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CHAPTER 1 

1.0 INTRODUCTION 

1.1 Importance 

Accurately understanding the migration of swine lagoon effluent in the subsurface helps 

protect water sources from contamination benefiting both the public and private sectors. In 

riparian zones, knowing the transport of swine lagoon effluent applied to fields for disposal 

allows the understanding of potential environmental impacts. Characterizing transport of these 

materials in mantled karst is critical as the soil layer can be thin and rapid transport pathways can 

exist in the bedrock or epikarst zones. 

1.2 The Problem 

The problem being addressed is swine effluent amended soils within a mantled karst. 

Current knowledge gaps include understanding the spatial migration of swine lagoon effluent in 

the subsurface and the geophysical characterization of swine lagoon effluent applied to soils. To 

characterize swine effluent transport within a mantled karst system, this thesis will measure the 

electrical properties of the subsurface, characterize soil properties at the surface, and use reactive 

transport modeling to evaluate three sites near Mount Judea, Arkansas.  

 The three test sites are selected based on the amount and timing of effluent application to 

provide a range of sites to evaluate. These sites coincide with additional surface water quality 

monitoring on the fields by the University of Arkansas Big Creek Research and Extension Team 



2 

 

and access to the sites was granted by the landowners. The positions of the sites are representative 

of fields adjacent to Big Creek and which are permitted to receive swine effluent.  

 I hypothesize that swine lagoon effluent field applications in a mantled epikarst can be 

determined through electrical resistivity data observing an increase in electrical conductance of 

the applied soil. This will be tested with chemical and physical soil characterization and 

numerical modeling of the electrical and chemical properties of the soil zone. 

1.3 The Objectives 

Several of the objectives of this thesis were conducted as part of the work detailed in the 

report Electrical Resistivity Surveys of Applied Hog Manure Sites, Mount Judea, AR: Final 

Report (Fields and Halihan, 2016) and will utilize the data collected during that work. Completed 

objectives included:  

 Pseudo 3D Electrical Resistivity Imaging (ERI) surveys were conducted to delineate the 

boundaries between the soil, epikarst, and competent bedrock to provide the electrical 

structure of the stratigraphy of the site, 

 Depth to the local water table was determined using stream elevation and epikarst wells, 

 Soil depth was determined by previously bored observation wells, 

 Single 2D ERI surveys were conducted on each site to evaluate correlations between bulk 

electrical and physical soil properties for a set of application time periods, 

 Soil solids sampling and analysis was conducted on each site for grain size, mineral 

analysis, and chemical properties,  

 Soil water sampling was conducted on each site for chemical properties, and 

 Numerical modeling was conducted to create a site model to predict swine lagoon 

effluent movement on amended soils.  
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The ER data were integrated with soil sampling analysis results, differential GPS, and statistical 

analysis to generate site characterization. 

1.4 Electrical Resistivity Imaging 

Electrical resistivity imaging (ERI) provided a good method to understand the 

distribution of fluids and rock properties in the subsurface environment, especially in the presence 

of fractures (Bolyard, 2007; Gary et al., 2009; Halihan et al., 2009). The method allows an 

electrical image to be created of the subsurface, which typically provides a meter-scale electrical 

resistivity dataset utilized to evaluate heterogeneity and fluid distribution. Improvements in 

sensitivity generated by the Halihan/Fenstemaker method (OSU Office of Intellectual Property, 

2004), allow greater differentiation of these signatures (Miller et al., 2014). In a field setting, this 

results in a two-dimensional mapping of subsurface electrical properties in vertical cross sections. 

Data interpolation was utilized to construct horizon maps at various depths below the surface. 

 

Figure 1 - Electrical resistivity equipment during data collection (12.17.14) 
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1.5 Soil Sampling 

Soil sampling transects in each field provided confirmation data to support the 

geophysical datasets. Soil sampling has been used for obtaining the chemistry and characteristics 

of soils (Anderson, 1960; Corwin and Lesch, 2005; Schoenau, 2006). These data were compared 

against the electrical resistivity data to evaluate how the soil physical and chemical properties 

affected the geophysical signatures observed for the sites. 

1.6 Numerical Modeling 

 Numerical modeling is a good method for visualizing possible scenarios of the system 

without physically changing the system. The process involves building and applying known 

datasets to the appropriate reaction and transport equations, generating predictions about the 

system’s behavior and verifying the predictions through comparisons against experimental data.  

1.7 Project Statement 

This research utilized a hydrogeophysical investigation of three sites along Big Creek 

near Mount Judea, Arkansas using electrical resistivity and soil sampling datasets to evaluate if 

applied effluent provided an electrical signal that could be utilized to monitor transport. It will 

describe the field sites and the literature available for the methods utilized and the properties of 

applied swine effluent. The results of the study will be presented with the geologic and 

hydrogeologic structure evaluated from the electrical data. The soil data results will be presented 

and correlations between the datasets will be evaluated and discussed. Conclusions about the 

electrical resistivity properties of the sites and their implications for effluent transport in a 

mantled karst will be presented. 
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CHAPTER 2 

2.0 LITERATURE REVIEW 

Soil science and hydrogeophysical literature uses similar concepts, but with varying 

terminology. Some terms have somewhat different meanings, so a few key terms must be 

mentioned to clarify how they are used in this work. Electrical resistivity data (ER) refers to data 

generated by measuring the current potential between two electrodes, or apparent resistivity, of 

the subsurface (both soil and bedrock) and inverting the measurements to obtain model ER data; 

Electrical Resistivity Imaging (ERI) is the method that obtains the resistivity data. Soil electrical 

conductivity (ECa) is a measurement of soil solids, liquids, and a combination of the two (Dane 

and Topp (eds), 2002); and fluid electrical conductivity (fluid EC) is a measurement of the 

electrical conductivity of free water in a stream or well of a 1:1 soil to water extraction (Corwin 

and Lesch, 2005; Dane and Topp (eds), 2002; Samouëlian et al., 2005; Van Nostrand and Cook, 

1966). This literature review documents electrical geophysics applied to karst and soil sciences, 

soil amendments with fertilizers and swine lagoon effluent, and reactive transport modeling. 

Geophysics has been used for collecting bulk measurements of subsurface properties. 

2.1 Geophysics on karst and soils 

 Detection of caves and sinkholes is a major point of investigation for near-surface 

geophysical studies in karst areas. Epikarst and karst have been evaluated using Ground 

Penetrating Radar (GPR) (Benson, 1995; Chamberlain et al., 2000), ERI (Gary et al., 2009; 

Halihan et al., 2009; Martinez-Lopez et al., 2013; Mihevc and Stepisnik, 2008, 2012; Schwartz 
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and Schreiber, 2009; van Schoor, 2002; Zhou et al., 2000; Zhu et al., 2011), and some 

combination of other geophysical techniques paired with ERI (Carriere et al., 2013; Kaufmann et 

al., 2011; Leucci, 2006; Pellicer and Gibson, 2011). The size and depth of the karst features are 

key for detection of those features across any array or setup (Martínez-López et al., 2013). 

Bolyard (2007) detailed a fracture network below a landfill in Northwest Arkansas using ERI. 

Karst systems can be shallow or deep depending on the maturity of the weathering profile and 

thickness of the bedrock. Saturated caves are typically conductive anomalies, of which the extent 

depends on the fill in the cavity (Gary et al., 2009). When filled with air, these caves are highly 

resistive anomalies (van Schoor, 2002; Zhu et al., 2011). When knowing the depth to bedrock is 

required, GPR is most useful and consistent for delineating sedimentary beds from competent 

bedrock in lowly saturated or unsaturated medium (Tsoflias et al, 2001). ERI is more useful in 

discriminating between competent bedrock and the overlying, more porous soil material as it can 

differentiate between higher and lower porosities in a saturated medium. Pellicer and Gibson 

(2011) selected the depth to bedrock where they found the highest electrical gradient and 

supported it with GPR surveys. 

 Shallow, high resolution studies have been conducted for soil evaluation since the 1970’s 

at depths above bedrock. ER and ECa rely heavily on the soil properties (Brunet et al., 2010; 

Corwin and Lesch, 2005; Neilsen et al., 1973; Robain et al., 2006; Samouëlian et al., 2005). The 

most crucial set of parameters to the electrical conductivity of shallow surveys are clay content, 

moisture profile, moisture salinity, and moisture temperature (McNeill, 1980). Clay content and 

electrical conductivity exhibit a positive relationship (electrical conductivity rises with clay 

content) which is extremely important for soils studies focused on grain size analysis (Gaio et al., 

2002; Johnson et al., 2001; Oh et al., 2014; Sudha et al., 2009). Other physico-chemical and 

biological properties that affect ECa are mineralogy, bulk density, and microbial biomass 

(Atekwana and Atekwana, 2010; Johnson et al., 2001).  
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 Electrical resistivity imaging does have challenges associated with the technology. 

Several different parameters affect electrical conductivity of the subsurface and knowing which to 

evaluate is extremely important as the difficulty to determine exact causes increases with larger 

scales. Size of subsurface features, such as karst voids, are also extremely important. Some 

authors note that when the size is too small or other, stronger, electrical signatures are present, 

then finding karst features or delineating from other features become increasingly difficult (Allred 

et al., 2003; Corwin and Lesch, 2005; Oh et al., 2014; Samouëlian et al., 2005; Sudha et al., 2009; 

Zhu et al., 2011). Although several studies have been conducted evaluating bulk electrical 

resistivity using geophysical tools and apparent soil electrical conductivity with hand held probes, 

few have used ERI and soil sampling to evaluate amended soils (Allred et al., 2003). 

2.2 Amended Soils 

 Since the mid-1800s, research has been conducted to understand plants nutritional 

requirements and soil fertility (Anderson, 1960). Important parameters for soils include nutrient 

availability, organic matter (mainly carbon and nitrogen), and soil pH (Brady and Weil, 2002). A 

quality soil depends on the soil type and geographic location of the soil. Animal manures are 

useful for increasing many properties that make up a quality soil (Davis and Zhang, 2001; 

Espinoza et al., 2016; Mitchell, 1995; Sharpley et al., 2016; Zhang, 1998, 2002, 2016; Zhang and 

Schoenau, 2006; Stiegler, 1998). However, fields are typically over fertilized due to a lack of 

prior soil testing to determine the current field conditions and result in constituents leaching from 

the soil profile (Gollehon et al., 2001; Schoenau, 2006; Zhang and Stiegler, 1998). More stable 

and consistent texture-dominated systems can become salinity-dominated systems given high 

enough concentrations of salts within soil applications. Each field has different initial 

concentrations of constituents while plants on those fields require different nutrients to thrive, 

generally there is no “one size fits all” approach to soil amendments and that concentrations and 
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requirements of fertilizers, manures, fields, and plants should all be determined before any 

amendments are made (Schoenau, 2006; Zhang and Stiegler, 1998). 

2.2.1 Swine Lagoon Effluent 

 Animal effluent is a byproduct of animal farms and a concern for CAFOs (concentrated 

animal feeding operations) due to the significant resources required for environmental 

management of the waste. The effluent is also a valuable source of organics and nutrients for 

plants, cropland, and pastures (Broetto et al., 2014; Gollehon et al., 2001; King et al., 2015). 

Different animals have different agronomic and environmental impacts from differences in 

nutritional needs of the animal, dietary factors, and other growing conditions (DeRouchey et al., 

2009). Waste storage is important for managing not just the physical aspect of waste, but the 

chemistry of the waste for impacts to the storage unit and wherever it may end up (Choudhary et 

al., 1996; DeRouchey et al., 2009; Schoenau, 2006) especially as the large CAFOs get even larger 

(Gollehon et al., 2011). A significant problem for CAFO farmers is the amount of waste 

generated by the facility and ways to reduce waste treatment costs. This is often accomplished by 

applying effluent to fields of farmers who own nearby fields. Several studies have shown 

increases in both macro- and micro-nutrients after effluent applications (Broetto et al., 2014; 

DeRouchey et al., 2009; Gollehon et al., 2001; Hountin et al., 1997; Marr and Facey, 1995; 

Schoenau, 2006) but this isn’t always beneficial for the crops or pasture, as the application rates 

can be too low to provide optimal nutrients for plant growth (Broetto et al., 2014; Gollehon et al., 

2001) and responses in soil samples may not show after an initial application but only after a 

continued series of applications (Hountin et al., 1997; King et al., 2015). Low concentrations of 

nitrogen in the effluent may be caused by volatilization prior to field application. The extent of 

nitrogen’s change in concentration depends on the type of storage and application (Adeli et al., 

2002, 2008; Choudhary et al., 1996; Gilley, 1995; Mallin and Cahoon, 2003). 
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2.2.2 Isotopic and Chemical Signatures 

 Well-studied chemical indicators of an applied effluent site vs a non-applied site include 

a wide range of parameters (Table 1). These indicators can be broken into two groups, ions found 

in soil solids and fluids and the more complex constituents such as organics and microbial 

activity. 

  



10 

 

Table 1 - Literature compilation of indicators for an applied effluent site vs a non-applied site. 

Constituent measured Author, date 

Organic Content Anderson, 2012; Broetto et al., 2014; King et al., 2015; Marr and 

Facey, 1995; Mitchell and Everest, 1995; Schoenau, 2006; 

Wallenius et al., 2011 

Microbial Activity Deng et al., 2006; Iyyemperumal and Shi, 2008; Schoenau, 2006; 

Wallenius et al., 2011 

Isotope Signatures Fogg et al., 1998; Kendall and McDonnell, 1998; Krietler, 1975, 

1979; Wolterink et al., 1979 

Nitrogen, Phosphorus, 

and Potassium (NPK) 

Broetto et al., 2014; Carpenter et al., 1998; Hannan, 2011; Iqbal 

and Krothe, 1995; Marr and Facey, 1995; Mallin and Cahoon, 

2003; Racz and Fitzgerald, 2000; Reddy et al., 1980; Schoenau, 

2006; Smith et al., 2007; Vadas et al., 2007; Wallenius et al., 2011 

Calcium and Magnesium Akay and Doulati, 2012; Hannan, 2011; Plaza et. al, 2004 

Metal Content Akay and Doulati, 2012; Broetto et al., 2014; Comegna et al., 

2011; Lukman et al., 1994; Murdock and Lowe, 2001; Perelomov 

et al., 2011; Pérez-novo et al., 2011; Racz and Fitzgerald, 2000; 

Schoenau, 2006 

pH Choudhary et. al, 1996; Comegna et al., 2011; DeRouchey et. al, 

1999; Frankenberger and Dick, 1983; Hannan, 2011; Klimek, 

2012; Lukman et al., 1994; Marr and Facey, 1995; Plaza et. al, 

2004; Racz and Fitzgerald, 2000; Schoenau, 2006; Smith et. al, 

2007; Suhadolc et. al, 2004; Turner et. al, 2010 
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Swine effluent impacts on soil can be determined using soil sample analysis of basic fluid 

parameters, such as EC or pH, or measurements of ions in the soil. Racz and Fitzgerald (2000) 

report that EC of the manures did not correlate with salts such as sodium or chloride, but rather 

with the variation in inorganic nitrogen. Adeli et al. (2002) found nutrient concentrations 

increased with increased swine lagoon effluent application. However, after long-term application 

(Adeli et al., 2008), soil EC and total carbon increased across all fields while nitrogen, 

phosphorus, and zinc were higher only on less-alkaline soils. An unexpected finding in Adeli et 

al. (2008) was that soil pH decreased after long-term applications because Schoenau (2006) 

points out pH typically increases after long-term effluent applications. These results indicate the 

dependency of pH’s upon organic matter content and other buffering agents in the effluent. 

Calcium, magnesium, potassium, and pH have been shown to have elevated levels in the soil 

from anthropogenic sources (Racz and Fitzgerald, 2000; Schoenau, 2006). Zinc and other metals 

have been supplied as additives to swine feed and can be detected in their effluent as having 

increased metals concentrations when compared to those without the additive (Akay and Doulati, 

2012; Broetto et al., 2014; Comegna et al., 2011; Klimek, 2012; Lukman et al., 1994; Murdock 

and Lowe, 2001; Perelomov et al., 2011; Pérez-novo et al., 2011; Racz and Fitzgerald, 2000; 

Schoenau, 2006; Suhadolc et. al, 2004).  

 A significant amount of soil literature focuses on organic matter and fertilizer 

components in soil. Organic matter is beneficial for plants and microbial communities and 

increases with manure applications, lower temperatures, higher precipitation, and poor drainage. 

For fertile soils the OM should be upwards of 5% and reside in the topsoil (Mitchell and Everest, 

1995). Organic carbon and total nitrogen correlate well with microbial activity (Deng et al., 2006; 

Frankenberger and Dick, 1983; Plaza et al., 2004; Schoenau, 2006; Wallenius et al., 2011) as 

does soil pH (Iyyemperumal and Shi, 2008). The nitrogen isotope ratio (δ15N) is important for 

evaluating signatures of human and animal effluent and has been found to be between 15‰ – 
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20‰ for animal effluent signatures in soils (Fogg et al., 1998; Krietler, 1975, 1979; Wolterink et 

al., 1979). Other nitrogen isotope signatures, such as for natural soils and rainfall, can vary, but 

are generally well below 15‰ (Aly et al., 1981; Aravena et al., 1993; Black and Waring, 1977; 

Bremner and Tabatabai, 1973; Freyer, 1978, 1991; Garten, 1992, 1996; Gormly and Spalding, 

1979; Heaton, 1986, 1987; Heaton et al., 1997; Hoering, 1957; Kohl et. al, 1971; Moore, 1977; 

Paerl and Fogel, 1994; Shearer et al., 1974, 1978). Well-drained sites and denitrification both 

impact the nitrogen isotopic signatures as well as nitrogen evolution after application to the soil 

(Kendall and McDonnell, 1998). Phosphorus and nitrogen are both highly studied nutrients 

because of their negative environmental impacts when in high concentrations and during runoff 

events (Carpenter et al., 1998; Deng et al., 2000; Hountin et al., 1997; Iqbal and Krothe, 1995; 

Kleinman et al., 2006; Reddy et al., 1980; Schimel and Bennett, 2004; Sharpley, 1985, 1995; 

Smith et al., 2007; Vadas et al., 2007; Vitousek et al., 1997; Yadav, 1997). Both elements 

chemical signatures are commonly studied in swine lagoon effluent research. 

2.2.3 Reactive Transport 

 Numerical modeling has given scientists a way to test hypotheses at a fraction of the cost 

of field work, with the ability to conduct numerical experiments quickly, and to alter the 

experiment to fit many different possible scenarios. Subsurface fluid flow has been at the center 

of numerical modeling in the geosciences for decades (Berkowitz, 2002; Chen and MacQuarrie, 

2004; Celia et al., 1989; Steefel et al., 2005; Xu et al., 2003, 2010). And through the years 

biogeochemical modeling has evolved to offering numerical simulations of reactive chemistry 

during multiphase flow of fluid and/or heat, within porous and fractured media (Xu et al., 2010). 

TOUGHREACT specifically, can simulate in “three-dimensions, changes in pressure, 

temperature, water saturation, ionic strength, and pH and Eh” and has been demonstrated as 

conducting simulations on the biogeochemical cycling of metals (Xu et al., 2003, 2010). Steefel 

et al. (2005) simplify the history of reactive transport modeling into two historic “threads”: on 
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one side is the physical model that attempts to perfect the mass and heat aspects of the model, but 

treat the biogeochemical aspect with simple equations; the other side is the opposite, the 

geochemical model uses some sort of equilibrium component to attempt to perfect the biological 

and chemical aspects of the model, but separate the physical characteristics entirely. They also 

state that the current state of the science allows for a single program to include “hydrology, 

geochemistry, biogeochemistry, soil physics, and fluid dynamics”. Here we can marry several 

studies together to grasp a better understanding of subsurface reactions. 

The controlling parameters in a soil column include solute concentrations, competing 

species, distribution coefficients, moisture and air content, and porous media bulk density (Chen 

and MacQuarrie, 2004). The pH of the soil is extremely important for reactive transport of metals, 

as mobility increases with acidity (Luxton et al., 2013). Specifically for the sorption of zinc, it is 

highly dependent upon pH, clay content, Cation Exchange Capacity (CEC), and carbonate 

presence (Akay and Doulati, 2012; Comegna et al., 2011; Lukman et al., 1994; Luxton et al., 

2013; Murdock and Lowe, 2001; Xu et al., 2010). Clay content has been found to be very 

important with certain clay structures, 2:1 and 2:2:1, allowing for higher levels of sorption 

(Luxton et al., 2013). CEC has been found to be higher when there is more soil OM, which leads 

to higher adsorption (Lukman et al., 1994). 

One focus of soil studies and modeling is rainfall intensity and its effect on nutrient 

transport. Smith et al. (2007) found that simulating rainfall within 1 week of a fertilizer 

application highly increases the chance for runoff. When rainfall occurs on soils with higher 

initial moisture content, such as during the spring months, higher desorption and surface runoff 

has been recorded (Kleinman et al., 2006). Likewise, when initial soil moisture content is low, it 

is more influential on runoff than is rainfall intensity, although typically with increased rainfall 

intensity comes higher runoff (Kleinman et al., 2006). Sharpley (1985) determined the depth to 

which runoff interacts with the surface soil increases with rainfall intensity and soil slope. Under 
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heavy rainfall events on a slope, there is a better chance of reactive transport occurring within the 

first few centimeters. Although denitrification modeling require more input (Heinen, 2006; Maggi 

et al., 2008), nitrogen in general relies heavily on baseline precipitation and soil texture (Gu and 

Riley, 2010) but can be completely washed through a system given sufficient amount of rainfall 

(Iqbal and Krothe, 1995). Phosphorus is expected to be present in higher levels near the surface as 

it has been shown as a significant factor during runoff events due to its sorption-desorption near 

the surface (Vadas et al., 2007). During more intense storms, not only is runoff present, but 

constituents can be also flushed thoroughly through the system (Iqbal and Krothe, 1995; 

Sharpley, 1985; Smith et al., 2007).  
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CHAPTER 3 

3.0 SITE DESCRIPTION AND SELECTION 

Three test sites (Fields 1, 5a, and 12) near Mount Judea, Arkansas, United States were 

used to evaluate applied effluent signatures over time (Figure 2). These three sites were selected 

to coincide with additional monitoring on these fields by the University of Arkansas Big Creek 

Research and Extension Team. Access to the sites was granted by the landowners. The positions 

of the selected sites are representative of fields adjacent to Big Creek, which are permitted to 

receive swine lagoon effluent: the fields were selected as a background site (Field 5a) that 

currently receives mineral fertilizers and poultry litter, a site which has received one application 

of swine lagoon effluent approximately one year prior to sampling (Field 12), and a site, which 

has received two applications of swine lagoon effluent with the most recent being approximately 

a month prior to sampling (Field 1). This section will describe the geologic and hydrologic 

settings of the three test sites. 
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Figure 2 – Site map indicating the three fields (Field 1, 5a, and 12) in red and roads leading to 

these sites in dashed black lines. The background map is the geologic map of the Mt. Judea 

Quadrangle, Newton County, Arkansas (Chandler and Ausbrooks, revised 2015). 

3.1 Geologic Setting 

The geologic setting for each site is a mantled epikarst (soil over epikarst over competent 

carbonate bedrock) (Klimchouk et al., 2004; Williams, 2008). Fields 5a and 12 include thin 

Quaternary alluvium soil deposits on the epikarst, while Field 1 is located on a thin, locally 

derived soil.  
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The Boone Formation is the underlying bedrock for each of these sites. It is an Early 

Mississippian  limestone found in the Ozark regions of Eastern Oklahoma, Southern Missouri, 

and Northern Arkansas where karst dissolution features are common (Ferguson, 1920). This 

formation averages 90 – 120 m (300 – 400 feet) thick (Ferguson, 1920). The Boone Formation is 

a gray, fine to coarse-grained fossiliferous limestone with interbedded dark and light chert. The 

basal unit of the Boone Fmt. in the area is the St. Joe Limestone (Ferguson, 1920). The St. Joe 

Fmt. is a fine-grained, crinoidal limestone containing some smoothly bedded chert and displaying 

coarse bioclastic texture. The color is generally gray but can be red, pink, purple, brown, or 

amber. Thin calcareous shales can be found in sequences throughout the St. Joe. The base of the 

St. Joe contains phosphate nodules within a green shale or conglomerate and is disconformable in 

most places. At a few locations, basal sandstone is found at the base of the St. Joe Limestone. The 

basal sandstone is a fine to medium-grained, moderately sorted, sub-rounded to rounded 

sandstone. It is white to light gray and tan on fresh surfaces, thin to thick bedded, and contains 

phosphate nodules and white to light gray chert. It is generally up to 3.5 m (12 feet) thick 

(Ferguson, 1920).  

An epikarst zone, fractured and weathered bedrock, lies above the unweathered Boone 

limestone bedrock and extends upward to the base of the soil zone (Klimchouk et al., 2004; 

Williams, 2008). This zone is generally a domain with faster fluid flow and greater water storage 

than the unweathered bedrock, with distinct saturation at the soil and epikarst boundary and again 

at the epikarst and karst boundary (Perrin et. at., 2003). General epikarst porosity ranges from 1% 

(Smart and Friederich, 1986) to 10% (Williams, 1985) and averages about 10 – 15 m (33 – 49 

feet) in depth (Klimchouk et al., 2004).  

Fields 5a and 12 (Figure 3 and Figure 4, respectively) share similar geologic settings 

adjacent to Big Creek (Figure 2). The soil series for these fields is the Spadra Series and consists 

of clay, silt, sand, and gravel deposited by a stream system in the valley (Fowlkes et al., 1988). 
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Field 1 (Figure 5) is located on a hillside not far from Big Creek and the soil is derived primarily 

from the Boone Formation.  

 

Figure 3 – Field 5a (background site) ERI transects collected during December 2014 and March 

2015 are in yellow, shallow well locations (stations) also noted. Aerial photo obtained from 

Google Earth. 
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Figure 4 – Field 12 (application site) ERI transects collected during December 2014 and March 

2015 are in yellow, shallow well locations (stations) also noted. Aerial photo obtained from 

Google Earth. 
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Figure 5 – Field 1 (recent application site) ERI transects collected during March 2015 are in 

yellow. Aerial photo obtained from Google Earth. 

3.2 Hydrologic Setting 

Flow through mantled epikarst generally consists of porous media flow through soil and 

potential for rapid flowpaths through the epikarst and bedrock zones. Understanding the storage 

and transmission properties of these three zones is essential to understanding the migration of 

nutrients from applied effluent in these areas. This section will discuss the hydrologic settings of 

the soil, epikarst, and bedrock zones, as well as the local water table and the application of 

effluent relative to the time of data collection. 
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The soil zones in an alluvial setting are often reworked stream deposits that have been 

mobilized several times since they were originally deposited. They are often highly variable in 

grain size and organic content. Silt-sized grains in Fields 5a and 12 should result in the ability of 

the soil to hold fluids for some period of time (Fowlkes et al., 1988; Perrin et al., 2003; Smart and 

Friederich, 1986). The soil zones in an epikarst environment are thin and often contain rock 

within the zone near the surface (Klimchouk et al., 2004; Williams, 1983, 2008). The soil zone 

consistency is sporadic as the hydrological processes erode areas at differing rates (Klimchouk et 

al., 2004). The soil and epikarst interface in Field 1 is very shallow, resulting in less soil filtering 

that the other sites prior to fluids entering into the epikarst zone (Klimchouk et al., 2004; Perrin et 

al., 2003; Smart and Friederich, 1986; Williams, 1983, 2008; Vanderhoff, 2011). 

In geologic settings like northern Arkansas, the epikarst zone is a significant source of 

water storage and transmission and many springs have been tapped to support local communities 

(Galloway, 2004). These types of groundwater systems can include perched water tables, which 

exist above regional water tables. These are called perched because they are places where low 

permeability soil or bedrock layers hold water above an unsaturated zone. These generally 

produce springs on the side of a bluff or sometimes in an open field if the relief is high enough to 

expose this feature. The boundary of the soil zone with the epikarst zone is visible in some 

locations in the fields used for this study (Perrin et al., 2003). Perched features are not apparent at 

any of the sites. This zone is expected to have wide variability in flow rates and a high amount of 

storage (Williams, 2008). There can be slow seepage through weathered pores and pieces of less 

weathered bedrock, to relatively rapid flow through fractures and karst features. The electrical 

features measured at mantled karst sites generally indicate high porosity zones and the extent of 

weathering in these locations (Halihan et al., 2009; Pellicer and Gibson, 2011; Williams, 2008). 

 Flow through the bedrock will depend on the location of fractures or karst features. These 

flowpaths will most commonly be electrically conductive relative to the unweathered bedrock 
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beneath the water table. In settings with little dissolution and strong faulting or fracturing, the 

flowpaths will appear as linear features in ERI datasets (Halihan et al., 2009), but in the event of 

karst features, they can appear wider (Bolyard, 2007; Gary et al., 2009). Fractures or karst 

flowpaths present in the bedrock can be localized or, more often, follow larger regional trends. 

The regional water table was not evaluated for this report but at the two sites on the 

alluvium, the local water table was shallow (a couple meters) during the investigation. For Field 

5a, the depth to the local water table was approximately 1.5 m (5 feet) below the land surface. For 

Field 12, the local water table was approximately 2 m (6.5 feet) below the surface. The local 

water table was not detected in Field 1. Precipitation previous to and during the investigation 

resulted in both sites having moist to saturated soil conditions. The soil of Field 1 was saturated. 

Swine lagoon effluent application periods and quantities were reported and used to 

determine the volume and time periods for applications. Field 5a did not have any known swine 

lagoon effluent application. Reports indicated swine lagoon effluent was applied to both fields 12 

and 1. Field 12 received one treatment in April 2014 of 48,000 gallons (182 m3) spread over 9.9 

acres (40,064 m2) for an application flux of 0.18 inches (0.5 cm) of applied manure. This 

application was eleven months prior to sampling for both ER and soil composition. Field 1 

received four applications of applied manure. Total application was 82,000 gallons (310 m3) over 

an average of 6.9 acres (27,923 m2), which provides a total flux of 0.44 inches (1.1 cm) prior to 

sampling. The latest application before ERI and soil sampling was in January or February 2015 

when 21,000 gallons (79 m3) were applied to 7.3 acres (29,542 m2) resulting in an event flux of 

0.11 inches (0.3 cm) approximately a month prior to sampling. The applied material was 

electrically conductive fluid with reported conductivities ranging from 8,410 to 12,890 µS/cm.   
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CHAPTER 4 

4.0 METHODS 

As part of cooperative research, Oklahoma State University (OSU) designed and 

conducted electrical geophysical experiments to determine if geophysical signatures of applied 

effluent could be detected and utilized to evaluate transport of the effluent. Field methods 

included ERI surveys, topographic site surveying using differential GPS (global positioning 

system) techniques, and soil sampling along ERI surveys. 

4.1 General Field and Laboratory Methods 

These were the general methods used to collect the ERI, GPS, and soil sampling data. 

Site specific methods will follow the general descriptions of the methods used for the project. 

4.1.1 Global Positioning System Surveys 

Topographic surveys were required for generating the two-dimensional cross-sections 

produced from the ERI data as well as created a site topographic map. The Global Positioning 

System (GPS) used for site surveying was a Topcon Positioning Systems, Inc. HyperLite GNSS 

Base and Rover with Bluetooth connected handheld unit. Personal GPS units come to within 

approximately 3 m (10 feet) of a person’s true location, but this commercial grade instrument 

provides locations to within approximately one centimeter (1/2 inch) of its true location. This 

instrument was set up by positioning a base receiver and utilizing a second mobile receiver to 

obtain data. Tree cover can be problematic for the Rover to obtain satellite data. At times, points 
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cannot be collected because the Rover was under too much tree canopy. This was the case on 

both sites near the stream (i.e., Big Creek) and along the site boundaries if tree canopy was dense. 

The majority of the data were collected in open field conditions, allowing good coverage of the 

ERI locations. 

4.1.2 Electrical Resistivity Imaging Data 

ERI data collection requires special instruments as well as transect planning. The ERI 

data collection instrumentation used was an Advanced Geosciences, Inc. (AGI) SuperSting R8/IP 

resistivity instrument. The instrument is a multi-channel earth resistivity meter with memory 

storage. The multi-channel design allows for measuring times to be decreased. The project design 

for Phase I from OSU was to use 56 electrodes at 3-m spacing (9.8 feet). This spacing allowed for 

detailed data collection at 1.5-m (4.9 feet) resolution for a lateral distance of 165 m (541 feet) and 

a depth of investigation of 33 m (108 feet) for each image. The design for Phase II was to use 56 

electrodes at both 3-m spacing (9.8 feet) and 1-m spacing (3.3 feet). This spacing allowed for the 

same 1.5-m resolution data along three lines as in Phase I, but also allowed for data collection at 

0.5-m (1.6 feet) resolution for the lateral distance of 55 m (180 feet) and a depth of investigation 

of 11 m (36 feet) for three separate lines. The spacing is dependent upon balancing the depth of 

investigation with how much resolution is needed.  

Each ERI line was placed using field measuring tapes to 165 m (541 feet) or 55 m (180 

feet). For each line, 56 stainless steel stakes were inserted into the soil approximately 1 foot deep 

oriented in a straight line. The resistivity cable was laid out and each electrode on the cable was 

connected to each stake. The cables were connected to the instrumentation once the line was laid 

out. A generator and an AGI 12-volt power supply were used to power the instrument. Electrical 

testing was ready to start after transects were set up. 

Tests were run on the instrument and cable to ensure each electrode was properly 

connected to each stake and that the instrument is running properly. Contact resistance tests were 
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conducted to ensure the circuits were complete. Electrodes with contact resistance greater than 

2,000 ohms fail the test and those stakes were either pushed deeper in the soil to help create a 

better contact with the soil, or an electrically conductive fluid like salt water was poured around 

the stake to improve contact between the stake and underlying soil. Lower contact resistance 

indicates better contact with subsurface material, increasing signal strength and improving better 

data quality and accuracy. With the high soil moisture at the site during the surveys, no extra 

fluids were required to obtain good electrode contact. ERI data collection began after tests were 

concluded. 

The collected data were evaluated for data quality prior to departing the field. In the 

laboratory, field electrical data were paired with topographic data and processes to determine 2D 

resistivity surveys beneath the electrode lines. Data from individual depth horizons were 

extracted from individual datasets and interpolated to generate depth slices of the site data to 

provide map views of the site electrical structure. Both 2D vertical and horizontal data were 

visualized using RockWorks software. 

4.1.3 Soil Sampling 

Soil sampling was conducted using a field kit, a list of criteria to be met, and evenly 

proportioned between the three sites. The soil sampling equipment used was an AMS Basic Soil 

Sampling Kit which included of a 3 ¼” hand auger tool. The samples were collected to a depth of 

0.1 m (4 inches). Samples were placed in zip-lock baggies and stored in a cooler until the soil 

analyses were conducted. The locations for sampling were based on a few criteria: samples were 

collected at 0.25 m (9.8 inches) away from an ERI electrode to improve the fit between both the 

soil sampling and modeled ERI sets of bulk resistivity data. The remaining criteria were chosen 

on a field-by-field basis. Field 5a consisted of 10 samples correlating to distances along transect 

MTJ101 (Figure 6) and an attempt to sample across a known soil contact. Field 12 consisted of 11 

samples, three of which are in the unapplied area of the field, correlating to distances along the 
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transect MTJ105 (Figure 7). Field 1 consisted of 10 samples, one of which is in the unapplied 

area of the field that correlate to distances along the transect MTJ111 (Figure 8). After collection, 

the soil samples were submitted for analysis. 

 Soil samples were analyzed for the chemistry of the soil solids and grain size of the 

samples by the University of Arkansas Soil Testing and Research Laboratory using the Mehlich-3 

extraction method and sieve analysis (Mehlich, 1984). The Mehlich-3 extraction method provided 

results for the following constituents for the soil solids: pH, phosphorus (P), potassium (K), 

calcium (Ca), magnesium (Mg), sodium (Na), sulfate (S), iron (Fe), manganese (Mn), copper 

(Cu), zinc (Zn), and boron (B). 

Soil samples were analyzed for the chemistry of the soil fluids by Oklahoma State 

University’s Soil, Water and Forage Analytical Laboratory using a 1:1 soil-water extraction 

method as part of a soil salinity management test (Klute, 1986; U.S. Salinity Laboratory Staff, 

1954). The 1:1 soil-water extraction method provided the following constituents for the soil 

fluids: pH, K, Ca, Na, Mg, electrical conductivity (EC), total soluble salts (TSS), potassium 

adsorption ratio (PAR), sodium adsorption ratio (SAR), exchangeable potassium percent (EPP), 

and exchangeable sodium percent (ESP). OSU also conducted tests for Total Nitrogen (TN), 

Total Carbon (TC), and Organic Matter (OM). 

 The OSU School of Geology conducted isotopic ratio mass spectrometry (IRMS) 

analysis for nitrogen isotope ratios of the soil samples. The IRMS analysis provided isotopic 

composition of the soil, which was cross-referenced with that of known isotopic values for swine 

lagoon effluent. Samples were hand-crushed into a powered, placed into tin capsules, weighed, 

and formed into spheres before being combusted by an Elemental Analyzer (EA). The EA 

converted the samples to N2 gas and passed them through the IRMS where the isotope ratios were 

measured. Reference material (IAEA-34 and USGS-40), blank tins, and doubles of each sample 
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were run to ensure accuracy of the machine. The resulting data then underwent correction 

procedures using values of the reference samples (De Groot, 2004).  

4.2 Site Specific Methods 

In the following sub-sections, the field methods applied at each site utilized in the study 

are discribed. Three sites are described for both ERI and soil data collection. 

4.2.1 Field 5a 

In December 2014, seven ERI transects (MTJ01 – MTJ07) were collected at Field 5a 

(Figure 3). Three transects ran approximately east-west, while the other four transects ran 

approximately north-south. Transects were 165 m long and with 3 m spacing to share a similar 

depth of investigation. Transect MTJ01 was the sole transect to cross Big Creek (Figure 16). The 

transects MTJ02 and MTJ03 were oriented at an angle to MTJ01 but both shared the east-west 

trend. MTJ04 and MTJ05 were two of four transects that ran north-south and were paired to 

create one long transect. These transects ran roughly parallel to the stream and the fence line, and 

crossed the three east-west trending transects. MTJ06 and MTJ07 were very similar to MTJ04 

and MTJ05. They also ran parallel to the stream and fence line, and crossed the three east-west 

trending transects, but the pair of transects sat approximately 75 m to the east of MTJ04 and 

MTJ05. Together, these datasets allowed coverage of Field 5a to evaluate the geologic context of 

the area. 

In March 2015, two ERI transects (MTJ101 & MTJ102) were collected at Field 5a 

(Figure 3). The two transects were in the same orientation as some surveys in from December, 

approximately north-south and parallel to the stream. The transects were collinear, sharing similar 

stake locations and both sat atop the MTJ106 and MTJ107 transects which were run during 

December at this site. MTJ101 was 165 m long with 3 m spacing to share the same depth of 

investigation as the previous surveys taken on Field 5a. MTJ102 was 55 m long with 1 m spacing 
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for a higher resolution of the same area as MTJ101. Soil sample locations for the background site 

(Field 5a) were chosen based on the Phase I ERI results of MTJ106/MTJ107. The Phase I data 

indicated a possible change in soil characteristics from a thin and rocky soil in the northern part 

of the field to a thicker soil in the southern part of the field. When conducting the statistical 

analysis on the data, this change in soil characteristics was used to separate the data into two 

groups. The sample locations for this site were selected in order to capture the possible soil 

profile change. The samples correlate to distances along MTJ101 (Figure 6). The separation of 

the soil samples into the thin, rocky northern half and the thicker southern half was split in the 

middle at the 82.5 m mark. Five samples fall in the northern half (0.0 – 82.5 m) and five samples 

fall in the southern half (82.5 – 165 m). 
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Figure 6 – Black dots represent soil sample locations along transect MTJ101 (blue line) in Field 

5a (background site). Yellow lines represent other ERI lines collected at site. 

4.2.2 Field 12 

In December 2014, five ERI transects were collected from Field 12 (MTJ08-MTJ12) 

(Figure 4). Three of transects ran approximately east-west, while the other two transects ran 

north-south. Transects were 165 m long with 3 m spacing to share a similar depth of 

investigation. Transects MTJ08 and MTJ09 ran parallel to each other and nearly parallel to Big 

Creek, covering almost the entire length of the field. Transects MTJ10, MTJ11, and MTJ12 ran 

perpendicular to MTJ08 and MTJ09. All three were parallel to each other and the fence line. 
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These three ran north-south and were separated from each other by approximately 40 m. This set 

of transects covered a sufficient area of the field to evaluate the geologic objectives and covered 

the boundary between the unapplied edge of the field and application zone in the center of the 

field. 

In March 2015, three ERI transects (MTJ104 - MTJ106) were collected at Field 12 

(Figure 4). Two transects were in the same orientation as the surveys in December, approximately 

east-west and perpendicular to the stream. The transects were collinear, sharing similar stake 

locations. MTJ105 was 165 m long with 3 m spacing to share the same depth of investigation as 

the previous surveys taken on Field 12. MTJ104 was 55 m long with 1 m spacing for a higher 

resolution of the same area as MTJ105. These two were approximately 40 m to the north of 

MTJ12 and both started at the edge of the field nearest the stream. The third transect shared the 

north-south orientation of transects MTJ08 & MTJ09 and was collected as part of a northern 

extension to MTJ08. MTJ106 was 165 m long with 3 m spacing to share the same depth of 

investigation as the other surveys on Field 12. These surveys examined the northern edge of the 

field (the lowest corner of the field), and increased the area of investigation. Locations of the soil 

samples for the applied sites (Field 12 and 1), samples were collected in both the application zone 

and the unapplied edge of the field (33 m, or 100 feet, from edge of field). The sample locations 

of Field 12 were denser nearest to the edge of the application zone to try and determine if the 

boundary between application zone and the unapplied edge of the field can be visualized and 

paired with the ERI data consistently. The samples correlate to distances along MTJ105 (Figure 

7). 
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Figure 7 – Black dots represent soil sample locations along transect MTJ105 (blue line) on Field 

12 (application site). Yellow lines represent other ERI lines collected at this site. 

4.2.3 Field 1 

In March 2015, two ERI transects (MTJ111 & MTJ112) were collected at Field 1 (Figure 

5). The two transects are collinear and are oriented north-south. MTJ111 was 165 m long with 3 

m spacing so as to share the same depth of investigation as the previous surveys taken on the 

other fields. MTJ112 was 55 m long with 1 m spacing for a higher resolution of the same area as 
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MTJ111. For the applied sites (Field 12 and 1), samples were collected in both the application 

zone and the unapplied edge of the field (100 feet from edge of field). The sample locations of 

Field 12 were denser nearest to the edge of the application area to try and determine if the 

boundary can be visualized and paired with the ERI data consistently. The sample locations of 

Field 1 were denser in the small gully in the center of the line but also attempted to determine if 

there is a difference in the application zone and the unapplied edge of the field. The samples 

correlate to distances along MTJ111 (Figure 8). 

 

Figure 8 – Black dots represent soil sample locations along transect MTJ111 (blue line) on Field 

1 (recent application site). Yellow line represents other ERI line collected at this site. 
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4.3 Field Data Analysis 

During previous work to install monitoring wells by the University of Arkansas, soils 

were hand-augured until hitting a surface hard enough to prevent further penetration (depth of 

refusal). These depths were evaluated along with the ERI surveys to produce a distributed 

understanding of the soil depth and thickness across the sites. The epikarst thickness was found 

using the ERI surveys based on the use of a strong vertical resistivity gradient to delineate 

weathered epikarst from competent bedrock. Electrically conductive features can be displayed as 

pathways within the soil and epikarst (Bolyard, 2007). Resistive electrical layers are interpreted 

as the limestone bedrock at depth on each site. Linear electrically conductive pathways through 

the bedrock are interpreted as potential joints or faults. Electrically conductive zones are 

interpreted as potential dissolution or weathered portions of the bedrock. 

Statistical analysis was run on the ERI data to determine if statistically significant 

differences existed between the soil ERI data between the three fields. Data were selected from 

the upper line of each dataset where soil samples were collected. The data were averaged to 

smooth out variability using a five point moving average. A two-tailed t-test was used to 

determine significance and alpha was assumed to be 0.05, or the 95% confidence interval. The 

data were also tested for the three sites to evaluate if the 0.5 m resolution data were statistically 

different from the 1.5 m resolution datasets. 

Statistical analysis was run on the soil sample test results to determine if significant 

variations existed in the parameters between the three fields (see Appendix 6 for data). A two-

tailed t-test was used to determine significance and alpha was assumed to be 0.05, or the 95% 

confidence interval. A margin of error was calculated as 0.98/n (Johnson and Bhattacharyya, 

2006), where n is the number of samples. These analyses were performed to compare the 

background data against the applied sites and to compare the recently applied site to the other two 

sites. 
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Correlation between the datasets was analyzed by comparing the two soil types sampled 

in the background field against the soil analysis data. Correlation for the applied sites was 

performed by comparing the areas inside the application zone against the corresponding ERI data. 

Goodness of fit estimates for the relationships were calculated using Excel. The goodness of fit 

analyses were separated into one of four categories: none or very weak relationship (r2 < 0.1), 

weak relationship (0.1 < r2 < 0.3), moderate relationship (0.3 < r2 < 0.5), and strong relationship 

(0.5 < r2). 

4.4 Numerical Modeling 

 The following sub-sections were the methods used to create a numerical model. We 

generated a model which simulated swine lagoon effluent application and precipitation events. 

4.4.1 Model Characteristics 

 Reactive transport modeling was conducted to simulate a swine lagoon effluent 

application to a site. The model was generated using TOUGHREACT model with the PetraSim5 

interface. A vertical 1-D model of a 3-m thick soil column was designed and divided into 30 

horizontally stacked cells, each 10 cm in thickness (Figure 9). Six simulated materials (Table 2) 

were created within the program: ATMOS, 1LOAM, 2LOAM, 3SCLL, 4SCLL, 5fSLO, 6GfSL, 

and ROCK1. Because our soil samples were collected only to a depth of 10 cm (4 inches), the 

materials were simulated based on literature values (Ferguson, 1920; Fowlkes et al., 1988). 

ATMOS is representative of atmospheric conditions and the top most cell (cell 30) from 0 – 10 

cm. 1LOAM and 2LOAM are representative of soil loams from 10 – 20 cm (cell 29) and 20 – 40 

cm (cells 28 – 27) in depth. 3SCLL and 4SCLL are representative of sandy clay loam soils from 

40 – 60 cm (cells 26 – 25) and 60 – 100 cm (cells 24 – 20) in depth. 5fSLO simulates a fine sandy 

soil from 100 – 140 cm (cells 20 – 16) in depth. 6GfSL models a gravelly fine sandy loam from 

140 – 250 cm (cells 16 – 5) in depth. ROCK1 is representative of the Boone Limestone bedrock 
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from 250 – 300 cm (cells 5 – 1), the base of the model. Because we did not have confirmation on 

saturation, an artificial water table was set at 2-m deep and had decreasing saturation with 

increasing height above the water table as these were arbitrary values divided by the number of 

cells left to be filled (Figure 10). The initial chemistry for the soil column in the model was based 

on values from the field soil sample analysis (one cell from top) and the water quality database 

for the Buffalo National River (lowest 28 cells) (National Park Service, 2016). Sorption 

parameters (density and KD) were determined from National Resources Conservation Service 

(2008) and Whetstone Associates, Inc. (2011), respectively. Wet Heat Conductivity and Specific 

Heat were set to 2 W/(m*K) and 1000 J/(kg*K), respectively. Flow in the model follows the van 

Genuchten-Mualem (IRP=7) equation for relative permeability and the van Genuchten Function 

(ICP=7) equation for capillary pressure. 

Table 2 – Material Assignments 

Cell 

Assignment 

Density 

kg/m3 

Porosity 

 

Permeability 

mD 

ATMOS 1.225 0.99 1.01E+11 

1LOAM 1500 0.45 243 

2LOAM 1500 0.45 243 

3SCLL 1500 0.42 212 

4SCLL 1500 0.42 212 

5fSLO 1550 0.44 1013 

6GfSL 1570 0.44 2330 

ROCK1 2500 0.12 101 
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Figure 9 – Vertical 1-D model domain divided into 30 horizontally stacked cells (10 cm in 

thickness each) with model cell assignments for lithologic parameters. 
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Figure 10 – Starting model soil moisture profile (initial conditions set for simulation). 

4.4.2 Simulated Application and Rainfall 

The initial chemistry (Table 3) for the simulated swine lagoon effluent application was 

based on values from a slurry sample analysis (Big Creek Research and Extension Team, 2013). 

The simulated application flux was based on the field application data for Field 12 (Big Creek 

Research and Extension Team, 2013). Simulated precipitation events were determined from the 

Rainfall Frequency Atlas of the United States (Hershfield, 1963) for a 1-year, 24-hour storm 

event and from the Annual Climatological Report for North Little Rock, Arkansas (National 

Weather Service, 2016).  
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Table 3 - Initial chemistry of model. 

Constituent Effluent Application 

Concentration 

(mol) 

Topsoil 

Concentration 

(mol) 

Subsurface 

Concentration 

(mol) 

Rainfall 

Concentration 

(mol) 

H 1.00E-07 1.00E-07 1.00E-07 1.00E-07 

H2O 1.00 1.00 1.00 1.00 

Ca 5.62E-03 4.23E-02 1.07E-03 5.44E-05 

Fe 7.00E-04 3.21E-03 1.02E-07 1.79E-05 

K 7.30E-03 2.58E-03 2.99E-05 7.93E-05 

Mg 2.48E-03 4.43E-03 9.30E-05 1.36E-04 

Mn 5.63E-05 3.66E-03 6.37E-08 1.82E-05 

S 8.41E-04 9.00E-04 1.88E-04 3.75E-05 

Zn 7.93E-05 7.00E-05 4.39E-08 1.57E-05 

Cu 9.23E-06 3.00E-05 1.42E-09 1.57E-05 

 

The model period was one year (Table 4). The rate for application was determined from 

the application volume spread out over one simulated day. Immediately following application, we 

simulated the first of 13, 1-yr, 24-hr rainfall events. The maximum probability for a single 1-yr, 

24-hr rainfall event for this site was 15.0%, however, the model does not account for runoff so 

this entire volume is pushed through the model. After every 24-hr rainfall event, we simulated 27 

days of no rainfall. The total of the 13 events sums to the average annual precipitation for our site. 

This provided an end member scenario of large rain events affecting effluent transport. 
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Table 4 – Simulation Timing 

Simulation 

Name 

Number of 

simulations 

Precipitation 

kg/s 

Run-

Time 

days 

Run-

Time 

seconds 

Timestep 

seconds 

Application 1 2.63E-06 1 8.64E+04 10 

Rainfall 13 5.00E-05 1 8.64E+04 10 

No Rainfall 13 2.00E-10 27 2.33E+06 10 
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CHAPTER 5 

5.0 RESULTS 

Field work in Mt Judea consisted of two trips for eight field days in total to collect ER 

and soil data. Lab work included processing and interpreting ER and soil data. Results include the 

processed and corrected GPS data, processed ERI data, detailing soil, epikarst, and bedrock 

features, and soil analysis. Raw data can be found in the electronic report appendices.  

5.1 GPS Data Analysis 

The location data collected using the GPS system was processed to evaluate the position 

of the ERI datasets and site topography. The base data were submitted to the Online Positioning 

User Service (OPUS), which is operated by the National Oceanic and Atmospheric 

Administration (NOAA), and the products are the corrected values for easting, northing, and 

elevation of the base positions in UTM coordinates. These were then applied to the datasets to 

obtain centimeter-scale accuracy for the topography in the ERI datasets. 

5.2 ERI Data Structure 

For the processed ERI datasets, it was found that the average root mean square error 

(RMSE) between the resistivity model and the field apparent resistivity data was 3.16% for Field 

5a and 3.34% for Field 12. For Phase II, the processed ERI datasets averaged a RMSE of 3.95% 

for Field 5a, 3.35% for Field 12, and 6.18% for Field 1. The lower the RMSE percentage, the 

better the relationship between the collected apparent resistivity data and the calculated 
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subsurface resistivity model, with values above 15% being considered poor. The range of RMSE 

for the site was 3.0%-7.8% overall, with an average RMSE of 4.0%. The data quality for the site 

is good as there were no utilities or other anthropogenic features and the soil was moist at the 

time of data collection providing good contact with the ground. 

The resistivity values for the sites range from very electrically conductive to highly 

resistive (Figure 11). The terms used to indicate a specific range are indicated in italics for clarity. 

Electrically conductive areas generally include the shallow portions of the images, with strong 

resistors at depth. The resistivity measurements for Field 5a range from 1 - 6x105 Ohm-meters 

with a median value of 1500 Ohm-meters. The resistivities for Field 12 range from 20-6x105 

Ohm-meters with a median value of 1600 Ohm-meters. The resistivities for Field 1 range from 4-

1x106 Ohm-meters with a median value of 1300 Ohm-meters. 

The interpretation scale (site specific interpretation) for the resistivity values of the 

images follow those electrical features:  

 Above 1000 Ohm-meters generally represent unweathered bedrock with fresh groundwater 

and will be referred to as highly resistive.  

 Between 500 to 1000 Ohm-meters represent weathered bedrock with fresh groundwater and 

will be referred to as very resistive. 

 Between 150 and 500 Ohm-meters typically represent significantly weathered bedrock 

material with fresh groundwater and will be referred to as resistive.  

 Less than 150 Ohm-meters but greater than 50 Ohm-meters are interpreted as soil and/or 

possible electrically conductive fluids and referred to as electrically conductive.  

 Below 50 Ohm-meters represent fine soils, microbial mass, and/or electrically conductive 

fluids and referred to as very electrically conductive. 
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Figure 11 – Resistivity scale for Mount Judea ERI datasets. Cool colors are used to indicate 

more electrically conductive subsurface locations and warm colors are used to indicate more 

resistive locations. 



 

 

  

Figure 12 – Field 5a (background site) view from northeast corner of field (from Big Creek toward the field). 
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Figure 13 – Field 12 (application site) view from northeast corner of field (from Big Creek toward the field). 



 

 

5.2.1 Soil Structure 

The soil structure analysis consists of soil thickness and soil properties. Soil thicknesses 

for each site were picked and confirmed through hand dug borings on site which were conducted 

during previous University of Arkansas work on these fields. These borings were dug to refusal, 

or where the soil turns to epikarst (significantly weathered bedrock). Soil properties were detailed 

based on field notes, ERI results, and grain size analysis.  

Field 5a is a low-lying grazing area with low relief and an uneven topsoil surface. Field 

5a exhibits average soil thicknesses of 0.5 – 4.5 m (1.5 – 14.75 feet). Soil thickness on Field 5a 

varies throughout, but there is a significant resistivity difference between the highly to very 

resistive north and more electrically conductive southern portion (Figure 12). There is a broad 

topographic mound northwest of the center of Field 5a and the soil thickness is thinner to the far 

north and far west of the field (see Appendix 3). This trend is consistent with the direction to 

which the alluvium would be deposited nearest to the stream. Soils on transects MTJ06 and 

MTJ07 (Figure 14A) are those electrically conductive features, which thin to near zero soil 

thickness toward the far north. Grain size analysis (see Appendix 6) indicates Field 5a is a sandy 

loam to clay loam. Field 5a and Field 12 share some of the soil characteristics. 

Field 12 is a low-lying grazing area with low relief and an uneven topsoil surface. Field 

12 exhibits similar average soil thicknesses at 0.7 – 4 m (2.25 – 13 feet). Soil thickness on Field 

12 is not as variable as Field 5a but there is a very resistive portion of the site in the shallow soil 

area is in the southwest portion of the investigation area (Figure 13). Field 12 is flatter and the 

soil thins to the west (see Appendix 3). MTJ12 (Figure 15A) shows thinning where the 

electrically conductive features become thicker as the image gets closer to the stream. This trend 

is consistent with the direction to which the alluvium would be deposited nearest to the stream. 

Areas where the soil profile is thinner on the images are consistent with the rocky soils which 
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were encountered when electrodes were placed for data collection. Grain size analysis (see 

Appendix 6) indicates Field 12 is a sandy loam to clay loam. 

Field 1 is a grazing area that sits on a hillside east of the stream. It has low to moderate 

relative relief and an uneven topsoil surface. Field 1 shows an average soil thickness of 0.5 m (1.5 

feet) determined from the ERI surveys of MTJ111 and MTJ112 (Figure 19) and soil sampling but 

did not have confirmation hand dug borings. This site was not studied extensively enough to 

determine differences in resistivity that can correlate across the entire field. Field 1 has thinner 

and rockier soils than either Fields 5a or 12 and gravels present in Field 1 samples with sizes up 

to 0.05 m (2 inches) across and subsequently removed during soil sampling. Field 1 has a 

different soil thickness and properties than Fields 5a or 12.



 

 

 

Figure 14 – A) Interpreted Soil-Epikarst boundary and Epikarst-Bedrock boundary for the Field 5a for combined ERI datasets MTJ06 and MTJ07 

(background site) cross sections. B) Interpolated 2D depth slices of resistivity at differing elevations illustrating a map view of the subsurface. 

Heavy black line indicates location of cross section in A).



 

 

 

Figure 15 – A) Interpreted Soil-Epikarst boundary and Epikarst-Bedrock boundary for Field 12 for ERI dataset MTJ12 (application site) cross 

sections. B) Interpolated 2D depth slices of resistivity at differing elevations illustrating a map view of the subsurface. Heavy black line indicates 

the location of the cross section from A).



 

 

 

Figure 16 – Field 5a (background site) – Transect MTJ01 with 3 meter spacing. 
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Figure 17 – Field 12 (application site) – Transect MTJ105 with 3 meter spacing. 
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Figure 18 – Field 12 (application site) – Transect MTJ106 with 3 meter spacing. 
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Figure 19 – Field 1 (recent application site) – Transect MTJ111 with 3 meter spacing and Transect MTJ112 with 1 meter spacing.



 

 

5.2.2 Epikarst Structure 

The epikarst zone consists of the weathering profile of the underlying competent bedrock. 

Epikarst is visible on Field 5a (Figure 14), Field 12 (Figure 15), and Field 1 (Figure 19) as a more 

resistive to electrically conductive region below the base of the soil and above the highly resistive 

competent bedrock zones. No confirmation borings are available to evaluate rock properties in 

these zones on any of the sites. Because the interpreted base of the epikarst varies from site to 

site, the threshold for competent rock was quantified at values larger than 1000 Ohm-meters 

consistent with a strong horizontal resistivity gradient across the images (Figure 12, Figure 13, 

and Figure 19). The thickness of the epikarst zone is highly variable (thicknesses range from 2 – 

23 m or 6.5 – 75.0 feet) throughout each field but averages 4 – 7 m (13-23 feet) thick.  

Average epikarst thickness for Field 5a is 4 m (13 feet) and it relatively thin and similarly 

to the soil zone, thicker in the southern half of the field. At locations where electrically 

conductive features exist in the bedrock, the epikarst generally appears connected in space with 

these features (Figure 14 and Figure 16). ERI dataset MTJ01 shows the most variation in epikarst 

thickness on Field 5a (Figure 16). 

Average epikarst thickness for Field 12 is 6 m (20 feet) and the epikarst surface on Field 

12 is very irregular in many transects (see Appendix 3). There appears to be a large doline feature 

(a closed topographic depression caused by dissolution or weathering of underlying rock or soil) 

within the bedrock on transect MTJ12 that is approximately 61 m (200 feet) across at the top of 

the feature starting 8 m (26 feet) below the land surface and extends 23 m (75 feet) vertically 

downward (Figure 15A).  

The determined average epikarst thickness for Field 1 is 5 m (16.4 feet). Delineating the 

top of the epikarst from the soil on Field 1 is different from the other sites as there are no 

confirmation hand dug borings near the transects and the resulting images show very electrically 

conductive features protruding into the subsurface in irregular vertical structures (Figure 19). 
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Along the line of soil sampling however, most of the samples encountered the top of epikarst with 

limestone gravel in the top 6 inches of the site. This implies the soil zone is thin relative to the 

epikarst. 

5.2.3 Bedrock 

The Boone Formation is the underlying rock unit across these fields and is considered the 

bedrock. In many of these cross-sections, the limestone is interpreted as large, highly resistive 

blocks. The values for the more competent limestone are interpreted as those greater than 1000 

Ohm-meters. It is evident on all three fields (Fields 5a, 12, and 1) that a highly resistive zone 

interpreted as bedrock is located at depth (Figure 14, Figure 15, and Figure 19, respectively). No 

confirmation borings are available in the bedrock zones to confirm rock properties, but limestone 

is present in the streams adjacent to Fields 5a and 12, and a quarry is present near Field 1. 

Field 5a is on average electrically resistive and has a thin layer of alluvium at the foot of 

a steep hill to the west of the field (Figure 14). The majority of the surveys taken in this field 

display a very large and blocky highly resistive bedrock, especially to the southwest corner. Lines 

MTJ01 and MTJ06 (Figure 16 and Figure 14, respectively) both show that the northern corner of 

the field is electrically different bedrock than the southern portion of the field (Figure 14B). This 

zone also has a number of electrically conductive features that could be interpreted as karstic 

zones. The largest of these zones is at 120 m along ERI line MTJ06/07 (Figure 14A).  

Field 12 does not have as many electrically conductive features at depth as Field 5a, 

however it does have some possible doline features within the bedrock (Figure 15A). There are 

also some possible fractures indicated by vertically oriented conductors to the northern section of 

the field in MTJ105 and MTJ106 (Figure 17 and Figure 18, respectively). The bedrock here 

appears more competent and blocky than Field 5a but is still appears to be potentially fractured. 

Field 1 does not have the same alluvium layer above limestone bedrock as Field 5a and 

12, therefore the bedrock boundary is shallower on this site alone. Field 1 does not share the same 
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fractured characteristics as the other two sites (Figure 19). This site has a very high electrical 

gradient going from the epikarst zone to the highly resistant bedrock. 

5.2.4 Site Comparison of ERI Data 

 A difference can be seen in bulk electrical resistivity values of the three sites. Fields 5a 

and 12 compare favorably with very similar electrical resistivity values. The resistivities for Field 

5a range from 1 – 6x105 Ohm-meters with a median value of 1500 Ohm-meters. The resistivities 

for Field 12 range from 20 – 6x105 Ohm-meters with a median value of 1600 Ohm-meters. Field 

1 is slightly more electrically conductive overall when comparing the three sites. The resistivities 

for Field 1 range from 4 – 1x106 Ohm-meters with a median value of 1300 Ohm-meters. The 

values of bulk electrical conductivity (the inverse of electrical resistivity) from the top of the 

three 165 m long, 1.5 m resolution ERI transects, one from each site, run during Phase II show a 

difference between the electrical conductivity of the three fields (Figure 20). Field 1 and Field 12 

have increases in bulk conductivity occur at around 30 m laterally on the image which would be 

the boundary of application of manure. In the higher resolution datasets, (55 m long, 0.5 m 

resolution) the variations between the fields are not as clear. Field 1 still has the most conductive 

features, but it is similar to a feature on Field 5. 
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Figure 20 – Electrical conductivity of the top row of data (model cells are 0.25 m thick) from 

each site during Phase II at 1.5 meter resolution. Data has been smooth with a 5 point moving 

average to make the plot clearer. 

5.3 Soil Analysis 

 Soil samples were collected along the ERI transects during March 2015 to correlate 

between geophysical (resistivity data) and the physical and chemical properties of the soil. In 

sum, 31 soil samples were collected, across the three fields (see Appendix 6). Statistics were run 

on the results to find if there is any correlation between the fields or between soil types or applied 

vs unapplied areas.  



57 

 

5.3.1 Soil Testing 

 To examine all three sites, soil tests were conducted and compared for trends in the data. 

Averages for all sites of the results of the Mehlich-3 soil test are displayed in Table 5 and 

averages for all sites of the results of the soil salinity test (1:1 soil-water) are displayed in Table 6 

(Full dataset in Appendix 6). Table 7 contains the results of the organics contents for all sites. 

Field 5a (background site) was found to have lower averages in almost many constituents, but the 

highest average TC, TN, and OM content. Fields 12 and 1 (application sites) are consistently 

higher than Field 5a in almost all sample types, but lower in average TC, TN, and OM content. 

Field 1 is highest in all categories except in calcium and sodium, while it is lowest in TN, TC, and 

OM values. Field 1 has similar values to Field 12 in both fluid EC and TSS. Statistical analysis 

was applied to all of the results to determine if there was a statistical difference between sites.  
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Table 5 – Results for various constituents on each field after Mehlich-3 extraction method (dry 

method for solids analysis). 

Constituents Field 5a Field 12 Field 1 

pH 5.4 5.7 6.5 

P (ppm) 49.3 72.1 83.2 

K (ppm) 66.5 100.9 232.1 

Ca (ppm) 1283.0 1696.9 1314.8 

Na (ppm) 15.1 107.6 15.4 

Mg (ppm) 76.7 13.9 129.2 

S (ppm) 24.5 28.7 28.6 

Fe (ppm) 170.4 179.0 194.6 

Mn (ppm) 188.7 201.1 636.4 

Cu (ppm) 1.4 1.9 1.6 

Zn (ppm) 2.6 4.3 5.0 

B (ppm) 0.1 0.1 0.1 

 

5.3.2 Nitrogen Isotopes 

 To examine all three sites, isotope analysis was conducted and compared for trends in the 

data. Nitrogen isotope analysis was decided upon for analysis of the soil samples to determine if 

there was a detectable signature of the applied swine lagoon effluent within any of the soil 

samples. The δ15N is compared to isotope signatures from other agricultural areas. The data from 

all 31 samples and their duplicates, ranges from 3.8‰ – 6.6‰ across all three sites. The average 

is lowest for Field 1 (recent application site) with an average at 4.8‰ (0.5 SD) and a range of 

values from 3.9‰ – 5.8‰. Field 5a (background site) has the next larger average δ15N ratio of 
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5.1‰ (0.6 SD) with a range of 3.8‰ – 6.3‰. Field 12 (application site) has the largest average of 

5.6‰ (0.7 SD) with a range from 4.2‰ – 6.6‰. 

Table 6 – Results for various constituents on each field after 1:1 soil-water extraction method 

(fluid method). 

Constituents Field 5a Field 12 Field 1 

pH 5.8 6.0 6.7 

K (ppm) 6.0 20.7 75.0 

Ca (ppm) 38.2 73.5 50.9 

Na (ppm) 11.2 12.5 15.2 

Mg (ppm) 3.3 6.7 7.4 

EC (µS/cm) 488.1 891.9 857.9 

TSS (ppm) 322.2 588.6 566.2 

PAR (ratio) 0.2 0.4 1.6 

SAR (ratio) 0.5 0.4 0.6 

EPP (%) 5.0 6.9 16.5 

ESP (%) 0.0 0.0 0.0 
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Table 7 – Results of Total Nitrogen (TN), Total Carbon (TC), and Organic Matter (OM) tests. 

Constituents (%) Field 5a Field 12 Field 1 

Average Total Nitrogen 0.18 0.14 0.09 

Average Total Carbon 2.00 1.61 0.92 

Average Organic Matter 3.45 2.78 1.58 

 

5.3.3 Statistical Analysis of Soil Data 

 In Field 5a (background site) for a simple random sample at a 95% confidence interval, a 

margin of error of 31% was calculated, where n is the 10 total samples. Because the number of 

samples is small, this dataset provides an understanding of the relationship between the variables, 

but is not statistically strong. The constituents (from both Mehlich-3 and 1:1 soil-water methods) 

of statistical significance were: pH, Ca, Mg, S, Fe, Cu, Zn, B, and EC. The statistical tests were 

applied to the two halves of the field divided by soil type. The statistical analysis indicates that 

they all have a significant difference between the northern and southern parts of the field. This is 

also apparent in the percentage of sand with the northern portion of the site having a sandier soil. 
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Figure 21 – Soil sampling results plotted showing the constituents of Field 5a were found to be 

statistically different from the other fields. 

In Field 12 (application site) 11 total samples were analyzed. Because the small number 

of samples, this dataset provides an understanding of the relationship between the variables, but is 

not statistically strong. The constituents (from both Mehlich-3 and 1:1 soil-water methods) of 

interest were: pH, P, K, Ca, Mg, S, Cu, Zn, B, fluid EC, and δ15N. The statistical tests were 

applied to the two groups, the unapplied edge of the field and application zone, of soil samples 

from the field. The statistical analysis indicates there is not a significant difference between the 

unapplied edge of the field and application zone. Weak and strong relationship between the 

constituents and the corresponding resistivity values existed.  
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 In Field 1 (recent application site) 10 total samples were available. The statistical tests 

could not be applied to the two groups from Field 1 as the unapplied edge of the field and 

application zone, because there is only one sample in the unapplied edge of the field and that is 

insufficient for analysis.  

 

Figure 22 – Soil sampling results plotted showing the constituents of Field 1 were found to be 

statistically different from the other fields. 

To statistically compare the fields against each other, the same t-test was run and 

compared the constituent of each field. When comparing Field 5a vs Field 1, we find that pH, K, 

Mg, Mn, Zn, fluid EC, TN, TC, and OM show a significant difference between the two fields. 

Field 12 vs Field 1, we find that pH, K, Mn, TN, TC, and OM show a significant difference 
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between the two fields. Field 5a vs Field 12, we find that Ca, Mg, Zn, fluid EC, and TN show a 

significant difference between the two fields. This results in Field 5a being statistically lower than 

both Fields 12 and 1 in Mg, Zn, and fluid EC and is statistically higher than both Fields 12 and 1 

in TN. Field 1 is statistically higher than both Fields 5a and 12 in pH, K, and Mn and is 

statistically lower than both Fields 5a and 12 in TN, TC, and OM. Although Field 12 was 

statistically different in some constituents for one field, it was not statistically different for the 

other field. 

Isotopic signatures were used to find the isotopic signature of swine lagoon effluent. By 

finding, or not finding, a particular isotopic value indicates whether or not our soil samples 

contain any trace amounts of swine lagoon effluent. The δ15N values ranging from 3.8 ‰ – 6.6 ‰ 

across all three fields. Field 5a has higher average values than Field 1. When comparing this to a 

compilation of other data we see that this range in values falls on the peaks of “natural” and 

“fertilized” soils and in fact falls on the far low end for “animal waste” values (Aly et al., 1981; 

Aravena et al., 1993; Black and Waring, 1977; Bremner and Tabatabai, 1973; Fogg et al., 1998; 

Freyer, 1978, 1991; Garten, 1992, 1996; Gormly and Spalding, 1979; Heaton, 1986, 1987; 

Heaton et al., 1997; Hoering, 1957; Kohl et al., 1971; Kreitler, 1975, 1979; Moore, 1977; Paerl 

and Fogel, 1994; Shearer et al., 1974, 1978; Wolterink et al., 1979). Hog waste δ15N averages 

have been recorded to fall within 10 ‰ – 20 ‰ (Fogg et al., 1998; Krietler, 1975, 1979; 

Wolterink et al., 1979). At this time, the fields do not provide a significant nitrogen isotopic 

signature in this dataset allowing the separation of signatures for applied manure and background 

soils. 

5.3.4 Site Comparison 

Field 5a shows a distinct trend in bulk electrical resistivity data that compares well with 

soil thickness and soil test results. The electrical resistivity data in Figure 20 shows a much more 

resistive half of the field is in the north (0-80 m) and a more electrically conductive half of the 
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field in the south (80-165 m). To the north, the site thins to a rocky soil and to the south it 

thickens and the soil is composed of finer particles. Figure 21 shows the soil test results for this 

site and indicate that of the north half of the field has lower values for the three distinctly different 

constituents: Mg, Zn, and fluid EC. 

Field 12 appears to have somewhat more electrically conductive soil over a broader area 

than Field 5a and shows an overall increase in bulk electrical conductivity from 30 m (100 feet). 

This electrically conductive area is not located near the stream, where application of manure 

would not occur (unapplied edge of the field) under the recommended protocols of the 

comprehensive nutrient management plan. The electrical resistivity data shows consistency across 

the entire field. The soil thickness is also thicker across the entire field when compared to Field 

5a. Soil test results showed no indication that Field 12 was statistically different from the other 

two fields.  

Field 1 does not share the same electrical features seen in the alluvium of Fields 5a and 

12, but does appear to have more electrically conductive features present within the epikarst zone. 

The features present show a relatively more resistive soil zone but a very electrically conductive 

epikarst zone that extends nearly the length of the field but dissipates at the unapplied edge of the 

field, approximately 30 m (100 feet) from the northern edge of the field. This distance from the 

northern edge of the field is consistent with the recommended protocols of the comprehensive 

nutrient management plan for where the application of manure would not occur. The soil here on 

this site was thin and rocky and grain size analysis showed that this site was different than the 

other two sites. Figure 22 shows the soil test results for this site and indicate three distinctly 

different constituents are higher than the other two sites. 

The anticipated ERI relationship with fluid EC of soil water samples would be that as 

electrical conductivity of the fluid increased, the bulk resistivity of the soil would decrease. There 

was no strong relationship between these parameters for the lower resolution (1.5 m) datasets. 
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While these datasets showed that the applied fields had a higher bulk conductivity (lower 

resistivity) than the background sites, the datasets averaged too deeply into the subsurface leading 

to some significant contrasts at the surface between the two ERI dataset resolutions.  

For the higher resolution dataset, the expected the relationship held for the background 

site, Field 5a (Figure 23). The fluid EC has an inverse relationship with bulk resistivity with an r2 

value of 0.56. For the applied fields, the fields have a positive relationship with higher EC fluids 

resulting in higher resistivity zones with an r2 value of 0.50 for Field 12 and 0.98 for Field 1. This 

type of relationship indicates that the bulk electrical properties are not only responding to the 

addition of a fluid with a higher electrical conductivity, but that another soil electrical property 

must be changing as well. Pettyjohn et al. (1986) may have stated the obvious, but it’s worth 

noting here, “whatever the final conclusions are, it is evident that one should expect the 

unexpected.”   
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Figure 23 – Soil Fluid Electrical Conductivity measured from soil samples collected along three 

ERI transects compared with ERI bulk resistivity data with 0.5 meter resolution for three fields 

near Mount Judea, Arkansas. Field 5a is the background site and Fields 1 and 12 had applied 

swine lagoon effluent. 

5.4 Numerical Modeling 

To determine the movement of swine lagoon effluent in the subsurface, numerical 

modeling was conducted on a simulated soil column. After simulating a swine lagoon effluent 

application and 13 rainfall events, sequentially followed by 13, 27-day breaks of no rain, we see 

movement of Ca, K, S, through the system and sorption of Mg, Fe, Mn, Zn, and Cu near the 

surface (Figure 30). After each rainfall event, concentrations of each constituent dropped slightly 

and those more mobile constituents moved closer and closer to the simulated water table. The 

differences in KD values are demonstrated in the concentration profiles of the more mobile (lower 
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KD values) ions (Figure 24 and Figure 25) and the less mobile (higher KD values) ions (Figure 26 

and Figure 27). The figures depicting initial conditions show sharp increases in concentration of 

these constituents near the top of the soil column but these are artifacts of where initial conditions 

were set. 

 

Figure 24 – Initial concentration profile of more mobile (lower KD value) ions. 
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Figure 25 – Final concentration profile of more mobile (lower KD value) ions.  

 

Figure 26 – Initial concentration profile of less mobile (higher KD value) ions.  
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Figure 27 – Final concentration profile of less mobile (higher KD value) ions.  

 

Figure 28 – K concentration profile after effluent application, and the 3rd, 6th, 9th, and 12th rain 

events.  
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Figure 29 – Zn concentration profile after effluent application, and the 3rd, 6th, 9th, and 12th 

rain events.



 

 

 

Figure 30 – TOUGHREACT simulation results: 365 simulated days after swine lagoon effluent. In the image, red represents higher 

concentrations and blue represents lower concentrations. 



 

 

 

 

 

CHAPTER 6 

6.0 DISCUSSION 

 Collecting pseudo 3D bulk electrical resistivity data allowed for field-scale datasets that 

estimate local variability in geology. After the field-scale correlations were determined (inverse 

relationship between bulk resistivity and soil fluid EC) for the background field, we attempted to 

find correlations on the local-scale to explain the opposing trend (positive relationship between 

bulk resistivity and fluid EC) on the applied fields (Figure 23). In this section, we evaluate and 

discuss three possible questions for why the applied sites are more electrically conductive than 

the background site: 1) are the applied fields more electrically conductive due to higher EC fluids 

applied to the fields (bulk electrical resistivity and the relationship with fluid EC), 2) are the 

applied fields more conductive due to biological activity (organic content of each site for effects 

of microbes), and 3) are the applied fields more conductive due to metal deposition (metal 

signatures of the swine lagoon effluent)?. Fields 5a and 12 share some electrical and geologic 

characteristics but there are a few distinctions that are important. Field 1 on the other hand is 

different from the other two sites in many aspects. Soil analysis is a complex issue that makes 

possible correlations between constituent levels a difficult task and much of the literature finds 

that individual site testing is required to better understand specific properties of a given site. 

6.1 Bulk Electrical Resistivity and Fluid Electrical Conductivity 

The electrical structure of the soil, epikarst, and bedrock were consistent with the 

literature of weathered mantled carbonate bedrock areas (Benson, 1995; Carriere et al., 2013; 



73 

 

Gambetta et al., 2009; Halihan et al., 2005, 2009; Miller et al., 2014; Pellicer and Gibson, 2011; 

Schwartz and Schreiber, 2009; Stepisnik and Mihevc, 2008). The soil thickness increasing 

towards the streams would be expected in an alluvial valley. The epikarst zone having significant 

variability in lateral and vertical properties was consistent with evaluations from other carbonate 

locations (Gambetta et al., 2009; Halihan et al., 2005, 2009; Pellicer and Gibson, 2011). The data 

are consistent with previous investigations (Bolyard, 2007; Halihan et al., 2005, 2009) that 

indicate that more permeable flowpaths would exist in the bedrock of the site, but no drilling or 

hydraulic testing data are available from the sites included in this investigation.  

 It is known that resistivity and conductivity are inverse of each other. When evaluating a 

site using geophysics, typical trends of the site follow that as the electrical conductivity of the 

subsurface fluid increases, the bulk resistivity of the entire subsurface (fluid, soil, rock, air, etc.) 

decreases. The data from the two applied sites indicated the opposite is the case for these fields 

(Figure 23). The more electrically conductive a single soil fluid sample was on either field, at that 

same location, the bulk resistivity of the ERI was higher than the other samples. We evaluated the 

datasets to determine if data from a nearby resistivity model cell was influencing this behavior or 

if the model resistivity value itself was abnormal data, but we did not find a point where either 

dataset had significant variability near our samples. We then evaluated the most electrically 

conductive soil samples (measured using 1:1 soil to water extraction method) to see if they were 

also the most electrically resistive of the ERI. That was not the case either. Those high points also 

included some of the less resistive, bulk resistivity values, but still ended up following the overall 

trend with acceptable r2 values (detailed in section 5.3.4) (Figure 23). The soil fluid EC on the 

applied fields do not appear to control the conductance observed in bulk ER datasets and it is 

unknown whether inorganic nitrogen is a control of fluid EC in this case as seen in other studies 

(Racz and Fitzgerald, 2000). Correlations were found between the bulk datasets of bulk resistivity 
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and fluid EC and between fluid EC and Zn and a correlation on a point-by-point basis could not 

be determined. 

Heavy precipitation before and during trips in December 2014 and March 2015 may have 

affected soil sampling. Runoff can mobilize land applied constituents, when rainfall closely 

follows application (Iqbal and Krothe, 1995; Sharpley, 1985; Smith et al., 2007). An increase in 

total number or depth of soil samples could strengthen statistical correlations as well as possibly 

refine them to a point-by-point scale; however, sampling deeper would require a rock coring 

method. Further monitoring of the epikarst, karst, and bedrock may be required as chemical 

compounds generated from the addition of swine lagoon effluent applications could increase the 

weathering effects on the bedrock below. This was not part of the study but is worth noting for 

future studies. 

6.2 Soil Chemistry by Site 

The results of the chemical and physical analysis of the soil is representative of the 

conditions on each field, but are small datasets for the fields overall relative to literature 

evaluations of soil chemistry on the field scale (Choudhary et. al, 1996; DeRouchey et. al, 1999; 

Hannan, 2011; Klimek, 2012; Plaza et. al, 2004; Smith et. al, 2007; Suhadolc et. al, 2004; Turner 

et. al, 2010). The primary use of the soil sampling was to evaluate parameters that may change 

with electrical properties and provide future indicator parameters for geophysical soil monitoring. 

Some constituents were found to be statistically significant on particular fields and when 

compared to previous studies, were pertinent to this study (Choudhary et. al, 1996; DeRouchey et. 

al, 1999; Hannan, 2011; Klimek, 2012; Plaza et. al, 2004; Smith et. al, 2007; Suhadolc et. al, 

2004; Turner et. al, 2010). However, the levels of constituents for Fields 12 and 1 were not 

sufficient to definitively indicate the presence of swine lagoon effluent when compared to 

literature values. Although, the data do show that Fields 12 and 1 have consistently higher values 
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for many of the constituents than Field 5a, but plant uptake and removal would govern 

application amounts for swine lagoon effluent as to prevent any excess buildup of particular 

constituents (Racz and Fitzgerald, 2000). 

Field 5a was statistically lower in Mg, Zn, and fluid EC, but higher in TN than the other 

two fields. Studies show Mg levels in soils can be higher due to natural causes from the 

weathering of limestone (Hannan, 2011; Plaza et. al, 2004) or anthropogenic causes due to 

applied swine lagoon effluent (Schoenau, 2006). Field 5a sits primarily on alluvium and does not 

receive swine lagoon effluent, but is statistically lower than Field 12 which is in the same 

geologic setting. Lower levels of zinc on the background site are consistent with previously 

published values, as swine lagoon effluent can carry increased levels of zinc (Klimek, 2012; 

Lukman et al., 1994; Murdock and Lowe, 2001; Racz and Fitzgerald, 2000; Suhadolc et. al, 

2004). Lower fluid EC on the background site is consistent with the swine lagoon effluent soil 

amendments having higher fluid EC (Turner et. al, 2010) but can also be found in cases were 

nutrient content or inorganic nitrogen are low (Racz and Fitzgerald, 2000). The fluid EC 

relationship on a point-by-point basis with other constituents requires further study. 

Field 1 was statistically higher in pH, K, and Mn, but lower in TN, TC, and OM than the 

other two fields. Levels of K can be altered by the type of feed given to swine on fields receiving 

manure (Racz and Fitzgerald, 2000; Schoenau, 2006) and result from materials weathering from 

carbonates (Hannan, 2011). Some fields, where the soil is developed from a limestone layer 

beneath it, can have higher pH levels compared to the background site with alluvium soil (Plaza 

et. al, 2004). Scientific literature on the relation of manganese with applied swine lagoon effluent 

was not found.  
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6.3 Organics Content 

 Microbes, in large enough communities, can be detected by ERI as increased electrical 

conductivity due to the conversion of OM to energy, alteration to fluid chemistry or size of the 

pores, or from the biomass of microbes (Atekwana and Atekwana, 2010). If microbial 

populations are developing to consume the available applied material, this type of relationship 

between the bulk and fluid properties may occur. Previous soil studies have examined applied 

nitrate and ammonium and found signatures of swine lagoon effluent on sites, however, we did 

not examine these two constituents in our sampling. Clay mineral structure has been found to 

correlate with the sorption of metals (REF) but this data was not available. Additional research on 

the microbial populations, nitrate and ammonium, or clay structure would be required to evaluate 

these factors. As proxies for microbial activity, we evaluated TC, TN, and OM contents 

(Atekwana and Atekwana, 2010) in soil samples up to a depth of 10 cm (4 inches). The highest 

OM content should reside in the topsoil and be upwards of 5% for fertile soils (Mitchell and 

Everest, 1995). It is known though, that constituent levels tend to increase over time as fertilizers 

are applied (Carpenter et al., 1998; Choudhary et. al, 1996; Hannan, 2011; Reddy et al., 1980; 

Schoenau, 2006) and it “may take several years of application before significant differences can 

be detected” (Schoenau, 2006). We see that not only is the OM content on the two applied sites 

lower than the background site, but we also see that the most recently applied site has the lowest 

OM content of the three sites (Table 7). If OM were low due to microbial consumption, this could 

support both the lowest OM levels as well as the lowest electrically resistivity being on the most 

recently applied to site. This would mean the signatures on Field 12 come from inactive microbes 

(a biomass or biofilm) and hence the higher, yet not highest, OM content. However, for microbial 

activity to be causing higher electrical conductivity on the applied sites, the community would 

need to be large enough for detection and would require OM on the applied sites to be higher than 

the background, as well as correlating chemical signatures from the soil water (Atekwana and 
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Atekwana, 2010; Frankenberger and Dick, 1983). We also see that if there is typically low 

nutrient content and OM, low fluid EC is associated (Racz and Fitzgerald, 2000). As applied 

effluent is not expected to provide a strong fertilizing effect to the soil immediately, a lack of 

microbial signatures is not unexpected based on previous literature (Atekwana and Atekwana, 

2010; Carpenter et al., 1998; Choudhary et. al, 1996; Frankenberger and Dick, 1983; Hannan, 

2011; Racz and Fitzgerald, 2000; Reddy et al., 1980; Schoenau, 2006; Sharpley, 1985). 

6.4 Metals Content 

 Of the measured chemical constituents that were statistically significantly different 

between fields (Figure 21 and Figure 22), Zn was the only one found that correlates well with 

fluid EC for all sites, with R2 of 0.50, 0.38, and 0.60 for Field 5a, Field 12, and Field 1, 

respectively. For metals to influence fluid EC, there must be metals in solution. Zn will begin to 

drop out of solution at pH’s as low as 5.6, but have been reported to average from 6.0-7.0 (Luxton 

et al., 2013; Perelomov et al., 2011; Racz and Fitzgerald, 2000; Schulte, 2004). Metals are found 

to precipitate more in cases with increased OM or CaCO3 (lime) (Akay and Doulati, 2012; 

Lukman et al., 1994; Luxton et al., 2013), however, we can only see this as possible for Field 1 

due to its locally derived soil (since both applied sites are lower in OM). Metals such as Zn will 

coexist in solution and as precipitates depending on pH fluxes. If enough of the metals stay in 

solution, fluid EC could increase with metal content and if soil grains become coated with Zn (or 

any metal) plating, this could be a cause for why we see the two applied sites as more electrically 

conductive on a bulk electrical resistivity basis. Although Zn is the only metal to correlate well 

with fluid EC, it is most plausible to say it is a combination of the metals from the swine effluent 

that increases both fluid EC and overall electrical conductance on the field scale. This still does 

not provide a simple explanation of the positive relationship between fluid EC and bulk 

resistivity.  
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6.5 Reactive Transport 

 The results of modeling a swine lagoon effluent application to a soil column behaved as 

expected. Limiting factors included KD values for each constituent and simulated rainfall 

amounts. Advection processes were demonstrated (Figure 28) during the rain events which allow 

those ions with smaller KD values the ability to move while other ions sorb to the soil near the 

surface. The annual rainfall for the site was included in just 13 (1-year, 24-hour events) simulated 

rainfall events to attempt to capture larger storm events. If smaller events were used, it should 

delay some migration, but that the same overall pattern would be expected to occur with a longer 

timescale to reach it. Although these were scenarios developed in the model, we found that upon 

each trip to the field sites, the ground was saturated from rains the prior day which could have 

diluted soil samples by infiltration. It is possible that signatures in the ER images may not be 

detectable in soil samples because of this dilution (Iqbal and Krothe, 1995; Sharpley, 1985; Smith 

et al., 2007). However, in order for this to be true, both electrically conductive sites would had to 

have received applications near the same relative time rather than months apart. ER data collected 

on Field 12 during both trips saw similar signatures on each set of images, indicating no 

significant changes to the site between sampling events. Deep soil samples are not available to 

test the hypotheses at depth. Deeper samples would provide information on the distribution of 

materials throughout the soil column, assist in understanding of the subsurface reactions, and 

calibrate the model. In the shallow soil samples that were collected, regardless of soil sample 

dilution, X-Ray Diffraction could be useful to determine clay mineral structure which would 

improve sorption parameters of the model. The 2:1 and 2:1:1 clay mineral structures have been 

found to be quality sorption sites for metals (Akay and Doulati, 2012). However, this test was not 

conducted in this study. This could further support the hypothesis that metal precipitation on soil 

grains as the most plausible explanation for the observed signatures at the sites. Generating 

multiple models with different environments, similar to other fields receiving swine lagoon 



79 

 

effluent applications, would be useful for understanding the possible influence of flowpaths on 

effluent transport.   



80 

 

 

 

 

CHAPTER 7 

7.0 CONCLUSIONS 

A field experiment was conducted to determine the hydrogeophysical properties of 

applied swine effluent to determine if signatures were available to monitor fluid transport through 

a mantled karst. The field data collected in Mount Judea, Arkansas, in December 2014 and March 

2015 characterizes the subsurface of a background site (Field 5a) and two swine effluent 

application sites (Fields 12 and 1) using ERI, soil analysis, and numerical modeling. The 

electrical structure of the sites included the determination of three separate lithologic zones 

(bedrock, epikarst, and soil) and opposing electrical trends between unapplied and applied 

effluent sites. Soil analysis provided chemical characterization of each site. A numerical model 

was created to analyze subsurface flow of simulated swine effluent. These results were useful in 

defining the characteristics of the soil zone, epikarst zone, and the bedrock and anticipated 

subsurface chemical transport. The take-away is that over time, constituents will build up in the 

soil and it is expected that by evaluating the metals and OM content one could determine swine 

lagoon effluent relative concentrations across the fields. Using ERI allows for a quick 

characterization of the bulk electrical signatures generated by metals concentrations and the 

possible microbial activity, given required increases in OM content across the sites. 

7.1 Electrical Structure 

ERI surveys contributed to understanding the structure and distribution of material 

underlying Fields 5a, 12, and 1. The surveys confirmed the soil thickness, presence, extent, and 
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depth of epikarst features and bedrock material and highlights possible dissolution features and 

fracturing typical of this geologic formation. The average soil thickness across the sites is very 

similar (1-4.5 m or 3-14.75 feet), except for the area in which Field 5a exhibits thinning of the 

soil (to 0.5 m or 1.5 feet). Field 1 had a soil thickness of 0.5 m (1.5 feet). The epikarst thickness is 

similar on both Fields 5a and 12 with a range of 2-23 m thick (6.5-75 feet), with an average of 

approximately 7 m (23 feet), but the distribution of possible fracturing in bedrock or karst 

features was variable as expected. There was not confirmation drilling at the sites to evaluate the 

rock properties of the epikarst zone, but the results are consistent with other investigations of 

epikarst zones (Pellicer and Gibson, 2011; Williams, 2008).  

The ERI surveys showed the applied sites were more electrically conductive than the 

background sites. When comparing the ERI and soil sampling bulk datasets, the results show 

strong trends between bulk resistivity and fluid EC. The trend on the background site behaves as 

expected (inverse relationship), but the trend for the applied sites is an opposing trend and 

unexpected (positive relationship). 

7.2 Soil Analysis 

Soil sampling showed that there are statistically significant chemical differences between 

the sites. The background site (Field 5a) had consistently lower concentrations of many of the 

measured soil parameters but is only statistically lower in Mg, Zn, and soil fluid EC, while it was 

highest in OM content. Field 5a is only statistically higher (than the other fields) in TN though. 

Field 12 is only statistically different from either site in TN, although being higher than Field 5a 

in many soil properties, except the organic components. Field 1 has consistently higher values in 

many of the soil parameters, but was only statistically higher (than the other fields) in pH, K, and 

Mn and while it was lowest in the organics, it is statistically different in TC, TN, and OM. These 

results show that statistical differences can be observed in certain constituents for recently applied 
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areas on a field-by-field scale but were not determined on a point-by-point scale. With lower 

amounts of application or over time, these signatures may not be detectable.  

To explain the unexpected trend in ERI vs fluid EC for the applied sites, soil analysis 

allowed for other correlations. Zn correlated with fluid EC for all sites but not with bulk ER. Zn 

and other metal ions sorbing to soil grains are the most plausible for explaining increases in fluid 

EC and the site-to-site difference in bulk conductance. Total N, TC, and OM trended in the 

opposite direction than what was expected, with the most recently applied site containing the 

lowest concentrations. Because OM was low on the applied sites and previous literature 

indicating that impacts from effluent fertilizers take multiple applications before being noticed, 

microbial activity is not considered a cause for the unexpected trend (ERI vs fluid EC) on the 

applied sites.  

7.3 Numerical Modeling 

 Numerical modeling demonstrated the possible subsurface reactions of the highlighted 

constituents; the more mobile ions moved through the system while the less mobile ions sorbed to 

the soil grains nearer the surface. The sorption parameters are controlled by KD values input into 

the model, so site-specific determination of those values would provide better resolution of 

expected depths of concentration of the constituents. Deeper soil sampling and X-Ray Diffraction 

would be useful going forward to better characterize the soil transport properties and constrain the 

model. The model results illustrate possible outcomes if the concentrations of applied swine 

effluent are increased or decreased. The model would best be used to examine those changes over 

time and predict reactions in the soil column utilizing Zn as a proxy for determining the loadings 

and responses.    
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