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Title of Study: MODELLING INDIVIDUAL TREE GROWTH OF NATURALLY 

OCCURING EVEN-AGED SHORTLEAF PINE (Pinus echinata Mill.)  

 

Major Field: Natural Resource Ecology and Management 

 

Abstract: Modelling individual tree growth is important for the assessment and 

management of naturally occurring shortleaf pine, as its abundance (hectare) is reducing 

due to increased plantings of other commercially important southern pine species. 

Modelling was conducted using six-time measured mensurational data over a period of 

25 years from permanent plots in western Arkansas and eastern Oklahoma. The major 

objectives of this study were to update and modify the existing nonlinear models that use 

the ordinary least square (OLS) technique to estimate parameters of an individual tree 

growth model: height-diameter relationship, crown ratio estimation, annual basal area 

growth, and individual tree mortality. The updated and modified model show that 

quadratic mean diameter better explained the height-diameter relationship and relative 

spacing index improved crown ratio estimation of an individual tree. The climate-based 

model with average minimum air temperature and average total monthly precipitation of 

the growing season optimized the prediction of annual basal area growth rate by lowering 

residual standard error by 1% compared to existing growth model. Simulations of climate 

change scenarios showed that under increased temperature scenarios the annual basal 

area growth rates of trees are less affected in older stands versus younger stands. The 

probability of annual mortality of an individual tree was influenced by its size with time 

(diameter/age), stand level productivity with time (basal area per hectare/age) and stand 

level competition (quadratic mean diameter). Annual mortality prediction model with a 

logistic function for binary response performed better than fitting a model with mixed-

effects approach. Including a variable of cutting smaller diameter trees – “low thinning 

effect” – had little impact in the mortality model. OLS estimates of the nonlinear model 

with and without correction of autocorrelation and of heterogeneous error variance 

provided better predictions than a mixed-effects model with random effect set to have 

null effect in prediction. OLS model with the first order autoregressive (AR (1)) structure 

for modeling auto-correlation within individual observation than within stand in the 

repeated measurement provided smaller Akaike Information Criteria (AIC). These 

individual growth models would be very helpful in developing a growth and yield 

modelling system of shortleaf pine, which could be used to simulate forest growth under 

different management scenarios. 
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CHAPTER I 
 

INTRODUCTION 

 

Assessment of the growth and yield are important because it provides information 

on the present status of the stand characteristics to forecast future conditions and basis for 

formulating and implementing forest management decisions. The growth represents the 

increase in the size of an individual tree or population with time or over a given period 

(e.g. basal area growth in m2ha-1 year-1).
 Yield is the increase in the size of an individual 

tree or population at the end of the certain period (e.g. basal area in m2ha-1 at age 70 

years). This change in size of an individual or population with time is described by 

modeling an appropriate growth functions i.e. growth and yield model. The function used 

can be as either mechanistic or empirical to describe the behavior of the response 

variable. Mechanistic functions identify the causes and explain the phenomenon, but the 

empirical function doesn’t. In application, the mixture of both empirical and mechanistic 

features is of common choice to construct a model because such models provide insight 

into the theoretical or biological phenomenon (Weiskittel et al., 2011; Burkhart and 

Tomé, 2012). The form and characteristics of a model are often determined by the fitted 

data that represents the range of the observations and the attribute of individual sample 

trees from a stand used to estimate the equation’s coefficients. Regardless of the period of 

data collection and range of the data used for modelling, the growth and yield function 
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should be consistent with the consistency with the fundamental principles of biological 

growth.  The signs of the parameter also should exhibit a response curve compatible with 

biological growth (Weiskittel et al., 2011; Burkhart and Tomé, 2012).  

Individual-tree based models are desirable when the detailed information about stand 

development and structure is required. They also allow flexibility to model co-occurring 

species, stand structures and different treatments. Individual-tree based models help to 

envision the dynamics of a stand by size and age distribution classes. This important feature 

allows forest manager to make predictions, formulate management policy and management 

prescriptions more reliable. Individual tree models could be distance dependent and distance 

independent (Weiskittel et al., 2011; Burkhart and Tomé, 2012). Models that takes into 

account of the spatial arrangement of individual trees are called distance dependent model 

otherwise distance independent models. Individual tree models are usually distance 

independent model. In individual tree models, present tree level and stand-level attributes are 

taken as an explanatory variable to predict the response variable at present as well as in the 

future. Individual trees grown using individual tree data are aggregated into stand level 

variables to develop stand-level information in the model (Waykoff, 1990; Monserud and 

Sterba, 1996; Lynch et al., 1999; Budhathoki et al., 2008b). So, the model provides estimates 

at individual tree level and also at stand level. However, the stand-level growth model cannot 

estimate individual tree level information. Therefore, individual tree models are useful for 

prediction of tree-level as well as stand-level information. 

Growth and yield models are important for both natural and plantation forests to 

predict present as well as future productivity of an individual tree and as well as forest 

conditions. These models could be developed for either even-aged and uneven aged natural 
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stands or thinned, and unthinned plantation stands (Davis et al., 2001, Weiskittel et al., 

2011). Depending on the type and nature of the silvicultural treatment applied to the stand, 

the models could show either additive or multiplicative effect on productivity (Weiskittel et 

al., 2011). Growth models are developed from repeated measurements of the permanently 

established plots because they provide the information on a tree growth of long period and 

longitudinal aspect of the inventory data (Grégoire et al., 1995). These long-term data are 

useful sources for understanding the growth pattern, survivorship, and possible effect of the 

applied treatments on development of an individual tree and stands.  

A complete growth model system is composed of different modelling components 

such as height-diameter model, crown ratio relationship model, basal area growth or diameter 

increment model, and mortality model. A forest growth simulator is one of the tools that 

assists in decision-making for developing forest management plans and undertaking different 

silvicultural systems. Annual tree growth is based on size, vigor, age and competitive stress 

experienced. Competition from neighboring trees may affect growth of the subject tree. So, 

individual tree level and stand level covariates are used as explanatory variables while 

modelling annual growth rate (Lynch et al., 1999; Budhathoki et al., 2008b; Sharma and 

Subedi, 2011). In conjunction to stand level covariates, the distance independent growth 

model assesses competition by using indices based on the size distribution of a tree within a 

given area (Waykoff, 1990; Monserud and Sterba, 1996; Temsegen et al., 2007), relative 

indices (Sharma and Patron 2007, Burkhart and Tomé, 2012) and relative spacing (Ducey, 

2009; Zhao et al., 2012) are also often significant covariates in the growth modelling system.    

Height, dbh, and crown ratio provide adequate information of a trees’ growing 

condition. Individual tree height is one of the important variables used in the growth and 
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yield modeling system. Height-diameter relationship models are often used to impute the 

missing heights observations because only the subsample of trees’ height are recorded in the 

field measurement. It is commonly used in estimating current and future volume production, 

crown ratio and developing mortality models and predicting future heights (Lynch et al., 

1991; Lynch et al., 1995; Garber et al., 2006). Similarly, crown ratio, the ratio of live crown 

length to total height also reflects the competition experienced by an individual tree. The 

crown ratio is also an important tree attribute that directly and greatly influences tapper, basal 

area increment, volume estimation of an induvial tree and survival (Monserud and Sterba, 

1996; Jian et al., 2007). 

 Growth models that consider growth and mortality rates in the same period are 

slightly better than those which used the constant growth rate approach (Crecente-Campo et 

al., 2010). However, such models are usually complex and challenging to implement. Models 

that easily accounts for morality rate and irregular interval of re-measurement are more 

desirable. So, mortality models are commonly developed using the logistic or logit 

cumulative distribution function (Woodall et al., 2005; Zhao et al., 2006; Crecente-Campo et 

al., 2010). Tree mortality rate is usually interpreted to a common length of either 1-year or a 

5-year growth period. Tree mortality could be irregular (insects, diseases, fire, and snow 

damage) or regular (competition for light, moisture, and nutrients) (Groom et al., 2012). 

Irregular tree mortality events are episodic and difficult to predict, but regular morality is 

predictable. However, predicting individual tree mortality is highly variable because it 

depends on the nature of the data collected to model over the length of the study period.  

An individual tree’s growth depends on several fundamental factors regardless of any 

silvicultural treatments. Tree stem increase at breast height may be expressed as basal area 
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growth or diameter increment and can be used to simulate the effects of intensive 

management scenarios. Annual basal area growth of individual trees is influenced by site 

productivity, stand characteristics, and climate experienced by a tree over the period 

(Pokharel and Forese, 2009). The variation in the monthly temperature and precipitation of 

the growing seasons also affect the annual diameter or radial growth rate of a tree species 

(Pilcher and Gray, 1982). The extreme climatic events i.e. temperature and precipitation are 

significantly correlated with the annual growth rate (Graumlich, 1993). Therefore, tree 

response to climatic stress over an extended period significantly affects forest stand 

productivity (Subedi and Sharma 2013). It is easier to detect such changes at large scale but 

hard to decode at finer scales (Boisvenue and Running, 2006).  

Besides the influence of climate, thinning and the number of trees stocked at the time 

of measurement also affect the individual productivity of residual trees. Thining is a desirable 

treatment to maintain stand productivity because it maintains a healthy balance between 

individual trees position and enhances radial growth. Forest management requires a growth 

model that can handle the management or treatment effects such as thinning to address 

variability in individual tree growth models (Crecente-Campo et al., 2009, Turcotte et al. 

2012). Thinning reduces stand level competition and often has a pronounced effect on the 

increase of the stand’s quadratic mean diameter and on overall tree biomass (Zhang et al. 

1997; Cain and Shelton 2003; Zhang et al. 2006; Crecente-Campo et al., 2010; Uzoh and 

Mori 2012). However, the timing of response to the thinning effects varies among the tree 

species (Cutter et al. 1991). However, the thinning methods i.e. thinning from above (crown 

thinning) and or thinning from below (low thinning) in the control stock also influence the 

volume, basal area and biomass growth of a tree. In general, great growth in a stand is 
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achieved greater in thinning from above than from below thinning in the control 

experimental (Bradford and Palik, 2009) but volume growth from below thinning is strongly 

site dependent  (Skovsgarrd, 2009). 

Shortleaf pine (Pinus echinata Mill.) is second to loblolly pine (Pinus taeda L.) in 

terms of volume of the southern pines in the United States. It has the widest adaptation of the 

range of geography, soils, topography and habitats, covering 22 states over more than 

1,139,600 km² (440,000 mi2), ranging from southeastern New York to eastern Texas. The 

most prominent natural shortleaf communities are found in the Ouachita Highlands (Guldin, 

1986), which ranges in elevation from almost sea level to 1,006 m (3,300 ft). Shortleaf pine 

naturally grows well in the areas having an average air temperature from 90 to 210C, with 

minimums of -300C and maximums of 390C and rainfall ranging from 101 to 140 inches per 

year (Williston and Balmer, 1980). Naturally regenerated shortleaf pine forests of the 

Ouachita Mountains of Arkansas and Oklahoma cover almost 12,950 km2 (5000 mi2) (Smith, 

1986), where it is an important timber species. 

In a long-term study, with an objective to understand the growth and yield system of 

shortleaf pine, over 200 permanent plots were established on the Ozark and Ouachita 

National Forest during the period from 1985-1987. The re-measured data has served many 

studies on growth and yield of naturally occurring shortleaf pine. These include: Lynch et al. 

(1991), Murphy et al. (1992), Lynch and Murphy (1995), Lynch et al. (1999), Budhathoki et 

al. (2008a; 2008b). Though previous studies dealt with all essential components such as 

height prediction, missing height, crown ratio estimation, basal area growth and mortality, all 

these studies were conducted with fewer re-measurements data i.e. Lynch et al. (1999) with 

two measurements and Budhathoki et al. (2008a; 2008b) with three measurements. 
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Budhathoki et al. (2008a; 2008b) used the advantages of a mixed-effects model for 

estimating parameters of annual basal area growth of an individual tree and height-diameter 

relationship over the least square methods. The advantage of the mixed-effects models is that 

we can use the random effect to account for factor level covariate effects in this data 

structure. 

Previous studies based on subsets of the current dataset did not fully account for 

temporal correlation among measurement periods while modelling growth and yield 

components using the mixed-effects approach. The thinning that occurred after the third 

measurement was also not analyzed to understand its’ effect on the growth and mortality. 

Modelling mortality is a crucial part of growth and yield component because it changes the 

stand structure and influences the stand productivity by reducing resource competition 

between individuals. Over the period of 25 years, it is expected that climate also influenced 

individual basal area growth. Besides height and dbh, the crown ratio is also an important 

tree attribute that directly and greatly influences taper and volume estimation of an induvial 

tree. Six measurements on these plots spanning a period of, 25 years provided an opportunity 

to update the existing models with improved parameter estimates for better prediction. 

Additionally, it served as the basis for evaluating the different model forms of the growth and 

yield component and utilize the statistical tools to account heterogeneity and correlation 

understanding of growth and yield system of shortleaf pine. It was important to develop an 

individual basal area growth model, the height-dbh model for missing height, crown ratio 

model and mortality model simultaneously to make a complete and updated growth and yield 

system. 
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Objectives 

This dissertation aims to update, improve, modify and incorporate the influence of 

thinning effect on the growth and yield modelling system of naturally occurring shortleaf 

pine stand with data from plots measured six times spanning a period of 25 years. 

Specifically, the objectives are: 

 

1) Improve and modify the height-dbh relationship and crown ratio estimation 

models 

2) Develop annual mortality models with and without thinning effect 

3) Improve annual basal area growth models and develop a climate-based growth 

model. 
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CHAPTER II 
 

 

USING QUADRATIC MEAN DIAMETER AND RELATIVE SPACING INDEX 

TO ENHANCE HEIGHT-DIAMETER AND CROWN RATIO MODELS FITTED 

TO LONGITUDINAL DATA   

 

Abstract 

The inclusion of quadratic mean diameter (QMD) and relative spacing index (RSI) 

substantially improved the predictive capacity of height-diameter at breast height (dbh) 

and crown ratio models (CR), respectively. Data were obtained from 208 permanent plots 

established in western Arkansas and eastern Oklahoma during 1985-1987 and remeasured 

for the sixth time (2012-14). Existing height-dbh, and CR estimation models for 

naturally-occurring shortleaf pine forests (Pinus echinata Mill.) were updated and 

modified for improved performance. Additionally, eight height-dbh relationship models 

that use only dbh (fundamental local models) were modified using covariates. The model 

performance was evaluated using fit statistics (root mean square error (RMSE), Fit index 

and Akaike information criteria (AIC)). The results showed that the best model form 

which was an extended nonlinear model (ENM) with autoregressive first order AR (1) 

structure and power variance function performed better than extended mixed-effects 

models (EMEMs) and predicted well as an ordinary least squares (OLS ) nonlinear 
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model. The autocorrelation within individual trees was larger for the height-dbh 

relationship than for CR estimation. The addition of QMD, to mean dominant height (HD) 

improved height-dbh relationship with a reduction of 8% in RMSE greatly, compared to 

the use of basal area per hectare (BAH). Similarly, multiplying a fundamental local model 

by QMD raised to a parametric power reduced RMSE by 16%, and improved Fit index by 

12%, and decreased the AIC value by 7%. Dbh, HD and RSI best explained the crown 

ratio relationship with an improved Fit index by 6.7% compared to alternative nonlinear 

models without RSI. The logistic model for CR also provided prediction accuracy similar 

to that of a commonly-used nonlinear model. Nonlinear model with an application of 

remedial measures to enhance adherence to modeling assumptions can provide better 

parameter estimates over mixed-effects modeling approach. 

 

Keywords: mixed-effects model; autocorrelation; height-dbh relationship; crown ratio; 

quadratic mean diameter; relative spacing index. 
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Introduction 

Two fundamental mensurational quantities in forest inventory, i.e. height and 

diameter, are frequently used to characterize forest productivity in forest growth and 

yield models. Diameter measurement at breast height (dbh) is less costly and requires less 

effort than the total height measurement. Therefore, height-dbh relationship models have 

been used in the growth and yield models to predict “missing” tree heights (Lynch et al., 

1995), to predict future tree heights (Lynch et al., 1995; Lynch et al., 1999), and also to 

impute height to estimate volume production (Garber, 2006 ). The height-dbh 

relationship is nonlinear from the biological perspective with a curve that is asymptotic to 

a maximum possible total height at upper ranges of diameter. So, various nonlinear 

models with respect to parameters have been proposed to model the height-dbh 

relationship of different tree species. The height-dbh relationship has sometimes been 

modeled using only dbh as single independent variable (Meyer, 1940; Richards, 1959; 

Burkhart and Strub, 1974; Stage, 1975; Bates and Watts, 1980; Wykoff et al., 1982; 

Ratkowsky, 1990; Schmidt et al., 2011; Sharma and Briedenbach, 2015).  Here we term 

this type of model a “fundamental local model” because these models are: primarily 

developed at local or at a regional level, specific to a tree species and site, developed 

when stand level covariate or competition index is difficult or inconvenient to obtain, and 

can be easily extended to incorporate additional covariates. 

Height-dbh relationships are also modelled using plot or stand level covariates 

(Lynch et al., 1999; Sharma and Patron, 2007; Budathoki et al., 2008; Temesgen et al., 

2007; Temesgen et al., 2008; Arcangeli et al., 2014; Temesgen et al., 2014; Sharma and 

Briedenbach, 2015) to demonstrate the influence of stand density or effect of 
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competition. Therefore, fundamental local models are expected to have large error 

variance (Haung et al., 1992; Fang and Bailey, 1998; Sharma and Briedenbach, 2015) 

compared to models that use covariates in addition to dbh such as: stand structures 

(dominant height) (Lappi, 1997; Lynch et al., 1999; Sharma and Briedenbach, 2015), 

relative dimensions at stand level (ratio of tree per hectare to basal area per hectare ) 

(Sharma and Patron, 2007), competition index (basal area in larger trees (BAL)) 

(Temesgen et al., 2007), and stand density (basal area per hectare (BAH)) (Sharma and 

Zang, 2004; Budathoki et al., 2008).  

Individual tree height (Hi) and dbh (Di) can be used as independent variables with 

other plot or stand level attributes to model another important tree characteristic, the 

‘crown ratio’ (CR) of an individual tree which is the ratio of live crown length to the total 

height. The crown ratio is an important measure of tree vigor that reflects competition 

experienced by an individual tree because stand density over the period reduces the 

crown length (Smith et al., 1992; Hynyen, 1995; Temesgen et al., 2005). The distance 

between trees determines the crown shape and size, which is related to the crown length, 

total height and diameter increment attained by an individual tree (Smith et al., 1992; 

Monserud and Sterba, 1996). In many growth and yield models, CR is used for improved 

prediction of forest attributes. For example, height increment (Daniels and Burkhart, 

1975), basal area increment (Wykoff, 1992; Moserud and Sterba, 1996; Leites et al., 

2009), taper and volume of individual trees (Valentini and Cao, 1986; Jiang et al., 2007; 

Jiang and Liu, 2011), and survival of an individual tree (Saud et al., 2015). It is also 

useful in estimating crown biomass for energy production (Tahvanainen and Fross, 

2006). The crown ratio has been modeled using either a variety of nonlinear functions 
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(Holdaway, 1986; Dyer and Burkhart, 1987; Lynch et al., 1999) or the logistic function 

(Hasenauer and Monserud, 1996; Temesgen et al., 2005) which is also a nonlinear 

function. Both approaches utilize model forms that restrict crown ratio predictions to the 

feasible range of 0 to 1. 

However, the height-dbh relationship can vary over time due to differences in 

stand age, productivity, and competition (Lappi, 1997; Peng et al., 2001; Sharma and 

Patron, 2007; Budhathoki et al., 2008) and also differences in a geographical region 

(Calama and Montero, 2003; Arcangeli et al., 2014). This also applies in the case of CR 

modeling. Such variation could be reduced by using distance independent variables as 

covariates. Relative dimensions (ratios) are distance independent indices, which measure 

the hierarchical position of the subject tree within plot, e.g. ratio of Di to max dbh; ratio 

of quadratic mean diameter (QMD) to dbh (RAQD), BAL, and crown competition factor 

in larger trees (CCFL). These dimensionless ratios when used as covariates help to assure 

better prediction and tend to make the fundamental relationships among tree components 

more stable (Burkhart and Tomé, 2012, pg. 202). Ducey (2009) and Zhao et al. (2009) 

demonstrated that the relative spacing index (RSI) accounted for the effects of space 

between individual trees on crown ratio more effectively than other covariates. 

Interestingly, in addition to RSI, Ducey (2009) also suggested the inverse of RAQD as an 

important variable in height prediction and CR estimation. Temesegen et al. (2005, 2007, 

2008, and 2014) suggested that distance independent variables including BAL and CCFL 

also improve fits for tree height-dbh and crown relationships. 

Height-dbh relationship and CR models are often developed using mensurational 

records of permanent plots from repeated measurements. The tree attributes such as 
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height, dbh, and crown length measured at different time intervals are auto-correlated and 

also exhibit heterogeneous errors either at a tree or stand level. As a result, the use of 

nonlinear ordinary least square (OLS) estimation is often not reliable, because an 

assumption of random samples and independent observations is violated and the presence 

of autocorrelation does not conform to the assumptions of OLS. Therefore, mixed-effects 

modeling as an alternative to OLS for repeated measurements and grouped data has been 

widely used in forestry growth and yield models (Lappi, 1991; Lynch et al., 2005; 

Budhathoki et al., 2008; Lynch et al., 2012; Temesgen et al., 2014). This helps to address 

a possible source of subject-specific variation that the OLS approach does not consider 

because the fixed-effect parameters represent population average responses while random 

effects parameters represent response specific to each sampling unit (Lappi, 1991; Lynch 

et al., 2005). One advantage of the mixed-effects model is that random effects can be 

calibrated for an unsampled location (new data outside the estimation data) to improve 

the predictive accuracy of the parameter estimates from a mixed-effects model (Lappi, 

1991; Peng et al., 2001; Lynch et al., 2005; Sharma and Patron, 2007; Lynch et al., 2012). 

Mixed-effects models or hierarchical mixed-effects models easily account for 

spatial autocorrelation by using a plot specific or group specific random effects, but not 

so for temporal autocorrelation within observation. However, shorter study time period 

(lag) has been a limiting factor in the analysis of longitudinal data in growth modeling 

that sometimes does not allow us to specify appropriate autocorrelation structures. 

Patterns of heterogeneous errors can often be associated with the covariates (Phinero and 

Bates, 2000). Many investigators have used graphical methods to investigate the 

assumption of constant error variance for the dbh-height relationship model (Fang and 
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Bailey, 1998; Peng et al., 2001; Sharma and Parton, 2007; Budhathoki et al., 2008). But 

perhaps few have done a formal statistical test on this issue for nonlinear model forms 

(Temesgen et al., 2007; Lynch et al., 2012). Others have used weighted regression or 

logarithmic transformations that tend to stabilize variance (Huang et al., 1992; Fang and 

Bailey, 1998; Temesgen et al., 2007; Temesgen et al., 2014).  

Shortleaf pine (Pinus echinata Mill.) forests contain standing volume in the 

southern USA second only to loblolly pine (Pinus taeda L.) among the four southern 

pines (Lawson, 1990). However, relatively few quantitative studies of the height-dbh 

relationship, CR or other aspects of growth and yield o natural stands of shortleaf pine 

have been published compared to other southern pines in the USA (Budhathoki et al., 

2008). Graney and Burkhart (1973) provided a polymorphic system of site index curves 

to estimate dominant stand height for shortleaf pine using nonlinear ordinary least square 

(OLS) method. The relationship between height-dbh for naturally occurring even-aged 

stands of shortleaf pine was fitted using seemingly unrelated regression by Lynch and 

Murphy (1995), nonlinear OLS by Lynch et al. (1999), and mixed-effects estimation by 

Budhathoki et al. (2008). The studies of Lynch et al. (1999) for height-dbh relationship 

and CR estimation, and of Budhathoki et al. (2008) for height-dbh relationship used only 

the first two and three measurements respectively of the Oklahoma State University 

(OSU) and USDA Forest Service Southern Research Station (USFS) naturally occurring 

shortleaf pine growth study.  

Although, Budhathoki et al. (2008) updated height-dbh relationship by adding 

basal area per hectare (BAH) as an independent variable and by fitting a mixed-effects 

model, they did not fit a crown ratio model. But now six measurements of shortleaf plot 
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data spanning a 25-year period is available that allows us to update existing models and 

incorporate the most recent developments in modeling the height-dbh and crown 

relationships. This also provides an opportunity to test other model forms and 

independent covariates that may provide improved fits to the data from other studies as 

well. Therefore, the current study aims to update and improve the existing height 

prediction and CR estimation models suitable for practical application by resolving the 

issues of autocorrelation and heteroscedasticity of errors in repeated measurements. The 

specific aims are: to modify and improve the model performance by introducing plot or 

stand level covariates; to evaluate the performance of different sets of OLS nonlinear 

models, mixed-effects models, and their extended forms while correcting for 

autocorrelation and stabilizing heterogeneity of errors. In addition to this, we will 

evaluate available fundamental local models for the height-dbh prediction that do not use 

dominant height and modify them with plot or stand level covariates to minimize the 

prediction error. Moreover, also we will test homoscedasticity assumptions independently 

for each model. It is expected that the best model for both the height prediction and the 

crown ratio estimation will be useful for estimating volume, biomass and other tree 

attributes of the natural stand of shortleaf pine. 

 

Materials and methods 

Data 

In 1985-87, the Department of Forestry (now part of the Department of Natural 

Resource Ecology and Management) at Oklahoma State University (OSU) and the United 

States Forest Service (USFS) at Monticello, Arkansas collaboratively established growth 
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and yield plots in even-aged natural shortleaf pine stands. The plots were established as 

permanent plots in the Ozark and Ouachita National Forests in western Arkansas and 

southeastern Oklahoma. Prior to the establishment of this study in 1985, the major 

sources of data for shortleaf growth and yield were from fully stocked plots or 

unmanaged shortleaf pine stands (Lynch et al., 1999). These plots were designed to 

represent a range of ages, basal area levels, and site qualities, which were designated as 

design variables so that plots were thinned to specific residual densities at their 

establishment (for a detailed description see Lynch et al., 1999). At plot establishment, 

woody understory vegetation stems with dbh greater than 2.54 centimeters (cm) in were 

controlled using herbicide.  

These plots have been re-measured in every 4 to 6 years, with the latest (sixth) 

measurement made during the period from 2012 to 2014. At each measurement, Di of all 

trees from plot were measured but Hi in meters (m), and  crown length (height to base of 

live crown) in m were recorded for selected subsample trees from each plot to represent 

the range of tree diameters and crown classes of  dominant, co-dominant and intermediate 

trees in the plot. Individual trees were classified as the dominant and codominant tree 

based on the definitions given by Avery and Burkhart (2002 p. 163). The number of 

height and crown length subsample trees within plots was increased after the first 

measurement to continue a good representation of samples within plot dbh classes. The 

measurement plots were circular with a radius of 17.4 m (57.2 feet) and area of 0.0809 

hectare (ha) (0.2 acres). The measurement plots were surrounded by a buffer strip 10 m 

(33 feet) wide that received the same silvicultural treatments as plots at the establishment. 

The total sample consisted of 208 plots (for details see Lynch et al., 1999). Plot age 
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(PAG) was obtained by averaging the ages of dominant and codominant trees, which was 

determined from the ring counts of increment cores.  

Ice damaged trees occurred on a total of 101 plots in the year 2002, just before the 

fourth measurement. It was expected that the plots with significant numbers of ice 

damaged trees could influence the growth characteristics of individual trees on these 

plots. Therefore, in the model development process, plots with more than 30% of ice 

damage trees were excluded. Any individual trees having ice damage was also removed 

from the model development process. Trees having forks or other significant defects were 

excluded from the model development dataset. Many plots were re-thinned to their 

original basal area levels just after the third measurement while some plots were left 

unthinned. An average thinned (removed) basal area was 6.94 m2ha-1 with a range of 0.69 

– 19.36 m2ha-1. A variable that exhibits simple thinning effect ‘THINHA’ = (Thinned 

basal area per hectare/ (years since thinning) was formulated assuming that thinning 

effect decreases over the time. The mean and standard deviation (SD) of all variables 

from the first measurement to the last (sixth) measurement are shown in Table 1. The 

data consisted of total 14,028 observations, and the summary statistics of the variables 

used in modeling height prediction and crown ratio estimation are presented in Table 2. 

The Hi ranged from 3.048 m to 38.100 m with a mean of 20.433 m and SD of 6.222 m 

and CR ranged from 0.055 to 0.80 with a mean of 0.373 and SD of 0.094 (Table 2). The 

data used for modeling height-dbh relationship and CR estimation is shown in Figure 1a 

and 1b. 
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Height prediction model with dominant height 

To predict individual tree height, Lynch and Murphy (1995) developed a 

compatible height prediction model which was used in the shortleaf pine growth 

prediction system described in Lynch et al. (1999). Equation (Eq.) 1 below was used to 

predict an individual shortleaf pine tree height. Budhathoki et al. (2008) accounted for 

competition effects of other trees on individual tree growth by including the variable 

BAH (Eq. 2).  

 

31

0 2( ) ( ) exp( ) (1)
bb

i D iH c b H c b D    

31

0 2 4( ) ( ) exp( ) (2)
bb

i D iH c b H c b D b BAH      

 

where HD = average plot dominant and codominant height; c = the breast height (1.371 

m) at which dbh is measured; and b0, b1 b2 ,b3 and b4 are parameters to be estimated;  

 

The existing models need to be tested for thinning effect since post-thinning 

measurements are now available. The simple effect of thinning “THINHA” on height 

prediction model (Eq. 1) was found not significant in the model. Therefore, we tested 

inclusion of covariates that represents density competition and the relative position of a 

tree. Both covariates, QMD and RAQD provided the substantial improvement in fit 

statistics and showed identical performance, but we preferred QMD in (Eq. 3) to avoid 

correlated covariates in a model, which will be discussed below. A variable that is a 

function of an inverse of QMD, ratio of the number of trees per hectare (TPH) to BAH 

(TPH/BAH) was also used by Sharma and Parton (2007) in the extended model of the 
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Chapman-Richards function for boreal tree species in Ontario, Canada. The model used 

by Sharma and Parton (2007) was also modified by using QMD variable, instead 

TPH/BAH in equation (4) for testing on our shortleaf pine dataset. 
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After testing several models using OLS, Eq. (3) was selected for fitting with the 

mixed- effect model approach because it provided root mean square error (RMSE) 

extremely close to the smallest RMSE from Eq. (4), but contains only four parameters, 

making it somewhat simpler in form than Eq. (4). All parameters were tested for possible 

inclusion of plot-level random effects assuming the same plot effect holds for all 

remeasurements of the same plot. A  plot level random effect associated with the b0 

(asymptotic height), b1 (slope), and b2 (curvature) were significant, but due to sizeable 

differences in Akaike information criteria (AIC) value, the random effect associated with 

the b3 the parameter multiplicative to Di in Eq. (3) was selected. This resulted in the 

mixed-effects model Eq. (5)  
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where i represents attribute of an individual tree and j represent attribute of the plot; b0, 

b1, b2, and b3 are fixed effects parameters; uj = random effect associated with parameter 

b3 and specific to plot  j ; and ɛij = within plot error (random error for tree i in plot j). 
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Since each tree from the same plot was repeatedly measured for six times, it is 

possible that autocorrelation within individual observations and non-constant error 

variance exists. Therefore, to resolve the issues of heteroscedasticity and autocorrelation, 

we modeled a power variance function and first order autoregressive AR (1) structure, 

and a combination of both in the best nonlinear and mixed-effects models (Pinheiro and 

Bates, 2000, pg. 391; Cryer and Chan, 2008, pg. 66). AR (1) structure was selected 

because the data relatively few lags (5) and AR (1 requires the estimation of only one 

parameter. The best selected nonlinear models (Eq. 3) and mixed-effects model (Eq. 5) 

were referred as “base model” forms. Hereafter, the extended model forms with 

additional power variance function and AR (1) were termed “extended nonlinear models” 

(ENMs) and “extended mixed-effects models” (EMEMs). The assumption of 

autocorrelation within an individual tree was considered for ENMs, but this assumption 

was not compatible while modeling mixed-effects models. This may be due to the 

differences in the hierarchy of the group at which the errors are correlated, and random 

effects are associated. So, we assumed autocorrelation within plot for mixed-effects 

models. The resulted ENMs are as: 

 

Model 3 + power variance function      (6) 

2 2var( ) | |ij ij

    

error variance (ɛij) was modeled with one covariate. υij is covariate and  δ is power 

parameter. HD was selected as covariate for modeling heterogenouses errors because of 

smaller AIC value and large Likelihood Ratio (LR) statistics. 
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Model 3 + AR (1)       (7)  

AR (1) models the correlated errors (ɛit) as: 

2

1 1  and ~  N(0, )it it it it iid         

where i is the individual tree and t is measurement (lag) and φ is the autocorrelation 

between lags. The correlation “rho” (ρ) between residuals of an observation pair declines 

exponentially with the number of periods (k) apart i.e. ρ = ϕ k 
. 

 

Model 3 + power variance function + AR (1)    (8) 

The resulted EMEMs are as: 

Model 5+ power variance function       (9) 

Model 5 + AR (1)        (10) 

Mode 5 + power variance function + AR (1)     (11)  

 

Height prediction model without dominant height 

A variety of height prediction models with only single independent variable ‘dbh’ 

are commonly used in practice when dominant height is not readily available (in Table 3, 

Eq. 12-19). These eight equations (Eq. 20-27) were fitted to predict the shortleaf pine tree 

height and tested for modification by including QMD, which is typically available from 

forest inventory data. Other stand-level variables including TPH, BAH, and RAQD were 

also tested. We found inclusion of QMD into these modified “local” models (Eq. 20-27) 

substantially improved model performance. But, these models were neither tested as 

mixed-effects model nor as extended models.  
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The individual tree crown ratio model used by Lynch et al. (1999) for shortleaf 

pine was also modified and tested. This crown ratio function was developed by Dyer and 

Burkhart (1987) for planted loblolly pine tree data and also used by Hynynen (1995) for 

Scots pine stands. The base Eq. (28) used to predict the current individual tree shortleaf 

pine crown ratio together with an alternative Eq. (29) are shown below;  
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where CRi is the crown ratio of tree i; b0, b1 and b2 are parameters to be estimated; and 

other variables are as defined above.  

The effect of thinning was not included in crown ratio estimation models because 

though the effect was found significant in the Eq. (28), it didn’t markedly reduce the 

mean square error. Eq. (28) was modified to Eq. (29) by replacing PAG with HD. Both 

equations were further modified to Eq. (30) and Eq. (31) by adding BAH. The Eq. (30) 

was then modified by using RSI in Eq. (32). Relative spacing index (RSI) was calculated 

as =   DHTPH //000,10 . 
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The logistic function approach to crown ratio estimation was also tested. The 

following model (Eq. 33) proved to be a better alternative to the exponential model 

approach given above. 
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The mixed-effects approach was also used to fit crown ratio estimation models. 

Based on performance, Eq. (31) and (32) were modeled with the mixed-effects approach. 

It was found that the random effect associated with the parameter b0 for both models as 

shown below performed better than the other alternatives:  
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where CRij is the crown ratio of tree i in plot j. 

The crown ratio estimation model with better fit index and AIC values: Eq. (26) 

nonlinear model; and Eq. (35) mixed-effects model were selected as base models for 

modeling heterogeneous errors and autocorrelation structures. The resulted ENMs are Eq. 

(36-38); and EMEMs models are Eq. (39-41). 

 

Model 6 + power variance function       (36) 

Indiviudal dbh was found a better performing covariate than alternatives in reducing AIC 

value for modeling heterogenous errors. 

 

Model 26 + AR (1)        (37)  

Mode 26 + power variance function + AR (1)    (38) 

Model 35 + power variance function        (39) 

Model 35 + AR (1)        (40) 

Mode 35 + power variance function + AR (1)    (41)  

 

Statistical analysis 

All nonlinear models, mixed-effects models and extended form of models were 

fitted in R (R Development Core team 2012) using the “nls”, “nlme” and “gnls” functions 

respectively (Phinheiro et al., 2014). Models were compared using the Fit index, RMSE 

and AIC. Likelihood ratio (LR) statistics was also used to compare the ENMs with base 

nonlinear model (Eq. 3) and, EMEMs with base mixed-effects model (Eq. 5). The Fit 

index for nonlinear models was calculated based on the Eq. (42) and RMSE was 
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calculated based on Eq. (43). Fit indices and RMSEs for mixed models and the extended 

models were calculated based on the actual height or crown ratio predictions using only 

parameter estimates of the fixed covariates while setting random effects equal to zero. 
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where yi is observed value for ith observation; iŷ is the predicted value by a model; iy  is 

the mean observed value; p = number of parameter estimated by a model. But for ease in 

comparison, Fit index was interpreted as percentage (multiplied by 100). 

The Goldfeld-Quandt test was used to test an assumption of homoscedasticity of 

the error variance for both height prediction and crown ratio estimation model (Judge et 

al. 1982, p. 371-372). The dataset was divided into three parts ordered from the smallest 

to the largest value of the independent variable (dbh), and the middle (1/3rd) of the data 

were excluded. The Goldfeld-Quandt test compares the ratio of a residual sum of squares 

of the model from the upper range (3/8ths of total data) observations to the model from 

lower range (3/8ths of total data) observation. Standardized residual plots were plotted 

against the fitted (predicted) values, and against dbh values. The standardized residuals 

were also plotted against the mid-range of the design variables (plot basal area, site index, 

and plot age) but they are not shown. Standardized residual plots of all height prediction 
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models were similar to each other, and the same was the case for CR models. Therefore, 

only standardized residual plots from the base model and the best model for both height 

prediction and CR estimation are presented. 

 

Results 

The patterns of height and crown changes over the time for each measurement can 

be observed in Figure 2. Some of the changes could be due to thinning from below after 

the third measurement and removal of many trees due to ice storm damage at the fourth 

(Figure 2a). Due to the study design large trees in older age classes were present even at 

the first measurement since the study included a balanced range of age classes at that 

time. During later measurements trees in the younger age classes grew in height, resulting 

in an increase in mean height for the study as a whole (Table 2). The mean crown ratio 

appears to be fairly constant over time, and possibly average increases in total height are 

balanced by the crown recession over time as might be expected (Figure 2b and Table 2). 

 

Height prediction model with dominant height 

Table 4 displays the fit statistics (RMSE, AIC, and Fit Index) of height-dbh 

relationship models: nonlinear model (Eqs. 1-4); mixed-effects model (Eq. 5); ENMs 

(Eq. 6-8); and EMEMs (Eq. 9-11). The parameter estimates of all models were 

significantly different from zero, but estimates of the selected models are shown in Table 

5. The fit statistics of the Eq. (3) and Eq. (4) was similar and better than the alternative 

models (Eq. 1-2). However, the AIC value of Eq. (4) was slightly smaller. The smaller 

AIC value might be associated with the likelihood estimation function that involves the 
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number of parameters in a model, i.e. Eq. (3) has 4 parameters; and Eq. (4) has five 

parameters. Inclusion of QMD as stand level covariate in the Eq. (3) showed the 

reduction of RMSE by 8% compared a model without QMD (Eq. 1) and also compared to 

a model with BAH as the covariate (Eq. 2) (Table 5). This suggested that the selection 

and the position of the stand level covariate also affects the performance of a model 

(Table 4). Further, the mixed-effects model (Eq. 5) showed similar Fit index (95.84) and 

RMSE (1.27) to Eq. (3) when the random component was assumed to be zero and only 

the fixed effects were used to make height predictions (Table 4). The SD ˆ ( )j   

=1.19319, of the random component associated with the parameter b2 was significant (p-

value < 0.0001) with the confidence interval of [1.208723, 1.80569]. The AIC value of 

the Eq. (5) was lower than of Eq. (3) but this includes random effects parameters in Eq. 

(5) that are usually not available for prediction unless they can be obtained by calibration. 

The LR statistics suggested the ENMs and EMEMs were significantly different 

from their base model form (Eq. 3) and Eq. (5) respectively (Table 4). The ENMs and 

EMEMs provided similar RMSE and Fit indices, but Eq. (8) provided smaller AIC value 

and large significant LR statistics (Table 4). This suggested that modeling both variance 

function and autocorrelation structures in a nonlinear model performed better than just 

modeling variance function (Eq. 6) and other EMEMs (Table 4). In EMEMs, the similar 

AIC value and LR statistics indicated that EMEM Eq. (9) could be a better alternative 

model to Eq. (11) for height prediction but ignoring autocorrelation could lead to an 

underestimate of standard errors if account is made only for heteroscedasticity. 

Both extended model forms (ENMs and EMEMs) showed that relatively small 

power parameter estimates were needed to stabilize the issue of heteroscedasticity (Eqs. 
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6, 8, 9, and11) and large autocorrelations within individual tree heights were observed 

(Eq.7-8) but moderate autocorrelation was observed  between the tree heights within plot 

(Eq. 10-11) (Table 4). The parameter estimates of the Eqs. (5, 8, and11) were very similar 

(Table 5). Interestingly, the EMEM (Eq. 11) showed greater reduction in the SD of the 

random effect associated with plot than the mixed-effects model (Eq. 5) (Table 5). 

The Goldfeld-Quandt test did not indicate violations of the assumption of 

homoscedasticity of error variance for any of Eqs. (1-4). For example; Goldfeld-Quandt 

variance ratio was 0.80 for Eq. (3) which was less than tabulated F (5257, 5257) = 2.04 at α = 

0.05 level. The standardized residuals did not show any systematic pattern to indicate a 

violation of an assumption of homogeneity of variance. So, the standardized residuals of 

the better performing models: nonlinear model (Eq. 3), mixed-effects model (Eq. 5), and 

the ENM (Eq. 8) are shown in Figure 3. The residual distribution pattern was slightly 

different between nonlinear models and mixed-effects models. The nonlinear model 

showed some dip near the lower fitted values (Figure 3a) while mixed-effects model 

showed a more compact distribution of standardized residuals (Figure 3b). The residual 

distribution of all ENMs was similar as shown in Figure 3c for Eq. (8). Though extended 

models had better AIC values, residual distribution patterns were not different from their 

base models (Eq. 3 and 5). The standardized residuals plotted against dbh (Figure 3d, 3e, 

and 3f) also showed similar patterns and trends as discussed for fitted values. Mixed-

effects models showed variation at the lower diameter range compared to the nonlinear 

models and ENMs. The standardized residuals plotted against the range of design 

variables of shortleaf pine growth study also showed that the median residuals were 

almost centered to zero with a minimum bias, but these graphs are not shown.  .   
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Height prediction models without dominant height 

The parameter estimates of the fundamental local height prediction models with 

dbh as the only independent variable were significant (p-value < 0.0001). The fit indices 

and RMSE for fundamental local models (Eq. 12-19) were very similar but the Eqs. (14), 

15), and (17) did not perform as well as alternative models (Table 7). An average Fit 

index and RMSE was 73.85 and 3.18 m respectively for the fundamental local models. Fit 

statistics improved significantly across modified local models when a height prediction 

model function was multiplied by QMD raised to a power (Eq. 20-27) (Table 7). The 

stand level covariate QMD with a parameter in the power position increased values of fit 

indices and decreased RMSE substantially for both two parameters and three parameter 

dbh-height prediction model functions. On average, model RMSE was decreased by 17.31 

% (i.e. 0.55 m) and the Fit index was increased by 11% (i.e. 8.24). The greatest reduction 

in RMSE (0.64 m) was observed in Eq. (22) that corresponds to base Eq. (14), and the 

lowest reduction in RMSE (0.48 m) was observed in Eq. (23) that corresponds to base Eq. 

(15). The AIC value of each modified local models was reduced by an average of 7.34% 

(i.e. 5304) compared to the same equation form without QMD. Substantial reductions in 

AIC value and RMSE for these equation indicates that QMD as independent variable 

plays an important role in minimizing model error compared to models that use the only 

diameter as an independent variable. For the fundamental local models (Eq. 12-19) and 

modified local models with QMD (Eq. 20-27), the Goldfeld-Quandt test failed to reject 

homogeneity of variance at α = 0.05 of significance because all estimated variance ratios 

were less than F=2.04.  
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Crown ratio estimation 

The crown ratio estimation model with average dominant height (Eq. 29) instead 

plot age (Eq. 22) had better fit statistics and a better AIC value (Table 7) than other 

alternatives. Similar improvements in the model performance resulted from adding stand 

basal area when Eq. (28) was modified to Eq. (30), and Eq. (29) modified to Eq. (31) 

(Table 7). Crown ratio estimation models with PAG and BAH (Eq. 30) did not improve 

model performance as much as the inclusion of HD (Eq. 29). The crown ratio estimation 

model that included RSI (Eq. 32) had better fit statistics and AIC value than all other 

alternative models. Fitting the logistic function to this dataset suggested that Eq. (33) can 

be used as an alternative crown ratio estimation model because it had similar fit statistics 

and a similar AIC value compared to other slightly better alternative models. The 

parameter estimates of the crown ratio estimation models were significant (p-value < 

0.0001) but only estimates of the selected models are shown (Table 8). 

The mixed-effects model for crown ratio estimation (Eq. 35) with RSI had a 

slightly better Fit index and RMSE than the model with BAH (Eq. 34) though it had a 

similar AIC value (Table 7). However, the fit statistics (RMSE and Fit indices) of mixed-

effects models setting random effects to zero were not smaller than those of the OLS 

nonlinear models (Eq. 31 and 32) (Table 7). The SD of the error ˆ( ( ))ij   of Eq. (35) was 

slightly smaller (0.01658) with a 95% confidence interval of [0.01478, 0.01859] than of 

the Eq. (34) but estimate of the SD of the random component ˆ( ( ))j   of Eq. (35) was 

identical with Eq. (34).  

The ENMs (Eq. 36-38), and EMEMs (Eq. 39-41) showed reduced AIC values 

compared to the base models: Eq. (32), and Eq. (35) respectively. The large differences in 
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the LR statistics and smaller AIC values indicated that ENMs performed better than 

EMEMs (Table 7). Both ENMs and EMEMs provided negative power parameter 

estimates (Table 7). However, the ENM with a variance function (Eq. 36) showed Fit 

index better than others, and close to the nonlinear base model (Eq. 32) but not with a 

greatly reduced AIC value (Table 7).  

The ENMs with AR (1): Eq. (37), and (38) showed that observed CR of an 

individual tree in repeated measurement were moderately correlated (0.55) but, EMEMs 

Eq. (40), and (41) showed CR  were very weakly correlated (0.12) within a plot (Table 

7). Interestingly, ENMs Eq. (38) provided the smallest AIC value and comparable Fit 

index with Eq. (35) (Table 7) but had greatly changed parameter estimates (Table 8). It 

indicated that a nonlinear model with both power variance function and AR (1) structure 

can be used in the repeated measurements, as a substitute modeling approach to the 

mixed-effects modeling approach. The parameter estimates of the only selected CR 

estimation models are shown in Table (8). 

The Goldfeld-Quandt test also failed to reject homogeneity of variance for the 

crown ratio estimation models (Eq. 28-32) at the α =0.05 level of significance because 

the estimated variance ratios were less than F=2.08. For example, the ratios of variance 

were 1.09 and 1.08 for Eqs. (21) and (32) respectively. The standardized residual plot 

also indicated homogeneity of variance. The residual distribution patterns were fairly 

similar within the ENMs and also within the EMEMs with small improvements over the 

base model. The residual distribution pattern, Figure 4a of nonlinear model (Eq. 32) and 

Figure 4b of the mixed-effects model (Eq. 35) were similar though the latter was slightly 

compact and elongated to right, indicating more constant error variance. The residual 
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pattern of the ENM (Eq. 38) showed some errors at the lower fitter values but a more 

compact error at fitted middle values than other models (Figure 4c). Similarly, the 

standardized residuals plotted against dbh showed similar trends among the model forms 

(Figure 4d, 4e, and 4f) and suggested large prediction errors at the lower diameter range. 

The standardized residuals from Eq. (32) plotted against the design variables also showed 

that median residuals are almost centered at zero with a minimum bias over the range of 

design variables, but these graphs are not shown. 

 

Discussion 

The inclusion of QMD improved the fit statistics of the modified equation for 

height prediction (Eq. 3) compared to the models presented by Budhathoki et al. (2008) 

(Eq. 2) and Lynch et al. (1999) (Eq. 1) (Table 4). It was found that the prediction bias of 

0.02 m by Eq. (1) was reduced to 0.005 m by Eq. (3) which supported that the conclusion 

that Eq. (3) has better prediction capability. It was also observed that the stand 

competition variable ‘QMD’ in the Eq. (3) can be substituted by relative measure variable 

‘RAQD’ to obtain similar parameter estimates, standard error and RMSE. The parameter 

estimates and fit statistics of the mixed-effects model (Eq. 5) were similar to an OLS 

nonlinear model (Eq. 3). Predictions from a nonlinear mixed model with the random 

effect parameter set to zero were not as good as the OLS results, as expected (Table 4 and 

7). Garber et al. (2009) demonstrated that imputing height from the fixed estimates of 

OLS nonlinear had less bias in volume prediction (4 m3ha-1 ) than a mixed-effects model 

(20 m3ha-1 ) when height was imputed for Douglas fir, as it was discussed by Temesgen 

et al. (2008) while predicting height for Douglas-fir. The smaller AIC value in the mixed-
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effects model (e.g. Eq. 5) than OLS nonlinear models (e.g. Eq. 1, 2, and 3) might be 

attributed to the inclusion of the random parameters in the mixed-effects model. 

However, unless calibration data are available, the random parameters may not be of 

practical help for most prediction problems. On the other hand, several authors have 

shown that prediction using mixed models can be attractive when calibration data is 

available and have indicated, mixed model prediction may not be better than OLS unless 

calibration data is available (Lynch et al., 2005; Lynch et al., 2012).  

The AR (1) structure suggested autocorrelation of residuals within in individual 

observation was large for height prediction and was moderate for CR estimation. The 

large autocorrelation can be perceived as a wider residual distribution with increasing 

diameter as in Figure 3 and moderate autocorrelation can be perceived as a circular 

distribution of residuals as in Figure 4. Ducey (2009) also observed the circular pattern of 

residual distribution for CR modeling of Pinus strobus. However, the autocorrelation 

remediation at the larger lags is not reliable because it is based on fewer residual pairs. 

The EMEMs did not greatly improve model fits compared to the ENMs for both height-

dbh relationship and CR estimation. So, the AIC values of the EMEMs were not smaller 

than ENMs (Table 4 and 7). The smaller AIC value in the ENMs could be a result of 

more successful modeling of autocorrelation structure within individual tree than within 

plot or grouped data as in the mixed model. Because of this, AIC value of the EMEMs of 

both height-dbh relationship and CR estimation were not greatly reduced compared to the 

ENMs (Table 4 and 7. Though LR statistics suggested EMEM with AR (1) structure was 

significantly different from the base mixed-effects model (Table 4 and 7), both models 

had similar SD of random effect and error variance. Perhaps, the mixed-effects models 
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each group (plots) with its random effect and the assigned AR (1) (within stand) is 

formally identical to a random effect model that has both among group variance 2( )b  and 

within group variance 2( )w  that corresponds to correlation parameters 2( , )  . 

Therefore, it is possible that ENM with autocorrelation structure and variance function 

can perform better than the EMEMs. 

The small, positive power parameter in both ENMs and EMEMs of height-dbh 

relationship indicated a small amount of heterogeneous error due to influence of HD. The 

negative power parameter associated with dbh could be due to the pattern of the 

standardized residuals distributed along the lower diameter which showed greater 

variability. But the fact that large standardized residuals occurred in this study (Figure 3 

and 4) may be because the data were from naturally occurring stands as observed in 

Budhathoki et al. (2008) for shortleaf pine and in Sharma and Patron (2007) for boreal 

tree species in Ontario, Canada. Height growth in naturally occurring stands is not as 

uniform as that in plantations, such as described, for example, by Buford (1991) for 

loblolly pine. It could also partially due to measurement errors since the accuracy of 

commonly used height measuring devices are likely to be in 0.5 meters if not more, and 

there can also be variation in the accuracy obtained by individuals in the field 

measurement crew.  

The issues of heteroskedastic residual distribution (non-constant variance) when 

present can sometimes be substantially resolved, if a weighted OLS nonlinear model is 

used. After testing different weight functions, the weight 1/dbh, was found beneficial in 

improving model performance and addressing non constant error variance as used by 

Haung et al. (1992), Fang and Bailey (1998), Temesgen et al., (2007), and Temesgen et 
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al., (2014). For example, if weight as 1/dbh was used in Eq. (3), the residuals were 

slightly more compact and constant than shown in Figure 3, but some were still beyond ± 

4 at lower diameter range. The standard errors of parameter estimates were not 

considerably different from those of non-weighted Eq. (3). Because the weighted 

parameter estimates did not have variances that were substantially different from the 

unweighted parameter estimates and due to the results of the Goldfeld-Quant test, we 

used the unweighted parameter estimates. Of course, mathematically the sum of squares 

between predicted and actual heights cannot be reduced below that obtained with 

ordinary unweighted OLS by weighing a model that has the same form and the same 

independent variables. 

Modified local models (Eq. 20-27) showed substantially improved and similar 

model performance except for the Eq. (23) (Table 7). The parameter of QMD used in the 

“power” position was more effective than in the “linear” position. The other variables of 

stand competition such as BAH and TPH did not show any improvement but the inclusion 

of relative measures “RAQD” provided RMSE similar to the RMSE with the inclusion of 

QMD in some modified local models (Eq. 17, 20 and 21). However, RAQD provided 

larger RMSE for other modified local models than it was observed with QMD. Therefore, 

the evidence suggests that QMD can be a better surrogate covariate in improving model 

performance when the information on HD is not available. Temesgen et al. (2007) also 

suggested that the use of BAH and BAL in the fundamental local model and that can 

reduce RMSE up to 15%. The height-dbh prediction model has been often modified using 

HD to reduce RMSE of a model, however in practice HD may not be easily available for 

natural stands.  
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Eq. (28-33) fitted with OLS provided a choice of alternative models for CR 

estimation. The model (Eq. 32) with covariate HD and RSI performed better than a model 

with PAG and BAH (Eq. 31), and HD and PAG (Eq. 30) in addressing CR variability. This 

was expected because the distance between the trees reflects the crown competition and 

also thinning abruptly changes CR of an individual tree (Smith et al., 1992; Hynynen, 

1995). So, RSI has been used a measure of relative competition index in modeling CR 

(Ducey, 2009; Zhao et al., 2012). It was observed that the prediction bias was very small 

for all CR models, but it was negative for Eqs. (28-31), while it was positive for Eq. (32). 

It suggested that model with RSI tended to overestimate than other alternative models. 

The researcher has also used crown competition factor (CCF) as a covariate in 

association to BAL to model CR (Hasenauer and Monserud, 1996; Temesgen et al., 

2007).  

The small amount of variation explained (44%) by Eq. (32) in CR estimation may 

be due to the inherent variability of naturally-occurring forests compared to plantations. 

(Figure 4a, 4b, and 4c). The proportion of variation explained by the CR models of Dyer 

and Burkhart (1987) for loblolly pine plantations was greater (60%) than the proportion 

of variation in CR explained by the natural stand models of Hasenauer and Monserud 

(1996) in Austrian natural forest stands (49%-17%). The significance of Eq. (29) and Eq. 

(31) is that the model can be applied when PAG is not available. Hynynen, (1995) also 

found HD as an important independent covariate in CR modeling of Scot pine stands. The 

addition of BAH as a linear term to the ratio of D and HD (Eq. 25) improved fit statistics 

more than combining it linearly to individual tree height. Smith et al. (1992) and 

Monserud and Sterba (1996) indicated that using BAH as an independent variable can 
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improve prediction of an individual tree crown length. This leads to the expectation that 

BAH could also improve the fit of CR models.  

The logistic function model for CR estimation (Eq. 29) performed similarly to the 

model of Eq. (31). The logistic function restricts predicted crown ratio bounds within a 0-

1 interval. As dbh-height models, the parameter estimates of OLS nonlinear models for 

CR estimation were also better than mixed-effects models (Table 7). The mixed-effects 

models (Eq. 27-28) of CR estimation also performed more poorly than OLS nonlinear CR 

estimation Eqs. (31 and 32), but the AIC values were smaller for mixed-effects models 

(Table 5).  

 

Conclusions 

 The modified height-dbh relationship (Eq. 3) and crown ratio relationship model 

(Eq. 32) provided better accuracy than existing models for estimating the height and 

crown ratio of natural even-aged stands of shortleaf pine. The inclusion of QMD as a 

measure of stand competition rather than BAH as an independent variable helped to 

improve the understanding of the height-dbh relationship. Also, an inclusion of QMD 

improved the precision of height prediction model forms that do not utilize dominant 

height as a covariate. The RSI and HD enhanced the relationship of crown ratio with 

height and dbh compared to using PAG in CR estimations model. It was found that 

inclusion of RSI instead of made small but definite improvements in CR estimation and 

also that the logistic function can be used as a comparable choice to an alternative 

nonlinear model for CR prediction. 
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By alleviating heterogeneous error at stand level and adjusting autocorrelation at 

the individual tree level in repeated measurements, a quality nonlinear model with 

minimum information loss can be obtained. The parameter estimates of such model are 

preferred as an alternative to the mixed-effects modeling approach in predicting missing 

height and crown ratios. In repeated measurements, the autocorrelation within in 

individual observation is larger while predicting the height of that individual tree than 

estimating its crown ratio. The small, but positive weight of power parameter remediated 

heterogeneous errors and improved model performance for height prediction. Mixed 

models provided similar fit statistics when predictions were based only on the fixed 

effects parameters compared to those of nonlinear models fitted by OLS. However, the 

mixed-effects models may provide improved predictions when calibration data are 

available.  

Parameter estimates of the ENM, Eq. (8) for height prediction and Eq. (38) for 

CR estimation can be incorporated in the Shortleaf Pine Stand Simulator (Huebschmann 

et al. 1988) which can be used to develop information for practical forest management 

decision making i.e. estimation of the total stand volume and biomass production, for 

naturally occurring even-aged shortleaf pine forests. The relationships between dbh, 

height and crown ratio could have important implications in inventories for biomass and 

carbon estimation of natural stands of shortleaf pine in the southern US. To the extent 

that these formulations are a novel approach in the forestry literature, they could be 

considered for application in other forest types in addition to well-known existing 

equation forms. 
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Table II-1. Descriptive statistics (mean with SD in parentheses) of stand level and tree 

variables recorded for six times measurement of naturally occurring even-aged shortleaf 

pine stand. 

Variables 

Measurements 

1st 

(n= 2682) 

2nd 

(n = 

3017) 

3rd 

(n = 

3215) 

4th 

(n = 1750) 

5th 

(n = 

1677) 

6th 

(n =1687) 

CR 
0.373 

(0.094) 

0.365 

(0.096) 

0.372 

(0.096) 

0.376 

(0.089) 

0.374 

(0.092) 

0.364 

(0.084) 

D (cm) 
28.991 

(10.974) 

26.426 

(10.388) 

28.333 

(10.5) 

31.195 

(10.003) 

33.276 

(10.33) 

35.021 

(10.68) 

H (m) 
19.864  

(6.222) 

18.684 

(6.34) 

19.894 

(6.087) 

20.777 

(5.396) 

21.698 

(5.215) 

22.877 

(5.221) 

HD (m) 
20.433 

(5.596) 

19.364 

(5.704) 

20.625 

(5.356) 

21.17 

(4.83) 

22.131 

(4.56) 

23.293 

(4.477) 

PAG (yrs) 
62.465 

(22.114) 

56.585 

(20.207) 

61.537 

(20.258) 

66.486 

(20.742) 

72.251 

(20.737) 

77.828 

(20.756) 

BAH (m2ha-

1) 

24.191 

(8.653) 

23.135 

(7.566) 

26.156 

(8.352) 

23.609 

(8.693) 

26.027 

(9.147) 

28.063 

(9.565) 

QMD(cm) 
28.997 

(9.594) 

26.442 

(8.942) 

28.468 

(8.816) 

31.118 

(8.644) 

33.256 

(8.861) 

35.036 

(9.107) 

RSI 
0.276 

(0.101) 

0.269 

(0.092) 

0.256 

(0.091) 

0.293 

(0.112) 

0.284 

(0.109) 

0.274 

(0.107) 

RAQD 
1.063 

(0.323) 

1.073 

(0.347) 

1.078 

(0.359) 

1.043 

(0.269) 

1.044 

(0.268) 

1.045 

(0.269) 

BAHG 

(m2ha-1) yrs-

1 

0.458  

(0.274) 

0.491 

(0.296) 

0.505 

(0.303) 

0.409 

(0.241) 

0.41 

(0.23) 

0.404 

(0.214) 

n = total number of observations; CR = Crown ratio; D = diameter at breast height (cm); 

H = individual tree height; HD = average plot dominant and co-dominant height (meters); 

PAG = plot age (yrs); BAH = stand basal area per hectare (m2ha-1), QMD = quadratic 

mean diameter (m); RSI = relative spacing index; RAQD = ratio of QMD to D; and 

BHAG = ratio of BAH to PAG. 
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Table II- 2. Summary statistics of the variables used to model height prediction and 

crown estimation of the naturally occurring even-aged shortleaf pine stand (N = 14028). 

Variables Mean SD Minimum Maximum 

CR 
0.373 0.094 0.055 0.800 

D (cm) 
28.991 10.974 2.794 67.564 

H (m) 
19.864 6.222 3.048 38.100 

HD (m) 
20.433 5.596 6.706 36.019 

PAG (yrs) 
62.465 22.114 18.000 119.000 

BAH (m2ha-1) 
24.191 8.653 2.035 48.684 

QMD(cm) 
28.997 9.594 7.887 58.258 

RSI 
0.276 0.101 0.126 0.841 

RAQD 
1.063 0.323 0.386 7.012 

BAHG (m2ha-1) yrs-1 
0.458 0.274 0.025 1.338 
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Table II-3. Fundamental local models for height prediction with dbh only, and with 

modified height prediction model with quadratic mean diameter (QMD). 

Eq. Common height model Eq. Modified Model Source 

12 Hi -c = b0(1-e-(b1Di)) 20 Hi -c = b0(1-e-(b1Di))QMDb2 Meyer 1940 

13 Hi -c= b0(1-e-b1Di)b2 21 Hi -c= b0(1-e-b1Di)b2QMDb3 Richard 1959 

14 Hi-c = b0e
b1/Di 22 Hi-c = b0e

b1/DiQMDb2 
Burkhart and 

Strub 1974 

15 Hi -c = b0Di
b1 23 Hi -c = b0Di

b1QMDb2 Stage 1975 

16 Hi -c = b0Di(b1+Di) 24 Hi -c = b0Di(b1+Di)QMDb2 
Bates and Watts 

1980 

17 Hi -c = eb0 + (b1/(Di+1)) 25 Hi -c = eb0 + (b1/(Di+1))QMDb2 
Wykoff et al. 

1982 

18 Hi -c = b0e
b1/(Di + b2) 26 Hi -c = b0e

b1/(Di + b2)QMDb3 Ratkowsky 1990 

19 
Hi -c = (Di /(b1 + b2 

Di))
b3 

27 
Hi -c = (Di /(b1 + b2 Di))

b3 

QMDb4 

Schmidt et al. 

2011; Sharma 

and Briedenbach 

2015 
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Table II-4. Fit statistics (RMSE, Fit index (%), and AIC), power parameter (δ), and 

autocorrelation (φ) and likelihood ratio statistics (LR) of the different form of nonlinear 

height-dbh relationship. OLS nonlinear (Eq. 1-4); mixed-effects model (Eq.5); extended 

nonlinear models (ENM (Eq. 6-8); and extended mixed-effects models (EMEM) (Eq. 9-

11). 

Parameters RMSE Fit Index (%) AIC δ  φ  LR 

Eq.(1) 1.38 95.11 48776    

Eq.(2) 1.37 95.16 48624    

Eq.(3) 1.27 95.85 46453    

Eq.(4) 1.26 95.92 46230    

Eq.(5) 1.27 95.84 45157    

Eq.(6) 1.27 95.85 46203 0.323  251.9 

Eq.(7) 1.27 95.85 40305  0.803 9912.6 

Eq.(8) 1.27 95.84 36067 0.398 0.810 10389.9 

Eq.(9) 1.27 95.83 44790 0.383  369.2 

Eq.(10) 1.27 95.83 45140  0.037 19.1 

Eq.(11) 1.27 95.83 44771 0.3836 0.039 390.5 

 

 

 

 

 

 

 

 

 



54 
 

Table II-5. Parameter estimates and standard error in the parenthesis of the selected 

height prediction models. OLS nonlinear (Eq. 1-3); mixed-effects model (Eq. 5); ENM 

(Eq. 8) and EMEM (Eq. 11). 

Parameters Eq.(1) Eq.(3) Eq.(5) Eq.(8) Eq.(11) 

b0 
2.00052 

(0.02780) 

1.37232 

(0.01111) 

1.41103 

(0.01583) 

1.42302 

(0.01659) 

1.39325 

(0.01473) 

b1 
0.82570 

(0.00346) 

0.94119 

(0.00271) 

0.93335 

(0.00369) 

0.93107 

(0.00398) 

0.93888 

(0.00355) 

b2 
-9.34600 

(0.41130) 

-1.58186 

(0.06269) 

-1.36397 

(0.05693) 

-1.38491 

(0.07173) 

-1.25512 

(0.04758) 

b3 
-1.16510 

(0.02090) 

-1.69434 

(0.01684) 

-1.64451 

(0.01739) 

-1.64367 

(0.02327) 

-1.61206 

(0.01638) 

b4   
1.41103 

(0.01583) 

1.42302 

(0.01659) 

1.39325 

(0.01473) 

ˆ ( )j     1.19456  0.38801 

ˆ ( )ij     0.03067 
0.40902 

 

0.03061 
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Table II-6. Parameter estimates and fit statistics (RMSE, Fit index, and AIC) for height 

prediction models with dbh (Eq. 9-19), and along with quadratic mean diameter (Eq. 20-

27). 

Eq. 

(No.) 

Parameters estimates 
RMSE 

Fit 

index 

(%) 

AIC 
b0 b1 b2 b3 

12 41.2084 0.0215   3.16 74.27 72061 

13 38.8776 0.0247 1.0551  3.16 74.28 72058 

14 37.3973 -18.5592   3.25 72.64 72921 

15 1.6609 0.7209   3.19 73.76 72336 

16 67.0409 72.9095   3.16 74.24 72076 

17 3.6529 -20.2320   3.23 73.05 72708 

18 51.5498 -39.2751 10.7639  3.16 74.28 72055 

19 1.4364 0.0324 1.1802  3.16 74.28 72055 

20 3.5866 0.0716 0.5393  2.62 82.24 66863 

21 3.5567 0.0741 1.0387 0.5405 2.62 82.24 66864 

22 4.1877 -8.2663 0.5365  2.62 82.26 66847 

23 1.0548 0.3493 0.5055  2.71 81.09 67738 

24 4.48945 13.7148 0.5188  2.63 82.08 66983 

25 1.4838 -9.2260 0.5279  2.62 82.26 66845 

26 4.2827 -8.6416 0.4166 0.5327 2.62 82.26 66847 

27 0.7076 0.8722 10.6304 0.5329 2.62 82.26 66847 
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Table II-7. Fit statistics (RMSE, Fit index (%), and AIC), variance function (δ), and 

autocorrelation (φ) and likelihood ratio statistics (LR) of the different form of crown ratio 

(CR) estimation model. OLS nonlinear (Eq. 28-31); logistic model (Eq. 32) mixed-effects 

models (Eq. 34-35); extended nonlinear models (ENM) (Eq. 36-38); and extended mixed-

effects models (EMEM) (Eq. 39-41). 

Parameters RMSE Fit index (%) AIC δ  φ  LR 

Eq.(28) 0.07225 41.3 -33919    

Eq.(29) 0.07169 42.17 -34128    

Eq.(30) 0.07141 42.56 -34223    

Eq.(31) 0.07071 43.67 -34496    

Eq.(32) 0.07052 44.07 -34588    

Eq.(33) 0.07106 43.18 -34374    

Eq.(34) 0.07117 42.99 -35467    

Eq.(35) 0.07088 43.44 -35475    

Eq.(36) 0.07053 44.02 -34978 -0.246  390.74 

Eq.(37) 0.07073 43.69 -37878  0.548 3291.8 

Eq.(38) 0.07095 43.35 -38397 -0.364 0.55 3636 

Eq.(39) 0.07089 43.44 -35726 -0.282  498.2 

Eq.(40) 0.07081 43.57 -35703  0.129 230 

Eq.(41) 0.07079 43.6 -35467 -0.277 0.127 720.7 
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Table II-8. Parameter estimates standard error in the parenthesis of the selected CR 

estimation models. OLS nonlinear (Eq. 28, 31, 32); mixed-effects model (Eq. 35); ENM 

(Eq. 36, 38) and EMEM (Eq. 41). 

Parameters Eq. (28) Eq. (31) Eq.(32) Eq.(35) Eq. (36) Eq. (38) Eq.(41) 

b0 
0.26736 

(0.00217) 

0.17518 

(0.00477) 

0.16527 

(0.00293) 

0.149905 

(0.00352) 

0.16644 

(0.00499) 

0.26438 

(0.00375) 

0.15291 

(0.00403) 

b1 
3.24279 

(0.08715) 

1.23511 

(0.04487) 

1.19436 

(0.03247) 

0.971799 

(0.0377) 

1.258 

(0.05096) 

1.56297 

(0.054) 

1.02018 

(0.04693) 

b2 
0.98527 

(0.0105) 

-0.2342 

(0.02597) 

0.40621 

(0.03076) 

0.152942 

(0.03284) 

0.44583 

(0.02861) 

2.38424 

(0.14721) 

0.19512 

(0.03973) 

b3  
1.0726 

(0.02635) 

1.07876 

(0.02026) 

1.18193 

(0.02442) 

1.06131 

(0.02732) 

0.74909 

(0.01253) 

1.14689 

(0.02515) 

b4    
0.06721 

 

0.16644 

(0.00499) 

0.26438 

(0.00375) 

0.16404 

 

ˆ ( )j      
0.01658 

 
  

0.01654 

 

ˆ ( )ij      
0.06721 

 
0.15588 0.19222 0.01654 
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Fig. II- 1 Scatter plot of whole data showing the distribution of height (a) and crown ratio 

(b) of shortleaf pine along the diameter range.  
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Fig. II-2 3D Scatter plot of each measurement the distribution of height (a) and crown 

ratio (b) of shortleaf pine along the diameter range. X-axis dbh, y-axis: total height, 

crown ratio, and z-axis-measurement time.  
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Fig. II-3 Scatter plot of standardized residuals vs. fitted values (left panel) and vs. dbh 

(right panel) for the total height prediction models: a) OLS nonlinear (Eq. 3); b) mixed-

effects model (Eq. 5); and c) extended nonlinear model with AR (1) and power variance 

function (Eq. 8).  
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Fig. II-4 Scatter plot of standardized residuals vs. fitted values (left panel) and vs. dbh 

(right panel) for the crown ratio estimation models: a) OLS nonlinear (Eq. 32); b) mixed-

effects model (Eq. 35); and c) extended nonlinear model with AR (1) and power variance 

function (Eq. 38). 
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CHAPTER III 
 

 

MORTALITY MODELS FOR INDIVIDUAL SHORTLEAF PINE TREES BASED 

ON 25 YEARS OF REMEASUREMENTS DATA 

Abstract  

  Mortality prediction models for individual trees were developed for naturally 

occurring even-aged shortleaf pine (Pinus echinata Mill.) stand. Data was collected from 

208 permanently established plots located in the Ozark and Ouachita National Forests in 

Oklahoma and Arkansas, USA. The plots were re-measured six times over the period of 

25 years. Re-measured data suggested that annual mortality rates were greater than 5% at 

the lower diameter (dbh) range (< 15 cm) and less than 1% for greater dbh ranges. Two 

models, with and without the effect of thinning, were fitted using the logistic function 

with a binary response (0 = alive, 1 = dead). Variables that measure competition indices 

with age: including the ratio of basal area per hectare to plot or stand age (BAHG), the 

ratio of individual dbh to stand age (DAG)), and without age: quadratic mean diameter 

(QMD) were found significant in predicting the probability of mortality. The logistic 

model estimated directly using a binary distribution (“binary logistic”) provided smaller 

standard errors than the traditional iterative re-weighted regression, despite providing 

similar parameter estimates. Fitting a logistic model with thinning effect (“binary 
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thinned”), with the addition of thinning variable (THINHA) showed inferior performance 

compared to the binary logistic model in chi-square (χ2) test based on mortality in mid 

dbh classes, though it had more area under curve (AUC) value. The model fitted using 

nonlinear mixed-effects approach provided better Akaike information criteria (AIC) than 

binary logistic and binary thinned models but performed poorly in a χ2 test. 

 

Keywords: binary logistic, mixed-effects model, mortality rate, even-aged, thinning, 

competition indices 
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Introduction 

Accurate and reliable growth and yield information is an important support for 

better forest management due to the prediction of future stand characteristics. It is 

important to obtain good estimates of probability of tree survival/mortality because it is a 

major factor in influencing forest growth and yield (Lynch et al. 1999; Yang et al. 2003) 

which also determines the changes in stand structures. Individual tree survival models are 

used to predict the survival of individual trees in a stand. Tree sizes, stand density, 

species composition, site quality, and competition are major factors that influence tree 

mortality (Peet and Christensen 1987; Temesgen and Mitchell 2005; Zhao et al. 2006; 

Cao and Strub 2008). Based on the nature of a mortality or survival model; predicting 

either probability or number of trees, the selected variables for a model differ. In either 

case, the stand level attributes are more appealing as candidate variables in a model in 

conjunction with the tree level attribute (height, diameter) because it measures the effect 

of competition experienced by a tree (Lynch et al. 1999; Zhao 2006; Crecente-Campo et 

al. 2010). Variables that measure competition (e.g. basal area of large trees) and relative 

position of a tree in a stand are also often found to be important covariates in mortality 

models (Monserud and Sterba 1996; Temesgen and Mitchell 2005; Cao and Strub 2008).  

Annual survival equations predict the probability that a tree survives the 

following year. It can be challenging to obtain estimates of annual survival probability 

from data that were repeatedly measured at intervals longer than one year (Monserud 

1976; Monserud and Sterba 1999; Cao 2000). However, most individual tree models 

require equations that predict the probability of tree survival on an annual basis. Logistic 

regression model is the most commonly used model to estimate the survival/mortality of 
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individual trees (Monserud 1976; Cao 2000; Yao et. al. 2001; Zhao et al. 2004; Zhao et 

al. 2006; Cao and Strub 2008; Crecente-Campo et al. 2010; Groom et al. 2012). It has the 

flexibility to produce survival curves and estimate hazard rates for censored data (Efron 

1988). Raising the logistic function to the power of the number of years in the 

measurement interval has often been used to generalize the logistic function for 

application to unequal measurement intervals (Yao et al. 2001). After the model is fitted 

in this way, the power can be set to 1 to predict the annual probability of 

survival/mortality. This procedure helps to overcome the problem of unequal 

measurement intervals (Yang et al. 2003; Cao and Strub 2008; Crecente-Campo et al. 

2010).  

Data for building mortality or survival models require repeated measurement of 

the permanent plots or several years of data collection. The mixed-effects modeling 

approach accounts for such structured and non-independent data. It includes plot-specific 

random effects to account for the heterogeneity that may occur due to the clustering of 

trees within a plot. Such statistical models that include both fixed and random effects of 

parameters which are associated nonlinearly to the response variable in the model have 

widely been used (Lynch et al. 2005; Lynch et al. 2012; Groom et al. 2012). The mixed-

effects approach often helps to account for temporal and spatial correlation in the model. 

According to Lappi (2006) mixed models perform better when items are grouped within 

datasets. Grouped datasets may contain longitudinal or repeated measurements or can be 

defined as multilevel or block designs (Pinheiro and Bates 2000). However, mixed effects 

are limited to continuous static variables (e.g. height, dbh) but not often to a mortality; a 

binary, rare, and dynamic response (Rose et al. 2006; Groom et al. 2012). 



66 
 

Shortleaf pine is one of four major southern pines and an important species in 

southern US forests. It is economically important as a timber producing species as well 

an important component of wildlife habitat for species such as the red-cockaded 

woodpecker. Huebschmann et al. (1998) developed Shortleaf Pine Stand Simulator 

(SLPSS) for even-aged natural shortleaf pine forests. A survival model is one of the 

major components of the SLPPS that includes a prediction equation for the probability of 

tree survival based on repeatedly measured plots permanently located in the Ozark and 

Ouachita National Forests with diverse ages, site qualities, and densities. Other important 

components of SLPSS are a basal area growth model for individual trees (Hitch 1994; 

Lynch et al. 1999) and system of equations for height prediction and projection for 

shortleaf pine trees in even-aged natural stands (Lynch and Murphy 1995). 

This study consists of a large data set repeatedly measured over a 25-year period 

and is an important source of information regarding the survival of individual trees of 

naturally occurring even-aged shortleaf pine forest system of Arkansas and Oklahoma. A 

previously published survival model by Lynch et al. (1999) analyzed only the first 

measurement period. Additionally, some plots were thinned after the third measurement. 

This provides an opportunity further to understand the influence of thinning on individual 

tree mortality. Thinning operations change the diameter growth rate of individual trees, 

but thinning from below in young stands may accelerate mortality rate if the residual 

stands experience thinning shock in combinations of insect or disease damage (Bailey et 

al. 1985). Post-thinning, a survival model, may not perform well for lower diameter 

classes (Bravo-Oviedo et al. 2006). On the other hand, it is possible that after thinning the 
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survival probability of an individual tree might increase due to reduced competition for 

space and nutrients (Zhao et al. 2004).  

The length of the study period (over 25 years) provided an opportunity to 

investigate mortality nature/trend, the potential influence of treatment and a variable 

corresponding to age in a mortality model covering wide ranges of tree size and age 

distribution. Considering the significance of the database and shortleaf pine in the forests 

of the southern US, it is important to enhance our understanding of shortleaf mortality 

models. This study is focused on developing a mortality model to predict the probability 

of mortality of an individual tree accounting for the treatment effects, e.g., thinning, and 

improvement our understanding of the significance of a variable in predicting mortality 

using re-measured data over the period of 25 years. Specifically, this study compares two 

different mortality models; one which includes a variable indicating the effect of thinning 

and another that does not. The prediction ability of the selected mortality model using 

parameter estimates obtained from the logistic regression with a Bernoulli distribution  

(this is termed a “binary” model in this paper), through  iteratively reweighted nonlinear 

regression and mixed-effects modeling approach with a Bernoulli distribution will be 

compared. In addition to this, we will enhance our understanding of annual mortality rate 

(AMR) over the study period, and assess the influence of the selected variable in 

predicting the probability of individual tree mortality. 
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Material and methods 

Data 

The study plots are located in the Ozark and Ouachita National Forests in western 

Arkansas and southeastern Oklahoma. Until 1985, the major sources of data on the 

growth and yield of naturally occurring shortleaf pine forests were from fully stocked 

plots or unmanaged stands (Lynch et al. 1999). Because of this, during the period of 

1985-1987, the Department of Forestry (now part of the Department of Natural Resource 

Ecology and Management) at Oklahoma State University (OSU) and USDA Forest 

Service Southern Research Station (USFS) at Monticello, Arkansas collaboratively 

established growth and yield plots in even-aged natural shortleaf pine stands. These plots 

were designed to represent a range of ages, densities and site qualities (for the detailed 

description see Murphy 1988; Lynch et al. 1999). Plots were thinned to specified residual 

densities at establishment and hardwood understory trees were removed using a chemical 

herbicide.  

Plots have been re-measured in every 4 to 6 years, and the last (sixth) 

measurement occurred during the period from 2012 to 2014. Six measurements provided 

five measurement periods. The survival status of each tree was recorded at each 

measurement. Variables including diameter at breast height (dbh) (cm), tree height (HT) 

(m), and height to base of live crown (m) were recorded for each tree on each of the 

measurement plots. Each tree was classified either as dominant, co-dominant, 

intermediate, or suppressed. The sample plots were circular with the radius of 17.4 m 

(57.2 ft) and 0.0809 ha (0.2 ac). The measurement plots are surrounded by a buffer strip 

of 10 m (33 ft) wide that received the same silvicultural treatments at the establishment as 
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the measurement plot. The total sample consisted of 208 plots. OSU-USFS established 

183 plots of these, and 25 plots were from a thinning study established by Frank Freese 

during 1963-1964. In 1988, the Freese study plots were balanced to be consistent with the 

basal area levels of OSU-USFS shortleaf pine growth study (for the detailed description 

see Murphy 1988; Lynch et al. 1999). 

An ice storm impacted the study area just before the fourth measurement. In this 

study, the 101 ice damaged plots from the third and subsequent measurements period 

were excluded. Many plots were re-thinned to their original basal area levels shortly after 

the third measurement while a portion were left unthinned. The thinned basal area (m2ha-

1) was deducted from the estimated basal area per hectare of the third measurement 

because this better reflects the competitive pressure experienced by the trees on the plot 

during the measurement interval subsequent to thinning. The average thinned basal area 

was 6.94 m2ha-1 with a range of 0.69 – 19.36 m2ha-1. The total numbers of trees available 

for mortality analysis at the beginning of each of the five measurements were 8288, 8078, 

4027, 2470 and 2355. The summary of the tree level and stand level attributes associated 

with the dead trees for each measurement period are shown in Table 1. 

 

Model Development 

Logistic regression model 

In our data, the response variable ‘y’ represents mortality for an individual 

shortleaf pine tree, and has values of 1 for trees that died in between the measurement 

interval or 0 for trees that survived during that time with probabilities pi and 1-pi 
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respectively. Since yi (an individual tree) is an independent Bernoulli random variable 

with parameter E{y} = p, the simple logistic regression form was used. 
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Hamilton and Edwards (1976) modified Eq. (1) to Eq. (2) which he used to fit the 

parameters for a logistic model to estimate the probability of mortality.  

 

  
1

0 1 11 exp ........... (2)n np x x  


         

  

where p is the probability of annual mortality, x1, x2, …, xn are set of n predictors, β0 , β1,…, 

βn are regression parameters to be estimated and exp is the base of the natural logarithm. 

Later, many researchers set p to the annual probability of survival (e.g., Monserud 

(1976)). Eq. (2) provides the probability of mortality rather than the probability of 

survival. The probability of survival would be 1-p because, by definition, p is bounded by 

0 and 1.  

 

Variable selection 

For preliminary screening of variables, SAS/ PROC LOGISTIC procedure was 

used to select the best set of predictor variables at α = 0.05 level of significance. It is a 

typical logistic regression model to fit data with dichotomous outcomes by the method of 



71 
 

maximum likelihood (SAS Institute Inc. 2007; Allison 2001). Additionally, selected 

variables were also tested for their ideal performance to predict either mortality or 

survival when response label of the binary variable is interchanged. The attributes of dead 

trees at the tree and stand level shown in Table 1 were used as candidate variable in the 

model building process. The ratio of stand basal area per hectare to plot age (BAHG), the 

ratio of dbh to plot age (DAG), and quadratic mean diameter (QMD) were found highly 

significant with p-value < 0.0001, and more promising than other variables. Summary 

statistics of the selected variables are given in Table 2. These variables measure relative 

stand level competition with age, hierarchical position of an individual tree with age, and 

stand level competition respectively. For most plots, only a subsample of trees was 

selected for measurement of total height and crown length. Therefore, height prediction 

and crown ratio estimation models for shortleaf pine of Saud et al. (2015 submitted) were 

used to predict the missing measurements for testing independent variables that use 

height and/or crown ratio.  

In the model building process, an interaction terms were also included. Though 

the interaction terms were highly significant (p-value < 0.0001), the performance of the 

model with interaction terms was not satisfactory in terms chi-square (χ2) goodness of fit 

test value. Therefore, models with interaction term are not discussed here. To represent 

the possible effects of thinning at stand level in the model (THMD) the following variable 

was created: THINHA = (Thinned basal area per hectare/ (years since thinning)). 

Because thinned basal area is divided by the number of years since thinning, it causes the 

effects of thinning to be reduced with time. In the thinning model, all above mentioned 
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variables were found significant along with THINHA and these variables were used for 

with and without interaction term in alternative models. 

 

Binary logistic regression model and iteratively re-weighted regression model 

Data from re-measured plots include multi-year intervals in which tree survival or 

death is observed. Let ‘t’, a time period in years, be such an interval over which to 

observe tree dead or survived. Hamilton and Edwards (1976), Monserud (1976), and 

Monserud and Sterba (1999) described a model (Eq. 2) to estimate the probability of 

survival assuming that survival time follows uniform distribution over the growth 

interval. The model of Eq. (2) was modified to obtain Eq. (3), ‘binary logistic regression 

model’, to predict mortality probability rather than survival probability where the 

response variable is mortality. This formulation is more consistent with biomedical 

studies (right censored data), and in related work we want to compare these methods to 

methods from the biomedical literature. Flewelling and Monserud (2002) stated that 

mortality is not a Markov process because a tree can only die once. However, survival is 

a Markov process. Therefore “this property requires that all algebra be mediated in terms 

of survival, not mortality” (Flewelling and Monserud 2002). Because of this, we modeled 

mortality (with tree death = 1) as 1-p (tree survives to the end of the measurement 

period). 

 

  0 1 2 31 1 exp (3)
t

t

j j j jp BAHG DAG QMD   


       
 
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where pj
t is the probability that tree j died during the measurement interval of t years, and  

the βi are parameters to be estimated. 

The parameter estimates obtained from the Eq. (3) are identical to the estimates 

obtained when survival was modeled (live tree =1) using Eq. (2). Hence the Eq. (3) 

modeled mortality but provides parameter estimates of survival. Eq. (3) was used to 

predict the mortality probability in different time intervals. When the interval t is zero or 

at the beginning of growth period the probability that the tree survives is 1 which means 

the tree is definitely alive. Conversely, as t → +∞, the probability of survival decreases 

and eventually approaches zero (Yao et al. 2001). The model with a thinning effect 

includes the variable THINHA in Eq. (4).  

 

  0 1 2 3 41 1 exp (4)
t

t

j j j j jp BAHG DAG QMD THINHA    


        
 

 

where, the notation are as described above for Eq.(3). 

Eq. (3) and Eq. (4) were used in what we term here as “binary logistic model” and 

“binary thinned” by specifying response as binary with probability of pt
. The NLMIXED 

procedure in SAS (SAS Institute Inc. 2007) was used to fit those models where no 

random effect was specified.  

PROC NLIN is the major SAS procedure for nonlinear (or curvilinear) regression 

analysis (SAS Institute Inc. 2007). It fits nonlinear regression models and estimates the 

parameters by nonlinear least squares or weighted nonlinear least squares (SAS Institute 

Inc. 2007). Since mortality is a binary or Bernoulli random variable, it has where pt is the 

probability of mortality during the period of t years. The inverse of the variance i.e. 1/ (pt 
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(1-pt)) was used as a weight while fitting the nonlinear regression. McCullagh and Nedler 

(1989) recommended iteratively re-weighted regression as an effective procedure to find 

the maximum likelihood estimates for the mortality model. Both Eq. (3) and (4) were 

used for the iteratively reweighted nonlinear regression model and the resulted in Eq. (5) 

and Eq. (6). 

 

Eq. (3) + Weight                                                                                            Eq. (5)  

Eq. (4) + Weight                                                                                            Eq. (6) 

 

Mixed- effects model 

Mixed-effects models were also fitted to develop a model for the probability of 

mortality for shortleaf pine. The NLMIXED procedure in SAS (SAS Institute Inc. 2007) 

was used to fit the nonlinear mixed-effect models by specifying the response as a binary 

variable. We investigated random effects associated with plot, additive to the intercept 

parameter, as well as to the parameters associated with all variables of the model. The 

best results were obtained by adding random effect to the parameter associated with 

variable QMD for without thinning effect “binary mixed” model  (Eq. 7).  

 

  0 1 2 31 1 exp ( ) (7)
t

t

jk jk jk k jk jkp SBAG DAG QMD     


         
 

 

 

where β0 , β1, β2, β3, and β4, are parameters to be estimated for tree j on plot k, uk is 

random effect associated with plot k normally distributed with mean 0 and variance 2
u 
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and εjk is error term with mean zero. The other alternative binary mixed models are 

mentioned as; Eq. (8-10).  

 

Eq. (7) with random effect at intercept: 0( )k        Eq. (8) 

Eq. (7) with random effect at BAHG: 1( )k jkBAHG       Eq. (9) 

Eq. (7) with random effect at DAG: 2( )k jkDAG       Eq. (10)  

 

In the mixed-effects model with thinning effect “binary mixed thinned”, the 

random effect of the plot associated with variable THINHA (Eq. 11) was found better 

over the alternative binary mixed thinned models.  

 

  0 1 2 3 41 1 exp ( ) (11)
t

t

jk jk jk jk k jk jkp BAHG DAG QMD THINHA      


          
 

 

 

where notation are as described above. And the alternative models are shown as; Eq. (12-

15). 

 

Eq. (11) with random effect at intercept: 0( )k       Eq. (12) 

Eq. (11) with random effect at BAHG: 1( )k jkBAHG     Eq. (13) 

Eq. (11) with random effect at DAG: 2( )k jkDAG     Eq. (14) 

Eq. (11) with random effect at QMD: 3( )k jkDAG     Eq. (15) 
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Mortality rates and variable influence in mortality 

We estimated annual mortality rate of shortleaf pine for each measurement period 

and overall the period of 25 years of re-measurement. The annual rate of tree mortality 

was estimated using Eq. (16), a negative compound interest formula (Hamilton & 

Edwards 1976).  

 

1/

0

1 (16)
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   
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where AMR = annual mortality rate; Nt = number of trees survived at re-measurement 

time (t = 4 - 6 years); and N0 = number of trees at previous measurement). 

To examine the trend of tree mortality along the tree size, AMR were plotted 

against the dbh classes having widths of five centimeters. The dbh classes were labelled 

by the midpoint; for example: 2.5 cm = ≤ 5 cm; 7.5 cm = >5 to ≤ 10 cm; ….. ; and 42.5 = 

> 45 cm. The predicted probability of mortality by the selected model was plotted against 

the variables used in the model at their mid-point ranges to compare the distribution of 

predicted probability of mortality across the variables. The ranges of mid-points were 

similar for the both variables BAHG and DAG. It was of 0.20 for all classes, except the 

uppermost class; 1.1 = >1.0. The ranges used for mid-points for QMD were: ≤ 15; >15 to 

≤ 23; >23 to ≤ 31; >32 to ≤ 39; >39 to ≤ 47; and >47 cm. It was used for THINHA as: ≤ 

1; >1 to ≤ 5; > 5 to ≤10; >10 to ≤15; and > 15 m2ha-1. Similarly, the influence of a 

variable in annual survival probability was examined by plotting the predicted probability 

of annual survival by a model against the selected variables. The value of the selected 
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variable ranged beyond the data set while all other variables were held constant at their 

mean values for the data set.  

 

Model evaluation and accuracy 

The Akaike information criterion (AIC) was used to select the best of the 

alternative models (Pinheiro and Bates 2000). The AIC and log-likelihood were estimated 

as given below (Eq.17 and 18) where d is the number of parameters in the model and l is 

the log-likelihood:  
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 Once the fitted response function was obtained, a chi-square goodness-of-fit test 

was conducted to check the fitness of the response function. The χ2 test is often used to 

evaluate the appropriateness of the model that has a binary response variable (Neter and 

Maynes 1970). After obtaining parameter estimates, comparisons between observed and 

predicted numbers of live and dead trees were made by using mid-dbh classes. The 

models having the lowest AIC values were evaluated using the χ2 goodness-of-fit test 

(Eq. 18), based on these diameter classes. The χ2 value by mid-diameter classes was 

calculated as: 
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where Oj1 and Oj0 are an observed number of mortality and survival trees, respectively in 

diameter class j. Similarly, Ej1 and Ej0 are numbers of dead trees and surviving trees 

respectively in diameter class j expected from the model and c is the number of diameter 

classes.  

Model prediction accuracy was evaluated using the principal of the Receiver 

Operating Characteristic (ROC) curve (Metz, 1978). ROC analysis was conducted in R 

suing ROCR package (R Core Team 2012; Sing et al. 2005). The ROC curve is often 

used to measure the accuracy of a logistic model form, but it is less commonly used 

practice in forestry (Crecente-Campo et al. 2010; Hein and Weiskittel 2010; Groom et al. 

2012). It provides a measure of model discrimination by showing the area under the ROC 

curve (AUC) but shows the tradeoff between sensitivity and specificity. Sensitivity is the 

true positive rate, the rate of probability to be predicted positive given that a subject or an 

individual is positive. Specificity is the false positive rate, the rate of the probability to be 

predicted positive given that a subject or an individual is negative. The false positive rate 

is also denoted as 1-specificity. 

 

Results  

Mortality 

The mortality of shortleaf pine was 13.67% of initial total sample population 

(8288 trees), from the plot establishment year 1985-85 till the last sixth measurement 

period, with an average of 3.73 % periodic mortality rate (4-6 years). The proportion of 

tree mortality, 2.44, 6.21, 6.63, 4.70 and 1.95% for the consecutive five measurement 

periods (Table 1) was significantly different (df = 4, χ2 = 215.91, p <0.001).  
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The reversed J-shaped of AMR curve along the mid-dbh class of all measurement 

periods and of overall period of 25 years indicate that AMR was high for the smallest 

trees and declined rapidly as dbh increase and remain stable for large dbh class (Fig. 1). 

However, the AMR curve of the fifth measurement period was not typically reversed J-

shaped because of lower AMR at the lowest mid-dbh class (12.5 cm). Overall the whole 

period of 25 years of remeasurement data suggested that an average AMR for the trees of 

lower mid-dbh class (7.5 cm) was very high (> 10%), but it was  less (on an average of 

1%) for trees belonging to medium-sized (17.5 cm) to large-sized dbh class (Fig. 1).  

Annual mortality rate based on measurement period was 1.19, 5.68, 2.34, 1.98 

and 1.26 %, but it was 3.54% over the period of 25 years. It was higher for all mid-dbh 

classes during the third measurement period than other periods (Fig. 1). High AMR was 

observed for the smallest mid-dbh class (2.5 cm) till the second measurement period, but 

it was not recorded in the later measurement periods because of shift of dbh in the upper 

mid-dbh class (Fig. 1). However in the third measurement period, AMR was 100% for the 

lower 7.5 cm mid-dbh class because of a single observation.  

A high frequency of dead trees were observed in the lower dbh range in each 

measurement period, but in the second measurement period it was greatest at the lowest 

dbh distribution (Table 1), which could be due to the effects of competition as density 

increased. But the stand level competition in the third measurement was reduced due to 

thinning. In the second measurement period, 290 dead trees were recorded in 7.5 cm class 

and 79.3% of that mortality occurred in the young plot age classes (27-30 years) with 

densities greater than 2,200 trees per hectare.  
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Binary logistic regression model and iteratively re-weighted regression model 

The performance of binary logistic (Eq. 3) model and re-weighted regression 

model (Eq. 5) was identical (Table 3). It was observed because the highly significant (p < 

0.0001) parameter estimates were all similar for both models (Table 4). This was as 

expected since these are simply two different ways of solving the same likelihood 

function. However, standard errors and the confidence intervals were slightly different 

(Table 4). The standard errors for the parameter estimates of binary logistic model (Eq. 3) 

were smaller by an average of 33% making the confidence interval narrower than that of 

re-weighted regression model (Eq. 5).  

As mentioned above, parameter estimates of binary thinned model (Eq. 4) and the 

re-weighted regression models with thinning effect (Eq. 6) were also similar and highly 

significant (p < 0.0001) (Table 4). The standard error for the parameter estimates of the 

binary model with thinning effect (Eq. 4) were also found almost 37% smaller than of the 

iteratively re-weighted regression model form with thinning effect (Eq. 6). Though both 

approaches provided similar fit statistics (Table 3) because fit statistics involves 

parameter estimates of a model, the binary logistic model approach provided smaller 

standard errors for parameter estimates. Therefore, the binary model was preferred over 

the iteratively re-weighted regression estimates.  

 

Parameter Estimation Using a Nonlinear Mixed Model 

In the binary mixed model, the random effect of plot associated with variable 

QMD (Eq. 7) was found better than other alternatives (Eq. 8-10) when fit statistics were 

compared (Table 3). All parameter estimates of the binary mixed model (Eq. 7) were 
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highly significant (p < 0.0001) and are shown in Table (4). In binary mixed model, the 

random effect of plot associated with intercept (Eq. 8) and with the parameter of BAHG 

(Eq. 9) had comparable AIC value with Eq. (7), but the AIC value of the Eq. (10) was 

quite large (Table 3). Eq. (7) provided better χ2 test value for prediction, so it was 

selected as the best binary mixed model. The variance component (σ2
uk = 0.0024) 

associated with the parameter b3 of QMD was significant with a 95% confidence interval 

of [0.0017, 0.0033]. It was found that the parameter b1 of BAHG was highly positively 

correlated (0.82) with b3 of QMD. The correlation and covariance matrix of the binary 

mixed model (Eq. 7) is shown in Table (5). 

In binary mixed thinned models, all parameter estimates were highly significant 

except the random effect of plot associated with the parameter (b2) of DAG (Eq. 14) 

(Table 3). The AIC value of the binary mixed thinned model, Eq. (11) was similar to the 

random effect of plot associated with the parameter of BAHG, (Eq. 13) (Table 3). 

Likewise, the AIC value with random of plot effect associated with the parameter of 

intercept (Eq. 12) and QMD (Eq. 15) was similar but smaller compared to former models 

(Table 3). However, the random effect of plot associated with the parameter of, THINHA 

(Eq. 11) provided better χ2 test value for prediction than the models with lower AIC 

values (Table 3). Therefore Eq. (11) was selected as the best binary mixed thinned model 

and parameter estimates are shown in Table 4. The variance component (σ2
u = 0.1518) 

associated with parameter b4 of THINHA was significant with a confidence interval of 

[0.0977, 0.2060]. It was also found that the parameter b1 of BAHG was positively 

correlated (0.85) with b3 of QMD. The correlation and covariance matrix of the binary 

mixed thinned model (Eq. 11) is shown in Table (5). 
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Mortality prediction  

The chi-square test statistic has two components, one based on observed minus 

expected mortality, and the other based on observed minus expected survival. However, 

individual survival and mortality components were sometimes of a more modest 

magnitude. The estimated χ2 goodness of fit test value for both models (Eq. 3 and 4) was 

less than tabulated (χ2 
(9, 0.05) =16.91) for survival prediction in mid-dbh class but it was 

not for mortality prediction (Table 3). The total χ2 test value was 24.62 for the binary 

logistic model (Eq. 3) with χ2 = 1.57 for survival prediction, and χ2 = 23.05 for mortality 

prediction in mid-dbh class. Similarly, the total χ2 test value was 33.02 for binary thinned 

model (Eq. 4) with χ2 = 2.01 for survival prediction, and χ2 = 30.01 for mortality 

prediction in mid-dbh class (Table 3).  

The χ2 test value was larger for the both mixed-effects model approaches of binary 

mixed, and binary mixed thinned model than for the binary models (Table 3). In the 

binary mixed model, Eq. (7) had a total χ2 test value of 52.35, with χ2= 3.31 for survival 

prediction and χ2 = 49.04 for mortality prediction for dbh mid class (Table 3). In the 

binary mixed thinned, Eq. (11) had a total χ2 test value of 61.60, with χ2= 2.54 for 

survival prediction and χ2 = 59.06 for mortality prediction for dbh mid class. However, 

the total χ2 test value was substantially larger for the alternative binary mixed thinned 

models (Table 3). For example; the total χ2 test value was 88.34 and 255.54 for the Eq. 

(13) and Eq. (14) respectively. 

Both binary logistic model (Eq. 3) and binary thinned model (Eq. 4) showed a 

better fit of the predicted mortality curve with observed mortality than the mixed-effects 

models (Fig. 2a). The percentage difference in observed and predicted mortality for each 
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mid-dbh class showed that binary logistic model provided marginally better fit in 

predicting mortality than binary thinned model (Fig. 2b; Table 6). In mixed-effects model 

approach, binary mixed model, Eq. (7) appeared to have greater percentage differences in 

mortality prediction than binary mixed thinned, (Eq. 11) (Fig. 2b). All significant models 

(Eq. 3, 4, 7 and 11) under predicted mortality for dbh mid classes at 2.5 cm, and 7.5 cm 

(Fig. 2b; Table 6). The total number of predicted the mortality trees was nine trees greater 

than observed dead trees for the binary logistic model and eight trees greater than 

observed for binary thinned model (Table 6). However, the total number of predicted tree 

mortality was 161 trees fewer than observed dead trees for the binary mixed model but it 

was 15 trees greater by binary mixed thinned model (Table 6). 

 

Model accuracy 

The reasonable AUC value of all models indicated a good ability to discriminate 

the mortality risk for an individual tree of even-aged shortleaf pine growing in a natural 

forest stands (Table 3). AUC showed that a model while assigning 55% of true positive 

rate (true dead trees) would assign 10 % of false positive rate (Fig. 3). Examination of the 

ROC curve showed AUC for the selected models with thinning effect were better than 

models without thinning effect (Table 3 and Fig. 3). It was observed that mixed-effects 

models with comparable AIC value (Eq. 8 and 13) with the selected mixed-effects 

models (Eq. 7 and 11) had comparable AUC (Table 3). However, in the mixed thinned 

model, Eq. (13) showed better AUC than the selected model, Eq. (11). Table 3 and Fig. 3 

indicated that the binary mixed model (Eq. 7) was slightly better than the binary logistic 

model. However, the binary thinned model was slightly better according to the AUC 
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criterion than the binary mixed thinned model (Eq. 11) and was the best model by a small 

margin according to the AUC criterion (Table 3).  

 

Influence of variables for predicting mortality 

The relative influence of variables used for mortality prediction was similar in all 

of the models tested both those with a thinning effect and those without a thinning effect. 

Fig. 4 illustrates the behavior of mortality predictions for classes of several of the 

important variables used in modeling. The predicted probabilities were from the binary 

logistic model (Eq. 3) except THINHA from the binary thinned model (Eq. 4). The 

probability of mortality increased with the increasing values of stand level competition; 

BAHG, QMD and THINHA (Fig. 4a, 4c, and 4d.), while the probability of mortality 

decreased with increasing relative hierarchical position of individual level tree variables 

with age, DAG (Fig. 4b).  

 The change in the risk of mortality was very small for modestly increasing values 

of BAHG, QMD, and THINHA. The predicted mortality over the measurement length 

period showed that the mortality risk was nearly 5% for the median of the population of 

trees belonging to the uppermost mid-class for BAHG (Fig. 4a), QMD (Fig. 4c), and 

THINHA (Fig. 4d). The influence of the thinning variable in mortality could be possible 

due to effects of logging. Similarly, the mortality risk was 5% for the median of the 

population of trees belonging to lower mid class of DAG (Fig. 4b). The influences on 

predicting mortality by each variable could be greater for some individual trees than 

shown in Fig. 4 because some of the predicted mortalities were beyond the upper whisker 

of the boxplot for all variables.  
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Figure 5 shows the graphs of predicted probability of annual survival on the 

change in a selected individual variable while all other variables were held constant at 

their mean values for the dataset. The reference of all variables for Fig. 5 is as discussed 

above for Fig. 4. It appeared that DAG has the greatest impact on annual survival 

probability over the range plotted (Fig. 5a). Although BAHG, QMD, and THINHA 

showed a very small change in survival probability for increasing values, BAHG showed 

(Fig. 5b) relatively smaller decreasing annual survival probability compared to the other 

two (Fig. 5c and 5d). The ratio of diameter to stand plot age greater than 0.3 (cm yr-1) 

showed stable and better survival probability for an individual tree (Fig. 5a). The 

increased value of the variable BAHG (> 1.4 m2 ha-1/yrs), and QMD (> 50 cm) are likely 

to increase the stand level competition and influence survival of a suppressed tree by 5% 

(Fig. 5b and 5c).  

 

Discussion 

Mortality is one of the most critical and fragile components of growth and yield 

because changes in forest dynamics over time cause major increases or decreases in 

mortality rate. Also, mortality can have a large effect on measured productivity since a 

dead tree counts as negative growth. Since growth and mortality are known to alter with 

time a predicting variable that corresponds to the age of a stand was a rational choice for 

mortality. The selected variables not only measure relative stand level competition and 

hierarchal position of an individual with age but also stand level competition that reflects 

the site productivity. Additionally, the selected variables (BAHG, DAG, and QMD) can 

be easily constructed with from dbh and ages measurements that are commonly available 
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data for even-aged stands. Ideally, these variables were also highly significant in 

predicting survival probability when the binary response label was interchanged from “1” 

to “0” for dead trees.  

A variety of different variables for explaining either mortality or survival has been 

used by Lynch et al. (1999), Monserud and Sterba (1999), Cao (2000), Zhao et al. (2004), 

Zhao et al. (2006), Cao and Strub (2008), and Crecente-Campo et al (2010). We also 

tested a variety of candidate variables (Table 1), not all of which were discussed above, 

but several were discarded due to their poor performance in a model. There were sets of 

models provided by stepwise logistic regression which had better AUC and AIC value in 

the binary logistic model form than the models finally selected, but they performed 

poorly in the chi-square goodness of fit test (e.g. Eq. (12, 15) in Table 3).  Examples of 

these included binary logistic model with variables a) CRT, RAQD, BAHA, and DAG, and 

b) HDR, BAHA, QMD, and DAG.  

The selected variable QMD was very sensitive compared to other variables in 

estimating the probability of mortality of an individual tree because it could have either 

an increasing or decreasing impact depending on the competitive environment as well as 

other aspects of stand dynamics. Such effect was observed in a simple logistic model 

with QMD and BAHG that showed an increase in QMD has the effect on mortality (odds 

ratio estimate =1.05), while in a model with QMD and DAG showed the null effect of 

QMD on mortality (odds ratio estimate = 0.99).  So, it was inferred that this sensitive 

variable is important for model performance. 

The fact that the χ2 test value of binary logistic model was better than the binary 

thinned model suggested that deducting thinned basal area (m2ha-1) or the residual stand 
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basal area (m2ha-1) could show the effect of reduced stand level competition rather than 

using a simple variable to represent the thinning effect in the model. It could be  due to  

the variability in AMR curve level at lower dbh range (≤ 12.5 cm) and AMR curve below 

than 1% at upper dbh ranges (≥ 17.5) for all measurement periods  (Fig. 1) indicated that 

thinning or reduced stand basal area affected only the  AMR of trees at lower dbh ranges. 

The observed AMR curve at the higher level for the third measurement was the effect of 

the shorter remeasurement interval i.e. length of four years, recorded for the majority 

(2/3rd ) of dead trees. Using Eq. (16); for the fixed proportion of dead trees; shorter the 

interval, larger the AMR; and longer the interval, smaller the AMR.  

Annual mortality rates over the period of 25 years for mid-dbh class showed a 

reserved J shaped curve (Fig. 1). However, the mortality curve (Fig. 2a and 2b) over the 

period is not either U shaped or reversed J shaped curve, which are often presumed to be 

the main alternative relationships for mortality trends (Coomes 2003; Woodall et al. 

2005; Westphal 2006). This was as a consequence of the fact that the highest mortality 

occurred at lower mid-dbh classes (Table 6) during 2nd and the 3rd measurement period 

(Fig. 1). Mortality was almost 9.2% for multi-year measurement intervals from the 7.5 

and 12.5 cm mid-dbh classes though subsequently increasing dbh classes had a decreased 

the mortality rate. A similar pattern of high mortality rate (7%) at lower dbh class (5-15 

cm) was observed at ten years after planting shortleaf pine (Dipesh et al. 2014). This 

tends to confirm that it is possible for high spikes in mortality to occur in lower dbh 

classes (Fig. 2a, and 2b). If the mortality from the lower mid-dbh class is ignored or 

merged into classes of wider intervals (10 cm) then Fig. 2a and 2b could display reversed 

a J-shaped curve. Another factor that may influence the mortality trends in this study is 
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the fact that at the beginning of the study there were many “young-aged” plots containing 

large numbers of small trees per hectare. As these plots approached competition-induced 

mortality densities, significant numbers of mortality trees in mid-range dbh classes 

probably occurred. 

In alternative binary mixed thinned models, the random effect associated with 

intercept, and QMD had smaller and similar AIC values. However, their performance in 

the χ2 test was poorer than with a random effect associated with THINHA (Eq. 6) (Table 

3). It appeared from the χ2 test results that the mixed-effects modeling approach was not 

satisfactory for a natural stand with longer re-measurement intervals. This approach may 

be a better fit for survival prediction with shorter re-measurement intervals with 

plantation tree species as in Rose et al. (2006). A similar study in which the mixed-effects 

model did not provide compelling evidence of better fit was reported recently by Groom 

et al. (2012) for predicting Douglas-fir mortality. Groom et al. (2012) found that AUC of 

the mixed-effects model with only fixed parameter estimates was not different from 

binary logistic regression model. Unlike AIC value, all tested binary models and mixed-

effects models of both with and without thinning effect also did not show clearly a 

distinguishable pattern in AUC (Table 3). It can be observed that except for a few mixed-

effects models, the binary logistic and binary thinned models had a better-discriminating 

ability. However, the discriminating ability can be optimized by increasing default cutoff 

relative to the standard point of 0.5 (Hein and Weiskittel 2010).  

There can be an apparent conflict between using the AIC criterion and the χ2 

goodness of fit test used to evaluate model performance. The mixed model appeared to be 

better than the binary model using the AIC criterion but did not perform well in the χ2 
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goodness of fit test. Part of the reason may be that we evaluated probabilities for the 

mixed model using the fixed parameter estimates only to conduct the chi-square test. 

However, the AIC evaluation, of course, includes the random-effects parameters. In 

typical applications of the model, the random effect for a particular forest would not be 

known. In other mixed model applications to forest resources (for example; dbh-height 

relationship, e.g. Lynch et al. 2005; Lynch et al. 2012) one often may be able to calibrate 

a mixed model by estimating random parameters with locally-obtained data, but this 

would usually be very difficult for applications of a mortality model because re-measured 

plots would be required, but are typically not available. Furthermore, there is some 

evidence in the literature of forest resources that indicates that OLS models without 

mixed-effects may be preferred to the use of mixed-effects models if calibration using 

locally-available data cannot be applied (Monleon 2003; Lynch et al. 2005; Lynch et al. 

2012). However, these latter studies did not address mortality models specifically.  

The high χ2 test values for binary models suggest that the model is predicting a 

significantly different number of dead trees than were observed for one or more mid-dbh 

classes (Table 6). The estimated χ2 test value for mortality prediction in this binary 

logistic model (Eq.3) and binary thinned model (Eq. 4) could be marginally reduced by 

increasing the dbh class width from five cm to ten cm. For example; the reduced total χ2 

test value for Eq. (3) was 21.5 and for Eq. (4) it was 29.89. The χ2 test value cannot 

always be made small enough to fail to reject the mortality model for all tree species even 

with a large dbh intervals (10 cm) (Monserud and Sterba 1988; Temesgen and Mitchell 

2005). The large χ2 test value obtained here was possibly due to the variability in 
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measured variables of natural shortleaf pine stands in the dataset used to develop these 

mortality prediction models. 

 

Conclusions  

An independent variable that provides variation in the point estimates of their 

associated parameters either quite small or very large in a combination of the other 

variables in a model might be helpful to predict better mortality probability of an 

individual tree. It was found that measures of relative stand level competition (BAHG), 

hierarchal position (DAG) with age and stand level competition (QMD) were highly 

influential variables for predicting mortality. Ideally the same independent variables 

would be important whether the dependent variable in the probability prediction model 

was survival or mortality. The binary model performed better than an iteratively 

reweighted nonlinear regression model with the same independent variables because the 

binary estimation technique produced smaller standard errors for parameter estimates 

though both estimation methods provide similar parameter estimates. The mixed-effects 

model approach for predicting mortality produced a significant model with smaller AIC 

value than the binary model but did not produce lower χ2 test values than the binary 

models. Therefore, the binary model appears to be better for predicting the probability of 

mortality than the mixed-effects model.  

A model with thinning effects (Eq. 4) could be used where thinning effects are 

present although the effect was not very strong in the model. The inclusion of the 

thinning variable in the binary model did not improve the χ2 the test of goodness of fit 

although the thinning variable was significant and associated with increasing risk of 
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mortality. This may be due to logging damage. The binary logistic model (Eq. 3) can be 

used to predict the annual mortality or survival rate of individual trees of even-aged 

shortleaf pine forests. Therefore, the binary logistic regression model performed better 

than alternative models in this study and could be tested for use in a shortleaf pine growth 

simulation model such as the Shortleaf Pine Stand Simulator (SLPSS) (Huebschmann et 

al. 1998), a distance-independent individual tree growth simulator for naturally-occurring 

shortleaf pine.  
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Tables 

Table III-1 Summary of the tree and stand level attributes of dead trees of five 

measurement periods.  

Variables 

Measurement periods 

1st (n= 202) 2nd (n = 502) 3rd (n = 267) 4th (n = 116) 5th (n = 46) 

Mean 

(Median) 

Mean 

(Median) 

Mean 

(Median) 

Mean 

(Median) 

Mean 

(Median) 

Tree level      

dbh (cm) 14.35(10.67) 10.83(7.87) 25.54(26.42) 20.47(18.16) 20.74(18.48) 

BA (m2) 0.27(0.1) 0.16(0.05) 0.62(0.59) 0.43(0.28) 0.43(0.29) 

CRT 0.35(0.34) 0.3(0.3) 0.35(0.33) 0.31(0.29) 0.31(0.3) 

HT (m) 11.34(9.51) 9.95(8.13) 19.55(21.37) 16.69(15.13) 16.86(16) 

RAQD 1.46(1.4) 1.68(1.62) 1.22(1.11) 1.33(1.28) 1.37(1.3) 

HDR (cm) 1.28(1.25) 1.59(1.54) 0.88(0.81) 1.06(0.98) 1.08(1.06) 

Stand Level      

BAH (m2ha-1) 23.54(26.51) 30.95(31.73) 20.75(20.72) 32.08(32.23) 38.62(46.21) 

QMD(cm) 17.33(15.31) 15.49(12.77) 28.71(31.1) 24.7(20.45) 25.19(23) 

HD (m) 13.9(13.65) 13.8(12.19) 20.6(22.86) 18.77(17.23) 19.44(19.12) 

PAG (yr) 38(31) 36(29) 63(73) 52 (41) 52(47) 

BAHG 

(m2ha-1)/yrs 0.75(0.87) 0.98(1) 0.37(0.34) 0.72(0.75) 0.78(0.98) 

DAG(cm yrs-1) 0.36(0.33) 0.29(0.26) 0.42(0.41) 0.39(0.37) 0.4(0.35) 

SIND (m) 17(16.14) 16.32(15.49) 18.02(18.59) 17.47(17.79) 17.82(18.33) 

TPH 2087(1440) 2511(2459) 429(321) 947(803) 873(1112) 

Note: Diameter at breast height (dbh); basal area per hectare (BAH); individual tree basal area 

(BA); crown ratio (CRT); quadratic mean diameter (QMD); ratio of QMD to dbh (RAQD); stand 

or plot age (PAG); ratio of BAHA to PAG (BAHG); ratio of dbh to PAG (DAG); individual tree 

height (HT); average dominant and codominant height (HD);  ratio of HD to dbh (HDR ); site 

index (SIND); and trees per hectare (TPH).  
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Table III-2 Statistic summary of 25218 shortleaf pine trees from natural, even-aged 

stands used to fit mortality regression models. 

Variables Mean Std. dev. Minimum Maximum 

BAHG (m2ha-1)/yrs 0.593 0.319 0.041 1.280 

DAG (cm yrs-1) 0.470 0.138 0.052 1.362 

QMD (cm) 22.945 9.503 7.887 56.878 

THINHA (m2ha-1) 1.241 3.110 0.000 19.363 

Note:  THINHA = Thinned basal area per hectare/ years since thinning. 
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Table II-3 Model evaluation of the binary logistic model, re-weighted, and mixed-effects 

model forms of with and without thinning effect using the fit statistic (AIC, χ2
, and 

AUC).  

Model form 
Fit statistics  

AIC χ2  (Mortality) χ2 (Survival) AUC σ2
uk 

Unthinned      

      Binary Eq. (2) 7983 24.63 1.57 76.2   

Weighted Eq. (3) 7983 24.63 1.57 76.2   

     Mixed       

Eq. (7) 7498 49.04 3.31 76.53 0.003 

Eq. (8) 7511 98.02 9.15 76.73 1.628 

Eq. (9) 7591 1554.42 55.98 72.7 8.902 

  Eq. (10) 8177 510.01 59.63 67.78 2.115 

Thinned      

Binary Eq. (4) 7878 33 2 77.85   

     Weighted Eq. (6) 7878 33 2 77.85   

       Mixed      

Eq. (11) 7438 59.01 2.55 77.63 0.152 

Eq. (12) 7264 958.23 478.81 75.63 3.138 

Eq. (13) 7435 79.39 8.95 78.49 4.067 

 Eq. (14)# 18770 3256.93 847.04 70.62 -1.1*10-14 

           Eq. (15) 7281 217.93 37.62 77.18 0.0005 

Note: σ2
uk = variance of the random effect of the corresponding mixed-effects model. 

 # The parameter estimates of b0 was significant with p-value = 0.0212 and random effect 

associated plot was not significant (p-value = 1).  
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Table III-4 Parameter estimates (standard errors) of the selected binary logistic model, 

re-weighted regression model, and mixed-effects model form of with and without 

thinning effect for predicting the probability of mortality of an individual tree of naturally 

occurring shortleaf pine. 

 

Coefficient 

Without thinning effect With thinning effect 

Logistic 

Eq. (3) 

Weighted 

Eq. (5) 

Mixed 

(Eq. 7) 

Logistic  

(Eq. 4) 

Weighted 

(Eq. 6) 

Mixed 

(Eq. 11) 

b0 4.5930 

(0.2484) 

4.5929 

(0.3727) 

5.6797 

(0.5047) 

4.8955 

(0.2587) 

4.8955  

(0.4107) 

5.1883 

(0.2900) 

b1 -2.4309 

(0.1654) 

-2.4308 

(0.2465) 

-3.2635 

(0.3646) 

-2.7012 

(0.1731) 

-2.7012 

(0.2732) 

-2.9844 

(0.1904) 

b2 8.1132 

(0.2840) 

8.1130 

(0.4238) 

9.6223 

(0.3484) 

8.6290 

(0.2933) 

8.6290 

(-0.4637) 

8.2498 

(0.3047) 

b3 -0.0720 

(0.0063) 

-0.0720 

(0.0094) 

-0.1108 

(0.0128) 

-0.0806 

(0.0065) 

-0.0806 

(-0.1016) 

-0.0744 

(0.0075) 

b4    -0.1016 

(0.0085) 

-0.1016 

(0.1370) 

-0.1442 

(0.045) 

Note: All parameter estimates had p-value <0.0001, and parameters b1 b2, b3, and b4 are 

associated with the variable BAHG, DAG, QMD and THINHA respectively. 
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Table III-5 Matrix of correlations and covariance for mixed-effects approach model; 

binary mixed (Eq.7) and binary mixed thinned (Eq. 11).The values above diagonal are 

correlation and those below are covariance. 

Model Coefficient b0 b1 b2 b3 b4 σ2
uk 

Eq. (5) 

b0  -0.93630 -0.17130 -0.88010 - 0.26050 

b1 -0.17230  0.02587 0.81940 - -0.25760 

b2 -0.03012 0.00329  -0.15600 - 0.15440 

b3 -0.00569 0.00383 -0.00070  - -0.21830 

σ2
uk 0.00005 -0.00004 0.00002 0.00000 -  

Eq. (6) 

 

b0  -0.93300 -0.19210 -0.85240 -0.00134 0.04218 

b1 -0.05154  -0.06830 0.85360 0.05581 -0.06152 

b2 -0.01698 -0.00396  -0.25750 -0.06837 0.01811 

b3 -0.00184 0.00121 -0.00058  -0.05726 -0.02270 

 

b4 -0.00002 0.00048 -0.00094 -0.00002  0.24210 

σ2
uk 0.00034 -0.00032 0.00015 0.00000 0.00030  
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Table III- 6 Observed and predicted survival and mortality by five-centimeter classes 

from a nonlinear approach of binary logistic model fit, and a mixed-effect model fit for 

with and without thinning effect. 

Mid-dbh 

class (cm) 

Observed 

Survival 

Predicted Survival Observed 

Mortality 

Predicted Mortality 

Eq.3 Eq.4 Eq.7 Eq.11 Eq.3 Eq.4 Eq.7 Eq.11 

2.5 158 168 167 167 165 82 72 73 73 75 

7.5 2358 2387 2395 2427 2380 373 344 336 304 351 

12.5 4018 3985 3975 4028 3951 192 225 235 182 259 

17.5 4057 4048 4042 4079 4030 114 123 129 92 141 

22.5 4098 4080 4081 4106 4086 97 115 114 90 109 

27.5 3431 3431 3434 3449 3447 103 103 100 85 87 

32.5 2648 2661 2664 2671 2676 86 73 70 63 58 

37.5 1819 1832 1834 1836 1843 61 48 46 44 37 

42.5 887 881 881 880 885 17 23 23 24 19 

47.5 611 604 604 602 607 8 15 15 17 12 

Note:  Eq. (3) without thinning effect; Eq.(4) with thinning effect; Eq.(5) binary mixed model 

with random effect associated with variable QMD; and Eq. (6) binary mixed thinned model with 

random effect associated with variable THINHA.  
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Figures 

 

Fig. III- 1 The annual mortality rate of naturally occurring even-aged shortleaf pine 

based on mid-dbh classes for over the period of 25 years and for each successive 

measurement periods.  
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Fig. III-2 Predicted number dead trees for each diameter class (a) by four different best 

models (b) percentage difference of observed and predicted number dead trees for each 

mid diameter class by the binary model fit and mixed-effects model fit for with and 

without thinning effect. 
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Fig. III- 3 ROC curve showing the area under the curve (AUC) for binary models and 

mixed-effects models for mortality prediction of an even aged natural stand of shortleaf 

pine. 

 

 



106 
 

 

Fig. III- 4 Box plot showing the predicted probability of mortality against the variables 

used in the model at their mid-class ranges. The boxplot for variable ‘THINHA ‘was 

plotted from the parameter estimates of binary thinned (Eq. 4) while other boxplots were 

plotted from the parameter estimates of the binary logistic model (Eq. 3). 
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Fig. III- 5 Influence of a variable in predicting annual survival probability while fixing 

all other independent variables as constant equal to their data means. The plot for 

THINHA was plotted using parameter estimates of binary thinned (Eq. 4) while other 

plots were plotted using parameter estimates of binary logistic (Eq. 3).The dotted line 

indicates the data ranges of those respective variables.  
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CHAPTER IV 
 

 

CLIMATE-BASED GROWTH MODELS FOR ANNUAL BASAL AREA 

GROWTH OF INDIVIDUAL SHORTLEAF PINE TREE BASED ON 25 YEARS 

OF REMEASUREMENT DATA 

 

Abstract 

To understand the effect of climate on annual basal area growth rate, we modified an 

existing annual basal area growth model for individual shortleaf pine by incorporating 

growing season (April-September) climate variables. The data for this study were 208 

permanently established 208 plots, which were measured six times (1985-87 to 2012-14) 

at intervals of 4-6 years in naturally occurring even aged shortleaf pine (Pinus echinata 

Mill) stands in western Arkansas and eastern Oklahoma.. Various nonlinear growth 

models with and without climate variables were formulated. Although growth models 

were fitted with: mixed effects approach, first-order autoregressive (AR (1)) structure, 

and employing a power variance function had better Akaike information criteria (AIC) 

values than ordinary least squares (OLS) models, a growth model fitted using OLS had a 

better fit index. The climate-based growth models with deviation in seasonal climate 

variables and also in monthly climate variables from a decade-long (1980-2014) mean 

climate response during the growing season over the for each plot reduced the residual 

standard error (RSE) by 1.3% and 2.3% respectively compared to a growth model 
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without climate variables. The deviation in maximum temperature and precipitation 

amount were more effective in an exponential factor multiplied by a base growth model 

rather than when included in a linear manner and convincingly addressed climate change 

scenarios. The simulation showed that increase in mean maximum air temperature by 0.5 

0C with mean monthly precipitation amounts could easily reduce the annual basal area 

growth rate of an individual tree in the long term. Due to variation in climate, young trees 

experienced more stress in growth rate and the cumulative effects on growth were smaller 

for older trees over the course of a 50 year period of change in climate. 

 

Keywords annual basal area growth, climate-based growth model, climate modifier, 

seasonal climate variable, monthly climate variable, random forests.  
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Introduction 

An individual tree basal area growth or diameter increment model is a core 

component of an individual tree forest growth model. These models are formulated using 

individual tree and stand-level covariates such as initial diameter, basal area, stocking 

level, and measures of stand-level competition (Andreassen and Tomter, 2003; 

Budhathoki et al., 2008; Subedi and Sharma, 2011). Growth models that do not account 

the spatial arrangement i.e. distance independent growth models are common in practice 

and such models can be applied to the range of a species (Lynch et al., 1999; Andreassen 

and Tomter, 2003; Lhokta and Loewenstein, 2011; Pokharel and Dech, 2012). Prediction 

equations for annual growth have also usually been fitted using ordinary least squares 

(OLS) methods (Budathoki et al. 2008; Subedi and Sharma, 2011) that assume the 

repeated growth observations are independent. However, when the data structure includes 

repeated measurements, temporal autocorrelation exists that may influence the prediction 

of individual basal area growth rate. To overcome such issues from repeated observation, 

power variance functions, autocorrelation structures, and mixed-effects approaches have 

sometimes been included in modeling efforts (Budhathoki et al., 2008; Uzoh and Oliver, 

2008; Lhokta and Loewenstein, 2011; Subedi and Sharma, 2011; Pokharel and Dech, 

2012).  

Site productivity and climate often account for significant variations in model-

based predictions of tree growth rate (Pokharel and Froese, 2009; Pokharel and Dech, 

2012; Subedi and Sharma, 2013; Jiang et al., 2014, Manso et al., 2015). The annual 

growth rate or radial increment over a period can be readily studied, using tree-ring 

studies (dendrochronology). Variations in tree annual growth rate are often explained by 
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climate variables such as summer temperature, precipitation, and drought index of the 

growing seasons (Graumlich et al., 1993; Biondi, 2000). These climate variables can be 

significantly correlated with radial growth anomaly patterns. For example; average 

summer temperature was strongly correlated with tree ring density at high northern 

latitudes (Briffa et al., 1998) and extensions of temperature-induced drought stress during 

the grown seasons affected the radial growth (Barber et al., 2000; Wilmking et al., 2004). 

Therefore, these climate variables have often been regressed against annual growth rates 

to develop climate-based growth models (Biondi, 2000; Jump et al., 2006; Chhin et al. 

2008; Martín-Benito, 2008; Duschesne, 2012; Foster et al., 2015). These models can help 

to explain the variations in annual growth responses that can be attributed to the relative 

precipitation and temperature for the period of study (Yeh and Wensel, 2000; Way and 

Oren, 2010).  

Diameter increment responses may vary among tree species when exposed to 

climatic stressors (Callaway et al., 1994; Hanson and Waltzing., 2000). Insight into the 

growth-climate relationship can obtain through the study of the largest diameter trees in a 

forest stand (Chhin, 2008). However, these large trees have highly variable growth rates 

(Hanson and Weltzin, 2000; Carrer and Urbinati, 2004). The growth rates of mature trees 

are also affected by the severe or prolonged drought stress or warmer temperatures 

(Hanson and Weltzin, 2000; Lloyd and Fastie, 2002; Jump et al., 2006; Martìn-Benito et 

al., 2008). These factors can also induce tree mortality. Consequently, the effects of an 

increased growing season length, are dictated by regional conditions and site-specific 

limiting factors to productivity in ways similar to the effects of variation in precipitation 

and temperature (Graumlich, 1993; Hanson and Weltzin, 2000; Yeh and Wensel, 2000; 
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Boisvenue and Running, 2006). Therefore, monitoring and evaluating the response of 

trees to changes in climate is useful for understanding the limiting factors of forest 

growth on the particular sites (Boisvenue and Running, 2006; Moore et al., 2006; Park et 

al. 2013). 

Shortleaf pine (Pinus echinata Mill.) grows in more than 22 states and is second in 

volume among the southern pines of USA only to loblolly pine (Pinus taeda L.) but its 

abundance is declining due to replacement by plantations of other commercially viable 

southern pine species (Lawson, 1990). It is more drought tolerant than loblolly pine and 

is found to grow well where annual precipitation averages between 100 cm to 150, and 

average annual temperature ranges from 90 C to 210 C (USDI Geological Survey, 1970).  

Studies focused on growth and yield of naturally grown shortleaf pine include Murphy et 

al. (1992), Lynch et al. (1991), Lynch et al. (1999), and Budhathoki et al. (2008). These 

studies are based on permanent plots established in even-aged naturally-occurring 

shortleaf pine forests in western Arkansas (Ozark and Ouachita National Forest) and 

southeastern Oklahoma (Ouachita National Forest). Previous studies have fitted an 

annual basal area growth models for individual shortleaf pine trees using OLS (Lynch et 

al.,1999) or with a mixed-effects modeling approach (Budhathoki et al., 2008; Lhokta 

and Loewenstein, 2011). The model fitted by Lhokta and Loewenstein (2011) was for 

uneven-aged shortleaf pine stands while the models developed by Lynch et al. (1999) and 

Budhathoki et al. (2008) were for even-aged forests. None of the latter studies included 

climate variables in the diameter or basal area growth model. Interestingly, Saud et al. 

(2015) presented a climate-based growth model for naturally occurring even-aged 

shortleaf pine with a smaller dataset (129 plots) than that used in the current study in 
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which there were only four measurement times. The result demonstrated potentiality for 

improving an existing growth model (Lynch et al., 1999) by adding climate variables. 

However, the current study is based on a larger dataset and includes an additional fifth 

and sixth measurement time. Climate-based growth models are often based on tree ring 

data that use only climate variables; however, a few studies have extended typical growth 

models also to include climate variables for species other than shortleaf pine (Subedi and 

Sharma, 2013; Manso et al., 2015, Saud et al., 2015). These studies have used climate 

variables as linearly added terms in existing growth models. It is evident that addition of 

a significant climate variables in these models can improve model prediction by a small 

amount. However, these studies did not investigate whether the climate variables used as 

linearly added term or as multiplicative (modifier) functions in a growth model performs 

better. Therefore, the objective of this study was to develop a climate-based growth 

model with potential climate modifier function that can enhance annual basal area growth 

response of an individual tree using remeasured permanent plots of shortleaf pine that 

have been measured six times during a period of 25 years. The other specific objectives 

included updating and evaluating the existing annual basal area growth model with 

different modeling approaches. An additional specific aim was to examine the influence 

of the climate-based growth model under different climate change scenarios. 

 

Materials and methods 

Tree Data 

Data for this study were obtained from 208 permanent plots located in even-aged 

natural stands of shortleaf pine in the Ozark and Ouachita National Forests in western 
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Arkansas and southeastern Oklahoma. These permanent plots were collaboratively 

established by the Department of Forestry (now part of the Department of Natural 

Resource Ecology and Management) at Oklahoma State University (OSU) and USDA 

Forest Service Southern Research Station (USFS) at Monticello, Arkansas. These 

research plots were established in 1985-87 to monitor growth and yield performance of 

managed naturally occurring shortleaf pine stands because, until 1985 the major sources 

of data were from fully stocked plots or unmanaged shortleaf pine stands. For additional 

details concerning plot establishment, see Lynch (1991), Lynch et al. (1999), and 

Budthathoki et al. (2008).  

The permanent plots were circular and 0.081 ha (0.2 ac) in size with a radius of 

16.06 m. At an interval of 4 to 6 years, each plot was remeasured, and the last (sixth) 

measurement made during the period from 2012 to 2104. Therefore, the data contain six 

measurements and five growth (measurement) periods. At the time of plot establishment, 

the minimum diameter at breast height (dbh) recorded was 2.78 cm and the maximum 

was 61.98 cm. Similarly, the minimum plot age recorded was 18 years, and the maximum 

was 93 years. Diameter for the individual trees on each plot were recorded at each 

measurement (Table 1). However, tree height (HT) in m and height to base of live crown 

(CL) in m were recorded for a subsample of trees from each plot selected to represent the 

range of tree diameters in the plot. Using the ring count method, ages of dominant and 

codominant trees were averaged to obtain the plot or stand age. Most of the plots were re-

thinned to their original basal area levels at establishment plot time just after the third 

measurement while a portion were left unthinned. Therefore, the thinned basal area was 

deducted from the stand basal area of the third measurement. Individual trees recorded as 
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not suitable for growth calculation (Maverick) and having ice damage were not included 

in the growth model development process. The summary statistics of tree level and stand 

level variables for the five growth periods that were used in the model development 

process are shown in Table 2. 

 

Climate data 

Climate data (air temperatures and precipitation) were accessed using the global 

position system (GPS) locations (Latitude and Longitude) of each plot as long-term data 

from 1980- 2014. Climate data were obtained with 4 km resolution (grids) from the 

Parameter-elevation Relationships on Independent Slopes Model (PRISM) climatic group 

based at Oregon State University (PRISM Climate Group 2014). The length of the active 

growing season of shortleaf pine was assumed from the month of April to September. 

This length of growing season corresponds to the six months that are normal for 

calculating the standardized precipitation index (SPI). SPI is believed to be a surrogate 

for the effect of the both temperature and precipitation (Guttman, 1999). The six months 

SPI indicates seasonal to medium-term trends in precipitation by comparing the 

precipitation for that period with the same six months period over the range of the data 

(historical data). SPI is considered as more sensitive and an alternative index to the 

Palmer drought index but it requires long-term (20-30 years) records of monthly 

precipitation so that the precipitation data can be normalized with a Weibull 

transformation (Guttman, 1999; Beguería et al., 2013).  The SPI index indicates the wet 

and dry events using scales. The scale ranges from ≤ -2.0 for extremely dry, ≤ 1.5 for 
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moderately dry,  ≤ -1.0 for dry, < 1.0 for neutral, < 1.5 wet, < 2.0 moderately wet, and > 2 

for extremely wet.   

Initially, seven candidate variables were derived at the growth interval level from 

climate variables i.e. air temperature, precipitation, and SPI, for each plot during the 

growing season over the growth period. The derived variables were: an average monthly 

maximum temperature (MTMAX), an average monthly mean temperature (MTMEAN), 

and an average monthly minimum temperature (MTMIN), average monthly precipitation 

(MPPT), average monthly SPI (MPSI), average total precipitation (APPT), and average 

total SPI (ASPI). Additionally, to understand the influence of climate of the specific 

month of the growing season during the growth period, we created monthly climate 

variables (24 variables) with an averages values of the climate variables for the respective 

months of the growth period. Hereafter, the first seven climate variables were termed 

“seasonal climate variables” and the latter were termed “monthly climate variables”. The 

monthly average values of the seasonal climate variables during the growing season over 

the length of 34 years are shown in Fig. (1a) and (1b), and the values of the monthly 

climate variables during the growing season are shown in Fig. (1c) and (1d). Over the 

period of 34 years, the climate response during the growing season were: average 

monthly precipitation was 111.36 ± 25.13 cm (mean ± standard deviation (SD)) with a 

range of 37.14 to 209 cm; average monthly maximum temperature was 28.95 0C ± 1.20 

0C with a range of 25.84 to 33.43 0C; average monthly mean temperature 22.63 ± 0.88 0C 

with a range of 20.18 to 26.25 0C; and average monthly minimum temperature 16.29 ± 

0.85 with range of 14.00 to 19.55 0C. 
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Models and statistical analysis 

The annual basal area growth model of Lynch (1999) is based on parameter 

estimates using ordinary least squares (OLS).  Because only one growth period was used 

for the Lynch (1999) analysis, it was not necessary to consider autocorrelation in time.  

OLS parameters estimate along with alternative mixed-effects estimates were given by 

Budhathoki et al. (2008), but the effects of autocorrelation on growth periods (two were 

used) was not considered. Repeated measurements give rise to a hierarchical pattern i.e. 

tree within stands and correlation between individual observations within the stand 

(sampling unit). To account for correlation among trees measured on the same plot, the 

temporal correlation within a series of observations on each tree within stands as well as 

possibly heteroscedastic variation among stands, the techniques of power variance 

function (Budhathoki et al., 2008), correlation structures (Diéguez -Aranda et al., 2006), 

mixed effects modeling (Lynch et al., 2005; Budhathoki et al., 2008; Lynch et al., 2012; 

Manso et al., 2015) and or combination of these techniques (Subedi and Sharma, 2013) 

are widely used. Therefore, a nonlinear annual basal growth model (Eq. 1) developed by 

Lynch et al. (1999) was modified by Budhathoki et al. (2008) to accommodate plot-

specific random coefficients. Annual basal area growth was estimated as the ratio of the 

total basal area growth or increment during a growth period over the measurement 

interval. A variety of models developed using techniques as mentioned above were 

evaluated using the goodness of fit statistics including: Akaike Information Criteria 

(AIC), residual standard error /root mean square error (RSE), likelihood ratio test, and fit 

index (pseudo R2). The base annual basal area growth model (Model 1) is: 
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where yij = average annual basal area growth (m2year-1) of a tree j in the plot i, Bij =  mid 

basal  area (m2)  of tree j in plot i, Bmax = 0.6566828736 (m2) (the maximum expected 

basal area for a shortleaf pine tree). Bsi = stand basal area per hectare (m2 ha-1), Ai  = stand 

age (years) of  plot i, Rij  is the ratio of a tree  j diameter  to the quadratic mean plot i 

diameter  β1, β2, …., β7 are fixed parameters estimates, and  εij is within-plot error, 

residual for tree j in the plot i εij ~N(0,σ2). 

The existing base equation was fitted as a generalized nonlinear regression model. 

The gnls function available in nlme package of R (R Core Team, 2012 ) allowed us to test 

the heteroscedasticity of error variance and correlated errors (Pinheiro et al., 2015). 

Model 1 was modified to evaluate the model heteroscedasticity of errors with weighted 

regression using a power variance function to account for heterogeneous error variance 

(Pinheiro and Bates, 2002 pg. 391). The modification resulted in Model 2:  

 

Model 1 + power of variance function              (2) 

2 2var( ) | | ;ij ij

    



119 
 

where error variance (var(ɛij)) was modeled with one covariate using variance function. υij 

is the covariate and δ is a power parameter. Tree basal area was selected as the covariate 

for modeling error variance of the basal area growth model. 

The first order of autoregressive process (AR (1)) was used to investigate the 

correlation structure within an individual tree growth errors with Model 1. The AR (1) 

model assumes the series is stationary i.e. variance and covariances are independent of 

time lag and autocorrelation at the second lag is the square of the lag-1 autocorrelation 

(Cryer and Chan, 2008 pg. 66). The resulting Model 3 with autocorrelation structure is: 
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where k = 1, 2, 3, 4, 5; corresponding to the growth (time) periods; ɛijk = error term of a 

tree j in the plot i at the growth period k ; the error follow the AR(1) process: 

 1ik ik ike     

where, 2~  N(0, )it iid   , i is the individual tree and k is measurement period (lag)  and 

‘phi’ (ϕ) is the autocorrelation coefficient , | | 1  . ijk  is related to its own past values 

instead other independent variables. The correlation “rho” (ρ) between residuals declines 

exponentially with the number of periods (k) apart i.e. ρ = ϕ k 
. 

The mixed effect model approach provides maximum likelihood estimates of 

parameters accounting for possible correlation and heterogeneity in errors within plots. A 
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mixed effect model that include random-effects associated with plots is Model 4, annual 

basal area growth model in which random-effect (u7) was associated with the fixed-effect 

(β7) is shown below: 
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where u7i is a random parameter specific to ith plot associated with mid-tree basal area 

fixed effect coefficient β7, and the rest of the terms are described as above for base model. 

The random effect (u7i) is normally distributed with mean 0 and variance 2
u, the error 

term (εij) is normally distributed with mean zero and variance (2
ɛ), and the covariance of 

u7i and εji is zero. The variance of (u7i) is an indication of the spread of the random 

coefficients.  

 

Model 4 was further examined by testing addition of a power variance function and 

which resulted in the Model 5: 

Model 4 + power variance function                 (5) 

 

Model 4 was further modified with a two-level extension that uses growth period (Model 

6). In this model, there is a random parameter associated with each combination of plot 

and growth period.  Model 6 can be written as below: 
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Model 6 was further examined with the variance function in a way similar to Model 2, 

where basal area was used as covariate. This modification resulted in the Model 7: 

 

Model 6 + power variance function.        (7) 

    

After evaluating the performance of the models above, all climate variables were 

included to examine the effects of climate on the growth of individual trees. These annual 

basal area growth models are termed “climate-based growth models”. We found that the 

model performance was somewhat better using climate variables in the form of a 

multiplicative modifier to Model 1 instead of using linearly added terms. So, the climate 

variables in a model were termed “climate modifier”. The climate modifier was further 

modelled with monthly climate variables for the growth period. New variables (that 

represent the difference between the observed minus mean value of the respective 

seasonal and monthly climate variables) were also created. The letter “D” beginning a 

variable name indicates a variable minus the mean of that respective variable, for e.g. 

DMTMAX = MTMAX – mean of MTMAX. Random forests (RF) in R (Liaw and 

Wiener, 2002) was used for preliminary selection of the predictive seasonal climate 

variables. RF reports the variable importance score by the percentage increase in mean 

square error (%incMSE) computed for no permuted versus randomly permuted predictors 

(Liaw and Wiener, 2002, Jiang et al., 2014). Variables with higher %incMSE are the 

most promising predicting variables as linear predictors in terms of reducing the model 

mean square error. However, this may not be completely reliable for nonlinear models 
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but the variables with higher %incMSE of seasonal climate variables (Fig. 2a) and of 

differenced monthly climate variables (Fig. 2b), severed as candidate variables in the 

climate modifier.  

The climate-based growth model that includes seasonal climate variables as 

climate modifier is Model 8 and can be written as: 
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where the climate modifier is   8 9exp ( ) (jk xj yjjkx y      ;  

jkx  = mean value of the climate variable x assigned for the plot j during the growth period 

k;  

jk
y = mean value of the climate variable y assigned for the plot j during the growth 

period k;  

xj  = is the mean of the variable x for the plot j over the study period of 34 years. 

yj = the mean of the variable y for the plot j over the study period of 34 years. 

β8 ,and β9 are the parameters to be estimated for the seasonal climatic variables; the rest of 

the terms are described as above. 

 The climate modifier of the Model 8 were: DMTMAX = MTMAX - xj , and 

DMPPT = MPPT- yj ; where x = temperature and y = precipitation.  Monthly climate 
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variables were included in climate modifier to develop the following climate-based 

growth model (Model 9).  

 

  8 9Model1 exp 6 9 (9)jk jk ijDTMAX DPPT     

 

where β8 and β9 are parameters to be estimated for monthly climatic variables. DTMAX6jk 

is the difference between the average maximum temperatures of the month of June of the 

plot j during the period k minus the mean maximum temperature for the month June for 

the plot j over the period of 34 years ( xj  ). DPPT9j is average precipitation of the month 

of September of the plot j during the period k minus the mean precipitation of the month 

September for the plot j over the period of 34 years ( yj ). 

The performance of climate-based growth Model 9 was better than Model 8. We 

selected Model 9 and the climate-based growth model was also further analyzed using a 

power variance function, AR (1) structure, and a mixed effects model approach. The 

resulting models were: 

 

  8 9Model 2 exp 6 9 (10)jk jk ijDTMAX DPPT   

  8 9Model 3 exp 6 9 (11)jk jk ijDTMAX DPPT   

  8 9Model 4 exp 6 9 (12)jk jk ijDTMAX DPPT     
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Climate change scenario analysis 

The estimated coefficients of the Model 8 were used instead Model 9 to simulate 

the effect of changing temperature and precipitation on annual basal area growth of an 

individual tree because we wanted to demonstrate how much a small improvement in a 

model can effect prediction. Additionally, the model with seasonal climate variable was 

the more sensible choice for the interval measurement data than using monthly climate 

variables because the large SD (58.19) associated with estimate of monthly precipitation 

(PPT9) amount  (μ = 118.78) would show high variability that might affect the prediction 

of annual growth. This indicates such a model might be useful in the study of tree ring 

data to address the variability (relaxed or stressed) in the late wood growth of an 

individual tree due to the large variation amounting of precipitation. Individual trees 

representative of the dataset having stand age of 38-year and 78-year were selected. Both 

the 38-year old tree (dbh = 20.2 cm) and the 78-year old tree (dbh = 32.9 cm) were grown 

50 years with an annual basal area increment and age increment while other variables in 

the model were held constant. The values of the input variables for the 38 year old tree 

were: Bi = 0.0321 cm2, Bsi = 14.7543 m2ha-1,Rij= 0.5788, and for the 78 year old tree 

were: Bi = 0.0851 cm2, Bsi = 11.7767m2ha-1, Rij = 0.5825.  

Though the climate change scenario models are available, the increase in 

temperature and change in precipitation projection differs among the models (Loehle and 

David, 1996). So, to avoid such inconsistency in projection, we used climate variables 

values of lower quartile (LQ), mean (μ), upper quartile (UQ) and SD of MTMAX and 

MTPPT of the growing season over the years of 1980-2014. The value at LQ, μ and UQ 

and SD were 28.07, 28.95, 29.77, and 1.210C for temperature and 93.12, 111.36, 126.39, 
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and 25.13 cm for precipitation. To ascertain the validity of the data value used for climate 

change simulation, future climate data at the year 2060 were obtained for a sample plot 

location from Moscow Forestry Sciences Laboratory (2015) using global climate model 

(GCM) prediction models for different scenarios (A1B, A2, B1, B2): CGCM3_A1B; 

CGCM3_A2; CGCM3_B1; and HADCM3_B2 (for detail description see Jiang et al., 

2014). The projected mean monthly precipitation for the growing season at year 2060 

under different scenarios were consistent with the value at either LQ or median value of 

precipitation during growing season. It was an average of 103.8 ± 32.5, 100.8 ± 24.3, 

95.5 ± 24.4 and 89.1 ± 25.7 cm for respective scenarios. However, the projected average 

maximum temperature at 2060 during the growing season were slightly larger with larger 

SD than temperature value simulated here. The mean maximum temperature of the 

growing season was 31.6 ± 4.5, 31.6 ± 4.4, 31.2 ± 4.1 and 32.5 ± 4.9 0C for the respective 

scenarios. A high SD associated with the point estimates of monthly temperature was also 

observed in the climate dataset that we used.   

Fifty years of an individual tree’s growth was simulated using Model 8 to 

demonstrate the possible influence of climate variation on annual basal area growth. In 

simulation process, both climate variables were randomly generated using SD of the data 

over the period of 34 years and subtracted from the μ of the respective climate variable. 

The simulation was conducted under four different scenarios having three different levels 

(cases) as mean responses, (μ, LQ, and UQ) ± SD, of one climate variable while the 

response of the other climate variable was at mean level (μ ± SD). In simulation 

scenarios, the mean precipitation amount and temperature degree were also increased to 

generate more variability in annual growth response. The simulation scenarios consist: 1) 
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temperature with μ ± SD and precipitation amount at three levels; 2) precipitation amount 

with μ ± SD and degree of temperature at three levels; 3) increased mean amount of 

precipitation and degree of temperature at three levels; and 4) increased mean degree of 

temperature and amount of precipitation at three levels. These four different scenarios 

were simulated for 100,000 runs with three different cases. 

 

Results 

Annual basal area growth 

The average annual basal growth rate of individual shortleaf pine trees in the 

dataset was estimated to be 0.001395 m2 over the period of twenty-five years. The 

average periodic mean annual basal area growth rate of individual shortleaf pine trees in 

the data was: 0.00121, 0.00135, 0.00150, 0.00153 and 0.00138 m2 respectively for the 1st, 

2nd, 3rd, 4th, and 5th growth periods (Table 1). The difference in average annual basal area 

growth rate for individual trees in the dataset between the first and second growth periods 

was 8.3%. However, the average annual basal area growth rate of an individual tree in the 

data increased by 15.4% in the third growth period and by 16.9% in the fourth growth 

period compared to the second growth period. However, the annual basal area growth rate 

declined by 5.4% in the fifth growth period compared to the second growth period. 

 

Models without climatic variables 

Summaries of fit statistics of different annual basal area growth models are shown 

in Table 3. The parameter estimates of all models (1-7) were highly significant, but other 

models tested having poorer performance are not shown (Table 4). The residual patterns 
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were very similar for most of the models except that Model 2 which used power variance 

function displayed a greatly improved, narrow and compact residual distribution (Fig. 2). 

The standardized residuals for Model 1, 2, 3, and 6 are shown in Fig. 2. A likelihood ratio 

test for goodness of fit indicated that Model 2 with the power variance function was 

better than Model 1. In Model 2, the estimate of the power used in the variance function 

associated with covariate tree basal area was 0.56248 within 95% confidence interval of 

0.55321 and 0.57176. When Model 2 and Model 3 with AR (1) structure compared, a 

likelihood ratio test indicate no significant difference in goodness of fit, although Model 

2 had better AIC, BIC, and log-likelihood value than Model 3. But Model 3 with AR (1) 

performed better than Model 2 in terms of the fit index. A likelihood ratio test showed 

that the goodness of fit of the mixed effects model with a power variance component 

(Model 5) was significantly different from a mixed effect model (Model 4). Similarly, a 

likelihood ratio test indicated that the goodness of fit of the mixed effect model with two 

level extension that use growth period and power variance (Model 7) was significantly 

different from Model 6 (Table 3). This latter result was supported by corresponding lower 

AIC values for the models having the better significantly better goodness of fit.  

The residual standard errors for Model 2, Model 5 and Model 7 were noticeably 

larger than the other growth models in Table 3. The mixed effect model (Model 4) had the 

smallest residual standard error, but Model 1 and Model 3 had better fit indices than other 

alternative models (Table 3). The fit indices of the mixed effects models (Model 4, 5, 6, 

7) were estimated using the estimated fixed parameter estimates with the random effects 

set to zero. Among these three models (Model 1, 3, & 6) with better fit indices, Model 3 

with AR (1) was preferred because the AIC and BIC values were noticeably smaller than 
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for the other two models and the covariance structure accounted the correlated errors in 

the model. The estimated autocorrelation coefficient, ‘phi’ (φ) was 0.4412 for 

autocorrelation among individual tree measurements with a 95% confidence interval of 

0.4296 to 0.4527.  AR (1) structures indicate a decreasing empirical autocorrelation 

function between individual tree measurements for successive lags. The performance of 

the Model 7 was judged to be better than the other models tested because the fit index 

was similar to Model 1, and its residual standard error was smaller than for Model 1 or 

Model 3. The SD of the random effects associated with the growth period effect was 

small (0.8063) but the SD among the random effects associated with the plot within 

growth period was almost negligible.   

 

Models with climatic variables 

The seasonal climate variables DMTMAX and DMPPT and the monthly climate 

variables DTMAX6 and DPPT9 were highly significant (p < 0.0001) in climate modifiers 

for Models 8 and 9 respectively. The climate modifier showed that DMTMAX of the 

growth season and DTMAX6 have a negative effect (negative sign associated with 

coefficient) and DMPPT and DPPT9 of the growth season have a positive impact 

(positive sign associated with coefficient) on annual basal area growth for individual trees 

(Table 4). It indicated that the negative difference in mean maximum temperature and the 

positive difference in mean precipitation would greatly favor the annual growth rate. Fit 

statistics (fit index and AIC) and RSEs of the climate-based growth models (Model 8 and 

9) were better than the growth model without climate variables (Model 1) (Table 3). The 

goodness of fit statistics and fit indices for Models 9 was better than Model 8. The 
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improvement in the fit index was 2.56 and 1.45% and the reduction in RSE was 2.30 and 

1.31% respectively for Model 9 and Model 8 over the Model 1 without climate variable. 

The AIC values and the RSEs of the climate-based growth models (Models 10- 12) were 

better than for the corresponding Models 2- 4 without climate variables (Table 3). The fit 

indices were improved by 2.53, 2.77 and 4.18% and RESs were lowered by 4.64, 2.44 

and 3.31 % for the Models 10-12 compared to Models 2-4 respectively. Though the 

climate-based growth model with mixed effects (Model 12) had a smaller RSE than other 

climate-based growth models, it had a poor fit index (Table 3). We preferred Model 9 

because of better fit statistics, and Model 11 with AR (1) because of better AIC value and 

also had a fit index close to the best results from the other models.  Therefore, the 

parameter estimates of the competitive climate-based growth models (Model 8, 9 and 11) 

are shown in Table 4. 

 

Climate influence on annual growth  

The simulation study showed that the percentage of difference (decrease) in 

annual basal area growth rate between beginning and the end of 50 years for each of the 

trees of different ages was influenced more strongly by variability in mean monthly 

maximum degree of temperature (Fig. 4c and 4d) than variability in mean amount of 

precipitation during the growing season (Fig. 4a and 4b). An annual basal area growth 

rate of a tree grown using Model 1 (without climate variables) differed by 14.48 and 

18.94 % at the end of 50 years for the 38 and 78 year old trees respectively (Fig. 4). In 

scenarios 1 and 4 (Fig. 4a and 4b; 5a and 5b), the smallest difference in annual basal area 

growth rate change was in the case (1c ) and (4c) while the largest difference was in the 
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case (1a) and (4a) for tree ages 38 and 78 years respectively (Table 5). Similarly, in 

scenario 2 and 3 (Fig. 4c and 4d; 5c and 5d), the smallest difference was observed in the 

case (2a) and (3a) and the largest difference in the case (2c) and (3c) for stand ages 38 

and 78 years respectively (Table 5).  

It was evident that for both stand ages, the maximum temperature at LQ with 

mean monthly precipitation amount (case 2a) showed better growth (Fig. 4c and 4d). It 

resulted in higher percentage difference in growth rates (14.84 and 17.17%) at the end of 

50 years, when compared to the growth rate with no climate variables included model at 

the end of the prolonged scenario (Table 5). Similarly, increased mean monthly 

precipitation with maximum temperature at LQ (case 3a) showed better growth (Fig. 5a 

and 5b) with higher percentage differences in growth rate than other scenarios (Table 5). 

It was observed that increased mean temperature by 0.5 0C could easily affect the 

prediction of an annual basal area growth rate even when the mean monthly precipitation 

amount was of upper quartile range (case 4c) (Fig. 5c and 5d). The predicted annual 

growth rate by climate-based growth model were much less than the predicted growth 

rate by Model 1 without climate variable (Table 5).  In such condition, the estimated total 

basal area growth at the end of 50 years would be smaller by 5 to 18 % than estimated by 

Model 1 depending upon the stand age (Table 5). However, the favorable climate 

scenarios: 2a, 3a and 3b maximized the estimate of the total basal area growth higher by 

0.45 to 17.66 % at the end of 50 years (Table 5). In Table 5, the high negative value of 

differences in the total basal area growth indicated that the growth rate would highly 

stress in trees of younger stands with an increase in temperature than in trees of old stand 

age. Similarly, the high positive value of differences in the total basal area growth a tree 
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of old stand age indicated the relaxed growth rate compared to younger stands grown in 

similar climatic condition. Therefore, it was observed that variability in the annual 

growth rate within different climate change scenarios was higher for the younger stand, 

and the old age stand was less affected at the end of the prolonged period of climate 

change (Fig 4 and 5). 

 

Discussion  

Growth Model 2 provided better standardized residual distribution patterns than 

other models tested but interestingly, the Model 3 with AR (1) performed about as well as 

Model 1. Theoretically, the estimated correlation (ρ) between the observations at 

successive lags (k) by Model 3 would be less reliable because it would base on only 

fewer residual pairs of observations (k = 5). Though we had fewer pairs of observations, 

the successive lags i.e. time apart are composed of a period of years, not of a single year. 

So, we believe the estimated correlation at successive lags would be still reliable. We 

tested a model with both power variance function and AR (1) structure that had a superior 

AIC value (-333777) but its fit index (62.65%) was inferior to both Models 2 and 3. The 

mixed effect model with power variance function (Model 5) provided substantially better 

AIC value than all alternative models, but the point estimate of the variance component 

(b7) and RSE were not superior. The large variance component and increased RSE of the 

Model 5 was also reported by Budhathoki et al. (2008). Interestingly, the mixed effect 

model with a hierarchical level of the random parameter that represents growth period 

and plots within-growth period (Model 6) performed as well as Model 1. Budhathoki et 

al. (2008) also fitted Model 6 without covariate “stand age” because of the convergence 
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problem. Though, Model 7 successfully modeled power variance function for 

heterogeneous within-plot errors, it performed worse than Model 6. It could be that 

Model 7 did not greatly reduce RSE and the random effect associated with growth 

periods, as Model 6 did (Table 3). In fact, the performance of the mixed-effects model for 

prediction is often not substantially better than OLS models unless the mixed-effect 

models are calibrated or localized by using local data to estimate the random effect 

(Lynch et al., 2005; Temesgen et al. 2008; Lynch et al., 2012; Pokharel and Dech, 2012; 

Subedi and Sharma, 2013).  

The growth models with power variance function were found to resolve the issue 

of heteroscedasticity of errors better than other competitive models, as seen in Fig (3) but 

RSE associated with the models with power variance function was large (Table 3). Mixed 

effect models with both AR (1) structure and variance power function can be used to 

reduce heteroscedasticity of errors as shown by Subedi and Sharma (2013) in their 

development of a diameter growth model with climate variables using tree ring data for a 

Black spruce and Jack pine trees in boreal Ontario, Canada. But in their study AR (1) 

structure was used to resolve the temporal autocorrelation among residuals within-stands 

not within-individual trees, and the power variance function was also used at a stand level 

to address the problem of heteroscedasticity within the stand. However, fitting a mixed-

effects model (Model 4) with AR (1) within-individual tree observation was not possible 

because of conflict in modelling structures arising from the random effect associated with 

plot level (stand level), and the autocorrelation structure within individual trees. 

Interestingly, fitting Model 3 with AR (1) within-stand, the coefficient of autocorrelation 

among residuals was found slightly smaller (0.3584), but RSE (0.000653) and AIC (-
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320365) were slightly bigger than Model 3 with AR (1) within-individual tree.  It was 

also observed that adding climate variables in a model (climate-based growth model) did 

not significantly change the estimates of power variance, autocorrelation and random 

effect than a model with fewer predictors. For example the estimates: δ was 0.554928 for 

Model 10; ϕ was 0.452898 for Model 11; and 
μσ̂

 was 3.672901 for Model 12; were 

similar in magnitude to the corresponding parameter estimates of Model 2, 3, and 4 

respectively.  

Previous climate-based growth models have often been formulated by introducing 

climate variables by adding them linearly to the existing growth model (Wykoff, 1990; 

Pokharel and Forsee 2009; Subedi and Sharma, 2013; Manso et al., 2015; Saud et al., 

2015). However, linearly added climate variables did not perform as well as the 

multiplicative climate function did in our growth model. This reason could be that most 

previous climate-based growth models have been formulated either on tree-ring 

chronologies or on annual remeasurement data, where the climate variables are regressed 

against the annual growth (Biondi, 2000; Jump et al., 2006; Chhin et al. 2008; Martín-

Benito, 2008; Duschesne, 2012; Foester et al., 2015; Subedi and Sharma, 2013). It may 

be that for growth models that already are linear in form (Subedi and Sharma, 2013; 

Manso et al., 2015), the linear inclusion of climate variables performs better than was the 

case with our nonlinear model. Interestingly, the model reported by Saud et al. (2015) 

was a nonlinear model form with the parameters and used linearly added climate 

variables in the Model 1.  

The performance of climate-based growth models could differ for different tree 

species. For example, Subedi and Sharma (2013) reported 0.34 % and 1.56% reductions 
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in RSE of annual diameter growth model of Jack pine and Black spruce respectively. 

However, Manso et al., (2015) reported substantial reduction (15%) in the AIC value 

rather than a decrease in RSE in annual diameter increment model of beech and oak 

stands. Saud et al., (2015) reported 0.94% improved the fit index of the climate-based 

growth model with the addition of climate variables. Subedi and Sharma (2013) used 

mean temperature, precipitation during the wettest quarter, and total precipitation during 

the growing season as climatic variables while Manso et al., (2015) used polynomial 

terms of mean temperature. Saud et al. (2015) used periodic average daily maximum 

temperature, periodic average daily mean temperature, and periodic mean daily 

precipitation during the growing season in the model.  

The difference in the performance of the climate-based growth models i.e. Models 

8 and 9 also demonstrated that the choice of climate variables used for the modelling 

purpose also greatly affects model improvement. The above contrasting findings 

suggested that improvements in the climate-based growth model not only depends on the 

variability in tree growth rate but are also controlled by the nature of climate variables 

used. For e.g. precipitation and temperature, which are dictated by regional conditions 

(altitudinal and latitudinal range) and site-specific factors (micro climate) limits forest 

productivity (Hanson and Weltzin, 2000; Boisvenue and Running, 2006; Park et al., 

2013). Because of this, climate variables that are often expected to be influential, 

including mean temperature, maximum temperature, total annual precipitation (Pokharel 

and Froese, 2009; Subedi and Sharma, 2012; Manso et al., 2015) did not always perform 

well while fitting climate-based growth models.  
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Our results indicated that difference in maximum air temperature (DMTMAX, 

DTMAX6) and the difference in precipitation amount (DMPPT, DPPT9) were a better 

choice for providing better fit statistics (AIC, fit index) and reducing the RSE in climate-

based growth models. This may be because the air temperature in the warmer areas 

during the growing season is stable and high that limits the plant productivity by inducing 

water stress (Llyod and Fastie, 2002; Way and Oren, 2010).  However, if there is a drop 

in high temperature i.e. maximum air temperature, during the growing season it may 

show a significant effect on plant growth. The selected seasonal climate variables, 

DMTMAX and DMPPT, could be preferred over the monthly climate variables, 

DTMAX6 and DPPT9 while modelling climate-based growth model for periodic 

remeasurement data because the monthly climate variable for the short length of study 

period would have large variability (SD). These monthly climate variables could be a 

better choice for formulating the climate-based growth model using tree ring data because 

large tree ages are used for the study that would increase the total number of observations 

for the monthly climate variable to reduce variability. Additionally, these monthly 

climate variables would be useful for addressing early and latewood growth in a tree. 

In our climate modifier, the difference of SPIs (DSPI) variables did not perform 

well to address the effect of climate in annual growth. However, randomForest showed 

that the linear combination of DSPI could be useful in addressing annual growth rate 

change (Fig. 2). The difference in monthly climate variables performed better than the 

difference in seasonal climate variables in improving model performance. Monthly 

climate variables have also been found to be important predictors of tree growth (Carrer 

and Urbinati, 2004). Shortleaf pine, which is more drought resistance than other southern 
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pines (Lawson, 1990), had an annual growth rate that responded very well to monthly 

climate variables, compared to other alternatives. The selected monthly climate variables 

(DTMAX6 and DPPT9) suggested that moderate temperature and enough rainfall later in 

the growing season would favor growth. These variables also correspond to the latewood 

formation period in tree ring. It also indicated that shortleaf pine is facing water stress 

condition moderately during growth season. Binodi, (2000) indicated that Douglas-Fir in 

Idaho was grown on an arid site or had a moisture stress during growth period because 

the annual growth had a negative response to summer temperature and a positive 

response to late spring/early summer precipitation. Warmer growing season or the 

extended growing season, either spring warm up, or late fall has favored the growth of 

drought resistant tree species, for example, Jack Pine (Subedi and Sharma, 2013) and 

Rocky Mountain juniper (Juniperus scopulorum) (Spond et al., 2014). Before the start of 

summer, growing season precipitation also favored the growth of Lodgepole pine ((Pinus 

contorta) in Alberta, Canada (Chhin et al., 2008). 

Tree-ring chronologies provide data that show a stronger correlation between 

annual growth rate and climate variables, but the correlation magnitude varies with tree 

species and location (Biondi, 2000; Spond et al., 2013). Interestingly, measurement data 

exhibited highly significant (p-value <0.0001) correlation between annual basal area 

growth and differences in seasonal climate variables but very weak, both positive and 

negative correlation. The significant correlation could be due to a large total number of 

observations, and very weak correlation could be a reason for fewer observed data point 

(five growth periods). The correlation of annual basal area growth with DMTMIN and 

DMTMEAN was positive while with DMPPT and DAPPT was negative. However, the 
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correlation between DMTMAX and growth was not significant (p-value = 0.9317). The 

negative correlation with precipitation was due to a chance that annual basal area growth 

response of more than 2/3rd individual trees were confined within the range of minimum 

to mean amount of precipitation (Fig. 1b and 1d ) during the growing season over a 

measurement period. Usually, the correlation of annual growth with mean temperature 

and precipitation during the growth season is positive (Briffa et al., 1998; Barber et al., 

2000; Biondi, 2000; Manso et al., 2015). However, sometimes it could be negative in 

response to temperature and positive to precipitation (Jump et al., 2006; Chinn et al., 

2008).       

The annual basal area growth rate for individual trees in stands of different age 

was influenced by climate variables (Fig. 4 and 5). The growth modifier containing 

climate variables induced a noticeable effect on tree growth compared to the growth 

predicted by growth equation that did not contain any climate variables (Table 5). The 

variation in mean maximum temperature highly affected the basal area growth rates in 

both young and older stand ages than by the change in mean precipitation amount when 

one of the climate variables was held constant in the simulation (Fig. 4 and Table 5). It 

could be possible because the magnitude of the coefficient estimate of temperature was 

large than of precipitation to show an effect of small variation (Table 4). The decreased in 

the growth rate than Model 1 was associated with increased temperature then increased 

precipitation during the growing season (Fig. 5 and Table 5). It was evident that increased 

temperature greatly affected the growth of the younger-aged tree more than the older-

aged tree (Table 5). In general, older stand age or larger diameter stands are more 

responsive to climate variation than younger stands, as reported by Callaway et al. 
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(1994), Hanson and Weltzin (2002), Carrer and Urbinati (2004), and Chhin (2008) in 

their studies. However, young stands exposed to increased temperature with varying 

precipitation amount could have more negative or positive growth responses than older 

stand ages (Table 5). Negative growth differences from Model 1 represent  a stressed 

response in annual growth rate due to the positive difference in temperature degree, and 

positive growth differences from Model 1 are  a relaxed response in annual growth rate 

due to the negative difference in temperature degree. However, a slight variation in mean 

precipitation amount does not greatly affected the growth rate (Fig. 4 and Table 5). It is 

also suggested that decrease in annual basal area growth rate is associated with the low 

amount of precipitation and increase in temperature during the growing season (Barber et 

al., 2000; Jump et al., 2006; Anderegg et al., 2013).  

The simulations also indicate that changes in climate variables having a 

magnitude similar to that of feasible climate change scenarios can result in significant 

changes in tree growth rates, even though the inclusion of climate variables reduced the 

RSE by rather modest amounts.  For example, simulations indicated very different 

percentage differences between initial and final tree basal areas after fifty years of growth 

under different climate scenarios (Table 5). The climate change with maximum 

temperature and precipitation amount as the mean response of the period of the 34 years 

of the period showed a moderate difference in the total basal area growth with a range of 

11 to 12.58 66 % (Table 5). However, the moderate monthly maximum temperature and 

increased mean monthly precipitation amount showed indicated an increase of 0.45 % to 

17.66 % in simulations for total basal area growth at the end of 50 years of growing 

length (Table 5). However, increased in mean maximum temperature by 0.5 0C showed 
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greater differences of 4.95-18.8% in the total basal area growth even with high mean 

monthly precipitation amount (Fig. 5 and Table 5). It  is difficult to establish the effects 

of changing the climate on growth conclusively, but some studies have demonstrated 

positive impacts on forest productivity if the water was not limiting (Boisvenue and 

Running, 2006).   

 

Conclusions 

Estimation of parameters in a growth model with repeated measurements using 

OLS violates the assumption of independent errors and may also violate the assumption 

of non-constant variance. This issue can be addressed by using weighted estimation with 

variance functions and mixed-effects estimation, or also by applying autoregressive 

correlation structures. However, these approaches do not always improve actual 

predictive capability as measured by fit statistics. As a result, there may be tradeoffs 

between predictive ability and application of remedial measures to enhance adherence to 

modeling assumptions. For our data, the basal area prediction equations with the overall 

best performance were either the model with AR (1) covariance structure or the mixed 

effects model that included growth period effects.  However, a mixed-effects model that 

used a power variance functions provided better statistics of fit (AIC).  

Though climate-based growth models showed modest improvements in RSE, this 

improvement could play a significant role in understanding the dynamics of growth 

change in response to climate variability. The potential effects on basal area growth of 

changes in climate variables similar in magnitude to feasible climate change scenarios 

were demonstrated in 50-year simulations of individual tree growth. The monthly average 
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climate variables used in the growth models can be used as a proxy for seasonal climate 

variables while establishing the relationship of the annual growth with climate change. It 

is expected that the level of accuracy and precision of the climate-based growth model 

would increase if measurement data were reconstructed to annual growth or were 

obtained from dendrochronology. However, it is assumed that the developed climate-

modifier can be easily replicated with the tree ring width data that would be more useful 

in providing the estimates of future forest growth response. The climate-based growth 

model will make it easier to forecast the changes in the productivity since the seasonal 

climate variables are obtained easily and estimated directly. These growth models might 

also improve the possibility of understanding stand structure changes over the time due to 

changing climate scenarios. 
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Tables 

Table IV-1 Mean and standard deviation of tree level and stand variables recorded for six 

times measurement of the natural stand of shortleaf pine. Values inside bracket are 

standard deviation and outside are means of the recorded observations of each 

measurement. 

Variables 

Measurements 

1st 

(N=8290) 

2nd 

(N=8088) 

3rd 

(N=7587) 

4th 

(N=4722) 

5th 

(N=4403) 

6th 

(N=4286) 

Dbh (cm) 
18.832 

(9.891) 

20.716 

(9.976) 

23.176 

(10.068) 

27.595 

(9.798) 

29.495 

(9.943) 

31.202 

(10.37) 

Basal Area 

(m2) 

0.036 

(0.036) 

0.042 

(0.038) 

0.05 

(0.042) 

0.067 

(0.047) 

0.076 

(0.05) 

0.085 

(0.055) 

Plot age 

(years) 

41.448 

(19.628) 

46.286 

(19.659) 

52.02 

(19.804) 

59.606 

(20.067) 

65.181 

(20.02) 

70.993 

(20.092) 

Site index 

(m) 

17.449 

(2.89) 

17.227 

(2.982) 

17.298 

(3.008) 

17.544 

(3.045) 

17.421 

(3.022) 

17.397 

(3.031) 

Plot basal 

area (m2 ha-1) 

1.724 

(0.542) 

2.084 

(0.597) 

2.406 

(0.68) 

2.052 

(0.678) 

2.262 

(0.703) 

2.444 

(0.734) 
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Table IV-2 Summary of the tree level and stand level variables used in the development 

of the model. The values inside bracket are standard deviation and outside are means of 

the recorded observations (N) for the respective five growth periods. 

Variables 

Growth  periods 

1st 

(N = 8088) 

2nd 

(N = 7582) 

3rd 

(N = 3862) 

4th 

(N = 3631) 

5th 

(N = 3611) 

ABAG 

(m2/tree)/year 

0.0012 

(0.001) 

0.0014 

(0.0011) 

0.0015 

(0.0012) 

0.0015 

(0.0011) 

0.0014 

(0.0011) 

Mid dbh (cm) 

19.8633 

(9.8877) 

22.303 

(9.8844) 

26.2529 

(9.5488) 

28.216 

(9.7952) 

30.1064 

(10.1687) 

Mid Basal area (m2) 

0.0387 

(0.0369) 

0.0467 

(0.0402) 

0.0613 

(0.0438) 

0.0701 

(0.0477) 

0.0793 

(0.0523) 

Mid stand basal 

area (m2ha-1) 

9.4417 

(2.7713) 

11.1523 

(3.1506) 

9.8758 

(3.2463) 

10.8464 

(3.315) 

11.9934( 

3.5879) 

Mid ratio of QMD 

to dbh 

0.704 

(0.218) 

0.6828 

(0.1993) 

0.6788 

(0.1674) 

0.6778 

(0.1693) 

0.6716 

(0.1653) 

Mid stand age 

(year) 

44.29 

(19.66) 

49.96 

(19.76) 

56.96 

(20.21) 

61.98 

(20.22) 

68.00 

(20.25) 
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Table IV-3 Summary statistics for fitted basal area growth models without climate 

variables (total observations = 26774 and the total number of plots = 208). 

Model 
Residual 

d.f. 
AIC 

Log-

Likelihood 
L. Ratioa Fit Index μpTσ )(ˆ  

μσ̂
 

)(ˆ εσ  

1 26767 
-

316881 
158448 - 64.13 - - 0.0006511 

2 26767 
-

328136 
164077 1 vs 2 ** 63.17 - - 0.0034059 

3 26767 
-

321126 
160572 - 63.95 - - 0.0006486 

4 26559 
-

320420 
160219 - 61.29 - 3.786194 0.0006007 

5 26559 
-

331432 
165726 4 vs 5 ** 60.79 - 6.894290 0.0029902 

6 25764 
-

317209 
158615 - 64.12 0.806356 2.07x10-10 0.0006475 

7 25764 
-

328426 
164224 6 vs 7 ** 63.11 1.202574 3.91x10-10 0.0033842 

8 26765 
-

317424 
158772  64.85 - - 0.0006445 

9 26774 
-

317406 
158714  64.83 - - 0.0006447 

10 26765 
-

328881 
164452 

9 vs 

10** 
63.79 - - 0.0033811 

11 26765 
-

322232 
161127  62.47 - - 0.0006419 

12 26558 
-

320819 
160420  61.52  3.415525 0.0005962 

aL.Ratio = Likelihood ratio test; ** Likelihood ratio test significant with p-value < 

0.0001.  
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Table IV-4 Parameter estimates and standard error of the fitted annual basal area growth 

models without climate variables (Mod 1, 3, 5 and 6) and with climate variables (Mod 8, 

9 and 11). 

Parameter 

Mod 1 Mod 3 Mod 5 Mod 6 Mod 8 Mod9 

Estimate 

(Std err.) 

Estimate 

(Std err.) 

Estimate 

(Std err.) 

Estimate 

(Std err.) 

Estimate 

(Std err.) 

Estimate 

(Std err.) 

β1 0.032751 

(0.001794 )  

0.034853 

(0.002425) 

0.028650 

(0.001524) 

0.032910 

(0.001797) 

0.030788 

(0.001682) 

0.037402 

(0.001908) 

β2 0.506295 

(0.015336) 

0.531768 

(0.018314) 

0.538360 

(0.013301) 

0.500289 

(0.015348) 

0.514333 

(0.015533) 

0.622298 

(0.010852) 

β3 -1.501148 

(0.084148) 

-1.608526 

(0.114678) 

-3.616883 

(0.091735) 

-1.456620 

(0.082768) 

-1.569555 

(0.082990) 

-3.214365 

(0.100866) 

β4 0.105153 

(0.002039) 

0.096481 

(0.002585) 

0.153471 

(0.002988) 

0.105266 

(0.002000) 

0.108146 

(0.002077) 

0.145373 

(0.002846) 

β5 0.020915 

(0.000569) 

0.021051 

(0.000764) 

0.010896 

(0.000801) 

0.020591 

(0.000549) 

0.020792 

(0.000568) 

0.025758 

(0.000689) 

β6 1.330286 

(0.048986) 

1.521592 

(0.064697) 

3.485364 

(0.060988) 

1.335173 

(0.048441 

1.329651 

(0.049061) 

2.426962 

(0.049605) 

β7 -10.816504 

(0.300462) 

-10.511766 

(0.395363) 

-4.456743 

(0.661425) 

-10.616484 

(0.465513) 

-11.040174 

(0.304651) 

-11.252718 

(0.391013) 

β8 - - - - -0.599612 

(0.046033) 

-0.430701 

(0.038073) 

β9 - - - - 0.055932 

(0.004855) 

0.039677 

(0.003865) 
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Table IV-5 Percentage difference in the annual basal area growth rate and total basal area 

of an individual tree at stand age of 38 and 78 years at the end of 50 years under four 

different scenarios using Model 8 compared to Model 1 without climate. 

 

Percentage (%) 

difference in growth rate 
 

 

Cases 

Stand Age 38 year Stand age 78 year 

Scenario Scenario 

1 2 3 4 1 2 3 4 

Between beginning and 

at the end of 50 years 

a 18.65 7.89 4.79 21.86 21.84 11.62 8.82 24.69 

b 15.86 15.94 13.49 19.42 19.18 19.62 16.80 22.53 

c 13.42 21.91 20.10 17.33 16.93 26.47 23.08 20.38 

At the end of 50 years 

compared to Model 1 

a -13.00 14.84 21.68 -22.45 -9.90 17.17 23.91 -19.30 

b -5.40 -5.39 1.07 -15.25 -2.35 -3.21 4.16 -12.12 

c 1.06 -23.01 -17.12 -9.00 4.01 -24.93 -13.73 -5.86 

In total basal area 

at the end of 50 years 

compared to Model 1 

a -10.54 11.08 16.27 -18.08 -8.04 12.58 17.66 -15.45 

b -4.56 -4.59 0.45 -12.31 -2.16 -2.82 2.75 -9.76 

c 0.42 -18.57 -13.79 -7.40 2.75 -19.84 -10.99 -4.95 
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Fig. IV- 1 Distribution of temperature and precipitation during the months of growing 

season over the length of 1980-2014.  a) Mean maximum, minimum and mean air 

temperature during growing season of the year; b) Mean total monthly perception and 

monthly standardized perception index (SPI) during growing season of the year; c) An 

average temperature of the month of growing seasons over the length of the study period 

(1984-2014); d) Average precipitation and standardized precipitation index of the month 

of the growing seasons over the length of the study period (1984-2014). Months “4-9” 

represents “April-September”. 

 

 

 



154 
 

 

Fig. IV- 2 Random forests plot showing the importance value of each seasonal climate 

variables and monthly climate variables (from top to bottom in order) when used for 

predicting annual basal area growth. The variable importance is measured by %IncMSE, 

which refers to the mean decrease in accuracy (the greater the value, the better). (a) 

Seasonal climate variables over the growth period, and (b) Monthly climate variables, 

where number indicate the corresponding month of a calendar year; TMIN = minimum 

temperature, TMAX = maximum temperature, TMEAN = mean temperature and SPI = 

standardized precipitation index.  “D” as the initial letter indicates the difference between 

the estimated value of a climate variable during the growth period and the mean value of 

the respective climate variable over the period of 34 years. 
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Fig. IV-3 Standardized residuals (observed-predicted) from annual basal area growth 

models for shortleaf pine: (a) Model 1; (b) Model 2 with power variance function; (c) 

Model 3 with AR (1); and (c) Model 6 with random-effects for growth period and with 

plots within growth period. 
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Fig. IV-4 Simulated scenario 1 and 2 for annual basal area growth of an individual tree 

from stand age of 38 and 78 years with climate-based growth Model 8 and Model 1 (No 

climate). Figure (a) and (b) (left panel) shows variation in annual basal area growth rate 

from scenario 1 with three different cases. Similarly, figure (c) and (d) (right panel) show 

variation in annual basal area growth rate from scenario 2 with three different cases. 
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Fig. IV-5 Simulated scenario 3 and 4 for annual basal area growth of an individual tree 

from stand age of 38 and 78 years with climate-based growth Model 8 and Model 1 (No 

climate). Figure (a) and b) (left panel) shows variation in annual basal area growth rate 

from scenario 3 with three different cases. Similarly, figure (c) and (d) (right panel) show 

variation in annual basal area growth rate from scenario 4 with three different cases.  
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CHAPTER V 
 

 

CONCLUSIONS 

The modified dbh-height relationship by using stand-level competition, quadratic 

mean diameter, provided better prediction ability than the existing model. Quadratic 

mean diameter also enhanced the precision of height prediction model forms that uses the 

only dbh as an independent variable and do not utilize dominant height as a covariate. 

Quadratic mean diameter can be easily constructed from dbh data that are available in 

inventory data. Crown ratio estimation of an individual tree was improved by using the 

relative spacing index in the existing model. The relative spacing better explained 

variability in crown ratio estimation than stand level competition (basal area per hectare) 

and stand age in the model. The logistic function could be the comparable alternative to 

nonlinear model choice for estimating the crown ratio of an individual tree.   

Parameter estimates of the revised model for height prediction and crown ratio 

estimation can be incorporated in the Shortleaf Pine Stand Simulator (Huebschmann et al. 

1988) which can be used to develop information for practical forest management decision 

making for naturally occurring even-aged shortleaf pine forests. The relationships 

between dbh, height and crown ratio could have an significant implication in inventories 

for biomass and carbon estimation of a natural stand of shortleaf pine in the southern 

USA. To the extent that these formulations are novel in the forestry literature, they could 
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be considered for application in other forest types in addition to well-known existing 

equation forms. 

A substantial amount of the variability in predicting the probability of mortality of 

an individual tree was explained by the measures of stand level competition and sizes of 

individual trees with age i.e. BAHG and DAG, and stand level competition (QMD). The 

binary logistic model and an iteratively reweighted nonlinear regression model with the 

same independent variables provided similar parameter estimates. However, the binary 

estimation technique performed better because it provided smaller standard errors for 

parameter estimates. The binary logistic model fitted with the mixed-effects approach 

provided significant parameter estimates with smaller AIC values but the mortality 

predictions from this model evaluated using χ2 test value were inferior to binary model. 

The low thinning would not have strong effects in predicting mortality but could increase 

a risk of morality if it is triggered by logging effect. The binary logistic regression model 

could be used for assessing the mortality of naturally occurring even-aged shortleaf pine 

forests in the Southern USA. It also can be tested for use in a shortleaf pine growth 

simulation such as the Shortleaf Pine Stand Simulator (SLPSS) (Huebschmann et al., 

1998), a distance-independent individual tree growth simulator. 

The climate-based basal area growth models showed small improvements in fit 

statistics compared to the basal area growth models that did not include climate variables. 

However, this relatively small improvement could play a significant role in helping us to 
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understand the dynamics of growth change in response to climate variability. The 

seasonal climate variables, deviation in average minimum monthly air temperature and 

average monthly precipitation from the decade-long average climate are helpful in 

explaining variability in annual basal area growth rate. Similarly, deviation in monthly  

average climate variables used in the growth models can be used as a proxy for seasonal 

climate variables in establishing the relationship with annual radial growth. The 

formulation of climate modifier successfully modelled the influence of deviation in mean 

climate response in the growth of an individual tree. Such climate-based growth models 

might also help to improve understanding of possible of stand structure changes over the 

time due to climate change scenarios.  

The fit statistics (RMSE and fit index) of the mixed-effect models of all 

individual growth models, when predictions were based only on the fixed effects 

parameters were similar to or inferior to those of the best fitted nonlinear models fitted by 

OLS, though AIC values were smaller for mixed-effect models. However, the mixed-

effect models may provide improved predictions when calibration data are available. 

Estimation of parameters in individual tree growth models with repeated measurements 

using OLS violates the assumption of independent errors and may also violate the 

assumption of non-constant variance. This issue can be addressed by using weighted 

estimation with variance functions and mixed-effects estimation, or also by applying 

autoregressive correlation structures. However, these approaches do not always improve 
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actual predictive capability as measured by fit statistics. As a result, there may be 

tradeoffs between predictive ability and application of remedial measures to enhance 

adherence to modeling assumptions. For our data, the OLS model for height-dbh 

relationship and crown ratio estimation with AR (1) structure and power variance 

function showed better performances in AIC value and prediction ability than other 

alternatives. Similarly, the annual basal area prediction equations with the overall best 

performance were either the model with AR (1) structure or the mixed effects model that 

included growth period effects. However, a mixed-effects model that used a variance 

power functions provided better statistics (AIC).
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