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Abstract: Soil nutrient management has made significant advances in efficiency, 

especially with nitrogen (N) fertilization. Nonetheless, there is still room for 

improvement surrounding mid-season prediction of grain yield and ensuing fertilizer 

nitrogen (N) rates. Sequential normalized difference vegetation index (NDVI) 

measurements from two long-term nutrient management experiments (Experiment 222 

and Experiment 502) were used to improve the prediction of yield potential, and to 

decipher situations where added N would be unlikely to increase winter wheat (Triticum 

aestivum L.) grain yields in the southern Great Plains. These sequential readings were 

used by-date, and over dates to evaluate grain-yield-prediction collected from the same 

plots at harvest.  Additional climatological data was also employed by site to improve 

yield prediction indices, including cumulative growing degree days from planting to 

sensing greater than zero (GDD>0). The coefficient of determination (r2) for each 

NDVI/yield relationship was then plotted as a function of corresponding GDD>0. A 

linear plateau model was applied to these relationships for Experiment 222 and 

Experiment 502, resulting in an r2 of 0.98 and 0.47, respectively. Utilizing the number of 

days where GDD>0 is more refined than growth stage because it embeds climatological 

estimates of growth that can be used in another year and/or environment. Knowing this 

value can serve as a guide as to exactly when the NDVI reading should be collected.  
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CHAPTER I 
 

 

INTRODUCTION 

 

 

Algorithms based on active sensors for in-season nutrient management in cereals have, in 

recent years, become affordable, easy to use, and accurate. Solie et al. (2012) advanced a sensor-

based approach for winter wheat N recommendations that relies on in-season measurements of 

normalized difference vegetative index (NDVI) using an active sensor. This comes from work 

generated by the same group of scientists at Oklahoma State University, which began with 

passive sensors and a benchmark paper from Stone et al. (1996) that was the first to report 

accurate grain yield prediction from mid-season NDVI sensor readings, over a range of locations. 

Despite the wealth of published work coming from this group (Raun et al., 2001; Raun et 

al., 2002; Mullen et al., 2003; Raun et al., 2005; Girma et al., 2006; Kanke et al., 2012; Arnall et 

al., 2013; ), a mathematical/climatological method of determining exactly when the mid-season 

sensor reading should be collected was not attempted.  Several of their papers (Raun et al., 2001) 

suggested that Feekes growth stage 5 (Large, 1954) provided improved prediction of final grain 

yield, but this inherently morphological method is, in the end, incredibly subjective.   
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The objective of this work was to evaluate the mid-season collection of sequential NDVI 

readings for potentially improving the prediction of final wheat grain yields.  Present work has 

shown the benefits of using NDVI collected mid-season, and then computing the number of days 

from planting to sensing where GDD>0.  This work seeks to improve the prediction of wheat 

grain yields using a more robust/intensive accounting of NDVI data from planting to sensing.  
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

 

 

Influence of Yield Potential on Nitrogen Demand 

Accurate prediction of crop yield potential (YP0) has proven to improve in-season 

nitrogen recommendations and overall nitrogen use efficiency (Arnall et al., 2013). Total N rates 

vary from season to season and site to site in the majority of trial and producer fields (Dhital and 

Raun, 2016). Bundy and Andraski (2004) reported site-to-site variability in economic optimum 

nitrogen rates (EONR) ranging from 0 to 168 kg N/ha over 21 winter wheat locations. The 

inclusion of a yield potential factor in predicting N recommendations was stressed by Lory and 

Scharf (2003) who noted that to exclude yield potential is to explain less than 50% of the 

variation in optimum N rates in maize. In 2001, Raun et al. used early-season NDVI readings to 

predict yield potential using the difference between two readings collected within a given season 

and dividing by the growing degree days (GDD).  Their work focused more on the collection of 

NDVI over many sites and years but within the Feekes 4 and 5 growth stages (Large, 1954).  This 

was later advanced to collecting NDVI at any point near to or beyond dormancy, and then 

dividing by the number of days from planting to sensing where growth was possible.  This 

generally uses a minimum-threshold-average-temperature (4.4°C or 40F) in order to be able to 
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count a ‘day’ as one where ‘growth was possible’.  Further, days were counted when GDD>0 

[(Tmin+Tmax)/2 -4.4°C] (Raun et al., 2002).  This equation has proved to be useful  and 

continues to be used for making fertilizer N rate recommendations both on-line 

(www.nue.okstate.edu) and documented in published research (Raun et al., 2005). This work has 

shown that basing mid-season N fertilizer rates on predicted yield potential and a response index 

resulted in improved NUE’s when compared to conventional methods. 

For the application within a fertilizer N rate algorithm, the use of a computed response 

index (RI, NDVI readings collected mid-season from the high N rate plot divided by the NDVI 

from a zero N check) was discussed (Mullen et al., 2003).  The response index generated from 

mid-season NDVI readings was later shown to be correlated with an RI computed using the grain 

yields from the same plots.   

Complicit to understanding that mid-season fertilizer N rates could be determined, was 

knowing that yield level and nitrogen responsiveness were independent (Raun et al., 2010; Arnall 

et al., 2013).  This fundamental understanding was needed in order to decipher appropriate N 

rates using mid-season data.  When Raun et al. (2005) reported on a functional algorithm that 

could unilaterally increase nitrogen use efficiencies, they still had an imperfect understanding of 

the independence of yield and N responsiveness.  

The INSEY Algorithm 

This research acknowledged the importance of yield potential to develop the YP0*RI 

algorithm for in-season N rate recommendations for winter wheat in the Great Plains (Raun et al., 

2002). Specific NDVI readings were divided by a site specific climatological input described as 

the number of days from planting to sensing where growing degree days were greater than zero 

(Raun et al., 2002). This algorithm and all of those who have worked to improve it (Raun et al., 

2011, Arnall et al., 2013) embody the knowledge that yield potential is independent from 

http://www.nue.okstate.edu/


5 
 

response index (RI) and that both estimates are vital for the accurate and efficient prediction of 

the N fertilizer needs in winter wheat.  

The OSU approach to N fertilization has been tested extensively and has shown 

repeatable results for increasing nitrogen use efficiency and farmer profits. In the Yaqui Valley, 

Mexico, Ortiz-Monasterio and Raun (2007) reported the use of the YP0*RI approach as yielding 

the same as the farmer practice but applied 69 kg N ha-1 less fertilizer. Tubana et al. (2008) 

similarly found that the YP0*RI approach yielded accurate N recommendations when compared 

to flat N rates for rice production in Louisiana.  
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CHAPTER III 
 

 

METHODOLOGY 

 

 

Site and climate information for both Experiments 222 and 502 are outlined in Table 1. 

Both of these trials employ a randomized complete block experimental design with four 

replications.  Soil nutrient values were collected for both experiments prior to planting. A 

subsample was taken from 15 cores from each treatment. Subsamples were dried for 2 days at 

75˚C, ground to pass through a 240-mesh screen and total N was determined from a LECO 

Truspec CN dry combustion analyzer (Schepers et al., 1989).  Mehlich III was used to determine 

soil values of phosphorus (P) and potassium (K).  These values are reported in Table 2.  Figures 1 

and 2 depict actual plot plans, including treatment structures, for both long-term trials used in this 

study.  

Over the course of the 2016 winter wheat growing season, eleven and ten NDVI sensor 

readings were collected for Experiment 502 and Experiment 222, respectively.  At both sites 

readings began at or near the Feekes 2 growth stage and ended at or near Feekes 11 (Table 3).  

Grain yield was recorded and analysis for total N completed for each plot, at both sites. Growing 

degree days greater than 0 were retrieved from the Mesonet Wheat Growth Day Counter for each 

sensing event and location (Mesonet, 2016).The GreenSeeker™ NDVI active sensor (Trimble, 
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Ukiah, CA) was used to collect sensor data at a rate of 70 readings/m² when walking at a speed 

of 5 kilometers per hour, carried 70 cm above the wheat canopy. Since the beginning of the use of 

the GreenSeeker™ for yield prediction, no more than four NDVI readings per season were 

recorded for either experiment. For this study, sequential readings were analyzed under the 

assumption that a larger sample size will deliver more accurate data for modeling growth and 

resultant grain yields using robust in-season NDVI data. Yield potential (YP0) estimates were 

calculated by dividing the NDVI reading by the number of days from planting to sensing where 

GDDs > 0 (NDVI/days from planting to sensing). 
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CHAPTER IV 
 

 

RESULTS 

 

For Experiment 222 and Experiment 502, analysis of variance (4 replications) for 

the 13 and 14 treatments, respectively, was performed. The significance of replication 

and treatment effects over all stages of growth are noted for Experiment 222 and 

Experiment 502 in Table 4 and Table 5, respectively. Also contained within these tables 

are the calculated mean square error (MSE), standard error of the difference between two 

equally replicated means (SED), coefficient of variation (CV,%), and mean separation 

using the least squared difference (LSD) method using an analysis of variance (ANOVA) 

in SAS version 9.4 (SAS Institute, 2012).  

As seen in Table 4 and Table 5, there was a highly significant (α = 0.01) N 

response for all of the NDVI sensing dates at Experiment 222 and for all but one sensing 

date at Experiment 502. Additionally, significant N responses (α = 0.01) were seen for 

grain yield for both Experiment 222 and Experiment 502. 

A significant relationship (α = 0.05) between NDVI and final grain yield for each 

of the sensing date was found. The coefficient of determination (r2) for each NDVI/yield 
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relationship was then plotted as a function of corresponding GDD>0.   A linear-plateau 

model was then fit to this relationship to determine if a viable joint and/or intersection 

existed (SAS Institute, 2012).  This would be apparent if an increase in GDD>0 no longer 

resulted in the improvement of the r2 value (Nelson et al., 1985).  Furthermore, it was 

hoped that a “plateau” could be established.  This point or joint (GDD>0) would in theory 

be the ideal stage for predicting yield or the point where the correlation between NDVI 

and wheat grain yield was maximized.   

This linear-plateau model was first defined and advanced at North Carolina State 

University (Cate and Nelson, 1971; Anderson and Nelson, 1975).  

For Experiment 502, the numeric model was r2= 0.0458+0.00883(GDD>0), when 

GDD< 87; a plateau for the r2 value was found at 0.81 when GDD>= 87 (Figure 4).  

For Experiment 222, the numeric model was r2= 1.30385+0.020455(GDD>0), 

when GDD<106; a plateau for the r2 value was found at 0.87 when GDD>=106 (Figure 

5). 
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CHAPTER V 
 

 

DISCUSSION AND CONCLUSIONS 

The linear plateau models for both Experiment 502 and Experiment 222 showed that the 

correlation between NDVI readings and grain yield increased with advancing GDD>0.  The 

question was: at what point was that relationship maximized, and/or at what point did this reach a 

plateau?  The linear-plateau model employed in this work provided an applied methodology to 

answer this specific question.  For Experiment 502 and Experiment 222, the point at which yield 

prediction was maximized was 87 and 106 (GDD>0), respectively.   

In the past, project work has focused on “growth stage”. However, “growth stage” was to 

a certain extent subjective and that could change depending on the individual collecting the 

reading.  Utilizing the number of days where GDD>0 was considered to be more refined because 

it embeds climatological estimates of growth that could be tracked or deciphered from one 

environment to the next.  This parameter fits well into what is already a predictive tool, and that 

could be monitored as any given season progresses.  Knowing this value could then serve as a 

guide as to exactly when the NDVI reading should be collected.  

 I believe that the linear plateau model for Experiment 222 produced such a significantly 

higher r2 (0.98) than Experiment 502 (r2= 0.47) due to the fact that there were issues with plant 

stand due to planting error and significant pressure from grassy weeds and gophers. The 

heterogeneity of plant stand led to uneven canopy cover and crop competition. It would be ideal 
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for the experiment to be repeated for at least another growing season in order to validate my 

findings. Additionally, confidence intervals for the joint of the linear plateau models could be 

established as a means of giving producers a window of opportunity for the use of the 

GreenSeeker™ and nitrogen fertilization.  
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TABLES 

 

 

 

Table 1. Site and climate description, Stillwater and Lahoma, OK, 2015-

2016.           

Exp. Long., Lat. Location 
Year 

Est. 
Soil Type Tillage 

Number of 

Replications 

Annual 

avg. rainfall 

(mm) 

Range 

(mm) 

Mean annual 

temperature 

(˚C) 

Planting 

Date 

222 
36˚7'7"N 

97˚5'30"W 

Stillwater, 

OK 
1969 

Kirkland 

Silt Loam 

No-Till     

2011-

present 

4 922 606-1493 15.0 10/12/2015 

502 
36˚23'13"N 

98˚6'29"W 

Lahoma, 

OK 
1970 

Grant Silt 

Loam 

No-Till     

2011-

present 

4 771 503-1314 15.6 10/20/2015 
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Table 2. Surface soil characteristics for Exeperiment 222, Stillwater, OK and 

Experiment 502, Lahoma, OK 

    ________________Soil Test Level________________   

      _____mg/kg_____ _____g/kg_____   

Exp. Trt pH P K Organic C Total N   

222 1 5.50 101.56 240.68 8.71 0.87   

  2 5.35 82.00 210.37 9.07 0.92   

  3 5.22 74.53 201.76 9.39 0.97   

  4 4.90 78.35 197.70 10.25 1.00   

  5 5.13 30.06 212.09 9.40 0.95   

  6 5.03 59.47 203.40 9.67 0.94   

  7 5.21 100.10 189.95 9.37 0.93   

  8 5.25 83.50 171.03 9.32 0.90   

  9 5.30 66.95 216.07 9.65 0.92   

  10 5.58 30.84 185.20 8.79 0.83   

  11 4.96 99.81 234.28 9.50 0.96   

  12 5.22 102.98 161.68 9.62 0.99   

  13 5.35 59.42 169.66 9.63 0.95   

502 1 6.46 324.36 66.18 10.27 1.00   

  2 6.25 444.28 117.51 8.00 0.74   

  3 6.07 415.14 124.63 8.13 0.83   

  4 5.75 341.18 77.60 8.51 0.82   

  5 5.86 376.36 90.85 9.29 0.91   

  6 5.52 422.11 87.81 8.71 0.91   

  7 5.52 429.29 123.49 8.81 0.89   

  8 6.05 401.35 57.54 8.47 0.84   

  9 5.84 417.08 82.36 8.57 0.82   

  10 5.65 414.63 110.80 8.81 0.86   

  11 5.56 405.96 146.11 8.93 0.89   

  12 5.63 325.97 125.94 9.24 0.85   

  13 5.34 401.32 147.14 9.14 0.89   

  14 5.81 413.22 79.94 8.77 0.87   
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Table 3. Sequential NDVI sensing dates, GDD>0, and estimated 

Feekes growth stages of Experiment 222 and Experiment 502 

Exp. Sensing Dates GDD>0 Feekes Growth Stage   

222 12/23/2015 64 2   

  1/28/2016 73 3   

  2/4/2016 78 4   

  2/11/2016 84 4   

  2/18/2016 90 4   

  2/25/2016 96 5   

  3/3/2016 103 5   

  3/24/2016 123 7   

  3/31/2016 130 8   

  4/7/2016 137 9   

502 12/18/2015 48 2   

  2/2/2016 67 3   

  2/9/2016 69 3   

  2/18/2016 76 4   

  2/23/2016 81 4   

  3/1/2016 87 5   

  3/15/2016 101 6   

  3/22/2016 106 7   

  3/29/2016 113 8   

  4/5/2016 120 9   

  4/12/2016 127 11   
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Table 4.  Analysis of variance and significance of replication and treatment effects over all stages of growth, Experiment 222, Stillwater, OK.    

                          

Source of variation df Grain yield NDVI-64 NDVI-73 NDVI-78 NDVI-84 NDVI-90 NDVI-96 NDVI-103 NDVI-123 NDVI-130 NDVI-137 

Replication 3 * ** ** ** NS NS * ** ** ** NS 

Treatment  12 ** ** ** ** ** ** ** ** ** ** ** 

Error 36                       

                          

MSE   125126.5 0.000622 0.001120 0.000624 0.000763 0.000636 0.000615 0.000653 0.000778 0.000905 0.001205 

SED   289 0.02036 0.02733 0.02040 0.02256 0.02059 0.02025 0.02086 0.02278 0.02457 0.02834 

CV, %   10 5 6 4 5 5 4 5 6 6 8 

LSD   578 0.041 0.055 0.041 0.045 0.041 0.040 0.042 0.046 0.049 0.057 

                          

@, *, **, - significant at the 0.10, 0.05, and 0.01 probability levels, respectively.             

SED - standard error of the difference between two equally replicated means             

CV - coefficient of variation, %                     

LSD - least squared difference                     

NS- no significance                      

SED =  sqrt(2 * MSE / reps)                  

t,dfe,0.05 * SED = LSD  
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Table 5.  Analysis of variance and significance of replication and treatment effects over all stages of growth, Experiment 502, Lahoma, OK.      

                            

Source of variation df Grain yield NDVI-48 NDVI-67 NDVI-69 NDVI-76 NDVI-81 NDVI-87 NDVI-101 NDVI-106 NDVI-113 NDVI-120 NDVI-127 

Replication 3 * * ** ** ** ** ** ** ** * NS NS 

Treatment  13 ** ** @ ** ** ** ** ** ** ** ** ** 

Error 39                         

                            

MSE   267008 0.000527 0.000493 0.000482 0.000724 0.000948 0.001412 0.002140 0.002012 0.001760 0.007669 0.006557 

SED   365 0.0162 0.0157 0.0155 0.0190 0.0218 0.0266 0.0327 0.0317 0.0297 0.0619 0.0573 

CV, %   12 8 7 6 7 7 8 7 7 7 15 15 

LSD   731 0.0325 0.0314 0.0310 0.0380 0.0435 0.0532 0.0654 0.0634 0.0593 0.1238 0.1145 

                            

@, *, **, - significant at the 0.10, 0.05, and 0.01 probability levels, respectively.                

SED - standard error of the difference between two equally replicated means               

CV - coefficient of variation, %                      

NS- no 

significance                           

SED =  sqrt(2 * MSE / reps)                      

t,dfe,0.05 * SED = LSD                          
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FIGURES 

 

Figure 1. Treatment structure and plot plan, Experiment 222, Stillwater, OK 
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Figure 2. Treatment structure and plot plan, Experiment 502, Lahoma, OK 
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Figure 3. Relationship between the coefficient of determination and GDD>0 for NDVI 

data collected over time, Experiment 502, Lahoma, OK 

 
 

 

 

 

 

 

 

Figure 4. Relationship between the coefficient of determination and GDD>0 for NDVI 

data collected over time, Experiment 222, Stillwater, OK 
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