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are ubiquitous in the environment and can potentially impact human health. The main 
objective of this study was to qualify and quantify PAH accumulation (especially the 
seven potentially carcinogenic PAHs (cPAHs)) throughout the Oklahoma City Metro 
Area and to investigate factors that could be related to higher accumulation. Factors 
included building use (residential, commercial, and school) and roofing type (asphalt, 
metal, and tar). To determine if cPAH concentrations were higher in soil receiving direct 
rooftop runoff, paired runoff receiving contact samples and reference samples (not 
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presence of certain PAHs, a digestive model was applied to give an indication as to what 
percent of the overall PAHs become bioavailable if contaminated soil is ingested.   

Overall 77% of the locations analyzed had levels of cPAHs above the USEPA’s 
soil screening level (SSL). Benzo[a]pyrene (BaP), a known carcinogenic PAH, appeared 
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    CHAPTER I 
 

 

INTRODUCTION 

Pollution is a problem that human beings are faced with every day. Some forms of 

pollution are more obvious and can be directly observed, while others are more subtle: non-point 

source pollution, byproducts of point source pollution or simply pollution events not brought to 

the public’s attention. One such pollutant that is common in the environment is a group of 

compounds known as polycyclic aromatic hydrocarbons (PAHs). This type of molecule consists 

of two or more benzene rings, with variations of low molecular weight (LMW) compounds 

having fewer than four rings and high molecular weight (HMW) PAHs having four or more 

ringed structures (Kim et al. 2013). Within these classifications there are alternant PAHs with six-

carbon benzene rings, and non-alternant PAHs with both six-carbon rings and five-carbon rings 

(Huang and Penning 2014). There are upwards of 100 of PAHs found in the environment, and 

these compounds are almost always found as mixture (ATSDR 1995), and within a soil setting, 

these mixtures are likely to contain varying levels of both non-carcinogenic and carcinogenic 

PAH compounds (CCME 2010). Basic PAHs consist of benzene rings, but there are also 

substituted PAHs that include additional components such as added elements, methylsulfones, 

alkyl groups, hydroxy- and other groups (CCME 2010). These additional elements may increase 

or decrease the carcinogenic potential of the PAH molecule (CCME 2010).  For example, the 

methylation of chrysene strongly increases its carcinogenic potential in rodents and the 

methylation of benz[a]anthracene can also increase carcinogenic activity depending on the site of 

the alkyl-substitution (CCME 2010).  
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PAHs arise in the environment from many different activities, both natural and man-

created, but generally from impartial combustion events. According to the CDC, PAHs occur in 

gasoline and oil, as well as in coal (2009).  They also occur in the environment as a result of 

combustion of these fuels, and from the burning of other items like garbage, wood, or tobacco 

(Zhang and Tao 2009).  Dominguez et al. (2010) found that there is a correlation between 4-6 

ringed PAHs and close proximity to industrialization as well as an elevated affinity of PAHs to 

soils with high soil organic carbon. In 2004, the atmospheric emissions of the 16 priority PAHs in 

the entire world were thought to be 520 Gg per year with North America being the fourth most 

PAH polluting world region, and the United States being the third most PAH polluting country 

overall with 32Gg per year PAH emissions (Zhang and Tao 2009). Globally, biofuel accounts for 

the highest release of PAHs and BaP into the environment with wild fires as a second, non-

anthropogenic contributor, while in the United States, consumer products and traffic oil are the 

biggest contributors to atmospheric PAHs and waste incineration, biofuel, and traffic oil are the 

biggest contributors to BaP, in that order (Zhang and Tao 2009). 

Among the PAHs widely distributed in the world, there are currently 16 priority PAHs 

that are more heavily studied and monitored by the EPA (Campro 2010, Keith and Telliard 1979).  

These priority PAHs include naphthalene, acenapthylene, acenapthene, fluorine, phenanthrene, 

anthracene, fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, 

benzo[k]fluoranthene, benzo[a]pyrene (BaP), dibenz[a,h]anthracene benzo[ghi]perylene, and 

indeno[1,2,3-cd]pyrene (Zang and Tao 2009). These, along with other PAHs, can stem from quite 

specific sources and may be categorized as originating from one of three activities: petrogenic, 

pyrogenic, or biogenic (Wang et al. 2014). Petrogenic sources of PAHs include oil spills and fuel 

sources, while pyrogenic PAHs arise through high heat processes and combustion of fuels 

(Boehm 2010). Many petrogenic PAHs are differentiated because of added compounds resulting 
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in alkylation or oxygenation (Huang and Penning 2014). The temperature at which these PAHs 

may form can be indicative of both the extent of alkylation as well as whether the products are 

petrogenic or pyrogenic. For example, when phenanthrene is petrogenic it is formed at lower 

temperatures (100-150ºC) and is also more heavily alkylated, but at higher temperatures (400ºC 

and higher) the alkylation decreases and it has been formed in a pyrogenic manner (Boehm 2010).   

  Urban areas are prone to higher levels of anthropogenic pollution as compared to 

surrounding rural areas because of concentrated traffic and industrialization.. Human exposure 

usually occurs with multiple PAHs at a time and not a single PAH because they are found in 

mixtures (ATSDR 1995). While PAHs occur in the environment through many vectors, 

Jongeneelen (1994) cited five main routes in which humans may be exposed through 

environmental means to PAHs: inhalation of tobacco smoke, inhalation of PAHs in outdoor air, 

exposure (dermal, ingestion, and inhalation) from polluted water, oral exposure through food 

contaminated with PAHs, exposure in urban areas with heavy industrial influences (dermal, 

ingestion, and inhalation). Within the United States, most PAH exposure is due to inhalation of 

smoke from tobacco or wood burning or contaminated air as well as eating contaminated foods 

(ATSDR 1995).   

Out of the 16 priority PAHs there are seven noted carcinogenic PAHs , ranging from 4-6 

rings: benz[a]anthracene, benzo[a]pyrene (BaP), benzo[b]fluoranthene, benzo[k]fluoranthene, 

chrysene, dibenz[a,h]anthracene, and indeno[1,2,3-cd]pyrene (USEPA Regional Screening Levels 

2015). Generally any of the common PAHs of four or more rings have a higher carcinogenic 

potential ((Huang and Penning 2014). Mumtaz and George (1995) reported that there were noted 

developmental and reproductive effects on animals that had been orally exposed to PAHs and 

minimum risk levels were adapted for a small percentage of PAHs. Of the carcinogenic PAHs, 

BaP is often used as comparative analyte (WHO 1984, Huang and Penning 2014) as this is a 
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known, and well-studied animal and human carcinogen.  One such study showcasing BaP showed 

that mice orally exposed to high dosages (100mg/kg/day) of BaP, were found to have a negative 

impact on reproductive tissues including fewer seminiferous tubular cells which lead to the 

production of testosterone as well as DNA damage (Jeng et al. 2015).  

Oral exposure is a major route of exposure in humans. One route of oral exposure seen as 

a main-route for non-smokers is through food (Kim et al. 2013). Within the United States, 

estimates show that food is a major route of exposure for humans, accounting for 97% of intake 

when compared collectively with air and water (Hattermer-Frey and Travis 1991).  In this same 

study, the general U.S. population was also estimated to have a daily intake of 2.2µg BaP 

(Hattermer-Frey and Travis 1991).     

Food preparation accounts for a majority of this, but crops grown or fish living in 

contaminated environments also account for much of this potential exposure (Huang and Penning 

2014). PAHs are unlikely to bioaccumulate within stock animals used for human consumption, 

even if grazing on contaminated vegetation occurs (CCME 2010), but because PAHs occur from 

combustion events, the acts of grilling, frying, or smoking meats leads to pyrolysis of fat which 

can contribute dietary PAHs (Huang and Penning 2014). Limiting the contact of food with flames 

and avoiding highly fatty meats decreases likelihood of increased PAH contamination (CCME 

2010). A study in Catalonia, Spain, indicates that the mean dietary intake for an average man per 

day of cPAHs normalized for BaP equivalency is 0.248µg/day and BaP intake is about 

0.128µg/day, leaving the risk of cancer from this intake at 1 in 20 million (Falco et al. 2003). 

Falco et al. (2003) also reported the main contributors to PAHs in diet were from cereals, meat, 

and oils and fats in order of greatest to least impact. These estimates are much lower than the 

estimate of 2.2µg/day by Hattermer-Frey and Travis (1991), but levels of PAHs do vary across 

countries and landscapes. Menzie et al. (1992) have predicted a range of oral exposure for 
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carcinogenic PAHs in the U.S. to be from 1-5µg/day with an increased risk for individuals 

consuming larger quantities of meat.    

Food exposure is one vector of PAH ingestion, but another less obvious exposure is 

through the ingestion of soil, which is potentially more problematic and frequent in children than 

adults, as children are likely to consume soil or practice hand-to-mouth behaviors before the age 

of 6 (Moya et al. 2004). Menzie et al. (1992) suggest that an individual consuming 50mg/day (a 

value that may be applied to soil consumption in children) may have the potential to ingest 0.003-

0.3µg cPAHs per day with a median ingestion of 0.06µg/day. While Menzie et al. (1992) 

predicted the median ingestion of cPAHs to be 0.06µg/day, this was based off of soil in urban 

populations with a median soil concentration of 1.10 mg/kg dry weight. Levels of PAHs in soils, 

both carcinogenic, and non-carcinogenic, do vary across areas of land use, urbanization, and 

across countries. In a review of soils across varying landscapes, Nadal et al. (2004) show a 

potential variation from 0.05 mg/kg (dry weight)-300,000 mg/kg (dry weight). These sites varied 

based on use and included urban soils, rural soils, agricultural soils, and industrial soils across 

Europe and Asia. The estimation of ingestion of soil by Menzie et al. may be protective for adults 

in certain areas, but people living in areas with higher levels of soil contamination, who have the 

potential for greater soil-ingestion could be at a higher risk for contact with the carcinogenic 

PAHs.
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CHAPTER II 
 

POLYCYCLIC AROMATIC HYDROCARBON ACCUMULATION IN SOIL RECEIVING 

ROOFTOP RUNOFF 

2.1 Abstract 

 Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants that are 

ubiquitous in the environment and can potentially impact human health. The main objective of 

this study was to qualify and quantify the degree of PAH accumulation (especially the seven 

potentially carcinogenic PAHs (cPAHs)) throughout the Oklahoma City Metro Area and to 

investigate factors that could be related to higher accumulation. Factors included building use 

(residential, commercial, and school) as well as roofing type (asphalt, metal, and tar). To 

determine if cPAH concentrations were higher in soil receiving direct rooftop runoff paired 

runoff receiving contact samples (samples directly under drip lines and downspouts, serving as a 

catchment for rooftop runoff) and reference samples (not receiving rooftop runoff) were 

evaluated from each site. In addition to determining the presence of certain PAHs, a digestive 

model was also applied to give an indication as to what percent of the overall PAHs become 

bioavailable if contaminated soil is ingested.   

Overall 77% of the locations analyzed had levels of cPAHs above the USEPA’s soil 

screening level (SSL). Benzo[a] pyrene (BaP), a known carcinogenic PAH, appeared above SSL 

in 74% of the samples, with the 95th percentile of runoff contact samples at 880 ppb. Contact soil 

samples surrounding schools had the highest significant values of cPAHs contamination within 

building usage, with 95th percentile concentrations of cPAH for soil receiving rooftop runoff at 
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140,000 ppb. Schools and commercial contact soils were found to have significantly 

elevated levels of cPAHs and BaP as compared to residential contact soils. Roof type did not vary 

in contributing to cPAH or BaP levels in contact samples. There was also a significantly greater 

concentration of cPAHs and BaP for contact soils within each sampling subset as compared to 

their paired reference samples.    

 A digestive model was used to provide an indication of bioavailability of cPAHs and BaP 

in select soils exhibiting levels of cPAHs greatly exceeding the USEPA SSL. This model 

indicated that some of the soils with the highest concentrations of cPAHs and BaP had less than 

3% bioavailability. Values of some samples were still more than 100 ppb bioavailable, but there 

was a great decrease in concentration of cPAHs within the bioavailable fraction. Because many 

high concentrated cPAH soils were found in school areas, school sites should be further 

investigated for contamination. While these sites may not show high potentials for bioavailability, 

the magnitude of cPAH concentrations in soil is still a cause for concern in certain samples sites 

as the concentrations of bioavailable cPAHs found at these sites still exceed the SSL for whole 

soil. Further testing at school sites is recommended to explore the overall trend of highly 

concentrated cPAHs in both contact and reference soils, as well as to gain better knowledge about 

any trends in bioavailability of cPAHs in school areas. While small percentages of bioavailable 

cPAHs were found, there is still a risk for children who are most likely to be exposed to this 

group of compounds.   

2.2 Introduction 

Polycyclic aromatic hydrocarbons (PAHs) are common environmental contaminants 

(World Health Organization 1987), and have been found to exist in the soil at higher 

concentrations at urban sites than rural sites (Mumtaz and George 1995). Accordingly, 

Dominguez et al. (2010) found that there is a correlation between 4-6 ringed PAHs and close 
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proximity to industrialization as well as an elevated affinity of PAHs to soils with high soil 

organic carbon. PAHs can be released to the environment directly since they are present in motor 

oil and coal tar or they can be formed within the environment following impartial combustion 

events and released through vehicular exhaust and power plant emission (Baek et al. 1991, CDC 

2009, National Research Council 1983, Hangebrauck et at. 1967). In a study conducted by 

Lorenzi et al. (2011) urban street dust was analyzed for PAH content and was found to contain a 

variety of PAHs.  The concentrations correlated with the proximity to vehicle emissions, indicting 

a pattern where the most elevated concentrations of PAHs are near heavy vehicular traffic. PAHs 

have also ben found to be also present in tar used in both roofing and parking lot maintenance 

(Mumtaz and George 1995, Simon and Sobieraj 2006).  

While there are upwards of 100 forms of PAHs, 54 have been found at various hazardous 

waste sites (Mumtaz and George 1995).  Exposure to these PAHs in both animals and humans 

occurs via inhalation, ingestion, or dermal exposure, with degrees of oral absorption varying 

based on the type of PAHs present (Mumtaz and George 1995).  When exposure to PAHs occurs 

it is nearly always to a mixture of PAHs and not a single compound (ATSDR 2015, CDC 2009, 

World Health Organization 1987).  After exposure events, PAHs may be biodegraded by the body 

and potentially changed into substances that are more harmful than the original hydrocarbons 

causing mutagenesis (ASTDR 2015, National Research Council 1983).  Seven PAHs have been 

identified as possibly or potentially carcinogenic PAHs or cPAHs (Mumtaz and George 1995). 

These PAHs have 4-6 rings including benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, 

benzo[k]fluoranthene, chrysene, dibenz[a,h]anthracene, and indeno[1,2,3-cd]pyrene (USEPA 

2016).  cPAHs also fit into a group known as high molecular weight compounds and are often 

categorized as such for risk assessment purposes (USEPA 2016).  

After occurrences of impartial combustion from industry or vehicular exhaust, gaseous 

PAHs are carried through the air where they may attach to dust particulates (Gobel et al. 2007, 
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World Health Organization 1987).  PAHs travel through the air in a continuous gaseous state or 

as attached to particulate matter where they may settle through dry atmospheric deposition and 

rainfall in locations such as soils or rooftops (Mumtaz and George 1995, Baek et al. 1991). PAHs 

in some soils have been found to persist for prolonged periods of time, with larger ringed (5- and 

6-ringed) PAHs being less bioaccessible to microbes and therefore less easily degraded (Johnsen 

and Karlson 2007).  Runoff from storms can greatly affect PAH deposition where PAHs have 

bound to particulates and can infiltrate soil (Gobel et al. 2007). In areas where PAHs have the 

potential to settle as dust on rooftops, rooftop runoff could contribute to concentrations of these 

organic compounds in the soil directly under gutters or drip lines; this is also supported by direct 

deposition as shown by higher levels of PAHs in soils based on proximity to vehicular traffic 

(Van Metre and Mahler 2003).  Roofing material may also be found to play a role in PAH 

contribution as leaching of PAHs into rooftop runoff could result in contaminated receiving soil. 

Van Meter and Mahler (2003) found a very slightly higher, but not significant, contribution of 

lower molecular weight PAHs to rooftop runoff from asphalt roofs than from metal roofs, 

although the variation was not statistically different for all PAHs.  Lay et al. (2014) found a 

significant difference in cPAH concentration in rooftop runoff itself, with metal roofs having a 

higher maximum cPAH concentration, and a higher initial concentration in water. Asphalt roofs 

also contributed to cPAHs but had a slower release, which was speculated to be from the 

difference in surface material and texture. BaP was also found in a higher percentage of runoff 

samples of asphalt-roofed buildings as opposed to metal or tar (Lay et al. 2014).     

Exposure to PAHs could occur through dermal contact, inhalation, or ingestion or 

contaminated materials.  While dermal contact can be a potential risk factor in areas of heavy 

cPAH pollution like toxic waste sites, inhalation and ingestion are more of a general concern for 

individuals in the United States (ATSDR 2015). Ingestion of soil containing high levels of cPAHs 

could be problematic for people of younger ages as children can ingest soil at an average rate of 
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208 mg/day at the 95th percentile for ages 1-4 (Stanek and Calabrese 1995). However, these 

estimates are not protective of all children. Children with pica are at risk of ingesting anywhere 

up to 60 g of soil in a day (Calabrese et al. 1997) and are at especially high risk for exposure if 

PAH contaminated soil is available. While certain quantities of PAHs are readily found in soils in 

the environment, these values do not give an accurate representation of exposure potentials based 

on bioavailability, which could be important in the case of direct exposure through soil ingestion 

(Menzie et al. 1992). To determine bioavailability, bioavailability assays and both in vivo and in 

vitro digestive models can be applied (Reid et al. 1999, Ramesh et al. 2004) to some of the 

highest cPAH-concentrated soils in order to better understand their overall bioavailable dynamics, 

as whole models (using full cPAH concentrations, not simply the bioavailable portion) generally 

overestimate exposure potentials (Alexander 2000). 

  Based on the wide distribution of PAHs in populated areas and potential occurrence in 

rooftop runoff, further identifying and quantifying these contaminants across different sites is 

important to potentially identify low risk versus high risk areas for PAH contamination.  Because 

Oklahoma City is an urban environment, there are likely detectible levels of PAHs across the 

metro area. The main objective was to determine if cPAHs and benzo[a]pyrene (BaP) were 

higher in soils receiving rooftop runoff.  In addition, soil surrounding buildings with different 

roof-types and building usage were assessed to see if contamination levels differed. Finally, in 

order to further qualify cPAH and BaP exposure potential in the soil, a digestive model was 

applied to ascertain more information about the bioavailability potentials of these compounds. 

2.3 Methods and Materials 

2.3.1 Materials 
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Solvents and reagents employed in soil preparation and compound examination were 

analytical grade. PAH and deuterated PAH mixes were obtained from Accustandard (New Haven, 

CT) and were used as internal standards.   

2.3.2 Soil Contamination Survey  

Ninety-two sites spread across Oklahoma City, OK and the metro area were sampled. 

(Fig. 1). Given the urbanization of the area, these sites were all within relatively close proximity 

to highways and industrialization, as well as located in the same precipitation gradient. The 

locations were haphazardly selected with variable characteristics of the buildings on site. These 

characteristics include building use type (commercial, residential, or school) as well as roofing 

material type (asphalt shingles, metal, or tar). In addition, other factors were noted for each site 

including building age, gutter presence, area of drainage, pitch, proximity to pavement, and 

latitude and longitude coordinates.     

From each site, topsoil was collected with a metal spade within 5 cm of the downspout or 

drip line from a 6 cm x 6 cm square, 3 cm deep.  These samples that were collected near rooflines 

were directly receiving rooftop runoff, or contacting the runoff, and shall be referred to as contact 

samples. A reference sample from an area with similar soil type, but at least 10 m from direct 

rooftop runoff sources, was also collected from each site. These reference samples were not 

receiving and drainage or runoff directly or indirectly from the roofs, nor were they downslope or 

receiving runoff from parking lots. The shovel was rinsed with filtered tap water between 

samples. Soil samples were thoroughly homogenized by hand mixing with stainless steel spatulas 

and rocks and vegetation were removed.  Dry weight (105 °C for 16 hours) and total soil organic 

matter (360 °C for two hours) were determined by using the loss-on-ignition technique (Salehi et 

al. 2011).   
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To measure PAHs, soil samples were extracted using matrix dispersion followed by 

column extraction.  Soil (1.5 g) was homogenized in a mortar with 0.5g magnesium sulfate, 0.75 

g diatomaceous earth, 0.9 g Florisil, and 0.05 g PSA bonded silica.  Homogenized material was 

funneled into a 12 mL column on a vacuum manifold that contains 0.5 g activated silica on the 

bottom of the column and 2 g sodium sulfate resulting in the soil matrix as the top layer.  PAHs in 

the dispersed soil were recovered in solvent by passing 15 mL of 1:2 hexane: ethyl ether solution 

through the columns and into test tubes containing 300 µL isooctane. The extract was evaporated 

under a gentle stream of nitrogen, and rinsed three times with 100 µL isooctane.   The final 

volume was 0.500 mL, which was transferred into amber GC vials.  Extracts were analyzed by 

gas chromatography/mass spectrometry (GC-MS) on an Agilent 6850 GC with an Agilent 5975C 

inert XL EI MSD mass spectrometer.  The GC operated with an initial oven temperature of 40 °C, 

held for 1 m,  followed by a rate of  15 °C/min. to 100°C, 13.00 °C/min.to 240 °C, and 11.00 

°C/min. to 300 °C.  The GC inlet temperature was 250 °C and the column was a HP-5MS, 5% 

Phenyl Methyl Siloxane capillary column of 15.0 m with a helium flow rate of 1.1 mL/min.  

Analysis was conducted using selected ion monitoring.  Deuterated PAH analogues were used as 

internal standards.  Analytes and their respective ions that were monitored are listed in Table 1.        

Chrysene D12 and perylene D12 were utilized in calibration as internal standards. The 

precision and accuracy of soil processing was monitored with spiking reagent mixes and blanks 

with a predeuterated PAH mix.  Method detection limits were established based on background 

noise in blank samples (n=8 blanks). 

2.3.3 Bioavailability of PAHs Using a Digestive Gastric and Gastrointestinal Model 

Although soils contaminated with PAHs may have distinct concentration values, these are 

not necessarily representative of actual PAH bioavailability; therefore a digestive model was 

applied to a subset of soils exhibiting contamination above USEPA SSLs. The model used was 
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adapted from Hack and Selenka (1996) and includes a simulated gastric and gastro-intestinal step 

to better mimic the human digestive process.  

 Soils were selected for this model based on levels of cPAH toxic equivalents (TEQs) 

exceeding the USEPA SSL for BaP (Table 2). These samples included the highest five 

concentrated samples for cPAHs as well as BaP. For each sample, 0.5 g of soil was added to 

water in a 100 mL laboratory bottle for a total volume of 50.5 mL and first run through a 

simulated gastric model. The pH was adjusted to 2.0 ± 0.1 with 1.85% HCl (w/v). Five 

milligrams of pepsin were added to samples as 2 mL of a 0.25% (w/v) solution in water. The soil 

solutions were placed in a 37 °C shaking incubator with a shaker setting of 185 RPM for 2 hours. 

The pH was check and adjusted as needed every 30 minutes. At 90 minutes, the salinity was 

adjusted to approximately 140 mmol Cl- by adding 1.8% NaCl (w/v). After the 2 hours., the 

solutions were adjusted as follows for the gastrointestinal model. 

 To model the gastrointestinal digestion, samples were neutralized to a pH of 7 ± 0.1 with 

NaHCO3. Five mg trypsin in 2 mL solution, 175 mg pancreatin in 5 mL solution, and 175 mg bile 

in 10 mL solution were added. Samples were again placed in the shaking incubator at the same 

settings for 6 hours. The pH was adjusted to neutral as needed every thirty minutes.  

After incubation and shaking was complete, samples were first centrifuged for 10 

minutes at 4000 RPM. Liquid fractions were pipetted into 500 mL separatory funnels. Soil was 

washed with 30 mL water and centrifuged for 10 minutes at 4000 RPM and the liquid fraction 

was once again added to the respective samples in separatory funnels. The water wash, 

centrifuge, and decanting was repeated once more ensuring that no particulate matter was 

transferred to funnels.  

 Five grams of NaCl were added to each isolated liquid fraction and shaken in the 

separatory funnel until dissolved. Next, 40 mL hexane was added to each sample, and the samples 
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were shaken by hand for 2 min. Samples were allowed to separate for fifteen minutes before the 

lower, water layer was decanted into 100 mL flask. Emulsions containing the extraction solvent 

were decanted into centrifuge tubes and any separated hexane layers were funneled into flasks 

and set aside. Emulsions were centrifuged for 10 minutes at 4000 RPM. Hexane supernatants 

were added to previously separated hexane layers in their respective flask.  Initially decanted 

water layers were once again added to separatory funnels and the process was repeated to obtain a 

second and third extraction.   

Once the hexane supernatants were consolidated for each sample, 5 g Na2SO4 was added 

to each flask to ensure no additional water was present. Samples were then filtered into 200 mL 

glass Turbovap concentration tubes through Watman 125 mm filter paper. Each flask was rinsed 

with hexane three times, with rinses added to filtration. The filter papers were also then rinsed 

with hexane three times. Using a Turbovap, and 40 PSI  streaming nitrogen at a temperature of 55 

ºC, samples were evaporated to below 1 mL. When samples reached a point below 5 mL, 100 µL 

isooctane were added to solution. Samples were then quantitatively transferred to GC vials. 

Turbovap tubes were rinsed three times with 50 µL isooctane, which was added to samples. 

Further evaporation with nitrogen condensed the samples to 0.5 mL. Samples were then analyzed 

on a GC-MS with the same conditions as previously described.  

2.3.4 Toxic Equivalents and Statistical Analysis  

Toxic Equivalents (TEQs) were calculated for each sample by multiplying the 

concentration by the toxic equivalency factors (TEF) (Table 2) in order to determine the 

carcinogenic potential of all cPAHs.  Using the soil screening level (SSL) established for BaP 

(USEPA 2007), whole cPAH TEQ values as well as levels of BaP were evaluated with respect to 

concentrations greater than 16 ppb.   
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A linear model was applied to determine correlations of concentration levels between 

reference and contact samples at all sites. Concentrations below detection limits were set to zero 

for statistical analyses. Nonparametric statistics were used due to left-censoring of data (13% and 

23%, cPAH and BaP, respectively). Comparisons between reference and contact sites were 

determined using a Wilcoxon signed-rank test, as these samples were paired.  Statistical analysis 

was performed with SPSS (IBM Version 20) using with α=0.05.  Comparisons between roof-type 

categories were determined using Kruskal-Wallis separately for each factor (asphalt, metal, and 

tar).  Only contact samples were considered in the Kruskal-Wallis analysis.  Mean separation was 

conducting using a Tukey analysis on ranked data. An ex post facto examination of building use 

(commercial, residential, and schools) was also performed using a Kruskal-Wallis test. This 

analysis also only examined contact samples, and mean separation was performed using a Tukey 

analysis for the ranked data. Soils receiving rooftop runoff were also reassigned values with 

paired reference concentrations subtracted and then evaluated statistically on ranked data for 

building use and roof type. Guttered area of roof for buildings with gutters only was also 

examined with Kruskal-Wallis for contact soils. 

2.4 Results  

 Across all sites, the ages of the building characteristics varied. Overall, the buildings 

were on site an average of 46 ± 30 years (Site data is shown in Tables 4 and 5 for each sample). 

No data was collected for roof age itself. The roofs had on average a 35º slope (± 15º) and had a 

mean area of 730 m2 (± 1,600 m2). Fifty-four of the buildings had guttered roofs with an average 

of 17% (± 9%) of the surface area reaching the gutter catchment. The soil collected from each 

sample was made up of 5% (± 5%) soil organic matter. Additionally for analytical work, mean 

spike recoveries were within 5% of the expected concentration and blank recoveries were all 

below the method detection limits (Table 1). 

2.4.1 PAH Contamination  
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Out of the total 92 sites and 184 total samples, 81 of the sites and 160 of the overall 

samples had cPAHs above method detection limits and thus had reportable TEQ values (Table 2). 

Of the individual PAHs measured, benzo[b]fluoranthene had the highest concentrations in both 

reference and contact samples.  BaP had the third and fourth most concentrated cPAH in 

reference and in contact samples respectively; however, after adjusting for toxic equivalency 

factors, BaP was the most toxic contributor in a single sample, with a TEF of 1 (Table 2) and, 

therefore, accounted for a large percentage of the TEQ concentration for most samples.    

 Out of the 92 reference and 92 contact samples, 74 reference samples (80.4%) and 86 

contact samples (93.5%) had a mixture of all seven cPAHs above the detection limit. Overall, 

77% of samples (63 reference and 79 contact samples) had cPAH levels based on TEQs that were 

above the soil screening level of 16 ppb BaP set by the USEPA for resident soil (USEPA 2016). 

Collectively, 62% of all sites had paired cPAH TEQ reference and contact samples both above 

BaP SSL in values.  

2.4.2. Comparison of Roof Contact and Reference Sites  

Overall, cPAH TEQ and BaP values were significantly higher in each category for 

contact sites as compared to reference sites (p<0.001). As illustrated in Fig. 2, sixty-one of the 

sites (66.3%) had levels of cPAH TEQs that were higher in runoff contact samples than in 

reference samples.  If groups were segregated by roof type or building usage, this comparison 

was still always significantly different within each category for cPAHs (p<0.005) and BaP 

(p<0.005). 

2.4.3 Comparisons by Roof Type 

 

There was not a significant difference found between samples of different roof types 

throughout the sites for cPAH or BaP concentration using Kruskal-Wallis nonparametric testing 
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(p=0.111 and p=0.097); however, tar roofs tended to have higher levels of cPAHs and BaP as 

compared to asphalt and metal roofed buildings (Fig 3 and Fig. 4). The sample size for tar roofs 

was small (n=5).  

2.4.4 Comparisons by Building Use  

 This analysis was an ex post facto examination based on observed trends in collected data as 

original sampling design focused on roof type and not building usage. Overall building use within 

contact samples found significance for both cPAHs (p=0.002) and BaP (p=0.001) (Fig. 5 and Fig. 

6) in a comparison of all sites. A post hoc analysis revealed that cPAHs and BaP are significantly 

higher in concentration in schools (p=0.001 and p=0.001) and in commercial buildings (p=0.038 

and p=0.031) than in residential areas within contact sites. There was not a significant difference 

between levels of cPAHs or BaP in school and commercial sites within contact samples (p=0.599 

and p=0.493).  

2.4.5 Comparisons of Other Characteristics 

After adjusting soil concentration values of contact soils to reflect the subtraction of 

background cPAH TEQs from reference samples, the building age did not significantly contribute 

to the influence of cPAH TEQ concentration in soils receiving rooftop runoff. This is true for 

each roofing type and building use examined in terms of building age: age did not individually 

influence the accumulation of cPAHs in contact soils. Total area of roof was examined as a 

contributing factor to cPAH TEQ concentration with reference concentration subtracted. A 

multivariate ANOVA comparing slope of roof, age, and total area of roof within contact soils 

with subtracted paired-reference values, showed that area of roof was a significantly contributing 

factor (p=0.016, R2=0.12) to cPAH concentrations in soil receiving rooftop runoff. Presence of 

gutters did not significantly affect cPAH TEQ concentrations in contact soil for either roof type 

or building usage. However, there was a significant effect (p=0.03, R2=0.10) of area covered by 
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gutters contributing to cPAH TEQ concentrations in contact soils within buildings having 

guttered roofs. 

 

2.4.6 Bioavailability 

Recoverable cPAHs based on the digestive model indicated a very low percentage of 

bioavailable PAHs for each sample analyzed (in a subset of the samples with the highest 

concentrations) relative to overall initial soil PAH concentrations (Fig. 7).  The demographics of 

the samples tested for bioavailability are shown in Table 4 and Table 5. Only five cPAHs 

(benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, and BaP) were 

measured due to interferences in the chromatographic run from the components of the artificial 

digestion media.  The bioavailability did not correlate with overall levels of soil contamination, 

and BaP was not above detection limits in six of the samples. The soil with the overall highest 

contamination for cPAHs and BaP, ranked third in percent bioavailability.   

	   The sample with the greatest PAH contamination (sample 54- see Appendix (Table 4) for 

soil demographic data) was also shown to have the highest concentration of bioavailable 5cPAHs 

and BaP despite the low bioavailability (Fig. 8).  Samples 52r and 79r were not the most 

concentrated overall PAH samples, but they had the highest percent bioavailability of 5cPAHs 

and BaP (Fig. 7). This resulted in the higher levels of concentration of bioavailable PAHs (Fig. 

8). The samples shown in Fig. 8 with paired BaP values above detection limit have 5cPAH TEQ 

values that exceed USEPA SSL (USEPA 2007) for BaP, and all but sample 79r (15 ppb BaP) 

have BaP values that exceed this level as well.   

2.5 Discussion 
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Soil PAH concentrations across the majority of the Oklahoma City Metro area were 

relatively high throughout the majority of sites. cPAHs and BaP in most samples exceeded the 

SSL of 16 ppb (USEPA 2007) in 77% and 74% of samples, respectively.  PAHs have been found 

to be generally abundant in urban environments, and similarly this study showed high levels of 

PAHs in soils across urban areas in Oklahoma City. Nearly 89% of soil samples showed PAH 

concentrations in soil above detection limits. A previous study in the Oklahoma City area found 

that 84% of rooftop runoff water samples displayed concentrations of PAHs above detection 

limits (Lay et al. 2014). Lay’s findings correspond with this study’s findings of more than 80% of 

soil samples in the Oklahoma City region having PAH concentrations above the detection limit 

(Lay et al. 2014). The median values for cPAHs and BaP for contact and reference samples in 

this study collectively were 99 ppb and 69 ppb, as well as 160 ppb and 110 ppb for contact 

samples alone. The population for Oklahoma County, Oklahoma, which accounts for a large 

portion, but not all of the Oklahoma City Metro Area was nearly 800,000 as of 2015 (U.S. Census 

Bureau 2015). In a study by Mielke et al. (2004) median BaP concentrations across combined 

inner-city and suburban areas from building foundations in New Orleans, Louisiana were 163 

ppb. This was lower than levels found for busy streets (255 ppb) but higher than residential 

streets and open areas. The population for the New Orleans Metro was approximately 1.3 million 

in 2005 (US Department of Housing and Urban Development 2008). These, as well as the levels 

of BaP, are comparable to what was found in Oklahoma City. Morillo et al.(2007) examined 

levels of PAHs in Glasgow, UK; Torino, Italy; and Ljubljana, Slovenia. Findings showed mean 

levels of BaP as 971 ppb, 229 ppb, and 76.8 ppb respectively. They attributed potential for 

variation between cities to organic carbon content differences and possible volatilization in 

warmer areas. Another study of Easter Europe showed that Tallinn, the capital of Estonia (with a 

population of about 421,000) had a mean BaP soil concentration of 106 ppb, but a much higher 

mean concentration of 398 ppb in the heavily trafficked city-center (Trapido 1999). The overall 

city mean BaP level is very similar to that found in the soils of Oklahoma City.  While these cities 
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have smaller overall populations than Oklahoma City, this does help to demonstrate that PAH 

deposition can be variable across cities, but PAHs and cPAHs are shown in elevated levels.  Vane 

et al. (2014) also showed that even within a city there is a great potential for variation, with 

Greater London showing a range of 16 priority PAHs from 4,000 ppb to 67,000 ppb with mean 

and median values of 18,000 and 14,000 ppb. This is overall much higher for than the mean and 

median values found in Oklahoma City, but it was not adjusted for TEQ values and it includes 

non-carcinogenic PAHs. Although the PAH values for cites in London include more compounds 

in the overall evaluation, the variation across the city in 16 priority PAH levels helps to illustrate 

the change in PAH levels that are possible even within a single urban environment.  

  Sample differences in concentration between contact and reference soils across all sites 

show that concentrations were not equally distributed between sample types (contact vs. 

reference). PAHs are elevated in more of the corresponding contact samples than they were in the 

reference samples by about 65%. This is an indication that there was an influence in PAH 

accumulation in contact soils from concentrated PAHs because of rooftop runoff. This runoff 

factor could be affecting contribution to PAHs in soil from the wash of rainfall events of a large 

surface area (a roof) containing PAHs from atmospheric deposition.  The runoff could also 

contribute PAHs in soil as a leachate from building materials or roofing materials, thereby 

concentrating accumulation directly under drip lines and gutters.   

2.5.1 Roof Type  

 There was a distribution of soil receiving rooftop runoff from different roof types 

sampled across the city, but despite the finding that locations with roof contact were more highly 

contaminated than reference sites. Roof type did not significantly influence the cPAH or BaP 

contamination. Rocher et al. (2004) examined roof type as a potential contributor to PAH content 

in runoff, but found that metal roofing did not contribute PAHs; however, the sample size in the 
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study was n=2.  Mendez et al. (2011) also presented outcomes discrediting roof type for PAH 

contributing, finding no PAHs in rooftop runoff from either metal or asphalt roofs; but, their 

sample size was also very small, n=1 for both roof types. Hou et al. (2013) found that in a study 

comparing multiple roof surfaces, asphalt roof samples had a greater amount of PAHs than a 

ceramic subset; this was attributed to asphalt material leaching PAHs after being exposed to high 

heat from the sun.    

 Buildings with tar roofs had high levels of PAHs in the soil receiving rooftop runoff. The 

tar felt roof surface could be problematic in increasing PAHs in runoff as Forster (1999) stated 

that this type of roofing material not only can contribute directly to the release of PAHs, but as 

compared to metal roofs, it has a rougher surface which can trap PAHs easily and release greater 

quantities after a heavy rainfall event. This would explain the observationally high difference in 

tar roofs of contact sites being greater contributors to cPAHs and BaP in soil than the other roof 

types.  

Another factor thought to potentially influence PAH deposition and concentration is age 

of building did not correlate with PAH concentration throughout this study. Only building age 

was available for consideration, age of the roof and time to last roof replacement would likely be 

better measures of the PAH content of the roofing material.  While current roof type did not play 

a role in significantly contributing cPAHs in itself, buildings with larger surface area roofs did 

have significantly more cPAHs in the contact soil. This can be explained by a greater area 

collecting atmospheric deposition, as area and textures of roofs play a role in collection of 

particulate matter that could influence load in rooftop runoff from a rainfall event (Egodawatta et 

al. 2009). Guttering is also a factor that could influence the wash off of a large roof area to 

deposit in a singular location, but the presence of gutters did not influence the levels of 

contamination across sites. However, among roofs that had gutters, the contact soil for sites with 

gutters covering more surface area had higher concentrations of cPAHs in the soil as compared to 
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those with gutters covering little surface area. This can be explained by more surface area 

collecting particulates contributing greater load of cPAHs in runoff to a single contact surface 

compared to a smaller area that may not be able to collect as much particulate matter.  

2.5.2 Building Use 

 Buildings sampled were broken down into three categories (commercial, residential, and 

school), and an ex post facto examination of these building uses revealed that residential soils had 

overall significantly lower cPAH and BaP values than soils from commercial and school 

locations. While building use itself is unlikely to have a direct effect on PAH concentration in 

contact soils, there are potentially building-related factors that could contribute to this higher 

level of PAH accumulation in the contact soils of commercial and school buildings.  

Twenty-one of the school and commercial buildings were in close proximity to parking 

lots and had greater than SSL cPAH TEQ concentrations; whereas, only one residential site was 

by a parking lot. Although none of the reference sites collected runoff from the parking lots, 

vehicular exhaust promotes atmospheric PAHs (Baek et al. 1991, CDC 2009). The higher 

concentration of daily traffic throughout these parking lots could be a contributing factor in 

excessive levels of cPAHs through atmospheric deposition.  

The use of coal tar or roofing tar in buildings with older roofs could lead to elevated 

levels of PAHs in surrounding soils. PAH contributors, coal tar pitch and roofing tar have been 

used in roofing (Talaska et al. 1996). An example of this is from the 1960s where roofing 

material is found in sandwich roofing styles, where coal tar or petroleum oil was used as a 

primary component in an adhesive to hold roofing felt to a surface prior to the attachment of 

shingles (Chamberlain 1963).  This type of tar adhesive has been shown to contain a variety of 

high molecular weight PAHs (Fetzer and Kershaw 1995) that could be responsible for runoff and 

partitioning in soils around these buildings. Because many of these buildings are aged, it is 
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possible that coal tar was a component in the roofing in past years. However, without exact 

knowledge of roofing construction dates and earlier used materials, this is not directly testable in 

all sites.   

Not only could additional construction material in buildings contribute to higher PAHs in 

certain areas, construction materials in parking lots surrounding these sites may also contribute 

PAHs. While there were 60 contact samples higher than their respective reference samples across 

all sites, 21 sites were found to have reference samples with higher cPAH TEQs than matching 

contact samples. Some of these locations were in close proximity to parking lots. This is a 

potential source of PAH contamination by means of blow off from coal tar sealants. Mahler et al. 

(2010) found elevated levels of cPAHs and BaP in dust samples stemming from surrounding 

parking lots that had been sealed with a coal-tar sealant as compared to sites with asphalt sealcoat 

or no sealant. Scoggins et al. (2007) also found a trend with PAHs and 6 cPAHs contributing to 

elevated levels in sediment of parking lot runoff downstream with lots coated with coal-tar 

sealant. This type of dust from parking lots with coal-tar sealant, could account for some of the 

reference samples near parking lots with higher than expected values of cPAH concentration. 

2.5.3 Bioavailability 

 Our findings of bioavailability indicated that less than 3% of the PAHs in soils containing 

high levels of PAHs were actually bioavailable (Fig. 7). A number of factors could contribute to 

this. The total organic matter of the soils in question varied  (6.8% average organic matter in soils 

used for digestive model) which could provide different surfaces for PAH binding strategies and 

affect the partitioning of PAHs to soil (Nam et al. 2008, Karickhoff 1981). This however, did not 

affect the overall partitioning of PAHs to soil throughout all of the sampling, as there was no 

correlation between soil organic matter levels and PAH contamination.    
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 While Hack and Selenka (1996) found soil PAH bioavailability to be between 7-95% 

over twenty-two samples (soil, sewage sludge, and construction bi-products) in an in vitro model, 

the PAH mobilization we found was significantly lower. This could be due to differences in 

technique: we did not add powdered whole milk to our samples, which was shown by Hack and 

Selenka (1996) to increase mobility of PAHs. The addition of whole milk powder to their model 

increased the mobilization of PAHs from 5-14% to 23% in soil. This approach could be further 

tested for comparison with the inclusion of whole milk. Overall, in vitro models have not been 

shown to  necessarily be representative of bioavailability as compared to in vivo models, and even 

with live models, bioavailability could have variation across species (Reid et al. 1999). Tang et 

al. (1998) found that microbial degradation and earthworm uptake of PAHs were different, 

meaning that the bioavailability was variable between these live models. This means that while, 

either type of model (in vitro or in vivo) could give predictions of PAH dissociation in terms of 

potential bioavailability, this does not give a definitive answer to the question of bioavailability, 

and potentially multiple models should be used in conjunction with one another for a more clear 

prediction (Alexander 2000, Ramesh et al. 2004). These methods should not be wholly 

discounted, however, as they do provide some insights into PAH binding under variable 

conditions.  Despite these considerations, our initial analysis suggests markedly low 

bioavailability.  

 Further work must be completed to evaluate the bioavailability of PAHs in soil. There is 

a possibility of difference in bioavailability if PAHs arise in soil from atmospheric deposition 

versus from roofing material. Even if in vitro models are found to be not representative of 

determining whole bioavailability for humans, this model can be applied to focus on PAH 

dissociation for the soils in question. For future investigation, we predict that contact soils with 

less bioavailability or dissociation after digestion have PAHs that are more heavily influenced 

from roofing material, and that the more bioavailable fractions are from atmospheric deposition.     
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2.5.4 Conclusions 

 The levels and the variation in distribution of PAHs in Oklahoma City soil is comparable 

to other urban areas (Mielke et al. 2004, Vane et al. 2014). While there is a potential for great 

variance in PAHs in urban environments, mean levels of cPAHs and BaP in Oklahoma City were 

generally found to be present above detection limits and often above the US EPA SSL (Morillo et 

al. 2007, USEPA 2007).  Concentrations tend to be especially high in soil containing rooftop 

runoff.  This means that rooftop runoff is a probable contributing factor to PAH concentration in 

soils under downspouts and drip lines. While roof type did not significantly vary in PAH 

deposition in soil, area of roof and gutters receiving more rooftop area did contribute to cPAH 

concentrations. Further studies should be implemented to test these factors as well as other site 

characteristics like soil organic matter and roof age. The differences in building usage are 

suggestive that more detailed analysis of building factors might provide a better assessment of 

sites that are likely to be contaminated.  

Building use did significantly influence PAH concentrations, and commercial buildings 

and especially schools have the potential to show general elevated levels of PAHs. Because of the 

elevated levels of cPAHs in soils around schools, there is potential for exposure to these 

compounds through ingestion in small children. While our bioavailability model did not show 

great bioavailability, there were samples that still showed bioavailability above the SSL. 

Bioavailability of cPAHs must be further examined in order to establish a better risk assessment 

of these overall areas. Additional factors should be examined to further determine what 

contributes cPAH concentrations in certain areas, and continual sampling of soils in the Metro 

Area school systems should be implemented to further evaluate exposure risk. 
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Table 1.  Selected analytes (seven carcinogenic polycyclic aromatic hydrocarbons) for screening 
with a GC/MS single quad instrument. Spike (n=12). Spike recovery was based on a target 
concentration of 200 ppb. MDL= method detection limits. SD %= relative standard deviation. 

 

Analyte 
 

CAS# 
 

MS Quant. 
Ion 

 

MDL for 
Screening (ppb) 

Spike Recovery 

 Mean % SD% 
Benz[a]anthracene 56-55-3 228 6 82 16 

Chrysene 218-01-9 228 5 85 11 

Benzo[b]fluoranthene 205-99-2 252 6 89 17 

Benzo[k]fluoranthene 207-08-9 252 3 90 8 

Benzo[a]pyrene 50-32-8 252 4 97 16 

Dibenz[a,h]anthracene 215-58-7 278 5 90 15 

Indeno[1,2,3-cd]pyrene 193-39-5 276 1 99 8 
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Table 2. Toxic equivalency table for carcinogenic polycyclic aromatic hydrocarbons (cPAHs). 
By using benzo[a]pyrene (BaP) as a model compound for toxicity, toxicity equivalency factors 
(TEFs) are applied to the cPAHs in order to evaluate the toxic equivalency quotient or toxic 
equivalent (TEQ) for individual cPAHs as well as Σ cPAHs (Safe 1998, USEPA 2016). These 
TEF values can be used in reference to BaP screening levels to demonstrate relative toxicity of 
individual compounds or mixtures in conjunction or in relation to BaP (USEPA 2016).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

!

cPAH TEF Value  
Benzo(a)pyrene 1  
Benzo(a)anthracene 0.1 
Benzo(b)fluoranthene 0.1 
Benzo(k)fluoranthene 0.01 
Dibenz(a,h)anthracene 1 
Indeno(1,2,3-cd)pyrene 0.1 
Chrysene 0.001 
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Table 3. Summary data for PAHs in soil in the Oklahoma City Metro area. Soil screening levels 
are in place for residential soils as set by the USEPA (2016).  Toxic equivalent (TEQ) values 
were determined based on the toxic equivalency factors (TEFs) observed by the WHO; all values 
are set in reference to Benzo[a}pyrene (USEPA 2016). Reference samples refer to soils from 
each site that were not receiving rooftop runoff, while contact samples were in direct contact with 
rooftop runoff. Sites were broken down categorically by roof type (asphalt, metal, and tar) as well 
as by building use (commercial, residential, and school). 
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Table 4. Comparison of soil demographics for each site and soil sample. Contact samples are 
soils directly under downspouts or drip lines that receive rooftop runoff. Reference samples are 
soils away from buildings and do no receive direct or indirect rooftop runoff. cPAH TEQ 
represents the sum concentrations of seven carcinogenic priority polycyclic aromatic 
hydrocarbons based on their toxic equivalents. Values above 16ppb are environmentally relevant 
as exceeding benzo[a]pyrene (BaP) reference soil screening level (USEPA 2007). Building usage 
for each site is represented by commercial, residential, or school usage. Roof type of each 
building is represented by asphalt, metal, or tar. 

 

Site # Sample Building Roof cPAH TEQ BaP 

1 Contact Residential Asphalt 1733 1026 

1r Reference Residential Asphalt 156 95 

2 Contact Residential Metal 63 37 

2r Reference Residential Metal 73 45 

3 Contact Commercial Metal 322 184 

3r Reference Commercial Metal 141 89 

4 Contact Commercial Metal 256 157 

4r Reference Commercial Metal 463 296 

5 Contact School Metal 61 33 

5r Reference School Metal 115 70 

6 Contact School Metal 1463 936 

6r Reference School Metal 791 499 

7 Contact Residential Asphalt 76 48 

7r Reference Residential Asphalt 44 27 

8 Contact Residential Asphalt 4 0 

8r Reference Residential Asphalt 27 17 

9 Contact Residential Asphalt 247 155 

9r Reference Residential Asphalt 47 31 

10 Contact Residential Asphalt 55 34 
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Site # Sample Building Roof cPAH TEQ BaP 

10r Reference Residential Asphalt 0 0 

11 Contact Residential Asphalt 34 22 

11r Reference Residential Asphalt 2 0 

12 Contact Residential Asphalt 2 0 

12r Reference Residential Asphalt 2 0 

13 Contact Residential Asphalt 46 30 

13r Reference Residential Asphalt 91 57 

14 Contact Residential Asphalt 267 154 

14r Reference Residential Asphalt 67 43 

15 Contact Commercial Asphalt 186 116 

15r Reference Commercial Asphalt 0 0 

16 Contact Residential Asphalt 0 0 

16r Reference Residential Asphalt 0 0 

18 Contact School Metal 1013 639 

18r Reference School Metal 139 90 

19 Contact School Asphalt 379 245 

19r Reference School Asphalt 19 15 

20 Contact School Asphalt 151358 98695 

20r Reference School Asphalt 1017 613 

21 Contact School Metal 20 14 

21r Reference School Metal 906 587 

22 Contact Residential Asphalt 2 0 

22r Reference Residential Asphalt 0 0 

23 Contact Residential Metal 211 133 

23c Reference Residential Metal 0 0 
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Site # Sample Building Roof cPAH TEQ BaP 

24 Contact Residential Metal 2 0 

24r Reference Residential Metal 0 0 

25 Contact Residential Asphalt 52 34 

25r Reference Residential Asphalt 22 17 

26 Contact Residential Metal 31 25 

26r Reference Residential Metal 0 0 

27 Contact Residential Asphalt 116 80 

27r Reference Residential Asphalt 0 0 

28 Contact Residential Asphalt 40 29 

28r Reference Residential Asphalt 24 19 

29 Contact Residential Asphalt 31 24 

29r Reference Residential Asphalt 19 14 

30 Contact Residential Metal 2 0 

30r Reference Residential Metal 40 29 

31 Contact Residential Asphalt 39 24 

31r Reference Residential Asphalt 3 0 

32 Contact Residential Metal 1051 714 

32r Reference Residential Metal 2 0 

33 Contact Residential Asphalt 202 130 

33r Reference Residential Asphalt 7 0 

34 Contact Residential Metal 255 178 

34r Reference Residential Metal 0 0 

35 Contact Residential Asphalt 0 0 

35r Reference Residential Asphalt 0 0 

36 Contact Residential Asphalt 0 0 
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Site # Sample Building Roof cPAH TEQ BaP 

36r Reference Residential Asphalt 17 15 

37 Contact Residential Asphalt 122 87 

37r Reference Residential Asphalt 21 18 

38 Contact Residential Asphalt 250 175 

38r Reference Residential Asphalt 0 0 

39 Contact Residential Metal 2 0 

39r Reference Residential Metal 0 0 

40 Contact Residential Asphalt 416 281 

40r Reference Residential Asphalt 386 252 

41 Contact Residential Asphalt 187 118 

41r Reference Residential Asphalt 24 19 

42 Contact Residential Asphalt 572 374 

42r Reference Residential Asphalt 0 0 

43 Contact Commercial Metal 2 0 

43r Reference Commercial Metal 29 21 

44 Contact Residential Asphalt 257 173 

44r Reference Residential Asphalt 256 181 

45 Contact Commercial Asphalt 226 153 

45r Reference Commercial Asphalt 130 86 

46 Contact School Metal 2166 1524 

46r Reference School Metal 485 337 

47 Contact School Asphalt 701 496 

47r Reference School Asphalt 370 255 

48 Contact School Metal 139 96 

48r Reference School Metal 256 178 
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Site # Sample Building Roof cPAH TEQ BaP 

49 Contact School Metal 551 377 

49r Reference School Metal 34 23 

50 Contact School Asphalt 16 14 

50r Reference School Asphalt 16 0 

51 Contact School Asphalt 194 135 

51r Reference School Asphalt 81 57 

52 Contact School Tar 414 278 

52r Reference School Tar 3362 2450 

53 Contact School Tar 54 40 

53r Reference School Tar 22 17 

54 Contact School Tar 346803 245236 

54r Reference School Tar 1389 1007 

55 Contact School Tar 1232 836 

55r Reference School Tar 595 409 

56 Contact School Metal 179 126 

56r Reference School Metal 33 23 

57 Contact School Asphalt 619 428 

57r Reference School Asphalt 2 0 

58 Contact School Metal 184 149 

58r Reference School Metal 45 30 

59 Contact School Asphalt 64 50 

59r Reference School Asphalt 20 17 

60 Contact School Tar 376 259 

60r Reference School Tar 94 68 

61 Contact Commercial Asphalt 166 117 
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Site # Sample Building Roof cPAH TEQ BaP 

61r Reference Commercial Asphalt 76 53 

62 Contact Residential Asphalt 215 153 

62r Reference Residential Asphalt 100 70 

63 Contact Residential Asphalt 105 76 

63r Reference Residential Asphalt 75 54 

64 Contact Commercial Metal 1106 773 

64r Reference Commercial Metal 7749 5429 

65 Contact Commercial Asphalt 148 103 

65r Reference Commercial Asphalt 238 172 

66 Contact Commercial Asphalt 0 0 

66r Reference Commercial Asphalt 32 25 

67 Contact Commercial Asphalt 94 66 

67r Reference Commercial Asphalt 43 32 

68 Contact Commercial Asphalt 39 29 

68r Reference Commercial Asphalt 2 0 

69 Contact Commercial Asphalt 180 118 

69r Reference Commercial Asphalt 37 27 

70 Contact Commercial Asphalt 169 116 

70r Reference Commercial Asphalt 2 0 

71 Contact School Metal 772 547 

71r Reference School Metal 0 0 

72 Contact School Metal 23 19 

72r Reference School Metal 2 0 

73 Contact Commercial Metal 143 101 

73r Reference Commercial Metal 51 35 
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Site # Sample Building Roof cPAH TEQ BaP 

74 Contact Commercial Metal 19 17 

74r Reference Commercial Metal 0 0 

75 Contact Commercial Metal 729 526 

75r Reference Commercial Metal 25 20 

76 Contact Commercial Metal 0 0 

76r Reference Commercial Metal 0 0 

77 Contact Commercial Metal 559 368 

77r Reference Commercial Metal 0 0 

78 Contact Commercial Asphalt 244 171 

78r Reference Commercial Asphalt 470 318 

79 Contact Commercial Asphalt 969 673 

79r Reference Commercial Asphalt 1309 907 

80 Contact Residential Asphalt 120 85 

80r Reference Residential Asphalt 555 532 

81 Contact Residential Asphalt 27 22 

81r Reference Residential Asphalt 0 0 

82 Contact Residential Asphalt 77 53 

82r Reference Residential Asphalt 0 0 

83 Contact Commercial Asphalt 708 493 

83r Reference Commercial Asphalt 95 67 

84 Contact Commercial Asphalt 1041 741 

84r Reference Commercial Asphalt 394 269 

85 Contact Commercial Asphalt 539 355 

85r Reference Commercial Asphalt 131 92 

86 Contact Residential Asphalt 108 76 
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Site # Sample Building Roof cPAH TEQ BaP 

86r Reference Residential Asphalt 85 58 

87 Contact Residential Asphalt 183 130 

87r Reference Residential Asphalt 85 58 

88 Contact Residential Asphalt 69 50 

88r Reference Residential Asphalt 85 58 

89 Contact Residential Asphalt 66 48 

89r Reference Residential Asphalt 102 71 

90 Contact Residential Asphalt 386 262 

90r Reference Residential Asphalt 532 364 

91 Contact Residential Asphalt 0 0 

91r Reference Residential Asphalt 111 77 

92 Contact Residential Asphalt 25 20 

92r Reference Residential Asphalt 0 0 

93 Contact Residential Asphalt 98 64 

93r Reference Residential Asphalt 444 283 
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Table 5. Comparison of other site characteristics for each site within contact samples only. NG 
represents buildings with no gutters. 

Site # 
 

Age (years) 
 

Roof Slope (º) 
 

Total Roof Area (m2) 
 

Guttered Area of 
Roof (m2) 

1 59 30 190 28.5 

2 59 30 14 NG 

3 82 40 370 NG 

4 104 45 408 NG 

5 5 45 1007 100.7 

6 50 45 417 NG 

7 58 30 405 60.75 

8 37 30 482 96.4 

9 45 35 233 58.25 

10 27 60 278 41.7 

11 36 30 382 57.3 

12 25 45 378 75.6 

13 87 70 143 NG 

14 49 45 317 31.7 

15 112 50 105 21 

16 49 45 350 70 

18 111 15 615 92.25 

19 80 45 888 NG 

20 87 30 4442 444.2 

21 29 60 715 NG 

22 34 30 326 107.58 

23 3 33 118 59 
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Site # 
 

Age (years) 
 

Roof Slope (º) 
 

Total Roof Area (m2) 
 

Guttered Area of 
Roof (m2) 

24 34 10 100 25 

25 62 25 153 NG 

26 25+ 45 10.5 NG 

27 65 45 123 18.45 

28 12 35 10.4 NG 

29 36 35 366 73.2 

30 25+ 45 17 NG 

31 60 45 213 NG 

32 25+ 30 41 NG 

33 25+ 30 11 2.2 

34 25+ 30 69 NG 

35 2 75 628 62.8 

36 21 45 378 56.7 

37 100 30 115 34.5 

38 25+ 25 183 NG 

39 25+ 30 287 NG 

40 68 45 114 11.4 

41 68 40 155 NG 

42 68 40 136 27.2 

43 51 30 485 72.75 

44 99 35 190 NG 

45 85 35 365 NG 

46 93 45 810 81 
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Site # 
 

Age (years) 
 

Roof Slope (º) 
 

Total Roof Area (m2) 
 

Guttered Area of 
Roof (m2) 

47 25+ 50 475 118.75 

48 10 50 5752 NG 

49 25+ 45 2114 NG 

50 25+ 45 1586 158.6 

51 84 50 560 56 

52 25+ 0 385 38.5 

53 20 0 2411 241.1 

54 25+ 0 1023 102.3 

55 25+ 0 1089 217.8 

56 25+ 45 1362 136.2 

57 10 40 905 90.5 

58 25+ 50 5363 268.15 

59 25+ 45 2267 113.35 

60 49 0 2943 NG 

61 25+ 30 92 NG 

62 53 50 320 32 

63 65 35 100 15 

64 25+ 10 658 NG 

65 25+ 30 76 NG 

66 25+ 30 175 NG 

67 25+ 30 56 NG 

68 25+ 45 19 NG 

69 25+ 30 231 NG 

70 25+ 30 84 NG 
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Site # 
 

Age (years) 
 

Roof Slope (º) 
 

Total Roof Area (m2) 
 

Guttered Area of 
Roof (m2) 

71 3 25 91 13.65 

72 13 45 13062 NG 

73 20 30 92 NG 

74 20 30 97 NG 

75 20 30 106 NG 

76 13 45 334 NG 

77 18 35 128 25.6 

78 63 45 847 169.4 

79 56 45 1131 113.1 

80 40 30 68 NG 

81 51 15 217 43.4 

82 51 30 242 60.5 

83 25+ 15 101 20.2 

84 25+ 45 585 29.25 

85 25+ 20 177 NG 

86 67 40 108 NG 

87 67 40 104 52 

88 71 40 95 0 

89 31 40 595 NG 

90 16 30 381 7.62 

91 6 45 216 64.8 

92 1 30 585 58.5 

93 86 40 234 46.8 
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Figure 1. Soil sampling locations throughout the Oklahoma City Metro Area. A soil sample was 
taken from downspouts or drip lines as well as from a reference area not receiving rooftop runoff 
at each of the ninety-two sampling locations. Locations were chosen based on roof type and were 
later categorized according to building use.  
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Figure 2. Log transformed relationship of overall seven carcinogenic polycyclic aromatic 
hydrocarbon (cPAH) values based on their toxic equivalencies for paired reference and rooftop 
runoff contact soil samples across 92 sample sites in the Oklahoma City Metro Area. The dotted 
trend line is indicative of a 1:1 trend, with 66.3% of all samples falling above this trend, showing 
that more frequently cPAH concentrations are greater in soil samples receiving rooftop runoff as 
compared to their paired reference sample.    
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Figure 3. Carcinogenic polycyclic aromatic hydrocarbon (cPAH) concentrations in paired soils 
(based on toxic equivalencies) at sites as compared by roof type. Values above 16ppb are 
environmentally relevant as exceeding benzo[a]pyrene reference soil screening level (USEPA 
2007). Upper and lower bars represent maximum and minimum values with corresponding 
whiskers displaying upper and lower quartiles. Boxes depict the middle 50% values of cPAH 
toxic equivalent soil concentrations with mean value displayed as a central bar. Reference (soils 
not receiving rooftop runoff): Asphalt (n=59), Metal (n=28), Tar (n=5); Contact (soils directly 
receiving rooftop runoff): Asphalt (n=59), Metal (n=28), Tar (n=5). 
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Figure 4. Benzo[a]pyrene (BaP) concentrations in paired soils at sites as compared by roof type. 
Values above 16ppb are environmentally relevant as exceeding BaP reference soil screening level 
(USEPA 2007). Upper and lower bars represent maximum and minimum values with 
corresponding whiskers displaying upper and lower quartiles. Boxes depict the middle 50% 
values of soil BaP concentrations with mean value displayed as a central bar. Reference (soils not 
receiving rooftop runoff): Asphalt (n=59), Metal (n=28), Tar (n=5); Contact (soils directly 
receiving rooftop runoff): Asphalt (n=59), Metal (n=28), Tar (n=5). 
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Figure 5. Carcinogenic polycyclic aromatic hydrocarbon (cPAH) concentrations in paired soils 
(based on toxic equivalencies) at sites as compared by building use. Values above 16ppb are 
environmentally relevant as exceeding benzo[a]pyrene reference soil screening level (USEPA 
2007). Upper and lower bars represent maximum and minimum values with corresponding 
whiskers displaying upper and lower quartiles. Boxes depict the middle 50% values of cPAH 
toxic equivalent soil concentrations with mean value displayed as a central bar. Reference (soils 
not receiving rooftop runoff): Commercial (n=23), Residential (n=46), School (n=23); Contact 
(soils directly receiving rooftop runoff): Commercial (n=23), Residential (n=46), School (n=23). 
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Figure 6. Benzo[a]pyrene (BaP) concentrations in paired soils at sites as compared by building 
use. Values above 16ppb are environmentally relevant as exceeding BaP reference soil screening 
level (USEPA 2007). Upper and lower bars represent maximum and minimum values with 
corresponding whiskers displaying upper and lower quartiles. Boxes depict the middle 50% 
values of soil BaP concentrations with mean value displayed as a central bar. Reference (soils not 
receiving rooftop runoff): Commercial (n=23), Residential (n=46), School (n=23); Contact (soils 
directly receiving rooftop runoff): Commercial (n=23), Residential (n=46), School (n=23). 
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Figure 7. Percent bioavailability from digestion model of soils (both receiving rooftop runoff and 
reference) in the top 20% overall polycyclic aromatic hydrocarbon (PAH) recovery (including the 
top five most concentrated samples). Percentages of PAH bioavailability are based off of toxic 
equivalent values of five carcinogenic PAHs (5cPAHs) (benz[a]anthracene, benzo[a]pyrene 
(BaP) , benzo[b]fluoranthene, benzo[k]fluoranthene, and chrysene) and BaP individually. 
Samples with an “r” indicate that the soil was a reference soil, while soils without a letter are 
rooftop receiving contact samples. Identical numbers are paired samples from the same site.  
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Figure 8. Quantity of recovery from digestion model of soils (both receiving rooftop runoff and 
reference) in the top 20% overall polycyclic aromatic hydrocarbon (PAH) recovery (including the 
top five most concentrated samples). PAH levels are represented by toxic equivalent values of 
five carcinogenic PAHs (5cPAHs) (benz[a]anthracene, benzo[a]pyrene (BaP) , 
benzo[b]fluoranthene, benzo[k]fluoranthene, and chrysene) and BaP individually. Samples with 
an “r” indicate that the soil was a reference soil, while soils without a letter are rooftop receiving 
contact samples. Identical numbers are paired samples from the same site. All samples shown 
with paired BaP values exceed BaP reference soil screening level (USEPA 2007), as represented 
by the horizontal line at 16 ppb, except for BaP in sample 79r.  
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