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Abstract: 

Profiling of complex samples using spectroscopic techniques continues to be an active area 

of research with a large and burgeoning literature.  The overall goal of profile analysis is 

to correlate a characteristic fingerprint pattern in a spectrum with the properties of a sample 

or in biomedical studies with the presence or absence of disease in a patient or animal from 

which the sample was taken.  Fingerprinting experiments of this type often yield profiles 

containing hundreds of constituents.  Multivariate statistical and pattern recognition 

techniques can be effective methods for the analysis of such complex data.  However, the 

classification of complex samples on the basis of their spectroscopic profiles is complicated 

by several factors: (1) confounding of the desired group information by experimental 

variables or other systematic variations in the data, and (2) the presence of noisy data and 

irrelevant variables that unnecessarily enlarge the data space and the complexity of the 

classification model developed from the data, an effect that tends to increase both the error rate and 

to reduce robustness of data-driven predictions. Several interesting projects involving these effects 

and methods for dealing with them are highlighted in this dissertation.  In one study, the 

identification of N-linked glycan biomarkers in serum samples measured by MALDI-IMS-

MS and analyzed by pattern recognition techniques to screen a population at risk for 

esophageal adenocarcinoma (EAC) is discussed. In another study, search prefilters were 

developed as part of a prototype pattern recognition library search system to facilitate 

searching of infrared spectra in the Paint Data Query database and to improve 

discrimination capability for automotive paint comparisons involving the original 

equipment manufacturer.  A genetic algorithm for variable selection to improve 

classifications was used in both of these studies.  The approach taken by the genetic 

algorithm for pattern recognition relies heavily on graphics for the presentation of results.     

 

 

 
 



v 
 

TABLE OF CONTENTS 

 

Chapter          Page 

 

I. INTRODUCTION ......................................................................................................1 

 

  

II. PATTERN RECOGNITION METHODOLOGY ....................................................5 

  

 2. 1.  OVERVIEW OF PATTERN RECOGNITION ..............................................5 

          2.1.1 Data Representation ...............................................................................6 

          2.1.2 Data Preprocessing.................................................................................7 

 2.2. PRINCIPAL COMPONENT ANALYSIS .....................................................11 

 2.3 GENETIC ALGORITHM FOR VARIABLE SELECTION ...........................15 

 2.4 HIERARCHICAL CLUSTER ANALYSIS ....................................................22 

 REFERENCES ......................................................................................................23 

  

III. DISCOVERY OF ESOPHAGEAL ADENOCARCINOMA USING MALDI-IMS-

MS DATA OF SERUM N-LINKED GLYCANS .................................................24 

 

 3.1 INTRODUCTION ...........................................................................................24 

 3.2. ION MOBILITY/TIME-OF- FLIGHT MASS SPECTROMETRY 

INSTRUMENTATION .........................................................................................28 

 3.3 METHOD AND MATERIALS .......................................................................30 

       3.3.1 Experimental Materials ...........................................................................30 

       3.3.2 Sample Preparation .................................................................................31 

            3.3.3 MALDI-IMS-MS Measurement .............................................................32 

       3.3.4 Data Set Preparation for Pattern Recognition Analysis ..........................33 

 3.4 RESULTS AND DISCUSSION ......................................................................37 

 3.5 CONCLUSION ................................................................................................57 

      REFERENCES ......................................................................................................58 

       

 



vi 
 

 

 

Chapter          Page 

 

IV. SEARCH PREFILTERS FOR THE FORENSIC ANALYSIS OF AUTOMOTIVE 

PAINTS: GENERAL MOTORS, TOYOTA, NISSAN AND HONDA ...............60 

 

 4.1 INTRODUCTION ...........................................................................................60 

 4.2 FOURIER TRANSFORM INFRARED SPECTROSCOPY (FTIR) ..............67 

 4.3 METHOD ........................................................................................................70 

       4.3.1 Experiment and Materials .......................................................................71 

                4.3.1.1 Materials .....................................................................................71 

                     4.3.1.2 Experimental ...............................................................................75 

      4.3.2 Pattern Recognition Method ....................................................................75 

                    4.3.2.1 Data Preprocessing.......................................................................75 

                    4.3.2.2 Data Analysis ...............................................................................76 

     4.4 RESULTS AND DISCUSSION .......................................................................78 

          4.4.1 Subplant and Carbonyl Band Information ................................................78 

          4.4.2 Hierarchical Cluster Analysis and Principal Component Analysis ..........84 

                   4.4.2.1 Doublets ........................................................................................84 

                   4.4.2.2 Singlet ...........................................................................................86 

          4.4.3 Smoothed Data versus Unsmoothed Data.................................................88 

          4.4.4 Search Prefilter for Assembly Plant Groups .............................................91 

                   4.4.4.1 Singlet ...........................................................................................92 

                   4.4.4.2 Doublets ........................................................................................95 

          4.4.5 Search Prefilter for Manufacturers and Assembly Plants .........................97 

                   4.4.5.1 Doublets ........................................................................................98 

                   4.4.5.2 Singlet .........................................................................................105 

         4.4.6 Two-layer Search Prefilters .....................................................................155 

         4.4.7 Three-layer Search Prefilters Based on Manufacturer .............................159 

                  4.4.7.1 Manufacturer Search Prefilters ....................................................160 

                  4.4.7.2 Honda, Nissan and Toyota Plant Group Level Prefilters .............173 

                  4.4.7.3 Honda, Nissan and Toyota Assembly Plant Level Prefilter ........183 

                              4.4.7.3.1 Honda Assembly Plant Level Prefilters ........................183 

                              4.4.7.3.2 Nissan Assembly Plant Level Prefilters ........................190 

                              4.4.7.3.3 Toyota Assembly Plant Level Prefilters .......................196 

                              4.4.7.3.4 GM Search Prefilter ......................................................206 

  REFERENCES ..................................................................................................206 

 

V.  CONCLUSION ....................................................................................................209 

 

  

 



vii 
 

LIST OF TABLES 

 

 

Table           Page 

 

Table 3.1. Composition of the IMS-MS Esophageal Adenocarcinoma Dataset ..........30 

Table 3.2. Nine N-linked Glycans used in this Study ..................................................34 

Table 3.3. Phenotype Prediction Results .....................................................................47 

Table 3.4. ANOVA Results for the 24 GA Selected Features .....................................48 

Table 3.5. Phenotype Prediction Results .....................................................................56 

Table 4.1. Doublet sample assembly plants used to develop the search prefilter ........72 

Table 4.2 Singlet sample assembly plants from GM used to develop 

 the search prefilter.......................................................................................................72 

Table 4.3 Singlet sample assembly plants from Chrysler used to develop 

 the search prefilter.......................................................................................................73 

Table 4.4 Singlet sample assembly plants from Honda used to develop 

 the search prefilter.......................................................................................................73 

Table 4.5 Singlet sample assembly plants from Ford used to develop  

 the search prefilter.......................................................................................................74 

Table 4.6 Singlet sample assembly plants from Nissan used to develop 

 the search prefilter.......................................................................................................74 

Table 4.7 Singlet sample assembly plants from Toyota used to develop 

 the search prefilter.......................................................................................................75 

Table 4.8 Double carbonyl bands plant group assignment ..........................................86 

Table 4.9 single carbonyl bands plant group assignment ............................................87 

Table 4.10 The distribution of the training set and validation set for 

 the first prefilter ..........................................................................................................92 

Table 4.11 The distribution of the training set and validation set for  

 the first prefilter ..........................................................................................................95 

Table 4.12. Composition of the IR spectral data set in plant group 1 (GM) .............106 

Table 4.13. Composition of the IR spectral data set in plant group 2 ........................118 

Table 4.14. Composition of the IR spectral data set in plant group 3 ........................124 

Table 4.15. Composition of the IR spectral data set in plant group 4 ........................132 

Table 4.16. Composition of the IR spectral data set in plant group 5 ........................144 

Table 4.17. Composition of the IR spectral data set in plant group 6 ........................150 

Table 4.18 The Chrysler group composition in the basis of assembly plants............164 

Table 4.19 Assembly plant group information in the basis of manufacturer.............178 

 



viii 
 

LIST OF FIGURES 

 

Figure           Page 

 

2.1. The diagram of discrete wavelet transform of original signals S to give        

approximations An and details Dn (n = decomposition level) ....................................10 

2.2. Decomposition of a sample spectrum using wavelet filters..................................10 

2.3. Plot of 16 samples in a measurement space defined by the variables x1  

and x2 which are correlated .........................................................................................12 

2.4. The three measurement variables used to characterize the six samples are highly 

correlated as the addition of the first two columns (variables) of the data  

matrix yields the third column (third measurement variable) ......................................13 

2.5. Development of a new set of basis vectors (i.e.,principal components) from the 

original measurement variables ...................................................................................14 

2.6. Idea underlying the pattern recognition GA .........................................................17 

2.7. Block diagram of the genetic algorithm for pattern recognition analysis .............20 

3.1. Schematic diagram of the ion mobility /time-of flight instrument .......................29 

3.2. A mass spectral image of a serum sample enriched in N-linked glycans from a 

Normal patient.  Ion intensity is shown as a function of drift time and m/z values.  A 

color code is used to represent ion intensity with blue representing the 

lowest intensity and red representing the highest intensity .........................................35 

3.3. Ion mobility distribution of N-linked glycan ions [S1H5N4+Na]+,  

[F1H5N4+Na]+ and [S1F1H5N4+Na]+ ......................................................................36 

3.4. Plot of the two largest principal components of the 90 mobility  

distribution profiles and the 404 mass spectral features of the training set .................38 

3.5. A plot of the two largest principal components of the truncated training set .......39 

3.6. Plot of the two largest principal components of the plate 1a ion distribution  

profiles and 404 mass spectral features from the training set ......................................40 

3.7. Plot of the two largest principal components of the plate 1a ion distribution  

profiles from the training set and the 12 mass spectral features identified by  

the pattern recognition GA...........................................................................................41 

3.8. Plot of the two largest principal components of the plate 1b, 2a, and 2b ion 

distribution profiles and the 404 mass spectral features from the training set .............42 

3.9. Plot of the two largest principal components of the plate 1b, 2a, and 2b ion 

distribution profiles from the training set and the 26 mass spectral features 

identified by the pattern recognition GA .....................................................................43 

3.10.  Plot of the two largest principal components of the 82 training set samples  

(8 samples were deleted because they were outliers) and the 24 features identified  

by the pattern recognition GA ......................................................................................45



ix 
 

Figure           Page 

3.11. Blind samples projected onto the principal component plot defined by the 82 

training set samples and the 24 features identified by the pattern  

recognition GA.............................................................................................................46 

3.12. Concept underlying the motivation for applying the discrete wavelet  

transform to the concatenated ion mobility distribution profiles .................................49 

3.13. Plot of the two largest principal components of the 90 wavelet transformed 

 mobility distribution ion profiles and the 2696 wavelet coefficients .........................50 

3.14.  A plot of the two largest principal components of the truncated training  

set of 87 spectra (with the three outliers removed) and 2696 wavelet coefficients .....51 

3.15. Plot of the two largest principal components of the plate 1a ion distribution 

profiles from the training set and the 12 wavelet coefficients identified by the pattern 

recognition GA.............................................................................................................52 

3.16. Plot of the two largest principal components of the plate 1b, 2a, and 2b ion 

distribution profiles from the training set and the 14 wavelet coefficients identified 

by the pattern recognition GA ......................................................................................53 

3.17. Plot of the two largest principal components of the 87 spectra and the 15  

wavelet coefficients identified by the GA ...................................................................54 

3.18. Blind samples projected onto the principal component plot defined by the 87 

training set samples and 15 wavelet coefficients identified by the pattern  

recognition GA.............................................................................................................55 

4.1. Scheme of the multilayer coating of cars ..............................................................61 

4.2. The chemical structure of acrylic melamine .........................................................62 

4.3. The chemical structure of carbamate melamine ...................................................62 

4.4. The chemical structure of carbamate polyurethane ..............................................62 

4.5. The chemical structure of β-hydroxyl polyesters .................................................63 

4.6. The chemical structure of styrene .........................................................................63 

4.7. The chemical structure of epoxy polymer ............................................................65 

4.8. The schematic diagram of a FTIR ........................................................................69 

4.9. A schematic diagram of a Michelson Interferometer ...........................................70 

4.10 The histogram of assembly plants with less 5 samples........................................71 

4.11 Block diagram of the vehicle classification process using pattern 

 recognition prefilter ....................................................................................................78 

4.12. 2-PC plot of the samples from assembly plant Kyushu (Nissan) .......................79 

4.13. 2-PC plot of the samples from assembly plant Oppama (Nissan) ......................79 

4.14. 2-PC plot of the samples from assembly plant Smyrna (Nissan) .......................79 

4.15. 2-PC plot of the samples from assembly plant Fremont (Toyota) ......................80 

4.16. 2-PC plot of the samples from assembly plant Japan (Toyota) ..........................81 

4.17. The carbonyl IR bands of samples from assembly plant East  

Liberty (Honda) ...........................................................................................................81 

4.18. The carbonyl IR bands of samples from assembly plant  

Marysville (Honda) ......................................................................................................82 

4.19. IR spectra of the samples from assembly plant Aguascalientes (Nissan) ...........82 

4.20. IR spectra of the samples from assembly plant Georgetown (Toyota) ...............83 

 



x 
 

Figure           Page 

4.21. All doublet assembly plants hierarchical cluster analysis of the average 

IR spectrum ..................................................................................................................85 

4.22. All doublet assembly plants principal component analysis of the average IR 

spectrum .......................................................................................................................85 

4.23. All Singlet assembly plants hierarchical cluster analysis of the average IR  

Spectrum ......................................................................................................................87 

4.24. All singlet assembly plants principal component analysis of the average IR .....87 

4.25. 2-PC plot of the 1373 paint samples with 3426 wavelet coefficients  

comprising the training set data ...................................................................................89 

4.26. 2-PC plot of the 1373 paint samples with 3426 wavelet coefficients 

comprising the training set data ...................................................................................89 

4.27. 2-PC plot of the 1373 paint samples with 3426 wavelet coefficients  

comprising the training set data ...................................................................................90 

4.28. 2-PC plot of the 976 paint samples with 3426 wavelet coefficients  

comprising the training set data ...................................................................................90 

4.29. 2-PC plot of the 1377 paint samples with 1142 wavelet coefficients 

 comprising the training set data ..................................................................................91 

4.30. 2-PC plot of the 1377 training set samples and the 45 wavelet coefficients  

identified     by the pattern recognition GA .................................................................92 

4.31. Projection of the 137 validation set samples onto the PC plot of the 1377 

training set samples and the 45 wavelet coefficients identified by the pattern  

recognition GA.............................................................................................................93 

4.32. 2-PC plot of the 1377 training set samples and the 47 wavelet coefficients  

identified by the pattern recognition GA based on automotive manufacturer .............93 

4.33. The OT2 IR spectrum of the sample vs the average sample OT2 IR 

spectrum of the assembly plant Marysville .................................................................94 

4.34. The OT2 IR spectra of the samples in the assembly plant Hemosillo ................95 

4.35. 2-PC plot of the 213 training set samples and the 28 wavelet coefficients 

Identified by the pattern recognition GA .....................................................................96 

4.36. Projection of the 23 validation set samples onto the PC plot of the 213 

training set samples and the 28 wavelet coefficients identified by the pattern 

recognition GA.............................................................................................................96 

4.37. The OT2 IR spectrum of the sample vs the average sample OT2 IR  

spectrum of the assembly plant Wentzville .................................................................97 

4.38. 2-PC plot of the 43 training set samples and the 10 wavelet coefficients 

identified    by the pattern recognition GA ..................................................................98 

4.39. Projection of the 3 validation set samples onto the PC plot of the 43 training set 

samples and the 10 wavelet coefficients identified by the pattern recognition GA .....99 

4.40. 2-PC plot of the 60 training set samples and the 26 wavelet coefficients  

identified by the pattern recognition GA ...................................................................100 

4.41. Projection of the 7 validation set samples onto the PC plot of the 60 training set 

samples and the 26 wavelet coefficients identified by the pattern recognition GA ...100 

4.42. 2-PC plot of the 24 training set samples and the 2 wavelet coefficients  

identified by the pattern recognition GA ...................................................................101 



xi 
 

Figure           Page 

4.43. Projection of the 2 validation set samples onto the PC plot of the 24 training set 

samples and the 2 wavelet coefficients identified by the pattern recognition GA .....102 

4.44. 2-PC plot of the 59 training set samples and the 20 wavelet coefficients identified 

by the pattern recognition GA ....................................................................................103 

4.45. Projection of the 5 validation set samples onto the PC plot of the 59 training set 

samples and the 20 wavelet coefficients identified by the pattern recognition GA ...104 

4.46. 2-PC plot of the 21 training set samples and the 6 wavelet coefficients identified by 

the pattern recognition GA.........................................................................................105 

4.47. Projection of the 3 validation set samples onto the PC plot of the 21 training set 

samples and the 6 wavelet coefficients identified by the pattern recognition GA .....105 

4.48. Block diagram of the vehicle classification process for GM ............................106 

4.49. 2-PC plot of the 311 training set samples and the 50 wavelet coefficients 

identified by the pattern recognition GA ...................................................................107 

4.50. Projection of the 34 validation set samples onto the PC plot of the 311  

training set samples and the 50 wavelet coefficients identified by the pattern 

recognition GA...........................................................................................................108 

4.51. 2-PC plot of the 68 training set samples and the 31 wavelet coefficients 

identified by the pattern recognition GA ...................................................................109 

4.52. Projection of the 9 validation set samples onto the PC plot of the 68 training set 

samples and the 31 wavelet coefficients identified by the pattern recognition GA ...109 

4.53. 2-PC plot of the 32 training set samples and the 3 wavelet coefficients  

identified by the pattern recognition GA ...................................................................110 

4.54. Projection of the 2 validation set samples onto the PC plot of the 32 training set 

samples and the 3 wavelet coefficients identified by the pattern recognition GA .....111 

4.55. 2-PC plot of the 70 training set samples and the 44 wavelet coefficients 

identified by the pattern recognition GA ...................................................................112 

4.57. The average IR spectra comparison of assembly plant Fort  

Wayne and Pontiac ....................................................................................................113 

4.58. 2-PC plot of the 73 training set samples and the 14 wavelet coefficients 

identified by the pattern recognition GA ...................................................................114 

4.59. Projection of the 8 validation set samples onto the PC plot of the 73 training set 

samples and the 14 wavelet coefficients identified by the pattern recognition GA ...114 

4.60. 2-PC plot of the 40 training set samples and the 19 wavelet coefficients 

identified by the pattern recognition GA ...................................................................115 

4.61. Projection of the 5 validation set samples onto the PC plot of the 40 training set 

samples and the 19 wavelet coefficients identified by the pattern recognition GA ...116 

4.62. 2-PC plot of the 29 training set samples and the 20 wavelet coefficients  

identified by the pattern recognition GA ...................................................................117 

4.63. Projection of the 3 validation set samples onto the PC plot of the 29 training set 

samples and the 20 wavelet coefficients identified by the pattern recognition GA ...117 

4.64. 2-PC plot of the 164 training set samples and the 10 wavelet coefficients  

identified by the pattern recognition GA ...................................................................118 

4.65. Projection of the 18 validation set samples onto the PC plot of the 164 training set 

samples and the 10 wavelet coefficients identified by the pattern recognition GA ...119 



xii 
 

Figure           Page 

4.66. 2-PC plot of the 12 training set samples and the 3 wavelet coefficients 

identified by the pattern recognition GA ...................................................................120 

4.67. Projection of the 2 validation set samples onto the PC plot of the 12 training set 

samples and the 3 wavelet coefficients identified by the pattern recognition GA .....121 

4.68. 2-PC plot of the 129 training set samples and the 45 wavelet coefficients  

identified by the pattern recognition GA ...................................................................121  

4.69. Projection of the 13 validation set samples onto the PC plot of the 129 

training set samples and the 45 wavelet coefficients identified by the pattern 

recognition GA...........................................................................................................122 

4.70. All samples in assembly plant Fremont (PID5103) undercoat IR spectra ........122 

4.71. 2-PC plot of the 126 training set samples and the 57 wavelet coefficients  

identified by the pattern recognition GA ...................................................................123 

4.72. Projection of the 13 validation set samples onto the PC plot of the 126 

training set samples and the 57 wavelet coefficients identified by the pattern 

recognition GA...........................................................................................................123 

4.73. 2-PC plot of the 311 training set samples and the 44 wavelet coefficients 

identified by the pattern recognition GA ...................................................................125 

4.74. Projection of the 29 validation set samples onto the PC plot of the 311 training  

set samples and the 44 wavelet coefficients identified by the pattern recognition 

GA ..............................................................................................................................125 

4.75. 2-PC plot of the 242 training set samples and the 10 wavelet coefficients  

identified by the pattern recognition GA ...................................................................125 

4.76. Projection of the 23 validation set samples onto the PC plot of the 242 

training set samples and the 10 wavelet coefficients identified by the pattern  

recognition GA...........................................................................................................127 

4.77. Average assembly plant OT2 IR spectra from Chrysler ...................................128 

4.78. Average assembly plant OU1 IR spectra from Chrysler ..................................128 

4.79. Average assembly plant OU2 IR spectra from Chrysler ..................................129 

4.80. 2-PC plot of the 49 training set samples and the 2 wavelet coefficients 

identified by the pattern recognition GA ...................................................................129 

4.81. Projection of the 4 validation set samples onto the PC plot of the 49 training set 

samples and the 2 wavelet coefficients identified by the pattern recognition GA .....130 

4.82. 2-PC plot of the 19 training set samples and the 2 wavelet coefficients 

identified by the pattern recognition GA ...................................................................130 

4.83. Projection of the 2 validation set samples onto the PC plot of the 19 training set 

samples and the 2 wavelet coefficients identified by the pattern recognition GA .....131 

4.84. 2-PC plot of the 398 training set samples and the 50 wavelet coefficients  

identified by the pattern recognition GA ...................................................................132 

4.85. Projection of the 37 validation set samples onto the PC plot of the 398 

training set samples and the 50 wavelet coefficients identified by the  

pattern recognition GA ..............................................................................................133 

4.86. 2-PC plot of the 167 training set samples and the 50 wavelet coefficients 

identified by the pattern recognition GA ...................................................................134 

 



xiii 
 

Figure           Page 

4.87. Projection of the 18 validation set samples onto the PC plot of the 167 

training set samples and the 50 wavelet coefficients identified by the pattern 

recognition GA...........................................................................................................135 

4.88. The average OT2 IR spectra from the assembly plants: Atlanta, Chicago,  

Norfolk, Oakville, Twin Cities-Saint Paul and Wayne ..............................................135 

4.89. The average OU1 IR spectra from the assembly plants: Atlanta, Chicago,  

Norfolk, Oakville, Twin Cities-Saint Paul and Wayne ..............................................136 

4.90. The average OU2 IR spectra from the assembly plants: Atlanta, Chicago, 

Norfolk, Oakville, Twin Cities-Saint Paul and Wayne ..............................................136 

4.91. 2-PC plot of the 38 training set samples and the 29 wavelet coefficients 

identified by the pattern recognition GA ...................................................................137 

4.92 Projection of the 3 validation set samples onto the PC plot of the 38 training set 

samples and the 29 wavelet coefficients identified by the pattern recognition GA ...138 

4.93. 2-PC plot of the 68 training set samples and the 30 wavelet coefficients identified 

by the pattern recognition GA ....................................................................................139 

4.94. Projection of the 4 validation set samples onto the PC plot of the 68 training set 

samples and the 30 wavelet coefficients identified by the pattern recognition GA ...139 

4.95. The average three-layer IR spectra from the assembly plants: Kansas City, 

Louisville ...................................................................................................................140 

4.96. 2-PC plot of the 9 training set samples and the 2 wavelet coefficients identified by 

the pattern recognition GA.........................................................................................141 

4.97. Projection of the 1 validation set samples onto the PC plot of the 9 training set 

samples and the 2 wavelet coefficients identified by the pattern recognition GA .....141 

4.98. 2-PC plot of the 27 training set samples and the 2 wavelet coefficients  

identified by the pattern recognition GA ...................................................................142 

4.99. Projection of the 1 validation set samples onto the PC plot of the 27 training set 

samples and the 2 wavelet coefficients identified by the pattern recognition GA .....143 

4.100. 2-PC plot of the 119 training set samples and the 35 wavelet coefficients  

identified by the pattern recognition GA ...................................................................144 

4.101. Projection of the 14 validation set samples onto the PC plot of the 119 training  

set samples and the 2 wavelet coefficients identified by the pattern recognition GA145 

4.102. 2-PC plot of the 43 training set samples and the 17 wavelet coefficients 

identified by the pattern recognition GA ...................................................................146 

4.103. Projection of the 4 validation set samples onto the PC plot of the 43 training  

set samples and the 17 wavelet coefficients identified by the pattern 

recognition GA...........................................................................................................146 

4.104. 2-PC plot of the 43 training set samples and the 17 wavelet coefficients 

identified by the pattern recognition GA ...................................................................147 

4.105. Projection of the 6 validation set samples onto the PC plot of the 60 training set 

samples and the 43 wavelet coefficients identified by the pattern recognition GA ...148 

4.106. 2-PC plot of the 15 training set samples and the 5 wavelet coefficients  

identified by the pattern recognition GA ...................................................................149 

4.107. Projection of the 3 validation set samples onto the PC plot of the 15 training set 

samples and the 5 wavelet coefficients identified by the pattern recognition GA .....149 



xiv 
 

Figure           Page 

4.108 2-PC plot of the 77 training set samples and the 50 wavelet coefficients 

identified by the pattern recognition GA ...................................................................151 

4.109 Projection of the 8 validation set samples onto the PC plot of the 77 training set 

samples and the 50 wavelet coefficients identified by the pattern recognition GA ...151 

4.110 2-PC plot of the 31 training set samples and the 7 wavelet coefficients 

identified by the pattern recognition GA ...................................................................152 

4.111 Projection of the 3 validation set samples onto the PC plot of the 31 training set 

samples and the 7 wavelet coefficients identified by the pattern recognition GA .....153 

4.112 2-PC plot of the 37 training set samples and the 16 wavelet coefficients  

identified by the pattern recognition GA ...................................................................154 

4.113 Projection of the 5 validation set samples onto the PC plot of the 37 training set 

samples and the 16 wavelet coefficients identified by the pattern recognition GA ...154 

4.114 2-PC plot of the 9 training set samples and the 2 wavelet coefficients  

identified by the pattern recognition GA ...................................................................155 

4.115. 2-PC plot of the 311 training set samples and the 47 wavelet coefficients 

identified by the pattern recognition GA ...................................................................156 

4.116 Projection of the 34 validation set samples onto the PC plot of the 311 training  

set samples and the 47 wavelet coefficients identified by the pattern  

recognition GA...........................................................................................................157 

4.117 2-PC plot of the 40 training set samples and the 29 wavelet coefficients 

identified by the pattern recognition GA ...................................................................157 

4.118. Projection of the 5 validation set samples onto the PC plot of the 40 training  

set samples and the 29 wavelet coefficients identified by the pattern 

recognition GA...........................................................................................................158 

4.119. 2-PC plot of the 68 training set samples and the 30 wavelet coefficients  

identified by the pattern recognition GA ...................................................................158 

4.120. Projection of the 4 validation set samples onto the PC plot of the 68  

training set samples and the 27 wavelet coefficients identified by the pattern 

recognition GA...........................................................................................................159 

4.121 The comparison of the average IR spectra of the assembly plant Thomas-

lalbotsville vs the assembly plant Kansas City or Louisville ....................................159 

4.122.  Block diagram of the vehicle classification process used in the 

prototype pattern recognition driven library search system for the PDQ database ...160 

4.123.  Block diagram of the manufacturer search prefilter developing process ......161 

4.124. 2-PC plot of the 1374 training set samples and the 29 wavelet coefficients 

identified by the pattern recognition GA ...................................................................162 

4.125. Projection of the 136 validation set samples onto the PC plot of the  

1374 training set samples and the 29 wavelet coefficients identified by the pattern 

recognition GA...........................................................................................................163 

4.126. 2-PC plot of the assembly plants from Chrysler, Ford, Honda, Nissan  

and Toyota .................................................................................................................164 

4.127. 2-PC plot of the 1054 training set samples and the 78 wavelet coefficients 

identified by the pattern recognition GA ...................................................................165 

 



xv 
 

Figure           Page 

4.128. Projection of the 106 validation set samples onto the PC plot of the 1054  

training set samples and the 78 wavelet coefficients identified by the pattern  

recognition GA...........................................................................................................165 

4.129. 2-PC plot of the 865 training set samples and the 55 wavelet coefficients 

identified by the pattern recognition GA ...................................................................166 

4.130. Projection of the 87 validation set samples onto the PC plot of the 865 

training set samples and the 55 wavelet coefficients identified by the pattern  

recognition GA...........................................................................................................167 

4.131. 2-PC plot of the 689 training set samples and the 29 wavelet coefficients 

identified by the pattern recognition GA ...................................................................168 

4.132. Projection of the 66 validation set samples onto the PC plot of the 689 

training set samples and the 29 wavelet coefficients identified by the pattern  

recognition GA...........................................................................................................168 

4.133. 2-PC plot of the 592 training set samples and the 67 wavelet coefficients 

identified by the pattern recognition GA ...................................................................169 

4.134. Projection of the 57 validation set samples onto the PC plot of the 592 

training set samples and the 67 wavelet coefficients identified by the pattern 

recognition GA...........................................................................................................170 

4.135. 2-PC plot of the 225 training set samples and the 35 wavelet coefficients  

identified by the pattern recognition GA ...................................................................171 

4.136. Projection of the 22 validation set samples onto the PC plot of the 225 

training set samples and the 35 wavelet coefficients identified by the pattern  

recognition GA...........................................................................................................171 

4.137. 2-PC plot of the 367 training set samples and the 18 wavelet coefficients 

identified by the pattern recognition GA ...................................................................172 

4.138. Projection of the 35 validation set samples onto the PC plot of the 367 

training set samples and the 18 wavelet coefficients identified by the pattern  

recognition GA...........................................................................................................173 

4.139. Toyota assembly plant hierarchical cluster analysis .......................................174 

4.140. Toyota assembly plant principal component analysis ....................................175 

4.141. Nissan assembly plant hierarchical cluster analysis .......................................175 

4.142. Nissan assembly plant principal component analysis .....................................176 

4.143. Honda assembly plant hierarchical cluster analysis........................................176 

4.144. Honda assembly plant principle component analysis .....................................177 

4.145. The average IR spectra of Toyota assembly plants ........................................177 

4.146. 2-PC plot of the 175 training set samples and the 24 wavelet coefficients  

identified     by the pattern recognition GA ...............................................................179 

4.147. Projection of the 23 validation set samples onto the PC plot of the 175  

training set samples and the 24 wavelet coefficients identified by the pattern  

recognition GA...........................................................................................................179 

4.148. 2-PC plot of the 122 training set samples and the 8 wavelet coefficients  

identified by the pattern recognition GA ...................................................................180 

 

 



xvi 
 

Figure           Page 

4.149. Projection of the 14 validation set samples onto the PC plot of the 122 

training set samples and the 8 wavelet coefficients identified by the pattern  

recognition GA...........................................................................................................181 

4.150 2-PC plot of the 99 training set samples and the 20 wavelet coefficients  

identified by the pattern recognition GA ...................................................................182 

4.151 Projection of the 12 validation set samples onto the PC plot of the 99 

training set samples and the 20 wavelet coefficients identified by the pattern  

recognition GA...........................................................................................................182 

4.152 2-PC plot of the 59 training set samples and the 7 wavelet coefficients  

identified by the pattern recognition GA ...................................................................184 

4.153 Projection of the 7 validation set samples onto the PC plot of the 59 training set 

samples and the 7 wavelet coefficients identified by the pattern recognition GA .....184 

4.154 2-PC plot of the 52 training set samples and the 46 wavelet coefficients 

identified by the pattern recognition GA ...................................................................185 

4.155 Projection of the 6 validation set samples onto the PC plot of the 52 training set 

samples and the 46 wavelet coefficients identified by the pattern recognition GA ...186 

4.156 2-PC plot of the 9 training set samples and the 2 wavelet coefficients  

identified by the pattern recognition GA ...................................................................187 

4.157 Projection of the 1 validation set samples onto the PC plot of the 9 training set 

samples and the 2 wavelet coefficients identified by the pattern recognition GA .....187 

4.158 2-PC plot of the 30 training set samples and the 20 wavelet coefficients  

identified by the pattern recognition GA ...................................................................188 

4.159 Projection of the 4 validation set samples onto the PC plot of the 30 training set 

samples and the 20 wavelet coefficients identified by the pattern recognition GA ...189 

4.160 The comparison of the average IR spectra of the assembly plant Sayama  

(3007) vs the assembly plant Suzuka (3008) .............................................................190 

4.161 2-PC plot of the 30 training set samples and the 4 wavelet coefficients  

identified by the pattern recognition GA ...................................................................190 

4.162 Projection of the 4 validation set samples onto the PC plot of the 30 training set 

samples and the 4 wavelet coefficients identified by the pattern recognition GA .....191 

4.163 2-PC plot of the 37 training set samples and the 15 wavelet coefficients  

identified by the pattern recognition GA ...................................................................192 

4.164 Projection of the 5 validation set samples onto the PC plot of the 37 training set 

samples and the 15 wavelet coefficients identified by the pattern recognition GA ...192 

4.165 2-PC plot of the 24 training set samples and the 2 wavelet coefficients  

identified by the pattern recognition GA ...................................................................193 

4.166 Projection of the 3 validation set samples onto the PC plot of the 24 training set 

samples and the 2 wavelet coefficients identified by the pattern recognition GA .....194 

4.167 2-PC plot of the 12 training set samples and the 3 wavelet coefficients  

identified by the pattern recognition GA ...................................................................195 

4.168 Projection of the 2 validation set samples onto the PC plot of the 12 training set 

samples and the 3 wavelet coefficients identified by the pattern recognition GA .....195 

4.169 2-PC plot of the 49 training set samples and the 2 wavelet coefficients  

identified by the pattern recognition GA ...................................................................196 



xvii 
 

Figure           Page 

4.170 Projection of the 4 validation set samples onto the PC plot of the 49 training set 

samples and the 2 wavelet coefficients identified by the pattern recognition GA .....197 

4.171 2-PC plot of the 131 training set samples and the 36 wavelet coefficients  

identified by the pattern recognition GA ...................................................................198 

4.172 Projection of the 16 validation set samples onto the PC plot of the 131  

training set samples and the 36 wavelet coefficients identified by the pattern  

recognition GA...........................................................................................................198 

4.173 The average clear coat IR spectra comparison of assembly plant Georgetown, 

Princeton and Fremont ...............................................................................................199 

4.174 The average surfacer IR spectra comparison of assembly plant Georgetown, 

Princeton and Fremont ...............................................................................................200 

4.175 The average e-coat primer IR spectra comparison of assembly plant  

Georgetown, Princeton and Fremont .........................................................................200 

4.176 The average surfacer IR spectra comparison of assembly plant  

Georgetown ................................................................................................................201 

4.177 The average surfacer IR spectra comparison of assembly plant Princeton .....201 

4.178 2-PC plot of the 131 training set samples and the 30 wavelet coefficients  

identified by the pattern recognition GA ...................................................................202 

4.179 Projection of the 16 validation set samples onto the PC plot of the 131  

training set samples and the 30 wavelet coefficients identified by the pattern  

recognition GA...........................................................................................................202 

4.180 2-PC plot of the 19 training set samples and the 2 wavelet coefficients  

identified by the pattern recognition GA ...................................................................203 

4.181 Projection of the 2 validation set samples onto the PC plot of the 19 training set 

samples and the 2 wavelet coefficients identified by the pattern recognition GA .....204 

4.182 2-PC plot of the 15 training set samples and the 5 wavelet coefficients  

identified by the pattern recognition GA ...................................................................205 

4.183 Projection of the 3 validation set samples onto the PC plot of the 15 training set 

samples and the 5 wavelet coefficients identified by the pattern recognition GA .....205 

4.184 2-PC plot of the 9 training set samples and the 2 wavelet coefficients  

identified by the pattern recognition GA ...................................................................206



1 
 

CHAPTER I 

 

 

INTRODUCTION 

 

Profiling of complex samples using spectroscopic techniques is an active area of 

research with a large and burgeoning literature.  The object of profile analysis is to correlate 

a characteristic fingerprint pattern in a spectrum with the properties of a sample (e.g., the 

make and model of an automobile from a paint sample recovered at a crime scene) or in 

biomedical studies with the presence or absence of disease in a patient or animal from 

which the sample was taken.  Fingerprinting experiments of this type often yield profiles 

containing hundreds of constituents.  Objective analysis of these profiles depends upon the 

use of multivariate statistical methods.  However, only a few studies that focus on the 

development of methods to handle such data have been undertaken.  

Pattern recognition methods are well suited for analyzing profile data because of the 

attributes of the procedures. First, methods are available which assume no mathematical 

model but rather seek relationships which provide definitions of similarity between groups 

of data.  Pattern recognition techniques are also able to handle high dimensional data where 

more than three measurements are used to describe each sample.  Finally, techniques are
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available to select important features from a large set of measurements.  This allows studies 

to be undertaken on systems where the exact relationships are not well understood. 

 Pattern recognition techniques can be effective methods for the analysis of complex 

profile data.  However, the classification of complex samples on the basis of their 

spectroscopic profiles is complicated by two factors: (1) confounding of the desired group 

information by experimental variables or other systematic variations in the data, and (2) 

the presence of noisy data and irrelevant variables that unnecessarily enlarge the data space 

and the complexity of the classification model developed from the data, an effect that tends to 

increase both the error rate and to reduce robustness of data-driven predictions.  Two projects 

involving these effects and methods for dealing with them are discussed in this dissertation.  

In the first project, N-linked glycans, extracted from patient sera and healthy control 

individuals, were analyzed by matrix-assisted laser desorption ionization (MALDI) in 

combination with ion mobility spectrometry (IMS), time of flight mass spectrometry (MS) 

and pattern recognition methods.  MALDI-IMS-MS data were collected in duplicate for 58 

serum samples obtained from individuals diagnosed with Barrett’s esophagus (BE, 14 

patients), high-grade dysplasia (HGD, 7 patients), esophageal adenocarcinoma (EAC, 20 

patients) and disease-free controls (NC, 17 individuals). A combined mobility distribution 

of 9 N-linked glycans was established for 90 MALDI-IMS-MS spectra (45 training set 

samples) and analyzed using a genetic algorithm for feature selection and classification. 

Two models for phenotype delineation were subsequently developed and as a result, the 

four phenotypes (BE, HGD, EAC and NC) were unequivocally differentiated.  Next, these 

two models were tested against 26 blinds (13 serum samples).  The model based on the 

original concatenated ion distribution data allowed for the correct phenotype prediction of 
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20 blinds and the model based on the wavelet transformed ion distribution profiles correctly 

predicted 23 of the 26 blinds.   Although applied to a limited number of blind samples, this 

methodology appears promising as a means of discovering molecules from serum that may 

have capabilities as markers of esophageal disease.  

In the second study, a prototype infrared (IR) search engine has been developed to 

search the Paint Data Query (PDQ) database, the largest automotive paint database in the 

world, to identify the line and model of an automotive vehicle using the IR spectra of the 

clear coat, surfacer-primer, and e-coat layers in an effort to improve discrimination 

capability and permit quantification of discrimination power for automotive paint 

comparisons involving the original equipment manufacturer (OEM). Multi-layered 

automotive paint fragments, which are one of the most complex materials encountered in 

the forensic science laboratory, provide crucial links in criminal investigations and 

prosecutions.   To determine the origin of these paint fragments, forensic automotive paint 

examiners have turned to PDQ, which allows the forensic examiner to compare the layer 

sequence and color, texture and composition of the sample to OEM paint systems.  

However, modern automotive paints have a thin color coat and this layer on a microscopic 

fragment is often too thin to obtain accurate chemical and topcoat color information.  As 

part of this study, search prefilters have been developed for the IR spectral libraries of the 

PDQ database in an effort to improve discrimination capability and permit quantification 

of discrimination power for OEM automotive paint comparisons.  The similarity of IR 

spectra of the corresponding layers of various records for original finishes in the PDQ 

database often results in poor discrimination using commercial library search algorithms.  

A pattern recognition approach employing search prefilters has been employed to 
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significantly improve the discrimination of IR spectra in the PDQ database and thus 

improve the accuracy of a search.  This improvement permits inter-comparison of OEM 

automotive paint layer systems using IR spectra alone.  Such information can serve to 

quantify the discrimination power of the original automotive paint encountered in casework 

and further efforts to succinctly communicate trace evidence to the courts. 

   

The two studies described in this dissertation share several common attributes.  First, 

the data sets from these two studies were underdetermined, i.e., there were more features 

than samples.  Second, the data sets investigated were redundant, i.e., the measurement 

variables were highly correlated.   Third, variable selection was crucial for the successful 

development of the pattern classifier.  The fundamental problem investigated in this 

dissertation, variable selection involving collinear and underdetermined data sets to 

improve modeling, is currently a problem of great interest in process monitoring, quality 

assurance and quality-by-design applications. The anticipated broader impact of the dissertation 

research will be to reduce the cost-of-ownership of classification models. This need is expected to 

increase as more processes are monitored by spectroscopic methods in efforts to improve control 

or to monitor quality more closely. 
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CHAPTER II 

 

 

PATTERN RECOGNITION METHODOLOGY 

 

2. 1.  OVERVIEW OF PATTERN RECOGNITION  

Pattern recognition is a collection of methods to categorize samples on the basis of 

regularities in observed data.  Pattern recognition methods were originally developed to 

solve the class membership problem (e.g., differentiating between different disease states 

using constituents measured from a serum sample).  In a typical pattern recognition study, 

samples are categorized according to a specific property using measurements indirectly 

related to the property of interest.  An empirical classification rule is developed using a 

collection of objects for which the specific property of interest is known, i.e., a training set.  

This relationship or classification rule is then used to predict this property in objects that 

are not part of the original training set.  A pattern is a set of measurements that characterize 

a test sample, whereas recognition is the process of assigning a sample to its respective 

class.  

In a pattern recognition study, each object or sample is represented as a point in a high 

dimensional measurement space.  The number of dimensions of the space corresponds to
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the number of measurements that are available for each object.  A basic assumption is that 

distances between pairs of points are inversely related to their degree of similarity.  Points 

representing objects from one class will cluster in a limited region of this space distant 

from the points corresponding to the other class.  Pattern recognition is a collection of 

methods to investigate data represented in this manner for the purpose of assessing the 

general structure of the data space.  The structure of a data space is defined as the overall 

relation of each object to every other object in the data set. 

To apply pattern recognition techniques to a data set, there are a series of operations 

that must be performed.  A summary of these operations and the pattern recognition 

techniques used in the two studies described in this dissertation are covered in the 

remaining sections of this chapter.  Specific emphasis is placed on the application of 

techniques to problems in profile analysis. 

 

2.1.1. Data Representation 

The first step in a pattern recognition study is to convert the raw data into a string of 

scalar measurements comprising a pattern vector: X = (x1, x2, x3, ………xN).  Each 

component of the pattern vector represents a physically measureable quantity.  For an 

infrared spectrum from an automotive paint sample, each component of the pattern vector 

is the absorbance or transmittance at a specified wavelength.  The pattern vectors, in turn, 

are arranged in the form of a data matrix.  Each row of the data matrix represents an 

observation or sample and the columns represent the values for each measurement. 
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  X11,  X12,  X13, ……..X1N 

  X21,  X22,  X23, ……..X2N 

  X31,  X32,  X33,……...X3N 

  .       .        . …………    .      (2.1) 

  .       .        …………..    . 

  .       .        …………..    . 

  XM1, XM2, XM3……...XMN 

 

It is crucial that features encode the same information for all samples in the data matrix.  

If the second measurement in the data matrix, for example, is the transmittance for a 

specific wavelength that corresponds to the carbonyl in sample one, it must also be the 

transmittance for the carbonyl in samples 2, samples 3, ….. M.  Hence, alignment is crucial 

when spectra (either infrared or mass spectra) are translated into data vectors.  Peak 

matching can be a challenging problem in the case of two-dimensional mass spectrometry 

or infrared spectroscopy involving spectra from different instrument manufacturers.   

   

2.1.2 Data Preprocessing 

The next step is preprocessing.  The preprocessing procedures used for a given data set 

will depend upon the nature of the problem and the attributes of the data.  Preprocessing is 

crucial for a successful analysis of a data set using pattern recognition techniques.  This 

aspect of pattern recognition has not been adequately investigated.  In the two studies 

discussed in this dissertation, the preprocessing procedures used include scaling (e.g., 

normalization and auto-scaling) and transformations (e.g., wavelets).   

[ ] 
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Normalization involves setting the sum of the squares of the components of each data 

vector to the same arbitrary constant.  In other words, all data vectors will have the same 

length.  This operation is typically performed with absorption data in infrared spectroscopy.  

In mass spectrometry, each component of the data vector is normalized by taking the ratio 

of each variable to the measurement variable with the largest intensity.  Scaling techniques, 

such as normalization, focus the pattern recognition analysis on questions about variations 

in relative composition of samples rather than absolute concentration measures. 

Auto-scaling involves adjusting the measurements such that each has a mean of zero 

and variance of unity (see Equation 2.2).  This scaling technique removes any inadvertent 

weighting of the variables that would otherwise arise due to differences in magnitude 

among the measurements comprising each pattern vector.  After auto-scaling, all of the 

measurements will have equal weight and therefore an equal effect in the analysis. 
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
     (2.2) 

mi,orig = mean of the original measurement 

 si,orig = standard deviation of the original measurement 

 

The wavelet transform resolves overlapping spectral responses while simultaneously 

reducing the noise.  Mother wavelets used in analytical chemistry to interpret data include 

the Haar, Daubechies, Symlet and Coilet.  The criterion for selection of the mother wavelet 

for a specific data set is based on comparing the shape of the mother wavelet to that of the 
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bands comprising the spectra.  Both the Symlet and Daubechies mother wavelets are 

effective for preprocessing infrared and mass spectral data.  Symlets are more symmetrical 

than Duabeshies and Symlets were selected for the two studies described in this 

dissertation.   

In the two studies described in this dissertation, Symlets were computed using the 

discrete wavelet transform [2-1].  For applying any wavelet to multivariate data, it is 

necessary to specify the level of decomposition and the filter size.  For example, 8Sym6 

refers to the 8th level of decomposition with a filter size of 6 for decomposition of spectral 

data into its constituent frequencies using the Symlet mother wavelet.  The filtering process 

used by the discrete wavelet transform is summarized in Figure 2.1.  Each sample spectrum 

is decomposed into wavelet coefficients representing both the high and low frequency 

components of the signal. The high-pass filter will only allow for the high frequency 

component of the signal (known as the detail coefficients) to pass, while the low frequency 

component of the signal can only be transmitted through the low-pass filter (known as the 

approximation coefficients), see Figure 2.2.  Wavelet coefficients from all nodes in the tree 

(see Figure 2.1) from each sample spectrum are organized into a vector for further data 

analysis [2-2]. 
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Figure 2.1. The diagram of discrete wavelet transform of original signals S to give        

approximations An and details Dn (n = decomposition level) 

 

 

 

Figure 2.2.   Decomposition of a sample spectrum using wavelet filters 
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2.2. PRINCIPAL COMPONENT ANALYSIS 

In the two studies highlighted in this dissertation, principal component analysis [2-3 – 

2-5] played a central role in classification, variable selection, and prediction.  Principal 

component analysis is the most widely used multivariate analysis method in science and 

engineering.  The goal of principal component analysis is to reduce the dimensionality of 

a data set while preserving the information present in the original data.  This reduction is 

achieved by transforming the original measurement variables into new variables called 

principal components.  Each principal component can be expressed as a linear combination 

of the original measurement variables.  Often, only two or three principal components are 

necessary to explain all of the information present in data sets in which there are a large 

number of interrelated measurement variables.   

Dimensionality reduction occurs using principal component analysis because of 

correlations between the measurement variables. Consider a set of samples characterized by 

two measurements, x1 and x2.  Figure 2.3 shows a plot of these samples in a 2-dimensional 

measurement space.  The coordinate axes (or basis vectors) of this measurement space are the 

variables x1 and x2.  There appears to be a relationship between these two measurement 

variables.  This relationship suggests that x1 and x2 are correlated, since fixing the value of x1 

limits the range of values possible for x2.   



12 
 

   

Figure 2.3.  Plot of 16 samples in a measurement space defined by the variables x1 and x2 

which are correlated.  (Adapted from NBS J. Res., 1985, 190(6), 465-476) 

 

If the two variables, x1 and x2, were uncorrelated, the enclosed rectangle in Figure 

2.3 would be fully populated by data points.  Because information is defined as the 

scatter of points in a measurement space, it is evident that correlations between the 

variables decrease the information content of the measurement space.  The data points 

are restricted to a small region of the measurement space due to correlations between 

the variables and may even reside in a subspace when the measurement variables are 

highly correlated (see Figure 2.4).  Variables that are highly correlated or have a great 

deal of redundancy are called collinear. 
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Figure 2.4. The three measurement variables used to characterize the six samples are highly 

correlated as the addition of the first two columns (variables) of the data matrix yields the 

third column (third measurement variable).  (Adapted from Multivariate Pattern 

Recognition in Chemometrics, Elsevier Science Publishers, Amsterdam, 1992.) 

 

High collinearity between variables - as measured by their correlation or covariance 

- is a strong indication that a new set of basis vectors can be found that is better at 

conveying the information content present in the data than axes defined by the original 

measurement variables.  The new basis set linked to variation in the data can be used 

to develop a new coordinate system for displaying the data. The principal components of 

the data define the variance based axes of this new coordinate system.  The largest 

principal component is formed by determining the direction of largest variation in the 

original measurement space and modeling it using a line fitted by linear least squares 

(see Figure 2.5).  The second largest principal component lies in the direction of next 

largest variation: it passes through the center of the data and is orthogonal to the largest 

principal component.  The third largest principal component lies in the direction of next 
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largest variation: it passes through the center of the data and is orthogonal to the first 

and second largest principal components, and so forth.  The number of principal 

components that can be extracted from the data is the smaller of either the number of 

samples or number of measurements in the data set, as this number defines the largest 

number of independent variables in our data. 

 

 
Figure 2.5.  Development of a new set of basis vectors (i.e.,principal components) from the 

original measurement variables.  (Adapted from Chemometrics: Mathematics and Statistics 

in Chemistry, NATO ASI Series, D. Reidel Publishing Co., 1983.   

 

One measure of the amount of information conveyed by each principal component is its 

variance.  For this reason, the principal components are usually arranged in order of 

decreasing variance: the most informative principal component is first, and the least 

informative is the last.  Hence, one would expect that only the first few principal components 

should convey information about the signal, if the data are collected with due care, since most 

of the information in the data should be about the effect which we seek to study.  The situation, 
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however, is not always so straightforward.  Each principal component describes some amount 

of signal and some amount of noise in the data because of accidental correlation between 

signal and noise.  The larger principal components primarily describe signal, whereas the 

smaller principal components essentially describe the noise.  When smaller principal 

components have been deleted, noise has been discarded from the data, but so has a small 

amount of signal.  However, the gain in signal to noise more than compensates for the biased 

representation of the signal that results from discarding principal components that contain a 

small amount of signal but a large amount of noise.  This approach to describing a data set in 

terms of important and unimportant variation is known as soft modeling in latent variables. 

Principal component analysis takes advantage of the fact that a large amount of data is 

generated in a pattern recognition study.  The data have a great deal of redundancy and 

therefore a great deal of collinearity.  Because the measurement variables are correlated, 100-

point spectra do not necessarily require 100 independent axes to define the position of the 

sample points.  By employing principal component analysis, the original measurement 

variables, which constitute a correlated axis system, can be converted into a system which 

removes correlation by forcing the new axes to be independent and orthogonal, a requirement 

that greatly simplifies the data because the correlations present in the spectral data usually 

allows us to use far fewer axes to represent the sample points.  Spectra for a set of automotive 

paints may reside in a subspace of the original 100-dimensional measurement space for the 

spectra, and a plot of the two or three largest principal components of the data can help us to 

visualize the relative position of the samples in this subspace. 

 

2.3 GENETIC ALGORITHM FOR VARIABLE SELECTION 
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Problems often arise when applying pattern recognition techniques to multivariate 

chemical data.  Classification success rates may vary with the pattern recognition method 

employed.  Unfavorable classification results can be obtained for the prediction set despite 

a linearly separable training set. Automation of these techniques for the solution of a 

general class of problems is usually difficult.   

A potential solution to these problems is variable selection [2-6].  Irrelevant features 

can introduce so much noise that a good classification of the data cannot be obtained. When 

these irrelevant features are removed, a clear and well-separated class structure in the data 

can be found.  The deletion of irrelevant variables is, therefore, a major goal of any pattern 

recognition study since noisy variables increase the chances of false classification and 

decrease the classification success-rates obtained with new data.  Feature selection is also 

necessary because of the sheer size of many classification problems, e.g., DNA array data, 

which consists of thousands of descriptors per observation but only 50 or 100 observations 

distributed equally between two classes.   

The approach to feature selection used in the two studies described in this dissertation 

is based on a simple idea - identify a set of measurement variables that optimize the 

separation of the classes in a plot of the two or three largest principal components of the 

data. Because principal components maximize variance, the bulk of the information 

encoded by these features will be about differences between classes in the data set.  This 

idea is demonstrated in Figure 2.6, which shows a plot of the two largest principal 

components of a data set prior to feature selection.  The data set consists of 30 samples 

distributed between 3 classes (good, better, and best).  Each sample is characterized by 10 

measurements.  However, only 4 of these measurements contain information about the 
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classification problem.  When a principal component map of the data is developed using 

only these 4 measurements, sample clustering on the basis of class is evident. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 2.6.  Idea underlying the pattern recognition GA. 
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Using this approach to feature selection, an eigenvector projection of the data is 

developed that discriminates classes in a data set by maximizing the ratio of between- to 

within-group variance (which is the same criterion used in canonical variate analysis to 

develop projections of the data for classification).  This approach to feature selection has a 

number of advantages. It avoids overly complicated solutions that do not perform as well 

on the prediction set because of over-fitting, which is a serious problem with most wrapper 

methods [2-7].  Although a principal component plot is not a sharp knife for discrimination, 

if we have a principal component plot that shows clustering, then our experience is that we 

will be able to predict robustly using this set of descriptors. For redundant features, noise 

reduction and better class separation can be achieved if principal component analysis is 

used to characterize the information content of the redundant measurement variables.  

Furthermore, a principal component plot displays variability between large numbers of 

samples and shows the major clustering trends present in the data; the user can visually 

identify the presence of confounding relationships in the data, thereby gaining insight into 

how the decision is made for a classification.  Although filters, which select variables by 

ranking them using either the Fisher ratio or the variance weight [2-8] are preferred by 

many workers because of their computational and statistical scalability, the variables 

selected by filters are usually not optimal for a given predictor because they score features 

individually and independent of each other and as such cannot determine which feature 

combinations give the best classification results. 

To identify these features, a genetic algorithm [2-9], which exploits knowledge 

contained in a population of solutions (i.e., feature subsets) to generate new and better 

feature subsets while simultaneously using random choice as a tool to guide a highly 
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exploitive search of the data, has been employed in the two studies described in this 

dissertation.  A block diagram of the pattern recognition GA used in the two studies 

described in this dissertation is shown in Figure 2.7.  Selected feature subsets are sent to a 

fitness function for evaluation.  The fitness function assigns a score to each feature subset, 

which is a measure of the quality of the feature subset for the classification problem. The 

score is used to select feature subsets for recombination. Feature subsets with a higher 

fitness score have a higher probability of being selected.  Selected chromosomes undergo 

a structured yet randomized exchange of information, with the expectation that good 

solutions (i.e., feature subsets) will generate even better ones through recombination.  To 

ensure that all features are represented in the population at any given time, a mutation 

operator is used to fine tune the diversity of the population.  A feature subset marked for 

mutation has a single random bit flipped, which allows for the pattern recognition GA to 

explore other regions of the search space. If the GA finds a better solution, the optimization 

will then continue in a new direction.  A boosting algorithm adjusts the internal parameters 

of the pattern recognition GA for the next iteration (generation).  
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Figure 2.7. Block diagram of the genetic algorithm for pattern recognition analysis 

 

During each generation, class and sample weights are computed as shown by Equations 

3 and 4 respectively where CW(c) is the weight of class c, and SW(s) is the weight of 

sample s in class c.  The sum of the sample weights for the spectra assigned to a particular 

class is equal to the class weight, and the sum of all class weights in the data set is equal to 

100.  

𝐶𝑊(𝑐) = 100 
𝐶𝑊 (𝑐)

∑ 𝐶𝑊(𝑐)𝑐
                 (2.3)  

𝑆𝑊(𝑠) = 𝐶𝑊(𝑐)
𝑆𝑊 (𝑠)

∑ 𝑆𝑊(𝑠)𝑠𝜖𝑐
           (2.4) 

For a given data point, Euclidean distances are computed between it and every other 

point in the PC plot.  These distances are arranged in ascending order.  A survey is taken 

of the point’s Kc-nearest neighbors.  (Kc is provided by the user, and for the most rigorous 

classification of the data, Kc equals the number of samples in the class to which the point 

belongs.)  The number of Kc-nearest neighbors with the same class label as the sample 

point in question, known as the sample hit count (SHC), is computed (0 < SHC(s) < Kc).  

It is then a simple matter to score a principal component plot (see Equation 2.5). 

𝐹(𝑑) = ∑ ∑
1

𝐾𝑐𝑠𝜖𝑐𝑐 ⨯ 𝑆𝐻𝐶(𝑠) ⨯ 𝑆𝑊(𝑠)    (2.5) 

To better understand the scoring of the PC plots, consider a data set comprised of two 

classes, with each assigned equal class weights.  One class has 20 samples, and the other 

has 40 samples.  At generation 0, all classes will have the same class weight and all samples 
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in a given class have the same sample weight.  Thus, each sample in class 1 (20 samples) 

has a sample weight of 2.5, whereas each sample in class 2 (40 samples) has a weight of 

1.25.  Suppose a sample from class 1 has 9 samples from class 1 as its nearest neighbors.  

For this sample, SHC/K = 0.45, and (SHC/K)*SW = 0.45*2.5, which equals 1.125.  By 

summing (SHC/Kc)*SW for all samples, each PC plot is scored.  A PC plot with a higher 

score indicates greater separation among the classes in the variable subset from which the 

plot was generated.   

PCKaNN is able to focus on those samples (i.e., spectra) and classes (e.g.., disease state 

of a patient) that are difficult to classify by boosting their sample and class weights over 

successive generations. In order to boost, it is necessary to calculate both the sample-hit 

rate (SHR), SHR is the mean value of SHC/Kc over all feature subsets produced in a 

particular generation (see Equation 2.6), and the class-hit rate (CHR), which is the mean 

sample hit rate of all samples in a class (see Equation 2.7).  The variable Ø, in Equation 

2.6, is the number of chromosomes in the population, whereas ∀ and AVG in equation 2.7 

refer to all samples in the class and the average or mean value.   During each generation, 

class and sample weights are adjusted using a perceptron (see Equations 2.8 and 2.9) with 

the momentum, P, set by a user.  (g + 1 is the current generation, whereas g is the previous 

generation.)  Classes with a lower class hit rate are boosted more heavily than classes that 

score well.   

                                              𝑆𝐻𝑅(𝑠) =  
1

⏀
∑

𝑆𝐻𝐶𝑖(𝑠)

𝐾𝑐

⏀
𝑖=1                           (2.6) 

                                       𝐶𝐻𝑅𝑔(𝑐) = 𝐴𝑉𝐺(𝑆𝐻𝑅𝑔(𝑠): ∀𝑠𝜖𝑐)           (2.7) 
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                     𝐶𝑊𝑔 + 1(𝑠) = 𝐶𝑊𝑔(𝑠) + 𝑃(1 − 𝐶𝐻𝑅𝑔(𝑠))        (2.8) 

                          𝑆𝑊𝑔 + 1(𝑠) = 𝑆𝑊𝑔(𝑠) + 𝑃(1 − 𝑆𝐻𝑅𝑔(𝑠))    (2.9) 

Boosting is important for the successful operation of the pattern recognition GA using 

PCKaNN as its fitness function since it modifies the fitness landscape by adjusting the 

values of the class and sample weights which are an integral part of the fitness function.  

This mitigates the problem of convergence to a local optimum because the fitness function 

of the pattern recognition GA is changing as the population evolves towards a solution.  

Boosting minimizes the potential problem of a deceptive fitness landscape [2-10].  

 

2.4 HIERARCHICAL CLUSTER ANALYSIS 

The goal of cluster analysis is to determine the structural characteristics of a data set 

by organizing the data into subgroups or clusters.  These methods are based on the 

following principle: the distance between pairs of points (samples) is inversely related to 

their degree of similarity.  Although several different types of clustering algorithms exist, 

by far, the most popular is hierarchical clustering [2-11].  This particular algorithm works 

by measuring the distances between all pairs of points in the data set, identifying the nearest 

pair, combining them into a new point which is located midway between the two original 

points, and recalculating the distances from this new point to every other point in the data 

set.  One then finds the new nearest pair, combines them and so on.  This process is 

continued until all the points have been linked. The result of this procedure is a diagram 

called a dendogram, which is a visual representation of the sample groupings.   

Dendograms can be analyzed for clustering using a variety of criteria.   
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CHAPTER III 

 

 

DISCOVERY OF ESOPHAGEAL ADENOCARCINOMA USING MALDI-IMS-MS 

DATA OF SERUM N-LINKED GLYCANS 

 

3.1 INTRODUCTION 

During the past two decades, the incidence of esophageal adenocarcinoma (EAC) has 

increased in many countries including the United States at a rate exceeding that of any 

other form of cancer [3-1].  The increase in the rate of esophageal cancer can probably be 

attributed to gastro esophageal reflux disease (GERD) and Barrett’s esophagus (BE). 

Approximately 30 million adults in the U.S suffer from GERD.  Acid reflux causes the 

structure and form of the epithelial lining of the esophagus to change in order to protect the 

esophagus from stomach acid.  Barret’s esophagus (BE) occurs when stratified epithelial 

cells of the esophagus convert to columnar epithelial cells.  It is generally accepted that 

EAC, which represents 60% to 90% of all esophageal cancers [3-2], develops from a 

premalignant lesion of the esophagus referred to as BE.  Patients afflicted with BE are 30 

to 125 times at greater risk for EAC than the general population, and 0.5% to 1% of patients 

with BE are expected to develop EAC each year [3-3].  The prevailing view is that patients 

with BE who eventually succumb to EAC do so by a gradual progression at the cellular
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level from a normal squamous cell to a metaplastic columnar cell (which is synonymous 

with BE).  The columnar cell, in turn, may undergo a dysplastic transformation resulting 

in high grade dysplasia (HGD) that ultimately can result in a malignant cell.  Each of these 

pathological states is clearly identifiable histologically, and one or more of them may be 

observed in the same esophagus.  The precise underlying molecular mechanism by which 

this progression occurs has yet to be elucidated.  

Less than 20% of patients with esophageal cancer survive beyond 3 years [3-4, 3-5].  

Several factors contribute to this low survival rate.  The most important factor is that a 

majority of patients demonstrate an advanced state of the disease at diagnosis.  By 

comparison, patients diagnosed with early stage esophageal cancer have a better prognosis.  

Currently, there is no noninvasive test to screen patients who are at risk for the development 

of esophageal cancer [3-6, 3-7].  The identification of biomarkers indicative of EAC has 

the potential to result in an early diagnosis and to improve the outcome of patients 

diagnosed with EAC.  Biomarkers indicative of the malignant transformation can lead to 

the prevention of EAC by identifying patients who are in one of the premalignant states 

where intervention can be carried out successfully.  For example,   BE can be treated with 

anti-reflux surgeries or drugs, such as proton pump inhibitors, while radio frequency 

ablation is a safe and effective treatment for HGD [3-8].         

Aberrant glycosylation has been implicated in several types of cancers. The plasma 

membranes of cells are coated with glycol-conjugates, such as glycoproteins, glycolipids, 

and proteoglycans, which play an important role in normal molecular functions. N-glycans, 

which are the glycans attached to proteins through asparagine residues, are involved in 

various biological functions, such as signal transduction, cell adhesion, cell motility and 
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proliferation. It is accepted that alterations in glycans are associated with cancer [3-9].  

Moreover, they are amenable to population-screening strategies which involve low cost 

testing.  Serum N-glycans may hold the potential to be used as esophageal cancer 

biomarkers to diagnose BE, HGD and EAC or for evaluating the therapeutic efficacy of 

cancer treatments.  Identifying sensitive and specific N-glycans using mass spectrometry 

to monitor the progression of EAC has attracted great interest and has been the subject of 

several studies.   

Hammoud and colleagues [3-10], using MALDI-TOF-MS, analyzed permethylated N-

glycans from normal controls, BE, HGD, and EAC.   The intensities of 98 glycans, 26 of 

which correspond to known glycan structures, were found to be characteristic of the disease 

state of the subjects investigated.  The mean relative intensities of fucosylated N-glycans 

exhibited larger significant changes than sialylated ones for the four EAC phenotypes 

investigated.  This study suggested that MS-based serum glycomic profiling had potential 

for future EAC prediction and diagnosis. The significance of this research lies in its highly 

reproducible permethylated glycan MS data. However, this study was not validated using 

blind samples.  

In another study, Mann and coworkers [3-11] used AAL and LTA lectin affinity 

chromatography to explore fucosylated glycans.  They determined that the ratio of the 

relative intensities of fucosylated glycans from serum could differentiate disease free from 

HGD and EAC.  However, only a few samples were used in this study and the results were 

not validated using an external prediction set (blind samples). 
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Microchip electrophoresis with laser-induced fluorescence detection [3-12] was also 

used to analyze altered glycans released by the surface protein from esophageal cancerous 

cells.  Serum N-glycan samples were obtained from disease-free individuals (NC) and from 

patients with BE, HGD, and EAC.  Multivariate analysis of the microchip 

electrophoregrams showed that four disease phenotypes could be differentiated based on 

the intense peaks from both the native (50 most intense peaks) and the desialylated N-

glycan samples (75 most intense peaks).  However, microchip electrophoresis could not 

elucidate the structure of N-glycans associated with EAC nor provide information about 

glycan isomers. 

Utilizing serum N-glycans as biomarkers for EAC disease progression will require the 

characterization of the chemical structure of the corresponding glycans including their 

isomers.  Monosaccharide composition, monosaccharide linkage position and anomeric 

configuration can lead to a large number of potential glycan isomers.  Even when MS/MS 

has been applied to the structural elucidation of serum glycans, identifying the chemical 

structure of the various glycan isomers has been proven to be problematic.  This situation 

is further confounded when the glycans contain multi units of monosaccharides with 

different branching patterns [3-13].  Ion mobility spectrometry/tandem mass spectrometry 

(IMS-MS) has been developed to address analysis problems of this type. When compared 

to MALDI-TOF-MS, MALDI-IMS-MS was reported to reduce chemical noise, increase 

sequence coverage and allow high through put separation of a complex mixture [3-14].  In 

the study described in this chapter, IMS-MS combined with pattern recognition methods 

was shown to have advantages over MALDI-TOF-MS for biomarker discovery. The 

integrated drift time intensities of 9 N-glycan ions played a major role in differentiating 
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EAC, BE, HGD and NC, whereas MALDI-TOF analysis of a similar set of serum samples 

could distinguish EAC from normals but did not provide phenotype delineation of the 4 

disease states (Normal, BE, HGD, and EAC) [3-15]. Based on the results of the study 

discussed in this chapter, it is likely that IMS-MS combined with multivariate data analysis 

can probably be extended to include the problem of esophageal disease phenotype 

delineation. 

  

3.2. ION MOBILITY/TIME-OF- FLIGHT MASS SPECTROMETRY 

INSTRUMENTATION 

 

Ion mobility/time-of-flight mass spectrometry (IMS-TOF-MS) was selected to 

characterize aberrant glycosylation related to the disease stage of the subject because of the 

attributes of the methodology. IMS-TOF-MS couples matrix-assisted laser 

desorption/ionization (MALDI) to an ion mobility tandem time-of-flight mass 

spectrometer.  After a sample is injected into an IMS-TOF-MS, the ions are initially 

separated by differences in their mobility and then isolated by their mass-to-charge ratio in 

a time-of-flight mass analyzer.  Individual ion mobility distributions and m/z ratios are 

measured independently. Because the flight times of ions through the mass spectrometer 

are shorter than their residence times in the drift tube, an entire mass spectrum can be 

obtained for ions of a specific mobility. The resulting spectrum of the N-glycan serum 

sample is three-dimensional as it contains information about drift time, mass-to-charge, 

and ion abundance.  A schematic diagram of the instrument used in this study is shown in 

Figure 3.1 [3-15]. 
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Figure 3.1. Schematic diagram of the ion mobility /time-of flight instrument. 

The spectrometer was constructed in the laboratory of David Clemmer at Indiana 

University. In this study, the drift tube D1 and D2 were directly connected to the time of 

fly mass spectrometer. G1 is an ion-gate which prevents neutral species from entering the 

drift tube from the MALDI source, F1 is the desolvation chamber housing and hourglass 

ion funnel.  Applying a gating voltage to the G2 ion gate will select drift (mobility) 

distributions.  Mobility-selected ions accumulate in the ion funnel F2, which is used to 

focus the diffuse ion cloud to the center axis of the drift interface region. IA2 is an ion 

activation region to fragment ions. Drift time, flight time and collision cross sections are 

defined as tD, tF and Ω [3-16 – 3-21].    
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where K is the mobility of the ions; L is the length of the drift field; ED is the applied drift 

field; I is the length of the field-free region; m/mA is the ion mass; z is the ion charge state; 

ETOF is the kinetic energy of the ions; N is the Boltzmann constant; mB is the buffer gas 

mass; P is the pressure of the drift tube; and T is the temperature of drift tube. 

 

3.3 METHOD AND MATERIALS 

 

A method was developed to identify the different stages of EAC using the associated 

serum N-glycans.  The method included glycan extraction, purification, mass spectral 

identification and pattern recognition analysis. Blood serum samples were obtained from 

116 normals or patients diagnosed at different stage of esophageal cancer (see Table 3.1). 

Table 3.1 Composition of the IMS-MS Esophageal Adenocarcinoma Dataset 

Sample Type Number of Sample Spectra 

Normal Controls (NC) 28 

Barrett’s Esophagus (BE) 20 

High-grade Dysplasia (HGD) 10 

Esophageal Adenocarcinoma (EAC) 32 

Total training samples 90 

Blinds 26 

 

3.3.1 Experimental Materials 

Materials used to analyze the serum samples were peptide-N-glycosidase F (PNGase 

F, EC 3.5.1.52; Sigma), ammonium bicarbonate (≥99.0%, Sigma), sodium hydroxide beads 

(97%, Sigma), methyl iodide (99%, Sigma), dithiothreitol (DTT, ≥98%, Sigma) and 

iodoacetamide (Sigma, St. Louis, MO), chloroform (99.8%, Aldrich), trifluoroacetic acid 
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(TFA, 99%, Aldrich), dimethyl sulfoxide (DMSO, 99.9%, J. T. Baker), micro-spin 

columns and C18 Sep-Pak cartridges( J. T. Baker, Phillipsburg, NJ), Harvard Apparatus 

(Holliston, MA and Water, Milford, MA), and β-N-acetylglucosaminidase (Endo-M,TCI, 

Portland, OR). 

3.3.2 Sample Preparation 

To obtain N-glycan from human blood serum, 10μL of human serum plasma was mixed 

with 200μL of 100mM ammonium bicarbonate buffer solution, with 5μL of 10mM DTT 

then added. The solution was incubated at 56°C for 45 min. After cooling to room 

temperature, 200µL of 55mM iodoacetamide prepared in 100mM ammonium bicarbonate 

buffer solution was added to the mixture.  The sample was placed in the dark for 30 

minutes. 100mM phosphate buffer was used to adjust sample solution pH to 7.5. The N-

glycans were truncated from the tryptic digest using 5-mU aliquots of PNGase F and Endo-

M which was added to the mixture and incubated overnight (18-22 h) at 37 °C. 

C18 Sep-Pak cartridges were used to preconcentrate the glycans.  The cartridges were 

preconditioned with ethanol and deionized water. The eluting N-glycan solution was 

further purified using a home-packed activated carbon microspin column, which was 

preconditioned with acetonitrile and equilibrated with 0.1% TFA aqueous solution. An 

aliquot of the diluted sample was injected into the activated carbon microspin column, 

which was first washed with 0.1% TFA aqueous solution.  The glycans were eluted from 

the microspin column using 50% acetonitrile-0.1% TFA aqueous solution.  Each samples 

was dried under vacuum and permethylated using a previously published procedure [3-22].  
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3.3.3 MALDI-IMS-MS Measurement 

 

For MALDI-IMS-TOF-MS analysis, each glycan enriched sample (prepared using the 

procedure described above) was dissolved in 2µL methanol /water solution (1:1, v: v) and 

mixed with 2µL of the MALDI matrix (2, 5-dihydroxybenzoic acid) prepared at 10 mg.mL-

1 in methanol/ water (1:1, v: v) using 2mM sodium acetate.  Duplicate spotting of each 

serum sample was performed (2 µL each, one immediately following the other) on two 96-

wells MALDI plates (Plate 1 and Plate 2), with dextran spotted after every ten samples as 

a control. Data were collected using a Synapt G2-S travelling wave ion mobility mass 

spectrometer (TWIMS) operated in positive mode. The Nd/Yag laser (355 nm) for MALDI 

was fired 1000 times/sec with an energy of 450au in a reverse-spiral pattern. The ion 

mobility cell was set with 40 V as the peak height voltage and 350 m/s as the T-wave 

velocity. A MassPREPTM calibration mix containing polyethylene glycol (Waters 

Corporation, Milford, MA) was used as an external standard.  

The mass to charge ratio of the time of flight mass analyzer was set from 1000 to 5000 

m/z.  For each sample, an entire mass spectrum was collected in three minutes and all data 

were collected over a 24 hour window. The N-linked glycans were extracted using 

Driftscope software (Waters Corporation, Manchester, UK) from a diagonal selection 

across the drift bin (m/z) two-dimensional spectrum (2D-plot). A single N-linked glycan 

ion [M+Na]+ was acquired using box selection described in previous studies [3-14, 3-23, 

3-24]. For each sample, the data included in a diagonal selection across mobility 

distributions of the selected N-linked glycans and their relative mass over charge intensity 

was obtained from each MALDI-IMS-MS spectrum.  
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3.3.4 Data Set Preparation for Pattern Recognition Analysis 

 

The chemical structures of the 9 glycans used in this study are shown in Table 3.2.  F 

represents fucose (red triangles), H represents hexose (mannose is green circle and 

galactose is yellow circle), N represents N-acetyl glucosamine (blue square) and S 

represents sialic acid (purple diamond).  6 out of the 9 ions depicted in Table 3.2 are 

fucosylated  species.   

Each glycan ion mobility distribution was extracted from the mass spectal image (see 

Figure 3.2) of a serum sample by Driftscope software (Waters Corporation, Manchester, 

UK) from a diagonal selection across the drift bin (m/z) two-dimensional spectrum (2D-

plot).  Ion intensities were represented by a color code in which blue represents the lowest 

intensity and red represents the highest intensity.  Figure 3.3 shows the ion mobility 

distribution of three N-linked glycan ions extracted from the mass spectral image of four 

serum sample: NC, BE, HGD and EAC.  If an ion distribution corresponded to a single gas 

phase ion, then the distribution would be Gaussian.  For the ion distributions shown in 

Figure 3.3, the glycans may exist as distinct conformers in the gas phase or their mobility 

ion profiles denote the presence of structural isomers.   A visual examination of the mobility 

distributions for these three glycans from a single individual in each phenotype group 

suggest differences in peak shapes, peak intensities and peak intensity ratios across disease 

phenotypes.   Because of the number of samples (see Table 3.1) and features in the data 

set, a more systematic analysis of the data using pattern recognition methods is necessary 

to establish a correlation between N-linked glycan mobility distributions and disease 

phenotypes. 
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Table 3.2.  Nine N-linked Glycans used in this Study 

 

The ion mobility distribution for each glycan from a serum sample was translated into 

a data vector where each element corresponds to the ion intensity at a specified drift time 



35 
 

for a fixed m/z value.  All 9 ion mobility distributions for a sample were then concatenated 

into a single data vector.  In other words, mobility distributions of the 9 N-linked glycans 

were sequentially spliced together in a single mobility distribution across an arbitrary drift 

bin axis.  Each sample data vector consisted of 1791 ion intensity values normalized to the 

largest peak intensity in the vector.  The data set of 116 ion mobility distribution spectra, 

which was divided into a training set of 90 spectra and a validation set of 26 blinds (see 

Table 3.1), was analyzed using pattern recognition methods.     

Figure 3.2.  A mass spectral image of a serum sample enriched in N-linked glycans from 

a Normal patient.  Ion intensity is shown as a function of drift time and m/z values.  A 

color code is used to represent ion intensity with blue representing the lowest intensity 

and red representing the highest intensity. 

 

 

 

 

 



36 
 

 
Figure 3.3.  Ion mobility distribution of N-linked glycan ions [S1H5N4+Na]+, 

[F1H5N4+Na]+ and [S1F1H5N4+Na]+. Esophageal adenocarcinoma (EAC), high grade 

dysplasia (HGD), Barrett’s esophagus (BE) and normal control (NC) phenotypes are 

represented by a single individual. Glycan structures are shown as insets: F represents 

fucose (red triangle), H represents hexose (mannose green circle, galactose yellow circle), 

N represents N-acetylglucosamine (blue square) and S represents sialic acid (purple 

diamond). 

 

The ion mobility distribution for each glycan from a serum sample was translated into 

a data vector where each element corresponds to the ion intensity at a specified drift time 
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for a fixed m/z value.  All 9 ion mobility distributions for a sample were then concatenated 

into a single data vector.  In other words, mobility distributions of the 9 N-linked glycans 

were sequentially spliced together in a single mobility distribution across an arbitrary drift 

bin axis.  Each sample data vector consisted of 1791 ion intensity values normalized to the 

largest peak intensity in the vector.  The data set of 116 ion mobility distribution spectra 

was divided into a training set of 90 spectra and a validation set of 26 blinds (see Table 

3.1). 

     

3.4 RESULTS AND DISCUSSION 

 

For each training set sample (MALDI plates 1 and 2), the corresponding 9 glycan 

composite mobility distribution contained 1791 drift bins.  Because many of the drift bins 

were zero (before and after each individual glycan) or have similar intensities, only the ion 

intensities from 404 drift bins were considered for pattern recognition analysis.  Figure 3.4 

shows a plot of the two largest principal components of these 404 mass spectral features.  

Each training set sample is represented as a point in the PC plot.  EAC samples are partially 

resolved from the other three phenotypes but more noticeably, three outliers are present 

(two NC and one HGD) in this plot.  A visual examination of the composite mobility 

distribution data reveals that these three outliers are represented by profiles that are 

markedly different from the other mobility distribution profiles in the training set.  For this 

reason, these three outliers were removed and principal component analysis was again 

performed on the truncated training set.  
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Figure 3.4.  Plot of the two largest principal components of the 90 mobility distribution 

profiles and the 404 mass spectral features of the training set.  1 = Normal control (NC, 

28 spectra), 2 = Barrett’s esophagus (BE, 20 spectra), 3 = high grade dysplasia (HGD, 10 

spectra) and 4 = esophageal adenocarcinoma (EAC, 32 spectra).   

 

A plot of the two largest principal components of the truncated training set is shown in 

Figure 3.5.  The training set can be divided into two groups (see solid line along the second 

principal component axis and parallel to the first principal component axis delineating the 

separation of the mobility distribution profiles in Figure 3.5).  All samples above the solid 

line are from the first MALDI spot for each sample within MALDI plate 1 (duplicates were 

spotted back to back on the MALDI plate, the first spot labeled a, and the second spot 

labeled b).  Examining the origin of each sample, it was observed that all samples from the 

second spot on plate 1 and both spots on plate 2 lie below the solid line in Figure 3.4.  There 



39 
 

were no variations in instrumental parameters within one MALDI plate or between the two 

plates as the instrument used was continually tuned using an external standard.  The 

observed clustering in the PC plot is probably due to the quality of the sample spotting 

technique, which improved during the course of the experiment.  

 

Figure 3.5.  A plot of the two largest principal components of the truncated training set 

(with the three outliers removed from the data set) is shown.  Almost all samples above 

the solid line are from the first MALDI spot for each sample whereas the samples from 

the second spot on plate 1 and both spots on plate 2 lie below the solid line. 

 

Following this line of investigation, the first set of ion mobility distribution profiles 

from plate 1 (denoted as plate 1a samples) and the second set of distribution profiles from 

plate 1 combined with both sets of spectra from plate 2 (denoted as plate 1b, plate 2a and 

2b samples) were analyzed separately using principal component analysis (see Figures 3.6 

and 3.7) and the pattern recognition GA, which identified drift bin intensities characteristic 
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of disease phenotype by sampling key feature subsets, scoring their principal component 

plots and tracking those samples and/or phenotypes that were difficult to classify.  

Separation of the different phenotype groups is observed in both principal component plots 

after feature selection. (see Figures 3.8 and 3.9).  Although sample spotting is a major 

source of variation in the data, our hypothesis is that differences between phenotypes 

represent a larger source of variation. Because of this, data from all plates were analyzed 

in a single training set by the pattern recognition GA.  This phase of the analysis (described 

below), which allowed for an evaluation of the training set samples with respect to a 

possible bias introduced by sample preparation, is valuable as it helps us to ensure that 

observed differences are due to phenotype rather than to the experimental conditions used 

to generate the data.   

 

Figure 3.6.  Plot of the two largest principal components of the plate 1a ion distribution 

profiles and 404 mass spectral features from the training set.  1 = NC, 2 = BE, 3 = HGD, 

and 4 = EAC. 
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Figure 3.7.  Plot of the two largest principal components of the plate 1a ion distribution 

profiles from the training set and the 12 mass spectral features identified by the pattern 

recognition GA.  1 = NC, 2 = BE, 3 = HGD, and 4 = EAC. 
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Figure 3.8.  Plot of the two largest principal components of the plate 1b, 2a, and 2b ion 

distribution profiles and the 404 mass spectral features from the training set.  1 = NC, 2 = 

BE, 3 = HGD, and 4 = EAC. 
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Figure 3.9.  Plot of the two largest principal components of the plate 1b, 2a, and 2b ion 

distribution profiles from the training set and the 26 mass spectral features identified by 

the pattern recognition GA.  1 = NC, 2 = BE, 3 = HGD, and 4 = EAC. 

 

For experiments of the type that we are considering, there will be relationships among 

the set of conditions used to generate the data and the patterns that result.  One must realize 

this in advance when approaching the task of analyzing such data.  The problem is utilizing 

information characteristic of the pathological alteration characteristic of the various disease 

states (BE, HGD, and EAC) of the patients without being inundated by the large amount 

of quantitative data due to variations in the experimental conditions contained in the 

complex MALDI-IMS-MS spectral images.  The study design used here serves as a test to 

Sample 102 

Sample 119 

Sample 204 
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determine whether information characteristic of the disease state of the subject can be 

extracted from two-dimensional mass spectral data. 

 

The truncated training set of 87 ion distribution profiles and 404 drift bin features was 

analyzed by the pattern recognition GA to identify informative features (correlated to 

disease phenotype) in the MALDI-IMS-MS dataset by sampling key feature subsets 

(chromosomes) and scoring their PC plots.  After 200 generations, the boosting routine of 

the pattern recognition GA steered the population to an optimal solution. 

   

The capability of the set of features identified by the pattern recognition GA to 

delineate between NC, BE, HGD and EAC phenotypes was assessed using principal 

component analysis.  Figure 3.9 shows a plot of the two largest principal components of 

the 24 features identified by the pattern recognition GA.  Remarkably, the four phenotypes 

are delineated. This is an improvement from our previous study where only NC and EAC 

phenotypes were differentiated [3-14].    

 

During the course of this analysis, the pattern recognition GA identified 5 additional 

samples that were discordant.  3 of these 5 samples were previously identified as 

problematic with respect to classification of the different phenotype groups in the principal 

component plot of Plates 1a, 2a, and 2b after feature selection (see Figures 3.10).  These 5 

samples were deleted from the analysis.  The four phenotypes are unequivocally 

distinguished in the principal component plot and in addition, all clusters are tight (only 

one sample lies outside of a cluster). The observation of tight phenotype clusters suggests 

high prediction power for these features. This was the case when examining the projection 

of the 26 blind samples onto the principal component plot comprising these 24 features 
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(see Figure 3.11).  All 26 blind samples fall within a given phenotype. Glycans contributing 

to phenotype differentiation were identified by examining the position along the arbitrary 

drift bin axis of the features selected by the pattern recognition GA.  Most of the selected 

features were localized on the mobility distribution of five glycans: S1F1H5N4, F1H4N4, 

F1H5N4, S1H5N4, and S2H5N4.  

 

Figure 3.10.  Plot of the two largest principal components of the 82 training set samples 

(8 samples were deleted because they were outliers) and the 24 features identified by the 

pattern recognition GA.  1 = NC, 2 = BE, 3 = HGD, and 4 = EAC. 

 

The predictions for the 26 blinds are summarized in Table 3.3.  Among the 26 blinds, 

20 are correctly predicted.  The number of false positives was 2, and the number of false 

negatives was 4.  Within the false negative predictions, two samples were predicted as NC 

instead of BE and two as NC instead of HGD; and within the false positive predictions, 
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one EAC and one HGD prediction were incorrectly made. The 24 features from which the 

discriminant (principal component plot) was developed yielded 80% sensitivity and 66% 

specificity.  Although a larger blind sample set would be necessary for a true clinical 

evaluation of the sensitivity and specificity of a discriminant developed from these 24 

features, this methodology appears promising for disease phenotype delineation.   

 

Figure 3.11.  Blind samples projected onto the principal component plot defined by the 

82 training set samples and the 24 features identified by the pattern recognition GA.  For 

the training set, 1 = NC, 2 = BE, 3 = HGD, and 4 = EAC.  For the blinds, N = Normal 

Controls, B = Barrett’s Esophagus, H = High-grade dysplasia, C = Esophageal 

adenocarcinoma.  Circled blinds are incorrectly predicted by the principal component 

map of the data. 
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Table 3.3.    Phenotype Prediction Results  

Blind 

Sample 

Phenotype Prediction 

U_1 BE BE 

U_2 BE NC 

U_3 BE BE 

U_4 EAC EAC 

U_5 EAC EAC 

U_6 EAC EAC 

U_7 HGD HGD 

U_8 HGD HGD 

U_9 NC HGD 

U_10 NC NC 

U_11 NC EAC 

U_12 EAC EAC 

U_13 BE BE 

U_14 BE BE 

U_15 EAC EAC 

U_16 HGD NC 

U_17 NC NC 

U_18 EAC EAC 

U_19 HGD NC 

U_20 BE BE 

U_21 BE NC 

U_22 EAC EAC 

U_23 NC NC 

U_24 BE BE 

U_25 EAC EAC 

U_26 NC NC 

 

Of the 24 features selected by the pattern recognition GA, 7 were found to be significant 

for overexpression or under-expression of a specific protein or protein fragment for EAC 

or an intermediate stage of EAC using a one-way unstacked ANOVA implemented via 

Minitab 13.1.  Table 3.4 summarizes the results for these 7 features identified as significant 

at the p < .002 level.  Although these 7 features were found to be significant using a 
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univariate means test to identify mass features correlated to overexpression or under-

expression, successful classification of this data required all 24 features.   

 

Table 3.4.  ANOVA Results for the 24 GA Selected Features 

Glycan (BIN) Significance (P < 0.002) 

F1H3N4 (93) None 

F1H3N4 (112) None 

F1H4N4 (306) Underexpressed for EAC 

F1H4N4 (307) Underexpressed for EAC 

F1H4N4 (317) Underexpressed for EAC 

F1H5N4 (508) None 

F1H5N4 (517) Underexpressed for EAC 

F1H5N4 (518) Underexpressed for EAC 

F1H5N4 (533) Underexpressed for EAC 

F1H5N4 (536) None 

S1H5N4 (732) Underexpressed for EAC 

S1H5N4 (758) None 

S1H5N4 (764) None 

S1F1H5N4 (916) None 

S1F1H5N4 (929) None 

S1F1H5N4 (953) None 

S1H5N5 (1128) None 

S1H5N5 (1136) None 

S2H5N4 (1333) None 

S2H5N4 (1372) None 

S2H5N4 (1376) None 

S1F1H5N5 (1542) None 

S1F1H5N5 (1572) Overexpressed for HGD 

S2F1H5N5 (1740) None 

 

The ion mobility distributions of the three glycans shown in Figure 3.3 suggest the 

presence of structural isomers for these glycans as the ion distribution profile for a single 

compound should be Gaussian.  For this reason, the discrete wavelet transform was applied 

to the concatenated ion mobility distribution profiles of the 9 glycans.  Wavelets can 

resolve overlapping spectral responses while simultaneously increasing signal to noise by 

separating the signal from noise in distinct wavelet coefficients.  The motivation for 
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applying the discrete wavelet transform to the concatenated glycan ion mobility 

distribution profiles is shown in Figure 3.12.   

Figure 3.12.  Concept underlying the motivation for applying the discrete wavelet 

transform to the concatenated ion mobility distribution profiles 

 

 

Figure 3.13 shows a plot of the two largest principal components of the 90 training set 

samples and the 2696 wavelet coefficients of the ion distribution profiles using the Symlet 

6 mother wavelet at the 8th level of decomposition (8Sym6).  Each wavelet preprocessed 

distribution profile is represented as a point in the principal component plot.  Three outliers 

(two NC samples, 1005 and 1027 and one HGD sample, 303) that are present in this plot 

are also present in the principal component plot of the full training set shown in Figure 3.4 

for the original drift bin data.  The wavelet transformed ion distribution profiles of these 

three outliers were again markedly different from the other mobility ion distribution 

profiles in the training set.  For this reason, these three outliers were again removed, and 

principal component analysis was performed on the truncated training set.   
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Figure 3.13.  Plot of the two largest principal components of the 90 wavelet transformed 

mobility distribution ion profiles and the 2696 wavelet coefficients.  1 = Normal control 

(NC, 28 spectra), 2 = Barrett’s esophagus (BE, 20 spectra), 3 = high grade dysplasia 

(HGD, 10 spectra) and 4 = esophageal adenocarcinoma (EAC, 32 spectra).   

 

Figure 3.14 shows a plot of the two largest principal components of the wavelet 

transformed data (2696 wavelet coefficients) for the truncated training set.   Again, the 

training set can be divided into two groups (see solid line along the second principal 

component axis and parallel to the first principal component axis delineating the separation 

of the mobility distribution profiles in Figure 3.14).  All samples above the solid line are 

from the first MALDI spot for each sample within MALDI plate 1 (duplicates were spotted 

back to back on the MALDI plate, the first spot labeled a, and the second spot labeled b).  

Examining the origin of each sample, it was observed that all samples from the second spot 



51 
 

on plate 1 and both spots on plate 2 lie below the solid line in Figure 3.14.  Similar results 

were obtained for the original ion distribution profile data (see Figure 3.5).  Again, the 

observed clustering in the principal component plot is probably due to the quality of the 

sample spotting technique, which improved during the course of the experiment. 

Figure 3.14.  A plot of the two largest principal components of the truncated training set 

of 87 spectra (with the three outliers removed) and 2696 wavelet coefficients.  Almost all 

of the samples above the solid line are from the first MALDI spot whereas the samples 

from the second spot on plate 1 and both spots on plate 2 lie below the solid line. 

 

The set of ion mobility distribution profiles from plate 1 (denoted as plate 1a samples) 

and the set of ion mobility distribution profiles also from plate 1 combined with the two 

sets of spectra from plate 2 (denoted as plate 1b, plate 2a and 2b samples) were analyzed 

individually using principal component analysis. The pattern recognition GA, which 
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identified wavelet coefficients characteristic of disease phenotype by sampling key feature 

subsets, scoring their principal component plots and tracking those samples and/or 

phenotypes that were difficult to classify, was applied to each set of ion distribution 

profiles.  Separation of the different phenotype groups is observed in both principal 

component plots after feature selection. (see Figures 3.15 and 3.16). 

 

Figure 3.15.  Plot of the two largest principal components of the plate 1a ion distribution 

profiles from the training set and the 12 wavelet coefficients identified by the pattern 

recognition GA.  1 = NC, 2 = BE, 3 = HGD, and 4 = EAC. 
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Figure 3.16.  Plot of the two largest principal components of the plate 1b, 2a, and 2b ion 

distribution profiles from the training set and the 14 wavelet coefficients identified by the 

pattern recognition GA.  1 = NC, 2 = BE, 3 = HGD, and 4 = EAC. 

 

The truncated training set of 87 ion distribution profiles and 2696 wavelet coefficients 

was analyzed by the pattern recognition GA to identify informative coefficients (correlated 

to disease phenotype) by sampling key feature subsets and scoring their PC plots.  After 

200 generations, the boosting routine of the pattern recognition GA steered the population 

to an optimal solution. 

   

The capability of the set of features identified by the pattern recognition GA to 

delineate between NC, BE, HGD and EAC phenotypes was assessed using principal 

component analysis.  Figure 3.17 shows a plot of the two largest principal components of 
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the 15 wavelet coefficients identified by the pattern recognition GA.  All four phenotypes 

are clearly delineated.    

 

Figure 3.17. Plot of the two largest principal components of the 87 spectra and the 15 

wavelet coefficients identified by the GA.  1 = NC, 2 = BE, 3 = HGD, and 4 = EAC. 

 

 

 The predictive ability of the 15 wavelet coefficients was assessed by projecting the 26 

blind samples onto the principal component plot of the data developed from the 87 training 

set samples and 15 wavelet coefficients identified by the pattern recognition GA (see 

Figure 3.18).  All 26 blind samples fall within a given phenotype. Furthermore, only three 

blind samples were misclassified.  These three samples (U_16, U_19 and U_21) were also 

misclassified by the discriminant developed from 24 features directly extracted from the 
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drift bins of the ion mobility distributions of the concatenated 9 glycans without wavelet 

preprocessing. 

 

Figure 3.18.  Blind samples projected onto the principal component plot defined by the 

87 training set samples and 15 wavelet coefficients identified by the pattern recognition 

GA.  For the training set, 1 = NC, 2 = BE, 3 = HGD, and 4 = EAC.  For the blinds, N = 

Normal Controls, B = Barrett’s Esophagus, H = High-grade dysplasia, C = Esophageal 

adenocarcinoma.  Circled blinds are incorrectly predicted by the plot. 

 

The predictions for the 26 blinds are also summarized in Table 3.5.  There were no 

false positives, and the number of false negatives was 3.  Within the false negative 

predictions, two samples were predicted as NC instead of HGD and one as NC instead of 

BE.  The 15 wavelet coefficients from which the discriminant (principal component plot) 

was developed yielded 85% sensitivity and 100% specificity.   

 

Sample U-21 Sample U-16 

Sample U-19 
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Table 3.5.    Phenotype Prediction Results  

Blind 

Sample 

Phenotype Prediction 

U_1 BE BE 

U_2 BE BE 

U_3 BE BE 

U_4 EAC EAC 

U_5 EAC EAC 

U_6 EAC EAC 

U_7 HGD HGD 

U_8 HGD HGD 

U_9 HGD HGD 

U_10 NC NC 

U_11 NC NC 

U_12 EAC EAC 

U_13 BE BE 

U_14 BE BE 

U_15 EAC EAC 

U_16 HGD NC 

U_17 NC NC 

U_18 EAC EAC 

U_19 HGD NC 

U_20 BE BE 

U_21 BE NC 

U_22 EAC EAC 

U_23 NC NC 

U_24 BE BE 

U_25 EAC EAC 

U_26 NC NC 

 

The training set and validation set results for the wavelet transformed concatenated 

distribution profiles support the hypothesis that isomers of the 9 glycans (which are crucial 

for the full delineation of the disease phenotypes of esophageal cancer investigated in this 

study) cannot be completely separated by 2-dimensional mass spectrometry alone. 

However, multivariate and pattern recognition analysis offers the possibility of accessing 
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information about these isomers from the mass spectral images for complete phenotype 

discrimination. 

    

3.5 CONCLUSION 

 

Serum N-linked glycans extracted from patients diagnosed with BE, HGD, EAC and 

NC were analyzed by MALDI-IMS-MS.  A close examination of mobility profiles for the 

glycan ions [S1H5N4+Na]+, [F1H5N4+Na]+, and [S1F1H5N4+Na]+ revealed that in some 

cases, variations across different phenotypes are immediately noticeable. Because of the 

number of samples and ions examined within each sample, a pattern recognition based 

approach methodology utilizing variable selection was implemented in order to assess the 

capability of the dataset for disease phenotype delineation. To perform this task, mobility 

distributions for nine N-linked glycan ions (F1H3N4, F1H4N4, F1H5N4, S1H5N4, S1F1H5N4, 

S1H5N5, S2H5N4, S1F1H5N5 and S2F1H5N4) were extracted from the mass spectral data and 

combined into a composite IMS distribution.  Noticeably, NC, BE, HGD and EAC 

phenotypes were unambiguously differentiated.  Among the nine N-linked glycan ions 

selected for this analysis, the major contributors for distinguishing phenotypes are 

S1F1H5N4, F1H4N4, F1H5N4), S1H5N4 and S2H5N4.  Overall, this study demonstrates the 

capability of the combination of MALDI-IMS-MS and pattern recognition techniques for 

disease phenotype delineation.  
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CHAPTER IV 

 

 

SEARCH PREFILTERS FOR THE FORENSIC ANALYSIS OF AUTOMOTIVE 

PAINTS: GENERAL MOTORS, TOYOTA, NISSAN AND HONDA 

 

4.1 INTRODUCTION 

Applying Fourier infrared spectroscopies (FTIR) to a forensic paint sample analysis 

can be traced back to thirty five years ago, Royal Canadian Mounted Police (RCMP) found 

that vehicles could be identified by comparing the color, the layer sequence and the 

chemical composition of each individual layer of a paint sample. [1] They developed the 

system called Paint data query (PDQ) for classifying, storing and retrieving evidential paint 

information. PDQ database provides information in physical attributes of a paint sample, 

the chemical composition of each layer of the original manufacturer’s paint system via IR 

spectra.  To better understand the chemical analysis of automotive paint samples by using 

FTIR, it is necessary to understand the paint components of each layer and the paint layer 

construction of a model vehicle. Modern automotive paint systems [2] consist of four layers; 

from the top to the bottom, they are the clear coat, the color coat, the surface-primer coat 

and the e-coat primer (see Figure 4.1). [3] The clear coat and the color coat are called topcoat 

while the surfacer and the e-coat primer are called undercoat. 
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Figure 4.1.  Scheme of the multilayer coating of cars 

The chemical components in a clear coat are paint resins and binders without color 

pigments, while other layers have pigments, fillers, polymers and binders.  In United States, 

there are two clear coat formulations, one is acrylic melamine topcoat (see Figure4.2); the 

other is carbamate melamine (see Figure 4.3); Carbamate polyurethane (see Figure 4.4) 

commonly exists in European automotive paint formulations. Meanwhile β-hydroxyl 

polyesters is the main chemicals applied on Japanese cars (see Figure 4.5). [3] As a 

backbone material, acrylic polymers are modified by styrene (see Figure 4.6). Since FTIR 

is sensitive to molecular functional groups, transmission bands in a FTIR spectrum will 

characterize the chemical compositions of automotive top coat. For example, melamine 

triazine ring (C3N3) should have the band at 1550 cm-1 and a small non-diagnostic shoulder 

at 1450 cm-1.The 815 cm-1 sharp band reflects out-of-plane triazine ring vibration. Acrylic 

resins should show transmission bands of carbonyl at 1732 cm-1 and C-O stretch in 1100-

1310 cm-1. The hydroxyl functional acrylic carbonyl bands move to 1689 cm-1 due to a 

hydrogen bond. Bands at1293 cm-1 and 1169 cm-1 are bending bands of the aliphatic ester. 
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Figure 4.2.  The chemical structure of acrylic melamine 

 

Figure 4.3.  The chemical structure of carbamate melamine 

 

Figure 4.4.  The chemical structure of carbamate polyurethane 
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Figure 4.5.  The chemical structure of β-hydroxyl polyesters 

 

Figure 4.6.  The chemical structure of styrene 

The color coat is also called base coat. Color is valuable to discriminate an 

automobile paint. The paint in this layer is composed of a pigment portion and a vehicle 

portion. Pigment portion (transparent extender pigment and opaque coloring pigment) 

dominates the discrimination ability in the sample comparisons. For color coat, micro 

spectrophotometry (MSP) combined with X-ray spectrometry and scanning electron 

microscope (SEM) are more sensitive than FTIR instruments in the detection of heavy 

metals. Even if TiO2, ZnO, BaSO4 and CaCO3 have a visible peak in FTIR, since most 

pigment compounds have broad or weak bands in a FTIR spectrum and their bands range 

is from 400-1000 cm-1 [5] (signals from FTIR-ATR microscopy are not stable when the 

wavenumber is less than 675 cm -1 in the transmission mode); in addition, high 



64 
 

concentration of inorganic components in this layer hinds FTIR in detecting paint binders. 

FTIR is not suitable to examine the chemical information of a trace paint sample. This layer 

is not considered to be used for developing a prefilter in this study.  

The surface-primer coat is also called a “filler” or “middle” coat, chemical 

components are isophthalic alkyd (polyester), melamine, strontium chromate (SrCrO4), 

Kaolin (Al2Si2O5(OH)4), barium sulfate (BaSO4). [8] Polyester as a resin component exists 

in almost all types of primer surfacers. In IR spectra, ester group should have C=O stretch 

band in 1650-1750 cm -1 , C-O-C bending band in around 1250 or 1120 cm -1.  Substitute 

benzene ring will show a band around 800 cm-1, aromatic ring stretch in 1510-1615 cm -1, 

aromatic C-H in-plate bend 950-1225 cm -1, aromatic C-H out-of-plate band in 670-900 

cm -1. [6] Color in this layer normally will match to the color coat. 

The e-coat primers are applied to protect automotive substrate and adhere the 

surface-primer layers. Common chemical components in this layer are epoxy, 

polyurethane, kaolin, titanium, and dioxide. [6] The structure of epoxy resins is showed in 

Figure 4.7. Typically, FTIR characterizing epoxy resins with C=O band around 1730 cm-

1, C-O-C band in 1285cm-1 and 1122 cm-1, CH2 ̶ or CH3  ̶  bending band in 1376,1467 cm-

1 and aromatic ring bending in 706 cm-1. Polyurethane FTIR characterizing bands are N-H 

bending bands in 1468 cm-1 and 1522 cm-1, C-H bending band in 1380 cm-1, and a broad 

band in 1254 cm-1 representing C-N-H vibration and C-O bending. The most important 

mention in this book reference is “many of the parts coming into an assembly plant are pre-

primed and may receive common final coats”. [6] The primer layers may have similar 

chemical compositions for different automotive manufacturers. 
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Figure 4.7.  The chemical structure of epoxy polymer 

FTIR provides molecular structure information characterizing organic and 

inorganic constituents of paint layers. Based on this knowledge, paint data query (PDQ) 

was developed in the mid-1970s [7] as an automotive paint standard examination database.  

In PDQ, each layer was coded with symbols. For example, the clear coat is marked as OT2; 

OT1 represents the color coat; the surface-primer coat is coded in OU1 and OU2 denotes 

the e-coat primers. FTIR spectra were available by separating each paint layer of an 

automotive sample and placed between two diamond anvils to measure.  Up to now, PDQ 

contains 21000 samples and total over 84000 individual paint layers. [8] PDQ is the largest 

international forensic automotive searchable database of chemical and color information 

of automotive paints, it is used in the United States, Japan, Australia, New Zealand, 

Singapore, and the European Union. [9] PDQ contains a large number of transmission 

spectra and are often used as references for the purpose of qualitative analysis of paint 

fragment samples left at crime scenes. Automotive paint coatings are consisted of four or 

five layers, [3] by comparing the infrared spectrum of each paint layer of paint fragments 

left at hit-and-run to the relative infrared spectra of PDQ, police can narrow the search for 

unknown vehicles by using database match. Nevertheless, text-code PDQ system are 

unable to give accurate automotive information, because text based codes cannot uniquely 

characterize the IR spectrum of each paint layer. Multi-layered automotive paint fragments 

brought difficulties in the forensic examination of the composition of an automotive paint 
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due to similar chemical paint compositions and small sample size. Unspecific PDQ search 

produces a large number of hits and increases the workload and difficulty for forensic 

investigation. [10] In addition, the color layer may be too thin or small to be compared with 

manufacturer’s paint color standards in the PDQ system. [8] Broad and undefined features, 

scatter effects challenge directly using paint IR spectra to differentiate assembly plants. 

The new technology is needed to improve the accuracy of the PDQ library search. 

Pattern recognition was introduced to solve the above mentioned problem. Pattern 

recognition is able to find the pattern embed in automotive paint sample FTIR data and 

interpret large data objectively and visually. Principle component analysis maximizes the 

difference between paint chemical compositions and then improve the discriminative 

capacity of the trance paint sample analysis.  Many researches were carried out for 

developing supervised classification model as a prefilter to predict an unknown paint 

sample. [8, 10, 11, 12-19]. The prefilter using pattern recognition conjugated PDQ and a cross 

correlation library searching algorithm were successfully developed. First, the prefilter was 

developed from the clear coat to determine suspect car related to a single manufacturer: 

General Motors (GM) or Chrysler. Since the major chemical compositions of the top layer 

coats are composed of either acrylic melamine styrene or acrylic melamine styrene 

polyurethane in PDQ, the prefilter developed from the IR spectra of the clear coat paint 

samples lacked the differential ability when multi-manufacturer existence. The clear coat, 

surfacer-primer, and e-coat layers of each paint sample in PQD were conjugated together 

for developing a more powerful prefilter, which can be used to identify the make, line and 

model of an automotive vehicle from three manufacturers: General Motors (GM), Chrysler 

and Ford. However, the PDQ includes another three automotive manufacturers: Honda, 
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Nissan and Toyota. The further study should carry out to develop a prediction model based 

on all manufacturers included in PDQ.  

My research aims to develop robust search prefilters to determine the make, line 

and model of an automobile based on its paint fragment in a limited year range (2000-

2006) involves GM, Chrysler, Ford, Honda, Nissan, and Toyota. The hypothesis is that 

each assembly plant should have a unique paint formulation for an individual paint layer, 

the difference in the paint formulation is enough to be characterized by FTIR to 

discriminate the unknown paint fragment from the same source as PDQ. In this study, two 

prefilters were developed; Three-layer prefilters (The clear coat, surfacer-primer, and e-

coat layers) were compared with two-layer prefilters (The clear coat plus surfacer-primer). 

The three-layer prefilters did not show a significant improvement in an unknown paint 

sample prediction. Compared with the previous prefilters, the six-manufacturer prefilters 

significantly improved the discrimination capability and scope of automotive 

manufacturers. It narrows down a suspect automotive list for the further forensic trace 

evidence investigation and greatly improved the work efficiency by its function - 

simultaneously multi unknown sample predictions. This method can also applied for the 

discrimination of trance paint samples whose spectra is collected by ATR microscope 

reflectance or transmission mode. This method enables a forensic scientist to draw a more 

accurate conclusion between the evidence and comparative materials. Two different 

methods were explored for three-layer prefilters. 

4.2 FOURIER TRANSFORM INFRARED SPECTROSCOPY (FTIR) 
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 Fourier transform infrared spectroscopy (FTIR) is widely used for material 

identification, since its spectra disclose the unique combination of atoms making up a 

molecular. The bands in FTIR are generated by the vibration between the bonds of the 

atoms in a molecular.  Based on this theory, FTIR spectra are able to carry chemical 

compositions of paint samples, and are used for the identification of a car make and model 

based on the paint sample left at hit-a-run crime scene. In PDQ database, the paint fragment 

spectra were collected by a Fourier transform infrared spectroscopy (FTIR) transmission 

mode. Therefore, we need understand the basic theoretical principle of a FTIR 

spectrometer and the fundamental knowledge of FTIR. The instrumentation of the Thermo 

Nicolet FTIR spectrometer is in the Figure 4.8. [20] A FTIR spectrometer consists of an IR 

light source, an interferometer, a sample compartment and a detector. Nernst glowers are 

used in all infrared spectrometers as light sources. Deuterated triglycerine sulfate and 

mercury cadmium telluride are the most two commonly used detectors. The Michaelson 

Interferometer is the heart of a FTIR spectrometer, by employing an interferometer (see 

Figure4.9) [21], a FTIR spectrometry greatly reduces the sample scanning time comparing 

with other types of IR instruments. This is an advantage of FTIR. The beamsplitter is a 

KBr plate with a thin coating of germanium, which reflects the half of incident light and 

transmits the remaining half incidence of IR through two separate optical paths. One optical 

path is from a fixed mirror, and the other is from a moving mirror.  The sum of these two 

beams arrived the detector to generate the signal called an interferogram. When the 

interferogram is measured, all frequencies are being measured simultaneously, this is the 

reason why an interferometer can fast the measuring time. The signal embedded in an 

interferogram is decoded by Fourier transformation (see Equation 4-1) to form a FTIR 
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spectrum. Since diamond cells are transparent to IR radiation except in the region of 2400 

cm-1 to 1700 cm-1, diamond anvils in a sample compartment are used to hold a sample to 

obtain a transmission FTIR spectrum. The transmittance is measured by the Equation 4-2 

[21], where T is transmittance, I is the intensity of incident light transmitted by a sample, I0 

is the intensity of incident light reaching the sample; d is the thickness of a sample and α 

is the absorption coefficient. 

 

Figure 4.8.  The schematic diagram of a FTIR 
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Figure 4.9.  A schematic diagram of a Michelson Interferometer 

𝐹 (𝜔) =  ∫ 𝑓(𝑋)𝑒𝑖𝜔𝑋𝑑𝑋       
+∞

−∞
          (4.1) 

F (ω): FTIR spectrum   

f (X): Interferogram 

ω: Angular frequency 

X: Optical path difference 

𝑇 =  
𝐼

𝐼0
=  𝑒−𝛼𝑑             (4.2) 

4.3 METHOD 
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4.3.1 Experiment and Materials 

4.3.1.1 Materials 

 All paint sample IR spectra were provided by RCMP with records of the make, line, 

model, year, substrate, plant, vehicle type, PDQ number and automotive manufacturers 

Etc...  In this study, sample collection consisted of six manufacturers: GM, Chrysler, Ford, 

Honda, Nissan, and Toyota. The production year of those vehicles spanned from 2000 to 

2006. The total qualified sample population was 1773 paint samples with intact four layers, 

major sample information was listed in Table 4.1-Table4.7. Sub plants were identified by 

the PCA plot of the samples in a particular manufacturing plant.  Each assembly plant in 

PDQ database with less than five samples was not chosen for this study, whose information 

was listed in Figure 4.10. 

 

Figure 4.10 The histogram of assembly plants with less 5 samples 
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Table 4.1 Doublet sample assembly plants used to develop the search prefilter 
 

Manufacturer Plant name Plant ID Sample number 

 

 

 

 

 

GM 

Baltimore (BAL) 2 8 

Hamtramck (HAM) 10 18 

Orion (ORI) 21 12 

Ramos Arizpe (RAM) 24 25 

Silao (SIL) 26 19 

Spring Hill (SPH) 27 9 

Saint Therese (THE) 28 7 

Wentzville (WEN) 29 9 

Wilmington (WIL) 30 7 

Lansing (LAN) 114 8 

 

 

Chrysler 

Jefferson North (JFN) 1004 24 

Newark (NEW) 1006 23 

Jefferson North (JFN) 1104 13 

Newark (NEW) 1106 12 

 

Ford 

Wixom (WIX) 2017 10 

Saint Thomas-Talbotsville 

(STT) 

2114 5 

Wixom (WIX) 2217 9 

Honda East Liberty, OH, USA 3102 15 

Marysville, OH, USA 3106 19 

 

Table 4.2 Singlet sample assembly plants from GM used to develop the search prefilter 

Manufacturer Plant name Plant ID Sample 

number 

 

 

 

 

 

 

 

 

 

 

 

GM 

Arlington (ARL) 1 20 

Doraville (DOR) 4 26 

Fairfax (FAI) 5 28 

Flint (FLI) 6 8 

Fort Wayne (FOR) 8 15 

Fremont (FRE) 9 12 

Ingersoll (INE) 11 10 

Janesville (JAN) 12 16 

LAF* 13 1 

Lansing (LAN) 14 32 

Linden (LIN) 16 15 

Lordstown (LRD) 17 39 

Moraine (MOR) 18 29 

Oklahoma City (OKL) 20 7 

Oshawa (OSH) 22 19 

Pontiac (PON) 23 13 
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Shreveport (SHR) 25 19 

Oklahoma City (OKL) 120 5 

Oshawa (OSH) 122 22 

Oshawa (OSH) 222 17 

 

Table 4.3 Singlet sample assembly plants from Chrysler used to develop the search 

prefilter 

Manufacturer Plant name Plant ID Sample 

number 

 

 

 

 

 

 

 

 

Chrysler 

Belvidere (BEL) 1000 36 

Bloomington (BLO) 1001 7 

Bramalea/Brampton 

(BRA/BRP) 

1002 14 

Dodge Main (DOD) 1003 19 

Saltillo (SAL) 1007 29 

Sterling Heights (STH) 1008 22 

St. Louis (STL) 1009 21 

Toledo (TOL) 1010 15 

Toluca (TOU) 1011 28 

Windsor (WIN) 1012 27 

Bramalea/Brampton 

(BRA/BRP) 

1102 43 

Dodge Main (DOD) 1103 21 

Sterling Heights (STH) 1108 8 

St. Louis (STL) 1109 32 

Toledo (TOL) 1110 27 

 

Table 4.4 Singlet sample assembly plants from Honda used to develop the search prefilter 

 

 

 

 

Honda 

  

Alliston, ON, Canada 3000 44 

East Liberty, OH, USA 3002 9 

Lincoln, Alabama 3005 8 

Marysville, OH, USA 3006 23 

Sayama (Saitama) , Japan 3007 22 

Suzuka, Japan 3008 10 
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Table 4.5 Singlet sample assembly plants from Ford used to develop the search prefilter 

Manufacturer Plant name Plant ID Sample 

number 

 

 

 

 

 

 

 

 

Ford 

Atlanta (ATL) 2000 16 

Chicago (CHI) 2002 21 

Dearborn (DEA) 2003  21 

Flat Rock (FLA) 2005 20 

Hermosillo (HER) 2006 15 

Kansas City (KAN) 2007 23 

Kentucky Truck (KTR) 2008 29 

Lorain (LOR) 2009 6 

Louisville (LOU) 2010 16 

Norfolk (NOR) 2011 13 

Oakville (OAK) 2012 17 

Saint Louis (STL) 2013 6 

Saint Thomas-Talbotsville 

(STT) 

2014 14 

Twin Cities-Saint Paul 2015 12 

Wayne (WAY) 2016 61 

Dearborn (DEA) 2103 7 

Hermosillo (HER) 2106 5 

Kansas City (KAN) 2107 21 

Louisville (LOU) 2110 16 

Norfolk (NOR) 2111 6 

Saint Louis (STL) 2113 8 

Twin Cities-Saint Paul 2115 8 

Wayne (WAY) 2116 11 

Hermosillo (HER) 2206 4 

 

Table 4.6 Singlet sample assembly plants from Nissan used to develop the search prefilter 

Manufacturer Plant name Plant ID Sample 

number 

 

 

 

 

Nissan 

Aguascalientes, Mexico 4000 11 

Canton, MS 4001 23 

Kyushu #1,2,3, Japan 4004 6 

Oppama #1,2, Japan 4005 9 

Smyrna, TN, USA 4006 30 

Tochigi #1,2,3, Japan 4007 9 

Aguascalientes, Mexico 4100 7 

Kyushu #1,2,3, Japan 4104 13 

Oppama #1,2, Japan 4105 8 

Smyrna, TN, USA 4106 21 
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Table 4.7 Singlet sample assembly plants from Toyota used to develop the search 

prefilter 

Manufacturer Plant name Plant ID Sample 

number 

 

 

 

 

 

Toyota 

Cambridge, ON, Canada 5002 31 

Fremont, CA, USA 5003 16 

Georgetown, KY, USA 5004 27 

Japan 5005 79 

Princeton, IN (Evansville) 5007 22 

Fremont, CA, USA 5103 12 

Georgetown, KY, USA 5104 13 

Japan 5105 5 

 

4.3.1.2 Experimental 

 The IR transmission spectra of 1773 automotive paint samples from the PDQ 

database were collected by a Bio-Rad 40A, Bio-Rad 60A or Thermo-Nicolet 6700FTIR 

spectrometers, the qualified sample  must have intact four layers: clear coat, color coat, 

surface and primer. FTIR spectrometers used to collect IR spectra for PDQ database were 

equipped with a DTGS detector. FTIR operation resolution was 4 cm-1 with apodization 

Happ-Genzel. Spectra were collected between 400 cm-1-4000 cm-1. The spectrum from 

each layer of a sample comprised 1869 points. The details about the sampling conditions 

were described in elsewhere. [8] 

4.3.2 Pattern Recognition Method 

4.3.2.1 Data Preprocessing 

 Pattern recognition prefilter is developed to determine the similarity or dissimilarity 

between an unknown sample IR spectrum and the spectra from PDQ. Before data 

preprocessing, each spectrum was normalized by frequency in order to achieve an 
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integrated frequencies for the all samples by using the OMNIC software. Previous study[8] 

showed the fingerprint region of IR spectra from 667-1640 cm -1 contained information to 

discriminate assembly plants and while carbonyl stretch (1650-1750 cm -1 ) was not ; 

Nevertheless, carbonyl stretch bands were useful to determine plant groups by either 

doublet (acrylic melamine styrene polyurethane) or singlet (acrylic melamine styrene) in 

clear coat.  IR spectrum range from 2100-2500 cm-1 are C-H stretching band existing 

commonly in paint polymers and also contaminated by diamond anvil cell IR absorption. 

However, considering about prediction samples from an IR-ATR microscopy source, the 

IR spectra in the training set were truncated from 680-1641cm-1. All qualified samples were 

divided into two datasets (doublets/singlet data set) according to the numbers of the 

carbonyl bands in the clear coat of each sample. The IR truncated data from each layer was 

scaled by vector normalization. To minimize noises and magnify signals, the data was 

further preprocessed by “8sym6”wavelet decomposition described in our previous study 

[10].  The discriminative ability of classifiers were compared by using Savitzky-Golay 

smoothed IR data and unsmoothed IR data. The IR spectra from the individual layer were 

smoothed by Savitzky-Golay method. The comparison involved both the single clear coat 

data and the three layers one (the clear coat horizontally concatenating the two undercoat 

layers). 

4.3.2.2 Data Analysis 

 The carbonyl stretch bands from IR spectra of the paint clear coat in each assembly 

plant were visually carefully checked. Two separate datasheets were constituted either by 

single carbonyl stretch band or doublet carbonyl stretch bands for further data analysis. 

Before using Hierarchical Cluster Analysis (HCA) for either the singlet sheet or the  
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doublet sheet, unsupervised principal component analysis (PCA) was applied to each 

assembly plant to assess its class structure (subgroups).The  initial sub plant information 

of a manufacturer was achieved based on the clear coat (OT2) IR truncated data. HCA 

produced a dendrogram to gather similar paint formulation assembly plants to a cluster and 

provided initial class subgroups information for the first search prefilter development by 

using the average OT2 IR spectra of assembly plants in a dataset. Genetic algorithm (GA) 

identified wavelet coefficients from OT2 “8sym6”wavelet preprocess data to build up the 

first prefilter, which contains information to pattern samples into different assembly plant 

groups. The second prefilter was developed to differentiate the manufacturers of a sample 

locating in the same class of the first prefilter.  “8sym6”wavelet preprocess data from the 

clear coat horizontally concatenated “8sym6”wavelet preprocess data from two undercoats, 

whose wavelet coefficients were identified by a GA as classifiers in the second prefilter. 

The detail data fusion technical is described in the previous research at our lab. [22] The 

final step prefilter was done by GA for pattern recognition analysis of an assembly plant 

from the manufacturer identified by the second prefilter. The data analysis process was 

described in Figure 4.11. “8sym6”wavelet preprocess data from the clear coat horizontally 

concatenated “8sym6”wavelet preprocess data from the surfacer-primer coat were also 

used to develop the prefilters to assist infrared library searching system. [12] 
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Figure.4.11 Block diagram of the vehicle classification process using pattern recognition 

prefilter 

 

4.4 RESULTS AND DISCUSSION 

4.4.1 Subplant and Carbonyl Band Information 

 Sub plant and carbonyl band information of the assembly plants from GA, 

Chrysler and Ford came from the previous research at our lab and was listed in the Table 

4.1-Table 4.2 and Table 4.4-Table 4.5. [22] The split assembly plants from Honda, Nissan 

and Toyota were showed in Figure 4.12 – Figure 4.16 by the two largest principle 

components; the split assembly plants with the doublet of carbonyl band were showed in 

Figure 4.17- Figure 4.18. Their sub plant and carbonyl band information were concluded 

in Table 4.1, Table 4.3, Table 4.6- Table 4.7. 
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Figure 4.12.  2-PC plot of the samples from assembly plant Kyushu (Nissan) 

 

 

Figure 4.13.  2-PC plot of the samples from assembly plant Oppama (Nissan) 
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Figure 4.14.  2-PC plot of the samples from assembly plant Smyrna (Nissan) 

 

 

Figure 4.15.  2-PC plot of the samples from assembly plant Fremont (Toyota) 
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Figure 4.16.  2-PC plot of the samples from assembly plant Japan (Toyota) 

 

 

Figure 4.17.  The carbonyl IR bands of samples from assembly plant East Liberty 

(Honda) 
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Figure 4.18. The carbonyl IR bands of samples from assembly plant Marysville (Honda) 

 

Figure 4.19.  IR spectra of the samples from assembly plant Aguascalientes (Nissan) 
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Figure. 4.20 IR spectra of the samples from assembly plant Georgetown (Toyota) 

 Even if the PCA plots of the samples from assembly plant Georgetown and 

Aguascalientes did not show obvious split, the IR spectra from the same assembly plant 

are different, which indicated these two assembly plants would have sub plants 

representing different clear coat formulations. The IR spectra split in Aguascalientes 

assembly plant may be caused by paint composition change in 2005. The IR spectra split 

in Georgetown assembly plant were unclear.  The split of the both two assembly plants was 

not caused by the paint color.  

 We assumed the PCA split in one assembly plant due to the change of the clear coat 

paint formulation. Samples from Nissan Kyusha split into two sub plants (PID4004 and 

4104) indicated that this assembly plant might use two different clear coat paint 

composition. Samples from Nissan Oppama split into PID4105 (most from make Nissan) 

and PID4005 (most from make Infiniti). But they did not have strict quality control for 

paint composition. Samples from Nissan Smyrna split caused by cars (PID 4006) or trucks 
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(PID 4106) using two different paints. Samples from Toyota Fremont split because paint 

formulations were changed in year 2000 – 2002 (PID 5003) and year 2005-2006 

(PID5103). Most time Toyota assembly plant Japan used the same clear coat paint except 

the truck produced before 2002 in line 4Runner and line Prado. Acrylic melamine styrene 

was the common clear coat paint composition in most assembly plants belong to 

automotive manufacturers: Honda, Nissan and Toyota. 

4.4.2 Hierarchical Cluster Analysis and Principal Component Analysis 

4.4.2.1 Doublets 

 A hierarchical classification scheme and principal component analysis were 

employed to identify the assembly plant of an automotive paint sample with double 

carbonyl bands in a clear coat layer.  Their results were shown in Figure 4.21 – Figure 4.22. 

For assembly plants whose polymer formulation for the clear coat is acrylic melamine 

styrene polyurethane (double carbonyl band),  the results of the principal component 

analysis and the hierarchical cluster analysis suggested to group these ninteen assembly 

plants and sub plants into five plant groups (see Table 4.8),  each plant group was assumed 

that the chemical composition of a clear coat was similar. 
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Figure 4.21.  All doublet assembly plants hierarchical cluster analysis of the average IR 

spectrum 

 

 

Figure 4.22.  All doublet assembly plants principal component analysis of the average IR 

spectrum 
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Table 4.8 Double carbonyl bands plant group assignment 

Assigned Group Plant 

Number 

Manufacturer Name Plant Numbers 

1 GM 2,10,21,29,30 

2 GM 24,26,27,28,114 

3 GM + Honda 1106,3102 

4 Chrysler + Honda 1004,1006,1104,3106 

8 Ford 2017,2114,2217 

 

4.4.2.2 Singlet 

A hiearchical classification scheme and principal component analysis were 

employed to identify the assembly plant of an automotive paint sample with single 

carbonyl band in a clear coat layer.  Their results were shown in Figure 4.23 – Figure 

4.24. For assembly plants whose polymer formulation for the clear coat is acrylic 

melamine styrene (single carbonyl band),  the results of the principal component analysis 

and the hierarchical cluster analysis suggested to group these eighty assembly plants and 

sub plants into six groups. However,  the grouping method was unsucessful as the one 

applied on doublets. Some assembly plants kept on splitting into sub plants by 

continuously checking IR spectra and GA run results . Assembly plants from Alliston 

(Honda), Marysville (Honda), Cambridge (Toyota), Fremount (Toyota), Georgetwon 

(Toyota) continuously split into further sub plants based on 2-PC plots and the final 

group information was listed on Table 4.9.  Each plant group was assumed that the 

chemical composition of a clear coat was similar. 
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Figure 4.23.  All Singlet assembly plants hierarchical cluster analysis of the average IR 

spectrum 

 

 

Figure 4.24.  All singlet assembly plants principal component analysis of the average IR 

 

Table 4.9 single carbonyl bands plant group assignment 

Assigned Plant  

Group Number 

Manufacturer  Name & Plant ID’s 
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1 GM: 1,4,5,6,8,9,11,12,13,14,16,17,18,20, 22,23, 25, 120,122,22 

2 Nissan: 4004, 4105 

Toyota: 5004,5005,5007, 5102,5103 

3 Chrysler: 

1000,1001,1003,1007,1008,1009,1011,1012,1102,1108,1110 

Nissan: 4001, 4006 

Toyota: 5002,5203 

4 Chrysler: 1002,1010,1103,1109 

Ford: 2007,2106,2014,2006,2005,2013,2011,2002,2010,2110, 

2003,2008,2012,2016,2015,2107 

Honda: 3106,3100 

Nissan: 4100,4106 

5 Ford: 2116,2113,2111,2103,2206,2009,2115 

Honda: 3000,3002,3005,3006 

Toyota: 5003,5104,5303 

6 Honda: 3007,3008,3200 

Nissan: 4000,4005,4007,4104 

Toyota: 5105,5204 

 

 

4.4.3 Smoothed Data versus Unsmoothed Data 

 

The Spectra in the fingerprint region from the clear coat and two undercoats were 

smoothed using Savitzky-Golay filter (4th order polynomial, 17 point window) 

respectively. The smoothed IR spectra of each paint layer were vector normalized and then 

transformed by using 8Sym6 individually. [22] The wavelet coefficients from OT2, OU1 

and OU2 of a sample were horizontally concatenated into a single vector by the method 

described in our previous study. [22] The same processes were applied on unsmoothed IR 

spectra. Smoothed data and unsmoothed data were compared by using the same GA 

classification process. All experimental results (Figure 4.25 – Figure 4.28) disclosed 

Savitzky-Golay smooth data did not improve the GA classifications significantly than 

unsmooth data. For the first prefilter, the 2-PC plots of GA pattern recognition have no 

significant difference between the smoothed data and the unsmoothed data (see Figure 
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4.29). Therefore, in this study, prefilters were developed from the IR spectra data without 

Savitzky-Golay smooth. 

 

Figure 4.25. 2-PC plot of the 1373 paint samples with 3426 wavelet coefficients 

comprising the training set data (1 = Toyoda, 2 = GM + Chrysler + Ford + Honda 

+Nissan) 

 

Figure 4.26. 2-PC plot of the 1373 paint samples with 3426 wavelet coefficients 

comprising the training set data (1 = Nissan, 2 = GM + Chrysler + Ford + Honda 

+Toyota) 
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Figure 4.27. 2-PC plot of the 1373 paint samples with 3426 wavelet coefficients 

comprising the training set data (1 = Honda, 2 = GM + Chrysler + Ford + Nissan 

+Toyota) 

 

 

Figure 4.28. 2-PC plot of the 976 paint samples with 3426 wavelet coefficients 

comprising the training set data (1 = GM, 2 = Chrysler, 3 = Ford) 
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Figure 4.29. 2-PC plot of the 1377 paint samples with 1142 wavelet coefficients 

comprising the training set data (1=group1, 2=group2, 3=group3, 4=group4, 5=group5, 

6=group6) 

 

4.4.4 Search Prefilter for Assembly Plant Groups 

 A genetic algorithm for feature selection and pattern recognition analysis was 

applied on both single carbonyl band sample (see Table 4.10) data sheet and double 

carbonyl bands sample (see Table 4.11) data sheet to identify wavelet coefficients to 

characterize the similar paint formulation in a clear coat layer based on assembly plants.  

After 200 generations, the pattern recognition GA identified the certain numbers of 

wavelet coefficients whose 2-PC plot exhibited clustering of the clear coat IR spectra on 

the basis of assembly plants from six automotive manufacturers. The 2-PC plots for the 

singlet training and validation set were seen in Figure 4.30-Figure 4.31. However, the 

pattern recognition GA was unable to identify the wavelet coefficients of the clear coat 

IR spectra to cluster assembly plants on the basis of automotive manufacturers (See 

Figure 4.32). The 2-PC plots for the doublet training and validation set were seen in 
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Figure 4.35-Figure 4.36. This results suggests that information about automotive 

manufacturers cannot be directly obtained from the clear coat but this layer provides the 

information to narrow down the search scope of automotive manufacturers, since each 

group of assembly plants are consisted of specific automotive manufacturers. 

4.4.4.1 Singlet 

Table 4.10 The distribution of the training set and validation set for the first prefilter 

Plant Group Manufacturer Training Samples Validation Samples 

1 GM 324 30 

2 Nissan, Toyota 147 18 

3 Chrysler, Nissan, Toyota 313 29 

4 Chrysler, Ford, Honda, 

Nissan 

414 37 

5 Ford, Honda, Toyota 126 15 

6 Honda, Nissan, Toyota 79 8 

 

 

Figure 4.30. 2-PC plot of the 1377 training set samples and the 45 wavelet coefficients 

identified     by the pattern recognition GA (1= group1, 2=group2, 3=group3, 4=group4, 

5=group5, 6=group6) 
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Figure 4.31. Projection of the 137 validation set samples onto the PC plot of the 1377 

training set samples and the 45 wavelet coefficients identified by the pattern recognition 

GA(1= group1, 2=group2, 3=group3, 4=group4, 5=group5, 6=group6) 

 

 

Figure 4.32. 2-PC plot of the 1377 training set samples and the 47 wavelet coefficients 

identified     by the pattern recognition GA based on automotive manufacturer (1=GM, 

2=Chrysler, 3=Ford, 4=Honda, 5=Nissan, 6=Toyota) 
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 To build up the search prefilter for assembly plant groups whose samples have 

single carbonyl band, 26 outliers were removed. Outliers were identified by comparing the 

sample IR spectrum with the average IR spectrum of the assembly plant it came from (see 

Figure 4.33); or by comparing its IR spectrum with the IR spectra from the other samples 

in the same assembly plant (see Figure4.34). Samples in the plant Group1 for the first 

search prefilter are all from GM, this suggests that the clear coat paint formulation of GM 

is different from other 5 manufacturers. The first prefilter is able to predict an unknown 

sample produced from GM or not. It also can narrow down the manufacturers from the 

information provided by the plant group if an unknown sample is  located out of plant 

group 1 (GM). 

 

Figure 4.33. The OT2 IR spectrum of the sample vs the average sample OT2 IR spectrum 

of the assembly plant Marysville (Outlier: sample ID3162) 
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Figure 4.34. The OT2 IR spectra of the samples in the assembly plant Hemosillo 

                   (Outlier: sample ID2366) 

4.4.4.2 Doublets 

Table 4.11 The distribution of the training set and validation set for the first prefilter 

Plant Group Manufacturer Training 

Samples 

Validation Samples 

1 GM 48 6 

2 GM 61 7 

3 Chrysler, Honda 24 2 

4 Chrysler, Honda 59 6 

8 Ford 21 3 
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Figure 4.35. 2-PC plot of the 213 training set samples and the 28 wavelet coefficients 

identified     by the pattern recognition GA (1= group1, 2=group2, 3=group3, 4=group4, 

8=group5) 

 

 

Figure 4.36. Projection of the 23 validation set samples onto the PC plot of the 213 

training set samples and the 28 wavelet coefficients identified by the pattern recognition 

GA(1= group1, 2=group2, 3=group3, 4=group4, 8=group5) 

 



97 
 

For doublets, the first prefilter was build up without outlier remove. Nevertheless, 

one validation sample (SID172) was identified as an outlier and removed from the 

validation set (see Figure 4.37). Samples located in group 1 and group2 were from GM, 

while samples located in group 8 were produced by Ford. But samples in group3 and 

group4 were either from Chrysler or Honda. This suggests that a sample with acrylic 

melamine styrene polyurethane clear coat is easier to obtain the information of automotive 

manufacturer than a singlet one. 

 

Figure 4.37. The OT2 IR spectrum of the sample vs the average sample OT2 IR 

spectrum of the assembly plant Wentzville (Outlier: sample ID172) 

 

4.4.5 Search Prefilter For Manufacturers And Assembly Plants 

 Since the clear coat layer cannot provide enough information to differentiate the 

automotive manufacturer and the assembly plant, two under coat layers were expected to 

add discriminatory ability of assembly plants or subplants by horizontally concatenating 

with the clear coat. Doublets samples located in a specific group identified by the first 

prefilter only need one step to obtain the assembly plant information. Nevertheless, singlet 
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samples located in a specific group classified by the first prefilter need one more step 

(search prefilter for manufacturers) to obtain the assembly plant information.  

4.4.5.1 Doublets 

Doublets group 1 comprises of 5 GM assembly plants (Baltimore, Hamtramck, 

Orion, Wentzville, and Wilmington). After 11 generations, pattern recognition GA 

identified 10 wavelet coefficients from three layers to discriminate the samples by 

assembly plant or sub plant, the results were listed in Figure 4.38- Figure 4.39. Sample 

(SID172) was previously identified as an outlier and was removed from assembly plant 

Wentzville in the validation set. Assembly plant Wilmington comprises 4 samples and no 

validation sample was set in this assembly plant by computer. The other validation samples 

were predicted correctly. 

 

Figure 4.38. 2-PC plot of the 43 training set samples and the 10 wavelet coefficients 

identified    by the pattern recognition GA (2 = Baltimore, 10=Hamtramck, 21=Orion, 

29=Wentzville, 30=Wilmington) 
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Figure 4.39. Projection of the 3 validation set samples onto the PC plot of the 43 training 

set samples and the 10 wavelet coefficients identified by the pattern recognition GA (2 = 

Baltimore, 10=Hamtramck, 21=Orion, 29=Wentzville, 30=Wilmington) 

 

Doublets group 2 consists of 5 GM assembly plants (Ramos Arizpe, Silao, Spring 

Hill, Saint Therese and Lansing). Pattern recognition GA identified 26 wavelet coefficients 

from three layers after 66 generations to discriminate the samples by assembly plant or sub 

plant, the results were listed in Figure 4.40- Figure 4.41. Sample (SID 367) was identified 

as an outlier and removed from the training set. All the validation samples were predicted 

correctly. 
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Figure 4.40. 2-PC plot of the 60 training set samples and the 26 wavelet coefficients 

identified by the pattern recognition GA (24 = Ramos Arizpe, 26= Silao, 27=Spring Hill, 

28=Saint Therese, 114=Lansing) 

 

 

Figure 4.41. Projection of the 7 validation set samples onto the PC plot of the 60 training 

set samples and the 26 wavelet coefficients identified by the pattern recognition GA (24 = 

Ramos Arizpe, 26= Silao, 27=Spring Hill, 28=Saint Therese, 114=Lansing) 
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Doublets group 3 includes two sub plants (Newark and East Liberty). After 1 

generations pattern recognition GA identified 2 wavelet coefficients from three layers to 

discriminate the samples by assembly plant or sub plant, the results were listed in Figure 

4.42- Figure 4.43. The validation samples were in the region of their belonging cluster. 

 

Figure 4.42. 2-PC plot of the 24 training set samples and the 2 wavelet coefficients 

identified by the pattern recognition GA (1106=Newark, 3102=East Liberty) 
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Figure 4.43. Projection of the 2 validation set samples onto the PC plot of the 24 training 

set samples and the 2 wavelet coefficients identified by the pattern recognition GA 

(1106=Newark, 3102=East Liberty) 

1 Honda assembly plant Marysville, 2 Chrysler assembly plants (Jefferson North 

and Newark) and 1 sub plant (Jefferson North) comprises the doublets group 4. After 42 

generations and remove one outlier (SID 1161), the pattern recognition GA identified 20 

wavelet coefficients whose 2-PC plot showed clustering on the basis of assembly plant (see 

Figure 4.44). Each projected validation set sample was located in the region of the map 

with paint samples from the same assembly plant or sub plant (see Figure 4.45). 
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Figure 4.44. 2-PC plot of the 59 training set samples and the 20 wavelet coefficients 

identified by the pattern recognition GA (1004= Jefferson North, 1006=Newark, 1104= 

Jefferson North, 3106=Marysville) 

 

 

Figure 4.45. Projection of the 5 validation set samples onto the PC plot of the 59 training 

set samples and the 20 wavelet coefficients identified by the pattern recognition GA 

(1004= Jefferson North, 1006=Newark, 1104= Jefferson North, 3106=Marysville) 



104 
 

 

The assembly plants or sub plant of the doublets group 8 are all from Ford (Saint 

Thomas-Talbotsville and wixom). After 2 generations, the pattern recognition GA 

identified 6 wavelet coefficients whose 2-PC plot showed clustering on the basis of 

assembly plant (see Figure 4.46). Each projected validation set sample was located in the 

region of the map with paint samples from the same assembly plant or sub plant (see Figure 

4.47). 

 

Figure 4.46. 2-PC plot of the 21 training set samples and the 6 wavelet coefficients 

identified by the pattern recognition GA (2017=Wixom, 2114= Saint Thomas-

Talbotsville, 2217=Wixom ) 
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Figure 4.47. Projection of the 3 validation set samples onto the PC plot of the 21 training 

set samples and the 6 wavelet coefficients identified by the pattern recognition GA 

(2017=Wixom, 2114= Saint Thomas-Talbotsville, 2217=Wixom ). 

 

4.4.5.2 Singlet 

 After the membership of each plant group was ascertained in the first level (1142 

wavelet coefficients), the second prefilter (3426 wavelet coefficients) was developed to 

distinguish the samples by manufacturers in each plant group. “8sym6” preprocessed data 

based on clear coat, surfacer – primer and e-coat layers were conjugated together to achieve 

this goal. The training and validation sets for manufacturer differentiation in each plant 

group were summarized in Table 4.12.  Unlike the doublets, the second prefilter cannot 

achieve the assembly plant or sub plant information directly after conjugated three paint 

layers (3426 wavelet coefficients)  , because the total numbers of assembly plant or sub 

plant in the second prefilter are beyond the limitation window space of pattern recognition 

GA. The third prefilter was developed following ascertained manufacturer information. 
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Each sample have total 3426 wavelet coefficients and GA identified wavelet coefficients 

characteristic of manufacturer information and then characteristic of plant information 

according to the method I described in Figure 4.11 (4.3.2.2 Data analysis). The 

experimental results were seen Figure 4. 49 – Figure 4.63. 

The samples located in the plant group 1 are all from manufacturer GM. To obtain 

the information of assembly plant and sub plant, the method was taken from the previous 

study [22] as following (Figure 4.48). For paint samples from GM, the clear coat IR spectra 

had enough information to linearly differentiate GM from other manufacturers and could 

be used as manufacturer level prefilter.  The sub manufacturer groups were classified by 

the comparison of average IR spectra of assembly plant or sub plant. The assembly plants 

or sub plants with similar OT2 IR spectra were defined as the same sub GM manufacturer 

ID numbers. 

 

Figure 4.48. Block diagram of the vehicle classification process for GM 

Table 4.12. Composition of the IR spectral data set in plant group 1 (GM) 

Manufacturer Manufacturer 

sub IDs 

Plant IDs Training set 

samples 

Validation set 

samples 

 

 

1 1, 4, 14 68 9 

2 18, 120 31 3 
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GM 3 5, 8, 22, 23 70 6 

4 9, 12, 17, 222 71 8 

5 6, 11, 20, 122 40 5 

6 16, 25 31 3 

 

After 200 generations, pattern recognition GA (Fitness function: Hopkins 0.1) 

identified 50 wavelet coefficients whose PC plot (see Figure 4.49) showed clustering of 

the fused IR spectra on the basis of their sub GM group.  The 34 validation set samples 

were then projected onto the PC plot (see Figure 4.50) define by the 311 training set 

samples and the 50 wavelet coefficients identified by the pattern recognition GA.  Each 

validation set sample lies in a region of the PC plot with paint systems from the same sub 

GM group. 

 

Figure 4.49. 2-PC plot of the 311 training set samples and the 50 wavelet coefficients 

identified by the pattern recognition GA (1=GMsubgroup1, 2=GMsubgroup2, 3= 

GMsubgroup3, 4=GMsubgroup4, 5=GMsubgroup5, 6=GMsubgroup6) 
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Figure 4.50. Projection of the 34 validation set samples onto the PC plot of the 311 

training set samples and the 50 wavelet coefficients identified by the pattern recognition 

GA (1=GMsubgroup1, 2=GMsubgroup2, 3= GMsubgroup3, 4=GMsubgroup4, 

5=GMsubgroup5, 6=GMsubgroup6) 

 

After 84 generations, Figure 4.51- Figure 4.52 showed the 2-PC plots of training 

set samples and the validation set samples in the GMsubgroup1 by using pattern 

recognition GA. All the validation samples were in the region of their belonging cluster. 
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Figure 4.51. 2-PC plot of the 68 training set samples and the 31 wavelet coefficients 

identified by the pattern recognition GA (1=Arlington, 4=Doranlle, 14=Lansing) 

 

 

Figure 4.52. Projection of the 9 validation set samples onto the PC plot of the 68 training 

set samples and the 31 wavelet coefficients identified by the pattern recognition 

GA(1=Arlington, 4=Doraville, 14=Lansing) 
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After 5 generations, the pattern recognition GA identified 3 wavelet coefficients 

whose PC plot (see Figure 4.53) showed clustering of the spectra on the basis of GM sub 

group2.To assess the predictive ability of these 3 wavelet coefficients, a validation set of 2 

paint samples were projected into 2-PC developed from the 32 training set and the wavelet 

coefficients identified by GA using the normal routine of the pattern recognition GA. The 

validation set samples were assigned to correct assembly plant (see Figure 4.54). The 

training set samples from Oklahoma City sub plant were less than ten and no validation 

sample was assigned by computer. 

 

Figure 4.53. 2-PC plot of the 32 training set samples and the 3 wavelet coefficients 

identified by the pattern recognition GA(18= Moraine, 120=Oklahoma City) 
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Figure 4.54. Projection of the 2 validation set samples onto the PC plot of the 32 training 

set samples and the 3 wavelet coefficients identified by the pattern recognition GA (18= 

Moraine, 120=Oklahoma City) 

 

After 167 generations, the pattern recognition GA identified 44 wavelet coefficients 

whose PC plot (see Figure 4.55) showed clustering of the spectra on the basis of GM sub 

group3. The  average IR spectra of clear coat, surfacer-primer and e-coat from assembly 

plant Fort Wayne and Pontiac are similar, so these two assembly plants merged together 

into a new assembly plant whose ID is 823(see Figure 4.57). To assess the predictive ability 

of these 44 wavelet coefficients, a validation set of 6  paint samples were projected into 2-

PC developed from the 70 training set and the wavelet coefficients identified by GA using 

the Hopkin 0.1 of the pattern recognition GA. The validation set samples were assigned to 

a correct assembly plant (see Figure 4.56). 
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Figure 4.55. 2-PC plot of the 70 training set samples and the 44 wavelet coefficients 

identified by the pattern recognition GA (5=Fairfax, 22=Oshawa, 823= Fort Wayne 

merged with Pontiac) 

 

 

Figure 4.56. Projection of the 6 validation set samples onto the PC plot of the 70 training 

set samples and the 44 wavelet coefficients identified by the pattern recognition GA 

(5=Fairfax, 22=Oshawa, 823= Fort Wayne merged with Pontiac) 
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Figure 4.57. The average IR spectra comparison of assembly plant Fort Wayne and 

Pontiac 

After 31 generations, the pattern recognition GA identified 14 wavelet coefficients 

whose PC plot (see Figure 4.58) showed clustering of the spectra on the basis of GM sub 

group 4. To assess the predictive ability of these 14 wavelet coefficients, a validation set 

of 8  paint samples were projected into 2-PC developed from the 73 training set and the 

wavelet coefficients identified by GA using normal fitness function of the pattern 

recognition GA. The validation set samples were assigned to correct assembly plants (see 

Figure 4.59). 
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Figure 4.58. 2-PC plot of the 73 training set samples and the 14 wavelet coefficients 

identified by the pattern recognition GA (9=Fremont, 12=Janesville, 17=Lordstown, 

222= Oshawa) 

 

 

Figure 4.59. Projection of the 8 validation set samples onto the PC plot of the 73 training 

set samples and the 14 wavelet coefficients identified by the pattern recognition GA 

(9=Fremont, 12=Janesville, 17=Lordstown, 222= Oshawa) 
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After 200 generations, the pattern recognition GA identified 19 wavelet coefficients 

whose PC plot (see Figure 4.60) showed clustering of the spectra on the basis of GM sub 

group 5. To assess the predictive ability of these 19 wavelet coefficients, a validation set 

of 5  paint samples were projected into 2-PC developed from the 40 training set and the 

wavelet coefficients identified by GA using Mehual0.1fitness function of the pattern 

recognition GA. The validation set samples were assigned to correct assembly plants (see 

Figure 4.61). 

 

Figure 4.60. 2-PC plot of the 40 training set samples and the 19 wavelet coefficients 

identified by the pattern recognition GA (6=Flint, 11=Ingersoll, 20=Oklahoma City, 

122=Oshawa) 
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Figure 4.61. Projection of the 5 validation set samples onto the PC plot of the 40 training 

set samples and the 19 wavelet coefficients identified by the pattern recognition GA 

(6=Flint, 11=Ingersoll, 20=Oklahoma City, 122=Oshawa) 

 

After 71 generations, the pattern recognition GA identified 20 wavelet coefficients 

whose PC plot (see Figure 4.62) showed clustering of the spectra on the basis of GM sub 

group 6. To assess the predictive ability of these 20 wavelet coefficients, a validation set 

of 3  paint samples were projected into 2-PC developed from the 29 training set and the 

wavelet coefficients identified by GA using normal fitness function of the pattern 

recognition GA. The validation set samples were assigned to correct assembly plants (see 

Figure 4.63). 
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Figure 4.62. 2-PC plot of the 29 training set samples and the 20 wavelet coefficients 

identified by the pattern recognition GA (16=Linden, 25=shreveport) 

 

Figure 4.63. Projection of the 3 validation set samples onto the PC plot of the 29 training 

set samples and the 20 wavelet coefficients identified by the pattern recognition GA 

(16=Linden, 25=shreveport) 

For the samples located in the plant group 2, the training and validation sets for 

manufacturer differentiation in plant group 2 were summarized in Table 4.13. After 30 
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generations, pattern recognition GA (Fitness function: normal) identified 10 wavelet 

coefficients whose PC plot (see Figure 4.64) showed clustering of the fused IR spectra on 

the basis of manufacturers in the plant group 2.  The 18 validation set samples were then 

projected onto the PC plot (see Figure 4.65) define by the 164 training set samples and the 

10 wavelet coefficients identified by the pattern recognition GA.  Each validation set 

sample lies in a region of the PC plot with paint systems from the same manufacturer. 

Table 4.13. Composition of the IR spectral data set in plant group 2 

Manufacturer Manufacturer 

IDs 

Plant IDs Training 

set 

samples 

Validation 

set samples 

Nissan 4 4004, 4105 14 2 

Toyota 5 5004,5005,5007,5102,5103 150 16 

 

 

Figure 4.64. 2-PC plot of the 164 training set samples and the 10 wavelet coefficients 

identified by the pattern recognition GA (5=Nissan, 6=Toyota) 
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Figure 4.65. Projection of the 18 validation set samples onto the PC plot of the 164 

training set samples and the 10 wavelet coefficients identified by the pattern recognition 

GA (5=Nissan, 6=Toyota) 

 

Until the second prefilter found the manufacturer information in the basis of plant 

group 2, the third prefilter was developed to differentiate the assembly plant or sub plant 

information in the basis of manufacturer by using a genetic algorithm (GA) for features 

selection and pattern recognition. The pattern recognition GA identified 3 wavelet 

coefficients whose PC plot (see Figure 4.66) showed clustering of IR the spectra on the 

basis of assembly plants from Nissan after 2 generation run. Figure 4.68 showed the 

clustering of the IR spectra on the basis of assembly plants from Toyota after 200 

generation run. To assess the predictive ability of these 3 wavelet coefficients, a validation 

set of 2  paint samples located in the Nissan region of the second prefilter were projected 

into 2-PC developed from the 12 training set and the wavelet coefficients identified by GA 

using normal fitness function of the pattern recognition GA. The same method was applied 

to the validation paint samples located in Toyota region of the second prefilter. The 
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validation set samples were assigned to correct assembly plants (see Figure 4.67). The 

assembly plant Fremont and Georgetown may use similar paint in all three layers, pattern 

recognition GA cannot discriminate the assembly plant of an unknown sample if it is 

projected in this region (see Figure 4.69). The assembly plant Fremont (PID5103) only had 

five training samples, the further explore for this assembly plant told us there were two 

sample IR spectra of OU1(see Figure 4.70) different from other samples. The samples in 

the training set were too less to predict the assembly plant Fremont, therefore, this assembly 

plant was removed from data sheet. The new results were show in Figure 4.71-Figure 4.72. 

 

Figure 4.66. 2-PC plot of the 12 training set samples and the 3 wavelet coefficients 

identified by the pattern recognition GA (4004=Kyushu, 4105=Oppama) 
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Figure 4.67. Projection of the 2 validation set samples onto the PC plot of the 12 training 

set samples and the 3 wavelet coefficients identified by the pattern recognition GA 

(4004=Kyushu, 4105=Oppama) 

 

 

Figure 4.68. 2-PC plot of the 129 training set samples and the 45 wavelet coefficients 

identified by the pattern recognition GA (5004=Georgetown, 5005=Japan, 

5007=Princeton, IN, 5102=Cambridge,ON,Canada, 5103=Fremont) 
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Figure 4.69. Projection of the 13 validation set samples onto the PC plot of the 129 

training set samples and the 45 wavelet coefficients identified by the pattern recognition 

GA (5004=Georgetown, 5005=Japan, 5007=Princeton, IN, 

5102=Cambridge,ON,Canada, 5103=Fremont) 

 

 

Figure 4.70. All samples in assembly plant Fremont (PID5103) undercoat IR spectra 
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Figure 4.71. 2-PC plot of the 126 training set samples and the 57 wavelet coefficients 

identified by the pattern recognition GA (5004=Georgetown, 5005=Japan, 

5007=Princeton, IN, 5102=Cambridge,ON,Canada) 

 

 

Figure 4.72. Projection of the 13 validation set samples onto the PC plot of the 126 

training set samples and the 57 wavelet coefficients identified by the pattern recognition 

GA (5004=Georgetown, 5005=Japan, 5007=Princeton, IN, 

5102=Cambridge,ON,Canada) 
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For the samples located in the plant group 3, the training and validation sets for 

manufacturer differentiation in plant group 3 were summarized in Table 4.14. After 200 

generations, pattern recognition GA (Fitness function: normal) identified 44 wavelet 

coefficients whose PC plot (see Figure 4.73) showed clustering of the fused IR spectra on 

the basis of manufacturers in the plant group 3.  The 29 validation set samples were then 

projected onto the PC plot (see Figure 4.74) define by the 311 training set samples and the 

44 wavelet coefficients identified by the pattern recognition GA.  Each validation set 

sample lies in a region of the PC plot with paint systems from the same manufacturer. 

Table 4.14. Composition of the IR spectral data set in plant group 3 

Manufacture

r 

Manufacture

r IDs 

Plant IDs Trainin

g set 

samples 

Validatio

n set 

samples 

Chrysler 2 1000,1001,1003,1007,1008,1009

, 

1011,1012,1102,1108,1110 

244 23 

Nissan 5 4001, 4006 49 4 

Toyota 6 5002, 5203 19 2 
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Figure 4.73. 2-PC plot of the 311 training set samples and the 44 wavelet coefficients 

identified by the pattern recognition GA (2=Chrysler, 5=Nissan, 6=Toyota) 

 

Figure 4.74. Projection of the 29 validation set samples onto the PC plot of the 311 

training set samples and the 44 wavelet coefficients identified by the pattern recognition 

GA (2=Chrysler, 5=Nissan, 6=Toyota) 

After ascertain the manufacturer information from the above prefilter, the third 

prefilter was developed to differentiate the assembly plant or sub plant information in the 
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basis of manufacturer by using a genetic algorithm (GA) for features selection and pattern 

recognition. The pattern recognition GA identified 10 wavelet coefficients whose PC plot 

(see Figure 4.75) showed clustering of IR the spectra on the basis of assembly plants from 

Chrysler after 18 generation run. To assess the predictive ability of these 10 wavelet 

coefficients, a validation set of 23  paint samples located in the Chrysler region of the 

second prefilter were projected into 2-PC developed from the 242 training set and the 10 

wavelet coefficients identified by GA using Hopkin 0.1 fitness function of the pattern 

recognition GA (see Figure 4.76). The IR spectra of assembly plant Sterling heights 

(PID1008), St. Louis (PID1009), Windsor (PID1012),sub Sterling heights (PID1108), 

Toledo (PID1110) in OT2,OU1 and OU2 paint layers were very similar and merged into 

new assembly plant with ID16892. The assembly plant Saltillo (PID1007) and Toluca 

(PID1011) were merged into a new assembly plant with ID1671 in the same way. The IR 

spectra of OT2, OU1 and OU2 were seen in Figure 4.77-Figure 4.79. The same method 

was applied to the validation paint samples located in Nissan or Toyota region of the second 

prefilter. Figure 4.80 and Figure 4.82 showed the clustering of the IR spectra on the basis 

of assembly plants from Nissan or Toyota. The validation set samples were assigned to 

correct assembly plants (see Figure 4.81-4.83). 
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Figure 4.75. 2-PC plot of the 242 training set samples and the 10 wavelet coefficients 

identified by the pattern recognition GA (1000=Belvidere, 1001= Bloomington, 

1003=Dodge Main, 1102= Bramalea, 1671=Saltillo and Toluca, 16892=Sterling heights, 

St. Louis, Windsor and Toledo) 

 

 

Figure 4.76. Projection of the 23 validation set samples onto the PC plot of the 242 

training set samples and the 10 wavelet coefficients identified by the pattern recognition 

GA (1000=Belvidere, 1001= Bloomington, 1003=Dodge Main, 1102= Bramalea, 

1671=Saltillo and Toluca, 16892=Sterling heights, St. Louis, Windsor and Toledo) 
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Figure 4.77. Average assembly plant OT2 IR spectra from Chrysler 

 

Figure 4.78. Average assembly plant OU1 IR spectra from Chrysler 
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Figure 4.79. Average assembly plant OU2 IR spectra from Chrysler 

 

Figure 4.80. 2-PC plot of the 49 training set samples and the 2 wavelet coefficients 

identified by the pattern recognition GA (4001=Canton, 4006=Smyrna) 
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Figure 4.81. Projection of the 4 validation set samples onto the PC plot of the 49 training 

set samples and the 2 wavelet coefficients identified by the pattern recognition GA 

(4001=Canton, 4006=Smyrna) 

 

 

Figure 4.82. 2-PC plot of the 19 training set samples and the 2 wavelet coefficients 

identified by the pattern recognition GA (5002=Cambridge, ON, Canada, 5203= 

Fremont, CA) 
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Figure 4.83. Projection of the 2 validation set samples onto the PC plot of the 19 training 

set samples and the 2 wavelet coefficients identified by the pattern recognition GA 

(5002=Cambridge, ON, Canada, 5203= Fremont, CA) 

 

The samples located in the plant group 4 are the most difficult to discriminate 

manufacturer information. The training and validation sets for manufacturer differentiation 

in the plant group 4 were summarized in Table 4.15. After 200 generations, pattern 

recognition GA (Fitness function: normal) identified 50 wavelet coefficients whose PC plot 

(see Figure 4.84) showed clustering of the fused IR spectra on the basis of manufacturers 

and assembly plant in the plant group 4.  The 37 validation set samples were then projected 

onto the PC plot (see Figure 4.85) define by the 398 training set samples and the 50 wavelet 

coefficients identified by the pattern recognition GA.  Each validation set sample lies in a 

region of the PC plot with paint systems from the same manufacturer. 

 

 



132 
 

Table 4.15. Composition of the IR spectral data set in plant group 4 

Manufacturer Manufacturer 

IDs 

Plant IDs Training set 

samples 

Validation 

set samples 

 

Chrysler 

21 1010 12 1 

22 1103 18 2 

23 1109 27 3 

24 1002 13 1 

 

Ford 

31 2000,2002,2003,2008, 

2011,2012,2015,2016 

172 18 

32 2005,2006,2013,2106 40 4 

33 2007,2107,2014,2110 68 5 

34 2010 13 1 

Honda 4 3100, 3106 9 1 

Nissan 5 4100,4106 26 1 

 

 

Figure 4.84. 2-PC plot of the 398 training set samples and the 50 wavelet coefficients 

identified by the pattern recognition GA (21=Chrysler, 22=Chrysler, 23=Chrysler, 

24=Chrysler, 31=Ford, 32=Ford, 33=Ford, 34=Ford, 4= Honda, 5=Nissan) 
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Figure 4.85. Projection of the 37 validation set samples onto the PC plot of the 398 

training set samples and the 50 wavelet coefficients identified by the pattern recognition 

GA(21=Chrysler, 22=Chrysler, 23=Chrysler, 24=Chrysler, 31=Ford, 32=Ford, 33=Ford, 

34=Ford, 4= Honda, 5=Nissan) 

 

Since the samples locate in the cluster21, cluster22, cluster23, cluster24 and 

cluster34 are from the identified assembly plants: Toledo, Dodge Main, St. Louis, 

Bramalea/Brampton and Louisville respectively; those samples are not necessary to do 

further investigation. Samples located in the manufacturer cluster 31, 32, 33, 4 and 5 need 

the third level prefilter to identify their assembly plants. The pattern recognition GA 

identified 50 wavelet coefficients whose PC plot (see Figure 4.86) showed clustering of IR 

the spectra on the basis of assembly plants from Ford after 200 generation run. To assess 

the predictive ability of these 50 wavelet coefficients, a validation set of 18  paint samples 

located in the Ford region 31 of the second prefilter were projected into 2-PC developed 

from the 167 training set and the 50 wavelet coefficients identified by GA using Hopkin 

0.1 fitness function of the pattern recognition GA (see Figure 4.87). Samples from the 
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assembly plants-Atlanta, Chicago, Norfolk, Oakville, Twin Cities-Saint Paul and Wayne 

merged together due to their similar IR spectra (see Figure 4.88-4.90). 

 

Figure 4.86. 2-PC plot of the 167 training set samples and the 50 wavelet coefficients 

identified by the pattern recognition GA (2003=Dearborn, 2008=Kentucky Truck, 2656= 

Atlanta, Chicago, Norfolk, Oakville, Twin Cities-Saint Paul and Wayne) 
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Figure 4.87. Projection of the 18 validation set samples onto the PC plot of the 167 

training set samples and the 50 wavelet coefficients identified by the pattern recognition 

GA (2003=Dearborn, 2008=Kentucky Truck, 2656= Atlanta, Chicago, Norfolk, Oakville, 

Twin Cities-Saint Paul and Wayne) 

 

Figure 4.88. The average OT2 IR spectra from the assembly plants: Atlanta, Chicago, 

Norfolk, Oakville, Twin Cities-Saint Paul and Wayne 
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Figure 4.89. The average OU1 IR spectra from the assembly plants: Atlanta, Chicago, 

Norfolk, Oakville, Twin Cities-Saint Paul and Wayne 

 

Figure 4.90. The average OU2 IR spectra from the assembly plants: Atlanta, Chicago, 

Norfolk, Oakville, Twin Cities-Saint Paul and Wayne 

 

The pattern recognition GA identified 29 wavelet coefficients whose PC plot (see 

Figure 4.91) showed clustering of IR the spectra on the basis of assembly plants from Ford 
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after 200 generation run. To assess the predictive ability of these 29 wavelet coefficients, 

a validation set of 3  paint samples located in the Ford region 32 of the second prefilter 

were projected into 2-PC developed from the 38 training set and the 29 wavelet coefficients 

identified by GA using Normal fitness function of the pattern recognition GA (see Figure 

4.92). 

 

Figure 4.91. 2-PC plot of the 38 training set samples and the 29 wavelet coefficients 

identified by the pattern recognition GA (2005=Flat Rock, 2006=Hermosillo, 2013= 

Saint Louis, 2106 =Hermosillo) 
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Figure 4.92 Projection of the 3 validation set samples onto the PC plot of the 38 training 

set samples and the 29 wavelet coefficients identified by the pattern recognition GA 

(2005=Flat Rock, 2006=Hermosillo, 2013= Saint Louis, 2106 =Hermosillo) 

 

The pattern recognition GA identified 30 wavelet coefficients whose PC plot (see 

Figure 4.93) showed clustering of IR the spectra on the basis of assembly plants from Ford 

after 200 generation run. To assess the predictive ability of these 30 wavelet coefficients, 

a validation set of 4  paint samples located in the Ford region 33 of the second prefilter 

were projected into 2-PC developed from the 68 training set and the 30 wavelet coefficients 

identified by GA using Normal fitness function of the pattern recognition GA (see Figure 

4.94). Samples from the assembly plants- Kansas City and Louisville merged together due 

to their similar IR spectra (see Figure 4.95).  However, a validation sample from assembly 

plant Saint Thomas-Talbotsville was misclassified. 
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Figure 4.93. 2-PC plot of the 68 training set samples and the 30 wavelet coefficients 

identified by the pattern recognition GA (2014= Saint Thomas-Talbotsville, 2167= 

Kansas City, Louisville) 

 

 

Figure 4.94. Projection of the 4 validation set samples onto the PC plot of the 68 training 

set samples and the 30 wavelet coefficients identified by the pattern recognition GA 

(2014= Saint Thomas-Talbotsville, 2167= Kansas City, Louisville) 
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Figure 4.95. The average three-layer IR spectra from the assembly plants: Kansas City, 

Louisville 

 

The pattern recognition GA identified 2 wavelet coefficients whose PC plot (see 

Figure 4.96) showed clustering of IR the spectra on the basis of assembly plants from 

Honda after 1 generation run. To assess the predictive ability of these 2 wavelet 

coefficients, a validation set of 1  paint samples located in the Honda region 4 of the second 

prefilter were projected into 2-PC developed from the 9 training set and the 2 wavelet 

coefficients identified by GA using Normal fitness function of the pattern recognition GA 

(see Figure 4.97). Samples from the assembly plant Alliston are too less to be used for 

prediction. 
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Figure 4.96. 2-PC plot of the 9 training set samples and the 2 wavelet coefficients 

identified by the pattern recognition GA (3100= Alliston, 3106= Marysville) 

 

 

Figure 4.97. Projection of the 1 validation set samples onto the PC plot of the 9 training 

set samples and the 2 wavelet coefficients identified by the pattern recognition GA(3100= 

Alliston, 3106= Marysville) 
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The pattern recognition GA identified 2 wavelet coefficients whose PC plot (see 

Figure 4.98) showed clustering of IR the spectra on the basis of assembly plants from 

Nissan after 1 generation run. To assess the predictive ability of these 2 wavelet 

coefficients, a validation set of 1  paint samples located in the Nissan region 5 of the second 

prefilter were projected into 2-PC developed from the 27 training set and the 2 wavelet 

coefficients identified by GA using Normal fitness function of the pattern recognition GA 

(see Figure 4.99). 

 

Figure 4.98. 2-PC plot of the 27 training set samples and the 2 wavelet coefficients 

identified by the pattern recognition GA (4100= Aguascalientes, 4106= Smyrna) 
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Figure 4.99. Projection of the 1 validation set samples onto the PC plot of the 27 training 

set samples and the 2 wavelet coefficients identified by the pattern recognition GA 

(4100= Aguascalientes, 4106= Smyrna) 

 

For the samples located in the plant group 5, the training and validation sets for 

manufacturer differentiation in plant group 5 were summarized in Table 4.16. After 200 

generations, pattern recognition GA (Fitness function: normal) identified 35 wavelet 

coefficients whose PC plot (see Figure 4.100) showed clustering of the fused IR spectra on 

the basis of manufacturers in the plant group 5.  The 14 validation set samples were then 

projected onto the PC plot (see Figure 4.101) define by the 119 training set samples and 

the 35 wavelet coefficients identified by the pattern recognition GA.  Each validation set 

sample lies in a region of the PC plot with paint systems from the same manufacturer. 
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Table 4.16. Composition of the IR spectral data set in plant group 5 

Manufacturer Manufacturer 

IDs 

Plant IDs Training set 

samples 

Validation set 

samples 

Ford 3 2009, 2103, 2111, 

2113, 2115, 2116, 

2206 

46 4 

Honda 4 3000, 3002, 3005, 

3006 

62 6 

Toyota 6 5003, 5104, 5303 20 3 

 

 

Figure 4.100. 2-PC plot of the 119 training set samples and the 35 wavelet coefficients 

identified by the pattern recognition GA (3= Ford, 4= Honda, 6=Toyota) 
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Figure 4.101. Projection of the 14 validation set samples onto the PC plot of the 119 

training set samples and the 2 wavelet coefficients identified by the pattern recognition 

GA (3= Ford, 4= Honda, 6=Toyota) 

 

For samples located in the manufacturer cluster 3 required the third level prefilter 

to identify their assembly plants. The pattern recognition GA identified 17 wavelet 

coefficients whose PC plot (see Figure 4.102) showed clustering of IR the spectra on the 

basis of assembly plants from Ford after 36 generation run. To assess the predictive ability 

of these 17 wavelet coefficients, a validation set of 4  paint samples located in the Ford 

region of the second prefilter were projected into 2-PC developed from the 43 training 

samples and the 17 wavelet coefficients identified by GA using normal fitness function of 

the pattern recognition GA (see Figure 4.103). The assembly plants Norfolk, Dearborn, 

Twin Cities-Saint Paul and Wayne were merged into one plant ID (26531) due to their 

similar IR spectra. 
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Figure 4.102. 2-PC plot of the 43 training set samples and the 17 wavelet coefficients 

identified by the pattern recognition GA (2009=Lorain, 2113=Saint Louis, 

2206=Hermosillo,26531= Norfolk, Dearborn, Twin Cities-Saint Paul and Wayne) 

 

 

Figure 4.103. Projection of the 4 validation set samples onto the PC plot of the 43 

training set samples and the 17 wavelet coefficients identified by the pattern recognition 

GA (2009=Lorain, 2113=Saint Louis, 2206=Hermosillo,26531= Norfolk, Dearborn, 

Twin Cities-Saint Paul,Wayne) 
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For samples located in the manufacturer cluster 4 required the third level prefilter 

to identify their assembly plants. The pattern recognition GA identified 43 wavelet 

coefficients whose PC plot (see Figure 4.104) showed clustering of IR the spectra on the 

basis of assembly plants from Honda after 200 generation run. To assess the predictive 

ability of these 43 wavelet coefficients, a validation set of 6  paint samples located in the 

Honda region of the second prefilter were projected into 2-PC developed from the 60 

training samples and the 43 wavelet coefficients identified by GA using normal fitness 

function of the pattern recognition GA (see Figure 4.105). The assembly plants Allison and 

East Liberty were merged into one plant ID (3802) due to their similar IR spectra. 

 

Figure 4.104. 2-PC plot of the 43 training set samples and the 17 wavelet coefficients 

identified by the pattern recognition GA (3005=Lincoln, 3006=Marysville, 3802=Allison, 

East Liberty) 
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Figure 4.105. Projection of the 6 validation set samples onto the PC plot of the 60 

training set samples and the 43 wavelet coefficients identified by the pattern recognition 

GA (3005=Lincoln, 3006=Marysville, 3802=Allison, East Liberty) 

 

For samples located in the manufacturer cluster 6 required the third level prefilter 

to identify their assembly plants. The pattern recognition GA identified 5 wavelet 

coefficients whose PC plot (see Figure 4.106) showed clustering of IR the spectra on the 

basis of assembly plants from Toyota after 5 generation run. To assess the predictive ability 

of these 5 wavelet coefficients, a validation set of 3  paint samples located in the Toyota 

region of the second prefilter were projected into 2-PC developed from the 15 training 

samples and the 5 wavelet coefficients identified by GA using normal fitness function of 

the pattern recognition GA (see Figure 4.107). 
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Figure 4.106. 2-PC plot of the 15 training set samples and the 5 wavelet coefficients 

identified by the pattern recognition GA (5003=Fremont, 5104=Georgetown, 

5303=Fremont) 

 

 

Figure 4.107. Projection of the 3 validation set samples onto the PC plot of the 15 

training set samples and the 5 wavelet coefficients identified by the pattern recognition 

GA (5003=Fremont, 5104=Georgetown, 5303=Fremont) 
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For the samples located in the plant group 6, the training and validation sets for 

manufacturer differentiation in plant group 6 were summarized in Table 4.17. After 200 

generations, pattern recognition GA (Fitness function: normal) identified 50 wavelet 

coefficients whose PC plot (see Figure 4.108) showed clustering of the fused IR spectra on 

the basis of manufacturers in the plant group 6.  The 8 validation samples were then 

projected onto the PC plot (see Figure 4.109) define by the 77 training samples and the 50 

wavelet coefficients identified by the pattern recognition GA.  Each validation set sample 

lies in a region of the PC plot with paint systems from the same manufacturer.   

Table 4.17. Composition of the IR spectral data set in plant group 6 

Manufacturer Manufacturer 

IDs 

Plant IDs Training set 

samples 

Validation set 

samples 

Honda 4 3007, 3008, 3200 31 3 

Nissan 5 4000, 4005, 4007, 

4104 

37 5 

Toyota 6 5105, 5204 9 0 
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Figure 4.108 2-PC plot of the 77 training set samples and the 50 wavelet coefficients 

identified by the pattern recognition GA (4=Honda, 5=Nissan, 6=Toyota) 

 

 

Figure 4.109 Projection of the 8 validation set samples onto the PC plot of the 77 training 

set samples and the 50 wavelet coefficients identified by the pattern recognition GA 

(4=Honda, 5=Nissan, 6=Toyota) 
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The pattern recognition GA identified 5 wavelet coefficients whose PC plot (see 

Figure 4.110) showed clustering of IR the spectra on the basis of assembly plants from 

Honda after 7 generations run. To assess the predictive ability of these 7 wavelet 

coefficients, a validation set of 3  paint samples located in the Honda region of the second 

prefilter were projected into 2-PC developed from the 31 training samples and the 7 

wavelet coefficients identified by GA using normal fitness function of the pattern 

recognition GA (see Figure 4.111). The assembly plants Sayama and Suzuka were merged 

into the new assembly plant whose ID is 3087. 

 

Figure 4.109 2-PC plot of the 31 training set samples and the 7 wavelet coefficients 

identified by the pattern recognition GA (3087=Sayama, Suzuka, 3200=Alliston) 
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Figure 4.111 Projection of the 3 validation set samples onto the PC plot of the 31 training 

set samples and the 7 wavelet coefficients identified by the pattern recognition GA 

(3087=Sayama, Suzuka, 3200=Alliston) 

 

The pattern recognition GA identified 16 wavelet coefficients whose PC plot (see 

Figure 4.112) showed clustering of IR the spectra on the basis of assembly plants from 

Nissan after 40 generations run. To assess the predictive ability of these 16 wavelet 

coefficients, a validation set of 5 paint samples located in the Nissan region of the second 

prefilter were projected into 2-PC developed from the 37 training samples and the 16 

wavelet coefficients identified by GA using normal fitness function of the pattern 

recognition GA (see Figure 4.113). 
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Figure 4.112 2-PC plot of the 37 training set samples and the 16 wavelet coefficients 

identified by the pattern recognition GA (4000= Aguascalientes, 4005=Oppama, 

4007=Tochigi, 4104=Kyushu) 

 

 

Figure 4.113 Projection of the 5 validation set samples onto the PC plot of the 37 training 

set samples and the 16 wavelet coefficients identified by the pattern recognition GA 

(4000= Aguascalientes, 4005=Oppama, 4007=Tochigi, 4104=Kyushu) 
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The pattern recognition GA identified 2 wavelet coefficients whose PC plot (see 

Figure 4.114) showed clustering of IR the spectra on the basis of assembly plants from 

Toyota after 1 generation run. Because the number of samples in the both two assembly 

plant is too less to assess the predictive ability of these 2 wavelet coefficients, there is no 

validation sample was set in this test. 

 

Figure 4.114 2-PC plot of the 9 training set samples and the 2 wavelet coefficients 

identified by the pattern recognition GA (5105=Japan, 5204=Georgetown) 

 

4.4.6 Two-layer Search Prefilters 

OT2 and OU1 were conjugated together to build up the two-layer prefilter, we got 

almost the same results except the following experiments, in which the two-layer prefilter 

performed worse than three-layer prefilter. The space between the two classes is bigger in 

three-layer prefilter than in the two-layer one (See Figure 4.115- Figure 4.116). For the 

assembly plants in the GM subgroup 5, the sample from the assembly plant Oklahoma City 
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was predict wrong in the assembly plant Oshawa by using two-layer prefilter (See Figure 

4.117- Figure 4.118); instead, it was predicted correctly by using three-layer prefilter in the 

same conditions. The assembly plants Saint Thomas-lalbotsville from the Ford region 33 

in the group 4 cluster were always predicted wrong no matter using three-layer or two-

layer prefilter. But the two-layer prefilter got worse prediction than the three-layer one (See 

Figure 4.119-Figure 4.120), the validation sample from Saint Thomas-lalbotsville totally 

mixed with the samples from Kansas City or Louisville. The IR spectra from OU1 for the 

both two assembly plants are very similar and lack of the discriminative ability of an 

assembly plant (Figure 4.121). Overall, two-layer prefilter has no problem to differentiate 

the paint fragment samples instead of three-layer prefilter except the above three situations. 

 

Figure 4.115. 2-PC plot of the 311 training set samples and the 47 wavelet coefficients 

identified by the pattern recognition GA (1=GMsubgroup1, 2=GMsubgroup2, 3= 

GMsubgroup3, 4=GMsubgroup4, 5=GMsubgroup5, 6=GMsubgroup6) 
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Figure 4.116 Projection of the 34 validation set samples onto the PC plot of the 311 

training set samples and the 47 wavelet coefficients identified by the pattern recognition 

GA (1=GMsubgroup1, 2=GMsubgroup2, 3= GMsubgroup3, 4=GMsubgroup4, 

5=GMsubgroup5, 6=GMsubgroup6) 

 

 

Figure 4.117 2-PC plot of the 40 training set samples and the 29 wavelet coefficients 

identified by the pattern recognition GA (6=Flint, 11=Ingersoll, 20=Oklahoma City, 

122=Oshawa) 
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Figure 4.118. Projection of the 5 validation set samples onto the PC plot of the 40 

training set samples and the 29 wavelet coefficients identified by the pattern recognition 

GA (6=Flint, 11=Ingersoll, 20=Oklahoma City, 122=Oshawa) 

 

 

Figure 4.119. 2-PC plot of the 68 training set samples and the 30 wavelet coefficients 

identified by the pattern recognition GA (2014= Saint Thomas-Talbotsville, 2167= 

Kansas City, Louisville) 
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Figure 4.120. Projection of the 4 validation set samples onto the PC plot of the 68 

training set samples and the 27 wavelet coefficients identified by the pattern recognition 

GA (2014= Saint Thomas-Talbotsville, 2167= Kansas City, Louisville) 

 

 

Figure 4.121. The comparison of the average IR spectra of the assembly plant Thomas-

lalbotsville vs the assembly plant Kansas City or Louisville 

 

4.4.7 Three-layer Search Prefilters Based on Manufacturer 
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For the sample with a single carbonyl band, the previous study discovered that it 

was impossible to assign an unknown paint sample in the basis of six manufacturers 

because the relationship between the manufacturers are not linear. The training samples 

from GA is different from ones made at other five manufacturers. This method aims to 

develop the first prefilter for singlet sample prediction basis of manufacturer, the second 

prefilter basis of plant group in a particular manufacturer and the third one for the 

prediction of assembly plant. A block diagram of the vehicle sample classification process 

used in the prototype pattern recognition assisted library search system for the PDQ 

database is summarized in Figure 4.122.   

 

Figure 4.122.  Block diagram of the vehicle classification process used in the prototype 

pattern recognition driven library search system for the PDQ database. 

 

4.4.7.1 Manufacturer Search Prefilters 

A block diagram of the developing process of the manufacturer search prefilter is 

summarized in Figure 4.123.  The detail GA running results are showed in Figure 4.124- 

Figure 4.138. 



161 
 

 

Figure 4.123.  Block diagram of the manufacturer search prefilter developing process 

First, GM was expected to be separated from the other five manufacturers. A 

genetic algorithm for feature selection and pattern recognition analysis was used in this 

study to identify wavelet coefficients characteristic of automotive manufacturer.  The 

pattern recognition GA identified wavelet coefficients by sampling key feature subsets, 

scoring their PC plots and tracking those paint samples or automotive manufacturers that 

were difficult to classify.  The boosting routine used this information to steer the population 

to an optimal solution.  After 154 generations, the pattern recognition GA identified 29 

wavelet coefficients whose PC plot showed clustering of the fused IR spectra on the basis 

of GM and the automotive manufacturer comprising of Chrysler, Ford, Honda, Nissan and 

Toyota (see Figure 4.124), the fitness function was Normal (PCKaNN). To assess the 

predictive ability of the 29 wavelet coefficients identified by the pattern recognition GA, a 

validation set of 136 paint samples was employed.  In Figure 4.125, the validation set 

samples are projected onto the PC plot of the data defined by the 1374 wavelet transformed 
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fused IR spectra and the 29 wavelet coefficients identified by the pattern recognition GA.  

Each validation set sample lies in a region of the PC plot with paint systems from the same 

automotive manufacturer.  This result suggests that information whether the automotive 

manufacturer is GM or not can be extracted from the wavelet transformed fused IR 

spectrum of an unknown paint sample. 

 

Figure 4.124. 2-PC plot of the 1374 training set samples and the 29 wavelet coefficients 

identified by the pattern recognition GA (1= GM , 2= Chrysler, Ford, Honda, Nissan and 

Toyota) 

 

 



163 
 

 

Figure 4.125. Projection of the 136 validation set samples onto the PC plot of the 1374 

training set samples and the 29 wavelet coefficients identified by the pattern recognition 

GA (1= GM , 2= Chrysler, Ford, Honda, Nissan and Toyota) 

 

If an unknown sample falls in the cluster1, and this sample will go to the GM 

prefilter; otherwise, this sample should continue to explore its manufacturer. The second 

step is to discriminate this sample belonging to the Chrysler or not. Nevertheless, the 

training samples in the Chrysler are not homogenous and divided into three groups in the 

all feature 2-PC plot (Figure 4.126), Table 4.18 listed the detail composition of each 

Chrysler group. 
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Figure 4.126. 2-PC plot of the assembly plants from Chrysler, Ford, Honda, Nissan and 

Toyota 

 

Table 4.18 The Chrysler group composition in the basis of assembly plants 

Chrysler Group # PIDs 

1 1000,1003,1008,1009,1012,1103,1108,1109,1110 

2(1) 1007,1011 

2(2) 1001,1102 

3 1002,1010 

 

The pattern recognition GA identified 78 wavelet coefficients whose PC plot (see 

Figure 4.127) showed clustering of IR the spectra on the basis of assembly plants from 

Chrysler after 200 generations run. To assess the predictive ability of these 78 wavelet 

coefficients, a validation set of 106 paint samples were projected into 2-PC developed from 

the 1054 training samples and the 78 wavelet coefficients identified by GA using normal 

fitness function of the pattern recognition GA (see Figure 4.128). 
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Figure 4.127. 2-PC plot of the 1054 training set samples and the 78 wavelet coefficients 

identified by the pattern recognition GA (1= Honda, Nissan and Toyota  , 2= Chrysler 

group2 and group3, Ford, 3 = Chrysler group1) 

 

 

Figure 4.128. Projection of the 106 validation set samples onto the PC plot of the 1054 

training set samples and the 78 wavelet coefficients identified by the pattern recognition 

GA (1= Honda, Nissan and Toyota  , 2= Chrysler group2 and group3, Ford, 3 = Chrysler 

group1) 

 

The next step was to identify an unknown sample from Toyota or not if this sample 

did not fall in the first Chrysler group. The pattern recognition GA identified 55 wavelet 
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coefficients whose PC plot (see Figure 4.129) showed clustering of IR the spectra on the 

basis of assembly plants from Toyota after 200 generations run. To assess the predictive 

ability of these 55 wavelet coefficients, a validation set of 87 paint samples were projected 

into 2-PC developed from the 865 training samples and the 55 wavelet coefficients 

identified by GA using normal fitness function of the pattern recognition GA (see Figure 

4.130). 

 

Figure 4.129. 2-PC plot of the 865 training set samples and the 55 wavelet coefficients 

identified by the pattern recognition GA (1= Toyota  , 2= Honda, Nissan, Chrysler group2 

and group3, Ford) 
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Figure 4.130. Projection of the 87 validation set samples onto the PC plot of the 865 

training set samples and the 55 wavelet coefficients identified by the pattern recognition 

GA (1= Toyota  , 2= Honda, Nissan, Chrysler group2 and group3, Ford) 

 

The following step was to identify an unknown sample from Chrysler group 2 or 

not if this sample did not fall in the previous Toyota cluster. The pattern recognition GA 

identified 29 wavelet coefficients whose PC plot (see Figure 4.131) showed clustering of 

IR the spectra on the basis of assembly plants from Chrysler group 2 after 162 generations 

run. To assess the predictive ability of these 29 wavelet coefficients, a validation set of 66 

paint samples were projected into 2-PC developed from the 689 training samples and the 

29 wavelet coefficients identified by GA using Hopkin 0.1 fitness function of the pattern 

recognition GA (see Figure 4.132). 
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Figure 4.131. 2-PC plot of the 689 training set samples and the 29 wavelet coefficients 

identified by the pattern recognition GA (1= Honda, Nissan, Chrysler group3, Ford, 21= 

Chrysler group 2(1), 22 = Chrysler group 2(2)) 

 

 

Figure 4.132. Projection of the 66 validation set samples onto the PC plot of the 689 

training set samples and the 29 wavelet coefficients identified by the pattern recognition 

GA (1= Honda, Nissan, Chrysler group3, Ford, 21= Chrysler group 2(1), 22 = Chrysler 

group 2(2)) 



169 
 

 

This step was to identify an unknown sample from either Honda and Nissan or Ford 

and Chrysler group 3 if this sample did not fall in the previous Chrysler group 2 cluster. 

The pattern recognition GA identified 67 wavelet coefficients whose PC plot (see Figure 

4.133) showed clustering of IR the spectra on the basis of assembly plants from Honda and 

Nissan or Ford and Chrysler after 198 generations run. To assess the predictive ability of 

these 67 wavelet coefficients, a validation set of 57 paint samples were projected into 2-

PC developed from the 592 training samples and the 67 wavelet coefficients identified by 

GA using Hopkin 0.1 fitness function of the pattern recognition GA (see Figure 4.134). 

 

Figure 4.133. 2-PC plot of the 592 training set samples and the 67 wavelet coefficients 

identified by the pattern recognition GA (1= Chrysler group3, Ford, 2= Honda, Nissan) 
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Figure 4.134. Projection of the 57 validation set samples onto the PC plot of the 592 

training set samples and the 67 wavelet coefficients identified by the pattern recognition 

GA (1= Chrysler group3, Ford, 2= Honda, Nissan) 

 

If the unknown sample fell in the cluster comprising of Honda and Nissan, it went 

to the final step to identify its manufacturer. The pattern recognition GA identified 35 

wavelet coefficients whose PC plot (see Figure 4.135) showed clustering of IR the spectra 

on the basis of assembly plants from Honda or Nissan after 117 generations run. To assess 

the predictive ability of these 35 wavelet coefficients, a validation set of 22 paint samples 

were projected into 2-PC developed from the 225 training samples and the 35 wavelet 

coefficients identified by GA using Normal fitness function of the pattern recognition GA 

(see Figure 4.136). 
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Figure 4.135. 2-PC plot of the 225 training set samples and the 35 wavelet coefficients 

identified by the pattern recognition GA (2= Honda, 5= Nissan, 52=Nissan) 

 

Figure 4.136. Projection of the 22 validation set samples onto the PC plot of the 225 

training set samples and the 35 wavelet coefficients identified by the pattern recognition 

GA (2= Honda, 5= Nissan, 52=Nissan) 
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If the unknown sample fell in the Ford and Chrysler group 3 cluster, it went to the 

last step to discern its manufacturer. The pattern recognition GA identified 18 wavelet 

coefficients whose PC plot (see Figure 4.137) showed clustering of IR the spectra on the 

basis of assembly plants from Ford or Chrysler after 38 generations run. To assess the 

predictive ability of these 18 wavelet coefficients, a validation set of 35 paint samples were 

projected into 2-PC developed from the 367 training samples and the 18 wavelet 

coefficients identified by GA using Normal fitness function of the pattern recognition GA 

(see Figure 4.138). 

Figure 4.137. 2-PC plot of the 367 training set samples and the 18 wavelet coefficients 

identified by the pattern recognition GA (1= Ford, 23= Chrysler group 3) 



173 
 

 

Figure 4.138. Projection of the 35 validation set samples onto the PC plot of the 367 

training set samples and the 18 wavelet coefficients identified by the pattern recognition 

GA(1= Ford, 23= Chrysler group 3) 

 

4.4.7.2 Honda, Nissan and Toyota Plant Group Level Prefilters 

Manufacturer assembly plant level search prefilters are needed to differentiate the 

assembly plant of an unknown sample lying in a particular manufacturer cluster. To fulfil 

this task, a hierarchical cluster analysis and principal component analysis were employed 

to identify an automotive paint sample by assembly plant group. Average assembly plant 

clear coat IR spectra from an individual manufacturer were chosen to do hierarchical 

cluster analysis and principal component analysis, the results were shown in Figure 4.139 

– Figure 4.144. Although the result of hierarchical cluster analysis showed Toyota 

assembly plant 5004, 5005, 5102 and 5103 in the same plant group cluster; however, the 

principle component analysis and the average IR spectra from Toyota assembly plant 5004, 

5005, 5102, 5103, 5002, 5203 and 5007 (Figure 4.145) suggested that the assembly plant 
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5007 should group with Toyota assembly plant 5004, 5005, 5102 and 5103. The results of 

the principal component analysis and the hierarchical cluster analysis suggested to group 

9 assembly plants and sub plants of Honda into three plant groups (see Table 4.1). By the 

same way, 10 Nissan assembly plants and sub assembly plants were divided into 4 

assembly plant groups. Each plant group was assumed that the chemical composition of a 

clear coat was similar. The plant group information of Nissan and Toyota are also listed in 

Table 4.1. 

 

Figure 4.139. Toyota assembly plant hierarchical cluster analysis 
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Figure 4.140. Toyota assembly plant principal component analysis 

 

Figure 4.141. Nissan assembly plant hierarchical cluster analysis 
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Figure 4.142. Nissan assembly plant principal component analysis 

 

Figure 4.143. Honda assembly plant hierarchical cluster analysis 
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Figure 4.144. Honda assembly plant principle component analysis 

 

Figure 4.145. The average IR spectra of Toyota assembly plants 
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Table 4.19 Assembly plant group information in the basis of manufacturer 

Manufacturer Assigned group 

number 

Plant IDs 

 

Honda 

1 3000,3002,3005,3006 

2 3100,3106 

3 3007,3008,3200 

 

 

Nissan 

1 4000,4005,4007,4104 

2 4100,4106 

3 4004,4105 

4 4001,4006 

 

 

Toyota 

1 5004,5005,5007,5102,5103 

2 5002,5203 

3 5003,5104,5303 

4 5105,5204 

 

 A genetic algorithm for feature selection and pattern recognition analysis was 

applied to identify assembly plant groups for single carbonyl band samples in the basis of 

manufacturer Honda, Nissan and Toyota. After 102 generations, the pattern recognition 

GA identified 24 wavelet coefficients whose 2-PC plot exhibited clustering of the clear 

coat IR spectra on the basis of assembly plant group of Toyota by using Hopkins 0.1 fitness 

function and removing outliers whose sample ID are 5146, 5238, 5265, 5281, 5298 and 

5304. 175 training set samples and the 24 wavelet coefficients identified by the pattern 

recognition GA. To assess the predictive ability of these 24 wavelet coefficients, a 

validation set of 23 paint samples were projected into 2-PC developed from the 175 training 

set and the wavelet coefficients identified by GA. Each validation set sample lies in a 

correct region of the PC plot associate to Toyota plant group.   The 2-PC plots for the 

training and validation set of Toyota were seen in Figure 4.146-Figure 4.147. 
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Figure 4.146. 2-PC plot of the 175 training set samples and the 24 wavelet coefficients 

identified     by the pattern recognition GA (Toyota: 1= group1, 2=group2, 3=group3, 

4=group4 ) 

 

 

Figure 4.147.  Projection of the 23 validation set samples onto the PC plot of the 175 

training set samples and the 24 wavelet coefficients identified by the pattern recognition 

GA (Toyota: 1= group1, 2=group2, 3=group3, 4=group4 ) 
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 After 10 generations, the pattern recognition GA identified 8 wavelet coefficients 

whose 2-PC plot exhibited clustering of the clear coat IR spectra on the basis of assembly 

plant group of Nissan. 122 training set samples and the 8 wavelet coefficients identified by 

the pattern recognition GA using the Normal fitness function and remove one outlier (SID: 

4169). To assess the predictive ability of these 8 wavelet coefficients, a validation set of 

14 paint samples were projected into 2-PC developed from the 122 training set and the 

wavelet coefficients identified by GA. The 2-PC plots for the training and validation set of 

Nissan were seen in Figure 4.148-Figure 4.149. 

 

Figure 4.148. 2-PC plot of the 122 training set samples and the 8 wavelet coefficients 

identified     by the pattern recognition GA (Nissan: 1= group1, 2=group2, 3=group3, 

4=group4 ) 



181 
 

 

Figure 4.149.  Projection of the 14 validation set samples onto the PC plot of the 122 

training set samples and the 8 wavelet coefficients identified by the pattern recognition 

GA (Nissan: 1= group1, 2=group2, 3=group3, 4=group4 ) 

 

 For the prefilter used to differentiate the assembly plant group of Honda, the pattern 

recognition GA identified 20 wavelet coefficients whose 2-PC plot exhibited clustering of 

the clear coat IR spectra on the basis of Honda assembly plant group by removing an outlier 

(SID: 3126) after 40 generations,. To assess the predictive ability of these 20 wavelet 

coefficients, a validation set of 12 paint samples were projected into 2-PC developed from 

the 99 training set and the wavelet coefficients identified by GA, the 2-PC plots for the 

training and validation set of Honda were seen in Figure 4.150-Figure 4.151. This results 

suggests that some assembly plants of a specific automotive manufacturer have the similar 

paint formulation in a clear coat. 
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Figure 4.150. 2-PC plot of the 99 training set samples and the 20 wavelet coefficients 

identified by the pattern recognition GA (Honda: 1= group1, 2=group2, 3=group3) 

 

 

Figure 4.151. Projection of the 12 validation set samples onto the PC plot of the 99 

training set samples and the 20 wavelet coefficients identified by the pattern recognition 

GA (Honda: 1= group1, 2=group2, 3=group3) 
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4.4.7.3 Honda, Nissan and Toyota Assembly Plant Level Prefilter 

 After assigning a sample with manufacturer plant group membership, the next step 

will find the membership of assembly plant for this sample. .  “8sym6”wavelet 

preprocessing data from the clear coat horizontally concatenated “8sym6”wavelet 

preprocessing data from both two undercoats. This fused IR data were used for developing 

assembly plant level prefilters in the basis of each manufacturer. 

4.4.7.3.1 Honda Assembly Plant Level Prefilters 

 To identify whether the unknown is from assembly plant 3002 or from the rest all 

assembly plants (PID 3856: merging PID 3000, 3005 and 3006), pattern recognition GA 

(Fitness function: normal) identified 7 wavelet coefficients whose PC plot (see Figure 

4.152) showed clustering of the fused IR spectra on the basis of assembly plant 3002 in 

Honda plant group 1 after 18 generation runs. The 7 validation samples were projected 

onto the PCs (see Figure 4.153) define by the 59 training samples and the 7 wavelet 

coefficients identified by the pattern recognition GA.  Each validation set sample lies in a 

right assembly plant 3002 region of the PC plot. 
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Figure 4.152. 2-PC plot of the 59 training set samples and the 7 wavelet coefficients 

identified by the pattern recognition GA (3002= East Liberty, OH, USA, 3856= Alliston, 

ON, Canada; Lincoln, Alabama; Marysville, OH, USA) 

 

Figure 4.153. Projection of the 7 validation set samples onto the PC plot of the 59 

training set samples and the 7 wavelet coefficients identified by the pattern recognition 

GA (3002= East Liberty, OH, USA, 3856= Alliston, ON, Canada; Lincoln, Alabama; 

Marysville, OH, USA) 
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 If the validation sample falls out of the assembly plant 3002 region, pattern 

recognition GA will be used to further identify the assembly plant of this sample in Honda 

plant group 1. After 200 generations, pattern recognition GA (Fitness function: normal) 

identified 46 wavelet coefficients whose PCs (see Figure 4.154) showed clustering of the 

fused IR spectra on the basis of assembly plant in Honda plant group 1 except the assembly 

plant 3002. The 6 validation samples were then projected onto the PCs (see Figure 4.155) 

define by the 52 training samples and the 46 wavelet coefficients identified by the pattern 

recognition GA.  Each validation set sample lies in a right assembly plant region of the PC 

plot. 

 

Figure 4.154. 2-PC plot of the 52 training set samples and the 46 wavelet coefficients 

identified by the pattern recognition GA (3000= Alliston, ON, Canada, USA, 3005= 

Lincoln, Alabama, 3006= Marysville, OH, USA) 
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Figure 4.155. Projection of the 6 validation set samples onto the PC plot of the 52 

training set samples and the 46 wavelet coefficients identified by the pattern recognition 

GA (3000= Alliston, ON, Canada, USA, 3005= Lincoln, Alabama, 3006= Marysville, 

OH, USA) 

 The pattern recognition GA identified 2 wavelet coefficients whose PC plot (see 

Figure 4.156) showed clustering of IR the spectra on the basis of assembly plants from 

Honda group 2 after 1 generation run. To assess the predictive ability of these 2 wavelet 

coefficients, a validation set of 1 paint sample were projected into 2-PCs developed from 

the 9 training set and the 2 wavelet coefficients identified by GA. The pattern recognition 

GA ran by using Normal fitness function (see Figure 4.157). Samples from Honda 

assembly plant Alliston are too less to be used for prediction. 
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Figure 4.156. 2-PC plot of the 9 training set samples and the 2 wavelet coefficients 

identified by the pattern recognition GA (3100= Alliston, 3106= Marysville) 

 

 

Figure 4.157. Projection of the 1 validation set samples onto the PC plot of the 9 training 

set samples and the 2 wavelet coefficients identified by the pattern recognition GA(3100= 

Alliston, 3106= Marysville) 
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 For the prediction of a sample falling in Honda assembly plant group 3, the situation 

was complicated. After 52 generations, the pattern recognition GA identified 20 wavelet 

coefficients whose PC plot (see Figure 4.158) showed clustering of the spectra on the basis 

of assembly plant in Honda plant group 3. To assess the predictive ability of these 20 

wavelet coefficients, a validation set of 4 paint samples were projected into 2-PCs 

developed from the 30 training set and the wavelet coefficients identified by GA using 

normal fitness function of the pattern recognition GA. The validation set sample from 

Honda assembly plant 3007 was close to the one belonging to the assembly plant 3008 (see 

Figure 4.159). Even if the fitness function is switched to Hopkins 0.1 and Mehual 0.1, the 

model failed in predicting samples between the assembly plant 3007 and 3008. The 

individual average IR spectra from the assembly plant 3007 and the assembly plant 3008 

were compared (Figure 4.160), and the result suggested to merge both two assembly plants 

together. After 4 generations, the pattern recognition GA identified 20 wavelet coefficients 

whose PC plot (see Figure 4.161) showed clustering of the spectra on the basis of assembly 

plant in Honda plant group 3. To assess the predictive ability of these 20 wavelet 

coefficients, a validation set of 4 paint samples were projected into 2-PC developed from 

the 30 training set and the wavelet coefficients identified by GA using normal fitness 

function of the pattern recognition GA. The validation set sample from the assembly plant 

3007 was close to the one belonging to the assembly plant 3008 (see Figure 4.162). 
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Figure 4.158. 2-PC plot of the 30 training set samples and the 20 wavelet coefficients 

identified by the pattern recognition GA (3007=Sayama, 3008=Suzuka, 3200=Alliston) 

 

 

Figure 4.159. Projection of the 4 validation set samples onto the PC plot of the 30 

training set samples and the 20 wavelet coefficients identified by the pattern recognition 

GA (3007=Sayama, 3008=Suzuka, 3200=Alliston) 
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Figure 4.160. The comparison of the average IR spectra of the assembly plant Sayama 

(3007) vs the assembly plant Suzuka (3008) 

 

 

Figure 4.161. 2-PC plot of the 30 training set samples and the 4 wavelet coefficients 

identified by the pattern recognition GA (3087=Sayama, Suzuka, 3200=Alliston) 
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Figure 4.162. Projection of the 4 validation set samples onto the PC plot of the 30 

training set samples and the 4 wavelet coefficients identified by the pattern recognition 

GA (3087=Sayama, Suzuka, 3200=Alliston) 

4.4.7.3.2 Nissan Assembly Plant Level Prefilters 

 To identify the unknown sample membership in Nissan assembly plant group 1, 

pattern recognition GA identified 15 wavelet coefficients whose PC plot (see Figure 4.163) 

showed clustering of the fused IR spectra on the basis of assembly plant in Nissan plant 

group 1 after 41 generations. The 5 validation samples were then projected onto the PCs 

(see Figure 4.164) define by the 37 training samples and the 15 wavelet coefficients 

identified by the pattern recognition GA. The GA fitness function is Normal. 
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Figure 4.163 2-PC plot of the 37 training set samples and the 15 wavelet coefficients 

identified by the pattern recognition GA (4000= Aguascalientes, 4005=Oppama, 

4007=Tochigi, 4104=Kyushu) 

 

 

Figure 4.164 Projection of the 5 validation set samples onto the PC plot of the 37 training 

set samples and the 15 wavelet coefficients identified by the pattern recognition GA 

(4000= Aguascalientes, 4005=Oppama, 4007=Tochigi, 4104=Kyushu) 
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 To identify the unknown sample membership in Nissan assembly plant group 2, 

pattern recognition GA identified 2 wavelet coefficients whose PC plot (see Figure 4.165) 

showed clustering of the fused IR spectra on the basis of assembly plant in Nissan plant 

group 2 after 2 generations. The 3 validation samples were projected onto the PCs (see 

Figure 4.166) define by the 24 training samples and the 2 wavelet coefficients identified 

by the pattern recognition GA. The fitness function of the pattern recognition GA is 

Normal. 

 

Figure 4.165 2-PC plot of the 24 training set samples and the 2 wavelet coefficients 

identified by the pattern recognition GA (4100= Aguascalientes, 4106= Smyrna) 
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Figure 4.166 Projection of the 3 validation set samples onto the PC plot of the 24 training 

set samples and the 2 wavelet coefficients identified by the pattern recognition GA 

(4100= Aguascalientes, 4106= Smyrna) 

 

 For samples located in the Nissan group 3, the pattern recognition GA identified 3 

wavelet coefficients whose PC plot (see Figure 4.167) showed clustering of IR the spectra 

on the basis of assembly plants from Nissan group 3 after 2 generation run. To assess the 

predictive ability of these 3 wavelet coefficients, a validation set of 2 paint samples were 

projected into 2-PCs developed from the 12 training samples and the 3 wavelet coefficients 

identified by GA using normal fitness function of the pattern recognition GA (see Figure 

4.168). 
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Figure 4.167 2-PC plot of the 12 training set samples and the 3 wavelet coefficients 

identified by the pattern recognition GA (4004=Kyushu, 4105=Oppama) 

 

 

Figure 4.168 Projection of the 2 validation set samples onto the PC plot of the 12 training 

set samples and the 3 wavelet coefficients identified by the pattern recognition GA 

(4004=Kyushu, 4105=Oppama) 
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 The pattern recognition GA identified 2 wavelet coefficients whose PC plot (see 

Figure 4.169) showed clustering of IR the spectra on the basis of assembly plants from 

Nissan group 4 after 2 generation runs. To assess the predictive ability of these 2 wavelet 

coefficients, a validation set of 4 paint samples were projected into 2-PCs developed from 

the 49 training set and the 2 wavelet coefficients identified by GA using Normal fitness 

function of the pattern recognition GA (see Figure 4.170). The validation set samples were 

assigned to the correct assembly plants. 

 

Figure 4.169 2-PC plot of the 49 training set samples and the 2 wavelet coefficients 

identified by the pattern recognition GA (4001=Canton, 4006=Smyrna) 
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Figure 4.170 Projection of the 4 validation set samples onto the PC plot of the 49 training 

set samples and the 2 wavelet coefficients identified by the pattern recognition GA 

(4001=Canton, 4006=Smyrna) 

 

4.4.7.3.3 Toyota Assembly Plant Level Prefilters 

 After the membership of an unknown sample was ascertained in Toyota group 1, 

the second prefilter was developed to distinguish the sample by Toyota assembly plant. To 

obtain the information of assembly plant and sub plant, the pattern recognition GA was 

applied to identify 36 wavelet coefficients whose PC plot (see Figure 4.171) showed 

clustering of the spectra on the basis of Toyota plant group 1 after 127 generation runs. 

Toyota assembly plant 5004, 5007 and 5103 were so close, even if the validation set 

samples were assigned to a certain correct assembly plant (see Figure 4.172), however, the 

model is unreliable to predict unknown samples. Examining the average IR spectra from 

these three assembly plant for each individual layer (OT2, OU1 and OU2), Figure 4.173- 

Figure 4.175 show the assembly plant 5004 and 5103 are very similar in OT2, and three 

assembly plants are similar in both OU1 and OU2. In addition, the OU1 IR spectrum of an 
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individual sample varies in the same assembly plant might be the reason for 

misclassification, see Figure 4.176-Figure 4.177. The above testing results suggested to 

merge these three assembly plants together. After 112 generations, the pattern recognition 

GA identified 30 wavelet coefficients whose PC plot (see Figure 4.178) showed clustering 

of the spectra on the basis of assembly plant of Toyota plant group 1. To assess the 

predictive ability of these 30 wavelet coefficients, a validation set of 16  paint samples 

were projected into 2-PCs developed from the 131 training set and the wavelet coefficients 

identified by GA. The fitness function of the pattern recognition GA is Normal. The 

validation set samples were assigned to the correct assembly plants (see Figure 4.179). 

 

Figure 4.171 2-PC plot of the 131 training set samples and the 36 wavelet coefficients 

identified by the pattern recognition GA (5004=Georgetown, 5005=Japan, 

5007=Princeton, 5102=Cambridge, 5103=Fremont) 
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Figure 4.172 Projection of the 16 validation set samples onto the PC plot of the 131 

training set samples and the 36 wavelet coefficients identified by the pattern recognition 

GA (5004=Georgetown, 5005=Japan, 5007=Princeton, 5102=Cambridge, 

5103=Fremont) 

 

Figure 4.173 The average clear coat IR spectra comparison of assembly plant 

Georgetown, Princeton and Fremont 
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Figure 4.174 The average surfacer IR spectra comparison of assembly plant Georgetown, 

Princeton and Fremont 

 

 

Figure 4.175 The average e-coat primer IR spectra comparison of assembly plant 

Georgetown, Princeton and Fremont 
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Figure 4.176 The average surfacer IR spectra comparison of assembly plant Georgetown 

 

 

Figure 4.177 The average surfacer IR spectra comparison of assembly plant Princeton 
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Figure 4.178 2-PC plot of the 131 training set samples and the 30 wavelet coefficients 

identified by the pattern recognition GA (5005=Japan, 5102=Cambridge, 5374= 

Georgetown, Princeton Fremont) 

 

 

Figure 4.179 Projection of the 16 validation set samples onto the PC plot of the 131 

training set samples and the 30 wavelet coefficients identified by the pattern recognition 

GA(5005=Japan, 5102=Cambridge, 5374= Georgetown, Princeton Fremont) 
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 For the assembly plants in Toyota plant group 2, the pattern recognition GA 

identified 2 wavelet coefficients whose PC plot (see Figure 4.180) showed clustering of IR 

the spectra on the basis of assembly plants from Toyota plant group 2 after 2 generation 

runs. To assess the predictive ability of these 2 wavelet coefficients, a validation set of 2 

paint samples were projected into 2-PCs developed from the 19 training samples and the 2 

wavelet coefficients identified by GA using Normal fitness function of the pattern 

recognition GA (see Figure 4.181). 

 

Figure 4.180 2-PC plot of the 19 training set samples and the 2 wavelet coefficients 

identified by the pattern recognition GA (5002=Cambridge, ON, Canada, 5203= 

Fremont, CA) 
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Figure 4.181 Projection of the 2 validation set samples onto the PC plot of the 19 training 

set samples and the 2 wavelet coefficients identified by the pattern recognition GA 

(5002=Cambridge, ON, Canada, 5203= Fremont, CA) 

 

 For the prefilter used for identifying the assembly plants or sub plants of Toyota 

plant group 3, the pattern recognition GA identified 5 wavelet coefficients whose PC plot 

(see Figure 4.182) showed clustering of IR the spectra on the basis of assembly plant in 

Toyota plant group 3 after 4 generation runs. To assess the predictive ability of these 5 

wavelet coefficients, a validation set of 3 paint samples were projected into 2-PCs 

developed from the 15 training set and the 5 wavelet coefficients identified by GA using 

Normal fitness function of the pattern recognition GA. The validation set samples were 

assigned to the correct assembly plants (see Figure 4.183). 
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Figure 4.182 2-PC plot of the 15 training set samples and the 5 wavelet coefficients 

identified by the pattern recognition GA (5003=Fremont, 5104=Georgetown, 

5303=Fremont) 

 

 

Figure 4.183 Projection of the 3 validation set samples onto the PC plot of the 15 training 

set samples and the 5 wavelet coefficients identified by the pattern recognition GA 

(5003=Fremont, 5104=Georgetown, 5303=Fremont) 
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 To develop the assembly plant prefilter for the samples falling in the Toyota plant 

group4, the pattern recognition GA identified 2 wavelet coefficients whose PC plot (see 

Figure 4.184) showed clustering of IR the spectra on the basis of assembly plants of the 

Toyota plant group  after 1 generation run. Because the number of samples in the both two 

assembly plant is too less to assess the predictive ability of these 2 wavelet coefficients, 

there is no validation sample was set in this test. 

 

Figure 4.184 2-PC plot of the 9 training set samples and the 2 wavelet coefficients 

identified by the pattern recognition GA (5105=Japan, 5204=Georgetown) 

 

4.4.7.3.4 GM Search Prefilter 

 See the results in 4.4.5.2 Singlet GM manufacturer prefilter. 
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CHAPTER V 

 

 

CONCLUSION 

 

In the preceding chapters, a basic methodology for analyzing underdetermined and 

redundant spectroscopic data sets which utilized variable selection for model development 

was described.  An IR spectrum or an ion mobility distribution profile was represented as 

a point in a high dimensional measurement space.  The discrete wavelet transform was 

applied to each sample data vector to resolve overlapping spectral bands.  To identify the 

wavelet coefficients containing signal, a genetic algorithm for variable selection and 

classification was applied to the data to identify wavelet coefficients that optimize the 

separation of the classes in a plot of the two or three largest principal components of the 

data.   A good principal component plot can only be generated using coefficients that 

contain information about the class membership of the samples comprising the data set.  

Wavelet coefficients that maximize the ratio of between-class to within-class variance are 

selected by the pattern recognition GA.     

The proposed methodology for underdetermined and redundant data sets has been 

validated on a wide range of data.  In one study, search prefilters to identify the make and 

model of an automobile from which a paint chip originated were developed from the
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fingerprint region of IR spectra of automotive paints to facilitate searching of IR spectra in 

the PDQ database.  In another study, discriminants developed from ion mobility 

distribution profiles N-linked glycans extracted from sera and analyzed by MALDI-IMS-

MS differentiated individuals diagnosed with Barrett’s esophagus, high-grade dysplasia, 

esophageal adenocarcinoma and disease-free controls.  In both studies, the combination of 

wavelet preprocessing and variable selection using a genetic algorithm as a general solution 

to problems in the field of spectral pattern recognition was demonstrated. 

Pattern recognition methods operate with well-defined criteria and attempt to 

extract useful information from raw data.   If the limitations of the methods are not fully 

understood, the danger of misinterpretation or misuse of costly measurements is 

significant.  The dramatic increase in the number and sophistication of chemical 

instruments has triggered interest in the development of new data analysis techniques that 

can extract information from the large arrays of chemical data routinely generated in 

laboratories.  Evaluating data and extracting information from it is a task that is always 

changing as the sophistication and methodology of modern instruments increases.  For 

these reasons, new pattern recognition techniques that need to be developed to analyze 

these new streams of data should focus on extending the ability of human pattern 

recognition.  Hence, the approach used in the research described in this dissertation relied 

heavily on graphics for the presentation of results.  Although the computer can assimilate 

more numbers at any given time than can a scientist, it is the scientist, who in the end, must 

make the decisions and judgements. 
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