure 2. 10 with 100 unit cells is set up in 

this case with the following system parameters. 

[𝑚1, 𝑚2, 𝑘1, 𝑘2, 𝑘𝑛] = [1.67𝐸 − 3, 2.84𝐸 − 3, 2.43𝐸6, 40382.45, 1𝐸11] 

Keeping the condition for triggering of nonlinearity in view, a low amplitude (0.01 mm) single 

frequency harmonic excitation is applied at 1st mass and resulting displacement of 100th mass is 

recorded. The output and input displacement plots are shown in Figure 2. 11. The simulations 

show a marked attenuation at 606 Hz, which lies just within the bandgap while 500 Hz shows 

propagation as it lies below in the predicted propagation zone. 

At the same frequencies, a high amplitude (1 mm) excitation is applied to observe the effect of 

nonlinearity, which is triggered due to increasing the amplitude. The plots obtained for this case 

are shown in Figure 2. 12. It can be seen that at high amplitude, the response at 606 Hz switches 

to propagation. This is a consequence of narrowing of bandgap as predicted in section 2.2 and 

shown in Figure 2. 7. The reason for such phenomenon is nonlinearity, which renders the 

response of a system to become amplitude-dependent. 

 

(a) 
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Figure 2. 11:    Demonstration of bandgap effect through simulations for NLAM. 

 

Figure 2. 12:    Amplitude-dependent propagation due to nonlinearity. 

The effect of high amplitude excitation through the NLAM is shown in Figure 2. 13. The 

attenuation at low amplitudes is expected as nonlinearities are not triggered and the resonators 

still behave as quasi-linear oscillators. But due to nonlinearities being triggered at a higher 
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amplitude (A=1E-3), we see a higher order behavior being introduced in the system causing the 

output amplitude to be larger at certain times than the input amplitude. This switching from 

attenuation to propagation can be attributed to the shift of lower limit of the bandgap as shown in 

Figure 2. 5. A detailed analysis of the effect of nonlinearity and amplitude on nonlinear AM has 

been undertaken in [45]. 

Further investigations were carried out on the system by varying the excitation frequency. This is 

done by varying the frequencies in increments away from the local resonance frequency. 

Therefore, these frequencies of excitation are referred to, as normalized values. An interesting 

amplitude-dependent behavior is observed at Ω = 1.9. The displacement response for input and 

output obtained for this case is plotted in Figure 2. 13. The plot reveals a marked shift in 

frequency of transmitted wave to a lower frequency. This frequency shift can be used to design 

various amplitude-dependent wave manipulation devices. 

It is also interesting to note from the frequency spectrum of Figure 2. 13 that there is a lower 

frequency (Ω=1.6) component present in this case while the component at the same frequency as 

the excitation is attenuated. This frequency will be used consequently as the basis for design of a 

Direction-Biased Waveguide (DBWG) test-article. 

 

Figure 2. 13:    Shift in the frequency of transmitted wave by the NLAM for an incident wave 

traveling left to right at high amplitude. 
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2.3.3 Direction-Bias Waveguide (NLAM + LRAM) 

Based on the simulation results showing a shift in frequency, an acoustic diode-like device can be 

conceived. This is done by exploiting the amplitude-dependent propagation and modification of 

frequency spectrum. Depending on the behavior exhibited by the NLAM chain, an LRAM is 

suitably selected in order to obtain the direction-bias effect through a lattice chain. 

A simulation model is set up in Abaqus with 1000 unit cells. This model is a representation of a 

long waveguide with a test-article inserted at the center, dividing the waveguide into two equal 

lengths. Each section of the waveguide was assigned with 400 unit cells. The test-article consisted 

of two parts – NLAM and LRAM, each consisting of 100 unit cells. The first mass of the 

waveguide is chosen for application of displacement and this was treated as the ‘input’. 

Displacement response 5 unit cells after the test-article is recorded and is treated as ‘output’. Both 

time history and frequency spectrum of the input and transmitted (output) displacements are 

recorded for post-processing.  

The stiffness curves for the selected NLH are shown in Figure 3. 13.  On setting kn=0, the linear 

stiffness of the nonlinear spring is retained and the frequency corresponding this stiffness is 600 

Hz. This occurs at small displacements as can be deduced from Equation 2.1 when setting the 

displacement, x to a very small value. The nonlinearity of the NLH oscillator is triggered only 

after an appreciable displacement is attained by the attachment mass, thus making the oscillator’s 

response quasi-linear at small amplitude displacements. It is worthwhile to note here that 

consistent units (SI) are used throughout the simulations. A schematic of the simulation setup in 

Abaqus is illustrated in Figure 2. 14 (a) and the representative mass-spring representation is 

shown in Figure 2. 14 (b).  
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(a) 

 

(b) 

Figure 2. 14:    (a) Schematic of the simulation model in Abaqus and (b) mass-spring 

arrangement used for testing direction-bias. 

The LRAM is designed such that the system exploits the behavior of NLAM such that it is 

capable of filtering the frequency of excitation and allows Ω=1.6 to propagate. This is done by 

shunting the two lattice chains together. The following parameters were selected for the LRAM. 

[𝑚1, 𝑚2, 𝑘1, 𝑘2, 𝑘𝑛] = [1.66𝐸 − 3,0.45 𝐸 − 3,2.48 𝐸6,2.27 𝐸4, 0] 
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By considering the quasi-linear resonance frequency of the NLAM as normalizing parameter, the 

respective band gaps of NLAM and LRAM are as follows 

𝑁𝐿𝐴𝑀 [Ω𝐿 − Ω𝑈] = [1 − 1.6] 

𝐿𝑅𝐴𝑀 [Ω𝐿 − Ω𝑈] = [1.86 − 2.1] 

With the selected LRAM parameters, a querying frequency of Ω=1.9 was applied at two different 

amplitudes along two directions respectively. In other words, four cases are simulated depending 

on the amplitude and direction of traverse of the wave. 

1. Low amplitude, moving left to right (NLAM first). 

2. High amplitude, moving left to right. 

3. Low amplitude, moving right to left (LRAM first) 

4. High amplitude, moving right to left 

The output and input response of each of these cases is plotted in Figure 2. 15, which shows a 

clear indication of direction-bias effect. At high amplitude, a wave incident first on the NLAM 

side experiences relative propagation. While in the opposite direction the wave is attenuated. 

Moreover, at low amplitude, the same wave is attenuated irrespective of its direction of traverse. 

The mechanism of direction-bias is explained in the following section. 

At low amplitude (A=1E-5) excitation at the queried frequency, a wave moving from left to right 

meets the NLAM first, for which the frequency lies outside the band gap; causing the wave to 

propagate through it. As the frequency lies within the band gap of LRAM, the wave is attenuated 

by it and hence the wave undergoes an overall attenuation, across the device. 
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Figure 2. 15:    Direction-bias effect obtained in the designed DBWG from simulations. 

The same wave, at the same amplitude but traveling in opposite direction is now considered. As it 

encounters LRAM first, it is attenuated as it progresses along the waveguide. Moving right to left 

at high amplitude, the wave experiences an overall attenuation similar to the previous case. 

On applying excitation to propagate from left to right, the same wave at high amplitude is now 

observed. At this excitation frequency, it was shown that the wave experiences a partial 

attenuation at the same frequency but the propagated wave also demonstrates a shift to lower 

frequency (Ω~1.6). This propagated frequency lies clearly out of the band gap of the LRAM and 

hence is not attenuated by it. Thus, in this case, the wave propagates through the waveguide. As 

can be seen from Figure 2. 15 that although the amplitude of transmitted wave is small in 

comparison to that of the incident wave, the phenomenon is evident when the relative 

attenuations for each case are considered together. 
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Table 2. 1 shows the characteristics of the proposed direction-biased waveguide device, where 

‘yes’ and ‘no’ are indicative of relative propagation behavior. 

Table 2. 1:    Propagation characteristics of the proposed direction-biased waveguide design 

Configuration Amplitude (at Ω=1.9) Propagation 

Left to Right 

(NLAM first) 

Low No 

High Yes 

Right to Left 

(LRAM first) 

Low No 

High No 

 

The simulation studies in this section were performed keeping experimental viability in view. The 

stiffness and mass values are chosen to be manufacturable at the scale of an indoor lab 

environment.  

2.4 Device Implications 

The dispersion characteristics captured through perturbation techniques demonstrate modification 

in the response of locally nonlinear AM. This results in rich dynamic behavior such as amplitude-

dependent propagation of waves. 

LRAM has the ability to filter waves of the specific frequency band. By adding nonlinearity, 

amplitude-dependence is introduced. This enriched behavior can be exploited to engineer devices 

that allow amplitude-dependent selective filtering or act as acoustic switches. This helps to go 

beyond resonance and explore applications that cannot be displayed by LRAM which is limited 

by the linear response. 

For instance, the system with parameters given in can act as a filter for low amplitude wave at 

606 Hz. However, the device allows the wave at the same frequency to propagate at a higher 

amplitude. A strategically chosen combination of NLAM and LRAM can be used to obtain 
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direction-bias in wave propagation. This system can result in engineering an acoustic diode by 

acting as a one-way insulator. Also, employing such unidirectional wave propagating devices can 

find applications in areas demanding vibration isolation or reflection free media. 

By tuning these devices, it can be possible to shield an object from a specific range of querying 

frequencies and hence aid in avoiding detection. This results in acoustic cloaking. A pure non-

reflective boundary inherently carries much value as it possesses the ability to act as a sink, which 

can find applications in experimental investigations. 

2.5 Summary 

The objective of this section is to introduce and study the effect of including nonlinear stiffness in 

the local attachment of an otherwise LRAM system. This was achieved by studying the response 

of the cubic hardening type Duffing oscillator. The consequence of adding nonlinear stiffness in 

place of a linear system can result in complex behavior. This was validated through numerical 

investigation of Duffing oscillator’s response to the frequency of excitation and the direction of 

changing frequency. Lindstedt-Poincare perturbation approach was applied to a few 1-D mass-

spring systems to derive the dispersion behavior and postulate devices that may exploit the 

behavior indicated by the dispersion curves thus obtained. Numerical studies on NLAM chain 

exhibited interesting amplitude-dependent propagation phenomenon which was used to postulate 

a direction-bias waveguiding device. It was designed by employing an LRAM with the NLAM. A 

numerical simulation conducted on the DBWG design gave an indicative evidence of direction-

bias that will be used as the basis of experimental studies in the subsequent section.
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CHAPTER III 

EXPERIMENTAL VERIFICATION 

3.1 Introduction 

The simulation studies carried out in the previous chapter revealed varied amplitude-dependent 

phenomenon in wave propagation by the introduction of local nonlinearity. Of the several 

possible device implications, one was the acoustic diode. The evidence of direction-bias 

demonstrated through simulations motivated the attempts to investigate this behavior through 

experimental methods. 

An experimental rig similar to simulation model is constructed to enable investigations of the 

direction-bias phenomenon. An account of the test setup is presented describing the various 

components involved. The following sections present the process involved in design, 

manufacture, and characterization of test-articles and the waveguide bed. Experimental 

methodology is described and results obtained are analyzed. A contact-based approach is used to 

realize the desirable nonlinear stiffness in the local attachment. This method is described in detail 

and the respective program is provided in the appendix. 

3.2 Experimental Setup and Methods 

The objective of the experiment is to investigate the direction-bias effect across a specifically 

designed test-article. The experiment involves measurement of response across the test-article 

when an excitation is applied on one end. To test the direction bias, two different amplitudes and 

directions of excitation are required as per the mechanism detailed in Section 2.3.3. To enable this 

type of testing, an experimental rig was designed. Figure 3. 1 shows a schematic outline of the
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 experimental set up which enables propagation of waves along a waveguide. The waveguide is 

instrumented with transducers for measurement of response. The far end of the waveguide was 

tapered to minimize the effect of reflections. This oblique end is embedded in a sand-bed to 

ensure minimization of reflections from a free boundary. Suspension strings were used to provide 

periodic supports along the length to the rather slender waveguide assembly. Lateral line-support 

arrangement is made before and after the test-article to mitigate any mode conversion to 

transverse mode of the beam. 

The components of the system are illustrated in the Figure 3. 2 which shows the (a) shaker 

assembled with the waveguide with the test-article assembled at the location (e) at the interface of 

two sections similar to (g). The amplifier is located at (c) which receives the signals from the 

waveform generator (b). The lateral (f) and vertical suspension (d) supports are employed to act 

as a guide to the polycarbonate beam against twisting under self-weight. The vertical supports are 

equipped with special lead screw hooks for a fine leveling of the beam. Leveling of the 35 feet 

long beam was achieved with the help of laser level markers and bubble indicators. The location 

of the transverse supports and suspension points enable flexibility to mitigate interruptions from 

the bending modes of the beam. 

 

Figure 3. 1:    Schematic of the experimental setup. 
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Figure 3. 2:    Assembled experimental set up showing various components of the system. 

A Labworks ET-140 shaker, which is a moving armature type 110 lbf capacity electrodynamic 

shaker is used for actuation. The trunnion mounting base allows for positioning of shaker at 

different angles. The experimental set up demands horizontal orientation of shaker, because of the 

principle direction of waveguide assembly. The Keysight waveform generator is used to 

synthesize driving signals for shaker which are pre-amplified by Labworks pa-141 power 

amplifier before they are fed into it. The LW pa-141 is equipped with a gain control dial that 

enables up to 36 dB voltage gain. A gain setting of 20% is employed consistently in all of the 

experiments mentioned in this study. Single axis B&K accelerometers (4507 and 4508) are used 

to record the response of the points at locations mentioned earlier. Single frequency excitations 

are applied to make translation from acceleration provided by accelerometer to displacement 

straightforward since harmonic displacement and acceleration are related as  

𝑢 = −
�̈�

𝜔2
                                                                         (3.1) 

Where u is displacement and ω is the frequency of harmonic motion. These accelerometers have 

an input voltage of 5 V and a sensitivity of 10 mV/ms-2 (98.9 mV/g). 
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The NI USB 6009 DAC in conjunction with NI LabVIEW was employed for data acquisitions in 

the experiments in this study. LabVIEW was the primary data collection platform for all 

accelerometer measurements throughout. A sampling rate of 24 kSa/s collecting 24 k samples 

ensured a window of 1 s on the LabVIEW GUI. The GUI developed as part of investigations 

(Figure 3. 3) allows for migration of data with the flick of a toggle switch to excel for analysis of 

data. Acceleration time histories exported to excel files are processed using Matlab to obtain the 

frequency content to carry out analysis. In certain conditions, non-contact measurements are 

made with the Polytec PDV-100 Laser Vibrometer which, in conjugation with the ‘Polytec 

Vibsoft’ software enables us to export time history of the velocity of a point. The Vibrometer 

works on laser triangulation principle and requires a reflective surface to make a clean 

measurement which is ensured by using a reflective tape mounted on the surface in context. To 

obtain velocity history of the cantilevered tip mass, for instance, a small portion (5 mm2) is 

covered with reflective tape and the laser is shone on this area. Measurement of this type would 

otherwise have been not possible without interfering with the queried system. Velocity response 

was exported to excel and post-processed using MATLAB. 

 

Figure 3. 3:    LabVIEW interface developed for signal extraction. 
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3.2.1 Waveguide Assembly and Characterization 

The waveguide assembly is built with ¼” thick 8’x6’ raw polycarbonate plate cut into equal 

sections of 4” width, each 8’ long. Sections are provided with interface connection features for 

assembly using bolts. Assembled length of the finished waveguide assembly is 35 feet and it is 

suspended using nylon strings to keep it leveled. The first section is provided with a specific set 

of holes for interfacing it with the forcing device (shaker). The fixture used for transmission of 

force from shaker to the waveguide is shown in Figure 3. 4 with SolidWorks model and 

assembled setup. The accelerometer is mounted (c) on the shaker head as shown in the figure. 

The figure also illustrates the waveguide (d) attached to the shaker (a) via the fixture (b). 

 

Figure 3. 4:    CAD model and assembled fixture for transmission of force from shaker to the 

waveguide. 

Initial waveguide characterization experiments were performed, which involved correlation of 

bar-velocity, wavelength and effect of the sand boundary on reflections. The objective of this 

experiment was to experimentally determine velocity of an elastic longitudinal wave [65] in the 

waveguide and compare it against analytical value which is given by  
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𝑐 = √
𝐸

𝜌
                                                                                      (3.2) 

To experimentally obtain the wave speed, the time taken by a wave to traverse two points 

separated by a known distance is recorded. To do so, two accelerometers were placed 16 feet 

(4.88 m) apart on the waveguide with their principal direction of measurement along the 

longitudinal direction. A 1 kHz ‘single-cycle-sine-burst’ waveform is deployed by shaker and the 

time delay in the approach of the wave at respective transducers is recorded. Calculation of 

velocity is hence a straightforward task at this point. The experimentally obtained velocity of 

1400 ms-1 is found to be in good correlation with that obtained theoretically as 1350 ms-1 with a 

difference of ~3.5% being attributed to error from choosing exact times of arrival of the wave at 

transducers. Also, theoretically assumed density and elastic modulus are seldom exactly the same 

as in a physical system, giving rise to such discrepancy. However, small deviation as 3.5% can 

safely be disregarded as being within the general engineering tolerance of 5%. Figure 3. 5 

illustrates the arriving of signals in time while the mechanical properties of Polycarbonate per 

manufacturer test-article are enlisted in Table 3.1. 

Table 3. 1:    Mechanical properties of Polycarbonate 

Property Value 

Elastic Modulus (kg/m3) 2.2E9 

Density (kg/m3) 1200 

Bar Velocity (m/s) 1.35E3#  

#note that bar velocity is the theoretically calculated using material properties per Equation 3.2 
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Figure 3. 5:    Measurement of wave velocity for the waveguide assembly. 

For an applied excitation, the wavelength of waveguide must follow the equation given by the 

general dispersion relation for a continuous beam, 𝜆 =
𝜔

𝑐
 

To check the wavelength of the longitudinal wave, accelerometer readings were taken from points 

1” apart along the length of the beam when harmonic single frequency excitation was applied at 

one end of the waveguide. The acceleration history was recorded and displacement of each point 

at a given time instant was plotted against the position of the point along the waveguide. The 

wavelength obtained at the applied 1 kHz can be visually determined as seen in Figure 3. 6. This 

value of 1.376 m was found to be in good agreement with the theoretically determined 

wavelength of 1.35 m obtained from the known wave velocity and frequency of the wave. 
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Figure 3. 6:    Snapshot of displacement history of points separated along the length of the 

waveguide for a 1kHz continuous sine excitation. 

Sand boundary enforced on the far side of the waveguide was designed to provide a reflection 

free boundary conditions to neglect any interference with reflections. However, unlike in the case 

of Smith et al [17] where the interacting waves were flexural and waveguide was an aluminum 

beam of cross-section 6.35 mm x 12.7 mm, the case at hand is that of a longitudinal elastic wave 

traveling in a 6.35 mm x 101.1 mm polycarbonate plate. This reduction in the area of contact 

could be a cause for the ineffectiveness of this setting for the designed purpose. It, however, 

provides a free type boundary condition providing support in the vertical direction for an 

otherwise freely hanging thin beam highly susceptible to torsion due to its own weight. Figure 3. 

7 shows the time history recorded with an accelerometer placed at 4.5 m from shaker head for a 

single cycle 1 kHz sine excitation moving towards the boundary. The response from the sand 

boundary is compared with that of a fixed type boundary fabricated specifically for this test 

condition, shown in the figure.  
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Figure 3. 7:    Characterizing the behavior of employed boundary condition by comparing the 

acceleration response at a point on the waveguide.  

The focus of this part of the study is to experimentally investigate propagation behavior through a 

test-article designed to act as the mentioned Direction-Bias Waveguide (DBWG). With 

parameters selected based on the previously demonstrated numerical study, an LRAM and its 

nonlinear counterpart NLAM were manufactured out of polycarbonate and assembled with a 35 

feet long waveguide beam. Steady state longitudinal displacements along forcing direction are 

used to obtain amplitude ratios (D*) at different frequencies of excitation to analyze transmission 

behavior across the test-article.  

A ¼” thick polycarbonate plate with 4” width is used consistently for all parts (LRAM, NLAM, 

and waveguide) included in the experiment to keep assembly consistent and simple. One of the 

most important features of the test-article in context was local resonance phenomenon. This was 

done by removing mass from a polycarbonate plate, resulting in cantilever inclusions along the 

length. The dimensions of inclusion cantilevers are controlled in order to tune their resonance 
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frequency. Traditional thin beam theory was used to theoretically calculate natural frequency of 

the cantilever with tip mass to match with simulation parameters. To keep simulation results valid 

for experimental viability, both simulation and experimental parameters were planned 

simultaneously. 

Ensuring symmetry about the neutral axis and simultaneously keeping all metamaterial features in 

subwavelength range resulted in a design with four cantilevers along the width of test-article – 

hence, each unit cell was chosen to be 1” square with a cantilever inclusion. Also, a symmetric 

design would help counteract any moments associated with dynamics of the cantilevers. The test-

article, therefore, is divided into four horizontal rows on both NLAM and LRAM parts. Defining 

unit cell area is perhaps the first major step toward designing a metamaterial of this kind as this 

locks with it, the defining parameters such as k1. The values k2, m2, (m2/m1) and hence the band 

gap limits are interdependent. Further, m1, which has been fixed forms the starting point for these 

design parameters. 

The design of test-article proposed in the earlier section requires at high amplitude, to contain a 

no-propagation condition for Ω=1.9 for a wave traversing through the NLAM first and must 

allow Ω~1.6 to pass. Hence LRAM essentially behaves as a filter for the frequency of interest, 

irrespective of the amplitude of excitation. NLAM is the key to modifying the incident wave 

frequency due to its nonlinear stiffness. Hence, although both parts of the test-article are 

concurrently designed, the NLAM primary resonance frequency (ω0) is chosen as reference. 

Each design was validated by part modeling and modal analysis carried out in SolidWorks. On 

successful completion of design, the detailed drawings generated from SolidWorks were used for 

fabrication of the corresponding parts. The following sections describe the design and 

manufacturing of the test-article. 
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3.3 Test-article Design 

3.3.1 Translation of stiffness between system parameters and design. 

The two stiffness associated with the design of either test-articles are k1 and k2 being the stiffness 

of host, and local respectively. The chosen method derives the local stiffness from a cantilever 

beam. This stiffness k2 is obtained from the beam deflection relation as  

𝑘 =
3𝐸𝐼

𝐿3
                                                                         (3.3) 

 where I and L are correspondingly the area moment of inertia (about the neutral axis) of cross 

section and length of the cantilever beam. The method of finding k1 however is shown in Figure 

3. 8. The method consists essentially of dividing the portions around unit cells and treating each 

of them as stiffness. The stiffness represented as (1) and (2) in the figure are then combined based 

on their arrangement to obtain the effective stiffness, representative of the host structure. The 

geometry of the unit cell is altered to result in conformity with simulation parameters used in the 

previous chapter. 

 

Figure 3. 8:    Computing the host stiffness for an LRAM component. 
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3.3.2 Locally Resonant Acoustic Metamaterial (LRAM) 

With parameters derived from simulations, the LRAM part of test-article is designed with the 

following setting 

[𝑚1, 𝑚2, 𝑘1, 𝑘2, 𝑘𝑛] = [1.69𝐸 − 3, 0.46𝐸 − 3, 2.48𝐸6, 2.27𝐸4, 0] 

The method described in the previous section was used to obtain the stiffness, k1. With k1 

determined and unit cell size fixed at 1” square, the cantilever is designed to accommodate for 

spatial offsets within a unit cell for oscillation of tip mass. The local resonance frequency 

measurements were taken by recording the response of each tip mass with a laser Vibrometer and 

computing frequency content of the time history for an impact type excitation and  the obtained 

spread is shown in Figure 3. 11. The test-article consists of 4 rows and 12 columns of unit cells 

adding up to a total of 48 unit cells arranged along the length as shown in Figure 3. 10. 

LRAM test-article was cut using water jet cutter with no post cutting operation on unit cells as the 

tip mass was designed to be an integral part of the cantilever. Dimensions pertaining to LRAM 

test-article are shown in Figure 3. 9. The drawings generated from SolidWorks were exported to 

AutoCAD in order to generate the g-code for waterjet CNC machine. 
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Figure 3. 9:    Technical drawing for the LRAM test-article, showing the detailed dimensions. 

 

Figure 3. 10:    Manufactured LRAM test-article fabricated in a polycarbonate plate. 
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Figure 3. 11:    Experimentally recorded local resonance frequencies of LRAM. 

3.3.3 Nonlinear Acoustic Metamaterial 

The current method of realizing specified nonlinearity is based on varying the effective length of 

cantilever during oscillation [66]. This varying in length is achieved by placing a series of 

strategically placed rigid support points along the length of the cantilever in the form of a profile. 

The separation between the point of contact to the tip mass would become the effective length of 

the cantilever and as the contact point moves further away from the root, (closer to the tip) the 

effective length decreases. From the Figure 3. 12 (a), it can be seen that this length decreases with 

increasing amplitude of oscillating mass. During harmonic oscillation of the tip mass and 

advancing contact with the root profile, the system experiences hardening via this mechanism. 

The degree of nonlinearity can be varied to obtain a different set of points for the root profile 

wherein the greatest nonlinearity can be achieved for a flatter and least nonlinearity obtained for a 

zero radius profile. A schematic is shown in Figure 3. 12 (b) wherein the stiffness curve with and 

without contacting profile are shown for the same beam. 
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Other methods to realize nonlinearity employ magnetic materials, viscoelastic fluids, granular 

chain contacts and so on. However, the current method was used as it provides a means to do so 

with a simple structural method. In addition, another advantage of using this system is the ease of 

designing the required hardening. 

 

(a) 

 

(b) 

Figure 3. 12:    (a) Nonlinear hardening stiffness obtained through contact with root profile. (b) 

Method of locating coordinates of the support points using beam deflection theory [66]. 

Considering manufacturing limitations, the parameters were chosen as shown below. 

[𝑚1, 𝑚2, 𝑘1, 𝑘2, 𝑘𝑛] = [1.67𝐸 − 3, 2.84𝐸 − 3, 2.43𝐸6, 40382.45, 1𝐸11] 



 

56 

 

As suggested by the simulation parameters of amplitude, a nonlinearity constant of kn=1011 was 

required to obtain the desired direction-bias effect from the test-article. The value of kn is chosen 

such that at the low amplitude setting the hardening is kept within 5% of that at high amplitude. 

In other words, the cantilever has been designed to display linear stiffness at low amplitude and 

nonlinearity is triggered at the assumed higher bound of excitation amplitude. The method of 

obtaining the stiffness is described in detail by Spreemann et al [66]. The algorithm to obtain the 

root profile is shown in Figure 3.14 and the Matlab code used to obtain the root profile for a 

chosen nonlinear stiffness parameter is provided in APPENDIX-I. Root profile obtained for 

kn=1011 as obtained from the developed code is illustrated in the Figure 3. 13 (b), showing its 

intersection with the beam deflection curve without considering nonlinear effects. In the event 

where an integral root profile (as opposed to the present assembly) was planned, it was imperative 

to ensure that intersection of curves was kept into consideration for design. This is because if the 

minimum diameter of cut offered by the tool were more than 1 mm (refer to Figure 3. 13 (a)), the 

contact would not be initiated and hence the stiffness would be linear in the region of interest. 

 

(a) 
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(b) 

Figure 3. 13:    (a) Input stiffness curve with Linear and NLH force-displacement data and (b) 

Computed cantilever root profile for obtaining the predefined load-displacement curve. 

 

Figure 3. 14:    Flow chart to obtain root profile for pre-defined nonlinearity. 
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An FEA model of the designed cantilever with contact root profile was modeled using Abaqus, 

by modeling the cantilever as a 3D deformable body and the profile as a rigid body. The 

cantilever tip is applied with a 1 mm displacement in the direction to initiate contact, as illustrated 

in Figure 3. 15. Restoring force offered by the beam at the tip is computed from FEA simulations 

and it is plotted against the applied displacement to reconstruct the stiffness curve of the 

cantilever with rigid root profile. Since the cantilever tip is not 1-D, restoring force is obtained by 

taking the average of force computed on all the nodes of the cantilever tip face. The predefined 

load displacement curve used for generation of root profile is plotted against that obtained from 

FEA for comparison. Mesh density was increased until the deviation in restoring force obtained 

between successive mesh densities was 1.5% to ensure convergence. It was observed that the 

stiffness obtained from Abaqus were higher than that of pre-defined values. A stiffening behavior 

of the cantilever in Abaqus simulation case was observed as shown in Figure 3. 16. This can be 

attributed to the thin beam assumption made to compute the root profile. In fact, a deviation of 

3% in linear stiffness of the beam was observed by simulating the same case without introducing 

the rigid contact in Abaqus model, and by setting kn=0 in the analytical model. 

 

Figure 3. 15:    Cantilever beam modeled in Abaqus with root profile obtained from MATLAB. 
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Figure 3. 16:    Comparison of designed stiffness against simulation results obtained using 

Abaqus. 

The system demanded the addition of a heavy steel mass be attached as tip mass, to keep the mass 

ratio consistent with the defined parameters. The steel mass was machined with CNC milling, 

while the polycarbonate part was cut with the help of a CNC waterjet machine. Owing to the 

limitation imposed by the least diameter of cut achievable by water jet, (with abrasive) the 

profiles had to be fabricated separately and assembled in the unit cells after cutting the 

cantilevers. These were printed by using Selective Laser Sintering process and eventually 

assembled by press fitting to form the NLAM test-article. 

Figure 3. 18 shows the first mode shape of the NLAM cantilever in the quasi-linear regime. The 

profile insert was required to be suppressed in SolidWorks assembly to ensure the validity of 

linear stiffness for computation of modal frequency. Figure 3. 17 shows the dimensions of the 

NLAM test-article as used for fabrication. Note that the assembly procedure illustrated in Figure 

3. 19, for NLAM test-article demanded an interference fit. The assembly involved adhesion of 

steel mass to the cantilever and press fitting of the 3-D printed nonlinear profiles. 
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(a) 

 

(b) 

Figure 3. 17:    Technical drawings to achieve linear part of the NLAM test-article (a) 

Polycarbonate plate with cantilever features and (b) steel tip mass. 
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Figure 3. 18:    First mode shape of designed NLAM unit cell from SolidWorks. 

 

Figure 3. 19:    Assembly of the NLAM test-article. 
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Figure 3. 20:    Fully assembled NLAM test-article. 

Figure 3. 20 shows the finished NLAM test-article and Figure 3. 21 represents the spread of 

natural frequency of the manufactured oscillators. These measurements were taken by measuring 

the response of each tip mass with a laser Vibrometer and computing frequency content of the 

time history for an impact type excitation at tip mass. The non-contact method of measurement 

ensures no modification of the queried system arising from instrumentation, apart from the 

addition of reflective tape which measures well under 0.25% of the attached mass and is assumed 

insignificant enough to have an appreciable effect on measured frequency due to its mass. The 

final assembled DBWG test-article is shown in Figure 3. 22.  

 

Figure 3. 21:    Experimentally recorded local resonance frequencies of NLAM. 
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The assembled test-article is shown in the following figure. 

 

Figure 3. 22:    Assembled DBWG test-article. 

3.4 Discussion of Results 

3.4.1 Locally Resonant Acoustic Metamaterial  

The response of a point on shaker head is treated as input and a point 2” after test-article is 

regarded as output. The displacement history at these points is recorded with the accelerometer 

mounted along the center line of the waveguide. Displacement transmissibility (D*) is obtained 

by the ratio of output displacement amplitude and input displacement from the frequency 

spectrum. 

Experimental and theoretical D* values are plotted in Figure 3. 23 which demonstrates the 

bandgap and are in good correlation. A shift in the lower limit of bandgap was evident from the 

plots, which is due to the resonators with a natural frequency below the designed value. 

Simulation results indicating wave attenuation in this frequency are presented. 

Time histories and frequency spectra of four cases are shown in Figure 3. 24. the four frequencies 

chosen were, 1000 Hz, 1100 Hz, 1250 Hz and 1500 Hz, which are below, inside and above the 

experimentally obtained bandgap. 
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.  

Figure 3. 23:    Comparison of experimental and theoretical transmissibility curves for the LRAM 

test-article demonstrating the bandgap phenomenon. 

 

(a) 



 

65 

 

 

(b) 

 

(c) 
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(d) 

Figure 3. 24:    Time history and frequency spectrum of forcing frequencies within and outside 

theoretical bandgap. The excitations are (a) at 1000 Hz which is below the lower bound, (b) at 

1100 Hz which is within the bandgap, (c) at 1250 Hz also within bandgap and (d) 1500 Hz which 

is above the upper bound of the bandgap. 

3.4.2 Nonlinear Acoustic Metamaterial 

The D* values obtained by including only the NLAM specimen in the experimental set up were 

plotted (Figure 3. 25). There is an evident attenuation within the theoretically predicted bandgap 

(600-980 Hz) at low amplitude, where nonlinearities are not triggered. However, a peak is 

encountered at 800 Hz which can be attributed to a spread in the manufactured local resonances. 

This is because theoretical predictions assume identical local resonance frequency, which is not 

true in the experimental scenario. The concentration of local resonance below 600 Hz explains 

the early initiation of experimental bandgap compared to theoretical predictions.  
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Figure 3. 25:    Comparison of experimental and analytical transmissibility curves for the NLAM 

test-article demonstrating bandgap phenomenon in the linear regime. 

3.4.3 Direction-Biased Waveguide Device 

The DBWG test-article was obtained by joining the NLAM and LRAM test-articles in series. 

Similar procedure was followed to record the displacement responses and to obtain D*. The test-

article was subjected to amplitude and direction-bias testing. It requires the waves to be 

transmitted in two opposite directions along the test-article. The shaker, being a heavy component 

was kept fixed. Hence, the test-article was reversed to reverse the direction of the wave. The 

configuration where NLAM is to the left is chosen as a reference. Therefore, the configuration 

with NLAM to the left is considered to be forward and LRAM to the left is considered reverse. In 

both the directions, low and high amplitude excitations were applied. Thus, four cases were 

obtained for each frequency and transmissibility curves are shown in Figure 3. 26. The D* values 

were obtained from a set of three experiments and displayed a maximum deviation of 8% 

between successive attempts. 
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Figure 3. 26:    Transmissibility curves for the final test-article (NLAM and LRAM joined) for the 

four cases covering both directions and amplitudes of excitation. 

The design of specimen was based on the results obtained from simulations that display an 

amplitude-dependent direction bias in wave propagation. Therefore, a harmonic wave at Ω=1.9 

should experience attenuation along either direction at low amplitude. However, the same wave at 

higher amplitude propagates while traversing along left to right direction. At low amplitude, the 

wave attenuates.  

The manufactured specimen displayed considerable spread in frequency as compared to the 

design. Therefore, instead of querying at a single frequency, a range of frequencies in the 

neighborhood of predicted value was considered. 

The D* vs frequency plots obtained from the experiments is shown in Figure 3. 26. In the vicinity 

of 1080 Hz, an interesting trend can be observed. This region displays direction-bias as predicted 

by simulations, although at a lower frequency. This supports the notion of a larger relative 
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propagation compared to the other cases at the same frequency. A closer examination of the time 

signals and frequency spectra for these cases show 100% increase in propagation as may be 

expected depending on the numerical study. The amplitude and frequency plots for a comparative 

study are shown in Figure 3. 27. 

A strong attenuation arising from the LRAM bandgap is prominent in the ‘right to left’ case. In 

the neighborhood of the designed frequency of 1140 Hz (Ω = 1.9), there is a minor increase in D* 

in accordance with the direction-bias mechanism. This deviation from expected result could be a 

result of -  i) frequency spread; ii) manufacturing defects; iii) different hardening mechanism 

from designed.  

 

(a) 
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(b) 

 

(c) 
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(d) 

Figure 3. 27:    Response of the test-article at 1080 Hz, at different conditions - Low amplitude 

(a) Left to Right, (b) Right to Left and High amplitude (c) Left to Right, (d) Right to Left direction 

of traverse. 

 

Figure 3. 28:    Direction bias effect observed at 1080 Hz. 
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3.5 Summary  

The experimental set up was sized depending on the planned set of experiments. Detailed test-

article was designed and Abaqus simulations were conducted to verify the designed nonlinear 

stiffness of the NLAM part. Characterization of the waveguide, LRAM and NLAM were carried 

out and the individual bandgaps of the test-articles were measured. The bandgaps were observed 

in good agreement with theoretical predictions. However, deviations arising from fabrication 

process were observed. The proposed ‘direction-biased waveguide’ test-article was assembled 

and tested. Significant trend supportive of proposed direction-bias effect was observed at a 

frequency lower than designed value. A minor direction bias was observed in close vicinity of 

expected frequency. 

. 
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CHAPTER IV 

INERTANT ACOUSTIC METAMATERIALS 

4.1 Introduction 

Acoustic metamaterials exhibit unusual dynamic properties not readily realizable in natural or 

other man-made structural materials. Modernization of the society and human demands have 

placed a great demand on obtaining materials with improved and diverse performance 

characteristics. In such a scenario, it is inevitable to explore diverse combinations of established 

materials or even include new elements. The inerter is one such example of a new element 

capable of displaying a modified dynamic mass. The effect of adding the inerter in various 

configurations of discrete element lattice is investigated in the subsequent sections, to explore the 

behavior of the resulting ‘Inertant Metamaterials’.  

Lumped parameter model with locally resonant attachments [12] is discussed first, as this forms 

the basis of all subsequent analysis. The method is applied to a few configurations of inertant 

metamaterials with the inerter included locally and in host material (lattice). Both series and 

parallel combinations of the inerter and stiffness element are considered to expand the domain of 

study. Their characteristics such as bandgap width, the degree of attenuation, nature of 

propagation modes and limiting behavior are investigated and compared against locally resonant 

AM. Results obtained in the form of dispersion relation, are used to postulate wave manipulation 

devices. The potential to realize novel dynamic behavior is demonstrated by postulating a 

complete longitudinal wave inhibitor using linear combinations of inertant AM configurations.
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4.2 Analytical Models 

An arbitrarily chosen unit cell along an infinite 1-D mass-spring lattice is considered and assumed 

to be the jth unit cell. By assuming a harmonic forcing of frequency ω, the equations of motion for 

this unit cell are set up. The system is considered to be linear and hence the displacement 

response for the mass is assumed to be harmonic. The analysis model is illustrated by applying to 

an LRAM chain as detailed in [12]. The inertant metamaterial cases that follow are represented 

similarly as a monoatomic mass-spring model with each unit cell consisting of an ‘effective 

mass’. The effective mass is conceived in order to capture the effect of attaching a second internal 

degree of freedom. This method is applied to mass-spring chains having inerter introduced first in 

local attachment and then in the lattice. The inerter is combined with the stiffness in parallel and 

series attachments. By including an inerter with lattice spring requires the modeling procedure to 

be slightly modified and an effective stiffness is introduced. The following models are considered 

for analysis in the following 

a. Inertance in local attachment  

i. Only inertance 

ii. Inertance in parallel 

iii. Inertance in series  

b. Inertance in lattice  

i. Inertance in parallel 

ii. Inertance in series 

LRAM is one of the limiting cases for all the models mentioned above, except the ‘only 

inertance’ case. 
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4.2.1 Locally Resonant Acoustic Metamaterial and its Effective-Mass Model 

  

(a) 

 

(b) 

Figure 4. 1:    (a) Discrete mass-spring lattice model for a locally resonant acoustic metamaterial 

and (b) its effective-mass model. 

This section provides a brief introduction to the general method used for subsequent analytical 

explorations of the inertant metamaterials. Consider an infinite mass-in-mass chain as shown in 

Figure 4. 1 (a) which represents an LRAM that consists of locally resonant inclusions within a 

host material. A 1-D lattice chain is considered and displacements only along the same direction 

are regarded. A single unit cell consists of external masses (𝑚1) connected by springs of stiffness 

(𝑘1) representing the host material and internal masses (𝑚2) connected by an internal spring of 
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stiffness (𝑘2) to the external mass to form a resonating local attachment. This 1-D lattice is 

represented as a monoatomic chain with each mass designated by an effective mass. This 

effective mass is required to capture the effect of both the degrees of freedom. The equations of 

motion for the monoatomic chain and the original lattice are set up for an assumed harmonic 

forcing. From the argument that to be representative of each other, both these systems should 

have the same displacement response for the known applied forcing. This condition is applied to 

obtain the expression of effective mass given as 

𝑚𝑒𝑓𝑓
𝐿𝑅𝐴𝑀 = (𝑚𝑠𝑡 +

𝑚2 𝛺
2

(1 − 𝛺2)
)                                                          (4.1) 

where 𝑚𝑠𝑡 = 𝑚1 + 𝑚2 is the static mass and Ω = 𝜔 𝜔0⁄  is the normalized excitation frequency 

with 𝜔0 = √𝑘2 𝑚2⁄  being the local resonance frequency. A parametric setting of 

[𝑚1, 𝑚2, 𝑘1, 𝑘2, 𝐿] = [10, 9, 100, 10, 1] is used for generating the plots in Figure 4. 2. Querying 

for a negative effective mass (Figure 4. 2 (a)) in Equation 4.1 results in the condition given by  

1 < 𝛺 <  √1 + 𝜃21                                                                    (4.2) 

where 𝜃21 = 𝑚2 𝑚1⁄  is the mass ratio. Setting up the equations of motion for the jth unit-cell, the 

dispersion relation for the LRAM can be obtained as 

𝑞𝐿 = 𝛼 + 𝑖𝛽 = cos−1[ 1 −
𝑚𝑒𝑓𝑓

𝐿𝑅𝐴𝑀ω2 

2𝑘1
] = cos−1[ 1 −

𝑚𝑒𝑓𝑓
𝐿𝑅𝐴𝑀Ω2 

2𝑚1
]                                   (4.3) 

where 𝑞𝐿 is the normalized wavenumber and 𝛼 and 𝛽 are its real and imaginary parts 

respectively. The real and imaginary parts of wavenumber are plotted against the normalized 

excitation frequency in Figure 4. 2 (b) and (c). As can be seen from these plots and the expression 

for the wavenumber in Equation 4.3, the frequency range of effective-mass negativity 

corresponds to the wavenumber becoming purely imaginary (𝑞𝐿 = 𝑖𝛽) leading to attenuation of 

harmonic waves of frequencies within this range, where 𝛽 is termed the attenuation factor. Thus 

the frequency range of effective-mass negativity corresponds to a bandgap for harmonic wave 

propagation with the LRAM. There are two propagating modes – acoustic and optical modes 
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respectively below and above the bandgap while an additional bandgap region appears above the 

optical mode due to the discretization employed to obtain the lattice model for the LRAM. The 

cut-off frequency at which the discretization bandgap begins is given by Equation 4.4. This is 

obtained by querying for values of ω that result in complex value for qL from Equation 4.3. 

𝜔𝑐𝑜
𝐿𝑅𝐴𝑀 = 2√

𝑘1

𝑚𝑒𝑓𝑓
𝐿𝑅𝐴𝑀                                                                       (4.4) 

              

          (a)                                                                          (b) 

 

(c) 

Figure 4. 2:    (a) Normalized effective-mass, and (b) real and (c) imaginary parts of the 

wavenumber versus normalized excitation frequency for the LRAM. 
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Thus the effective-mass model provides a simple means to characterize the longitudinal elastic 

wave propagation behavior of AM configurations having different local attachments or lattice 

elements. This approach is used for various inertant AM configurations to obtain dispersion 

behavior. In each case, the effect of inertance on propagation modes and bandgaps along with any 

special interactive conditions and device implications are examined.  

4.2.2 Inertant Acoustic Metamaterial Configurations 

The dispersion behavior of acoustic metamaterial configurations having inerters in either local 

attachments or in the lattice is examined using the effective-mass model for their discrete element 

representations. For each case, the effective-mass, real and imaginary parts of the wavenumber 

and the variation of propagation characteristics with the value of inertance is obtained and 

discussed. The LRAM is considered as a reference configuration to compare relative 

performance. For all configurations considered, a parametric setting of [𝑚1, 𝑚2, 𝑘1, 𝑘2, 𝐿] =

[10, 9, 100, 10, 1] is used.  

Three different configurations with inerters in the local attachment are considered. These are the 

wholly inertant (WI), parallel inertant (PI), and series inertant (SI) attachment cases. 

4.2.2.1 Wholly Inertant Attachment 

 

Figure 4. 3:    Acoustic metamaterial with purely inertant local attachments. 

The wholly inertant attachment configuration is shown in Figure 4. 3. Throughout this study, a 

circle within a quadrant as shown in the figure is used as the symbol for the inerter. In 
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comparison to the locally resonant case, the internal spring is replaced by an inerter of inertance, 

𝐽. Setting up equations of motion for this model, its effective-mass can be derived as 

𝑚𝑒𝑓𝑓
𝑊𝐼 = (𝑚1 +

J 𝑚2

𝑚2 + J
)                                                                        (4.5) 

It must be noted that the presence of an inerter in a harmonically excited system is identical to 

that of a spring with a negative stiffness proportional to the square of the excitation frequency 

since the force across an inerter  

𝑓𝐽 = 𝐽(𝑎2 − 𝑎1) = −𝜔2𝐽(𝑢2 − 𝑢1)                                                   (4.6) 

where 𝑎𝑖 and 𝑢𝑖 are the acceleration and displacement at terminal 𝑖 of the inerter. The dispersion 

relation for the effective-mass model for the WI case is given by the following equation 

𝑞𝐿 = 𝛼 + 𝑖𝛽 = cos−1[ 1 −
𝑚𝑒𝑓𝑓

𝑊𝐼 ω2 

2𝑘1
] = cos−1[ 1 −

𝑚𝑒𝑓𝑓
𝑊𝐼 Ω2 

2𝑚1
]                                   (4.7) 

where 𝑞𝐿 is the normalized wavenumber, and Ω = 𝜔 𝜔1⁄  for this case is the normalized 

frequency with 𝜔1 = √𝑘1 𝑚1⁄  which is the lattice frequency. 

It is noted that the effective-mass is frequency-independent and is only a function of the inertance 

𝐽 and the lattice and attachment masses. Depending on the value of 𝐽, the inerter augments 

participation of the local attachment mass with the lattice mass. Figure 4. 4 (a) shows the 

variation of 𝑚𝑒𝑓𝑓 𝑚1⁄ with 𝐽 𝑚1⁄ . As the value of 𝐽 increases, 𝑚𝑒𝑓𝑓 tends to 𝑚1 + 𝑚2 indicating 

the complete participation of attachment mass 𝑚2 with the lattice for a very large value of 𝐽.  
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   (a)                                                                         (b) 

 

(c) 

Figure 4. 4:    (a) Normalized effective-mass versus normalized inertance and (b) real and (c) 

imaginary parts of wavenumber versus normalized excitation frequency. 

The presence of a wholly inertant local attachment shifts the dispersion curve of the lattice model 

to lower frequencies depending on the value of inertance, 𝐽 in the attachment. The shifts in the 

real and imaginary parts of the wavenumber with increasing value of 𝐽 are shown in Figure 4. 4 

(b) and (c) respectively. For a very small value of 𝐽, the system behaves as a monatomic lattice 

with a lattice mass of 𝑚1 while for a very large value of  𝐽, the system switches to a monatomic 

lattice with a lattice mass of 𝑚𝑠𝑡. Setting the condition for a purely imaginary wavenumber, the 

cut-off frequency arising from the lattice discretization can be obtained as 

𝜔𝑐𝑜
𝑃𝐼 = 2√

𝑘1

𝑚𝑒𝑓𝑓
𝑃𝐼                                                                        (4.8) 

Thus, by varying the value of 𝐽, the acoustic metamaterial with wholly inertant local attachments 

can behave as a low-pass filter with a varying cut-off frequency given by Equation 4.8 due to the 

tunable participation of the attachment mass in the lattice dynamics.  
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4.2.2.2 Parallel Inertant Attachment 

 

Figure 4. 5:    Acoustic metamaterial with local attachments having inerter in parallel with the 

spring. 

An acoustic metamaterial lattice model with inerters in parallel to the spring in the local 

attachment is shown in Figure 4. 5. This configuration is referred to as the parallel inertant 

attachment case. The effective-mass for this case is obtained as 

𝑚𝑒𝑓𝑓
𝑃𝐼 = [𝑚𝑠𝑡 −

𝑚2
2

𝑚2 + (𝐽 −
𝑚2

Ω2 )
]                                                 (4.9) 

where Ω = 𝜔 𝜔0⁄  for this case is the normalized excitation frequency with 𝜔0 = √𝑘2 𝑚2⁄  which 

is the local resonance frequency. As can be noted in Figure 4. 6 (a), the presence of the inerter in 

parallel to the internal spring both shifts to lower frequencies as well as diminishes the frequency 

range of effective-mass negativity with increase in the value of 𝐽. For a very small value of 𝐽, the 

system behaves essentially as an LRAM with an attachment mass of 𝑚2, while for a very large 

value of 𝐽, the behavior tends to that of a monatomic lattice with a lattice mass of 𝑚𝑠𝑡, almost 

entirely eliminating the local resonance bandgap. This behavior is established in the plots for real 

and imaginary parts of the wavenumber in Figure 4. 6 (b) and (c). For different values of 𝐽, the 
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variation of upper and lower limits of the locally resonant bandgap with mass ratio is shown in 

Figure 4. 6 (d). The upper and lower limits of the locally resonant bandgap for this case are 

𝜔𝑈
𝑃𝐼 = √

𝑘2𝑚𝑠𝑡

𝑚1𝑚2 + 𝐽𝑚𝑠𝑡
= 𝜔0√

𝑚2𝑚𝑠𝑡

𝑚1𝑚2 + 𝐽𝑚𝑠𝑡
                                                (4.10) 

𝜔𝐿
𝑃𝐼 = √

𝑘2

𝑚2 + 𝐽
= 𝜔0√

𝑚2

𝑚2 + 𝐽
                                                              (4.11) 

                 

(a)                                                                (b) 

                

      (c)                                                                  (d) 

Figure 4. 6:    (a) Normalized effective-mass, (b) real and (c) imaginary parts of the wavenumber 

versus normalized excitation frequency and (d) mass ratio vs bandgap limits for various values of 

inertance for acoustic metamaterial with parallel inertant attachment. 
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While the lower limit of the locally resonant bandgap (𝜔𝐿
𝑃𝐼) is at the shifted local resonance 

frequency which moves to lower frequencies due to the presence of the inertance 𝐽, the upper 

limit, which was √(1 +  𝑚2 𝑚1)⁄ 𝜔0 for the LRAM is now moved to a lower frequency given by 

Equation 4.11. It is therefore possible to tune the bandgap to a narrow low-frequency bandwidth 

by using the parallel inertant attachment without adding a lot of parasitic mass to the structure. 

Since a high inertance can be achieved with a relatively low device mass, this approach is 

desirable when targeted low-frequency filtering is required without a high attachment mass. 

4.2.2.3 Series Inertant Attachment 

 

Figure 4. 7:    Acoustic metamaterial with local attachments having inerter in series with the 

spring. 

The lattice model for an acoustic metamaterial having local attachments with inerter in series with 

the internal spring is shown in Figure 4. 7. In this case, the limiting behavior is similar to the 

LRAM for a very high value of 𝐽 and tends to that of a monatomic lattice with a lattice mass of 

𝑚1 when 𝐽 becomes very small. The effective-mass plots in Figure 4. 8 (a) depict this trend and 

are given by relation 

𝑚𝑒𝑓𝑓
𝑆𝐼 = [𝑚1 +

1

(
1
𝐽) + (

1 − Ω2

𝑚2
)

]                                                                (4.12) 
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    (a)                                                                         (b) 

                 

(c)       (d) 

Figure 4. 8:    (a) Normalized effective-mass, (b) real and (c) imaginary parts of the wavenumber 

versus normalized excitation frequency and (d) mass ratio vs bandgap limits for various values of 

inertance for acoustic metamaterial with series inertant attachment. 

The real and imaginary parts of the wavenumber versus normalized excitation frequency for the 

series inertant attachment case are shown in Figure 4. 8 (b) and (c). As 𝐽 tends to a very large 

value, the dispersion behavior tends to that of the LRAM. With decreasing value of 𝐽, the 

bandgap location shifts to higher frequencies, while its extent also diminishes. The upper and 

lower limits of the locally resonant bandgap for this case are given by 
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𝜔𝑈
𝑆𝐼 = 𝜔0√1 +

𝑚2

𝑚1
+

𝑚2

𝐽
                                                          (4.13) 

𝜔𝐿
𝑆𝐼 = 𝜔0√1 +

𝑚2

𝐽
                                                                      (4.14) 

The corresponding mass ratio vs bandgap limits are given in Figure 4. 8 (d). Thus for a very small 

value of 𝐽, a relatively narrow bandgap at a higher frequency can be engineered.  

Two acoustic metamaterial configurations are explored with inerters in the lattice structure. In the 

first case, the inerter is present in parallel to the lattice spring while in the second it is present in 

series. The first is referred to as the parallel inertant lattice (PL) case, while the second is referred 

to as the series inertant lattice (SL) case.  Both cases are considered with locally resonant 

attachments just as in the LRAM. Therefore, the LRAM acts as the baseline reference for the 

performance of these cases. Whereas the local attachment is modeled using the effective-mass, an 

effective stiffness parameter is utilized to capture the effect of the inertance in the lattice. The 

dispersion behavior for both cases is discussed in the following sections.  

4.2.2.4 Parallel Inertant Lattice 

 

Figure 4. 9:    Acoustic metamaterial with lattice structure having inerter in parallel with 

stiffness. 

As can be seen from Figure 4. 9, this case is close to an LRAM with an inerter addition made in 

the lattice in parallel to the host stiffness, k1. To simplify the modeling and follow the 
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aforementioned analytical method consistently, the internal feature containing inerter and spring 

are modeled as an effective stiffness as shown in Figure 4. 9.  

 

                

(a)     (b) 

Figure 4. 10:    (a) Parallel inertant SDOF system and (b) its equivalent effective-stiffness model. 

By enforcing the displacement response (u) for both models in Figure 4. 10 to be the same under 

a given harmonic force excitation, the effective-stiffness can be derived as  

𝑘𝑒𝑓𝑓
𝑃𝐿 = 𝑘1 − 𝐽𝜔2 = 𝑘1 − 𝐽Ω2𝜔0

2                                                           (4.15) 

This effective-stiffness in Equation 4.15 is frequency-dependent and shows that under static 

loading conditions when 𝜔 → 0, the stiffness of the lattice is governed by the spring’s stiffness, 

𝑘1.  It can be noticed from Equation 4.15 that as the excitation frequency is increased for a system 

with fixed J and k1, the effective stiffness undergoes softening. By selecting specific parameters, 

the effective stiffness can be forced to become negative. The added effect of negative mass is 

studied subsequently. Following the mentioned analytical method yields the dispersion relation in 

terms of the defining parameters as 

𝑞𝐿 = 𝛼 + 𝑖𝛽 = cos−1[ 1 −
𝑚𝑒𝑓𝑓

𝑃𝐿 ω2 

2𝑘𝑒𝑓𝑓
𝑃𝐿 ] = cos−1[ 1 −

𝑚𝑒𝑓𝑓
𝑃𝐿 Ω2𝜔0

2 

2𝑘𝑒𝑓𝑓
𝑃𝐿 ]                                (4.16) 

where the effective-mass (𝑚𝑒𝑓𝑓
𝑃𝐿 ) is same as that for the LRAM and is given by Equation 4.1. It is 

evident from Equation 4.16 that the dispersion relation is dependent not only on effective mass, 

but also on effective stiffness. It should be noted that traditional LRAM exhibited unusual 

behavior in the area of negative effective mass. However, due to the presence of an effective 



 

87 

 

mass, the behavior of this type of a lattice would be dependent not only on effective mass, but 

also on effective stiffness. Figure 4. 11 shows the behavior of the normalized effective-stiffness 

(𝑘𝑒𝑓𝑓
𝑆𝐿 /𝑘1) and normalized effective-mass (𝑚𝑒𝑓𝑓

𝑆𝐿 /𝑚1) versus normalized excitation frequency for 

different values of  𝐽. As 𝐽 increases, the effective-stiffness becomes negative at a lower 

excitation frequency. This is directly evident from Equation 4.15. As the effective-mass arises 

due to the locally resonant attachment, its behavior is not affected by the inertance. Hence, 

effective-mass of this configuration has the same behavior as the LRAM. The parameter 

(𝑚𝑒𝑓𝑓
𝑃𝐿 𝑘𝑒𝑓𝑓

𝑃𝐿⁄ ) in Equation 4.16 is representative of the combined effect of effective-stiffness and 

effective-mass on the bandgap location and degree of attenuation. It should be noted that the 

degree of attenuation is characterized by the attenuation factor, 𝛽.  This parameter is normalized 

by multiplying it by 𝜔0
2 = 𝑘2 𝑚2⁄  to define an effective-lattice parameter (𝜔0

2 𝑚𝑒𝑓𝑓
𝑃𝐿 𝑘𝑒𝑓𝑓

𝑃𝐿⁄ ) that 

characterizes the dispersion behavior and is plotted against normalized excitation frequency for 

𝐽 𝑚1⁄ = 1 and 𝐽 𝑚1⁄ = 100 in Figure 4. 12 (a) and  (b) respectively. The bandgap regions 

correspond to the frequency ranges in which  𝑚𝑒𝑓𝑓
𝑃𝐿 𝑘𝑒𝑓𝑓

𝑃𝐿⁄  is negative when either effective-mass 

or effective-stiffness alone is negative. From the corresponding plots for the real (𝛼) and 

imaginary (𝛽) parts of the wavenumber (𝑞𝐿) for 𝐽 𝑚1⁄ = 1 and 𝐽 𝑚1⁄ = 100 in Figure 4. 12 (c) 

and (d) respectively, it can be seen that the double-positive region yields a propagation mode with 

a positive group velocity (𝑑Ω 𝑑𝑞𝐿⁄ ), whereas the double-negative region (for 𝐽 𝑚1⁄ = 100 in this 

case) results in a propagation mode with a negative group velocity, which suggests a regressing 

wave envelope with a progressing wave phase for narrow-banded harmonic wave packets. It is 

also interesting to note that the attenuation factor, 𝛽 is unbounded at both the upper and lower 

bounds of the low-frequency bandgap for the 𝐽 𝑚1⁄ = 100 case with a tunable non-zero minima 

within the bandgap. This behavior indicates that, for an appropriate value of 𝐽, the degree of 

attenuation everywhere in the bandgap could be tuned to exceed a desired threshold.  
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   (a)                                                                               (b) 

Figure 4. 11:    (a) Normalized effective-stiffness and (b) effective-mass normalized excitation 

frequency for different values of inertance for the parallel inertant lattice configuration. 

            

     (a)                                                                              (b) 
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   (c)                     (d) 

Figure 4. 12:    Normalized effective lattice parameter versus normalized excitation frequency for 

(a) J/m1=1and (b) J/m1=100 along with (c) real and (d) imaginary parts of the wavenumber 

versus normalized excitation frequency for these cases for the parallel inertant lattice 

configuration. 

4.2.2.4.1 Special Cases 

Two special cases for 𝐽 𝑚1⁄  are also considered for the parallel inertant lattice as shown in Figure 

4. 13 in order to emphasize the tunability of their propagation characteristics in order make the 

two bandgap frequency regions continuous. These two values of 𝐽 𝑚1⁄ are obtained by setting the 

crossover frequency for 𝑘𝑒𝑓𝑓
𝑃𝐿  from positive to negative to coincide with the lower and upper 

frequency bounds for the bandwidth of effective-mass negativity. 

𝐽𝐿𝐵
𝑃𝐿 = {𝐽|𝑘𝑒𝑓𝑓

𝑃𝐿 (Ω = Ω𝐿) = 0}                                                                (4.17) 

𝐽𝑈𝐵
𝑃𝐿 = {𝐽|𝑘𝑒𝑓𝑓

𝑃𝐿 (Ω = Ω𝑈) = 0}                                                                (4.18) 

where Ω𝐿 = 1 and Ω𝑈 = √1 + 𝜃21 are the lower and upper bounds of the effective-mass 

negativity for the locally resonant attachment as given by Equation 4.2. Applying the conditions 

in Equations 4.17 and 4.18, the values of 𝐽 corresponding to these two special cases for the 

chosen lattice parameters are obtained as 
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𝐽𝐿𝐵
𝑃𝐿 =

𝑘1

𝜔0
2 = 90                                                                            (4.19) 

𝐽𝑈𝐵
𝑃𝐿 =

𝑘1

𝜔0
2(1 + 𝜃21)

= 47.4                                                                (4.20) 

As m1 = 10, the normalized inertance 𝐽 𝑚1⁄  for the cases in Equation 4.19 and 4.20 are 9 and 

4.74 respectively. The effective-lattice parameter (𝜔0
2 𝑚𝑒𝑓𝑓

𝑃𝐿 𝑘𝑒𝑓𝑓
𝑃𝐿⁄ ) is plotted against the 

normalized excitation frequency for the two values of J as shown in Figure 4. 13  and the 

corresponding plots for real and imaginary parts of the wavenumber are shown in Figure 4. 13. 

Although the system behaves as a low-pass filter in both the cases, it exhibits distinct 

propagation. Choosing  𝐽 = 𝐽𝐿𝐵
𝑃𝐿 gives 𝐽 𝑚1⁄ = 9, and since occurrence of 𝑘𝑒𝑓𝑓

𝑃𝐿 = 0 is tuned to 

coincide with the lower bound of effective-mass negativity (Ω = 1), a propagation band with 

double-negativity is obtained immediately above the double-positive propagation band. Once the 

normalized excitation frequency is above the upper bound of effective-mass negativity , effective-

mass turns positive while the effective-stiffness remains negative. This causes the ratio of 

effective mass and stiffness to remain negative and results in a stop band for all higher 

frequencies. However, it must be noted that as the excitation frequency becomes very large, the 

value of the effective lattice parameter (𝜔0
2 𝑚𝑒𝑓𝑓

𝑃𝐿 𝑘𝑒𝑓𝑓
𝑃𝐿⁄ ) asymptotes to zero from the negative 

side. Therefore, the degree of spatial attenuation for higher frequencies is drastically diminished. 

For 𝐽 𝑚1⁄ = 4.74 where 𝐽 = 𝐽𝑈𝐵
𝑃𝐿  since occurrence of 𝑘𝑒𝑓𝑓

𝑃𝐿 = 0 is tuned to coincide with the upper 

bound of effective-mass negativity (Ω = √1 + 𝜃21 = 1.38), the region of double-negativity is 

absent. Above the propagation band that corresponds to the double-positive region, first 𝑚𝑒𝑓𝑓
𝑃𝐿  is 

negative while 𝑘𝑒𝑓𝑓
𝑃𝐿  is positive within the bandgap frequency range for the original LRAM. When 

excitation is above the upper bound of effective-mass negativity, 𝑘𝑒𝑓𝑓
𝑃𝐿  turns negative while 𝑚𝑒𝑓𝑓

𝑃𝐿  

switches to being positive resulting in a continuous stop band. Nonetheless, the degree of spatial 

attenuation for high frequency excitations is drastically diminished in this case too due to a 
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similar asymptotic behavior as before. For obtaining a continuous higher frequency bandgap, 

𝐽 = 𝐽𝑈𝐵
𝑃𝐿  and 𝐽 = 𝐽𝐿𝐵

𝑃𝐿 are the values of the inertance that provide the lowest and highest cut-off 

frequencies respectively. The PL configuration could thus enable low-pass acoustic filters with 

possibility of propagation modes having negative group velocity. 

      

(a)                                                                      (b) 

        

     (c)                                 (d) 

Figure 4. 13:    Normalized effective lattice parameter versus normalized excitation frequency for 

(a) J/m1=9 and (b) J/m1=4.74 along with (c) real and (d) imaginary parts of the wavenumber 

versus normalized excitation frequency for these cases for the parallel inertant lattice 

configuration. 
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4.2.2.5 Series Inertant Lattice 

 

Figure 4. 14:    Acoustic metamaterial with lattice structure having inerter in series with stiffness. 

The second configuration with inerter in the lattice that is considered is the series inertant lattice 

(SL) case shown in Figure 4. 14. The inerter, in this case, is in series connection with the spring 

in the lattice. Similar to the PL case, locally resonant attachments are retained and hence the 

effective mass is given by the same expression (Equation 4.1). The effective stiffness is computed 

for this case as well, resulting in the expression given in Equation 4.21. The effective-stiffness for 

the series inertant lattice case is obtained as 

𝑘𝑒𝑓𝑓
𝑆𝐿 =

𝑘1

1 −
𝑘1

𝐽𝜔2

=
𝑘1

1 −
𝑘1

𝐽Ω2𝜔0
2

                                                              (4.21) 

The normalized effective-stiffness, 𝑘𝑒𝑓𝑓
𝑆𝐿 /𝑘1 and normalized effective-mass, 𝑚𝑒𝑓𝑓

𝑆𝐿 /𝑚1 are plotted 

against normalized excitation frequency (Ω) for different values of 𝐽 in Figure 4. 15. As suggested 

by Equation 4.21, the effective-stiffness becomes unbounded at Ω = √𝑘1 (𝐽𝜔0
2)⁄ . For excitation 

frequencies below this value, the effective-stiffness is negative while it is positive above. It 

asymptotes to 𝑘𝑒𝑓𝑓
𝑆𝐿 /𝑘1 = 1 for a very high excitation frequency. The combination of effective 

stiffness and mass as seen in Figure 4. 16 suggests an ultra-low frequency bandgap. Dispersion 

behavior for a low (𝐽 𝑚1⁄ = 1) and higher (𝐽 𝑚1⁄ = 20) value of inertance are discussed first. 

Plots for the effective lattice parameter (𝜔0
2 𝑚𝑒𝑓𝑓

𝑃𝐿 𝑘𝑒𝑓𝑓
𝑃𝐿⁄ ) and real and imaginary parts of the 
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wavenumber versus normalized excitation frequency for these two values of 𝐽 𝑚1⁄  are shown in 

Figure 4. 16. In both cases, two disjoint bandgap regions are obtained among which one extends 

from the long wavelength limit to a first cut-on frequency. The location of this cut-on frequency 

and nature of the pass bands are dependent on the frequency at which 𝑘𝑒𝑓𝑓
𝑃𝐿  transitions from a 

negative to positive value. If this transition lies above (as for 𝐽 𝑚1⁄ = 1) the local resonance 

frequency of the attachments, a double-negative pass band is interspersed between the two stop 

bands while if it is below (as for 𝐽 𝑚1⁄ = 20), both pass bands are of the double-positive type as 

is borne out in Figure 4. 16 (c) and (d). The effective lattice parameter asymptotes to 𝜔0
2𝑚1/𝑘1 =

0.11 as the excitation frequency becomes very large. This ensures the upper double-positive 

propagation band extends to higher frequencies until the lattice discretization bandgap is 

encountered. 

    

    (a)                                                                           (b) 

Figure 4. 15:    (a) Normalized effective-stiffness and (b) effective-mass versus normalized 

excitation frequency for different values of inertance for the series inertant lattice configuration. 
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   (a)                                                                        (b) 

           

       (c)                                                                         (d) 

Figure 4. 16:    Normalized effective lattice parameter versus normalized excitation frequency for 

(a) J/m1=1and (b) J/m1=20 along with (c) real and (d) imaginary parts of the wavenumber versus 

normalized excitation frequency for these cases for the series inertant lattice configuration. 

4.2.2.5.1 Special Cases  

It can be stated that by choosing specific J for the present case, the ultra-low frequency band gap 

can be expanded by joining adjacent regions as seen in Figure 4. 17. Similar to the previous case, 

the same conditions are applied for the SL to obtain values of 𝐽 for limiting cut-on frequencies for 

the ultra-low frequency bandgap. The same values of J as the PL case are obtained. The cut-on 

frequency for the contiguous ultra-low frequency bandgap is highest (Ω𝑐𝑜 = √1 + 𝜃21) for 
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𝐽 𝑚1⁄ = 9 (i.e. 𝐽 = 𝐽𝐿𝐵
𝑆𝐿), and lowest (Ω𝑐𝑜 = 1) for 𝐽 𝑚1⁄ = 4.74 (i.e. 𝐽 = 𝐽𝑈𝐵

𝑆𝐿 ), as can be noted 

from the plots for the effective lattice parameter versus normalized excitation frequency in Figure 

4. 17 (a) and (b).  

              

(a)                   (b) 

              

  (c)                                                                          (d) 

Figure 4. 17:    Normalized effective lattice parameter versus normalized excitation frequency for 

(a) J/m1=9 and (b)J/m1=4.74 along with (c) real and (d) imaginary parts of the wavenumber 

versus normalized excitation frequency for these cases for the series inertant lattice 

configuration. 

The dispersion behavior for these values of 𝐽 are shown in Figure 4. 17 (c) and (d). Although the 

bandgap width is greater for the 𝐽 𝑚1⁄ = 9 case, the attenuation factor, 𝛽 remains bounded and 
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relatively small over the entire bandgap width when compared to the 𝐽 𝑚1⁄ = 4.74 case for which 

𝛽 tends to become unbounded at the cut-on frequency. The propagation region above the bandgap 

for the 𝐽 𝑚1⁄ = 4.74 case consists of two distinct modes due to the presence of a double-negative 

region immediately above the cut-on frequency. This presents the possibility of employing SL 

configuration to enable ultra-low-frequency filtering devices. 

4.3 Device Implications 

The dispersion characteristic for acoustic metamaterial configurations with inerters in the local 

attachment or in the lattice could provide a means of enriching the tunable bandgap behavior 

obtained in LRAMs without the addition of large local attachment mass. Thus inertant acoustic 

metamaterials show promise of overcoming limitations of mass ratio encountered in LRAMs. 

This could have implications for realizing devices such as tunable narrow-banded low-frequency 

acoustic filters and high-pass filters with ultra-low frequency bandgaps that cover the long 

wavelength limit. Low-pass filters with the possibility of propagation modes having negative 

group velocity may be possible too.  

Using combinations of the inertant acoustic metamaterial configurations is considered in this 

study. Further, devices having unusual dynamic characteristics could be postulated. For example, 

the device implications of cascading the parallel inertant lattice (PL) configuration and the series 

inertant lattice (SL) configuration in succession is considered. With reference to the discussion in 

Section 4.2.5, consider a PL configuration with 𝐽 𝑚1⁄ = 4.74 and an SL configuration with 

𝐽 𝑚1⁄ = 9 that are connected in sequence. The PL behaves as a low-pass filter attenuating 

harmonic waves with frequency above the local resonance frequency of attached mass and the SL 

as a high-pass filter attenuating harmonic waves with frequencies below Ω = √1 + 𝜃21 = 1.378. 

This results in an overlap in their bandgap frequency ranges. As can be seen from the plots in 

Figure 4. 18 (a) for the attenuation factor, (β) for PL and SL, the overall stop band for this device 

covers all excitation frequencies leading to it act as a complete longitudinal elastic wave inhibitor. 
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Choosing 𝐽 𝑚1⁄ = 4.74 for both PL and SL results in the low and high frequency bandgaps 

becoming continuous at Ω = 1 where β is also unbounded for the two configurations. By 

exploring new combinations of inertant metamaterial configurations and tuning the inertance in 

the various sub-structures, the degree of attenuation over the entire frequency range may be 

optimized. Also, more interesting characteristics for specialized applications may be realized. The 

ability to realize such inertant acoustic metamaterials with omnipresent bandgap may result in 

designing materials with the ability to absorb mechanical vibrations and shock. 

      

     (a)                        (b) 

Figure 4. 18:    Attenuation factors for the longitudinal wave inhibitor with combined parallel 

and series inertant lattice configurations having (a) J/m1=4.74 for PL and J/m1=9 for SL and (b) 

J/m1=4.74 for both PL and SL. 

A comparison table displaying the major characteristics of all the cases taken under consideration 

are presented as follows.  
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Table 4. 1:    Key propagation characteristics of various inertant configurations. 

 No Inerter Inerter In Local Attachment Locally Resonant, Inerter In Lattice 

Characteristics LRAM 

Wholly 

Inertant 

Parallel 

Inertant 

Series 

Inertant 

Parallel 

Inertant 

Series 

Inertant Combinationa  

𝑚𝑒𝑓𝑓 < 0  x      

𝑘𝑒𝑓𝑓 < 0 x x x x    

𝑣𝑔
b< 0 x x x x  x  

Multiple 

unbounded 𝛽 

locations x x x x    

BRc, LPc, HPd, 

ULFe BR LP LP, BR BR LP, BR 

HP, ULF, 

BR 

LP, HP, ULF, 

BR, No 

Propagation 

a Combination of Series and parallel lattice configurations cascaded in series.  

b 𝑣𝑔is group velocity.  

c BR Band Rejection 

d LP Low Pass Filter 

e HP High Pass Filter 

f ULF Ultra Low-Frequency Filter  

 

4.4 Summary 

The longitudinal elastic wave propagation characteristics of inertant acoustic metamaterial 

configurations having inerters either in the local attachments or in the lattice were investigated 

using effective models for their discrete element lattice representations. Inerters, which are 

mechanical elements that provide a force response proportional to the relative acceleration across 

them, have been shown to have relatively low device mass in comparison to the dynamic mass 

presence they display due to their inertance. While the presence of inerters in the local 
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attachments was modeled using an effective-mass for the lattice, the presence of inerters in the 

lattice was modeled using an effective-stiffness. This approach provides a simple and efficient 

means to characterize the behavior of inertant acoustic metamaterials relative to the LRAM. 

Three configurations involving inerters in the local attachment were considered. For the wholly 

inertant local attachment case, it was found that presence of the inerter provided a means to alter 

the dynamic mass participation in the lattice. When implemented in lattice structures, tuning the 

value of the inertance alters the cut-off frequency for the discretization bandgap thereby changing 

its behavior as a low-pass filter. By employing parallel inertant attachments, it was found that 

narrow-banded selective low-frequency filtering can be achieved without the need for a bulky 

local mass addition. This could enable targeting specific low frequencies for removal from a 

wideband incoming wave. On the other hand, a configuration with inerter attached in series to the 

internal spring assigns the bandgap to a narrower band at a higher frequency compared to the 

locally resonant case when inertance is small. whereas its behavior tends to the locally resonant 

case for larger inertance.  

Two configurations having inerters in the lattice along with purely resonant local attachments 

were also considered. The presence of the inerter in the lattice was modeled using an effective 

stiffness, while the effective-mass due to the attachment remained the same as that for the locally 

resonant case. It was found that the location, extent of the bandgaps and the propagation 

characteristics were dependent on an effective lattice parameter, which was proportional to the 

ratio of the effective-mass to the effective-stiffness. Negative and extreme stiffness was found to 

be attainable for these configurations depending on the frequency of excitation. In the case of the 

parallel inertant lattice, it behaves like a low-pass filter if tuned values of inertance are used to 

produce a continuous higher frequency bandgap. The low-frequency propagation mode in the 

frequency range where both effective-mass and effective-stiffness are negative displays a 

negative group velocity. In the case of the series inertant lattice, tuning the inertance could create 

a high-pass filter with an ultra-low frequency bandgap covering the long wavelength limit 
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without the use of grounded elements. A propagation mode with negative group velocity can also 

be obtained in this case by engineering a double-negative region within the high-pass region. 

Aforementioned device characteristics for the standalone inertant acoustic metamaterial 

configurations that have been considered in this study. In addition, combinations of different 

inertant configurations with tuned inertance may be employed to further enrich the dynamic 

characteristics. For instance, deploying a tuned parallel inertant lattice configuration in succession 

with a series inertant lattice configuration could create a complete longitudinal elastic wave 

inhibitor that attenuates the entire range of frequencies of interest. Practical and scalable designs 

for inerters with low device mass and precise response could thus enable the realization of 

extremely broadband vibration and shock isolators using this approach. There is a possibility of 

attaining particularly designed dispersion characteristics which are uniquely suited to specific 

scenarios. By exploring optimized and multi-dimensional combinations of acoustic metamaterial 

designs with inerters motivates their further research and development. Their potentially 

transformative applications include mechanical wave manipulators, protective structures, 

transducers and multifunctional structures. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

The rapid pace of modernization in the recent past has laid great emphasis on adaptive materials. 

Engineering new materials has transcended to the structural level, giving rise to metamaterials. 

The properties displayed by such materials are unique to their configurations and can display 

behavior that are not readily available in natural materials. The most widely explored acoustic 

metamaterials are the locally resonant type, which employ periodic resonating attachments in 

order to impart wave-insulating capability designed for certain frequencies. These and many other 

AM employ local resonance or instabilities in local features. However, the capabilities of AM to 

act as wave manipulators can be enhanced by the introduction of new local configurations that 

display varied dynamic phenomena. 

In this context, AM configurations with nonlinear and inertant inclusions within host structures 

have been explored. Discrete mass-spring lumped parameter models based on effective mass and 

stiffness were used for analytical and numerical studies in order to obtain dispersion 

characteristics of these AM. Further, numerical and experimental demonstrations of device 

implications stemming from these studies were accomplished. A summary of major contributions 

is as follows. 

A perturbation technique was applied to an infinite 1-D lattice with cubic nonlinear local 

attachments and shifts in dispersion curves was observed. The dispersion curves indicate that 

hardening type cubic nonlinearity causes the lower bound of the bandgap to shift upwards. 
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Simulation study performed in Abaqus, by modeling a discrete mass-spring system demonstrated 

amplitude-dependent behavior introduced due to the local nonlinearity. Bandgap shifts as 

predicted by the perturbation technique was demonstrated through the simulations. This 

suggested the capability of the NLAM to act as an amplitude dependent acoustic filter. Further, 

the ability of NLAM to alter the frequency content of a wave traversing through it was observed 

through simulations. It was observed that the frequency content of the transmitted wave was at a 

lower frequency compared to that of the incident wave. Based on this frequency shift 

phenomenon and combining it with the bandgap of an LRAM, a direction-biased waveguide 

device was devised. The direction bias effect was demonstrated through simulations using finite 

1-D mass-spring chains.  

Based on the numerical study, a test-article consisting of LRAM and NLAM counterparts is 

manufactured to verify the direction-bias effect through experiments. The test-article was 

fabricated by employing periodically attached cantilever beams with a specifically modified 

geometry to realize the required nonlinearity through contact. A numerical routine to generate the 

root profile to obtain predefined nonlinear stiffness response was developed in Matlab. The 

NLAM part of the test-article faced significant manufacturing challenges, which resulted in 

resorting to a hybrid fabrication process that involved milling, waterjet cutting, and 3-D printing. 

The characteristic band gap of LRAM and NLAM were experimentally obtained and compared 

with theoretical predictions. The bandgaps of the test-articles displayed apparent deviations from 

theory, due to the intricacies involved with design and realization of a pre-defined nonlinearity. 

Experimental testing of the assembled test-article revealed an interesting feature in the vicinity of 

1080 Hz, wherein amplitude, and frequency dependent transmission was observed to be coherent 

with the simulations. Although at a lower frequency, this is an indication of direction-bias 

behavior. Further examination of the transmissibility curves demonstrated minor direction bias in 

the designed frequency range.  
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In addition to nonlinear attachments, inertant configurations were investigated and theoretically 

obtained dispersion relations were presented. Interesting wave manipulation phenomena were 

observed and device implications based on these findings have been made. Of the various 

possible devices, the most interesting was the series inertant lattice (SL) configuration which 

provides promising wave filtering capacity at ultra-low frequencies. By combining a low-pass 

and a high-pass filtering device, a resultant configuration was proposed which shows the potential 

to act as an insulator for a very large frequency band. 

5.2 Recommendations 

The experimental setup and methods involved in this study were designed with the objective of 

capturing direction-bias effect in longitudinal elastic waves using nonlinear stiffness in periodic 

local attachments. Nonlinearity in itself has been dreaded in history for being unpredictable and 

chaotic. In experiments that deal with such behavior, the need to devise a systematic setup and 

specific experimental techniques to capture the behavior cannot be exaggerated. 

The method adopted in this study, to realize nonlinearity involves physical contact, which may 

lead to higher order phenomena such as local wavelet generations. This may interfere with the 

required effect and thus, systems deriving nonlinearity from alternative methods such as material 

nonlinearity need to be explored. If the experimental setup is designed based on the assumed 1-D 

approximations, it could create an opportunity to study only the phenomenon of interest and 

discard any interrupting effects which complicate data analysis. Although the exhaustive 

development of experimental setup and instrumentation improve the capability to test nonlinear 

interactions, the improvement in modeling techniques is important. Lumped parameter model 

studies were used to establish the direction-bias effect and subsequent experimental setup was 

designed. To this end, there is a scope to employ much robust simulation methods which consider 

higher order effects and go beyond 1-D approximations. The present study focusses on the 

application of only NLH type nonlinearity. However, there are various other types of 
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nonlinearities such as – softening, a combination of hardening and softening, and quadratic 

nonlinearities. These can be combined in various different configurations and explored further. 

The study on inertant acoustic metamaterials, on the other hand, is in the early stages of inception 

and there is definitely scope to build on the lines of simulations to study the many frequency-

dependent phenomena. The present study is limited to the conception of inertant AM through 

lumped parameter models, however, the viability of realizing these devices for a real-world 

scenario can add value to this research area. This can be augmented by the capabilities of 

advanced manufacturing technologies such as additive manufacturing, self-assembling structures, 

and MEMS. Another possibility may be, to study the combined effects of inerters and nonlinear 

inclusions. The combinations explored in this study were limited to two sections – 

LRAM/NLAM and SL/PL, however, devices consisting of multiple units can be investigated in 

order to obtain effects that depend on the hierarchy of assembly. The ability to investigate such 

intricacies of the field will definitely open up a wide range of possible applications that are not 

yet within the bounds of imagination. 
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APPENDIX-I 
MATLAB CODE TO COMPUTE THE CANTILEVER ROOT PROFILE FOR PRE-DEFINED 

NONLINEARITY 

 
clear; 
%% Initialize beam geometry parameters %% 
b=6.35e-3;                  %width 
d=3.7e-3;                   %depth 
E=2.2e9;                    %modulus of elasticity of polycarbonate 
I=(b*d^3)/12;               %area moment of inertia 
m2=2.74e-3;                 %tip mass 
w0=2*pi*600;                %natural frequency of resonator 
kn=1*1e11;                  %nonlinearity parameter 
k2=w0^2 *m2;                %beam stiffness 

  
dy =2e-5;                   %delta y for discretization 
y=(0:dy:1e-2)';      
f=k2*y + kn.*y.^3;          %equation (1) in [66] 
f_lin=k2*y;                 %equation (1) in [66] when kn=0 

  
    figure(1)               %plot the force vs displacement curve 
    plot(y,f,y,f_lin,'-.') 
    grid minor 
    xlabel 'displacement (m)' 
    ylabel 'force (N)' 
    ax = gca; 
    ax.XAxisLocation = 'origin'; 
    ax.YAxisLocation = 'origin'; 
    xlim([-1e-3 1e-3]) 
    legend('NLH (k_n=1E11)' 'Linear 

(k_n=0)','location','Northeast','Fontsize',12) 
    set(gca,'fontsize',12) 

   
%% obtain discrete linear stiffness %% 
a=1; 
ki=0; 
while(a<=length(f)); 

     
        if(a<length(f)) 
        ki= (f(a+1,1)-f(a,1))/(y(a+1,1)-y(a,1)); 
        else 
         ki=(f(a,1)-f(a-1,1))/(y(a,1)-y(a-1,1)); 
        end 
    K(a,1)=ki; 
    a=a+1; 
end 
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L=(3*E*I/K(1,1))^(1/3); 
a=1; 
while(a<=length(K)) 
 r = roots([-1,6*L, -9*(L^2), ((4*(L^3)) - ((12*E*I)/K(a,1)) )]);  

   % Get all the roots for equation (6) in 

[66] 
r = r(imag(r)==0);     % Save only the real roots 

X(a,1)= min(r);                                                   

% divisions (at x mm) along the length  

% MUST be     % less than L 
 partitions = X(a,1); 
a=a+1; 
end 

  
i=1; 
F=f(i,1); 
x=X(i,1); 
PX=X; 
PY(1,1) = -F/(6*E*I)*((L-x).^3 - 3*L^2*(L-x) + 2*L^3);       

%equation (3) in [66] 
i=i+1; 
        while(i<=length(X)) 
        F=f(i,1); 
        xi=X(i-1,1);   
        yi=PY(i-1,1); 
        x=X(i,1); 
        PY(i,1)=yi+((F/(4*E*I).*xi*(L-xi)) + (1.5.*yi./xi))*(x-xi) + 

((F/(6*E*I))*(3*L-2*x-x)*(x-xi).^2); 
        i=i+1; 
        end 

         

  

  
%% Plot the deflection curve of a beam of Length L with known tip 

deflection... 
%  ...and compare with nonlinear response producing cantilever root 
%  profile %% 

  
Length = L;                       %Length of beam 
maxdeflection=1.0e-3;             %max deflection at tip (in one 

direction) 
position=0;                       %position along the length 
increment=1; 
while(position<=Length) 
Actualposition(increment,1) = position; 
deflection(increment,1) = (maxdeflection * (position^2) / (2* 

Length^3)) * (3*Length - position); 
position=position+0.1e-3; 
increment=increment+1; 
end 
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% Plot the beam deflection curve against root profile 
figure(2) 
plot(1000*PY,1000*PX,'-',1000*deflection,1000*Actualposition,'-.'); 
grid off 
axis([0 3.5 0 20e0]) 
xlabel('position from root (mm)','Fontsize',12); 
ylabel('position along length (mm)','Fontsize',12); 
legend('root profile' 'deflection 

curve','location','southeast','Fontsize',12) 
set(gca,'fontsize',12) 
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