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Abstract: 

Average production for maize (Zea mays L) in the United States is 9.9 Mg ha-1 compared to 

averages of 1.8 Mg ha-1 in the developing world.  Many factors account for these low yields, 

specifically highly advanced agricultural mechanization not available in the third world. Over the 

last twelve years, the Division of Agriculture at Oklahoma State University has worked to develop 

an improved hand planter, for subsistence farmers in developing countries. Two sites evaluating 

the Greenseeder hand planter were initiated to further evaluate drum cavity size (Efaw and Lake 

Carl Blackwell). This study further analyzed the amount of urea applied per plant (0.58 to 1.16g).  

Added variables included two different drums and tillage (no-till, conventional). The scientific 

notion that plant stand, singulation and grain yield in maize (Zea mays L.) are dependent on tillage 

and mid-season side-dress N application, solidifies the importance of the hand planter in third 

world agricultural systems. Coefficients of variation from collected normalized difference 

vegetative index (NDVI) sensor readings showed varying N uptake by plants; this is useful in 

determining N fertilizer rates for individual plants. Results showed a significant difference in 

singulation under conventional tillage (CT) at LCB. Drum 260-20 with 50 kg ha-1 and 100 kg ha-

1 side-dress N had 99 and 98 percent singulation, respectively, and that was higher than drum 450s 

at 72 and 68 percent. Grain yield results indicated certain instances of drum 260-20 producing 

higher yields, yet these were statistically limited.  The OSU hand planter can be recommended for 

use in both no-till and conventional tillage systems.  
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CHAPTER 1 

INTRODUCTION 

World population is expected to increase from 7.2 to 9.6 billion by 2050, where much of this 

increase will be in Africa (Gerland et al., 2014). Along with population, growth in food 

consumption rates is expected to increase for another 40 years (Godfray et al. 2010).  Changes in 

climate and climatic zones have influenced agriculture, and will continue to increase dependency 

of the developing world on foreign food aid (Schmidhuber and Tubiello. 2007). The present 

changing global climate has also impacted growth and unemployment as many people are directly 

and indirectly employed by the agricultural sector (Godfray et al., 2010). Increased efficiency in 

all sectors of agriculture is vital to achieve worldwide food security.  

Besides rice and wheat, maize provides 30% of the food calories to over 4.5 billion people in 

developing countries (Shiferaw et al., 2011). In the Sub Saharan Africa (SSA) maize is widely 

grown and accounts for 70% of the total human caloric intake (Byerlee and Heisey, 1996).  

It has been asserted that maize production needs to double in third world countries by the year 

2050 (Ray et al., 2013). Current planting techniques employed in developing countries deprive 

possible productivity and can be improved. Planting is done using sticks and hand hoes (Adjei et 

al., 2003). A hole (also referred to as hill) is made using sticks and hand hoes, depending on the 

tradition, and where two to three seeds are deposited into the hole and covered by surrounding soil 

(Omara et al., 2015).  Aikins et al. (2010) indicated that these traditional planting methods are 

labor intensive and result in multiple seed emergence and non-uniform crop stands. Omara et al. 

(2015) offered an alternative, the GreenSeederTM hand planter developed at Oklahoma State 

University (OSU).      
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The GreenSeederTM hand planter delivers seed singulation and removes chemically treated seed 

from the hands of producers, reducing health risks.  The OSU hand planter can also accommodate 

mid-season fertilizer applications to crops by replacing the internal drum. Many researchers have  

reported the importance of incorporation of urea below the soil surface (Fox et al., 1981; Mengel 

et al., 1982; Fowler and Brydon, 1989; Bandel et al., 1980; Ernst and Massey, 1960; Hargrove et 

al., 1977; Terman, 1979; Volk, 1959; Raun and Johnson, 1999).  This research further documents 

the need to incorporate urea fertilizer by using the OSU hand planter.  

Furthermore, the planter works well in various tillage systems, but has not been evaluated 

extensively. Minimum or no tillage is also tied to the term conservation tillage (Unger and 

McCalla, 1980), and many researchers have reported its benefits (Edwards et al., 1988; Blevins et 

al., 1971; Hargrove, 1985; Lal and Kimble, 1997).        

The objective of this study was to investigate the influence of tillage (conventional and no-till) and 

sidedress N on maize plant stands and grain yield using the GreenSeederTM hand planter with 

altered drum cavity sizes. 
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CHAPTER II 

LITERATURE REVIEW 

Influence of tillage 

Conservation agriculture has gained global approval as a way to practice modern agriculture over 

the years (FAO, 2002). It is a highly recommended management practice for improving soil 

conservation and grain yields (Lal and Kimble. 1997). According to Fowler and Rockstrom (2001) 

conservation tillage is a collective term used to refer to agricultural practices that aim at conserving 

natural resources. However, no-till is defined as a farming system in which crop residues remain 

on top of the soil, leaving the soil undisturbed following harvest, and nutrient amendments can be 

added at any time on the surface or injected into the soil (Horowitz et al., 2011). 

 

Long-term adoption of no-till practices leads to increased soil organic carbon (SOC) when 

compared to those under conventional tillage (Ismail et al., 1992).  This is due to buildup of soil 

organic matter embedded in deeper soil layers as reported by Balesdent et al. (2000). No-till has 

other benefits such as decreased soil erosion (Al Darby and Lowery, 1986). They also reported 

that too much surface residue before and during planting leads to slow soil warming, hence slower 

plant emergence, which has adverse effects on plant stands and development of the crop compared 

to conventional tillage.  

 

Reicosky et al. (1995) reported that the rate at which plant residues are broken down in the soil is 

slower in soils under conservation tillage, due to reduced contact of the residue with soil 

aggregates, of which contain the microbial engines that drive decomposition. Epplin et al. (2006) 

noted that in order to implement no-till management successfully, information regarding 

distribution of nutrients, soil fertility and pH in the soil are required.  Furthermore, these differ 

greatly in the case of conventional tillage due to reduced co-mixing of soils.  
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Maguta (2009) urged that reduced tillage leads to increased macro aggregation, which decreases 

the portion of micro aggregates, and free silt-clay loam portions. Large soil macro-aggregates 

proportion was 30% to 89% higher in reduced tillage compared to conventional tillage at different 

depths at 10-15 cm depth. However, macro aggregates were also lower in reduced tillage by 23-

28% compared to conventional tillage. Lipps and Deep (1991) observed that tillage has a large 

impact on corn grain yields.  This followed work from long-term trials in Ohio (reference?) that 

showed corn yields being positively influenced by no tillage when corn was planted on well-

drained, silty, clay loam soils.  Improved yields with no-till on well-drained soils were attributed 

to better water retention and absence of late-season water stress.  

 

Midseason Applications of N 

 

Scharf et al. (2002) reported that the application of N fertilizer in corn could be performed before 

planting. However, a number of reasons can be cited for its  mid-way season and some of these 

are, to distance the workload away from the tedious planting season.  Furthermore, this helps when 

wet field conditions are present during the spring and to avoid N losses in wet years (Scharf et al., 

2002). Sangoi et al. (2007) noted that the application of N either before or at planting increases 

available N in soils, during the early stages of plant growth and this could help reduce 

immobilization effects due to a high C/N ratio.  

For proper N application, Doerge et al. (1991) indicated that it is recommended that N be side 

dressed or applied via irrigation water between 3 to 4 leaf stages. If N is to be applied at silking 

and beyond, it should be done when N is deficient and has been identified through plant tissue 

analysis or visual symptoms. Nitrogen fertilizer application rates can change based on the past and 

current climatic conditions, management practices, and crop response to N in the soil (Doerge et 

al. 1991; Scharf and Lory 2009). 

Murrell and Snyder (2006) and Butzen (2011) suggested that one of the main reasons for proper 

N management is to ensure that crops have enough N, but it’s not accessible due to the high 

mobility of N compounds in the soils. At rapid vegetative growth stages, N deficiencies in corn 

can lead to significant yield loss, likewise if applied in excess it can lead to a reduction in profits 

and negatively impact the environment. 
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Hanninger (2012) explained that N applications could be done any time after planting through the 

tasseling stage. Plants have different amounts of N needs based on their growth stages, V10 is a 

vital growth stage as N needs by the plant are at the peak. However, to ensure that plants utilize 

applied N, it is important to apply side-dress N at the V10 growth stage when N demands peak and 

plants can fully utilize it to the maximum.  

Murrell and Snydert (2006) and Butzen (2011) found that mid-season (side-dress) applications 

enable alterations in planned N supply based on variations in weather. In cases where high 

temperatures and varying rainfall result in high N mineralization from organic matter, side-dress 

rates can be reduced.  When using the sufficiency approach, various soil testing methods and/or 

plant sensing can be used.   

World cereal grain nitrogen use efficiency (NUE) is estimated to be 33% (Raun and Johnson. 

1999). A number of factors affect NUE in soil and some of these include the general health of the 

plant food factory (photosynthesis), and plant exposure to N losses. Three pathways for N losses 

in corn include leaching and denitrification of of NO3-N, and surface volatilization as NH3 

(Neilson 2006).  

Fageria and Baligar (2005) noted that surface runoff is one of the many ways in which N is lost 

from the soil. In some cases, plants will lose N by gaseous emission during anthesis. 

Francis et al. (1993) stressed that plant N losses in the form of ammonia (NH3) accounted for 52-

73% of known N loss in maize production leading to poor NUE in crop production. Similar work 

by Lees et al. (2000) found that plant N losses during the growing season could exceed 40 kg N 

ha-1 in winter wheat. 

Ciampitti and Vyn (2011) observed that N uptake and use efficiency in narrow rows with a high 

plant density, enabled plants to occupy spaces between the rows, hence utilizing the N fertilizer 

more efficiently.  

Importance of the hand planter 

M’mboyi et al. (2010) reported that maize is a main staple food for most countries in Africa, being 

grown by over 24 million households in East and Southern Africa. Omara et al. (2015) reported 

that heavy sticks are used to plant 2-3 seeds per strike over large areas under maize production in 
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the developing world. This farming practice is largely dictated by terrain and prevailing climatic 

conditions, and that cannot employ mechanization. 

Aikins et al. (2011) noted that hand planter seeded maize has better emergence and plant stands 

when compared to that planted using traditional methods such as hoes, cutlasses, and dibble sticks.  

However, the metering system of most hand seed planters needs to be assessed for a better output 

of seed as this affects emergence and plant stands in the fields. (Aikins et al., 2010) analyzed the 

planting and fertilizer application efficiency of 30 hand planters used to plant maize and according 

to their results, the planters reported 53.3% chance of delivering two seeds for all the five seed 

varieties tested. They further exhibited poor rates of seed delivery, with metering being a problem 

and that called for more improvements.  

The GreenseederTM further aids in incorporating fertilizer N, helping to prevent losses from 

volatilization and reliance on timely rains. Rather than broadcasting fertilizer over the soil surface, 

the hand planter can be used to apply N fertilizer using fertilizer drums, resulting in having the 

fertilizer closer to the plant and below the soil surface (Fisher, 2016).  
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CHAPTER III 

 

OBJECTIVE 

 

 

The objective of this study was to investigate the influence of tillage (conventional and no-till) and 

sidedress N on maize plant stands and grain yield using the GreenSeederTM hand planter with 2 

different drum cavity sizes. 
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CHAPTER IV 

 

METHODOLOGY 

Experimental sites 

Four maize trials were established and studied for a two-year period (2015-2016) at EFAW and 

Lake Carl Blackwell (LCB) experiment stations near Stillwater, OK. For the first year (2015) at 

each site, one experiment was kept under conventional tillage and the other employed no-tillage 

using the treatment structure shown in Table 3. However, for the second year (2016) the two sites 

at Efaw were both maintained as no-tillage and those at Lake Carl Blackwell maintained as 

conventional tillage. Soil classification at both sites is as described in Table 1. Description of soils 

at Lake Carl Blackwell and Efaw are Port Silt Loam (Fine-silty, mixed, thermic cumulic 

Haplustolls) and Ashport silty clay loam (fine-silty, mixed, superactive, thermic fluventic 

halplustolls) respectively.  

Experiment design and Layout  

A GreenseederTM hand planter with altered drum cavity sizes was used to plant the trials. A 

specialized fertilizer drum (Figure 2) was used for applying side-dress N fertilizer, which applied 

0.50 or 0.10 grams (g) of urea per strike. Using a plant population of 64,000 seeds/ha, these 

amounts applied per plant resulted in N rates of 50 and 100 kg/ha, respectively.  Side-dress 

applications were applied at the V10 growth stage in maize.  

A randomized complete block design with 18 treatments and 3 replications was used at all 

experimental sites. Pre-plant N was applied at a rate of 56 kg N ha-1 in all treatments for each 
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experimental year. Pioneer hybrid seed ‘P1395YHR’ (2651 seeds/kg) was planted at a population 

of 64,000 seeds ha-1.  Row spacing was 76cm, with plant to plant spacing being 20.5 cm using a 

black tape marked string to maintain proper plant spacing ensuring uniformity in all trials. In order 

to achieve the desired plant population, 31 strikes were made per row.  

At both locations, two trials were maintained for both years with each trial having 3 replications 

and 6 treatments. Table 2 highlights the various field activities for both years. Internal drums used 

for seed singulation were 450S and 260-20 (Figure 1).  

Climatic data during the two-year experimental period for average monthly temperature and total 

rainfall at Lake Carl Blackwell (2015 and 2016), and Efaw (2015 and 2016) are reported in Figures 

4, 5, 6 and 7.  

Emergence counts were collected from the two middle rows, noting singles, multiples and the 

overall totals that resulted from each individual strike and the entire row.  In order to achieve this 

the formula below was used. 

Percentage Singulation = 
𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑬𝒎𝒆𝒓𝒈𝒆𝒏𝒕 𝑷𝒍𝒂𝒏𝒕𝒔−𝑴𝒖𝒍𝒕𝒊𝒑𝒍𝒆𝒔 𝑬𝒎𝒆𝒓𝒈𝒆𝒏𝒕 𝑷𝒍𝒂𝒏𝒕𝒔

𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒔𝒕𝒓𝒊𝒌𝒆𝒔 𝒊𝒏 𝒂 𝒓𝒐𝒘
 × 𝟏𝟎𝟎 

Where:  

Total number of Emergent Plants = the overall number of seeds that emerged after planting. 

Multiple Emergent Plants = the number of seeds that emerged as multiple seedlings. 

Total number of strikes in a row = the number of strikes made per row during planting. 

Knowledge of singulation percentages is vital in improving yields, the more singles emergent 

plants in the field, the better the yields because Nitrogen Use Efficiency by the plants is improved 

due to less competition for Nitrogen by plants. It further improves plant spacing in the field a 

practice needed to improve yields.  

In some cases, there were emergence failures and these were attributed to misses (lack of seed 

drop) during planting. Chim et al. (2014) observed poor seed emergence having a profound effect 

on plant density and spacing as it interfered with canopy structure and the radiation efficiency in 

some trials. Multiple seed emergence in the same spot was accounted for as a single plant count 
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as observed by Kachman and Smith (1995). Sensor readings for normalized difference vegetation 

index (NDVI) were collected at different growth stages (V6, V8 and V10) using the active Trimble 

Ukiah CA, GreenseekerTM hand held sensor to evaluate NDVI and plant response to hand planter 

applied fertilizer N, and to have an earlier prediction of final grain yields after harvest. Based on 

the Iowa State University extension article reprinted version (1996), growth stages for maize were 

determined. During sensor NDVI reading collection care was taken to ensure that the 

GreenseekerTM sensor head was kept at least 70 cm above the maize plant canopies. The 

GreenseekerTM uses the formula shown below to calculate NDVI for each individual maize plant.  

  

 Where: NIR and Red are reflectance band 2 and 1. (Mkhabela et al., 2010). 

Trials were harvested (middle two rows) using a self-propelled combine, Massey Ferguson 8XP 

(AGCO Corp. Duluth GA). Plot grain weights were determined using a computerized automated 

digital weighing system (Juniper Systems Inc. Logan, UT) at both locations in 2015, and where 

final moisture content was adjusted to 15.5%. For each plot a subsample was taken and oven dried 

for at least 2 days at 75 degrees C and later ground to pass a 240 mesh screen. A sample from the 

resultant finely ground maize grain was tested for total N by the LECO Truspec CN dry 

combustion analyzer (Nieuwenhuize et al., 1989). 

Statistical Analysis of Data 

Using SAS version 9.3 (SAS Institute, Cary, NC, USA.), the collected emergence, singulation and 

NDVI data was analyzed using proc GLM.  The main effects of tillage, drum cavity, and side-

dress N rates were all partitioned accordingly. Mean separation was accomplished using the least 

significance difference method (LSD) at an alpha level of 0.05.  
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CHAPTER V 

 

RESULTS 

 

Efaw (2015) 

 

Conventional Tillage (CT)  

 

Emergence 

Emergence rates for this location ranged from 79% (with drum 450S at 0 kg N ha-1 to 91% (with 

drum 260-20 at 50 kg N ha-1) (Table 4). There was no significant difference among treatments for 

emergence rates (α = 0.05) (Table 4). However, drum 260-20 achieved numerically higher 

emergence rates than 450S at N rates of 0 and 50 kg N ha-1. Emergence rates for this conventionally 

tilled plot were higher than its no-till counterpart. This is an indication of the variability in 

emergence likely due to the residue on the soil surface. 

Singulation  

At this site, singulation percentages ranged from 48% (with drum 260-20 at 100 kg N ha-1) to 68% 

(with drum 260-20 at 0 kg N ha-1) (Table 4). There was no significant difference among the 6 

treatments for singulation rates (α = 0.05) (Table 4). Drum 260-20 achieved higher singulation at 

0 and 50 kg N ha-1 when compared to drum 450S at the same N rates. Drum 450S possessed higher 

singulation at 100 kg N ha-1, where it achieved a rate of 57%, compared to the 48% witnessed from 

drum 260-20. 

 

Yield  

At this location, grain yield ranged from 1.9 Mg ha-1 (drum 450S at 0 kg N ha-1) to 4.01 Mg ha-1 

(drum 260-20 at 100 kg N ha-1). Significant differences were seen for treatment 6 (260-20 at 100 
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kg N ha-1) that was higher than treatments 1, 3, 4, and 5 (α = 0.05) (Table 4). At 0 kg N ha-1, drum 

260-20 achieved a higher yield than drum 450S. The inverse occurred at 50 kg N ha-1, where drum 

450S had the highest yield. Grain yields were maximized at 100 kg N ha-1 (Table 4) 

 

No-Tillage (NT)   

 

Emergence 

 

Emergence rates at this site showed no significant differences among treatments (α = 0.05) (Table 

5). Emergence rates ranged from 68% (450S at 0 kg N ha-1) to 85% (260-20 at 100 kg N ha-1, 

Table 5). Drum 260-20 had higher emergence rates than drum 450S at all 3 N rates. Lower 

emergence rates were present in this no till system than in the conventionally tilled trial. This is 

likely due to residue impacting the emergence of seedlings. Additionally, during early portions of 

the growing season, excessive standing water impacted seedling growth and vigor, further 

impacting the overall emergence rates.  

 

Singulation  

 

Singulation rates at this site ranged from 44% (450S at 100 kg N ha-1) to 63 % (260-20 at 100 kg 

N ha-1) (Table 5). Singulation rates were not significantly different among the six treatments (α = 

0.05) (Table 5). Drum 260-20 produced the numerically highest singulation rates across all three 

levels of the treatment when comparing it to the performance of drum 450S at the same respective 

N rates. Although not significant, drum 260-20 was higher when it came to seed singulation. 

Excessive standing water during the early portion of the growing season is a likely contributor to 

the varying nature of the singulation rates.   

 

Yield  

 

At this location, grain yields ranged from 1.6 Mg ha-1 (450S, 100 kg N ha-1) to 4.2 Mg ha-1 (260-

20, 100 kg ha-1) (Table 5). Although variable, grain yields were not statistically different across all 

treatments. (α = 0.05) (Table 5). Excessive standing water during portions of the growing season 
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contributed to the variability seen in the range of grain yields. Grain yields were maximized with 

100 kg N ha-1 utilizing drum 260-20. Drum 450S achieved a maximum yield at 50 kg N ha-1, which 

was higher than the yield achieved with 50 kg N ha-1 using drum 260-20 (Table 5) 

 

Efaw 2016 

 

No-Tillage (NT) 1.1  

 

Emergence 

At this location, analysis of variance showed no significant difference in emergence rates when 

comparing 450S and 260-20 drums (α = 0.05) (Table 8). Emergence percentages ranged from 79% 

with drum 450S at 100 kg ha-1 of midseason N to 93% at 50 kg N ha-1 using drum 450S. (Table 8) 

Differences in emergence rates suggest micro-environmental variation throughout the trial. 

Influences from surface residue and land layout are likely causes for the small variations seen in 

emergence rates. 

Singulation 

Singulation percentages ranged from 25% with drum 260-20 at 0 kg N ha-1 to 47% with drum 260-

20 at 50 kg N ha-1 (Table 8).  Although values varied among treatments, there were no significant 

treatment differences (α = 0.05) (Table 8). The lack of reported differences in singulation within 

this trial indicate that microenvironments have the potential to vary dramatically from area to area.  

Furthermore, other locations within this experiment were visually variable and likely due to 

treatment effects. Some of this variability can be attributed to operator effects. Dividing the 

treatments into two groups based off drum cavity size, drum 450S achieved numerically higher 

singulation rates in treatments 1 and 3 when compared to treatments 4 and 6 using drum 260-20 at 

respective N rates (Table 8).  

Yield 

Grain yields at this location ranged from 0.98 Mg ha-1 (450S, 100 kg N ha-1) to 2.87 Mg ha-1 (260-

20, 100 kg N ha-1) (Table 10). Drum 260-20 held numerically higher yields at each N tier; however, 

no significant difference was present among all of the treatments (α = 0.05) (Table 8). Strong 
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environmental variability within the trial contributed to this result, as drought stress was magnified 

from the sloping nature of the experimental plot area. Drought stress is the likely result of poor ear 

quality; as evident tip dieback and leaf curling were present. Additionally, poor pollination 

occurred throughout much of the trial, further reducing yields.                                                     

No-Tillage (NT) 1.2  

 

Emergence 

 

Emergence rates for this site ranged from 84% (260-20 at 100 kg N ha-1) to 90% (260-20 at 50 kg 

N ha-1) (Table 9). No significant differences were present among the six treatments (α = 0.05). 

Numerically, the drums performed similarly, with the exception of plots receiving seed from drum 

260-20 at 100 kg N ha-1. This treatment was noticeably lower than the other treatment means, but 

not significant. The strong emergence rates from this location indicates that conservation tillage 

did not impact emergence rates.  

 

Singulation  

 

Singulation percentages ranged from 19% (450S at 50 kg N ha-1) to 66% (260-20 at 100 kg N ha-

1) (Table 9).  A significant difference was present between the two drums, as treatment 6 (α = 0.05) 

(260-20 at 100 kg N ha-1) was higher than treatment 3 (450S at 100 kg N ha-1). It should be noted 

that treatment 6 did outperform treatment 4, which utilized the same drum (260-20), but at with no 

N applied. There was no significant difference between treatments 3 and 4. Numerically, drum 

260-20 was higher than drum 450S at two of the three N rates.  

 

Yield 

 

Yields at this site ranged from 3.32 Mg ha-1 (450S at 50 kg N ha-1) to 6.31 Mg ha-1 (Table 9). No 

significant difference was observed at this location (α = 0.05). Numerically, yields from drum 260-

20 were higher at all three N rates when compared to drum 450S. The low yields at this site can 

be attributed to drought stress and poor pollination. This also aids in explaining the variability seen 

in yields, where maximum yields were achieved in treatment 4, which received 0 kg N ha-1. 
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Lake Carl Blackwell (LCB 2015) 

 

Conventional Tillage (CT) 

 

Emergence 

Emergence rates at this location were not significantly different (α = 0.05) (Table 6). Emergence 

rates ranged from 65% (450S at 0 kg N ha-1) to 77% (260-20 at 0 kg N ha-1) (Table 6).  Drum 260-

20 produced numerically higher emergence rates at 2 of the 3 N rates when compared to drum 

450S. Overall, emergence rates were relatively uniform, with the exception of treatment 4 (260-

20 at 0 kg N ha-1).  Only 8 percentage points (Table 6) separated all treatments.  

 

Singulation   

 

Singulation rates at this site ranged from 48% (450S at 0 and 450S at 100 kg N ha-1) to 75% 

(260-20 at 0 kg N ha-1) (Table 6). Statistical differences were evident, as drum 260-20 had 

significantly higher singulation rates when comparing treatments 5 and 6 (260-20 at 50 and 100 

kg N ha-1, respectively) to treatments 2 and 3 (450S at 50 and 100 kg N ha-1 (α = 0.05) (Table 6). 

Treatment 4 (260-20 at 0 kg N ha-1) was not significantly different from any treatment, likely due 

to the variation encountered over the three replications. Drum 260-20 produced the best 

singulation rates for this location (Table 6).   

 

Yield 

 

At this location, grain yields ranged from 1.2 Mg ha-1 (260-20, 0 kg N ha-1) to 3.41 Mg ha-1 (260-

20, 50 kg ha-1) (Table 6). Significant differences were present, as 50 kg N ha-1 produced 

significantly higher yields compared to the 0 N checks (treatments 1 and 4), and for each drum (α 

= 0.05) (Table 6). Yields were maximized with 50 kg N ha-1 at this location (Table 6). No clear 

numeric trend was found that would favor one drum over the other. 
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No-Tillage (NT)  

 

Emergence 

 

Emergence rates ranged from 25% (260-20 at 0 kg N ha-1) to 50% (450S at 50 kg N gha-1) (Table 

7). Significant differences were present, as drum 450S at 0 kg N ha-1 achieved a higher emergence 

rate than drum 260-20 at 0 kg N ha-1(α = 0.05) (Table 7). Additionally, drum 450S continued to 

produce numerically higher emergence rates than drum 260-20 at N rates of 50 and 100 kg N ha-1 

(Table 7).  Overall, emergence rates were lower than anticipated at this location. Likely factors 

contributing to this was excessive standing water during the initial weeks of the growing season, 

combined with heavy residue impacting seedling growth and performance.   

 

Singulation 

 

Singulation rates ranged from 24% (260-20 at 0 kg N ha-1) to 38% (450S at 50 kg N ha-1 and 260-

20 at 100 kg N ha-1) (Table 7). There were no significant differences among the six treatments (α 

= 0.05) (Table 8). Drum 450S had improved singulation as compared to drum 260-20 (Table 7).  

Emergence rates at this location were impacted by excessive standing water and residue.  This 

helped to better explain the lower singulation rates. This with knowledge that poor emergence can 

have a [direct impact on the identification of reliable singulation data.  

 

Yield 

 

Grain yields ranged from 1.3 Mg ha-1 (260-20 at 0 kg N ha-1) to 3.7 Mg ha-1 (450S at 50 kg N ha-

1) (Table 7). Significant yield differences were present in this trial (α = 0.05) (Table 7). Drum 450S 

achieved a significantly higher yield than drum 260-20 at the N rate of 50 kg ha-1 (Table 8).  

Furthermore, numeric trends favored drum 450S at N rates of 0 and 100 kg ha-1. Overall, drum 

450S produced the best yield throughout this trial (Table 7). However, this does not discount the 

possibility that the environmental impact of excessive standing water could be a likely contributor 

to the low yields witnessed with drum 260-20.  
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Lake Carl Blackwell (LCB 2016)  

 

Conventional Tillage (CT) 1.1 2016 

 

Emergence 

Emergence rates within this trial ranged from 83% (450S, 50 kg N ha-1) to 91% (260-20, 100 kg 

N ha-1) (Table 10). There was no significant difference across all treatments for emergence rates. 

(α = 0.05) (Table 10). This suggests adequate growing conditions for the initial germination and 

growth of the trial. Emergence was relatively similar across all treatments in this trial. 

Singulation 

Singulation percentages ranged from 26% (450S, 100 kg N ha-1) to 55% (260-20, 50 kg N ha-1) 

(Table 10). There were limited differences between treatments, with the exception of those 

utilizing drum 450S, specifically100 kg N ha-1 (α = 0.05) (Table 10). This treatment was 

significantly lower than drum 450S at 50 kg N ha-1 and drums 260-20 at 0 and 50 kg N ha-1 (α 

=0.05) (Table 10). Numeric differences were evident, as drum, 260-20 produced elevated 

singulation when compared to drum 450S. At each tier of N rates, singulation rates for 260-20 

were higher than those of 450S (Table 10).  

Yield 

Grain yield values ranged from 1.83 Mg ha-1 from drum 260-20 at 0 kg N ha-1 to 2.76 Mg ha-1 with 

drum 450S at 50 kg N ha-1(Table 10). No statistical difference was present among the six 

treatments (α = 0.05). There was a clear numeric trend from the positive benefit of midseason N; 

however, differences were not strong enough to declare significance (α = 0.05) (Table 10). Both 

drums recorded similar trends. From the different midseason N rates, 50 kg N ha-1
 produced the 

highest yields for each set of drums (Table 10).  
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Conventional Tillage (CT) 1.2 2016 

 

Emergence 

 

Emergence rates for this site ranged from 85% (450S at 0 kg N ha-1) to 92% (260-20 at 50 kg N 

ha-1) (Table 11) and where treatment differences did exist. Plots planted with drum 260-20 (50 kg 

N ha-1) had significantly higher emergence rates than plots receiving seed from drum 450S (0 kg 

N ha-1) (α = 0.05). Aside from this observation, differences were small. Adequate growing 

conditions early in the season allowed for good seedling establishment. Two of the three treatments 

that utilized drum 450S were not different from the three treatments that received seed from drum 

260-20.  However, a minimal numeric trend was present where drum 260-20 had numerically 

higher emergence rates at two of the three N rates, and an emergence rate equal to 450S at 100 kg 

N ha-1.  

 

Singulation  

 

Singulation rates ranged from 52% (450S at 50 kg N ha-1) to 56% (450S at 100 kg N ha-1) (Table 

11). There was no significant difference in singulation rates for this location. Singulation rates 

were not highly variable (α = 0.05). Drum 450S had a numerically higher singulation rate at two 

of the three N rates, however, these differences were small. This data suggests equal performance 

of the two drums for singulating seed in this conventionally tilled system.  

 

Yield 

 

Yields ranged from 0.9 Mg ha-1 (450S at kg N ha-1) to 1.41 Mg ha-1 (450S at 100 kg N ha-1) (α = 

0.05) (Table 11). No significant differences were present that were due to treatment (α = 0.05). 

Numeric trends were in favor of drum 450S for higher grain yields at N rates of 50 and 100 kg ha-

1. Low yields were not a result of stand establishment; as adequate emergence rates were present 

throughout the trial. Poor ear fill suggests inadequate pollination. Furthermore, leaf curling during 

the season was evidence of drought stress both vegetative and during the reproductive season. This 

further supports observing such low yields.  
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CHAPTER VI 

 

 

CONCLUSIONS 

 

Emergence and singulation rates, along with grain yield displayed similar results under different 

tillage practices. Environmental influences limited the statistical differences observed and to 

accurately determine grain yield differences among N rates and for both drums. Emergence rates 

were relatively uniform from location to location, generally staying in the mid-to upper 80’s and 

low 90’s. Singulation rates were highly variable from location to location, even within locations. 

Drum 260-20 generally possessed more variable singluation rates, versus drum 450S, which was 

relatively consistent from treatment to treatment. Despite this variability, drum 260-20 generally 

had numerically higher singulation rates.  

 

Efaw yields were maximized when 100 kg N ha-1 was applied side-dress. LCB yields were 

maximized when 50 kg N ha-1 was applied side-dress. Variability in grain yields was high. Results 

showed that both drums 450S and 260-20 had limited differences in performance despite having 

uneven plant stands.  

 

Based on the reported results, both drums 450S and 260-20 are likely to be of use for farmers 

hoping to increase maize yields when planted by hand.  Tillage influenced production significantly 

but not so much as to affect average yields. The use of the GreenSeederTM has benefit and can be 

used to place midseason N below the surface of the soil. This is a better method of fertilizer 

application as it places the N fertilizer below the soil surfaces, which prevents ammonia losses to 

the environment. Furthermore, the placement of N fertilizers as close as possible to the plant root 

zone provides an immediate source of N fertilizer. The farmer places a predetermined quantity of 

fertilizer N for each individual plant in the field, hence improving Nitrogen Use Efficiencies in the 

soil. Viable economics are necessary to ensure that farmers find the highest profit margins. 
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Excessive spending on fertilizer and seed can be minimized when the GreenSeederTM is used to 

plant fields and apply midseason N. This is achieved through the uniform placement of seed and 

even application of N fertilizer. Overall, drum 260-20 possessed benefits in singulation over drum 

450S, which will aid in the reduction of seed lost to “doubles.” Through the utilization and 

implementation of the GreenSeederTM planter into the farming practices of the developing world, 

global maize supplies can be better secured. 
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TABLES 

 

Table 1.  Description of soils at Lake Carl Blackwell and Efaw, Oklahoma  

          

Location    Soil Series  

Efaw, OK 
 

Ashport silty clay loam (fine-silty, mixed, superactive, thermic Fluventic 

Haplustolls) 
 

  
       

Lake Carl Blackwell, Ok Port Silt Loam (fine-silty, mixed, thermic cumulic Haplustolls     
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Table 2.   Field activities for each location, 2015 and 2016.       
          2015   2016 

Field Activity    Efaw  LCB  Efaw  LCB 

Planting     21-Apr  21-Apr  

April 

14  April  7 

Sidedress    9-Jun  10-Jun  2-Jun  6-Jun 

NDVI Collection     12-Jun  12_Jun  4-Jun  

27-

May 

Harvest         3-Sep   2-Sep   25-Aug   6-Sep 

Efaw, Oklahoma Agricultural Experimental Station near Stillwater, OK. 

LCB, Oklahoma Agricultural Experimental Station west of Stillwater, OK near Lake Carl 

Blackwell.    
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Table 3. Treatment structure employed at EFAW and Lake Carl Blackwell, 2015 and 

2016. 

Treatment Drum Sidedress N rate,  

kg ha-1 

1 450S 0 

2 450S 50 

3 450S 100 

4 260-20 0 

5 260-20 50 

6 260-20 100 
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Table 4.  Emergence, singulation, NDVI and grain yields as influenced by drum cavity size (450S, 260-20), tillage practice, 

(conventional tillage, CT and no tillage, NT), and sidedress N rates, Efaw, Lake Carl Blackwell, OK, 2015. 

 

    Emergence, % Singulation, % Grain yield, Mg ha-1 NDVI 

    Efaw LCB Efaw LCB Efaw LCB Efaw LCB  

Drum 

Cavity 

Sidedress 

N rate CT NT CT NT CT NT CT NT CT NT CT NT CT NT CT NT  

kg ha-1 

450S 0 79A 68A 65A 36AB 61AB 45A 48B 27A 1.90B 1.71A 1.30B 2.60AB 0.82C 0.80A 0.52A 0.80A  

450S 50 81A 77A 71A 50A 58AB 53A 51B 38A 3.01AB 2.80AB 3.31A 3.71A 0.81BC  0.91A 0.55A 0.83A  

450S 100 85A 78A 73A 38AB 57AB 44A 48B 31A 2.62B 1.60A 2.30AB 2.21AB 0.90ABC 0.83A 0.64A 0.82A  

260-

20 
0 88A 72A 77A 25B 68A 53A 75AB 24A 2.41B 1.71A 1.20B 1.30B 0.90A 0.80A 0.50A 0.79A  

260-

20 
50 91A 82A 72A 29AB 62AB 60A 71A 28A 2.51B 1.72A 3.41A 1.83B 0.81A 0.81A 0.52A 0.79A  

260-

20 
100 82A 85A 72A 38AB 48AB 63A 70A 38A 4.01A 4.20A 1.80AB 2.50AB 0.90AB 0.82A 0.51A 0.82A  

MSE  60 305 59 200 169 175 83 440 0.57 0.91 1.27 0.78 0.0015 0.001 0.0010 0.0006  

SED  6 14 6 11 11 11 7 17 0.61 0.77 0.92 0.50 0.03 0.02 0.04 0.02  

CV,%   9 23 11 41 18 19 11 61 26 37 46 37 11 9 10 7  

 

SED – Standard error of the difference between two equally replicated means, CV – coefficient of variation, %, MSE -mean square 

error from analysis of variance, values with different letters were significantly different at the 5% probability level, CT - conventional 

tillage, NT - no tillage. 
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Table 5. Maize emergence, singulation, grain yield and NDVI, Efaw conventional tillage, 2015 

    Emergence, % Singulation, % 
Grain yield, 

Mg ha-1 
NDVI  

   

    

               
    

Drum 

Cavity 

Sidedress 

N,             

    

kg ha-1    
    

450S 0 79A 61AB 1.90B 0.820C    
    

450S 50 81A 58AB 3.01AB 0.81BC    
    

450S 100 85A 57AB 2.62B 0.90ABC    
    

260-20 0 88A 68A 2.41B 0.87A    
    

260-20 50 91A 62AB 2.51B 0.84A    
    

260-20 100 82A 48AB 4.01A 0.85AB    
    

MSE  60 169 0.57 0.001    
    

SED  6 11 0.67 0.03    
    

CV,%   9 18 26 11    
    

 SED - Standard error of the difference between two equally replicated means.      

 MSE -  Mean square error from analysis of variance.       
  

 CV% - Coefficient of variation, %       
     

 NDVI - Normalized difference vegetation index      
   

 

       

Means followed by the same letter were not statistically different using the least significance difference (LSD) mean separation 

procedure, alpha = 0.05. 
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Table 6. Maize emergence, singulation, grain yield and NDVI, Efaw, no tillage, 2015.       

 

 Emergence,% Singulation,% 

Grain 

yield, Mg 

ha-1 

NDVI  

        
                    

Drum 

Cavity 

Sidedress 

N rate                 
kg ha-1         

450S 0 68A 45A 1.71A 0.80 A         
450S 50 77A 53A 2.80AB 0.86A         
450S 100 78A 44A 1.60A 0.81A         
260-20 0 72A 53A 1.71A 0.80A         
260-20 50 82A 60A 1.72A 0.83A         
260-20 100 85A 63A 4.20A 0.83A         
MSE  305 175 0.91 0.001         
SED  14 11 0.77 0.02         
CV,%   23 21 37 4         

              
SED - Standard error of the difference between two equally replicated means.      
MSE -  Mean square error from analysis of variance.      
CV% - Coefficient of variation, %           
NDVI - Normalized difference vegetation index      

 

Means followed by the same letter were not statistically different using the least significance difference (LSD) mean separation 

procedure, alpha = 0.05. 
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Table 7. Maize emergence, singulation, grain yield and NDVI, Lake Carl Blackwell, conventional tillage, 2015 

 

           
   

  

  Emergence, % Singulation, % 

Grain 

yield, Mg 

ha-1 

NDVI  

   

   

  
               

   
  

Drum 

Cavity 

Sidedress 

N rate,            

   

  
kg ha-1    

   
  

450S 0 65A 48B 1.30B 0.52A    
   

  
450S 50 71A 51B 3.31A 0.54A    

   
  

450S 100 73A 48B 2.30AB 0.64A    
   

  
260-20 0 77A 75AB 1.20B 0.50A    

   
  

260-20 50 72A 71A 3.41B 0.52A    
   

  
260-20 100 72A 70A 1.80AB 0.51A    

   
  

MSE  59 83 1.27 0.001    
   

  
SED  6 7 0.92 0.04    

   
  

CV,%   11 11 46 13    
   

  

         
   

  
SED - Standard error of the difference between two equally replicated means.   
MSE -  Mean square error from analysis of variance.   

 
  

CV% - Coefficient of variation, %      
   

  
NDVI - Normalized difference vegetation index    

 
  

 

Means followed by the same letter were not statistically different using the least significance difference (LSD) mean separation 

procedure, alpha = 0.05 
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Table 8. Maize emergence, singulation, grain yield and NDVI , Lake Carl Blackwell no-tillage, 2015    
            

 
   

  Emergence,% Singulation,% 
Grain yield, 

Mg ha-1 
NDVI  

    

 

   
                

 
   

Drum 

Cavity 

Sidedress 

N rate,             

 

     
kg ha-1     

 
   

450S 0 36AB 27A 2.60AB 0.8 0  A     
 

   
450S 50 50A 38A 3.71A 0.83A     

 
   

450S 100 38A 31A 2.21AB 0.82A     
 

   
260-20 0 25B 24A 1.30B 0.79A     

 
   

260-20 50 29AB 28A 1.83B 0.79A     
 

   
260-20 100 38AB 38A 2.50AB 0.82A     

 
   

MSE  200 440 0.78 0.0006     
 

   
SED  11 17 0.03 0.02     

 
   

CV,%   41 61 37 3     
 

   

          
 

   
SED - Standard error of the difference between two equally replicated means.    
MSE -  Mean square error from analysis of variance.      
CV% - Coefficient of variation, %       

 
   

NDVI - Normalized difference vegetative index      

       

Means followed by the same letter were not statistically different using the least significance difference (LSD) mean separation 

procedure, alpha = 0.05 
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Table 9.  Emergence, singulation, NDVI and grain yields as influenced by drum cavity size (450S, 260-20), tillage practice, 

(conventional tillage CT and no tillage NT), and sidedress N rates, Efaw, Lake Carl Blackwell, OK 2016. 

 

 

 

SED – Standard error of the difference between two equally replicated means, CV – coefficient of variation, %, MSE -mean square 

error from analysis of variance, values with different letters are significantly different at the 5% probability level, NT 1.1 -No tillage 

site 1.1, NT 1.2 - No tillage site 1.2, CT 1.1 - Conventional tillage site 1.1, CT 1.2 - Conventional tillage site 1.2. 

 

 

 

 

 

    Emergence,% Singulation,% Grain yield, Mg ha-1 NDVI 

    Efaw LCB Efaw LCB Efaw LCB Efaw LCB 

Drum 

Cavity 

Sidedress 

N rate, NT1.1 NT1.2 CT1.1 CT1.2 NT1.1 NT1.2 CT1.1 CT1.2 NT1.1 NT1.2 CT1.1 CT1.2 NT1.1 NT1.2 CT1.1 CT1.2 

kg ha-1 

450S 0 86A 89A 89A 85B 34A 43AB 40AB 54A 2.80A 3.96A 2.20A 0.90A 0.87A 0.79AB 0.87A 0.85A 

450S 50 93A 87A 83A 90A 33A 19AB 48A 52A 1.19A 3.35A 2.76A 1.36A 0.87A 0.77B 0.87A 0.86A 

450S 100 79A 88A 84A 89AB 40A 30B 26B 56A 0.98A 4.70A 2.63A 1.46A 0.88A 0.80AB 0.88A 0.85A 

260-

20 
0 90A 89A 88A 88AB 25A 26B 54A 53A 2.19A 6.33A 1.83A 1.00A 0.88A 0.82AB 0.88A 0.85A 

260-

20 
50 87A 90A 88A 92A 47A 50AB 55A 56A 1.60A 4.49A 2.66A 1.26A 0.87A 0.85A 0.87A 0.86A 

260-

20 
100 89A 84A 91A 89AB 29A 66A 39AB 54A 2.87A 4.95A 2.46A 1.13A 0.87A 0.87AB 0.87A 0.85A 

MSE  120 23 35 7 190 316 80 206 1.44 3.67 0.42 0.17 0.0001 0.002 0.003 0.0006 

SED  9 4 5 2 11 15 7 12 0.69 1.10 0.37 0.22 0.002 0.036 0.044 0.02 

CV,%   13 6 7 3 40 46 21 27 62 41 27 35 6 5 1 1 
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Table 10. Maize emergence, singulation, grain yield, and NDVI, Efaw No-Tillage 1.1, 2016 
      

   
    

    Emergence,% Singulation,% 
Grain yield, 

Mg ha-1 
NDVI  

   

    

               
    

Drum 

Cavity 

Sidedress N 

rate, kg ha-1 
        

   
    

   
    

450S 0 86A 34A 2.70A 0.87A    
    

450S 50 93A 33A 1.11A 0.87A    
    

450S 100 79A 40A 0.98A 0.88A    
    

260-20 0 90A 25A 2.10A 0.88A    
    

260-20 50 87A 47A 1.61A 0.87A    
    

260-20 100 89A 29A 2.87A 0.87A    
    

MSE  120 190 1.44 0.0001    
    

SED  9 11 0.69 0.002    
    

CV,%   13 40 62 6    
    

         
    

SED - Standard error of the difference between two equally replicated means. 

MSE -  Mean square error from analysis of variance.   
CV% - Coefficient of variation, %       

    

NDVI - Normalized difference vegetation index     
 

Note- 
Means followed by the same letter were not statistically different using the least significance difference (LSD) mean separation 

procedure,  alpha = 0.05 
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Table 11. Maize emergence, singulation, grain yield and NDVI, Efaw No-Tillage 1.2, 2016 
      

   
    

 

    Emergence,% Singulation,% 

Grain 

yield, Mg 

ha-1 

NDVI  

   

    

  

               
    

 

Drum 

Cavity 

Sidedress 

N rate, kg 

ha-1 

        
   

    
 

   
    

 
450S 0 89A 43AB 3.91A 0.79AB    

    
 

450S 50 87A 19AB 3.32A 0.77B    
    

 
450S 100 88A 30B 4.70A 0.80AB    

    
 

260-20 0 89A 26B 6.31A 0.82AB    
    

 
260-20 50 90A 50AB 4.42A 0.85A    

    
 

260-20 100 84A 66A 4.93A 0.87AB    
    

 
MSE  23 316 3.67 0.002    

    
 

SED  4 15 1.10 0.036    
    

 
CV,%   6 46 41 5    

    
 

         
    

 
SED - Standard error of the difference between two equally replicated means.  
MSE -  Mean square error from analysis of variance.    
CV% - Coefficient of variation, %       

    
 

NDVI - Normalized difference vegetation index     
 

 

Note- 

Means followed by the same letter were not statistically different using the least significance difference (LSD) mean separation 

procedure, alpha = 0.05 
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Table 12. Maize emergence, singulation, grain yield and NDVI, LCB Conventional Tillage 1.1, 2016  
      

   
    

 

    Emergence,% Singulation,% 
Grain yield, 

Mg ha-1 
NDVI  

   

    

 
               

    
 

Drum 

Cavity 

Sidedress 

N rate, 

kgha-1 

        
   

    
 

   
    

 
450S 0 89A 40AB 2.20A 0.87A    

    
 

450S 50 83A 48A 3.31A 0.87A    
    

 
450S 100 84A 26B 2.63A 0.88A    

    
 

260-20 0 88A 54A 1.80A 0.88A    
    

 
260-20 50 88A 55A 2.62A 0.87A    

    
 

260-20 100 91A 39AB 2.41A 0.87A    
    

 
MSE  35 80 0.42 0.003    

    
 

SED  5 7 0.37 0.044    
    

 
CV,%   7 21 27 1    

    
 

         
    

 
SED - Standard error of the difference between two equally replicated means.  
MSE -  Mean square error from analysis of variance.    
CV% - Coefficient of variation, %       

    
 

NDVI - Normalized difference vegetation index     
 

 

Note- 

Means followed by the same letter were not statistically different using the least significance difference (LSD) mean separation 

procedure, alpha = 0.05 
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Table 13. Maize emergence, singulation, grain yield and NDVI, LCB Conventional Tillage 1.2, 2016  
      

   
    

 

    Emergence,% Singulation,% 

Grain 

yield, Mg 

ha-1 

NDVI  

   

    

 
               

    
 

Drum 

Cavity 

Sidedress 

N rate,  

kg ha-1 

        
   

    
 

   
    

 
450S 0 85B 54A 0.92A 0.85A    

    
 

450S 50 90A 52A 1.30A 0.86A    
    

 
450S 100 89AB 56A 1.41A 0.85A    

    
 

260-20 0 88AB 53A 1.02A 0.85A    
    

 
260-20 50 92A 56A 1.21A 0.86A    

    
 

260-20 100 89AB 54A 1.10A 0.87A    
    

 
MSE  7 206 0.17 0.0006    

    
 

SED  2 12 0.22 0.02    
    

 
CV,%   3 27 35 1    

    
 

         
    

 
SED - Standard error of the difference between two equally replicated means.  
MSE -  Mean square error from analysis of variance.    
CV% - Coefficient of variation, %       

    
 

NDVI - Normalized difference vegetation index     
 

 

Note- 

Means followed by the same letter were not statistically different using the least significance difference (LSD) mean separation 

procedure, alpha = 0.05 
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FIGURES 

 

 

Figure 1. Drum 260-20 and Drum 450S. 
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Figure 2. Fertilizer drum. 

 

 



41 
 

 

Figure 3. The OSU GreenSeederTM Hand planter fertilizer application.   
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Figure 4:   Average monthly air temperature and total monthly rainfall from April to September 2015 at Lake Carl Blackwell, Oklahoma.  
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Figure 5: Average monthly air temperature and total monthly rainfall from April to August 2016 at Lake Carl Blackwell, Oklahoma.  
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Figure 6: Average monthly air temperature and total monthly rainfall from April to September 2015 at Efaw, Oklahoma.  
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Figure 7: Average monthly air temperature and total monthly rainfall from April to August 2016 at Efaw, Oklahoma.  
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