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Abstract: Navigating an immersive, virtual environment (VE) is one of the key 

challenges when a head-mounted display is used. The most natural way of navigating a 

virtual environment would be walking. But walking in a large virtual environment is 

practically impossible unless the user is in an equally large, walkable real environment 

(RE), i.e. a one-to-one mapping between real and virtual worlds. A promising solution for 

navigating large virtual spaces in a limited real space, such as a room, is Redirected 

Walking. 

Redirected Walking (RDW) uses so-called Redirection Techniques (RETs) to 

guide the walker away from obstacles in the real world. These techniques modify the 

mapping between VE and RE depending upon user movements in real-time. 

Hence, a point in a real environment can be mapped to just about any point in a virtual 

environment at a particular time. This makes the task of redirecting the user toward an 

object in the real environment that serves as a proxy for an object in the virtual 

environment a much more complex problem. This problem ultimately boils down to 

creating a dynamic map between selected real and virtual world points, i.e. an entire one-

to-one map between real and virtual environments is not needed. This dynamic map 

applies redirections not just to avoid obstacles but also to redirect the user such that 

whenever the user reaches for an object in the virtual world, he/she senses the proxy 

object in the real world. 
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CHAPTER I 
 

 

INTRODUCTION 

 

With the recent explosion of virtual reality research and development, and an increase in 

consumer-level, head-mounted displays (HMD) on the market, immersive virtual environments 

(VEs) are becoming more viable. These VEs are a way to give the user a feeling of presence in 

any world imaginable. The ultimate goal of any such immersive system is to simulate a 

completely believable environment that is reactive to all the human senses. Two key aspects to 

achieving an immersive user experience are the ability to navigate through and to touch objects in 

the VE.  

 

NAVIGATION 

Early methods of navigating a VE included joysticks, keyboard & mouse, etc. These methods 

allowed users to navigate endless virtual spaces while staying put in their real environment (RE). 

However, these had the drawback of creating limited immersiveness in such systems. More recent 

methods have adopted head-mounted, stereoscopic displays and body tracking so that the user 

movements are utilized to manipulate what they see accordingly. While body tracking improves 

the illusion of virtual presence, it makes navigation a challenging task because of two main 

reasons: The first is keeping constant track of the user’s movements through the RE, and the  
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second is when there is a significant difference between the sizes of the VE and the RE.  

Whenever the RE is larger than or the same size as the VE, a one-to-one map can be created from 

the VE to the RE; i.e. every point in the VE corresponds to a unique point in the RE.  

However, if the VE is larger than the RE, then a problem arises; it will be unavoidable that some 

points in the VE map to a single point in the RE; this is an example of the pigeonhole principle. 

To address this problem, techniques such as teleportation to a different location in the VE can be 

adopted. While these methods allow the user to navigate a seemingly endless VE, walking is still 

the most natural way of navigating, and is a perfect haptic sensation for traversing the VE. 

Research suggests the use of redirected walking (RDW) to allow the user to navigate a VE that is 

much larger than an RE [1]. 

Current HMDs (e.g., the HTC Vive) prevent the user from seeing the RE. A person trying to walk 

a straight line blindfolded typically ends up traversing a curved path, because he/she is unable to 

judge his/her direction [2]. HMDs present the user with a virtual environment, and – like a 

blindfold – prevent the user from seeing the RE.  RDW takes advantage of this inability of the 

user to perceive the RE. Since the user is completely relying on the VE projected in the HMD to 

navigate, it is possible to influence his/her walking direction by gradually manipulating the 

projected orientation of the VE, in real-time. If these reorientations are too small to be noticed by 

the human consciousness, they help preserve a sense of immersiveness. But as we shall see later, 

one drawback is that RDW induces a non-deterministic, dynamic mapping from the VE to the 

RE. 

Nescher, Huang, and Kunz [3] propose a state-of-the-art algorithm to modify RDW as an 

optimization problem to better preserve immersiveness. Their algorithm introduces a so-called 

planning framework to take into account all the user’s possible future paths and calculate the best 

redirection that can be applied.  
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TOUCH  

Passive haptics are an easy way to provide a sense of touch for static objects in a VE [4] by using 

objects in the RE as proxies for the virtual objects; i.e. when the user reaches out to touch an 

object in the VE, they actually are reaching out to touch an object in the RE. To create a precise 

sense of touch for an object in the VE, the physical object needs to overlap perfectly with it. 

Hence, a precise map is needed from the VE to the RE for this object. 

 

COMBINED APPROACH 

Navigation through walking used in conjunction with passive haptics is easy to achieve when the 

RE has a greater or equal area as compared to the VE, as a proxy object can be placed in the RE 

to represent an object in the VE according to a one-to-one mapping from the VE to the RE. But if 

the area of the VE is greater than that of the RE, using RDW to allow the user to navigate the VE 

induces non-determinism in the mapping, which contradicts one of the requirements for precise, 

passive haptics, i.e. a precise mapping between the real and virtual worlds. This research 

addresses the non-determinism with a method to preserve maps from objects in the VE to their 

proxies in the RE; for the purposes of this work, it is assumed that there is one virtual object that 

needs to be mapped to a proxy object to provide passive haptic feedback.  

Using the algorithm of Nescher, Huang, and Kunz, it is possible to keep track of the user’s 

potential future paths. This can be used to redirect and position the user at the right place for 

meaningful haptic feedback. This method is implemented by keeping track of offsets, as 

described in Chapter III.  
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CHAPTER II 
 

 

LITERATURE SURVEY 

 

Research suggests that real walking is the best way to navigate in a VE because it provides 

vestibular and proprioceptive feedback to the user [5]. Razzaque initially proposed RDW and 

described the basic steering techniques, also known as redirection techniques (RETs) [1]. 

Typically, to allow a person to walk in an immersive, virtual world, his/her movement is tracked 

and his/her virtual avatar is modified accordingly. The idea of RDW is to add additional 

movements, also known as gains to the avatar such that the user is unable to perceive them; these 

additional movements steer him/her away from obstacles. Razzaque implemented this original 

idea using rotational RET, i.e. the original rotations (turns) made by the user were scaled to keep 

user within a tracked space. This idea was developed further by Williams [6], who introduced 

transitional RET, which scales the user’s linear movement. These transitional gains allowed the 

user to travel a much lesser/greater distance as compared to the actual distance traversed in the 

VE. 

In any RET, it is important to predict the user’s next possible path accurately so that an 

appropriate amount of redirection can be applied. Otherwise, a false redirection may occur and 

lead the user to collide with an obstruction instead of avoiding it. Interrante [7] proposed a hybrid 

approach to predict robustly the user’s future path; this approach takes into account the user’s 

gaze direction and his/her previous path over a particular time frame. 
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Though the user is redirected constantly away from obstacles, it is possible to reach a point where 

there is an unavoidable collision in the course. To address these situations, Williams suggested 

“reset” techniques, which reorient the user towards a particular steer point [8]. These reset 

techniques prompt the user to stop walking and reorient himself/herself in his/her current 

location, usually by turning around. These reset techniques were improved further by Peck [9] as 

distractors. A distractor attracts the user’s attention such that the user turns around, which then 

are used to add additional rotations (rotational RET). 

A taxonomy of available RETs was provided by Steinickle et al. [10] defining rotation, curvature, 

and translation gains. 

A gain is the quotient of the amount of movement made by the user in the RE and the 

corresponding movement applied in the VE. It is important to understand the types of gains 

available to get a clear idea about it.  

A rotation gain, is the fraction of VE rotation compared to its corresponding RE rotation. 

Figure 2.1: Rotational Gain 

For example, consider a user whose initial, forward direction in the VE and the RE are given by 

VEi and REi, respectively, as shown in Figure 2.1. Now, assume the user turns an angle of 𝑅𝑟𝑒𝑎𝑙  

(represented by solid arc) and his/her forward direction is modified to REf in the RE. The angle of 
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the corresponding turn made by the user in the VE is 𝑅𝑣𝑖𝑟𝑡𝑢𝑎𝑙  (represented by dashed arc) and 

his/her forward direction is modified to VEf.  The rotational gain 𝜌𝑞 is  

 𝜌𝑞 =  𝑅𝑣𝑖𝑟𝑡𝑢𝑎𝑙/𝑅𝑟𝑒𝑎𝑙. (2.1) 

Similarly, a translation gain is the fraction of the VE translation compared to its corresponding 

RE translation. 

 

Figure 2.2: Translational Gain 

As shown in Figure 2.2, consider a user’s translation from REi to REf, which are 𝑇𝑟𝑒𝑎𝑙  units apart 

in the RE and the corresponding translation from VEi to VEf, which are 𝑇𝑣𝑖𝑟𝑡𝑢𝑎𝑙  units apart in the 

VE. The translation gain 𝜌𝑡 is the quotient of 𝑇𝑣𝑖𝑟𝑡𝑢𝑎𝑙  and 𝑇𝑟𝑒𝑎𝑙  [10] i.e.,  

 𝜌𝑡 =  𝑇𝑣𝑖𝑟𝑡𝑢𝑎𝑙/𝑇𝑟𝑒𝑎𝑙 . (2.2) 

A curvature gain is a special case, applied when the user is moving straight without any rotations. 

Steinickle et al. state that “if the injected manipulations are reasonably small, the user will 

unknowingly compensate for these offsets resulting in walking a curve”. A curvature gain implies 

the bend in the real path. The curve is determined by a circular arc of radius 𝑟. The curvature gain 

𝜌𝑐 is defined as [10] 

 𝜌𝑐 =  1/𝑟. (2.3) 
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Curvature and rotational RETs are closely related, as both modify the rotation of the user. At each 

time-step it is possible to apply either one of them. The one to apply is decided simply by 

selecting the maximum between them [1, 3], as the goal is to induce the maximum amount of 

redirection. 

Hence, additional rotation added per time-step is given by [3]  

 ∆̂ = 𝑚𝑎𝑥 {
𝑣𝑅𝜌𝑐∆𝑡
𝜔𝑅𝜌𝑞∆𝑡 , (2.4) 

where  

∆̂ is the angle added per time-step,  

𝑣𝑅 is the tangential velocity of the user in the RE,  

𝜔𝑅 is the angular velocity of the user in the RE,  

𝜌𝑐 and 𝜌𝑞 are the curvature and rotation gain given in equations 1, 3, and  

∆𝑡 is the frame rate. 

An RET is applied only as long as it is unperceivable by the user; this implies that there is a limit 

to the degree of redirection that can be applied while preserving immersiveness. These limits of 

applicable redirection were also estimated by Steinickle et al. [10, 11]. 

Once the RETs are defined and their limits are established, proper methodologies have to be 

developed to apply RETs; these methodologies are called steering or redirection algorithms. 

These algorithms typically assume that the tracked space is void of obstacles, except for the walls 

surrounding the tracked space. 

The steer-to-center algorithm (S2C) [12] is one such methodology that applies RETs so that the 

user always is redirected towards the center of the tracked space, as the probability of collision 
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over the next movement is least at the center. Three other algorithms, including steer-to-circle 

(which is a general improvement of S2C), are discussed by Hodgson [13]. In steer-to-circle, the 

redirection is made to keep the user in a circular path around the center of the tracked space. 

Zmuda et al. introduced their FORCE algorithm, which uses probabilistic planning and terminal 

state evaluation to apply redirection [14]. 

The MPCRed algorithm proposed by Nescher et al. [3] implements the steering problem as an 

optimization problem. Here, the user’s future path is examined to find the minimal set of 

applicable RETs along this path that will result in the smallest possible redirection. This smallest 

possible redirection is evaluated by assigning costs to each of the RETs. The costs are assigned 

based on the priorities of the RETs; for example, a reset RET might be assigned a cost of 500, 

whereas a rotational RET might be assigned a cost of 5; clearly, this states that a reset needs to be 

avoided much more than a rotation. The map of a VE is represented as a graph, where nodes 

represent junctions and branches represent corridors in the space. At each point, the user’s 

possible future paths are calculated using this graph and appropriate redirection is applied. 

In order to predict the user’s possible future position when a rotational RET is applied, Nescher et 

al. developed an arc-length, parametrized equation with parameter 𝑠, which is   

 𝛾𝑅(𝑠) =  
1

𝜅𝑅
[𝑠𝑖𝑛(𝛩𝑅0 + 𝜅𝑅𝑠)−𝑠𝑖𝑛 (𝛩𝑅0)

𝑐𝑜𝑠(𝛩𝑅0)−𝑐𝑜𝑠(𝛩𝑅0 + 𝜅𝑅𝑠)
] + 𝑝𝑅0 , (2.5) 

where  

𝑠  [0, length of the curve],  

𝜅𝑅  is a gain parameter, which depends on rotation and curvature gains to be applied,  

𝛩 denotes the orientation of the user, and 

𝑝𝑅0 is the initial position. 



9 
 

The time dynamic system given by Nescher et al. [3] is defined as  

 𝑥𝑘+1  =  𝑓𝑘(𝑥𝑘, 𝑢𝑘, 𝑤𝑘) , (2.6) 

where x𝑘 is a set of user’s current properties including position orientation angular velocity etc. 

and u𝑘 is the applied RET and w𝑘 is the noise/uncertainty of the system. 

As stated earlier, each of the RETs is defined by a cost. These costs help determine the best 

possible applicable redirections at each stage to get the best possible result. A sum of all the 

redirections (𝐺) applied along a path is calculated as  

 𝐺 = 𝑔𝑁(𝑥𝑘) + ∑ 𝑔𝑘(𝑥𝑘, 𝑢𝑘, 𝑤𝑘)𝑁−1
𝑘=0  , (2.7) 

where 𝑔𝑘(𝑥𝑘, 𝑢𝑘, 𝑤𝑘) is the cost at stage 𝑘. 

The goal here is to minimize G to get the minimum cost along that path. Hence, the dynamic 

programming algorithm is given as  

 𝐽𝑘(x𝑘) =  𝑚𝑖𝑛𝑢∈𝑈𝑘
𝔼𝑤𝑘

[g𝑘(x𝑘, u𝑘 , w𝑘)  +  𝐽𝑘+1(x𝑘+1)]  (2.8) 

Where J(x) denotes the optimal cost at stage x. This time dynamic system is used to minimize the 

cost at over the next k steps. 

Kohli et al. state that a compulsive, one-to-one mapping is not a necessity for passive haptics 

[15]. They simplify the problem of providing haptic feedback during RDW by assuming that 

there is only one object in the VE. It also is assumed that the RE contains a single object, which 

serves as a proxy for the object in the VE. They further simplified the problem by assuming that 

the user’s path toward the object includes a turn point; This makes it easy to align the virtual 

object with its physical counterpart. In a way, their assumptions lead to a highly simplified 

version of the problem being addressed in this research. Haptic Retargeting, developed by 

Azmandian et al. at Microsoft Labs [16], provides three methods to align objects in the virtual 
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and the real environments. These approaches are similar to RDW as described by Razzaque, but 

here the redirection is applied in the user’s hand movements, when he/she tries to reach for an 

object in the VE. These redirections then are used to provide haptic feedback that maps multiple, 

virtual objects to a single, real object. 

 A mapping from a larger VE onto a smaller RE can be defined such that it provides a 

“proper folding of large virtual scenes into smaller real scenes” as shown by Sun et al. [17]. They 

propose a planar mapping between the VE and the RE floor maps. Their method bends the VE 

floor map to fit inside the given RE floor map, such that the angular and distal distortions are 

minimized during mapping of these maps. 
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CHAPTER III 
 

 

METHODOLOGY 

 

Redirected walking (RDW) works by using redirection techniques (RETs). The main aim of 

redirection is to permit a user to move about in a limited real environment (RE) while it appears 

to the user that they are exploring a larger virtual environment (VE). A redirection technique must 

induce an adequate amount of angular and distal distortion to realize this illusion and keep them 

within the bounds of the RE.  

BASIC MODEL 

Assume a VE that is comprised of a maze containing an object. Also assume that this VE is 

navigated in a smaller RE by means of RDW with the model predictive control redirection 

(MPCRed) algorithm, which has been modified in this research. The user is represented by an 

avatar, and the object located in the VE is at a certain distance from the avatar. The user’s main 

task is to navigate the VE to the object and try to touch it. This requires that the user to be able to 

walk around freely in the VE even though the RE has a smaller area, and when the user touches 

the virtual object, he/she actually must touch the proxy object in the RE.  

The mismatch between the sizes of the VE and the RE is addressed by RDW with the MPCRed 

algorithm. But to enable passive haptics, placing the proxy object in the RE is a difficult task,  
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because there is no fixed map that can define the user’s position in the RE compared to his/her 

position in the VE during run-time when RDW is used. The proposed method uses MPCRed for 

RDW in an attempt to minimize the total degree of redirections and the deviation between the 

locations of the virtual object and the proxy object.  

PROPOSED METHOD 

Consider the object in the VE and its corresponding proxy object in the RE as described above. 

The user follows a virtual path to this object in the VE, which includes a few turns and a few 

nearly-straight translations. 

 

Figure 3.1: Layout of the VE 

Figure 3.1 shows the VE: the red outline shows the boundary of the VE, and the football with red 

outline denotes the virtual object. It also shows a virtual path the user might take to get to the 

object in the VE; this is denoted by the black stroke. 

Figure 3.2 shows the corresponding RE: the green outline represents the boundary of the RE, and 

the football outlined in green is the proxy object in the RE. Similar to figure 3.1, the real path 

followed by the user in the RE is denoted by the black stroke. These two figures also show how 
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the user’s perceived path in the VE differs from the actual path he/she takes in the RE. The reason 

the virtual and real paths differ is because of the RETs applied as the user moves. 

 

Figure 3.2: Layout of the Corresponding RE 

These RETs are the result of the modified MPCRed algorithm, which addresses the mismatch in 

alignment of virtual object and its proxy, and tries to align their positions as the user get closer to 

the virtual object. For example, the initial alignment of the VE and the RE from figures 3.1 and 

3.2 is shown in figure 3.3. 

 

Figure 3.3: Example Initial Alignment of the VE with Respect to the Corresponding RE 
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Clearly the objects are not aligned and are a certain distance apart from each other. At the end of 

the traversal, the VE and the RE should be aligned as shown in figure 3.4. If no redirection is 

applied, the object in the VE and its proxy object in the RE will not be aligned when user reaches 

the virtual object. And the same holds if MPCRed is applied to minimize redirection. The 

modified MPCRed algorithm must address this and align the objects using the same redirection 

techniques. 

 

Figure 3.4: Expected final alignment of the VE with respect to the RE 

Consider a rectangular-plane as the VE, as shown in Figure 3.1. Assume that this plane has its 

own coordinate system centered at its mid-point, with the positive x-axis extending to the right, 

the positive z-axis extending upward, and the positive y-axis extending toward the viewer. This 

coordinate system is considered to be the frame of reference (FoR) of the VE. 

Consider another rectangular-plane as the RE, as shown in Figure 3.2. The mid-point of this 

rectangular-plane is considered to be the center of the RE. This plane also has its own coordinate 

system similar to the one above, and this coordinate system is considered to be the FoR of the RE. 
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When a head-mounted display is used to navigate the VE, the RE overlaps with the VE. In this 

overlap, the orientation of the RE with respect to that of the VE can be determined by comparing 

the coordinate system of the RE in the FoR of the VE, and vice versa. 

RDW modifies the orientation of the VE with respect to the RE. However, the modifications are 

made only to the x-axis and z-axis translations, and the y-axis rotations. This is because of the 

fact that both the VE and the RE are assumed to be horizontal, flat, and coplanar surfaces. Hence, 

the y-coordinate of the VE remains constant, as do the x-axis and z-axis rotations of the VE. 

Since these values are constant, it is reasonable to exclude them from the calculations given 

below. So, for example, the center of the VE within the FoR of the RE is represented as (𝑥, 𝑧) 

instead of (𝑥, 𝑦, 𝑧), because 𝑦 does not change at any stage of navigation. 

Assume that the object in the VE initially is centered at (𝑥𝑣 , 𝑧𝑣) and its proxy object is centered at 

(𝑥𝑟 , 𝑧𝑟), both in the FoR of the VE. Similarly, assume the object in the VE has a rotation 𝜃𝑦𝑣 and 

its proxy object has a rotation 𝜃𝑦𝑟, both in the FoR of the VE. When RDW is applied, (𝑥𝑣 , 𝑧𝑣) 

and 𝜃𝑦𝑣  are constant since they do not change in the VE; but (𝑥𝑟 , 𝑧𝑟) and 𝜃𝑦𝑟 change 

continuously and dynamically as the user moves. So, the translational offset between the virtual 

object and its proxy in the FoR of the VE is given by  

 𝑂𝑡 =  √(𝑥𝑟 − 𝑥𝑣)2 +  (𝑧𝑟 − 𝑧𝑣)2, (3.1) 

and the rotational offset is given by  

 𝑂𝑟 = |𝜃𝑦𝑟 − 𝜃𝑦𝑣|. (3.2) 

For objects that have line symmetry about an axis that passes through their midpoint, such as a 

torus lying on the x-z-plane with the y-axis passing through the hole in its middle, the rotational 

offset always can be viewed as zero. This is because there is no difference in the shape of the 
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object no matter how it is rotated about that axis. This research focuses on objects with line 

symmetry along the y-axis, so the rotational offset need not be considered. 

If the path the user takes from his/her initial position to the object in the VE consists of n straight-

line walks and 𝑛 − 1 turns, the offsets must be distributed among the redirections applied during 

these 2𝑛 − 1 transitions, so that when the user reaches the end of the final transition, 𝑂𝑡 is equal 

to 0 and 𝑂𝑟 is equal to 0; i.e., the position and orientation of the object in the VE is equal to the 

position and orientation of its proxy. 

Hence, the problem becomes one of keeping track of the user’s path in the VE and adjusting it 

with respect to the FoR of the RE such that he/she is at the desired position in the RE at the end of 

the path. A set of redirections to apply along the VE path has to be selected from all possible 

redirections in order to minimize the offset between the end points of the paths in the RE and VE. 

This is similar to the time dynamic model, i.e., the MPCRed algorithm defined by Nescher, 

Huang, and Kunz [3]. Their model works to minimize redirections by minimizing the overall cost 

for redirections along any path. This algorithm is modified in this research to also minimize the 

overall offset at the end of user’s path, thus overlapping the virtual and proxy objects to the best 

extent possible. 

The original MPCRed Algorithm deals with minimizing redirection for any path traversed by the 

user. In this research however, the user is assumed to walk towards a virtual object; this research 

also assumes that user will be able to touch and feel the virtual object by means of a real proxy 

object. The costs proposed in the original MPCRed algorithm are inadequate to accommodate 

these changes because the mapping of the objects in real time require a continuous cost. 

For example, consider the scenario shown in figure 3.5. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.5: Example of how preferability of RETs differ during runtime 

In the case shown in figure 3.5(a), the user has a straight path to the virtual object, which is at 

some distance from the user in the VE. In the RE, the proxy object is also the same distance from 

the user along a straight-line path. But the difference is, the user’s forward direction in the VE is 

at a 35° angle from the straight-line path to the proxy object in the RE. As described in Chapter 2, 

reset RETs are defined at 30° increments, e.g., a 30° reset RET, a 60° reset RET, and so on. 
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Therefore, a 30° clockwise (CW) reset RET would minimize the offset as compared to a 60° or 

greater CW reset RET. 

But, if the objects were aligned at a 50° difference, as shown in figure 3.5(c), a 60° reset RET 

would be the most desirable choice because it would minimize the offset between the object in 

the VE and its proxy in the RE, as compared to other reset RETs, as shown in figure 3.5(d). This 

shows that the choice of RET changes dynamically depending on the offsets. So, the costs 

associated with different RETs must change dynamically, depending on the current offset as the 

user moves. And these costs should aptly represent the likelihood that a given RET will be 

chosen. 

To resolve this, a new dynamic cost is introduced. The dynamic cost is calculated based on the 

original costs from the MPCRed Algorithm, which present a measure of redirection, and a new 

continuous cost introduced in this research, which presents the measure of overlap between the 

virtual object and its proxy. These two costs are weighted based on the distance between the user 

and the virtual object; a final dynamic cost is calculated as a sum of the two weighted costs. The 

weight of the original MPCRed costs is increased and the weight of the new continuous cost is 

decreased as the distance between the user and the virtual object increases, and vice-versa; i.e., 

when user is closer to the virtual object, the default costs of RETs mentioned from the original 

MPCRed algorithm are assigned lower importance than the continuous cost, as the goal is to 

achieve offsets of zero. 

CALCULATION OF DYNAMIC COST 

For an RET 𝑅, the dynamic cost of that RET, 𝐷𝐶(𝑅) is calculated based on the cost of that RET 

from the original MPCRed algorithm, 𝐶𝑟(𝑅) and the continuous cost that denotes how much that 

RET minimizes the offsets is 𝐶𝑜(𝑅). 

Let the cost of the RET from the original MPCRed algorithm be 𝑘. Then  
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 𝐶𝑟(𝑅) = 𝑘. (3.3) 

For minimizing offsets, the costs associated with an RET vary depending upon how much it 

minimizes the offset. The lower the offset caused by the RET, lower its cost must be. Therefore, 

the cost is directly proportional to 𝑂𝑡. Since we assume the virtual object and its proxy to be line 

symmetrical about y-axis passing through their midpoint, 𝑂𝑟 is always 0 and can be ignored. 

Thus, the continuous cost can be calculated as  

 𝐶𝑜(𝑅)  𝑂𝑡 (3.4) 

or 

 𝐶𝑜(𝑅)  =  𝑃 ×  𝑂𝑡, (3.5) 

where 𝑃 is a large constant cost. Varying the value of 𝑃 can help control the final cost for offset-

minimizing redirections, which helps to control the distance at which the minimizing redirection 

is given more importance over minimizing offsets. An example of this is explained later. 

Each RET has only one cost, which encompasses both of the above characteristics to a degree 

that depends upon the distance between the user and the virtual object, as mentioned before. A 

costing function can be defined that gradually slides from one minimization factor to other 

depending upon distance, so that the redirections are more well-distributed. The influence of 𝐶𝑟 

and 𝐶𝑜 on final cost depends upon the distance from the user to the virtual object, 𝑑. Hence 𝑑 is 

used as a weighting factor. 

𝐶𝑜(𝑅) is inversely proportional to 𝑑 i.e., 

 𝐶𝑜(R) 1
𝑑⁄  (3.6) 

or 
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 𝐶𝑜(𝑅)  =  𝑃 ×  𝑂𝑡  ×  1 (𝑑 + 1)⁄ . (3.7) 

Equation 3.7 implies that 1/(𝑑 + 1) part of the final cost of an RET is the cost of minimizing 

offsets, and the rest (1 − 1/(𝑑 + 1)) is the cost of minimizing redirection. This assumes that 

adding 1 does not make much difference because the size of the VE is extremely large compared 

to 1 unit, but it keeps the cost from being negative when distance is less than 1. 

Therefore, the part of 𝐶𝑟(𝑅) that is included in the dynamic cost is given by 

 𝐶𝑟
′(𝑅)  =  𝑘 ∗  (1 − 1

(𝑑 + 1)⁄ ) (3.8) 

Hence, the total dynamic cost, DC(R) is given by, 

 𝐷𝐶(𝑅) =  𝐶𝑟
′(𝑅) + 𝐶𝑜(𝑅) (3.9) 

or 

 𝐷𝐶(𝑅) =  𝑘 ∗  (1 − 1
(𝑑 + 1)⁄ ) +  𝑃 ×  𝑂𝑡  ×  1 (𝑑 + 1)⁄ . (3.10) 

The curvature of cost function can be controlled by exponentiation of 𝑑. So, the final cost 

function is 

 𝐷𝐶′(𝑅, 𝑧) =  𝑘 ∗  (1 − 1
(𝑑𝑧 + 1)⁄ ) +  𝑃 ×  𝑂𝑡  ×  1 (𝑑𝑧 + 1)⁄ , (3.11) 

where 𝑧 controls the curvature of the cost function. Some examples of how 𝑧 controls the cost 

functions are shown in graph 3.1. Here the following assumptions are made: 𝑘 is 5, 𝑃 is 100, and 

𝑂𝑡 is 15. 

As the graphs show the rate of change of cost is influenced by 𝑧. 
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𝑧 = 1 

𝑧 = 0.5 

𝑧 = 2.0 

Graph 3.1: Cost of RET for varying 𝒛 and constant 𝒌, 𝑷 and 𝑶𝒕 

If an RET overlaps the virtual and real objects perfectly at the end of the path, i.e., if 𝑂𝑡 = 0, 

when 𝑑 = 0 then the RET has zero cost. But if the RET does not overlap the objects perfectly, the 

cost increases as 𝑑 decreases. And as 𝑑 increases, the costs from the original MPCRed algorithm 

are given more priority, hence the cost approaches the constant value 𝑘. 

Graph 3.2 shows how cost varies with 𝑂𝑡. Here the following assumptions are made: 𝑧 is 2, 𝑘 is 

5, and 𝑃 is 100. As 𝑑 decreases the RET must reduce 𝑂𝑡. If it does not, cost of the RET must 

increase. Graph 3.2 shows the dynamic cost function returns cost as expected. 
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𝑂𝑡 = 3 

𝑂𝑡 = 0 

𝑂𝑡 = 10 

Graph 3.2: Cost of RET for varying 𝑶𝒕 and constant 𝒛, 𝒌, 𝒂𝒏𝒅 𝑷 

As mentioned before, 𝑃 controls the distance at which the minimizing redirection is given more 

importance as compared to the minimizing offsets. Graph 3.3 shows how the dynamic cost 

function return costs with varying P and constant 𝑂𝑡, 𝑧, and 𝑘. Here assumptions are made as 

following: 𝑧 is 2, k is 5, and 𝑂𝑡 is 10. 

 

 

 

 

(𝐷
𝐶

′ (𝑅
,𝑧

))
 



23 
 

 

 

 

 

𝑃 = 100 

𝑃 = 50 

𝑃 = 500 

Graph 3.3: Cost of RET for varying 𝑷 and constant 𝒛, 𝒌, 𝒂𝒏𝒅 𝑶𝒕 

Graph 3.4 shows the costs returned by the cost function for three different RETs and breaks down 

the priorities in which these RETs are selected. In graph 3.4 following assumptions are made: 𝑧 is 

0.4, 𝑃 is 100. The type of RET, 𝑘, and 𝑂𝑡 for the three different RETs is as following: 

• RET A – Curvature RET, 𝑘 = 5, 𝑂𝑡 = 15 

• RET B – Reset RET, 𝑘 = 500, 𝑂𝑡 = 0 

• RET C – Rotational RET, 𝑘 = 10, 𝑂𝑡 = 15 
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RET B 

RET A 

RET C 

Graph 3.4: Cost of different RETs returned by the dynamic cost function 

The graph shows how different RETs are selected during run time, depending upon distance to 

the object. When the distance between the user and the object is below 33 units, the reset RET 

has priority over curvature or rotational RETs. Since the total cost for the complete path is 

considered before selecting an RET for a segment of path, the gradual decrease of the costs is 

necessary instead of just finding the point where preference of RETs changes. Such an instance 

would be the point (33,376) in graph 3.4. 

Clearly, depending upon the current distance to object 𝑑 and 𝑂𝑡, the modified MPCRed algorithm 

may return different set of RETs for the same path. This is because minimizing offsets may 

sometimes lead to a greater amount of redirection than the minimizing-redirection technique in 

the original MPCRed algorithm. 
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For example, consider an VE that is much smaller than the available RE, as shown in figure 3.6. 

The RE can accommodate the entire VE, but the virtual object and its proxy are misaligned. 

 

Figure 3.6: The RE can accommodate the entire VE, but the virtual object and its proxy are 

misaligned. 

Since the RE can fit all of the VE, redirecting the user to avoid running into the walls is not 

necessary (zero redirection). However, if the virtual object and its corresponding real object are 

not aligned, redirection must be made to align the objects (i.e., a non-zero redirection) as shown 

in figure 3.7. Hence, minimizing offsets yields a greater redirection.  
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Figure 3.7: Redirection applied when the RE is large enough to accommodate the VE. 

COMPARISON WITH PREVIOUS METHODS 

The MPCRed algorithm by Nescher et al. [3]is a simplified case of the new Dynamic Cost 

MPCRed algorithm developed in this research. If there is no object in the VE which needs 

passive haptics, the distance to object 𝑑 is infinity. The redirection cost function returns the 

default RET cost (that is, the one from the original MPCRed algorithm) in that case.  I.e., in 

equation 3.11 as 𝑑 →  ∞, 

 𝐷𝐶′(𝑅, 𝑧) →  𝑘 ∗  (1 − 0) +  𝑃 × 𝑂𝑡  ×  0 = 𝑘 = 𝐶𝑟(𝑅) (3.12) 

Hence, the proposed method, while encompassing the existing algorithm, provides a way to allow 

passive haptics for an object in VE. This also can be used to steer the user toward a specific point 

in the RE, like the S2C algorithm [13], which steers the user towards the center of the RE. 
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CHAPTER IV 
 

 

IMPLEMENTATION AND RESULTS 

 

Both the VE and RE were developed using Unity3D [18] on an iMac with a 3.2Ghz Intel Core i5 

processor, 16GB RAM, and NVIDIA GeForce GTX 675MX GPU. Two flat surface were defined 

to act as a real world and a virtual world. Two distinct characters also have been defined, which 

act  as the human player and his/her virtual-world avatar. The movement of the real player is 

controlled by means of keyboard and mouse, whereas the movement of the avatar is derived from 

the real player. Even though the user controls the player character, the projected screen shows the 

avatar’s view as shown in figure 4.1, hence simulating a player walking in a virtual environment 

while wearing a head-mounted display. Each player is assigned a pair of eyes to keep track of 

user’s forward direction as shown in figure 4.2. Real Player is assigned a trail renderer [] to keep 

track of his path; this tail renderer highlights the path traversed by player. A rough approximated 

path of the virtual player is drawn in Adobe Photoshop [19] after each run; this is because the trail 

renderer does not modify the path drawn by it to match with the changing frame of reference of 

the VE, and the path of the Virtual Player in the VE is relatively simple compared to path of the 

real player.  
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Figure 4.1: Players View 

 

Figure 4.2: Avatar of Virtual Player(left) and Real Player(right) 

The map of the VE, designed by Nescher et al. [3], is shown in figure 4.3. It is comprised of a set 

of hallways and junctions. Each junction is stored as a node in a database, and each node is 

denoted by a golden sphere in the map. The VE is defined so that the trajectories could be pre-

defined [3] i.e. user can walk in the corridors defined but not in a free open world. The blue dot 

represents the avatar and his/her initial position.  
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Figure 4.3: Map of the VE 

Figure 4.4 shows the map of the RE. The red dot represents real player and the green cube 

represents the real object.  

 

Figure 4.4: Map of the RE 

 



30 
 

INITIALIZATIONS 

Curvature gain 𝜌𝑐 and rotational gain 𝜌𝑞, defined in Chapter 2 are initialized as following: 𝜌𝑐 is 

set to 
1

7.5
 and 𝜌𝑞 is set to (1 − 0.67) for rotations in the direction of head movement and (1 −

1.24) for rotations in the opposite direction [10]. The modified MPCRed algorithm is used to 

redirect the user. Value of 𝑃 is set to 100 and 𝑧 is set to 0.5. These values are determined by 

tuning for the desired behavior of the algorithm. i.e., the graph of redirection can be varied based 

upon the selected values of 𝑧, and 𝑃.  

EXECUTION 

The modified MPCRed algorithm calculates the new dynamic costs and returns the desirable RET 

whenever the user enters or leaves a node. (This could be done on a separate thread to improve 

performance, but Unity has limitations that do not allow multithreading.) When this algorithm is 

applied, the path of the user in the RE and the path he/she perceives in the virtual world are very 

different just like the regular RDW. This is shown if Figures 4.5 and 4.6. 

 

Figure 4.5: Users path in VE 
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Figure 4.6: Corresponding path in RE 

The red path indicates the player’s path in real world. The blue path is the path taken by avatar in 

the VE. The modified MPCRed algorithm applies RETs along the path. These RETs attempt to 

minimize the offsets when user gets close to the virtual object and are minimal when user is 

distant from the object, as described in Chapter 3. 

To test the operation of the modified MPCRed algorithm, a series of test cases are designed. In 

each test case, the player starts walking towards and away from the virtual object in the same VE 

defined by Nescher et al. [3], but the RE’s size is varied. The modified MPCRed algorithm is 

used to select the RETs applied along the player’s path. The distance between the player and the 

virtual object 𝑑, and the distance between the virtual object and its proxy 𝑂𝑡 help the algorithm to 

determine which RET to select, as described in Chapter 3. Both distances are collected over time 

and plotted on a graph to show how the modified algorithm behaves during the player’s traversal.  

The y-axis in the graph is the distance in Unity units and the x-axis is the time in seconds. The 

blue line represents the shortest distance between the user and the virtual object. The orange line 

represents the offset (i.e., the distance between the virtual object and its proxy). Each test case has 
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been modified for different size of RE, different placement of objects. The results obtained are 

described below. 

RESULTS 

To test the operation of the modified MPCRed algorithm, a series of test cases are designed.  

In the most ideal case, the RE is large enough to accommodate all of the VE, and the virtual and 

real objects are perfectly overlapping. In this case, there should be zero redirection. This is shown 

in figures 4.7(a) and 4.7(b). In the figures, the path of the avatar in the VE is the same as the 

player’s path in the RE. This makes sense, because the RE is larger than the VE, there is a one-to-

one map from the RE to the VE, and objects also align in this map. Hence, there is no need for a 

redirection and the offset should stay zero throughout the run. The data in graph 4.1 shows that 

there is zero redirection over all. 

 

Figure 4.7: (a) Path in the VE (Left) (b) Corresponding path in the RE(Right) where, scale 

of VE to RE is 1:1 in length and 1:1 in width, and objects are overlapping 
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Graph 4.1: Shows the distance between user and object, and 𝑶𝒕 for the test case shown in 

figure 4.7 

In the case of a larger RE and no overlap between the objects, as the player gets closer to the 

object in the VE, redirection is made to overlap the objects.  

 

Figure 4.8: (a) Path in the VE (Left) (b) Corresponding path in the RE(Right) where, scale 

of VE to RE is 13:20 in length and 12:18 in width, and objects are overlapping 
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After that, since the objects are overlapped and the RE can accommodate all the VE it becomes 

similar to the previous test case. Hence, there is zero redirection after that. Figure 4.8 shows the 

player’s path in the RE and the VE. It’s corresponding graph (4.2) shows that after 18 seconds 

(denoted by vertical green line) the objects overlap and zero redirection is applied there forth, 

hence 𝑂𝑡 does not change. 

 

Graph 4.2: Shows the distance between user and object, and 𝑶𝒕 for the test case shown in 

figure 4.8 

Figures 4.9, 4.10, 4.11 and 4.12 show the path of the player in the RE and in the VE for different 

sizes of RE. 
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Figure 4.9(a) Path in the VE (Left) (b) Corresponding path in the RE(Right) where, scale of 

VE to RE is 1:1 in length and 1:1 in width, and objects are not overlapping 

 

Graph 4.3: Shows the distance between user and object, and 𝑶𝒕 for the test case shown in 

figure 4.9 

In the above test case the VE and RE are of equal size. They overlap perfectly forming a one-to-

one mapping. But, similar to the previous test case the objects are not aligned. Hence, to overlap 
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the objects and allow the user to walk in the whole VE, the mapping changes continuously. As a 

result, the distance between the objects changes as well. The graph shows that as the distance 

between user and the virtual object increases, 𝑂𝑡 can increase or decrease. I.e., the RETs are not 

being applied to minimize 𝑂𝑡 but instead they are being applied to minimize redirection. And as 

the distance decreases, 𝑂𝑡 is strictly minimized to allow passive haptics. The bump in 𝑂𝑡 at 123rd 

second is because the player may have gone out on the RE if the particular RET was not applied 

even though it caused a raise in 𝑂𝑡 when user was near the object.  

 

Figure 4.10(a) Path in the VE (Left) (b) Corresponding path in the RE(Right) where, scale 

of VE to RE is 1:1 in length and 40:21 in width, and objects are overlapping 
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Graph 4.4: Shows the distance between user and object, and 𝑶𝒕 for the test case shown in 

figure 4.10  

 

Figure 4.11: (a) Path in the VE (Left) (b) Corresponding path in the VE(Right) where, scale 

of VE to RE is 13:6 horizontally and 12:5 vertically 
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Graph 4.5: Shows the distance between user and object, and 𝑶𝒕 for the test case shown in 

figure 4.11 

 

 

Figure 4.12: (a) Path in the VE (Left) (b) Corresponding path in the VE(Right) where, scale 

of VE to RE is 13:5 horizontally and 3:2 vertically 
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Graph 4.6: Shows the distance between user and object, and 𝑶𝒕 for the test case shown in 

figure 4.12 

In each of these test cases depicted in figures 4.9 – 4.12, the RE is smaller (lesser area) than the 

VE, and different in shape as well. The grid patters show how the scale differentiates. The objects 

in the virtual world and their proxies are placed at different locations.  

OBSERVATIONS 

As the graphs show, when player is distant from the object, the offsets are increasing or 

decreasing independent to player’s movements, as the modified MPCRed algorithm assigns low 

importance to minimizing offset. But, as the player gets close to the object, the offsets also 

decrease. This shows the modified MPCRed algorithm works as expected. But it was discovered 

that, as seen in graphs 4.3 and 4.4 the overlap is not always zero.  

This is because the redirections can only minimize the deviation of overlap between the object in 

the VE and its proxy within the constraints of the RETs. The minimization may not be zero, 

0

50

100

150

200

250

300

350

400

450

500

2 5 9 18 28 44 49 53 60 65 69 72 75 117 130 137 144 146 151 154 158 163 166 174

D
is

ta
n

ce
 (

U
n

it
y 

U
n

it
s)

Time (Seconds)

d Ot



40 
 

because all the redirection yields only a particular set of points where the overlap will be zero. 

This is the main drawback of this method. 

 An example of this is shown in the figure 4.13. In this example, only curvature RET and zero 

RET are assumed to be applied. For the path in VE shown in figure 4.13(a), using curvature and 

zero RETS, only a few paths can be created in the RE as shown in 4.13(b). The blue footballs 

show all the possible locations where if the proxy object is placed then 𝑂𝑡 will be zero. 

 

Figure 4.13: (a) Virtual Path (left) (b) Corresponding Possible Real Paths (right) showing 

𝑶𝒕 cannot always be zero 

Although using rotational and reset RETs may maximize the area where the proxy object can be 

placed for a zero offset, it is clear that there will be limitations even then. 

One other drawback of using this method is since, the goal is minimization of deviation of 

overlap, there can be cases where the deviation is more initially but may lead to lower offset 

overall. Such cases are discarded in this model. But, this is an advantage if it is used to redirect 

player to certain areas of interest. For example, the S2C Algorithm constantly redirects user 

towards the center of the available RE, and the MPCRed algorithm only applies redirection when 
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one is needed, unlike S2C; the proposed method gradually can slide from one behavior to another 

dynamically, as needed. But instead of center of the room, areas of interest in the RE can be 

defined. 

It also is clear that the more the RETs, the better the redirection can get and the lower the 

unreachable areas described above. In this research zero, curvature, reset and rotational RET’s are 

used. 
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CHAPTER V 
 

 

CONCLUSION 

 

In this research, the state of the art redirection algorithm, Model Predictive Control Redirection 

algorithm (MPCRed) has been modified to allow passive haptics along with redirected walking 

(RDW).  

RDW is used to traverse a large virtual environment (VE) in a much smaller real environment 

(RE). A redirection algorithm defines how RDW must work. However not all of the algorithms 

provide a way to allow passive haptics and that includes the MPCRed algorithm.  

Passive Haptics is the process of providing touch feedback to a user experiencing virtual reality. 

Placing proxy objects for the objects in the VE helps provide this feedback. Using RDW to 

traverse a VE creates nondeterminism in the mapping of VE to the RE; as a result, placing proxy 

objects in the RE to provide passive haptics for the objects in VE is a challenging task. In this 

research, this problem is addressed and solved by modifying the MPCRed Algorithm. 

The goal of MPCRed algorithm is to minimize redirection for any path the player takes using 

redirection techniques (RETs). For this, each redirection technique (RET) is assigned a cost. An 

overall cost of redirection for any path is calculated by adding up the costs of RETs applied along 

that path; by minimizing this cost, redirection is minimized in MPCRed algorithm. These costs 

have been modified in this research to allow passive haptics along with minimizing redirection. 
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Since the mapping from the VE to the RE changes during runtime, the modified costs are 

dynamic. These costs are based on how much each RET minimizes the translational offsets; same 

can be adapted for rotational offsets, which is beyond the scope of this work. When the dynamic 

costs are used, results show that the player is redirected closer to the proxy object when he/she 

reaches the virtual object. Results also show that the player is redirected less when the object in 

the VE is not close, and redirected to allow passive haptics as he/she gets closer.  

Thus, the proposed method while encompassing the existing MPCRed algorithm provides a way 

to allow passive haptics dynamically. 

Although the existing RETs provide a good map, it is not perfect as there is a limit on how much 

area the RETs can reach. Future work can include overcoming these limitations by creating new 

RETs.
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