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CHAPTER 1

Introduction

Polymatroids are generalizations of matroids that allow us to ask the interesting questions from

matroid theory in the language of monomials. Specifically, one assigns to each basis B in a poly-

matroid a variable YB in some polynomial ring and each ground element e of the polymatroid is

also assigned a variable xe in a different polynomial ring. Define a map between these polynomial

rings by YB 7→
∏
e∈B xe and then extend this linearly to a homomorphism between these polynomial

rings. In A unique exchange property for bases, Neil White conjectured that the kernel of this map

is generated by symmetric exchange binomials.

Graph theoretic methods have proved useful in studying this conjecture. Both Schweig and

Blasiak were able to use graphs to show that the kernel of this map was generated by degree two

binomials and that these binomials related to symmetric exchanges in the case of graphic matroids

and lattice path polymatroids.

In this paper we study a graph related to symmetric exchanges in polymatroids and establish

some connectivity results. Although these connectivity results do not prove White’s conjecture, they

can reduce the problem to determining if the toric ideal is generated in degree 2. In this paper we

show that the degree 2 part of the toric ideal of a polymatroid on at most 7 variables is generated by

symmetric exchange binomials. Along the way we develop theory behind the structures that appear

in this graph.
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CHAPTER 2

Background Material

2.1 Matroids

Matroid theory formalizes the notion of independence in a combinatorial way. The subject was

pioneered by Whitney as he was attempting to describe properties of dependence that were common

to graphs and Matrices [Oxley]. We recall some of the basic definitions.

Let E be a finite set and I be a collection of subsets of E. Then we say the pair (E, I) is a

matroid if the following conditions hold:

(I1) ∅ ∈ I.

(I2) If A ∈ I and B ⊂ A then B ∈ I.

(I3) If A and B are members of I and |B| < |A|, then there exists a ∈ A−B such that B ∪ {a} is

a member of I.

The members of I are called independent sets. As an initial example of a matroid consider

the matrix A =

1 0 1 0

0 1 1 0

 with column vectors e1 =

1

0

, e2 =

0

1

, e3 =

1

1

, and e4 =

0

0

.

There is a natural matroid associated to A where E is taken to be {e1, e2, e3, e4} and I is the

collection of all linearly independent subsets of E. Then M(A) = (E, I) is a matroid and the

independent sets are the elements of

I =
{
{e1, e2}, {e2, e3}, {e3, e1}, {e1}, {e2}, {e3}, ∅

}
.

Notice that maximal members of I, ordered under inclusion, have the same cardinality. Indeed

for any matroid its maximal sets have the same cardinality, and we call a maximal member of I a

basis. This terminology seems suspiciously suggestive but for good reason. In the previous example

the sets {e1, e2}, {e2, e3}, {e3, e1} each form a basis for the column space of A.
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Property (I2) says that matroids are closed under set inclusion, hence a matroid is completely

determined from its bases. Property (I3) captures a familiar phenomenon in linear algebra. Recall

that given two sets of linearly independent vectors A and B, such that dim(span(A)) is larger than

dim(span(B)) then we can add some vector v from A to B to increase the dimension of span(B). For

this reason (I3) is often called the exchange axiom. Since E is finite we see immediately that each el-

ement of I is contained in a maximal element, or equally each independent set is contained in a basis.

The subsets of E that are not elements of I are called dependent sets. So in our earlier example

the dependent sets of M(A) are those subsets of E that contain {e4} or have more than 2 elements.

The minimally dependent subsets of a matroid are called circuits and every dependent set contains

a circuit. If B is a basis then for any e which is not in B we know that B ∪ {e} is dependent since

B is maximal. Therefore B ∪ {e} contains a circuit. Furthermore this circuit is unique, contains e

and is usually denoted by C(B, e). The circuit C(B, e) is called the fundamental circuit of e with

respect to B. Circuits are fundamental structures in a matroid and in fact a matroid is completely

determined by its circuits. ([Oxley]) Many examples of matroids arise naturally when considering

graphs, which will be discussed in the next section.

Notice that if B1 and B2 are distinct bases of a matroid (E, I) then for any e in B1 − B2 we

have B1 − {e} is independent and |B1 − {e}| < |B2|. Therefore property (I3) implies the existence

of an element f in B2 −
(
B1 − {e}

)
such that

(
B1 − {e}

)
∪ {f} is in I. Evidently

(
B1 − {e}

)
∪ {f}

is maximal and is therefore a basis for (E, I). This is more precisely stated by the following lemma.

Lemma 2.1.1 ( [Oxley], Lemma 1.2.2 )

If B1 and B2 are bases of a matroid and x ∈ B1 −B2 , then there is an element y of B2 −B1 such

that (B1 − {x}) ∪ {y} is a basis.

The previous lemma is an example of an exchange property satisfied by the bases of a matroid.

The next result shows that the bases of a matroid satisfy a stronger property called symmetric

exchange.

Theorem 2.1.1 ( Symmetric Exchange, [Brualdi], Theorem 2 )

Let B1 and B2 be distinct bases for a matroid. For each e in B1−B2 there exists f in B2−B1 such

that
(
B1 − {e}

)
∪ {f} and

(
B2 − {f}

)
∪ {e} are both bases.

For fixed bases of a matroid B1 and B2 and a given element e in B1, the possible choices for
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f satisfying the conclusion of the symmetric exchange theorem are known to be the members of

C(B2, e). ([Brualdi])

Lemma 2.1.2 ([Brualdi], Lemma 1)

Let B be a basis for a matroid and e ∈ Bc. Then B ∪ {e} contains a unique circuit C(B, e). This

circuit contains e , and moreover for f ∈ B , (B − {f}) ∪ {e} is a basis if and only if f ∈ C(B, e).

The symmetric exchange property allows us to associate to any matroid M a graph G(M) which

captures some properties of the toric ideal associated to M . We will discuss the toric ideal in a later

section but for now we’ll review some graph theory.

2.2 Graphs

A graph is a finite set V of vertices and a set E of edges each joining two vertices.

e1

e2

e3

e4 e5

v1 v2

v3v4

A graph with V = {v1, v2, v3, v4} and E = {e1, e2, e3, e4, e5}.

Formally the edges are pairs of vertices. So in the diagram above e1 = (v1, v2),

e5 = (v1, v3) and so on. The two ends of an undirected edge may be written in either order. For

example e1 = (v2, v1) and (v1, v2). Occasionally we would like to create graphs that assign a direction

to each edge, in which case we would distinguish between the order of the ends of an edge.

v1

v2v3

A Graph with V = {v1, v2, v3} and

E = {(v1, v1), (v1, v2), (v2, v3), (v3, v2)}

In the above example the edge (v2, v3) is identified by the arrow arrow that begins at v2 and

points to v3. The edge (v3, v2) is the arrow that starts at v3 and points to v2. When this distinction

between the direction of edges is made we say the edges are directed edges. In a directed graph

all edges are directed. Note that in both a directed graph and an undirected graph we allow the
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same vertex to represent both ends of an edge. Such edges are called loops, so in the previous

example (v1, v1) is a loop.

When two vertices are joined by an edge we say these vertices are adjacent. So in the example

above v1 and v2 are adjacent, however v1 and v3 are not. If every pair of vertices of a graph G is

adjacent then G is called a complete graph and is written Kn if it has n vertices. Of interest to us

will be sequences of distinct vertices v1, v2, ..., vn such that vi+1 is adjacent to vi . Such sequences

of vertices are called paths and will be written as v1− v2− · · · − vn . If in addition there is an edge

(vn, v1) the sequence is called a cycle and is written as v1 − v2 − · · · − vn − v1 . The number of

vertices adjacent to a vertex, v, is called the degree of the vertex and is written deg(v). The length

of a path, or a cycle, is the number of edges in the path or the cycle respectively. A chord of the

cycle v1 − v2 − · · · − vn − v1 is an edge (vi, vj) where j 6= i and j 6= i± 1 ( mod n ).

Theorem 2.2.1

In any graph, the sum of the degrees of all vertices is equal to twice the number of edges.

Given any graph G one can form a matroid M(G) = (E, I) by taking E to be the edges of G

and I to be the subsets of edges that do not contain a cycle.

As an example of this, in the graph below we would take E = {1, 2, 3, 4, 5}.

5

4

2

1 3

The cycles of this graph are {1, 2, 3}, {3, 4, 5}, {1, 2, 4, 5} and the bases of I will be those maximal

subsets of edges that don’t contain any of these cycles. So the bases of M(G) are

{1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}.

Those familiar with graph theory will recognize the bases as the spanning trees of the graph.

Since graphs are not always connected, in the general cases the bases of this matroid will be the

spanning forests of the graph.

The most important property in graph theory concerning us is connectivity. The idea is intuitive

enough but the definition differs slightly depending on whether or not the graph is directed. An
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undirected graph is connected if there is a path between every pair of vertices. If in a directed

graph we replace each edge with an undirected edge and the resulting graph is connected, we say

the original directed graph is weakly connected. A directed graph is connected if for any pair of

distinct vertices u and v there either exists a directed path from u to v or there exists a directed

path from v to u. When discussing directed graphs we will use the phrase connected when we mean

weakly connected.

If a graph is not connected then it can be separated into connected pieces that are called com-

ponents.

A graph with 3 components.

Notice that if a graph consists of two components which are each complete graphs, then drawing

a new edge between any distinct vertices will form a connected graph.

Lemma 2.2.1 ( [Tucker] )

Let G be a graph with n vertices. If the number of edges is greater than 1
2 (n − 1)(n − 2) then G is

connected.

Lemma 2.2.2

Let G be a graph without loops such that the degree of each vertex is at least k. If G is disconnected

then G has at least 2k + 2 vertices.

Proof.

Let x be a vertex of G. Then x is contained in some component Cx of G. The component Cx must

contain every vertex that is adjacent to x. Since deg(x) ≥ k and there are no loops incident to x then

this component must have at least k + 1 vertices. Now if G is disconnected there must be a vertex

y which is not in Cx. This vertex is itself contained in a component Cy and by similar reasoning we

can conclude that Cy contains at least k+ 1 vertices. Hence |G| ≥ |Cx|+ |Cy| = 2(k+ 1), where |G|

represents the number of vertices in G.

6



Theorem 2.2.2 ( [Pach, Agarwal] , Theorem 9.1)

Let G be a connected graph with n ≥ 3 vertices such that deg(x) + deg(y) ≥ r for every pair of

nonadjacent vertices x and y.

(i) If r = n , then G has a circuit that passes through each of its vertices.

(ii) If r < n , then G contains a path of length r and G contains a cycle of length d(r + 2)/2e.
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CHAPTER 3

Polymatroids

3.1 Definitions and Notation

Let S = C[x1, ..., xn]. If m is a monomial in S we define degxi
(m) to be the largest non-negative

integer α such that xαi

∣∣∣∣m. The total degree of a monomial m, written as deg(m), is defined to be∑
i

degxi
(m).

A discrete polymatroid Γ is a finite collection of monic monomials in S satisfying the following

properties.

1. If m ∈ Γ and p|m then p ∈ Γ.

2. If m, p ∈ Γ and deg(m) > deg(p) then there exists an index i such that degxi
(m) > degxi

(p)

and xip ∈ Γ.

Notice that a matroid is just a squarefree polymatroid. Analogous to the case of matroids, the

monomials in Γ will be called independent and the bases will be the maximal elements of Γ ordered

by divisibility.

Lemma 3.1.1 (Symmetric Exchange)

Let m and m′ be bases of the discrete polymatroid Γ. Let i be an index such that degxi
(m) >

degxi
(m′). Then there exists an index j such that degxj

(m′) > degxj
(m) and both

xj

xi
m and xi

xj
m′

are bases in Γ.

Given bases m and n and variables xi and xj satisfying Lemma 1, if m′ =
xj

xi
m and n′ = xi

xj
n

then we will say that the pair (m′, n′) can be obtained from the pair (m,n) by a symmetric exchange.

8



3.2 Toric Map and Toric Ideal

Let Γ be a polymatroid with {x1, ..., xn} as its ground set and let B be the collection of all bases

of Γ. We can use B to construct a polynomial ring C[YB1
, ..., YBr

] where each basis Bi is assigned

a variable. The map φ : C[YB1 , ..., YBr ] −→ C[x1, ..., xn] defined by φ(YBi) =
∏
x∈Bi

x and extended

naturally to a ring homomorphism on C[YB1 , ..., YBr ] is called the toric map defined by B.

Heuristically the toric map takes a basis and multiplies everything inside the basis together to

form a monomial. Extending naturally just means we define products and sums to be preserved by

this map.

The kernel of the toric map defined by B is called the toric ideal of Γ. The ring C[YB1
, ..., YBr

]

is called the base ring associated to Γ. Given bases A1, B1, A2, and B2 in Γ, if (A2, B2) can be ob-

tained from (A1, B1) by a symmetric exchange then we define YA1YB1 − YA2YB2 to be a symmetric

exchange binomial.

Suppose φ : C[YB1
, ..., YBr

]→ C[x1, ..., xn] is the toric map for the toric ideal of Γ. Then for any

symmetric exchange binomial, YA1
YB1
− YA2

YB2
, we have that

φ(YA1YB1 − YA2YB2) =

( ∏
x∈A1

x

) ∏
y∈B1

y

−( ∏
x∈A2

x

) ∏
y∈B2

y

 = 0

since the multiset union of A1 and B1 is the same as the multiset union of A2 and B2. This

shows that every symmetric exchange binomial lies in the toric ideal.

Conjecture 3.2.1 ( [Herzog, Hibi])

The toric ideal of Γ is generated by symmetric exchange binomials.

This conjecture can be viewed as two separate conjectures. One that says that the toric ideal

is generated by quadratic binomials and the other that says that these binomials are related by

symmetric exchanges. The symmetric exchange graph of some polymatroids has been used to show

that the degree 2 part of the corresponding toric ideal is generated by symmetric exchange binomials.

An example of this can be found in both Blasiak’s paper and Schweig’s paper. Therefore determining

when the symmetric exchange graph of a polymatroid is connected can resolve the second part

White’s conjecture.
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CHAPTER 4

The Symmetric Exchange Graphs of Polymatroids

Let Γ be a discrete polymatroid. We can define a directed graph G(Γ) in the following way.

1. The vertex set V is the collection of unordered pairs of bases from Γ.

2. If A,B,C,D ∈ Γ such that (C,D) can be obtained from (A,B) by a symmetric exchange, then

we draw a directed edge from (A,B) to (C,D) in the graph.

The graph G(Γ) is called the symmetric exchange graph of Γ. Let φ be the toric map for Γ. A

section of Γ is defined to be the subgraph of G(Γ) induced by the vertex set

S = {(A,B) : A,B ∈ B and φ(YAYB) = m for some fixed monomial m}.

Each edge of G(Γ) relates to a particular symmetric exchange binomial. For example, an edge

between (A,B) and (C,D) corresponds to the symmetric exchange binomial YAYB − YCYD.

Let Md represent a degree d monomial. Each p ∈ ker(φ) can be written as a sum of binomials

in each degree.

p =

deg(p)∑
d=0

Rd∑
i=0

(
Md
i −Nd

i

)

It follows that for each d ∈ {0, ...,deg(p)} we must have have

Rd∑
i=0

(
Md
i − Nd

i

)
= 0. Note that

after regrouping we can assume that Md
i −Nd

i = 0 for each i.

If we restrict consideration to the degree 2 part of p then we have a sum of quadratic binomials

and one can ask whether these binomials can be rewritten as a sum of symmetric exchange binomials.

For each quadratic binomial satisfying φ(YAYB − YCYD) = 0 we have corresponding section of

G(Γ) defined by φ(YAYB) . Evidently (C,D) is in the same section of G(Γ) as (A,B). If this section

is connected then there exists a sequence of vertices (Vi,Wi) starting at (A,B) and ending at (C,D)

10



such that consecutively indexed vertices are adjacent. In this case we have ,

YAYB − YCYD = YV0
YW0

+ (−YV1
YW1

+ YV1
YW1

) + · · ·+ (−YVn−1
YWn−1

+ YVn−1
YWn−1

)− YVn
YWn

YAYB − YCYD = (YV0
YW0
− YV1

YW1
) + (YV1

YW1
− YV2

YW2
) + · · ·+ (YVn−1

YWn−1
− YVn

YWn
)

In the last equality every binomial in parentheses is a symmetric exchange binomial. Therefore

if we could determine conditions which make the sections of G(Γ) connected, then the degree two

part of the corresponding toric ideal is generated by symmetric exchange binomials.

Observation: The edges in G(Γ) had to be defined to be directed.

To see this let Γ be the polymatroid in the ring C[a, b, c] with bases,

{abc, abd, ac2, acd, ad2, b2c, b2d, bc2, bcd, bd2}.

The pair (abc, bcd) can be derived from the pair (ac2, b2d) by the exchange d
cac

2 and c
db

2d.

However the only exchange that Lemma 1 allows with the pair (abc, bcd) is, d
aabc and a

dbcd which

results in the same pair. Notice that this situation doesn’t arise in the matroid case since each basis

has degree 1 in each variable dividing that basis.

4.1 Depth

We define a function on the vertices in the symmetric exchange graph of Γ.

Let (A,B) be a basis pair. The depth of (A,B) in the variable xi is defined to be Fxi
(A,B) =

|degxi
(A)− degxi

(B)|.

Define the depth function F : Γ2 → N by, F (A,B) =
∑
xi

Fxi
(A,B).

This function makes a lot of properties easier to talk about. For example if Fxi
(A,B) > 0 then

there exists a symmetric exchange between A and B involving xi.

Lemma 4.1.1

Let (A,B) and (C,D) be vertices in G(Γ) such that there is an edge from (A,B) to (C,D). Then

11



for each variable xi we have Fxi
(A,B) > Fxi

(C,D) or Fxi
(A,B) = Fxi

(C,D). For each xi the

equality case occurs when either Fxi
(A,B) = 0, Fxi

(A,B) = 1, or xi is not involved in the exchange

inducing the edge.

Proof.

Since there is an edge from (A,B) to (C,D) then there exist variables a and b such that dega(A) >

dega(B), degb(B) > degb(A) and b
aA = C and a

bB = D.

From these equalities we can conclude that if xi 6= a and xi 6= b then,

Fxi
(A,B) = Fxi

(
b
aA,

a
bB
)

= Fxi
(C,D).

Now for the variable a we have,

Fa(C,D) = Fa

(
b

a
A,

a

b
B

)
= |(dega(A)− 1)− (dega(B) + 1)| = |dega(A)− dega(B)− 2|.

Since dega(A) > dega(B) then either dega(A) ≥ dega(B) + 2, or dega(A) = dega(B) + 1.

If dega(A) = dega(B) + 1 then,

Fa(C,D) = |dega(A)− dega(B)− 2| = |dega(B) + 1− dega(B)− 2| = | − 1| = 1.

Since dega(A) = dega(B) + 1, we know that Fa(A,B) = 1. Therefore

Fa(A,B) = Fa(C,D).

Now if dega(A) ≥ dega(B) + 2 then,

Fa(C,D) = |dega(A)− dega(B)− 2| = dega(A)− dega(B)− 2 = Fa(A,B)− 2,

12



which says that Fa(C,D) < Fa(A,B).

By an analogous argument we can prove the same results for Fb(C,D).

�

Corollary 4.1.1

If (A,B) is a vertex in G(Γ) and Fxi
(A,B) > 2 for some variable xi, then (A,B) is connected to a

vertex with smaller depth.

Proof.

Since Fxi
(A,B) is positive then there exists a symmetric exchange between (A,B) involving xi.

Hence there is a vertex (C,D) such that xi induces an edge from (A,B) to (C,D) via the afore-

mentioned exchange. Since Fxi
(A,B) > 2 then Lemma 4.1.1 implies that Fxi

(A,B) > Fxi
(C,D).

�

Theorem 4.1.1

The depth function is nonincreasing along directed paths in G(Γ).

Proof.

Lemma 4.1.1 implies that F is the sum of nonincreasing functions. �

Theorem 4.1.2

Let Γ be a polymatroid and (A,B) be a vertex in G(Γ). Suppose that (C,D) can be derived from

(A,B) by the symmetric exchange C = y
xA and D = x

yB. Then there is an edge from (C,D) to

(A,B) if and only if degx(A) = degx(B) + 1 and degy(B) = degy(A) + 1.

Proof.

Since there is an edge from (A,B) to (C,D) then Lemma 4.1.1 implies Fxi
(A,B) ≥ Fxi

(C,D) for

each variable xi.

Now suppose there is also an edge from (C,D) to (A,B). Then for each xi we have Fxi
(C,D) ≥

Fxi
(A,B), and therefore Fxi

(A,B) = Fxi
(C,D). Since x is involved in the exchange that induces the

edge from (A,B) to (C,D) then, and Fx(A,B) = Fx(C,D) then the Lemma 4.1.1 says equality holds

when Fx(A,B) = 1. Since degx(A) > degx(B) then we can conclude that degx(A) = degx(B) + 1.

A similar argument will show that degy(B) = degy(A) + 1. Thus we have shown one direction of

the claim.
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Now for the other direction we suppose degx(A) = degx(B)+1 and degy(B) = degy(A)+1. The

equation degx(A) = degx(B) + 1 implies degx(C) + 1 = degx(D) and similarly we have degy(C) =

degy(D) + 1. Note that degy(C) > degy(D) and degx(D) > degx(C) and the exchange

x
yC = x

y
y
xA = A and similarly y

xD = y
x
x
yB = B

results in a pair of bases in the same section as (C,D). So the exchange is valid and there is an edge

from (C,D) to (A,B).

�

The above claim answers the question of when we can move backwards along a path in the

exchange graph. So in the graph below we know that the pair (A,B) relates to the pair (C,D) by

a symmetric exchange involving two variables x and y. Further we know that the degrees of A and

B in these variables differ by 1.

(A,B) (C,D)

Intuitively it’s clear that we can create long paths by repeatedly applying the symmetric ex-

change lemma to most vertices. Since this lemma only guarantees the existence of an exchange, it

may be the case that there are multiple exchange paths from a vertex. It is natural to ask what

other types of graph structures may be present in the exchange graph. For instance are there any

cycles? If they exist what is the structure of those cycles? etc.

A bidirected cycle in a digraph G is a directed cycle (a0 → a1 → · · · → an−1 → a0) such that

(a0 → an−1 → · · · → a1 → a0) is also a directed cycle. A polygonal cycle in an exchange graph is

a bidirected cycle that has no directed chords.

Theorem 4.1.3

For any polygonal cycle of length n there exists a polymatroid Γ such that G(Γ) contains a section

whose exchange graph is a length n polygonal cycle.

Before we prove this theorem we need to introduce some terminology.

Consider the family of nonempty sets S1, S2, ..., Sn. We allow the Si to have different cardinalities

and we allow the same set to appear at multiple indices. Form a multiset V by choosing exactly
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one element from each Si. Let B be the collection of all possible multisets formed in this way. Let

B = {
∏
x∈V x : V ∈ B}.

Theorem 4.1.4

B is the collection of bases for a polymatroid.

The polymatroid described above is called a transversal polymatroid. Recall that a bipartite

graph is a graph whose vertex set can be partitioned into two disjoint vertex sets V1 and V2 where

members of the same partition are not allowed to be adjacent. For any bipartite graph G we can

form a transversal polymatroid. If one of the vertex sets is {v1, ..., vr} we take Si to be the set

of vertices adjacent to vi. This forms a nonempty family of subsets on which we can construct a

transversal polymatroid.

Proof. (Theorem 4.1.3)

The proof proceeds by constructing a transversal polymatroid whose exchange graph contains a

polygonal cycle of length n. Recall that for a transversal polymatroid we need a family of sets.

Let the family of sets be S1 = {x1, y1}, S2 = {x2, y2}, ..., Sn = {xn, yn}. Let Γ be the transversal

polymatroid for this family of sets. Let G be the exchange graph of Γ and consider the section of G

corresponding to the multiset union {x1, y1, x2, y2, ..., xn, yn}.

The vertex A = (x1x2 · · ·xn, y1y2 · · · yn) is in this section of G. The bases are the 2n size 4 sets

containing exactly 1 member from each Si. Therefore in this section of G a symmetric exchange

always exists by interchanging xi and yi for a particular index i. So we can perform a sequence of

symmetric exchanges by starting with A and interchanging x1 with y1, then x2 with y2, and so on

until we finally interchange xn, yn and get back to A. The diagram below describes this particular

cycle in this section.
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A = (x1x2 · · ·xn , y1y2 · · · yn)

(y1x2 · · ·xn , x1y2 · · · yn)

(y1y2 · · ·xn , x1x2 · · · yn)

...

(y1y2 · · · yixi+1 · · ·xn , x1x2 · · ·xiyi+1 · · · yn)

...

(y1y2 · · · yn−1xn , x1x2 · · ·xn−1yn)

A = (y1y2 · · · yn , x1x2 · · ·xn)

This cycle has length n and next we’ll show that it contains no directed chords. Label the vertices

in this sequence of symmetric exchanges by saying vertex A occurs at the 0th step and the vertex

after interchanging xi with yi is said to be at the ith step.

Now suppose that there is a chord between a vertex Pi at the ith step and a vertex, Pj , at

the jth step. Then the vertices Pi and Pj differ by a single symmetric exchange. Since the edge

joining Pi and Pj is a chord we neccessarily have n > j ≥ i + 2 and i ≥ 0. The vertex Pi con-

tains a basis that has the variables {y1, ..., yi−1, yi} and Pj contains a basis that has the variables

{y1, ..., yi−1, yi, yi+1, yi+2} and possibly more. Hence Pi and Pj differ by at least two exchanges

involving the y variables. This contradicts the existence of a chord joining Pi and Pj .

This shows that we can construct polygonal cycles of length n for n ≥ 3.

�

Theorem 4.1.5

An exchange graph of a polymatroid cannot contain directed cycles unless the directed cycle is a part

of a bidirected cycle.
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That is to say, structures like the graph below cannot exist.

Proof.

The proof is by contradiction. Suppose there exists a directed cycle of length N + 1 with initial

vertex (A0, B0). Then we can describe the cycle in terms of symmetric exchanges.

(A0, B0)→ (A1, B1)→ · · · → (AN−1, BN−1)→ (AN , BN ) = (A0, B0)

Here Ai+1 =
bi
ai
Ai and Bi+1 =

ai
bi
Bi for each i ∈ {0, 1, ..., N − 1} where ai and bi are involved

in the symmetric exchange for the pair (Ai, Bi) that induces the edge to (Ai+1, Bi+1). Since the

depth function is nonincreasing along paths it follows that F (Ai, Bi) = F (Aj , Bj) for each i and

j in {0, 1, ..., N − 1}, in particular for j = i + 1. Using Lemma 4.1.1, either Fai(Ai, Bi) = 0 or

Fai(Ai, Bi) = 1. We note however that Fai(Ai, Bi) 6= 0 since ai is involved in a symmetric exchange

between Ai and Bi, hence Fai(Ai, Bi) = 1. By an analogous argument Fbi(Ai, Bi) = 1 as well.

Since both Fai(Ai, Bi) = 1 and Fbi(Ai, Bi) = 1, and also Ai+1 =
bi
ai
Ai and Bi+1 =

ai
bi
Bi for each

i ∈ {0, 1, ..., N − 1} then Theorem 4.1.2 says that there is a path from (Ai+1, Bi+1) to (Ai, Bi) for

each i ∈ {0, 1, ..., N − 1}. Therefore each edge in the path is bidirected.

�

The depth function has another straightforward property.

Lemma 4.1.2

Let Γ be a polymatroid and let S be a section in G(Γ). Then the restriction of the depth function F

to S achieves a minimum value.

Proof.

The set X = {F (A,B) : (A,B) ∈ S} is a nonempty subset of N hence it has a smallest element. �

Often the most interesting properties in a structure occur in the extremal cases. Let S be a sec-

tion in G(Γ). We say the vertex (A,B) is a presink of S if the restriction of the depth function to
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the section S achieves a minimum value at (A,B). The idea is that the presinks of a section are the

vertices that have minimum depth in this section. They are in a sense at the lowest level of the graph.

A descending path in G(Γ) is a directed path in a section, such that the depth function’s values

are decreasing along consecutive vertices. A descending path stabilizes once the depth function

achieves its minimum value in that section. We say that a descending path stabilizes at a vertex if

it is the first vertex in the path for which the depth function achieves its minimum. Starting at any

vertex that is not a presink, we can repeatedly apply Corollary 4.1.1 to construct a descending path.

There are a few situations in which a descending path could stabilize at a vertex (A,B). First

there may be no possible exchanges between A and B and so the path terminates. Since there is

always an exchange whenever the depth is positive, a descending path can only stabilize in this way

if the depth function is 0 which occurs when A = B. We define a terminal vertex to be a vertex

with 0 depth. Another way a path could stabilize at a vertex is if the only out edges for that vertex

are loops. A loop vertex is a vertex such that a loop is incident at that vertex. It is also possible

to possible to keep the depth constant if you follow a cycle or a path. Note that since these would

be paths or cycles of presinks then Lemma 4.1.3 implies that the underlying vertices have the form

(x1 · · ·xk · m , y1 · · · yk · m) . This form together with Lemma 4.1.1 implies that these paths and

cycles are bidirected. A summary of these results is presented after the following lemma.

Lemma 4.1.3

Let Γ be a polymatroid in C[x1, ..., xn] and let S be a section in G(Γ). The presinks of S have the

same form, (x1 · · ·xkm , y1 · · · ykm) where k ≤ n
2 .

Proof.

A vertex (A,B) in S can be written as (xa11 · · ·xann , xb11 · · ·xbnn ).

Suppose (xa11 · · ·xann , xb11 · · ·xbnn ) and (xe11 · · ·xenn , x
f1
1 · · ·xfnn ) are distinct vertices. Since they are

in the same section, then ai + bi = ei + fi . Therefore if ai + bi ≡ 0 mod 2 then ei + fi ≡ 0 mod 2.

Thus for each variable xi such that Fxi(A,B) ≡ 0 mod 2 for one vertex in the section, we must

have that Fxi ≡ 0 mod 2 for all vertices in S.

Without loss of generality assume that the last n− r of the variables x1, x2, ..., xn have the prop-

erty that Fxi
≡ 0 mod 2 for all vertices in S.
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Now let (A,B) = (xa11 · · ·xann , xb11 · · ·xbnn ) be a presink in S. Since (A,B) is not connected

to any vertices with smaller depth, Corollary 4.1.1 implies that Fxi
(A,B) ≤ 1 for each xi. It

follows that Fxi
(A,B) = 0 for each i ∈ {n − r, ..., n − 1, n}. Therefore (A,B) has the form

(xa11 · · ·xarr m ,xb11 · · ·xbrr m) where m = xn−r · · ·xn.

Suppose there are more indices for which ai > bi. Then
∑
i

ai >
∑
i

bi which implies that A

and B have different total degree, a contradiction. By symmetry of argument we can assume that

the number of indices where ai > bi is the same as the number of indices where bi > ai. Therefore

r = 2k for some positive integer k. After relabeling we may assume that the first k of the xi satisfy

the inequality that ai > bi. Then the presink (A,B) has the form (x1 · · ·xkm′ , xk+1 · · ·x2km′),

where m′ = m

( k∏
i=1

xai−1i

)( 2k∏
i=k+1

xbi−1i

)
.

�

Theorem 4.1.6 (Structure of presinks)

Let Γ be a polymatroid and let S be a section in G(Γ). Each presink of S is one of the following,

1. a terminal vertex and is of the form (m,m),

2. a loop vertex and is of the form (xim,xjm),

3. a vertex in a bidirected cycle or a bidirected path of presinks, and is of the form

(x1 · · ·xkm , y1 · · · ynm′). Here the xi are distinct, the yi are distinct and xi 6= yj for each

i and j. Also these variables xi and yj are precisely the variables involved in the symmetric

exchanges defining the path or cycle respectively.

Proof. First suppose (A,B) is a terminal vertex. Then the out degree of (A,B) is 0. If A were not

equal to B then a symmetric exchange could be performed with these two bases, which would imply

that the pair (A,B) has positive out degree. Since (A,B) does not have positive out degree then A

must be equal to B.

Second suppose (A,B) is a loop vertex. Then there exists variables x and y with x 6= y such

that y
xA = B and x

yB = A, in particular xB = yA. Since y divides B and x divides A then B = ym

and A = xn for some monomials n and m. So the equation xB = yA implies xym = yxn, therefore
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n = m. This shows (A,B) = (xm, ym).

The third case is a consequence of Lemma 4.1.3.

�

Corollary 4.1.2

Let S be a section in G(Γ). Then every vertex in S is connected to a presink in S.

Proof.

For any vertex that is not a presink we may induce a descending path by repeated applications of

Corollary 4.1.1. Since the depth is decreasing on such paths and achieves a minimum in S then this

induced path must stabilize. �

Theorem 4.1.7

Suppose that S is a section in G(Γ) that contains a terminal vertex or a loop vertex. Then S has a

unique sink and is therefore weakly connected.

Proof.

It is clear that the statement holds when S has exactly one element. So from here on we’ll assume

that S has at least two elements.

S contains a presink (A,B) that is either a loop vertex or a terminal vertex.

Suppose (A,B) is a terminal vertex. Then Lemma 4.1.3 and Theorem 4.1.6 imply any other

presink is also a terminal vertex. We also know that B = A therefore if (C,C) is another presink we

must have that C2 = A2 since these presinks are in the same section. But then (A+C)(A−C) = 0

and since C[x1, ..., xn] is an integral domain and A,C are both monic then A = C. Thus if there is

a terminal vertex it is the unique presink.

Suppose (A,B) is a loop vertex. Just as before any other presink (E,F ) must also be a loop.

There exist variables a, b, e, f such that (A,B) = (am, bm) and (E,F ) = (en, fn).

Since (E,F ) and (A,B) are in the same section then efn2 = abm2. Also dega(n2) is even and

dega(abm2) is odd therefore either a = e or a = f .

Without loss of generality we may assume that a = e implying fn2 = bm2. Since degb(n
2) is

even and degb(bm
2) is odd then b = f . Hence n2 = m2 and therefore (A,B) = (E,F ). Thus if there
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is a loop vertex, then it is the unique presink.

In each of these cases there was a unique presink and since each vertex is connected to a presink

it follows that S actually contains a unique sink and is therefore weakly connected. �

4.2 Subgraph of Presinks

If there was any candidate for a structure that would keep a section of G(Γ) connected, it would be

that section’s subgraph of presinks.

Let Γ be a polymatroid and let S be a section in G(Γ). We define the subgraph of presinks

PS to be the graph whose vertices are the presinks of S. An edge exists between two vertices in PS

if and only if it exists in S.

Lemma 4.2.1

Let S be a section in G(Γ) and let PS be its subgraph of presinks. Then the maximum number of

vertices PS can have is 1
2

(
2k
k

)
where 2k is the depth of S.

Proof.

Recall that Lemma 4.1.3 says the presinks of S have the same form, (x1 · · ·xkm , y1 · · · ykm). An

upper bound on the number of possible presinks is to count the number of size k subsets from the

set {x1, y1, x2, y2, ..., xk, yk}. There are
(
2k
k

)
such subsets. Notice that each size k subset V of the

set {x1, y1, x2, y2, ..., xk, yk} would appear in a vertex of the form(
m
∏
x∈V

x, m
∏
x∈V c

x

)
. Therefore each vertex is counted twice, so there are at most 1

2

(
2k
k

)
. �
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CHAPTER 5

Main Results

Theorem 5.0.1

Let Γ be a polymatroid in C[x1, ..., xn] and let S be a section in G(Γ). If S contains at most 3

presinks then S is weakly connected.

Proof.

If S has one presink then S is connected since every vertex is connected to a presink.

If S has 2 or 3 presinks then Theorem 4.1.7 implies that none of these presinks is a loop vertex

or a terminal vertex.

Therefore they are each connected to a node distinct from themselves. Also presinks can only

have out edges to other presinks since the depth must be nonincreasing. So when S has two sinks

they must be connected to each other. When S has three sinks then at least one of them is connected

to the other two. �

Theorem 5.0.2

Let Γ be a polymatroid in C[x1, ..., xn] and let n ≤ 7. Then every section in the exchange graph of

Γ is weakly connected.

Proof.

Let Γ be a polymatroid in C[x1, ..., xn], let S be a section in the exchange graph of Γ and let

PS be the subgraph of presinks of S. We will show that PS is connected when n ≤ 7. Which will

imply that S is weakly connected. Theorem 4.1.7 tells us that sections containing loops are weakly

connected, we will restrict our consideration to sections S for which PS does not contain loops.

Let (A,B) be a vertex in PS . Since (A,B) is a presink then (A,B) has the form

(a1 · · · akm , b1 · · · bkm), where ai and bi are distinct variables and k ≤ n
2 . Since n is at most 7 then
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k can be at most 3.

The bases A and B have at least k exchanges between them, one induced by each of the ai, hence

the degree of (A,B) is at least k. Since (A,B) was an arbitrary vertex we can conclude that each

vertex of PS has degree at least k.

If PS is disconnected then Lemma 2.2.2 says that PS must have at least 2k + 2 vertices. Also,

Lemma 4.2.1 says that PS can have at most 1
2

(
2k
k

)
vertices. Therefore PS cannot be disconnected

whenever 2k + 2 > 1
2

(
2k
k

)
.

By inspection we see that this inequality is true for k ∈ {0, 1, 2} which shows that PS is con-

nected when k ∈ {0, 1, 2}. The inequality fails when k = 3, yet we still see that PS must have at

least 2 · 3 + 2 = 8 vertices if it is disconnected. We will conclude the proof by showing that PS is

connected if k = 3 and PS has at least 8 vertices.

After relabeling we can assume that (x1x2x3m , x4x5x6m) is a vertex in PS . Let (C,D) be

a vertex in PS distinct from (x1x2x3m , x4x5x6m). Since C 6= x1x2x3m and C 6= x4x5x6m

then C
m must be divisible by two elements from {x1, x2, x3} or two elements from {x4, x5, x6}. A

similar argument can be made for D
m . Without loss of generality suppose that C

m is divisible by

two elements from {x1, x2, x3} and D
m is divisible by two elements from {x4, x5, x6}. Then (C,D)

differs from (x1x2x3m,x4x5x6m) by a single exchange. This shows that (C,D) is connected to

(x1x2x3m,x4x5x6m) . Since (C,D) was arbitrary then PS is connected.

�
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