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formally established biostratigraphic framework to date. Conodonts collected from four 

“Mississippian Limestone” cores in Logan, Payne, and Lincoln Counties provide the 

means for better constraining the stratigraphic age of the interval over the area studied. 

Conodont extraction was conducted by acid digestion of whole-rock samples and heavy 

liquid density separation after which conodont genera and species types were identified 

from scanning electron microscopy. Biostratigraphically significant conodonts recovered 

in combination with chemostratigraphic work by Dupont (2016) and earlier studies by 

Thornton (1958), Curtis and Chaplin (1959), McDuffie (1959), Rowland (1964), Selk and 
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CHAPTER I 
 

 

 

FRONT MATTER 
 
 
 

Definition of the Term “Mississippian Limestone” 

 

The term “Mississippian Limestone” informally describes the gross Mississippian 

stratigraphy of the U.S. Mid-Continent. In most cases, the informal name is applied by 

necessity in areas where the Mississippian interval lacks age-constraint, thereby 

preventing it from being more formally subdivided. For example, the Mississippian 

interval over north-central Oklahoma was determined to be Mississippian in age based on 

interpretative regional-scale well-to-well cross sections and geologic mapping that 

revealed its coeval relationship to surrounding age-constrained Mississippian strata (e.g., 

Selk and Ciriacks, 1969). Where the Mississippian interval is age-constrained, formalized 

time-stratigraphic and lithostratigraphic names are applied to it, such as in the Ozarks 

region (e.g., Mazzullo et al., 2013). In the petroleum industry, the informal name 

“Mississippian Limestone” has been important for establishing common terminology that 

identifies Mississippian oil and gas reservoirs which are difficult to correlate consistently 

and name properly based on their lithologic descriptions and log characters alone and that 

do not fit the industry’s other named Mississippian play concepts, such as the 

“Mississippian Chat”. The industry’s usage of the term “Mississippian Limestone” has 
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also been important for defining the extents of the unconventional “Mississippian 

Limestone” Play.  

In general, “Mississippian Limestone” strata consist of cyclically stacked 

carbonate-siliciclastic units that have wedge-like depositional geometries (e.g., Mazzullo 

et al., 2009; LeBlanc, 2014; Jaeckel, 2016) and were deposited on a broad carbonate shelf 

to ramp environment across major regions of Oklahoma, Kansas, and Texas as well as 

parts of Arkansas and New Mexico (Gutschick and Sandberg, 1983). Unconventional 

petroleum reservoir facies of the Mississippian interval in south-central Kansas and 

north-central Oklahoma have been shown to have 2-3% average porosity and 0.080 mD 

average permeability (LeBlanc, 2014; Jaeckel, 2016). In addition, stratigraphic 

relationships have been shown to be very complex (e.g., Boardman et al., 2010; 2013), 

and they remain poorly constrained throughout much of Kansas and Oklahoma (Mazzullo 

et al., 2016). Therefore, new evidence that better constrains the geologic age of the 

Mississippian interval in areas where it is needed is crucial for more accurately 

correlating and naming its lithologic units and for identifying any major time-

stratigraphic patterns in its distribution of oil and gas reservoir facies.  

 

 

  

Recent Developments in the "Mississippian Limestone" Play 
 

Within the last decade, significant advances in horizontal drilling and hydraulic 

fracturing techniques have made producing oil and gas from unconventional reservoirs 

financially competitive in the global energy market (Perry, 2014; U.S. Energy 

Information Administration, 2016). The “Mississippian Limestone” Play is just one 

example of many where new technology revitalized production in conventionally 
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depleted reservoirs and newly recognized tight reservoir complexes of the Mississippian 

(Charpentier et al., 1996; Shale Daily, 2015) (Figure 1).  

Activity in the “Mississippian Limestone” Play began in 2007 when SandRidge 

Energy drilled its first Mississippian horizontal well in Woods County, Oklahoma (Shale 

Daily, 2015). The main area of renewed interest in Mississippian age reservoirs has been 

in south-central Kansas and north-central Oklahoma where conventional production was 

historically centered (Harris, 1975). Oil and gas companies’ central motives for acquiring 

“Mississippian Limestone” assets have been that (1) drilling costs are relatively low, with 

the average well costing around $3 million (as of 2015) because of the shallow nature of 

the play (Shale Daily, 2015); and (2) extensive well data in and published literature on 

the Mississippian interval exists from over 50 years of industry drilling and academic 

study that has helped to quickly develop reservoir models and identify drilling targets.  

To date, attempts to unconventionally produce the “Mississippian Limestone” 

have been significant, but the play itself has generally proven to be less prolific, more 

complicated, and much higher risk than the industry anticipated (Shale Daily, 2015). The 

central problems associated with “Mississippian Limestone” reservoir complexes are that 

(1) they frequently exhibit a high degree of lateral and vertical facies heterogeneity, 

making successfully tracking reservoirs in lateral drilling operations very difficult and (2) 

Mississippian wells tend to produce large volumes of formation water (e.g., a 1:10 oil-

water cut in a single well is typical and a 1:50 oil-water cut is not unusual) (Shale Daily, 

2015; Ray, 2016), which is expensive for companies to either treat or inject back into the 

subsurface. More recently, injection of formation water into the deep subsurface has 

become a publicly controversial topic because of its link to induced seismicity (Andrews 



4 
 

and Holland, 2015). In combination with low oil prices persisting well into 2017 since 

their sharp decline at the end of 2014 (McMahon, 2015) these factors have made it 

difficult to profit from the play, and so the petroleum industry has largely turned away 

from their “Mississippian Limestone” assets within the last few years. Devon Energy, for 

example, divested its Mississippian assets in Logan and Payne Counties, Oklahoma in 

2016 (Monies, 2016). 

 

Update on Mississippian Consortium Studies 

 

Despite its challenges, several oil and gas companies have looked to make the 

“Mississippian Limestone” Play work for them by turning to consortium research. For 

example, in November 2012 thirteen companies teamed up with researchers at Oklahoma 

State University (OSU) to form the Industry-OSU Mississippian Consortium (Milam, 

2013). The consortium’s goals were to (1) develop high-resolution stratigraphic 

frameworks and depositional models; (2) analyze petrophysics; and (3) characterize 

reservoir types and geometries in the “Mississippian Limestone” Play area across 

Oklahoma and Kansas and adjacent areas of Missouri and Arkansas for the central 

purpose of sharing the research results with each other to better manage the risks 

associated with operating in the play (Milam, 2013).  

To date, researchers at OSU have conducted 20 investigations in the 

“Mississippian Limestone”, fifteen of which have been completed (including this study), 

in fulfillment of the consortium’s goals. Figure 2 shows the geographic extent of the area 

studied by the consortium and where core/outcrop control exists for these studies. Several 

authors working outside the consortium have also published on the “Mississippian 

Limestone” since the time of renewed interest in the play (e.g., Mazzullo et al., 2009, 
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2011ab, 2013, 2016; Boardman, 2010, 2011, 2013; Wilhite et al., 2011; Farzaneh, 2012; 

Manger, 2012, 2014; Shoeia, 2012; Dowdell, 2013; Haynes, 2013; Matson, 2013; Unrast, 

2013; Cahill, 2014; Jennings, 2014; Martin, 2015; Watney, 2015; Steinmann et al., 2017).  

All prior studies conducted by the Mississippian consortium and others have 

helped the petroleum industry to increase its understanding of “Mississippian Limestone” 

deposition as it applies to reservoir quality and distribution. Nevertheless, the petroleum 

industry overall continues to pull its investments from the “Mississippian Limestone” 

Play. One major reason for the trend in divestiture is geoscientists have largely come to a 

consensus within the last year that wastewater injection is the central mechanism for the 

increased seismicity within the State of Oklahoma (Oklahoma Corporation Commission, 

2017), leading the Oklahoma Corporation Commission to increase regulations on 

wastewater injection practices and thereby deterring the industry from wanting to operate 

in high water-producing reservoirs like those of the “Mississippian Limestone” Play. 

Currently, studies in “Mississippian Limestone” strata are most important to oil and gas 

companies that continue to operate in the “Mississippian Limestone” Play, such as 

Midstates Petroleum, White Star Petroleum, Chesapeake Energy, and SandRidge Energy 

because they have the greatest need for the research results. There also remains a wider 

interest in the industry for “Mississippian Limestone” studies to be conducted because 

research observations from these studies can be compared with and used as analogs in 

other plays of the U.S. Mid-Continent where time-correlative Mississippian reservoirs are 

represented, such as the STACK and SCOOP Play areas (Figure 1). 
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Figure 1. Map of southern Kansas and Oklahoma showing the relative locations (and names, when 

applicable) of major tectonic features as well as historic and current play areas involving 

Mississippian age reservoirs. Inset map shows the United States (lower forty-eight), with the States 

of Kansas and Oklahoma outlined in black and the area outlined in red represented in the enlarged 

figure. State lines were obtained from the Oklahoma State University Library’s McCasland Map 

Collection (MAP ID: G4020 1975). Selected historical oil and gas field data were obtained from 

Harris (1975). Structural data were compiled from Northcutt and Campbell (1996) and Doll (2015, 

fig. 1 and references therein). “Mississippian Limestone”, STACK, and SCOOP Play boundaries 

were estimated by compiling several maps published online (e.g., maps by Shale Experts, Wood 

McKenzie, and Newfield Exploration Company).  
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Figure 2. Map of Kansas, Oklahoma, Missouri, and Arkansas of the United States showing the 

main areas of investigation by the Industry-Oklahoma State University Mississippian Consortium 

within “Mississippian Limestone” rocks and their outcrop equivalents. Inset map shows the 

United States (lower forty-eight), with the state boundaries of Kansas, Oklahoma, Missouri, and 

Arkansas outlined in black and represented in the enlarged figure. State and county lines were 

obtained from the Oklahoma State University Library’s McCasland Map Collection (Map ID: 

G4020 1975). The simplified outline of the informally known Mississippian outcrop belt was 

patterned after Mazzullo et al. (2011a). Points of outcrop and core control were compiled onto 

this map with permission from all past and current OSU consortium researchers.  
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CHAPTER II 
 

 

 

INTRODUCTION 

 

 

 

Warrant for this Investigation 
 

 The emphasis of studies conducted by the Industry-OSU Mississippian 

Consortium to date has overwhelmingly been to describe the lithostratigraphy 

(lithofacies) of the “Mississippian Limestone” interval over southern Kansas and northern 

Oklahoma and in the adjacent tristate region and then place those descriptions within a 

sequence stratigraphic framework for better prediction of its stratigraphic distribution of 

oil and gas reservoir facies (Bertalott, 2014; LeBlanc, 2014; Price, 2014; Childress, 2015; 

Doll, 2015; Flinton, 2016; Jaeckel, 2016; Shelley, 2016). The focus of the most recent 

and on-going studies from the consortium is to construct regional scale maps and 

stratigraphic models over much of the same area for furthering understanding Oklahoma 

basin evolution and its depositional geometry/architecture as well as for showing large-

scale trends in reservoir facies of the “Mississippian Limestone” Play (e.g., Appleseth, 

2017; Elium et al., 2017; Hill, 2017; Gao and Wang, 2017).  

To date, there have only been two conodont biostratigraphic analyses conducted 

(Miller, 2015; Godwin, 2017) and one study that attempted to apply age-dates to the 

Mississippian interval based on chemostratigraphic concepts (Dupont, 2016). This means 
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that temporal constraint for the Mississippian interval over the consortium’s area of focus 

is almost exclusively limited to sequence stratigraphic concepts that do not directly relate 

rocks to the chronostratigraphic record. Placing the “Mississippian Limestone” interval 

within a chronostratigraphic framework is critical for establishing temporally meaningful 

sequence stratigraphic interpretations and depositional models that can be expanded to 

places where they are needed, such as in north-central Oklahoma.  

No chronostratigraphic markers are known within the “Mississippian Limestone” 

of the U.S. Mid-Continent. As such, biostratigraphy is the method of choice for relating 

the Mississippian interval to the chronostratigraphic record. More specifically, conodont 

biostratigraphy is the method of choice for age-dating the Mississippian interval of the 

U.S. Mid-Continent, as this fossil group has been extensively studied and shown to have 

the best correlation potential for the region (e.g., Roundy, 1926; Gunnell, 1931; Branson 

and Mehl, 1933, 1938, 1941ab; Youngquist and Miller, 1949; Youngquist et al., 1950; 

Branson, 1959; Pinney, 1962; Collinson et al., 1962; 1970; Thompson and Goebel, 1963, 

1968; Lane, 1967, 1974; Canis, 1968; Thompson and Fellows, 1970; Lane and Straka, 

1974; Branch, 1988; Poole and Sandberg, 1991; Lane and Brenkle, 2005; Mazzullo et al., 

2011b; Boardman et al., 2013; Miller, 2015; Godwin, 2017).  

Other index fossil groups of the Mississippian Subsystem include brachiopods 

and crinoids, both of which are generally abundant in Mississippian rocks of the U.S. 

Mid-Continent (e.g., Lauden, 1948; Weller et al., 1948); however, both groups tend to 

lack the correlation potential and relatively high-resolution age-dates that conodonts 

provide, and both are extremely difficult to study from core. Ammonoids and 

foraminifera are two other index fossil groups and both are commonly used today for 
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age-dating Mississippian age strata because they provide relatively high-resolution age-

dates relative to conodonts (Gradstein et al., 2012). However, both ammonoids and 

foraminifera are relatively rare in Mississippian strata over northern Oklahoma and 

southern Kansas (Gutschick et al., 1961) for reasons that are poorly understood. 

Therefore, conodonts are the most attractive of all the index fossil groups to merit 

biostratigraphic investigation because of the relatively high age-date resolutions they 

provide, their high correlation potential, and the relatively small size of individual 

specimens that increases their expected abundance in core. 

No study to date has yielded any formalized biostratigraphic results for age-dating 

the “Mississippian Limestone” in north-central Oklahoma. LeBlanc (2014) developed a 

sequence stratigraphic framework for the “Mississippian Limestone” interval in Payne 

and Logan Counties from three cores, which Dupont (2016) partly reinterpreted using 

results from her chemostratigraphic work conducted in the same cores, and Hill (2017) 

has developed a sequence stratigraphic framework for the Mississippian interval from 

core in Lincoln County. Therefore, the opportunity arises to study the conodont 

biostratigraphy of the Mississippian interval in north-central Oklahoma contained in these 

four cores for the central purposes of (1) age-dating the interval preserved in each of the 

cores; (2) evaluating the work that has been done on them up to this point that relate them 

to the temporal domain; and (3) observing to what degree the new biostratigraphic 

evidence adds value to prior interpretations of the cores. 
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Problem Statement 
 

The informally known “Mississippian Limestone” stratigraphic interval of Payne, 

Logan, and Lincoln Counties, north-central Oklahoma, U.S.A. bears no 

chronostratigraphic markers and has no formally established biostratigraphic framework 

to date. As such, it is uncertain how stratigraphic frameworks and depositional models for 

the Mississippian section proposed by LeBlanc (2014) and Dupont (2016) in Payne and 

Logan Counties and Hill (2017) in Lincoln County temporally relate to those developed 

in surrounding localities by the Industry-OSU Mississippian Consortium (e.g., Bertalott, 

2014; Price, 2014; Jaeckel, 2016; Shelley, 2016) and to Mississippian strata in 

surrounding areas with age-constraint (e.g., Boardman et al., 2013; Godwin, 2017). Thus, 

until now the consortium and others have been limited in understanding the 

“Mississippian Limestone” over the area of study in the context of Oklahoma basin 

deposition as well as a global Carboniferous stratigraphy. 

 

 

 

Purpose and Significance of Study 
 

This study narrows the geologic age range of “Mississippian Limestone” strata in 

Logan, Payne, and Lincoln Counties using core-based conodont biostratigraphy. This 

study is most significant in that it (1) places the rocks within a global Carboniferous 

stratigraphy; and (2) establishes a locality for future comparison and correlation with 

other age-constrained Mississippian age strata. 
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Major Research Questions 

 

Major research questions addressed in this study include: 

1. What is the geological age range of the “Mississippian Limestone” interval in 

Logan, Payne, and Lincoln Counties, north-central Oklahoma, U.S.A.? 

2. What were environmental and post-burial conditions like for conodonts in 

Mississippian rocks of north-central Oklahoma?  

3. Is there some geological aspect(s) (e.g., gamma-ray signature, facies type, or 

sequence stratigraphic boundary) that predict(s) where higher conodont recoveries 

and preservation quality occur?  

4. Is there evidence for provincialism among conodonts in the cores?  

5. Do recovered conodonts identify or help constrain unconformities in the cores?  

6. Can an improved lithostratigraphic nomenclature be applied to the Mississippian 

interval over the area of interest from the results of this investigation?  

7. Do the prior chemostratigraphic and sequence stratigraphic attempts to constrain 

the geologic age of the “Mississippian Limestone” interval in north-central 

Oklahoma adequately describe its age ranges, and how do conodonts 

change/improve that understanding? 

 

 

 

Hypothesis and Objectives 
 

The hypothesis for this investigation was that conodonts–marine index 

microfossils capable of temporally resolving up to third-order depositional sequences 

(Uyeda et al., 2011; Gradstein et al., 2012), or about one million years in Mississippian 

age rocks of the U.S. Mid-Continent (Boardman et al., 2013; Godwin, 2017) –
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demonstrate by associated geological age ranges of recovered species that the cored 

Mississippian intervals in Logan, Payne, and Lincoln Counties of Oklahoma are Osagean 

to Chesterian in age. This hypothesis is based on investigative work by Thornton (1958), 

Curtis and Chaplin (1959), McDuffie (1959), Rowland (1964), Selk and Ciriacks (1968), 

and Harris (1975) in which they propose the age of the Mississippian interval of north-

central Oklahoma east of the Nemaha Uplift, south of the Kansas border, and to an area 

about 20 mi. (32 km) north of the study area ranges from Osagean to Chesterian in age 

(discussed in chapter 4). Their interpretations were based on core descriptions and log 

correlations of Mississippian strata over the area of interest, with very sparse 

biostratigraphic control available to them (Thornton, 1958; Curtis and Chaplin, 1959; 

McDuffie, 1959; Rowland, 1964; Selk and Ciriacks, 1968; Harris, 1975). 

The research objectives that test this investigation’s hypothesis are to (1) use 

conodonts to construct a biostratigraphic framework for the “Mississippian Limestone” in 

the study cores and (2) relate the biostratigraphic framework to the stratigraphic 

frameworks already established over the area of interest. 

 

 

 

Core Locations and Descriptions 

 

Drilling operations carried out by Devon Energy from 2011 to 2012 provided the 

cores and wireline logs for this study. Wireline logs and production information for the 

cored wells are available publicly through the Oklahoma Well Log Library on the 

Oklahoma Corporation Commission’s website. Full descriptions of the cores and their 

depositional environment interpretations are available from LeBlanc (2014) and Hill 

(2017). Figures 3a and 3b provide the gamma-ray log signature and lithofacies 
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classifications for each of the cores and Figure 4 shows where they are positioned relative 

to one another. 

Described from west to east, the names and locations of the cores are the 

Adkisson 1-33, drilled in 2012 in Logan County (36°04’24” N, 97°31’24” W, API 

#08323988), the Winney 1-8, drilled in 2012 in Payne County (36°03’26” N, 97°19’37” 

W, API #11923904), and the Elinore 1-18, drilled in 2011 in Payne County (36°01’46” 

N, 97°01’02” W, API #11923896). Nearly 32 mi. (51 km) due south of the Elinore 1-18, 

is the Doberman 1-25, drilled in 2012 in Lincoln County (35°59’39” N, 96°98’17” W, 

API #08124112). Distance from the Adkisson 1-33 to Winney 1-8, Winney 1-8 to Elinore 

1-18, and Elinore 1-18 to Doberman 1-25 are 11.1 mi. (17.8 km), 17.4 mi. (28.0 km), and 

31.4 mi. (50.5 km), respectively. Each of the cores is 4 in. in diameter and captures what 

has been preserved of the “Mississippian Limestone” stratigraphic interval from top to 

base. Thickness of the preserved Mississippian interval in each of the cores is about 324 

ft. (99 m) in the Adkisson 1-33, 190 ft. (58 m) in the Winney 1-8, 143 ft. (44 m) in the 

Elinore 1-18, and 234 ft. (71 m) in the Doberman 1-25. LeBlanc’s (2014) core 

descriptions indicate the Adkisson 1-33, Winney 1-8, and Elinore 1-18 were deposited 

largely within a mid-ramp to distal ramp crest environment, and Hill’s (2017) indicate 

The Doberman 1-25 was deposited more within a mid-ramp to distal outer ramp 

environment.  

 In cross section, the Adkisson 1-33, Winney 1-8, and Elinore 1-18 sample the 

Mississippian interval in a more-or-less paleostrike direction. LeBlanc (2014) attributed 

the 181 ft. (55 m) difference in thickness between the Adkisson 1-33 and Elinore 1-18 

over the 28.5 mi. (46 km) over which they are separated to syndepositional faulting.   
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LITHOFACIES EXPLANATION 

 Dunham Facies 

SP-G 
Skeletal Packstone-

Grainstone 

PP-G 
Peloidal Packstone-

Grainstone 

BW-P 
Bioturbated Wackestone-

Packstone 

BCM-W 
Burrowed Calcareous 

Mudstone-Wackestone 

GS Glauconitic Sandstone 

Figure 3a. Gamma-ray curves and 

lithofacies types for the Adkisson 1-33 

and Winney 1-8 cores. Refer to LeBlanc 

(2014) for full core descriptions.   
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LITHOFACIES EXPLANATION 

 Dunham Facies 

SPP-G Silty Peloidal Packstone-Grainstone 

SAM-W 
Silty Argillaceous Mudstone-

Wackestone 

SAS Silty Argillaceous Sandstone 

SSCS    

+ CRS 

Slightly Sandy Calcareous Siltstone 

+ Clay-rich Sandstone 

SSCS Slightly Sandy Calcareous Siltstone 

CRS Clay-rich Sandstone 

GS Glauconitic Sandstone 

Figure 3b. Gamma-ray curves and lithofacies types of the Elinore 1-18 and Doberman 

1-25 cores. See Figure 3a for lithofacies explanation of the Elinore 1-18. Refer to 

LeBlanc (2014) for full core description of the Elinore 1-18 and Hill (2017) for full 

core description of the Doberman 1-25.   
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Figure 4. Map of southern Kansas and Oklahoma showing major tectonic features of the region as 

well as major historic and recent areas of focus in oil and gas exploration/production from 

Mississippian reservoirs. The geographic locations of the four cores in this study, with the 

counties in which they were drilled also indicated. Source data for Figure 4 same as Figure 1. 

Core locations were posted on the map using latitude-longitude coordinates. 
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CHAPTER III 
 

 

 

GEOLOGIC SETTING 

 

 

 

Mississippian Depositional Cyclicity in the U.S. Mid-Continent 
 

The Mississippian Subperiod spanned from about 358.9 to 323.2 ±0.4 million 

years ago, totaling 35.7 million years (Gradstein et al., 2012). Mississippian strata in 

North America are part of the Kaskaskia (first order) megasequence (Sloss, 1963), and 

the Industry-OSU Mississippian Consortium has shown through detailed high-resolution 

sequence stratigraphic analyses that the “Mississippian Limestone” interval in the U.S. 

Mid-Continent is part of at least one dominantly regressive (second order) supersequence 

(e.g., LeBlanc, 2014; Price, 2014; Jaeckel, 2016; Shelley, 2016; Godwin, 2017). The 

consortium’s observation that the Mississippian interval contains just one supersequence 

is consistent with Haq and Schutter’s (2008) global interpretation of Mississippian 

cyclicity (Figure 5). However, given the lack of chronostratigraphic control for the 

Mississippian interval over the consortium’s area of focus and for the basin in general, it 

is impossible to determine the exact number of supersequences represented without first 

identifying and analyzing a complete (or composite) section in the basin.  
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Figure 5. Coastal onlap curve for the Mississippian Subperiod. Age-dates from Gradstein et al. 

(2012). Coastal onlap and sea level change curves have been modified from Haq and Schutter 

(2008) to fit the updated geologic time scale by Gradstein et al. (2012). Sequence 

terminologies were compiled from Snedden and Liu (2010, 2011). Figure after Haq and 

Schutter (2008).  
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Distally-steepened Carbonate Ramp Model 
 

Researchers with the Industry-OSU Mississippian Consortium were not the first 

to suggest that the character of sedimentary deposits within the Oklahoma basin is best 

represented with a carbonate ramp model (e.g., Handford, 1995; Franseen, 2006; 

Mazzullo et al., 2009). However, consortium studies were the first to suggest that the 

depositional setting of the Oklahoma basin across major regions of southern Kansas and 

northern Oklahoma can be even further classified as a distally-steepened carbonate ramp 

(Figure 6), per definition of the model in the literature (e.g., Read, 1982, 1985; Burchette 

and Wright, 1992). Key observations that supported this interpretation include the 

geometry of Mississippian deposits over southern Kansas and northern Oklahoma (e.g., 

LeBlanc, 2014; Price, 2014; Doll, 2015; Jaeckel, 2016) and presence of debris flows 

observed on the mid-ramp environment in the western Ozarks region (Childress, 2015).  

Applying the distally-steepened carbonate ramp model in the Oklahoma basin has 

principally helped the consortium explain the high degree of vertical and lateral 

heterogeneity of lithofacies observed, especially at reservoir scales. Table 1 shows how 

relative sea level amplitude fluctuates based on several geologic factors acting over 

various time scales and illustrates why shallow-sloping carbonate ramp environments 

experience wide shifts in the lateral and vertical juxtapositions of their lithofacies as 

changes in relative sea level occur. The distally-steepened carbonate ramp model has also 

helped to explain the geometry of Oklahoma basin deposits, which is characterized by 

generally prograding carbonate-siliciclastic “wedges” or clinoforms (Figure 7) that are 

best observed by using interpreted third-order depositional sequence boundaries of the 

Mississippian interval (e.g., Doll, 2015). Conodont biostratigraphic analyses have shown 
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that these Mississippian clinoforms are sometimes diachronous (e.g., Boardman et al., 

2010, 2013; Shoeia, 2012; Miller, 2015; Godwin, 2017), thereby illustrating the need for 

more biostratigraphic control in “Mississippian Limestone” strata.  
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Figure 6. Conceptual block diagram of a distally-steepened carbonate ramp. Approximate 

locations of mean sea level (MSL), fair weather wave-base (FWWB), and storm wave-base 

(SWB) are given. Study cores primarily contain facies characteristic of a mid- to outer-

ramp environment. Redrafted by LeBlanc (2014) after Handford (1986).  
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Table 1. Sequence stratigraphic hierarchy chart. Note that it is currently unclear what 

combination of mechanisms drive sea level rise/fall for third order depositional sequences. 

Data set compiled from Ross and Ross (1987ab), Kerans and Tinker (1997), and Miall 

(2013). Table re-drafted from Childress (2015).  
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Figure 7. Conceptual diagram showing prograding clinoforms in cross section view that are characteristic of the Oklahoma basin. 

Grainy, high-energy lithofacies (light gray), intermediate lithofacies (dark gray), and muddy, low-energy lithofacies (tan) indicate 

inner-ramp, mid-ramp, and outer-ramp to basin environments, respectively. Approximate locations of mean sea level (SL), fair 

weather wave base (FWWB), and storm wave base (SWB) on the ramp are provided. Inset image conceptualizes a generic 

sequence stratigraphic stacking pattern for the clinoforms. Modified from Jaeckel (2016). 
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Paleoenvironmental Conditions 
 

Figure 8 is a paleogeographic map of late Early Mississippian deposition in the 

U.S. Mid-Continent. The map has been modified several times by OSU consortium 

researchers (inclusive of this study) and is most frequently used to demonstrate that 

during the Mississippian Subperiod ancestral Oklahoma was positioned in a low-latitude 

setting and was covered by an epicontinental sea, which allowed a broad carbonate 

platform to ramp environment to form along the southern margin of the Transcontinental 

Arch in response. The name for the gross depositional setting of this marine carbonate-

dominated environment is the Burlington Shelf (coined by Lane, 1978).  

Figure 8 is largely based on work by Lane and DeKeyser (1980) and Gutschick 

and Sandberg (1983) and includes updates to the map from the consortium, but it also 

incorporates data from other paleoclimatic studies that reflect the current understanding 

of paleodepositional conditions in the late Early Mississippian over the U.S. Mid-

Continent (Rowley et al., 1985; Ross and Ross, 1987a; Witzke, 1990; Golonka et al., 

1994; Scotese, 1997; Mii et al., 1999). Therefore, the paleogeographic map that is 

presented in this thesis is one of the best visual representations of late Early Mississippian 

paleogeography for the U.S. Mid-Continent currently available.  

A relatively limited body of literature exists for Middle to Late Mississippian 

strata over much of the U.S. Mid-Continent in comparison with studies for Early 

Mississippian stratigraphy over the same region. As such, paleogeographic maps for the 

Middle and Late Mississippian in the Oklahoma basin are not as robust as the one the 

consortium uses for Early Mississippian paleogeography. Figure 9 is one of Blakey’s 

(2017) paleogeographic maps of the early Middle Mississippian (~345 Mya) for the 



26 
 

Laurussian supercontinent and northern part of Gondwana. Blakey maps are best used “in 

time sequence [to] show…broad patterns of Earth history” (Deep Time Maps, 2017); 

therefore, Figure 9 is most useful when compared with Figure 8 to highlight changes in 

overall depositional conditions of the U.S. Mid-Continent from the Early to Middle 

Mississippian. Blakey does not currently have a paleographic map of the U.S. Mid-

Continent available for the Late Mississippian, nor is there one available in the literature 

that is representative of the major shifts in understanding Oklahoma basin deposition 

because of recent studies; therefore, no paleogeography map of the U.S. Mid-Continent 

during the Late Mississippian is presented here. Additional work is needed for creating a 

modern paleogeographic map of the Late Mississippian in the Oklahoma basin.  

Overall, climatic conditions on the Burlington Shelf during the Early to Middle 

Mississippian were generally tropical to subtropical (e.g., Parrish, 1982; Witzke, 1990; 

Golanka et al., 1994; Scotese, 1997; Buggisch et al., 2008) and paleosea conditions were 

overall non-restricted (Steinmann et al., 2017). However, studies have suggested more 

arid, cooling, and restricted conditions were established by the early Middle 

Mississippian and that they became more regionally persistent during the remainder of 

the Mississippian Subperiod (e.g., Noble, 1993; Franseen, 2006; Buggisch et al., 2008), 

probably related most directly to the suture of Laurussia and Gondwana. 
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Figure 8. Paleogeographic map of the late Early Mississippian for the U.S. Mid-Continent. 

Map compiled from various authors’ observations. Study area outlined in red. Areas of uplift 

(gray) and areas of dominant dolomite (tan), limestone (light blue), fine-grained (dark blue), 

and basin (white) facies indicated. Water depth contours in 50 m (164 ft.) intervals. Warm 

ocean current direction (blue arrows) from Ross and Ross (1987a) and Mii et al. (1999). Wind 

direction (black arrow) from Witzke (1990) and Golonka et al (1994). Lines of latitude 

estimated by georeferencing this figure with map data from Google Earth in ArcGIS. Figure 

modified from Jaeckel (2016), originally redrafted by LeBlanc (2014) after Gutschick and 

Sandberg (1983) and Lane and DeKeyser (1980). Compare with Figure 9.   
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Figure 9. Paleogeographic map of ancestral North America during the early Middle 

Mississippian (~345 Mya). Study area outlined in red. Direction of upwelling (red arrow) 

from Parrish (1982). Dominant wind directions (black arrows) from Witzke (1990) and 

Golonka et al. (1994). Cool ocean currents (yellow arrows) inferred from Buggisch et al. 

(2008) and their direction from Mii et al. (1999) and Mazzullo et al. (2009). Lines of 

latitude estimated by scaling this figure with map data from Google Earth. Image 

modified from Blakey (2017). Compare with Figure 8.    
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Structural Background 
 

The four cores in this study are positioned along the southwestern part of the 

Cherokee Platform and the eastern edge of the Nemaha Uplift Geologic Provinces in 

north-central Oklahoma (Charpentier et al., 1996; Johnson, 2008) (Figure 4). For a 

concise summary on the evolution of the geologic provinces of Oklahoma, refer to 

Johnson (2008). Relative to this study, just two structural elements of Oklahoma merit 

further discussion. They are: (1) the Nemaha Uplift and (2) the Kanoka Ridge.  

 

Nemaha Uplift 
 

Geoscientists have not yet arrived at a clear consensus for exactly how or when 

the structures of the Nemaha Uplift formed, though several models with evidence for 

their formation and timing have been proposed (e.g., Gay, 2003ab; McBee, 2003; Friess, 

2005; Steen, 2017). Regardless of the nature and timing of faulting on the Nemaha, there 

is a consensus among petroleum geologists that movement along faults complicated 

stratigraphic relationships of the “Mississippian Limestone” by compartmentalizing oil 

and gas reservoirs, and in some areas of uplift, significantly or entirely eroding the 

Mississippian interval (Gay, 2003ab; LeBlanc, 2014; Hill, 2017). Therefore, 

biostratigraphic results are meaningful in that age-dates help to constrain unconformable 

surfaces, such as those between the Woodford-Mississippian, Mississippian-

Pennsylvanian contacts, or those within the Mississippian interval (e.g., the Tournaisian-

Visean contact), which may help to highlight mass extinction events or climatic changes. 

Future high-resolution biostratigraphic studies may also help to constrain unconformities 

related to the Mississippian for better narrowing the timing of faulting related to the 

Nemaha structure.  
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Kanoka Ridge 
 

Handford (1995) was first to speculate that an east-west trending fore-bulge arch 

might exist somewhere in the subsurface of northern Oklahoma and Arkansas, along the 

northern end of the Arkoma Basin. Mazzullo et al. (2011a) followed up with Handford’s 

(1995) speculation by demonstrating that Lower and Middle Mississippian strata in parts 

of southeastern Kansas and southwestern Missouri prograded northward, while the same 

time-correlative strata in northeastern Oklahoma and northern Arkansas prograded 

southward. To explain the discrepancy, the authors proposed that an Early Mississippian 

age structural high ran through the present-day Oklahoma-Missouri-Arkansas tristate 

region and along the Oklahoma-Kansas border (Mazzullo et al., 2011a). They speculated 

that the structural high caused sediments of the Lower and Middle Mississippian to 

prograde in opposite dip directions along its northern and southern flanks and proposed 

that the so-called east-west trending structural high would have represented the fore-

bulge arch of the Arkoma Basin (Mazzullo et al., 2011a).  

Suneson (2012) was first to respond to the evidence for the fore-bulge arch of the 

Arkoma proposed by Mazzullo et al. (2011a). He added his own observation that some 

Early Pennsylvanian sandstone units of the Jackfork Group in Choctaw County, 

Oklahoma appeared to have been sourced from the south while other units within the 

same group formation were sourced from the north (Suneson, 2012). This meant that if 

the Pennsylvanian age units were also somehow related to the same fore-bulge arch 

proposed by Mazzullo et al. (2011a), then the structure must have been active at least 

from the Early Mississippian to the Early Pennsylvanian, consistent with the overall 

timing of the formation of the Arkoma Basin (Suneson, 2012). Mazzullo et al. (2016) 
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later provided evidence for there being depositional onlap onto an east-west trending 

series of magnetic anomalies positioned along the Oklahoma-Kansas border and the 

adjacent tristate region observed in Devonian and Carboniferous age strata, 

demonstrating that this string of anomalies must represent an area of uplift active from 

sometime in the Devonian throughout most of the Carboniferous. The authors named 

their interpreted structural high the Kanoka Ridge (Figure 10) and claimed that it 

represents the missing fore-bulge arch of the Arkoma (Mazzullo et al., 2016), though not 

all experts in Oklahoma basin evolution fully agree with the interpretation, such as Dr. 

Walter Manger at the University of Arkansas–Fayetteville (personal communication, 

2017).  

The Kanoka Ridge is significant to any study conducted in the Oklahoma basin 

because it helps explain why uniform lithostratigraphic naming conventions cannot easily 

be applied to “Mississippian Limestone” strata when correlating the interval across the 

northern and southern flanks of the structure that once sustained separate depositional 

environments (Figure 11). The ridge further demonstrates why geoscientists must rely on 

biostratigraphic evidence to properly correlate rocks of the “Mississippian Limestone” 

from southern Kansas into northern Oklahoma, or from the Ozarks region into parts of 

northeastern Oklahoma. It is for this reason that Mazzullo et al. (2016) asked for 

conodont biostratigraphic work be conducted in the Mississippian interval across 

northern Oklahoma for expanding the time-stratigraphic correlations and unifying 

lithostratigraphic nomenclature they have previously applied to the Mississippian interval 

in the Ozark region (Mazzullo et al., 2013).  
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Figure 10. Magnetic anomaly map showing the approximate trend (blue dashed lines) of the Kanoka Ridge throughout parts of the 

Oklahoma-Missouri-Arkansas tristate region and along the Kansas-Oklahoma State line. Warmer colors in the magnetic anomaly 

data correspond to areas of greater magnetic susceptibility, interpreted to correlate with greater areas of uplift. Contour intervals 

are in 100 nT. Source data for the map can be found at https://www.uwgb.edu/dutchs/StateGephMaps/OklaGphMap.HTM. Image 

reproduced from Mazzullo et al. (2016).  
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Figure 11. Comparison of several stratigraphic columns showing the conventions applied in different regions for naming 

“Mississippian Limestone” lithostratigraphic units of Kinderhookian, Osagean, and Meramecian of the U.S. Mid-Continent. 

Figure reproduced from Jaeckel (2016) after Mazzullo et al. (2011b, 2013) and Zeller (1968).  

Warsaw 
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CHAPTER IV 
 

 

 

PREVIOUS WORK 
 

 

 

Relevant Age-dating Studies Conducted in the “Mississippian Limestone” 

Studies by Thornton (1958), Curtis and Champlin (1959), McDuffie (1959), 

Rowland (1964), Selk and Ciriacks (1968), and Harris (1975) attempted to narrow the 

geologic age range of the Mississippian section in north-central Oklahoma, including the 

area directly in and west of the study area in Logan and Payne Counties, by relating 

Mississippian units of that region to areas with age-constrained Mississippian strata in 

southern Kansas and northwestern Oklahoma through lithologic-based log correlations. 

Based on their correlations it was suggested that the Mississippian interval of Logan, 

Payne, and Lincoln Counties, Oklahoma contains the full Meramecian interval, some of 

the Osagean below, and some or all the Chesterian above (Thornton, 1958; Curtis and 

Champlin, 1959; McDuffie, 1959; Rowland, 1964; Selk and Ciriacks, 1968; Harris, 

1975). Figure 12 is a generalized model of what previous authors have expected the 

Mississippian interval to look like from a time-stratigraphy perspective within an area 

just 20 miles north of the Elinore 1-18.  

The central problem with the previous authors’ log correlations for the 

“Mississippian Limestone” in north-central Oklahoma is that they were using concepts of 
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lithostratigraphy to match time-stratigraphic horizons (Thornton, 1958; Curtis and 

Champlin, 1959; McDuffie, 1959; Rowland, 1964; Selk and Ciriacks, 1968; Harris, 

1975). Lithostratigraphic boundaries do not necessarily honor time-stratigraphic ones; 

therefore, they cannot be relied on to provide accurate age-dates of the Mississippian 

interval in the Oklahoma basin.  

Of all the previous authors to attempt to age-date the Mississippian interval in 

north-central Oklahoma, work by Selk and Ciriacks (1968) is the most relevant to this 

study because they attempted to incorporate conodont data from cores in Noble and 

Payne Counties to their lithostratigraphic-based correlations. However, Selk and Ciriacks 

(1968) failed to publish their methods used to process conodonts and any of the details of 

the work or images of the conodonts they collected, thereby informalizing their 

biostratigraphic results. Their collection of conodont elements presently resides at the 

Paleontology Repository at the University of Iowa. Interestingly, Cory Godwin (personal 

communication, 2017), a researcher with the Industry-OSU Mississippian Consortium 

and conodont biostratigrapher visited the repository at the University of Iowa to review 

the work of Selk and Ciriacks (1968) and has indicated to the author that he is personally 

overall supportive of their age-dating interpretation. Still, the biostratigraphic results of 

Selk and Ciriacks (1968) have been questioned/disputed in the literature (e.g., Rogers, 

2001) and remain informalized; therefore, there is present need to provide more 

formalized biostratigraphic evidence to the Mississippian interval in north-central 

Oklahoma.  

 In a recent attempt to age-date the Mississippian interval in north-central 

Oklahoma, Dupont (2016) used carbon isotopes obtained from whole-rock samples in the 
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same cores LeBlanc (2014) described and the author sampled for his biostratigraphic 

analysis. Dupont’s (2016) interpretation was that a complete “Mississippian Limestone” 

interval is represented by the subsurface sections, basing her conclusion on comparisons 

with her data to other North American carbon isotopic charts with some age constraint 

(Mii et al., 1999; Saltzman, 2002, 2003; Batt et al., 2007; Koch et al., 2014). However, 

using chemostratigraphic evidence alone is a rather new method for applying age-dates to 

rocks; therefore, there remains questions of the limitations of this chemostratigraphic 

approach. Since the results of Dupont (2016) and all the other previous studies discussed 

herein provide some basis for determining the geologic age range of the Mississippian 

interval in north-central Oklahoma, biostratigraphic evidence is required to more 

effectively assess previous authors’ interpretations.  
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Figure 12. Generalized depositional model for the “Mississippian Limestone” interval of north-central Oklahoma. The well 

symbol with the blue dot and arrow through it represents the approximate location of the cored wells in this study. The estimated 

well location estimates the relative geologic age range that Thornton (1958), Curtis and Champlin (1959), McDuffie (1959), 

Rowland (1964), Selk and Ciriacks (1968), and Harris (1975) predicted would exist for the Mississippian interval in north-central 

Oklahoma.    
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CHAPTER V 
 

 

 

CONODONT BIOSTRATIGRAPHY 

 
 
 

Landmark Studies on Conodonts 

Conodonts were first discovered and described in 1856 by German paleontologist 

Christian Pander. Pander (1856) described conodonts by their only hard parts, which he 

termed “elements,” and wrote that conodont elements are tiny teeth-like fossils which 

probably belonged to a group of primitive soft-bodied fish related to the modern-day 

hagfish or lamprey eel. Over the next seventy years, geoscientists regarded conodonts as 

curious paleontological occurrences, but they were otherwise ignored (Sweet and Cooper, 

2008).  

In 1926, Ulrich and Bassler demonstrated that stark commonalities among 

conodont elements collected from all over the world could be seen in Paleozoic strata that 

were understood to be relatively the same age and that element forms of conodonts 

seemed to systematically change through time. This meant there was potential for 

conodont elements to be used as biostratigraphic markers. Roundy (1926) was first to test 

Ulrich and Bassler’s (1926) hypothesis and used his collection of conodont elements 

from Mississippian age outcrops in Texas to compare with other conodont collections 

globally and to each other, demonstrating that conodont elements are useful 
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biostratigraphic markers. Since then, conodont elements have been collected and 

described extensively all over the world and have proven to be one of the more readily 

available and useful biostratigraphic markers for sedimentary rocks of middle Cambrian 

to Late Triassic age (at which time conodonts went extinct). Within the last ten years, 

conodont elements have also shown potential for yielding direct age-dates through (U-

Th)/He thermochronology (e.g., Peppe and Reiner, 2007).   

In the late 1970’s, nearly 50 years after Roundy (1926) confirmed conodonts as 

being useful biostratigraphic tools, geoscientists realized that this curious group of fauna 

was valuable for more than just applying age-dates to rocks. It was known at the time that 

conodont elements change color (Sweet and Cooper, 2008), but it was Epstein et al. 

(1977) who first reported on how conodont element color changes relate to subsurface 

temperature and percent fixed carbon, demonstrating that the elements could be useful 

indicators for estimating the burial history of strata as well as hydrocarbon maturation. 

The authors created the first Conodont Alteration Index (CAI) –a chart generated from 

their lab observations and field work–useful for estimating the maximum burial depth of 

strata, maximum subsurface temperature strata attained during diagenesis, and thermal 

maturity of hydrocarbons in them (Epstein et al., 1977). Harris (1979) later published a 

more robust CAI that related conodont element color changes to another optical index of 

thermal maturation (i.e., vitrinite reflectance), and his is the more commonly used chart 

today (Figure 13). The petroleum industry has found the CAI useful for assessing burial 

histories and hydrocarbon potential in rock formations where conodont elements are 

abundant (McCarthy et al., 2011).  
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By the 1980’s, it became commonplace for authors to make interpretations based 

on conodont biofacies because enough ecological evidence regarding the creatures had 

been collected up to that point. Within the last 20 years, conodonts were shown to be 

useful for another geological application. Wenzel et al. (2000) and later Buggisch et al. 

(2008) for example, demonstrated that elemental oxygen isotopes are generally reliable 

paleosea thermometers, meaning that conodont elements are useful tools for 

reconstructing paleosea conditions and showing trends in major climatic changes (e.g., 

eustatic glaciation). This relatively new methodology has been questioned recently, (e.g., 

Terrill, 2015), but overall the use of conodonts for reconstructing paleosea conditions is 

well-received among experts in the geoscience community.  
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Figure 13. Conodont Alteration Index (CAI) compared with changes in 

vitrinite Reflectance values (%Ro), temperature (T) and depth (D), and 

the hydrocarbon maturation window. All data were experimentally 

derived from Epstein et al. (1977) and Harris (1979). Figure redrafted 

from Harris (1979).  
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The Enigmatic Conodont Animal 

Although conodont elements were discovered over 160 years ago and have been 

studied extensively from a biostratigraphic perspective, much less is known to date about 

the conodont animal and its ontologic, paleozoological, and phylogenetic affinities. It was 

not until 1983 that the first conodont animal (body fossil) was observed and described. 

Briggs et al. (1983) made the discovery as they worked in the Granton “shrimp beds” of 

Edinburgh, Scotland and came across a peculiar soft-bodied specimen preserved along a 

bedding plane of a limestone. The specimen had a jawless, bulbous, and bi-lobed head 

with two large eyes and an arrangement of in-situ conodont elements with a narrow eel-

like body that showed evidence for a notochord, chevron-shaped muscle tissue, and an 

asymmetrically-shaped rayed fin at its tail (Figure 14).  

With the discovery of the first body fossil of the conodont animal (Briggs et al., 

1983) and a few others since, geoscientists have reinterpreted their understanding of the 

clade’s ontology and phylogenetic affinities using various statistical and digital modeling 

methods. Knell (2012) published a comprehensive summary of these landmark studies on 

conodonts. In general, the current consensus among paleontologists is that conodonts are 

a group of extinct agnathan soft-bodied marine chordates (Purnell and Donoghue, 1997; 

Donoghue et al, 2000) that have for now been placed into their own class called the 

Conodonta (Murdock et al., 2013). There exists a growing body of literature that suggests 

conodonts are vertebrates with phylogenetic ties to the modern hagfish (Terrill, 2015). 

Based on all analyses, conodonts are thought to be overall nektonic creatures that grew 

up to 6 in. (15 cm) long and lived within the photic zone of most marine nearshore to 

open marine environments (e.g., Dzik, 2000; Aldridge and Briggs, 2009; Knell, 2012).  
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Figure 14. Soft-body plan of a conodont. The conodont specimen photographed (left) is 

from the Granton “shrimp beds” of Edinburgh, Scotland and has several of its soft-bodied 

features preserved, which are identified (right). Note the shrimp body fossils preserved in 

the photo as well as the diagenetically altered fluorapatite (blue-green mineralization) of the 

exceptionally well-preserved conodont. Photograph and schematic drawing both from 

Briggs et al. (1983).     
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Conodont Elements 
 

Chemically, conodont elements consist of francolite, which is a form of calcium 

phosphate (apatite) that is enriched in carbonate and fluorine (Sweet and Cooper, 2008). 

The stable mineral apatite resists chemical and physical alteration, but fluorine–an 

important minor constituent found in conodont elements–helps to simplify the 

mineralogical structure of apatite and further increase its resistivity to ion substitutions 

and other diagenetic alterations (Marshall and Marshall, 2014). As a witness to their 

chemical and physical resistivity during diagenetic alternation, conodont elements have 

been found relatively well-preserved in Paleozoic and Early Mesozoic metasedimentary 

rocks from all over the world, including marbles and gneisses (McCarthy et al., 2011). It 

is the chemically resistive nature of conodont elements that helps to preserve their 

delicate morphologic structures and original isotopic signatures and enables them to be 

useful for various geologic applications.  

Collections of conodont elements found in-situ, as they would have been placed 

in a living conodont, have been shown to be part of a larger, bilaterally symmetrical 

feeding apparatus that begins in a conodont’s pharyngeal (throat region) (e.g., Purnell, 

1994) (Figure 15). Several conodont genera have been shown to have occlusional 

function in some areas of their feeding apparatus based on multi-element analyses and 

statistical reconstructive modeling (e.g., Wickström and Donoghue, 2005; Jones et al., 

2012; Murdock et al., 2013), meaning that most conodonts used their feeding apparatus 

with associated muscle groups to grasp, impale, and even slice or “chew” their prey 

(Purnell, 1994; Purnell and Donoghue, 1997; Martínez et al., 2014).  



45 
 

Conodont elements are classified into three groups based on differences in their 

overall morphology and where they belong on a feeding apparatus (Figure 15). M-

elements (coniforms or “cones”) are the simplest and generally have the appearance of a 

cone shape. M-elements are located at or near the anterior (front) of a typical feeding 

apparatus, and they usually display much larger denticles (teeth-like structures) compared 

with other element types on a single apparatus. S-elements (ramiforms or “bars”) are the 

longest and generally fit directly behind the M-elements in a tubular-, cone-, or 

“arrowhead”-shaped fashion that narrows towards the posterior (back) end of a 

conodont’s pharyngeal. S-elements also generally make up most the elements per 

conodont animal, and have the appearance of serrated rods.  

P-elements (pectiniforms or “platforms”) are the most complex on a conodont’s 

feeding apparatus and come in sets of two which are located at the very most posterior 

end of a conodont’s pharyngeal. Both sets provide occlusional function by using a 

pendulum-like motion to allow the conodont to slice its prey after it has grasped and 

impaled its prey repeatedly with its M- and S-elements. P1-elements are located at the 

most posterior end of a conodont’s pharyngeal and are the most useful in biostratigraphic 

analyses that rely on traditional form taxonomy for species identification (e.g., this study) 

because they display the most obvious, and in many cases, only characteristic features for 

defining species. Some studies have indicated that P1-elements diversified the most, in 

general, among conodonts because these creatures had to rely on them most for 

consuming their prey, making it advantageous for their forms to develop better Pl-

elements through geologic time (Donoghue et al., 2000; Wickstrom and Donoghue, 

2005). 
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Figure 15. Schematic illustration showing the arrangement of elements in a 

conodont’s feeding apparatus. Note the three classifications of conodont elements 

(M-, S-, and P-elements) are indicated. P-elements are the most critical for 

identifying species. Schematic from Barham (2015).     
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Biostratigraphic Application of Conodont Elements 

 

Biostratigraphy is the subdiscipline of stratigraphy that uses the distribution of 

fossil remains to organize strata into distinct units. The latest techniques for relating 

biostratigraphic units are to the chronostratigraphic record is summarized in Gradstein et 

al. (2012). Simply put, this is done by identifying a fossil succession within a rock layer 

and comparing it with other rock layers that bear the same fossil succession. The rock 

layers with the same fossil succession are then correlated across an area or region until 

they are confidently traced to where rock layers with the same/similiar fossil succession 

are constrained by absolute age-dating. The fossil succession of all the rock layers 

bearing the same/similar fossil succession and shown to be coeval is then bracketed by 

absolute age-date(s), and the fossil succession becomes pseudo direct evidence for that 

geologic age range in future studies. Future work refines the geologic age range of each 

fossil succession and breaks them into smaller zones (called biozones), allowing them to 

become more precise and better able to be correlated over larger areas.   

Ideally, every fossil succession is constrained by assignment of absolute age-dates 

at its top and base. However, rarely does this occur because of several factors, including 

(1) the punctuation of the rock record; (2) the time-transgressive nature of stratigraphic 

deposits and how faunal groups diversify and are distributed through time; and (3) the 

preservation quality of the fossils themselves. To this end, several graphic, statistical, and 

computational techniques, which are described in detail by Gradstein et al. (2012), are 

used by paleontologists to estimate the absolute age of a biozone. 

Conodonts are widely accepted as reliable index fossils. This means that conodont 

elements are overall (1) globally widespread; (2) representative of relatively short periods 
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of geologic time; and (3) found in high abundances in most sedimentary rock types. 

Conodont global biozones of the Mississippian are presently constrained at a maximum 

of about three or four million years (Gradstein et al., 2012). In contrast, several authors 

have argued that conodont biozones for the U.S. Mid-Continent represent sub-one million 

year intervals (Boardman et al., 2013; Godwin, 2017). It is very common for higher age-

dating resolutions of a fossil group to exist over a region in comparison with a global 

distribution of the same group because of something called provincialism (discussed 

later). Interestingly, work by Uyeda et al. (2011) has suggested that it may not be 

practical for future conodont biostratigraphic work conducted in the U.S. Mid-Continent 

to further constrain age-dating resolutions far below one million years because of a 

theory called long-term evolution.  

The theory of long-term evolution states that changes in organisms’ bone and 

other hard part structures, such as when a conodont adds a row of denticles to its 

platform, accumulate slowly (Uyeda et al., 2011). In the case of conodonts, that 

“slowness” is estimated to be about one million years (Uyeda et al., 2011). This makes 

distinguishing between new species of conodonts based on changes in structural changes 

of their hard parts almost impossible unless other lines of evidence, such as 

ornamentation, soft-tissue, or element function are considered because they tend to 

preserve more obvious differences between species types at resolutions in geologic time 

much smaller than one million years. The problem with conodont species of the 

Mississippian is that they tend to lack many ornamentation features in comparison with 

species of other periods in geologic history, such as several of the conodont species of the 

Devonian and Pennsylvanian. It is important to note that this theory does not imply 
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anything about the true rate of evolution in conodonts, nor does it mean that it is 

impossible for preserved conodont species of the Mississippian to have age-resolutions 

far below a one-million-year time scale, since given the right conditions (e.g., 

provincialism and natural selection) species types are known to diversify over periods 

much shorter than millions of years.  

 

Conodont Provincialism 

Provincialism is when a group of fauna or flora is restricted to an area for a 

prolonged period and new species emerge because of the restricted area’s unique set of 

environmental conditions that force the group of fauna or flora to adapt. Gradstein et al. 

(2012) summarized the evidence for showing there is provincialism observed among 

Mississippian conodont populations of the U.S. Mid-Continent; however, there is no 

universally accepted theory that explains what caused it. Previous authors have suggested 

that mass extinction events (e.g., Lauden, 1949), active tectonics and high-frequency sea 

level change (e.g., Noble, 1993), basin restriction (e.g., Franseen, 2006), long-term 

effects of eustatic glaciation (e.g., Buggisch et al. 2008), and even a meteorite impact 

event (Evans et al, 2011) all had roles in causing or promoting Mississippian conodont 

provincialism within the U.S. Mid-Continent.  

The author of this study is of the opinion that periodic basin restriction best 

summarizes why conodont species of the U.S. Mid-Continent are different from other 

global populations of the Mississippian and that the collision of Laurussia with 

Gondwana during the Mississippian in combination with relative sea level change were 

the principal drivers for causing the isolating basin conditions. Noble (1993) speculated 

along these same lines, arguing that microcontinents caught in between the colliding 
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Laurussian and Gondwanan continents were uplifted and therefore provided regional 

barriers to basins across the ancestral United States and shifted or inhibited seaway 

current pathways that prevented marine faunal groups, such as foraminifera and 

ammonoids, from colonizing the Oklahoma basin.  

Figure 5 shows how sea level fluctuated during the Mississippian, and although 

the curve by Haq and Schutter (2008) does not show sea level change for the Oklahoma 

basin alone, several of the lowstands correspond with minor mass extinction events in the 

U.S. Mid-Continent. For example, Laudon (1948) reported an apparent mass decline 

among certain families of echinoderm and brachiopod populations of the western U.S. 

Mid-Continent in rocks of the middle Osagean and noted that some families in both 

groups completely disappeared at the Osagean-Meramecian boundary (Laudon, 1948) 

(about the same time paleoclimatic studies have shown more restricted basin conditions 

were established within the basin), with significant evolutionary changes present in the 

families of both groups that survived the localized extinction event. Ausich et al. (1994) 

later observed there is no other evidence for a mass extinction among the same 

echinoderm or brachiopod faunal groups that Lauden (1948) described in any other basin 

around the world at the Osagean-Meramecian contact (though there was one during the 

middle Osagean); therefore, the authors determined that the localized disappearances 

observed in these faunal groups may be best explained by prolonged restricted basin 

conditions. For example, because most echinoderm families are stenohaline and prefer 

open-water circulation conditions (Russell, 2013), if basin conditions were restricted for 

prolonged periods such that both salinity and circulatory conditions changed even just 
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moderately, the echinoderm populations of the Oklahoma basin certainly would have 

suffered.   

Another factor to consider for the mass regional decline among echinoderm and 

brachiopod populations that Lauden (1948) observed is from a meteor impact. Evans et 

al. (2011) provided evidence for a meteor impact that occurred in southwestern Missouri 

during the latest Osagean to earliest Meramecian. Ausich et al. (1994) observed, 

however, that the decline and subsequent diversification of crinoids and brachiopods 

during the Osagean-Meramecian was gradual and that it started in the early Osagean, 

indicating that a single impact event would not fully explain the gradual decline in 

brachiopod and crinoid families that is observed in the basin. However, a meteor impact 

at the Osagean-Meramecian boundary coupled with a prolonged period of basin 

restriction in the Oklahoma basin may help explain why it has historically been more 

difficult to study the “Mississippian Limestone” from a biostratigraphic perspective for 

rocks of Meramecian and Chesterian age, as Godwin (2017) has noted.  
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CHAPTER VI 
 

 

 

MATERIALS AND METHODS 
 

 

 

Whole-rock Sample Collection 

  

With permission, whole-rock samples were obtained from the butt-end of each 

core at the Oklahoma Petroleum Information Center in Norman, Oklahoma. Permission 

to sample the cores was given to the author with the understanding that all samples would 

be obtained using a precise methodology that preserved as much of the cores as possible. 

Therefore, the author chose, in general, to limit all sampling in the cores to their top and 

base, above and below major time-stratigraphic surfaces and lithologic changes, and in 

organic-rich intervals, such as maximum flooding surfaces (condensed sections), where 

conodont elements were assumed to be most abundant. This means that collection 

priority in the Adkisson 1-33, Elinore 1-18, and Winney 1-8 cores was placed (1) at or 

near core tops and bases for obtaining their maximum age range; (2) above and below 

third order sequence boundaries established by LeBlanc (2014) for observing any time-

stratigraphic control on conodont element abundances; (3) in lithologic units where 

abundant macrofauna were present (excluding skeletal grainstone facies) for isolating 

intervals of high biodiversity with relatively high preservation potential (i.e., high 
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biodiversity intervals preserved in low-energy depositional conditions); and (4) in “hot” 

shales where the gamma-ray curve read ≥100 API and which corresponded to the darkest 

colored rock unit relative to its surroundings (proxy for condensed sections) (Figures 16a-

c). In the Doberman 1-25, no sequence boundaries had been picked by Hill (2017) at the 

time the whole-rock samples were collected. In addition, samples were collected later and 

permission was given to sample much less of the Doberman 1-25 in comparison with the 

other cores; therefore, the collection method in the Doberman 1-25 was the same as in the 

other three cores but without sampling around known sequence stratigraphic boundaries 

and by limiting sample collection to about a 7-ft. spacing to ensure there was maximum 

coverage of the cored interval (Figure 16d). For a full list of all samples in each of the 

cores, refer to Appendix A.  

Whole-rock samples measured 0.25 ft. to 1.25 ft. from top to base and about 9 in. 

around their circumference, with the average sample measuring 0.5 ft. long and weighing 

approximately 6 lbs. Samples were collected at thinly spaced intervals of about 0.5 ft. 

along a 5-ft. continuous stratigraphic interval for more precisely measuring the depth 

interval from which conodont elements were recovered, as the methodology used to 

process each of the samples was destructive. In total, 369 whole-rock samples were 

collected from the four cores, 123 of which came from the Adkisson 1-33, 145 from the 

Winney 1-8, 67 from the Elinore 1-18, and 34 from the Doberman 1-25. The total footage 

sampled in each of the cores by percent was 25%, 51%, 31%, and 4.9% in the Adkisson 

1-33, Winney 1-8, Elinore 1-18, and Doberman 1-25 cores, respectively. The relatively 

large variation in the total footage of samples collected from each core is due in part to 

the limiting permissions granted to the author, especially evident in the Doberman 1-25. 



54 
 

The footage variation is also due to the natural variation in the amount of facies present in 

the cores that were ideal for sample collection. For example, the Adkisson 1-33 and 

Elinore 1-18 contain more organic-rich, non-skeletal grainstone macrofauna-bearing 

intervals to sample than the Winney 1-8, which contains much grainier and less organic-

rich facies. To compensate for the lack of ideal sampling intervals in the Winney 1-8 

core, whole-rock samples were collected from a relatively larger portion of skeletal 

grainstone facies than were collected from the other cores. Sample collection from 

skeletal grainstone facies were generally avoided otherwise because it was assumed that 

the coarse-grained, high-energy facies would have poor preservation potential for 

conodont elements, which are susceptible to fragmentation and winnowing.  
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Figure 16a. Part of figure 3a presented again, but this time showing the intervals where whole-

rock samples were collected for conodont element analysis in the Adkisson 1-33. The bolded 

dashed line indicates where the log was cut to display its full length in this figure. All depth 

tracks have been converted to log depth, though in this core the log and core depths are 

equivalent. Dashed lines labeled SB# represent third-order sequence boundaries established by 

LeBlanc (2014).  
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Figure 16b. Part of figure 3a presented again, but this time 

showing the intervals where whole-rock samples were collected 

for conodont element analysis in the Winney 1-8. All depth tracks 

have been converted to log depth, and in this core the log depth is 

10 ft. above the core depth. Dashed lines labeled SB# represent 

third-order sequence boundaries established by LeBlanc (2014).  
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Figure 16c. Part of figure 3b presented again, but this time showing the 

intervals where whole-rock samples were collected for conodont element 

analysis in the Elinore 1-18. All depth tracks have been converted to log 

depth, and in this core the log depth is 6 ft. above the core depth. Dashed 

lines labeled SB# represent third-order sequence boundaries established 

by LeBlanc (2014). 
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Figure 16d. Part of figure 3b presented again, but this time showing the intervals where whole-rock samples were 

collected for conodont element analysis in the Doberman 1-25. The bolded dashed line indicates where the log was 

cut to display its full length in this figure. All depth tracks have been converted to log depth, and in this core the log 

depth is 6 ft. above the core depth. Dashed lines labeled SB# represent third-order sequence boundaries established 

by LeBlanc (2014) for the Elinore 1-18 and correlated to the Doberman 1-25 by Hill (2017). 
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Whole-rock Sample Processing 

 All whole-rock sample processing was conducted at the Hazardous Reactions 

Laboratory at Oklahoma State University. Figure 17 is a generalized workflow that 

summarizes how the whole-rock samples were processed to extract conodont elements in 

each of the cores. The samples were processed using several standardized techniques, 

including sample disaggregation, acid digestion, and heavy liquid density separation. 

Each sample underwent at least two acid treatment baths and some that were more 

difficult to digest had up to seven acid treatments applied to them (each acid treatment 

had a duration of 24 hrs.). For samples that underwent more than three acid treatments, 

the spent acid from the prior acid treatment was saved and reused as a buffering agent, 

with its pH kept above 2.8 in the next acid treatment to protect conodont elements from 

corrosion, discoloration, or partial dissolution from prolonged exposure to acid treatment 

(Dzik, 2000). For a detailed description of the techniques used to process whole-rock 

samples and extract conodont elements, refer to Appendix B. For a full list of the type 

and number of acid baths applied to whole-rock samples, refer to Appendix A. 

Observations made by the author coupled with x-ray diffraction (XRD) data 

available on select whole-rock samples in each of the cores showed that coarser-grained, 

siliciclastic-rich facies were most difficult to digest in acid. This means that samples 

containing siliceous sponge spicules or rich in glauconitic sandstone, such as in the 

Adkisson 1-33, Elinore 1-18, and Winney 1-8, and the sandstone and siltstone facies of 

the Doberman 1-25 were the most difficult to process.  

 



60 
 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 17. Generalized workflow for extracting conodont elements from whole-rock samples. 
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Residue Picking and Conodont Element Identification 

Upon acid treatment, each whole-rock sample produced a residue. Residue from 

an acid treated whole-rock sample consisted of gravel-sized to fine sand grains, which 

were then sorted by decanting the spent acid, residue, and remaining whole-rock sample 

through a mesh sieve stack. Sieve sizes included #120, #35, and #4, arranged from 

bottom to top. Residues were then collected from both the #35 and #120 mesh sieves. 

The residue in the #35 mesh sieve was scanned for conodont elements to check for larger 

specimens that might not have made it into the #120 mesh sieve. No conodont elements 

were ever recovered from the #35 mesh sieve. The residue from the #120 mesh sieve 

contained a collection of grains that ranged from medium to fine sand, or from 1/200 to 

1/48 in. (0.125 to 0.5 mm). Average conodont elements of the Mississippian have been 

shown to range in size from 1/128 to 1/48 in. (0.2 to 0.5 mm) (Barrick, 2001); therefore, 

the portion collected the #120 mesh sieve was checked most thoroughly for conodont 

elements using the heavy liquid density separation technique as described in Appendix B.  

After residues were collected, conodont elements as well as all other identifiable 

fossils and heavy minerals were wet brush picked using a Leica L2 light microscope set 

at 20x magnification, following the methods of Miller (2015). All conodont elements–

whether fragmentary or whole–were picked and included in the results (discussed in the 

next chapter). Picked elements not well-preserved were placed on gridded microscope 

slides while well-preserved specimens (i.e., specimens the author thought would be ideal 

for additional work) were mounted to carbon tape, set on aluminum stubs, and positioned 

in their proper orientations for imaging with the scanning electron microscope (SEM). 

All mounted specimens were then coated in gold-palladium for analysis with the SEM.  
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The tiny morphologic features that define each species of conodont can only be 

resolved using relatively high magnification (40x). Since conodont elements’ 

morphologic features are micrometers in size, imaging them with scanning electron 

microscopy was necessary. The SEM resides at the Venture 1 Research Facility in 

Stillwater, Oklahoma. Scanning electron microscopy works by shooting electrons out an 

electron gun and focusing them through a series of electromagnets to form a narrow beam 

of energy that reflects off the surface of a sample (e.g., a conodont element), producing 

secondary (surface) electrons that are in turn caught by a Faraday cage and analyzed by a 

series of sensors connected to computer software. The sensors and software interpret the 

varying energy levels and orientations of the incoming secondary elections to create an 

image at a single sampled location. The software then shifts the beam of electrons, 

“scanning” the specimen and rendering a high-resolution image (up to about 0.4 nm) 

within a couple of seconds. All conodont elements were analyzed with the SEM set at 20 

kV, which provided a maximum resolution slightly below 1 nm.    

 

 

 

Dataset Limitations 

This study is limited primarily by the fact that whole-rock sampling was done 

from core. Core samples are not as ideal for obtaining conodont elements as outcrop 

samples are because (1) one cannot easily return to a locality rich in elements to obtain 

additional whole-rock samples and (2) there is far less rock available to process, meaning 

that fewer conodont elements are expected to be recovered relative to similar studies 

conducted in outcrop that have access to larger quantities of rock for processing. As 

permission was not granted to process whole-rock samples along the entire length of 
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core, the biostratigraphic results of this study are further restricted in that it was 

impossible to analyze conodont elements that may be contained within unsampled 

sections of the cores. Also, because of sampling restrictions, a facies bias was introduced 

to this dataset for maximizing conodont element recoveries, though it may be that 

relatively more conodonts occur within the lithofacies that were not sampled as 

frequently. Additionally, residues of whole-rock samples represented on average only 

about one half of the total rock volume processed because of the inability of the acids 

used to fully digest the samples. This means conodont specimens likely remain in 

unprocessed portions of the samples analyzed.  

 

 

 

Collection Repository 

 

Conodont elements and all other materials examined in this study (i.e., wet-brush 

picked minerals, fish scales and teeth, as well as SEM imaged crinoid stems and siliceous 

sponge spicules) reside with the Paleontology Repository in the Department of Earth and 

Environmental Sciences at the University of Iowa, 115 Trowbridge Hall, Iowa City, IA, 

52242, U.S.A. 
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CHAPTER VII 
 

 

 

RESULTS AND DISCUSSION 

 

 

 

Conodont Biostratigraphic Results and Interpretation 

Biostratigraphic results indicate the “Mississippian Limestone” interval of north-

central Oklahoma in the study cores ranges from middle Osagean to upper Chesterian 

(uppermost Tournaisian to Visean), consistent with the study’s initial hypothesis and 

previous predictions of others (i.e., Thornton, 1958; Curtis and Chaplin, 1959; McDuffie, 

1959; Rowland, 1964; Selk and Ciriacks, 1968; Harris, 1975). Conodont species that 

were relatively age diagnostic and key for defining age boundaries in the study cores 

included the following: (1) Polygnathus bischoffi in the lower part of the first 

(lowermost) third order depositional sequence of the Elinore 1-18, indicative of the 

middle Osagean and a key specimen within the anchoralis-latus Zone of North America 

(Perri and Spaletta, 1998); (2) Gnathodus texanus, G. bulbosus, G. linguiformis, G. 

cuneiformis, and G. pseudosemiglobular in the upper part of the first (lowermost) third 

order depositional sequence of the Elinore 1-18, indicative of the upper Osagean and 

equivalent to the Gnathodus bulbosus and lower and middle parts of the G. texanus 

Zones of North America (Collison et al., 1970; Boardman et al., 2013; Miller, 2015); (3) 

G. species A and G. sp. 15 (aff. punctatus) in the second (from the base) third order 
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depositional sequence of the Elinore 1-18, indicative of the basal-lower Meramecian and 

equivalent to the upper part of the G. texanus Zone of North America (Thompson and 

Fellows, 1970; Boardman et al., 2013; Godwin, 2017); (4) Vogelgnathus campbelli and 

Lochriea commutata in fourth (uppermost) third order depositional sequence of the 

Adkisson 1-33 and Elinore 1-18, indicative of the basal-lower Chesterian and 

characteristic of the G. bilineatus-Cavusgnathus charactus Zone of North America. 

(Dunn, 1970; Perri and Spaletta, 1998; Godwin, 2017); (5) Adetognathus unicornis in the 

third (from the base) third order depositional sequence in the Doberman 1-25, indicative 

of the upper Chesterian and equivalent to the lower part of the A. unicornis-

Rhachistognathus muricatus Zone of North America (Repetski and Henry, 1983; Morrow 

and Webster, 1991; Bahrami et al., 2014); and (6) Rhachistognathus muricatus 

transitional form to R. websteri and R. minutus minutus in the fourth (uppermost) third 

order depositional sequence of the Doberman 1-25, indicative of the uppermost 

Chesterian and equivalent to the upper part of the A. unicornis-Rhachistognathus 

muricatus Zone (Baesemann and Lane, 1985; Morrow and Webster, 1991; Krumhardt et 

al., 1996). Figures 18 and 19 summarize key conodont biostratigraphic results and 

Figures 20-24 provide examples of some of the important conodont species in this study. 

Refer to Appendix C for a section on systematic paleontology and Appendix D for SEM 

images (plates) of selected conodont species. 

Of note, most of the conodonts identified in this study are moderate to deeper-

water species, such as the polygnathids and gnathodids of the Osagean and lower 

Meramecian as well as the vogelgnathids and lochrieids of the lower Chesterian. 

Interestingly, the upper Chesterian conodont fauna, which include the adetognathids and 
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rhachistognathids are more closely associated with shallow-water conodont biofacies, 

indicating the overall Mississippian depositional environment shallows upward. 

Conodont element recoveries were too sparse for the author to assign biozones in 

the cores (discussed later). As such, age boundaries (not biozones) were assigned to the 

cores and constrained by allowing conodont age-dated intervals to be representative of a 

single third order depositional sequence, or to the nearest major change in lithology that 

could be traced in all the cores where conodont control was sufficient above and below 

the change in lithology for establishing multiple ages within a single third order 

depositional sequence (Figure 19). The author assumed he could rely on the third order 

sequence stratigraphic boundaries that were previously established by LeBlanc (2014) 

and Hill (2017) because major changes in conodont species were consistently noted 

around them, and conodont species of the same relative age were recovered from the 

same correlated third order depositional sequences, such as between the fourth 

(uppermost) third order depositional sequence of the Adkisson 1-33 and Elinore 1-18 

(Figure 18), confirming the validity of the correlations to the author. The sequence 

stratigraphic correlations were also validated by fossil evidence in the transgressive 

system tracts of each third order depositional sequence which showed there were 

predictable patterns in the fossil evidence, suggesting a genetic relationship between them 

(Table 2). 

Interestingly, no valuable conodont biostratigraphic information was recovered in 

the third (from the base) third order depositional sequence of the Adkisson 1-33, Winney 

1-8, and Elinore 1-18 (Figure 18). The author is confident, however, that the depositional 

sequence without age control is Meramecian for at least two reasons: (1) average 
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representations of the type of sponge spicules in this depositional sequence were 

recovered from the Adkisson 1-33 and Winney 1-8 and imaged with the SEM (Figure 25) 

and found that triaxon spicules dominated the sequence, while only a few monaxon and 

tetraxon spicules were ever recovered. Franseen (2006) and others have shown that 

triaxon spicules dominate the Meramecian interval in the Oklahoma basin, monaxon 

forms dominated in the Osagean, and triaxon and tetraxon forms dominated in the 

Chesterian. Therefore, the dominance of triaxon spicules provides strong evidence that 

the depositional sequence without any age control is at least Meramecian. (2) The third 

order depositional sequence below and above the interval without age constraint from 

conodonts is basal-early Meramecian and basal-early Chesterian, respectively, indicating 

that a Meramecian (late Meramecian?) age designation for the interval best fits the data 

set and established sequence stratigraphic framework.     

A tentative position for the Tournaisian-Visean contact was assigned in the 

Adkisson 1-33, Winney 1-8, and Elinore 1-18 (Figure 19). This assignment was 

principally based on the occurrence of conodont species Polygnathus bischoffi in the 

Elinore 1-18, which is only known to occur within the anchoralis-latus Zone (Perri and 

Spaletta, 1998). The top of the anchoralis-latus Zone (Perri and Spaletta, 1998), or 

alternatively the bottom of the Gnathodus bulbosus Zone (Lane and Brenkle, 2005; 

Boardman et al., 2013) marks the position of the Tournaisian-Visean contact. Because G. 

bulbosus specimens were the dominate conodont fauna recovered from the Elinore 1-18 

just above where P. bischoffi was noted and there was a relatively major change in 

lithofacies that could be traced from the Adkisson 1-33, Winney 1-8, and Elinore 1-18, it 

is thought that enough evidence is present in the cores to tentatively assign the position of 
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the Tournaisian-Visean contact there. Importantly, because it is unclear where the lower 

limit of the anchoralis-latus Zone is in the Adkisson 1-33, Winney 1-8 and Elinore 1-18, 

an earlier part of the Osagean may be represented in the cores, particularly in the 

Adkisson 1-33 and Winney 1-8 where no age-diagnostic conodont species were found.  

Addressing whether the Visean-Superkovian contact is represented in any of the cores, 

the author compared the Chesterian conodont fauna from this study to Chesterian 

conodonts from other North American basins and their biozonations and found that the 

Chesterian conodont taxonomic forms in this study are not representative of Superkovian 

age conodonts. Therefore, no Visean-Superkovian contact was assigned in any of the 

study cores. Identification of the Tournaisian-Visean and Visean-Superkovian contacts 

are important for placing the Mississippian interval of north-central Oklahoma within a 

global Carboniferous stratigraphy. 

Because there are no real indicators of relatively significant periods of missing 

geologic time in the Mississippian interval in the study cores (i.e., there is no evidence for 

major unconformities within the Mississippian stratigraphy studied), the biostratigraphic 

evidence is also meaningful in that it supports a more-or-less continuous production of 

some kind of organic material and inflow of sediments into the Oklahoma basin from the 

middle Osagean to the late Chesterian. Also, the thickness of the Chesterian section is 

more than double that of the Meramecian, and both the Meramecian and Chesterian 

sections are interpreted to have been deposited within a mid- to outer-ramp environment, 

indicating that the rate of sedimentation increased as did the rate of basin subsidence, 

both of which may be related to Late Mississippian orogenic activity of the Ouachita 

and/or Nemaha systems.  
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The age-dates assigned to the Mississippian interval in the study cores also 

provide important constraint for better determining their proper lithostratigraphic names. 

Future work is needed to assign a more formalized lithostratigraphic nomenclature to the 

Mississippian interval over the area studied.   

 

 



70 
 

 

Figure 18. Summary of biostratigraphic results. Important conodont species are indicated toward the bottom of the figure, and 

they are color-coded and correspond to the depths where they were recovered in each of the cores. Note that the difference in 

thickness among the three cores oriented east-west along paleostrike is likely due to syndepositional faulting (LeBlanc, 2014). 

The solid black lines are third order depositional sequence boundaries established by LeBlanc (2014) in the Adkisson 1-33, 

Winney 1-8, and Elinore 1-18 and Hill (2017) in the Doberman 1-25 and from the Doberman to the Elinore 1-18. The dashed 

black line divides the middle from the upper Osagean and tentatively represents the Tournaisian-Visean contact.  
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Figure 19. Summary of the interpreted geological ages and their boundaries of the “Mississippian Limestone” in north-central 

Oklahoma. The solid black lines are third order depositional sequence boundaries established by LeBlanc (2014) in the 

Adkisson 1-33, Winney 1-8, and Elinore 1-18 and Hill (2017) in the Doberman 1-25 and from the Doberman to the Elinore 1-

18. The dashed black line divides the middle from the upper Osagean and tentatively represents the Tournaisian-Visean contact.  
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Figure 20. SEM image of Polygnathus bischoffi, recovered from 

the Elinore 1-18 a few feet above the Woodford-Mississippian 

contact. Polygnathus bischoffi is characteristic of the middle 

Osagean and has been noted as a key species for defining the 

anchoralis-latus Zone just below the Tournaisian-Visean contact 

(Perri and Spaletta, 1998).      

150 µm 
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Figure 21. SEM images of (A) Gnathodus texanus, (B) G. bulbosus, and (C) 

G. linguiformis, recovered from the Elinore 1-18 a few feet below the bottom 

of the second (second the base) third order depositional sequence boundary. 

Together, these three species are most characteristic of the upper Osagean in 

the Oklahoma basin (e.g., Miller, 2015; Boardman et al., 2013). 

B C 

150 µm 

A B 

150 µm 
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Figure 22. SEM images of (A) Gnathodus sp. A and (B) G. sp. 15 (aff. 

punctatus) recovered from the Elinore 1-18 just above the top of the 

second (from the base) third order depositional sequence boundary. 

Both species are characteristic of the basal-lower Meramecian in the 

Oklahoma basin (e.g., Boardman et al., 2013; Godwin, 2017). 

A B 

150 µm 
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Figure 23. SEM image of Vogelgnathus campbelli, recovered from the Adkisson 1-33 

several feet above the bottom of the fourth (uppermost) third order depositional sequence 

boundary. V. campbelli is characteristic of the basal-lower Chesterian in the Oklahoma 

basin (e.g., Godwin, 2017). 

100 µm 
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Figure 24. SEM image of Rhachistognathus minutus 

minutus, recovered from the Doberman 1-25 several 

feet above the bottom of the fourth (uppermost) third 

order depositional sequence boundary. R. minutus 

minutus is characteristic of the uppermost Chesterian 

(Visean) (e.g., Bahrami et al., 2014). 
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Figure 25. SEM images of a representative sample of siliceous sponge 

spicules in the third (from the base) third order depositional sequence of the 

Adkisson 1-33 (figs. 2-7) and Winney 1-8 (fig. 1). Figs. 1-2, 4-7: Triaxon 

forms; Fig. 3: Monaxon form. Osagean spicules are dominantly monaxon, 

while Chesterian forms are dominantly triaxon and tetraxon (Franseen, 2006, 

table 4 and references therein).  
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Table 2. Data table showing the similarity of relative abundance and distribution of fossil groups noted by the author during whole-rock 

processing in each third order depositional sequence of the study cores as initially correlated by LeBlanc (2014) and Hill (2017). The similarly 

between fossil groups and their relative abundances as described below in each correlated sequence suggests a genetic relationship does exist 

between them.  
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Comparison of Biostratigraphic Results with the Chemostratigraphic Record 

Dupont (2016) constructed chemostratigraphic curves for the Adkisson 1-33, 

Winney 1-8, and Elinore 1-18 based on carbon isotope data. She then scaled her results 

with other carbon isotopic curves published for the Mississippian interval in select parts 

of the United States (Mii et al., 1999; Saltzman, 2002, 2003; Batt et al., 2007; Koch et al., 

2014), basing her correlations on matching the shape and signal strength of her curves 

with the other data sets (Dupont, 2016). Figure 26 summarizes the author’s 

reinterpretation of the chemostratigraphic curves constructed by Dupont (2016) in the 

Adkisson 1-33, Winney 1-8, and Elinore 1-18 based on the new conodont biostratigraphic 

evidence. The author’s reinterpretation of the chemostratigraphic results is most 

interesting in that it strongly suggests the entire Meramecian interval is represented in the 

study cores and that the positive excursions in the mid-Osagean and basal Chesterian 

most closely match the results of Saltzman (2002, 2003) and Batt et al. (2007), indicating 

that the climatic drivers associated with these excursions probably affected Oklahoma 

basin deposition as well.  

The author rescaled Dupont’s (2016) chemostratigraphic data set by matching the 

core depths at which newly age-dating information was obtained with the same core 

depths from the chemostratigraphic data set and then resizing the chemostratigraphic 

curve to achieve a best fit among all the data sets available. Of note, the uppermost 

boundary for the chemostratigraphic curve in the Adkisson 1-33 was assigned below the 

Visean-Superkovian contact, as no conodonts characteristic of the Superkovian were 

identified in this study.  
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During the reinterpretation process, the author was less concerned about precisely 

matching the signal strength of carbon isotopic excursions, since they vary significantly 

among all the data sets presented, and focused more on fitting the general shape of the 

data with the other ones, while also honoring the biostratigraphic evidence. It is important 

to note that the curve-fitting process altered the 1:1 scale of the isotopic results as they 

were originally collected by their core depth; however, this is an expected and acceptable 

modification to the data set, since the isotopic data are meant to represent changes in the 

carbon isotopic signature with time and not depth. Significantly, this means that some 

data points appear condensed or stretched after the original data set, indicating there is 

potential to relate the condensing or stretching data points to relative changes in the rate 

of sediment deposition in the cores, especially if the data set had more biostratigraphic 

control points. 
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Figure 26. Summary of chemostratigraphic work showing carbon isotope data for the “Mississippian Limestone” in North America 

compiled by Mii et al. (1999), Saltzman (2002, 2003), Batt et al. (2007), Koch et al. (2014) and Dupont (2016). Dupont’s (2016) isotopic 

data have been rescaled using the conodont biostratigraphic results of this study to demonstrate that the “Mississippian Limestone” 

interval over the area studied ranges from middle Osagean to late Chesterian in age. 



82 
 

Conodont Element Recovery and Preservation 
 

A total of 689 highly-fragmented to well-preserved conodont elements were 

recovered from approximately 523 lb. (237 kg) of core, for an average of about 2 

elements collected per 2.2 lb. (1 kg) whole-rock sample. Almost all conodont elements 

recovered were too poorly preserved for use as biostratigraphic markers. Based on light 

microscopy, just 40 conodont specimens between all the cores were well preserved 

enough for imaging with the SEM and about 30 specimens were identified to the species 

level. In total, 7 genera and 15 species types were identified.  

The author attributes the low recoveries and poor preservation quality of conodont 

elements to three contributing factors: (1) prior studies have shown that conodont 

recoveries of southern Kansas, northern Oklahoma, and in places of the adjacent tristate 

region are expected overall to be low; (2) this study was conducted in core and not 

outcrop; and (3) the sampling methodology applied in this study largely biased collection 

sites to the mid-ramp and outer-ramp environments of the Oklahoma basin in north-

central Oklahoma. A discussion of the first two of these factors follows, while the third 

factor is further addressed later in the chapter.  

There is an overall lack of biostratigraphic work published on the “Mississippian 

Limestone” in south-central Kansas and north-central Oklahoma. This is not surprising 

since the interval does not outcrop anywhere over the region, making it less convenient to 

study from a biostratigraphic perspective. Prior attempts to conduct biostratigraphic 

analyses in the subsurface “Mississippian Limestone” over south-central Kansas and 

north-central Oklahoma have been made (Selk and Ciriacks, 1968; Mazzullo et al., 2009), 

but these studies yielded limited to unusable results. For example, Selk and Ciriacks 
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(1968) provided their interpretation of how Mississippian strata correlate to one another 

in logs in north-central Oklahoma based on conodont data they collected from some 

cored Mississippian wells over their area of interest. However, the authors reported they 

had sparse recoveries and did not include their methods for their biostratigraphic analysis 

or any images of the conodont elements they recovered (Selk and Ciriacks, 1968). 

Mazzullo et al. (2009) later attempted to constrain the age of the “Cowley” facies of the 

“Mississippian Limestone” across southern Kansas and northern Oklahoma, again using 

conodont elements recovered from core. The authors of that study reported that their 

recoveries and preservation quality of conodont elements were not satisfactory for use in 

relating them to the biostratigraphic record (Mazzullo et al., 2009).  

Neither Selk and Ciriacks (1968) or Mazzullo et al. (2009) provided an 

explanation for why they had difficulty recovering useful conodont specimens from their 

cores; however, it is generally understood among conodont biostratigraphers that working 

from core can be difficult because (1) the amount of rock sample is very limited; (2) beds 

which contain high abundances of conodont elements cannot be resampled; and (3) rock 

samples cannot be obtained along a continuous lateral stratigraphic section for getting 

rock volumes that better represent later shifts in lithofacies and which may preferentially 

contain higher abundances of conodont elements. Experts in conodont biostratigraphy, 

such as Dr. Phil Heckel at the University of Iowa (personal communication, 2017) and 

Dr. Scott Ritter at Brigham Young University–Provo (personal communication, 2017), 

have also indicated during private conversations with the author that in cored 

Pennsylvanian and Permian intervals of the Anadarko Basin, where conodonts are 

generally more abundant per unit of rock volume to undergo analysis, sometimes very 
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little useful biostratigraphic evidence is recovered (e.g., Janousek, 2017) for reasons that 

are not well understood. Therefore, even though past studies and this one may 

collectively suggest that depositional and/or preservation conditions may not have been 

ideal for conodont elements throughout much of the Oklahoma basin, the relatively small 

number of cores analyzed to date indicates there is potential in the region for additional 

core(s) to yield better recoveries of well-preserved conodont elements. Another important 

point is that the results show that having even just a few age-diagnostic conodont 

specimens throughout the Mississippian interval provides valuable high-resolution time-

stratigraphic information that no other age-dating method has been able to provide to date 

for the Oklahoma basin.      

In contrast to prior conodont biostratigraphic studies conducted in core, studies 

conducted in “Mississippian Limestone” outcrops in the Oklahoma-Missouri-Arkansas 

tristate region have generally reported relatively high recoveries of conodont elements, 

with hundreds of conodont elements collected per pound or kilogram of rock sample in 

some cases (e.g., Boardman et al., 2013; Godwin, 2017). Other studies conducted within 

the same tristate region have reported recoveries that more closely compare with the 

results of this study (e.g., Shoeia, 2012; Miller, 2015). Miller (2015), for example, 

attributed his low recoveries from his outcrop work in the Ozarks to oversampling from 

coarse-grained carbonate facies, which he argued contained fewer conodonts per volume 

of rock because of the sediment dilution factor and the tendency of conodont elements to 

be fragmented or destroyed in relatively high-energy environments. Table 3 summarizes 

the recovery distribution of conodont elements by lithotype in each of the cores, and it 

generally supports the argument by Miller (2015) but not always. For example, this study 
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found decent recoveries from grainstone facies in the Adkisson 1-33 and Doberman 1-25, 

and that was with a facies bias applied against sampling from grainstone beds.  

The “hit-or-miss” pattern of recovering conodont elements from Mississippian 

rocks over the U.S. Mid-Continent region, even in outcrop, suggests it is not just the 

“Mississippian Limestone” of south-central Kansas and north-central Oklahoma that 

bears sparse age-dating information and that it may be a problem basin wide; therefore, it 

requires a broader explanation for why conodont element recoveries and preservation 

quality within the basin are typically so poor. Interestingly, Godwin (2017) recently noted 

a similar basin wide recovery pattern in his doctoral research on Meramecian and 

Chesterian strata across northeastern Oklahoma and into the adjacent tristate region. He 

observed that it is generally difficult to recover conodont elements for the Meramecian 

and Chesterian compared with Kinderhookian and Osagean strata (Godwin, 2017). 
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Table 3. Charts showing how many and what relative percent of conodont elements came from each of the facies types in each of the cores. 

Note that columns labeled “n” represent the number of samples from the same facies type for each of the cores. Refer to figure 3ab for a 

reminder of what each facies number (type) means.  
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Geologic Processes that Affected Conodont Elements 
 

Just under 75% of the conodont elements obtained from the Mississippian interval 

in the cores were fragmented prior to their recovery. Evidence for the post-depositional 

fragmentation of conodont elements include (1) fractured surfaces displaying some type 

of mineralization (i.e., thin pyrite or vivianite coating, or iron oxide staining) that would 

require geologic time to form; and (2) sediment (mud) cemented to fractured surfaces, 

demonstrating that fractures existed prior to the processing of the whole-rock sample 

(Figure 27). In lieu of the observation that most of the elements were fragmented and 

weathered beyond identification prior to this study, the author considered three major 

post-depositional processes to explain why the elements were so poorly preserved in the 

geologic record. They are (1) sediment compaction; (2) bioerosion; and (3) reworking 

during storm events. In the following paragraphs, the first two of these factors are 

addressed, after which the third factor is discussed in greater detail in the next section.   

LeBlanc (2014) examined more than 100 thin sections and described core in the 

Adkisson 1-33, Winney 1-8, and Elinore 1-18 but observed little evidence for differential 

compaction in either her thin section work or core descriptions. Similarly, Hill (2017) did 

not focus on describing the effects of compaction in the Doberman 1-25. As such, it is 

difficult to estimate the degree to which conodont elements and other fossil evidence, 

such as brachiopods, bryozoans, or crinoids were impacted by compaction. However, the 

author noted during whole-rock processing that whole specimens of thin-shelled 

brachiopods were sometimes preserved with two or three vertical to sub-vertical fractures 

running through them. Presumably, the brachiopod shells had to be deposited, then buried 

for them to be preserved in-situ and were later fragmented as the sediments around them 
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compacted from overburden stresses. More often, brachiopod shells were collections of 

fragmented material (shell hash) that overlapped one another along a bedding plane, 

indicating that the whole specimens were fragmented and transported prior to their burial. 

Prior studies have shown that conodont elements may also show signs of compaction in 

SEM work (e.g., von Bitter and Purnell, 2005). Compacted conodont elements display 

characteristic fracture patterns (Purnell and Jones, 2012), none of which were 

deterministically observed in this study. Therefore, while compaction may help to explain 

the low preservation quality of the conodont elements and may have influenced the data 

set, the author is not convinced that compaction fully explains the overall poor 

preservation quality of the conodont elements, since most of the brachiopod shells and 

conodont elements analyzed did not display convincing evidence for compaction 

features. In addition, it is well known that carbonate sediments cement early after their 

deposition (Grammer et al., 1993; 1999), which could have reasonably provided a way 

for the conodont elements to resist fragmentation by their becoming cemented before the 

sediments were significantly buried and compacted.  

As the author indicated earlier, bioerosion may be another contributing factor to 

the poor preservation quality of conodont elements. Bioturbated zones are evident in each 

of the cores described by LeBlanc (2014) and Hill (2017), especially in muddier facies. 

However, the author noted that poorly preserved collections of conodont elements did not 

occur preferentially within burrowed or bioturbated zones, indicating that some other 

process much more geographic and stratigraphically extensive contributed to the 

degradation of the elements in all the cores. Evidence for borings, or teeth marks, or 

anything else which directly indicated the conodont elements recovered from this study 
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underwent any bioerosion was not observed. Therefore, it is possible that burrowed and 

bioturbated zones contributed to the degradation of conodont elements, but it is unlikely 

to be the central reason for the low preservation quality of conodont elements in this data 

set. Therefore, the author turns to another process to explain the preservation of 

conodonts: reworking of the conodont elements during frequent storm events.  
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Figure 27. Schematic drawing of a typical conodont element recovered from core created from 

making observations of actual evidence (element pictured in the black background). Note how the 

conodont element displays evidence of cemented sediment around its edges and fractured surfaces 

as well as the mineralization (in this case pyritization) that is also present.   



91 
 

Reworked Storm Intervals 
 

A clear definition of what is meant by the term “reworked storm intervals” does 

not exist in the literature, though it is used most frequently by biostratigraphers and in 

this thesis to indicate that a bed has been disturbed in some way by a storm or storm 

events sometime after it was deposited up to the point at which it reached burial depths 

beyond the influence of storms. Reworked storm intervals and storm deposits 

(tempestites) in general are common components on carbonate ramps, specifically within 

the mid-ramp and outer-ramp environments during periods of geologic history that lacked 

major reef-building organisms, such as during the Mississippian Subperiod (Figure 29). 

Evidence that the carbonate ramp of the Oklahoma basin is storm-dominated include 

frequent occurrences of swaley and hummocky cross-stratification in beds throughout the 

Mississippian interval in the study cores; dominance of high-energy facies and linear 

sand belts oriented across strike in the mid-ramp and outer-ramp environments in the 

study cores, indicating high-energy, wave-dominated (non-tidal flow) environmental 

conditions; and storm deposits commonly observed in the outer-ramp to distal outer-ramp 

facies of the study cores (LeBlanc, 2014; Hill, 2017).  

Macke and Nichols (2007) observed after an extensive literature review that 

several authors working in Mississippian age strata over the U.S. Mid-Continent have 

already called on storm reworking to explain low the preservation quality of their 

conodont element collections, such as in the Pitkin Limestone (Chesterian), Arkansas and 

Mississippian interval in southern Wales of the United Kingdom (both examples are also 

summarized by Werner, 2004). Therefore, it should be no surprise that there was storm 

reworking in the Oklahoma basin, as it has already been noted to occur in places near the 
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study area and around the world, and it is also an expected aspect of deposition in the 

OSU-Industry Mississippian Consortium’s depositional model.  

Most often, conodont biostratigraphers identify reworked intervals by observing 

significantly different age conodont species within the same bed (time-averaged species) 

that are deposited within a suspected or known storm bed. Storm reworked intervals do 

not often contain such long-term and obvious changes in conodont species because they 

represent relatively brief moments in geologic time (i.e., hundreds to thousands of years). 

Therefore, the author had to use other techniques for determining if the conodont 

elements in the study cores were reworked by storms. To this end, the author noted that 

past workers have focused on using characteristics such as color, roundness, smoothness, 

and sorting of conodont elements to determine storm reworked intervals. The right 

combination of these factors differentiates a conodont element collection from having 

been reworked in bottom currents or storm events (e.g., sorted element collections are 

storm reworked while hydrodynamically concentrated element collections are bottom 

current reworked). Refer to Appendix A for a detailed list of where reworked intervals 

occur in the cores.  

Observing the differences in color and texture of a conodont element is the easiest 

to determine whether it has been reworked by storms. Conodont elements change color 

and for several reasons. When conodont elements undergo diagenetic change from 

heating during burial, impact events, or hydrothermal fluids for example, its’ color 

appears dull gray or white (bleached) and may have patches of dark brown, black, white, 

and gray left on its surfaces (Armstrong et al., 1992; Konigshof, 2003; Mason et al., 

2008). Additionally, the microstructure of conodonts elements is altered during these 
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diagenetic processes, and these types of alteration can all be observed and differentiated 

in plain light and in SEM. However, if conodont elements overexposed to acids they 

appear a dull to opaque white, with pitted and jagged surfaces and reaction surfaces on 

edges of elements that look like “noise” on an analog television (Collinson, 1963; Miller, 

2015). But if conodont elements are storm reworked, then they display a characteristic 

frosted, rounded, smoothed character on their surfaces and have a uniform pearly white 

color and luster to them. At that point, the level of sorting and abundance of specimens 

also helps determine if they were affected by storms. Therefore, to determine if conodont 

elements were either diagenetically altered, damaged by acid treatment, or reworked, the 

author conducted experiments and looked at SEM images that differentiated between the 

three types of effects.  

A few elements that were recovered from the cores and determined to be well-

preserved but have no possible biostratigraphic application were left in acid for several 

days. The author observed each day how these elements changed over time and compared 

against elements recovered from residues of whole-rock samples that were already noted 

to be pearly white (representative of a storm reworked conodont element). From this 

experiment, the author noted that conodont elements from the residues had a uniform 

pearly white luster and their surfaces appeared to be smoothed and their edges rounded. 

In contrast, conodont elements which sat in acid for prolonged periods during whole-rock 

processing appeared similarly white, but they lacked any luster and their surfaces became 

pitted, with their edges appearing jagged and displaying a relatively bright white reaction 

rim on surfaces where the element was thinnest. Only a handful of conodont elements 

recovered “as is” from the rock record displayed any evidence for having been 



94 
 

overexposed to acid treatment, suggesting the whitened conodont elements recovered 

from the residues were either reworked intervals or (possibly) the product a diagenetic 

alteration. However, the possibility of the elements being the product of diagenesis was 

ruled out because they did not fit the description of what diagenetically altered conodont 

elements should look like in plain view or under the SEM. Diagenesis was also ruled out 

because the elements have an almost ubiquitous low CAI and many of the “frosted” white 

specimens have organic matter preserved in the form of fluorapatite (appears blue-green), 

the latter of which is one of the first things removed when elements interact with 

diagenetic fluids. Of note, conodont elements from the upper part of the Winney 1-8 core 

(above 5,200 feet subsea) and in the Elinore 1-18 and Doberman 1-25 cores averaged 

about 1 on the CAI. In the lower part of the Winney 1-8 core (below 5,200 feet subsea) 

and in the Adkisson 1-33 core, conodont elements averaged about 2 on the same scale 

(Figure 13). These results are indicative of a relatively shallow burial history, which 

resulted in very minor diagenetic alternation of the conodont elements over geologic 

time.  

Frequently, conodont specimens collected from the same whole-rock sample 

contained some pearly white elements while other specimens did not display any 

whitening. This observation is indicative of the time-average nature of storm reworked 

deposits, where the older specimens tend to experience more weathering affects from 

storms than their younger counterparts and the amount of time represented by conodont 

species variation is geologically insignificant (e.g.., all middle Osagean fauna). 

Importantly, the same conodont element collections containing specimens of white to 

naturally color also tended to be sorted by the type of element (e.g., M-elements only) 
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and size (i.e., similarly-sized fragments of conodont elements). McGoff (1991) 

demonstrated during his experimental lab work how conodont elements tend to fragment 

and sort themselves in a flow tube if a current is induced through the tube, such as what 

might happen if conodont elements were disturbed by a storm event. He also noted that 

conodont elements become hydraulically concentrated if run through a unidirectional 

flow tube, but they do not tend to concentrate themselves under storm-simulated 

conditions where the flow direction is varied (McGoff, 1991). Because the recoveries in 

this study were relatively low (a few to tens of specimens), the author concluded that 

most were not hydraulically concentrated, except for those occurring at the 

Mississippian-Woodford contact where they do occur in larger numbers (hundreds per 

kg. of whole-rock sample), probably concentrated from current flow during initial stages 

of flooding on the ramp.    

Together, the observations for conodont elements being reworked by frequent 

storm events strongly support that most conodont elements were deposited within a 

storm-dominated environment, which led to their overall low preservation quality. Figure 

28 summarizes the differences of diagenetically altered and acid-etched conodonts in 

general and storm reworked conodonts from this study. Because the conodont elements 

recovered were sampled most heavily from lithofacies interpreted to have originated on 

mid-ramp to outer-ramp settings that are characterized by the presence of storm deposits, 

it is suggested that the mid-ramp and outer-ramp are not ideal environments for 

preserving conodont elements in the Oklahoma basin. Conodont element recoveries and 

preservation quality may have also been affected to some degree by sediment compaction 

and bioerosion, in addition to surviving the destructive method of processing of the 
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whole-rock samples and experiencing minor diagenetic changes (recorded by the low 

CAI of all conodont elements recovered), though there is no major unifying evidence for 

these other processes to explain the overall preservation quality of conodonts in this study 

and others previously conducted within the basin (e.g., Mazzullo et al., 2009; Shoeia, 

2012; Miller, 2015).  
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Figure 28. A) Hydrothermally altered conodonts (CAI 6.5-7.5) under normal light (Konigshof, 2003). B) 

Example of an interpreted storm reworked interval of the Elinore 1-18 based on conodont evidence 

under a light microscope (40x). Note how the elements are all similarly sized and shaped (sorted) and 

how some specimens appear bright white while others are not. C) Example of a storm reworked 

conodont under SEM from this study. Note how smooth its surfaces are, the rounding of the upper 

portions of the denticles along the carina. D) Example from Miller (2015) of one of his acid-etched 

conodont elements recovered from Mississippian outcrops along the southwestern Ozarks. Note its dull, 

grainy texture that resembles the “noise” of an analog television.  

1 mm 150 µm 150 µm 
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Stratigraphic Controls on Conodont Element Recoveries 
 

It was suspected early in his investigation that sequence stratigraphic boundaries 

and major lithofacies changes, both representative of major changes in the depositional 

environment, might influence where abundant conodont element collections occur in the 

cores. Both assumptions were predicated on a study that reported where conodont 

elements are most recovered worldwide based on their occurrences within a time-

stratigraphic framework and different lithologies (Purnell and Donoghue, 2005). The 

study found that on a global average, conodont element recoveries are highest in 

maximum flooding surfaces (condensed sections) and in mudrocks containing highly 

biodiverse fauna (Purnell and Donoghue, 2005).  

To determine if the recovery results of this study would compare with global 

average recoveries, the author noted that generally, muddy facies of transgressive cycles 

and maximum flooding surfaces contained the highest abundances of conodonts. 

However, the single best predictor for determining where conodont elements are most 

heavily concentrated was whole-rock sampling from intervals with relatively high 

biodiversity. Both results are consistent with the global averages reported in Purnell and 

Donoghue (2005). Refer to Appendix A for a detailed list of where these “high 

biodiversity” intervals occurred in the cores based on the diversity of fossil specimens 

recovered from each whole-rock sample. 

During recovery, the author noted that higher abundances of conodont elements 

occur in third order transgressive facies in the Adkisson 1-33, Winney 1-8, and Elinore 1-

18 cores, while the highest abundances in the Doberman 1-25 occur in third order 

regressive facies. The author interprets this to mean that in the mid-ramp environment, 
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such as is best represented in the Adkisson 1-33, Winney 1-8, and Elinore 1-18 cores, 

conodonts are more abundant during the long-term (third order) transgressive cycles. In 

contrast, conodonts are more abundant in the outer-ramp and distal-outer ramp 

environments, such as best represented in the Doberman 1-25, during long-term 

regressive cycles. This recovery relationship means that during stages of third order 

flooding events (which characterizes the strata packages of the Oklahoma basin and 

represent the major events in relative sea level change), conodont populations flourished 

in environments that were nearer to the shore than in times of regression.  

The results of Miller (2015) and Godwin (2017) are consistent with the authors 

interpretation of conodonts having a sequence stratigraphic control on their recoveries. 

Miller (2015) conducted his research in Mississippian outcrops of northwestern Arkansas 

that were dominantly representative of inner-ramp and mid-ramp environments and his 

highest recoveries were from transgressive facies. In comparison, Godwin (2017) 

sampled from more outer-ramp and distal environments of the “Mississippian Limestone” 

throughout northeastern Oklahoma and the adjacent tristate region and noted that his 

highest conodont element recoveries were in regressive facies. While it remains unclear 

what geologic processes and factors are working together to yield such a trend in 

collections of conodont elements from the stratigraphic record, the author predicts that a 

more effective strategy for sampling conodonts in the Oklahoma basin for the future is to 

preferentially obtain whole-rock samples from transgressive facies of third-order 

depositional sequences if working in an inner-ramp to mid-ramp environment, or from 

regressive facies of third-order depositional sequences if working in a more distal 

location on the ramp. 
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Figure 29. Generalized depositional model of a typical carbonate ramp setting. The figure shows how frequent and infrequent 

reworking of deposits is expected within the mid-ramp and outer-ramp environments, respectively. Figure from Burchette and 

Wright (1992).  



101 
 

 
 
 
 
 
 

CHAPTER VIII 
 

 

SUMMARY AND CONCLUSIONS 
 

 

Summary of Results and Answers to Major Research Questions 

Conodont biostratigraphic results in combination with other lines of stratigraphic 

evidence have indicated that the Mississippian interval ranges from middle Osagean to 

late Chesterian in age. The results of this investigation support the initial hypothesis and 

help provide answers to the major research questions of this thesis. One important 

takeaway is that having even a few age diagnostic conodont species helps to greatly 

constrain the time-stratigraphic framework over areas that lack age-dating information in 

the “Mississippian Limestone” interval and provide data for better constraining 

depositional models of the basin and Mississippian reservoirs. What follows is a 

summary of answers to this study’s major research questions and other major 

conclusions: 

• Environmental conditions for the conodont animal of the Oklahoma basin 

over the area studied were not ideal, as indicated by the relatively low 

biodiversity, abundances, and preservation quality of fauna in the cores. 

Conditions were also not well-suited for preserving fossil evidence, as 

primarily indicated by the storm reworked intervals from which most of the 
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conodont element collections are interpreted to originate from. Most of the 

conodont species are indicative of deeper-water conditions on the carbonate 

ramp, with more moderate to shallow-water species appearing only in the 

upper-uppermost Chesterian 

• Conodont elements in this study experienced very little diagenetic alteration, 

as indicated by their low CAI values and rare fluorapatite preserved on select 

specimens. There is also little evidence for extensive destruction of the 

elements because of compaction or bioerosion 

• The best predictor for recovering relatively high numbers of conodont 

elements (in this study) was in processing whole-rock samples of muddy 

skeletal lithofacies with relatively high biodiversity in them. Conodont 

elements also appeared to occur most abundantly in transgressive facies 

within mid-ramp environments and more abundantly in regressive facies 

within outer-ramp to more distal environments 

• Conodont elements recovered help constrain unconformable surfaces of the 

Woodford-Mississippian and Mississippian-Pennsylvanian contacts and 

provide evidence for a rather continual subsidence of and sedimentation rate 

in the Oklahoma basin, with these relative rates increasing markedly in the 

Chesterian. Within the stratigraphic interval, the data control points (i.e., 

where the biostratigraphically significant species occur in the section) help to 

constrain sequence stratigraphic interpretations up to third order boundary 

picks 
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• Further work is needed to apply formalized lithostratigraphic names to the 

Mississippian interval over the area studied, and the age-dating evidence 

provided should help future workers to separate the interval into its more 

formalized lithostratigraphic units  

• The major limitations of this study are that (1) the whole-rock sampling 

method prevented the recovery and identification of conodonts from the entire 

length of each core, thereby limiting the biostratigraphic results; (2) the 

reinterpretation of the chemostratigraphic curve presented for three of the 

study cores was shown to be highly susceptible to change based on new 

biostratigraphic evidence, and therefore, requires additional age-constraint in 

future studies before it is considered well-constrained; and (3) relatively low 

recoveries of conodonts in this study, particularly in the Adkisson 1-33 and 

Winney 1-8 and lower part of the Doberman 1-25, may, may bias the 

biostratigraphic results and interpretation of the author, as most of the data 

points and interpretation are based on conodonts of the Elinore 1-18 and upper 

part of the Doberman 1-25 and the sequence stratigraphic framework 

previously established by LeBlanc (2014) and Hill (2017)     

• Overall, the conodont biostratigraphic results of this study have improved the 

understanding of the geologic age range that is represented over the area 

studied within a global Carboniferous stratigraphy and provided new age-

dating information to the “Mississippian Limestone” in the region that can be 

used in future studies conducted within the basin 
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Future Work 

 This study recommends the following future work to be conducted within the 

Oklahoma basin: (1) more studies on the Meramecian and Chesterian age rocks of the 

“Mississippian Limestone” for developing better stratigraphic and reservoir models of the 

Oklahoma basin and construction of a more robust paleogeographic map of Late 

Mississippian deposition; (2) additional conodont biostratigraphic studies over south-

central Kansas and north-central Oklahoma using the sampling recommendations the 

author has suggested to obtain better recoveries and preservation quality of conodont 

elements for analysis; and more specifically (3) a conodont biostratigraphic study which 

compares sampling from north and south of the Kanoka Ridge for determining its effect 

on conodont element recoveries. It may be that conodont element recoveries have been 

historically better in Kansas, Missouri, and northern Arkansas because of this structural 

feature, which on its north flank would have provided some relief from severe storm 

events, leading to the proliferation of life and better preservation quality of conodont 

elements, versus its southern flank where the ramp environment was overall less 

protected from storm surges. 
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APPENDIX A: WHOLE-ROCK SAMPLE DATA 

 

 

 

Datasheets 

 

 This section is meant to provide the reader with the raw data sheets that were used 

in the collection, processing, analyzing, and calculating of data during this study.   

 An explanation for the abbreviations as presented in the “Notes” and “Microscope 

Notes” sections of the datasheets is provided below: 

ABBREVIATION   MEANING  

 

AP    Apatite crystal  

AZ    Azurite crystal  

BLU/BRN CHRT  Blue/Brown chert  

BRAC or BRACH  Brachiopod shell 

CHRT    Chert fragment 

CRIN    Crinoid stem 

DOL    Dolomite grain 

FELD    Feldspar grain 

GLAUC   Glauconite grain 

IO    Iron Oxide staining 

MAR or MARC  Marcasite crystal 

PY or (micro)PY  Pyrite crystal (framboidal or euhedral) 

QTZ    Quartz (angular to sub-angular) grains 

(Reworked)   Reworked interval 

RND or DIT QTZ  Rounded or detrital quartz grain 

SPIC    Sponge spicule 

VIV    Vivianite crystal  

WF SH   Woodford Shale  
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ADKISSON 1-33 Core
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WINNEY 1-8 Core 
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ELINORE 1-18 Core 

 

 

 

 

 

 

 

 

 

 



143 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



144 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



145 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DOBERMAN 1-25 Core 
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APPENDIX B: PROCESSING TECHNIQUES 

 

 

 

Disaggregation and Acid Treatment of Whole-rock Samples 

 

 

 

 Whole-rock samples were disaggregated into 1 cm3 “chips” with a sledge hammer 

and personal protective equipment at the Hazardous Reactions Laboratory at Oklahoma 

State University. The “chips” from a single sample were placed into a 5-gal. bucket and 

labeled by core (sampled) depth in quantities of about 1 kg before undergoing acid 

treatment. Acids were then applied to whole-rock samples and included formic acid, 

hydrogen peroxide, and sodium hexametaphosphate. The number and type of acid baths 

applied to a whole-rock sample varied, depending on its overall lithology that was 

determined by the author. What follows is a general description of the acids and how 

each of them was used to digest whole-rock samples. 

 

Formic Acid 

Formic acid (CH2O2) has been long used to digest carbonate rocks and isolate 

fossil remains, such as phosphatic conodont elements (e.g., Collinson, 1963). The mineral 

calcite is readily dissolved by acidic solutions, but phosphatic material resists chemical 

weathering in acids if exposed in relatively short intervals (~24 hrs.). Therefore, because 
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whole-rocks samples in the cores consisted dominantly of calcite, it was thought that 

formic acid would have the strongest effect on digesting the bulk of the sample from 

short-term exposure while also preserving any conodont elements present.  

Formic acid treatments were applied to disaggregated whole-rock samples at 50% 

concentrations over 24 hr. periods, at which time the spent acid was decanted, residue 

collected, and a fresh supply of acid was applied to the remaining whole-rock sample to 

avoid etching conodont elements recovered from the residue. All samples underwent at 

least two formic acid treatments (excluding quartz-rich glauconitic intervals) and up to 

seven (Appendix A). Formic acid treatments tended to work most effectively on samples 

which had moderately high to high (>65%) carbonate content and a relatively moderate 

to high (>30%) mud content, presumably because this relationship promoted grains with 

a lot of surface area and dissolution susceptibility to digest most effectively per acid 

treatment. Facies 3, a bioturbated wackestone-packstone described by LeBlanc (2014) in 

the Adkisson 1-33, Winney 1-8, and Elinore 1-18, for example produced large amounts 

of residue, with some whole-rock samples being almost wholly digested in just one 24 hr. 

period. Facies 2, a burrowed calcareous mudstone in the same cores (LeBlanc, 2014), 

also generally responded very well to formic acid treatment.  

 

Sodium Hexametaphosphate 

Sodium hexametaphosphate ([NaPO3]6) is a surfactant (meaning that it reduces 

surface tensions between small particles, such as mud-sized grains in a whole-rock 

sample that allows the rock to freely disaggregate). It is sometimes used in 

biostratigraphic studies when acid treatment of samples in ineffective (Jeppson et al., 

1995, 1999). The surfactant is also capable of removing acid rinds that may form after a 
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whole-rock sample has undergone multiple formic acid treatments, thus exposing a fresh 

surface to be digested later (Jarochowska et al., 2013). Because quartz-rich glauconitic 

intervals were overall unresponsive to formic acid treatments, these whole-rock samples 

remained largely undigested until sodium hexametaphosphate treatments were applied to 

them. These samples were the only ones to undergo this type of treatment. To avoid the 

samples developing acid rinds from overexposure to acid and disaggregate them, sodium 

hexametaphosphate treatments were needed.  which was most effective at 55% 

concentrations and by heating the sample-solution. All samples were placed in the 

sodium hexametaphosphate solution and put in an oven set at 200℉ (93.3℃) and took 

about 5 hrs. to become significantly to wholly disaggregated.  

 

Hydrogen Peroxide 

Hydrogen peroxide (H2O2) was purchased and used at 32% concentration. 

Hydrogen peroxide readily reacts with organic matter and minerals such as pyrite to 

oxidize (degrade) them. Known organic matter content in the Adkisson 1-33, Winney 1-

8, and Elinore 1-18 cores is characteristically less than 1% (LeBlanc, 2014), but heavily 

pyritized intervals occur commonly throughout each of the cores, and they may be 

observed in core easily without visual aid. Therefore, hydrogen peroxide works best in 

whole-rock samples that had significant presence by visual inspection of pyrite and/or 

marcasite in them. Heavily pyritized intervals proved to be largely independent of facies 

type, so this type of acid treatment was applied most often just once to any sample which 

showed obvious evidence for pyritization upon inspection.  

 

 

 



150 
 

Heavy Liquid Density Separation 

Miller (2015) recognized during his work on Mississippian conodonts from Ozark 

outcrops in northern Arkansas that analyzing residues for conodonts in relatively large 

amounts (i.e., >20 grams) is tedious work. As many of the samples in his study and in 

this study produced residues from individual samples that weighed more than 20 grams, 

Miller (personal communication, 2015) recommended applying a heavy liquid density 

separation technique to concentrate the conodont elements into a heavy fraction that 

would be easier to pick. The technique is described by Stone (2001) who used lithium 

metatungstate (LMT) to isolate heavy minerals from disaggregated rock samples. The 

procedure developed by Stone (2001) was altered slightly to best fit the needs of this 

study. A detailed description of the theory, justification, and procedure for using lithium 

metatungstate for isolating conodont elements and other heavy minerals follows.  

 

Theory 

 

The heavy liquids separation technique is applied for isolating relatively heavy 

grains and other solid constituents from their lighter weight counterparts. This is done by 

suspending a disaggregated sample in the LMT solution and allowing gravity to separate 

the heavy fraction from the lighter fraction over a short time based on differences in the 

densities of the solid materials. This technique is useful for concentrating certain fossil 

types (e.g., conodonts and pollen grains) as well as heavy minerals for their analysis, 

respectively. Lithium metatungstate (Li2O13W4) is one commonly used heavy liquid that 

is stable and non-toxic at standard temperature and pressure conditions. When fully 

concentrated, its density is 2.95 grams per cubic centimeter. After experimental analysis, 

conodont elements have been shown to have densities between 2.84 and 3.14 grams per 
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cubic centimeter (Barrick, 2001); therefore, the LMT must be diluted to about 2.80 grams 

per cubic centimeter to allow the elements to fall through the solution while lighter grain 

types, such as quartz and calcite which have densities of 2.65 and 2.71 grams per cubic 

centimeter, respectively, stay in suspension. 

 

Justification for Use 

 

LMT is currently the heavy liquid of choice for most studies which rely on heavy 

liquids separation because it is generally the safest to work with of all the heavy liquids 

that are available. LMT requires no fume hood and minimal personal safety gear to 

handle (just gloves, safety glasses, and attire that protects the skin). LMT is also an 

attractive choice for its users because it is one of the least expensive to purchase among 

its competitors. Nevertheless, the cost of LMT is still not cheap for most laboratories; 

therefore, it is essential for anyone using this technique to apply a procedure that uses the 

liquid most efficiently. To that end, a robust technique for using and reusing LMT in 

density separation experiments has been developed. 

 

Materials and Procedure 

 

The following step-by-step procedure is meant to describe how to apply the LMT 

technique to just one sample.  

 

(1) Set up the Experiment 

On a table that is secure and clear of any mess, mount a 4-in. diameter support 

ring to any standard laboratory ring stand and its base. Place a 0.8 liter Nalgene-brand 

teardrop-shaped bottle with its cap screwed off and its stopcock closed into the 4-in. 
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support ring. Make sure the bottle is at least four inches away from the table’s surface 

and adjust the ring stand and support ring as necessary.  

 

(2) Measure the Sample 

Place your disaggregated sample into a beaker large enough to contain the entire 

sample. Make note of its volume (or weight). For every 25 milliliters volume (25 grams 

by weight) of sample you must process, you will add approximately 100 milliliters of 

LMT to the Nalgene bottle. If your sample is greater than 150 milliliters (150 grams), 

meaning that it will require approximately 600 milliliters of LMT, then you will have to 

split the sample into multiple Nalgene bottles (and preferably equal amounts) such that 

the total volume of the LMT in each bottle does not exceed 600 milliliters, as you will 

need the leftover space for stirring your sample once you have added it and the LMT.  

 

(3) Dilute and Measure the LMT 

Before you pour the new and fully concentrated LMT into the Nalgene bottle for 

the first time, you will need to dilute it. LMTliquid.com has a density calculator that you 

may use to derive the amount of water you will need to add to dilute your concentrated 

LMT. Use the online calculator (that you can also download to an external drive) to 

derive the amount of water you will need to add to the fully concentrated LMT to lower 

its density to the desired value (e.g., a density of 2.80 g/cm3 is ideal for conodont work). 

After adding the desired amount of water to the LMT in its original bottle to dilute it, 

close the container and shake it moderately for about a minute to mix its contents. 

Measure about 50 milliliters of it into an empty beaker and set it on a scale to make sure 

it is the correct density desired.  
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Use the following formula to check the density of the liquid: 

 
1000 𝑚𝐿

𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐿𝑀𝑇
×(𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝐿𝑀𝑇 𝑖𝑛 𝑏𝑒𝑎𝑘𝑒𝑟 − 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑏𝑒𝑎𝑘𝑒𝑟) 

 

(4) Add the LMT 

Pour the diluted LMT into a separate beaker per the amount you have already 

determined to need for your sample. If you had to split your sample into multiple bottles, 

then pour the necessary amounts (preferably equal amounts) of the LMT into each bottle 

according to how much of the sample you plan to add to the bottles. If splitting the 

sample does not apply, then pour all the measured LMT into the one Nalgene bottle you 

plan to use for your single sample.  

 

(5) Add the Sample 

Take a two to 3-in. diameter plastic funnel and place it on top of the bottle with 

the LMT in it. Pour your sample from its beaker through the funnel and into the bottle 

with the LMT in it. Once again, if you had to split your samples up into multiple bottles, 

see that you pour the right amount (preferably equal amounts) of sample into your bottles 

with the LMT in them. Rinse the funnel with water under one of the laboratory’s faucet 

and dry it with a paper towel or use one of the air valves in the laboratory to blow off any 

sample residue. Save the funnel for additional runs.  

 

(6) Stir the Sample 

Take a glass stir rod (alternatively, a glass thermometer will do) and stir your 

sample that you just added to the LMT in its bottle until the entire sample is mixed well, 

meaning that all the sample is wet and there are no lumps in it. Take out the stir stick, 
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waiting for some of the larger LMT liquid to drop back into the bottle first, and move it 

over an empty one liter beaker once the drips have more-or-less stopped coming off the 

rod. Take a one liter wash bottle with deionized water in it that you got from one of the 

laboratory’s faucets and gently wash any remaining LMT and sample residue on the rod 

into the empty beaker. After the stir rod has been thoroughly rinsed, dry it with a paper 

towel and place it to the side for use with future sample runs. Depending on how 

“muddy” your sample is, you may want to stir the sample again, following the same 

procedure as has been described to this point to ensure the sample is well-mixed and all 

the constituents have an equal opportunity to fall through the solution. To tell if you need 

to stir your sample again, wait about 30 minutes for the stirred sample to settle. If most of 

the particles in the bottle have returned toward the top of the bottle and the LMT solution 

is mostly to all clear, then you do not need to stir the sample again. If after 30 minutes the 

sample has not cleared and appears somewhat to severely cloudy, then consider re-

stirring the sample up to two or three more times to ensure that it has been mixed well 

enough. Once the sample has had time enough to settle through gravity (should not need 

more than 24 hours), there will be a light fraction that sits on top of the solution and a 

heavy fraction that rests near or at the bottom of the bottle, assuming a heavy fraction is 

present at all. Also, note that the bottle with the settled sample in it may still not look 

clear with mud-rich sample you work with.  

 

(7) Collect Heavy Fraction and Get LMT Ready for Immediate Reuse 

Take a 5 L beaker and place a #200 mesh sieve over it. Place laboratory gloves 

(e.g., nitrile gloves) on your hands and put safety glasses over your eyes for this step and 

the next. Grab the Nalgene bottle with the settled heavy fraction in it and gently lift it 
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from its support ring. Take the bottle over to the sieve and open the stopcock to the bottle 

about halfway to release the heavy fraction onto the mesh sieve while also allowing the 

associated LMT liquid to drain through the sieve down into the beaker. When all the 

particulates have come out of through the bottom of the bottle and with the light fraction 

sample and LMT still in it, keep the stopcock to the bottle open (you may want to open it 

more at this point) and allow the rest of the LMT to drain until the light fraction is 

reached. Before the light fraction begins collecting onto the sieve, close the stopcock (for 

most analyses, it is okay if just a little of the lighter fraction goes through). It is helpful to 

begin closing the stopcock well before the light fraction is reached to slow the flow and 

allow more LMT to come out before it pulls the light fraction with it. Also, when 

collecting the heavy fraction and LMT from the bottle, you will want to lift the sieve up 

to angle it slightly so that the LMT pools and its drainage is focused rather than having it 

go toward the sides of the sieve and run down the outside edges of the 5 L beaker. Once 

the LMT is completely drained from the mesh sieve, walk over to the beaker which was 

used to put the LMT and sample residue from stirring in and use the wash bottle with the 

deionized water in it to gently rinse the remaining liquid contents of the sieve into the 

beaker, being sure not to add the heavy fraction to the beaker.  

 

(8) Deliver Heavy Fraction for Analysis and LMT for Reuse 

Put the heavy fraction from the sieve into a labeled sample bag or paper towel that 

has been folded into a funnel shape by washing it with a wash bottle. If using a sample 

bag, place a labeled and open sample bag into an empty beaker and wash the heavy 

fraction into the bag. The liquid contents of the bag will dry within 24 hours with no help 

from the oven. You can also dry the sample bag in the oven set at “3” or “4” setting if 
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you wish. If you are using a folded paper towel to pour into, then place the towel on a 6-

in. diameter funnel that is mounted to another support ring and ring stand and wash the 

heavy fraction into the funnel you created. You can then place the folded paper towel 

with the heavy fraction in it into the oven in NRC 019 set at the “3” or “4” setting for it to 

dry in the next several minutes. Get the bottle that the LMT arrived in. Pour the liquid 

contents in the 5 L beaker into that bottle. This is the portion that does not need 

reconstitution and which may be reused immediately on other samples. Do not pour the 

contents of the 5 L beaker into the original LMT container if you are unhappy with the 

color (cloudiness) of the used LMT. Your sample may have contained so much silt and 

clay that it clouded the sample so much that it will need to be diluted to allow the small 

particles to fall out of suspension for the LMT to clear up. If you wish to dilute a cloudy 

LMT portion, then simply leave the liquid in the 5 L beaker and move on to the next step. 

 

(9) Collect the Light Fraction and Diluted LMT 

Take the Nalgene bottle with only the light fraction and used LMT in it and 

unscrew the lid. Add water from the wash bottle to the bottle, spraying around the sides 

to collect the entire sample. In general, you will need to add enough water to the bottle at 

this point such that there is about a quarter inch standing water above the sample and the 

diluted LMT. Take the bottle over to the mesh sieve again with the 5 L beaker underneath 

and take off the stopcock completely from the bottle. The light fraction and diluted LMT 

will drain into the sieve and the diluted LMT will continue into the beaker. Rinse the 

sieve with the light fraction with some more water from the wash bottle and then take the 

sieve and sample over to a sink. Using tap water, thoroughly rinse the light fraction. Get a 

sample bag and label it and place it in any empty beaker. Set it under the large diameter 
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(i.e., about six inches) funnel set on a ring stand and pour the contents of the sieve into 

the funnel and into the sample bag. The sample bag will air dry over the next 24 to 48 

hours. Do not place this bag to dry in the oven as the high-water content leaking from the 

bag will cause lead to the formation of rust and hard minerals inside the oven.  

 

(10) Reconstitute the Diluted LMT 

Rinse out the empty Nalgene bottle(s) with tap water as well as the lids and 

stopcocks and then fully reassemble it (them) for the next run. Take the 5 L beaker with 

the diluted and/or muddy LMT in it and pour it into an empty beaker(s) that is (are) large 

enough to hold the contents. Wait 24 to 48 hours for this portion to settle and then use a 

syringe to collect the now clear and diluted liquid into a new beaker. Set this new beaker 

with the clear and diluted LMT in the oven set at “3” or “4”. Do not set the oven above 

the “4” setting when reconstituting the LMT as the LMT liquid may become unstable and 

decompose to produce harmful carcinogens. You will have to check on the liquid 

periodically to see when it is reconstituted to your desired density. To do this, use the 

formula for checking the density of the LMT presented in step three of this procedure. 

Note that the reconstitution process usually takes three to four days. It is also largely 

guess and check, so you will have to be ready to calculate how much water you need to 

add to it if you reconstitute it above the desired value, and you will have to also be ready 

to wait longer for it to reconstitute itself at times. In the former of the two cases, try 

avoiding over-reconstitution. If too much water is driven from the LMT liquid, the LMT 

becomes solid (amber to white in color). If this happens, simply add water to the LMT to 

start the process over and stir the LMT-water mixture vigorously for periods of about 30 

seconds, putting the mixture back in the oven for periods of five or ten minutes. Soon the 
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mixture will return to its original liquid state given enough stirring and adding water. 

However, if you happen to leave the LMT-water mixture and it turns sold and becomes a 

white-greenish to green color, you will have to throw the solid LMT out. Do not try to 

reconstitute the LMT at this point as it has already begun to degrade significantly.   

 

(11) Repeat Experiment Using a New Sample 

 Follow steps one through ten as described in this procedure and as necessary for 

your samples in future runs. 
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APPENDIX C: SYSTEMATIC PALEONTOLOGY 

 

 

 

Phylum CHORDATA Bateson, 1886 

 

Class CONODONTA Pander, 1856 

 

Division PRIONIOCONTIDA Dzik, 1976 

 

Order OZARKODINIDA Dzik, 1976 

 

Suborder OZARKODININA Dzik, 1976 

 

Superfamily POLYGNATHACEA Bassler, 1925 

 

 

 

Genus ADETOGNATHUS Lane, 1967 

 

 

 

Type Species – Cavusgnathus lautus Gunnell, 1933, p. 286, pl. 31, figs. 67-68 

 

 

 

ADETOGNATHUS UNICORNIS (Rexroad and Burton, 1961) 

 

pl. 1, figs. 3 and 7; pl. 2, fig. 1 

 

 

 

1947 Taphrognathus varians Cooper, p. 92, pl. 20, figs. 14-16 

 

1961 Streptognathodus unicornis Rexroad and Burton, p. 1157, pl. 138, figs. 1-9 
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1962 Streptognathodus unicornis Collinson et al., p. 27, charts 1 and 4 

 

1965 Streptognathodus unicornis Dunn, p. 1149, pl. 140, figs. 5-6, 13, and 14 

 

1967 Adetoghanthus unicornis Lane, p. 925, pl. 119, figs. 16-21 

 

 

 

Diagnosis – Specimens are consistent with Lane’s (1967) original diagnosis and look 

most like specimens found in Repetski and Henry (1983).  

 

 

Range and Occurrence – Upper Chesterian. Recovered from the upper part of the 

Doberman 1-25. 

 

Remarks – Because the specimens assigned to Adetognathus unicornis in this study all 

lack their free blades their identification is tentative at best, as they may be easily 

confused with other species that belong to a couple of genera with similar morphologies, 

such as Taphrognathus varians and Cavusgnathus unicornis. However, the author is 

convinced that A. unicornis is the most proper name to give these specimens, since they 

are otherwise very consistent in their diagnostic morphologies described in Lane (1967) 

and Morrow and Webster (1991) and because of where they fit stratigraphically in 

relation to other conodont faunal occurrences in this study.  

Specimens assigned to A. unicornis were recovered just below a bed bearing 

representatives of Rhachistognathus that are indicative of the uppermost Chesterian. The 

specimens are also stratigraphically above occurrences of Vogelgnathus campbelli and 

Lochriea commutata, which are indicative of the basal-lower Chesterian. Therefore, it 

was thought that a Taphrognathus varians assignment for these specimens would not be 

appropriate, given the fact that this species ranges only from the middle Osagean to the 

upper Meramecian. The specimens were also determined to most likely not belong to any 
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of the species in the genus Cavusgnathus that are easily confused with A. unicornis 

because all Cavusgnathus varieties that are typical for the Oklahoma basin range from the 

upper Meramecian to the middle Chesterian (e.g., Godwin, 2017). Therefore, while it still 

may be plausible for the specimens assigned to A. unicornis to truly represent a “look-

alike” species of Cavusgnathus because the specimens are not wholly preserved, the fact 

that they occur just below uppermost Chesterian conodonts and that there is such a large 

section of core devoid of any conodonts from the basal-lower Chesterian to what 

supposedly represents the middle Chesterian, A. unicornis is, from a biostratigraphic 

perspective, the most logical species designation.  

 

 

 

Genus GNATHODUS Pander, 1856 

 

 

 

Type Species – Gnathodus mosquensis Pander, 1856, p. 33, pl. 2A, figs. 10a, b, c 

 

Polygnathus bilineatus Roundy, 1926 (from Nemyrovska, 2005 citing 

Tubbs, 1986) 

 

 

 

GNATHODUS BULBOSUS (Thompson, 1967) 

 

pl. 1, fig. 11 

 

 

 

1967 Gnathodus bulbosus Thompson, p. 66, pl. 3, figs. 7, 11, 14, 15, 18-21; p. 72, pl. 6, 

figs. 2 and 7 

1970  Gnathodus bulbosus Thompson and Fellows, p. 128, pl. 1, figs. 3, 6, 8, 9, 12, 13 
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2013  Gnathodus bulbosus Boardman et al., p. 148, pl. 14, figs. 1-3, 5-11 

 

 

 

Diagnosis – Specimen is consistent with Thompson’s (1967) original diagnosis and the 

observations of Miller (2015). 

 

Range and Occurrence – upper Osagean (this study). This species is also known to range 

throughout the Osagean. Recovered from the lower part of the Elinore 1-18. 

 

Remarks – Free blades not readily preserved in any of the specimens recovered.  

 

 

Materials – A total of six almost identical specimens assigned to Gnathodus bulbosus 

were recovered from a sample collected from the lower part of the Elinore 1-18, but only 

one (which had the best preservation quality) was selected for SEM work.  

 

 

 

GNATHODUS CUNEIFORMIS (Mehl and Thomas, 1947) 

 

pl. 2 fig. 3  

 

 

 

1947 Gnathodus cuneiformis Mehl and Thomas, p. 10, pl. 1, fig. 2 

 

1980 Gnathodus cuneiformis Lane et al., p. 130, pl. 4, figs. 5-13; pl. 10, fig. 7 

 

1998 Gnathodus cuneoformis Perri and Spaletta, p. 243, pl. 1, figs. 3-4; p. 247, pl. 3, 

figs. 1-2 

 

 

 

Diagnosis – Specimen is consistent with the original diagnosis of Mehl and Thomas 

(1947) and the observations of Perri and Spaletta (1998).  
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Range and Occurrence – middle to upper Osagean. Recovered from the lower part of the 

Adkisson 1-33.  

 

Remarks – The specimen assigned to Gnathodus cuneiformis is missing most of its free 

blade but is otherwise well-preserved.  

 

 

 

GNATHODUS LINGUIFORMIS (Branson and Mehl, 1941a) 

 

pl. 1, fig. 10 

 

 

 

1941a Gnathodus linguiformis Branson and Mehl, n. sp., p. 183, pl. 6, figs. 18-26 

  

2013  Gnathodus linguiformis Boardman et al., pl. 15, fig. 4 

 

 

 

Diagnosis – Specimen is consistent with Branson and Mehl’s (1941a) original diagnosis 

and the observations of Miller (2015) and Godwin (2017). 

 

 

Range and Occurrence – upper Osagean (this study). This species is also known to 

extend into the lower Meramecian (Godwin, 2017). Recovered from the bottom part of 

the Elinore 1-18.  

 

Remarks – The outer platform and free blade of the specimen recovered is not well-

preserved. Still, enough detail is preserved to determine the position of the outer platform 

in relation to the inner platform for its identification and it is otherwise very consistent 

with the descriptions of Branson and Mehl (1941a), Miller (2015), and Godwin (2017). 
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Refer to Miller’s (2015) description of G. linguiformis for a description on how to 

differentiate this species from its closely related G. pseudosemiglaber and G. texanus 

forms. The species designation G. linguiformis has become somewhat passé among 

experts and was replaced with G. pseudosemiglaber; therefore, the distinction between G. 

linguiformis and G. pseudosemiglaber may be unnecessary.  

 

 

 

GNATHODUS PSEUDOSEMIGLABER (Thompson and Fellows, 1970) 

 

pl. 1, fig. 1 

 

 

 

1970  Gnathodus texanus pseudosemiglaber Thompson and Fellows, n. ssp., p. 88, pl. 2, 

figs., 6, 8, 9, 11-13 

1973 Gnathodus texanus pseudosemiglaber Butler, p. 500, pl. 56, figs. 28, 29, and 36 

1980 Gnathodus pseudosemiglaber Lane et al., p. 132, pl. 4, figs. 15-17, and 19; p. 133, 

pl. 5, figs. 8-15; p. 134, pl. 6, fig. 14 

2013 Gnathodus pseudosemiglaber Boardman et al., pl. 15, figs. 1-3, 6 

 

 

 

Diagnosis – Specimen is consistent with Thompson and Fellows’ (1970) original 

diagnosis and the observations of Miller (2015) and Godwin (2017).  

 

 

Range and Occurrence – upper Osagean (this study). This species is known to range 

from the Osagean into the basal Meramecian (Godwin, 2017). Recovered from the lower 

part of the Elinore 1-18. 
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Remarks – The free blade of this specimen is not well-preserved; however, based on its 

co-occurrence with G. linguiformis and G. texanus and its other unique platform 

morphologic features that help to differentiate it between the other two species types, the 

specimen can be distinguished from its closely related G. linguiformis and G. texanus 

forms. Refer to Miller’s (2015) descriptions of these species for how to differentiate 

between them. 

 

 

 

GNATHODUS n. sp. 15 aff. PUNCTATUS (Boardman et al., 2013) 

 

pl. 2, fig. 5 

 

 

 

2013  Gnathodus n. sp. 15 aff. punctatus Boardman et al., pl. 15, fig. 7 

 

2017  Gnathodus n. sp. 15 aff. punctatus Godwin, pl. 7, figs. A-G 

 

 

 

Diagnosis – Specimen is consistent with the original diagnosis of Boardman et al. (2013) 

and the observations of Godwin (2017).  

 

Range and Occurrence – lower Meramecian (this study and as established when this 

species was originally defined as new). Recovered from the lower part of the Elinore 1-

18.  

 

Remarks – Not all the free blade is preserved on this specimen, making distinction 

between Gnathodus n. sp. 15 aff. punctatus and G. punctatus difficult. However, given 

this specimen’s stratigraphic position (being placed above the middle and upper Osagean 
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conodont fauna in this study), a G. punctatus assignment is not plausible, as this species 

ranges from the upper Kinderhookian to the lower Osagean. The specimen most closely 

compares with a specimen from pl. 7, fig. G in Godwin (2017). 

 

 

 

GNATHODUS sp. A (Godwin, 2017) 

 

pl. 2, fig. 2 

 

 

 

1970  Gnathodus pseudosemiglaber texanus Thompson and Fellows, n. ssp., p. 88, pl. 2, 

figs. 6, 8-9, 11-13 

1980  Gnathodus pseudosemiglaber Lane et al., pl. 4, figs. 15-17; pl. 5, figs. 8-15  

1998  Gnathodus pseudosemiglaber Perri and Spaletta, pl. 1, fig. 14; pl. 2, fig. 12 

2007 Gnathodus bilineatus Singh, pl. 6, figs. 5-7 (as primitive morphotype); pl. 6, fig. 4 

(as transitional form) 

2017 Gnathodus sp. A Godwin, n. sp., pl. 8, figs. A-M  

 

 

 

Diagnosis – Specimen is consistent with the original diagnosis of Godwin (2017). 

 

 

Range and Occurrence – lower Meramecian (this study and as established when 

originally defined as a new species). Recovered from the lower part of the Elinore 1-18. 

 

Remarks – This specimen may be a junior form of the specimens described in Godwin 

(2017).  
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GNATHODUS TEXANUS (Roundy, 1926) 

 

pl. 1, figs. 6, 8, 9, and 12; pl. 2, fig. 6 

 

 

 

1926  Gnathodus texanus Roundy, n. sp., p. 12, pl. 2, figs. 7-8. 

 

1980  Ganthodus texanus Lane et al., p. 133, pl. 6, figs. 8, 9, 11, 12, 16 

 

 

 

Diagnosis – Specimen is consistent with the original diagnosis of Roundy (1926).  

 

 

Range and Occurrence – upper Osagean. This species is known to range from the 

Osagean into the middle Chesterian. Recovered from the lower part of the Elinore 1-18.  

 

Remarks – Refer to Miller’s (2015) description of G. texanus for a description on how to 

differentiate this species from its closely related G. pseudosemiglaber and G. linguiformis 

forms. Specimens assigned to G. texanus in this study are occasionally tentative due to 

the poor preservation quality of some of the platform and free blade morphologies on 

select specimens.  

 

 

 

Genus LOCHRIEA Scott, 1942 

 

 

 

Type species – Lochriea montanaensis Scott, 1942, p. 295, pl. 37, figs. 1-7; p. 296, pl. 38,  

figs. 1-4, 6, 7, 10, and 12 

Spathognathodus commutatus Branson and Mehl, 1941, p. 98, pl. 19, figs. 

1-4 
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LOCHRIEA COMMUTATA (Branson and Mehl, 1941b) 

 

pl. 2, fig. 7 

 

 

 

1941b  Spathognathodus commutatus Branson and Mehl, p. 98, pl. 19, figs. 1-4 

 

1942  Lochriea montanaensis Scott, p. 295, pl. 37, figs. 1-7; p. 296, pl. 38, figs. 1-4, 6, 

7, 10, and 12 

1953  Gnathodus inortatus Hass n. sp., p. 80, pl. 14, figs. 9-11 

 

1964  Gnathodus commutatus Rexroad and Furnish, p. 671 

 

1970  Gnathodus commutatus commutatus Dunn, p. 318, pl. 62, figs. 11-12 

 

1974  Gnathodus commucatus commucatus Lane and Straka, p. 77, pl. 37, figs. 1-9; pl. 

40, figs. 15-18, 23-26 

1976 Lochriea commutatus Norby, p. 143, pl. 13, figs, 1-3; p. 144, pl. 14, figs. 3-9 

 

1990 Lochriea commutata Rexroad and Horowitz, p. 535, pl. 2, figs, 10-24 

 

 

 

Diagnosis – Specimen is consistent with the original diagnosis of Branson and Mehl 

(1941b).  

 

Range and Occurrence – basal Chesterian. This species is also known to occur 

throughout the Chesterian in North America. Recovered from the upper part of the 

Doberman 1-25.  

 

Remarks – The two specimens recovered in this study was assigned to Lochriea 

commutata because they most closely fit with the description for the species in Godwin 

(2017) and because of its similarity with a specimen assigned to the same species on pl. 
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62, fig. 12 in Dunn (1970). However, the posterior tip of the carina of this specimen does 

extend a little further than what is common for L. commutata; therefore, its designation is 

tentative.  

 

 

 

Genus POLYGNATHUS Hinde, 1879 

 

 

 

Type Species – Polygnathus dubius Hinde, 1879, p. 363, pl. 16, fig. 17 

 

 

 

POLYGNATHUS BISCHOFFI (Rhodes et al., 1969) 

 

pl. 2 fig. 8 

 

 

 

1969 Polygnathus bischoffi Rhodes et al., p. 134, pl. 2, fig. 7-17 

 

1998  Polygnathus bischoffi Perri and Spaletta, p. 244, pl. 2, figs. 18 a, b 

 

 

 

Diagnosis – Specimen is consistent with the original diagnosis of Rhodes et al. (1969). 

 

 

Range and Occurrence – middle Osagean. Recovered from the lower part of the Elinore 

1-18. 

 

Remarks – The specimen assigned to Polygnathus bischoffi in this study is coated in a 

thin, pitted layer of cement and sediment, making it difficult to see some of the important 

morphologic for its identification. However, higher resolution SEM images (not pictured 

in this study but available at the Paleontology Repository at the University of Iowa) 
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provided the author with the ability to see past much of the pitted material covering the 

element and allow for this specimen’s identification.  

 

 

 

Genus RHACHISTOGNATHUS Dunn, 1965 

 

 

 

Type Species – Rhachistognathus prima Dunn, 1966, p. 1301, pl. 157, figs. 1-2 

 

 

 

RHACHISTOGNATHUS MINUTUS MINUTUS (Higgins and Bouckaert, 1968) 

 

pl. 2, fig. 4 

 

 

 

1968 Idiognathoides minuta Higgins and Bouckaert, n. sp, p. 66, pl. 6, figs. 7-12  

 

1996 Rhachistognathus minutus minutus Krumhardt et al., p. pl. 7, figs. 9-13 

 

 

Diagnosis – Specimen is consistent with the original diagnosis of Krumhardt et al. 

(1996).  

 

Range and Occurrence – uppermost Chesterian. Recovered from the upper part of the 

Doberman 1-25. 

 

 

 

RHACHISTOGNATHUS MURICATUS trans. to WEBSTERI? (Krumhardt et al., 1996) 

 

pl. 2, fig. 5 

 

 

 

1966 Cavusgnathus transitoria Dunn, p. 1299, pl. 157, fig. 9 
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1985 Rhachistognathus muricatus Baesemann and Lane, p. pl. 8, fig. 9 

 

1996 Rhachistognathus muricatus trans. to Websteri Krumhardt et al., p. 79, pl. 4, fig. 

16 

 

Diagnosis – Specimen is consistent with the original diagnosis of Baesemann and Lane 

(1985). In addition, this species is diagnosed by observing its fused denticles which are 

oriented transversely to the carina and join the left and right parapets in a central location 

in the center part of the carina. 

 

Range and Occurrence – uppermost Chesterian. Recovered from the upper part of the 

Doberman 1-25. 

 

Remarks – This specimen may be better placed in Rhachistognathus muricatus because it 

lacks the asymmetric node on the posterior end of the platform that can help distinguish it 

from R. websteri. 

 

 

 

Genus SPATHOGNATHODUS Branson and Mehl, 1941b 

 

 

 

Type species – Ctenognathus murchisoni Pander, 1856, p. 32, pl. 4, fig. 17; pl. 6, figs.  

18a, b 

 

 

 

SPATHOGNATHODUS sp.? 

 

pl. 1 fig. 2 

 

 



172 
 

 

Diagnosis – Specimens belonging to Spathognathodus have a thin platform, with a basal 

cavity that forms at the center of the specimen. Denticles of this genus are often fused, 

with the largest ones occurring toward the anterior end.  

 

Range and Occurrence – Specimens belonging to Spathognathodus are known to occur 

throughout the Mississippian. Recovered from the upper part of the Elinore 1-18. 

 

Remarks – The specimen assigned to Spathognathodus in this study was not well-

preserved enough for species level identification.  

 

 

 

Genus VOGELGNATHUS Norby and Rexroad, 1985 

 

 

 

Type Species – Spathognathodus campbelli Rexroad, 1957 

 

 

 

VOGELGNATHUS CAMPBELLI (Rexroad, 1957) 

 

pl. 2 fig. 4 

 

 

 

1957 Spathognathodus campbelli Rexroad, p. 37, pl. 3, figs. 13-15 

 

1964 Spathognathodus campbelli Rexroad and Furnish, p. 674, pl. 111, figs. 23-24 

 

1985 Vogelgnathus campbelli Norby and Rexroad, p. 2, pl. 2, figs. 3-10 

 

1998 Vogelgnathus campbelli Perri and Spaletta, p. 245, pl. 2, fig. 15 

 

2005 Vogelgnathus campbelli Nemyrovska, p. 46, pl. 1, figs. 1-2, 4-5, and 9 
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Diagnosis – Specimen is consistent with the original diagnosis of Rexroad (1957) and 

observations of Perri and Spaletta (1998) and Godwin (2017).  

 

Range and Occurrence – lower Chesterian (this study). This species is also known to 

range from the upper Meramecian to the lower Chesterian in the Oklahoma basin (e.g., 

Godwin, 2017). 

 

Remarks – This specimen is well-preserved and displays all the characteristics of 

Vogelgnathus campbelli, including the polygonal apices which cannot be easily seen in 

the SEM image in plate 2.   
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APPENDICES 
 

 

 

APPRENDIX D: PLATES 
 

 All conodont specimens imaged with the SEM are displayed at 120X 

magnification and were deposited with the Paleontology Repository of the Department of 

Earth and Environmental Sciences at the University of Iowa, 115 Trowbridge Hall, Iowa 

City, IA, 52242, U.S.A. All sample depths reported herein reflect core depths.  
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Plate 1 

Figure 1 – Gnathodus pseudosemiglaber (Thompson and Fellows, 1970); Elinore 

1-18, sample depth: 4458.5-4459.0 ft., SUI 145079 

Figure 2 – Spathognathodus sp.? (Branson and Mehl, 1941b); Elinore 1-18, 

sample depth: 4479.0-4480.0 ft., SUI 145080 

Figure 3 – Adetognathus unicornis? (Rexroad and Burton, 1961); Doberman 1-25, 

sample depth: 5035.8-5536.0 ft., SUI 145081 

Figure 4 – Rhachistognathus minutus minutus (Higgins and Bouckaert, 1968); 

Doberman 1-25, sample depth 4992.6-4992.8, SUI 145082 

Figure 5 – Rhachistognathus muricatus trans. to R. websteri? (Krumhardt et al., 

1996); Doberman 1-25, sample depth: 5000.4-5000.6, SUI 145083 

Figure 6 –  Gnathodus aff. texanus? (Roundy, 1926); Elinore 1-18, sample depth: 

4479.0-4480.0 ft., SUI 145084 

Figure 7 – Adetognathus unicornis? (Rexroad and Burton, 1961); Doberman 1-25, 

sample depth: 5035.8-5536.0 ft., SUI 145085 

Figure 8 – Gnathodus texanus (Roundy, 1926); Elinore 1-18, sample depth: 

4464.5-4465.5 ft., SUI 145086 

Figure 9 – Gnathodus texanus (Roundy, 1926); Elinore 1-18, sample depth: 

4456.6-4457.0 ft., SUI 145087 

Figure 10 – Gnathodus linguiformis (Branson and Mehl, 1941a); Elinore 1-18, 

sample depth: 4458.5-4459.0 ft., SUI 145088 

Figure 11 – Gnathodus bulbosus (Thompson, 1967); Elinore 1-18, sample depth: 

4479.0-4480.0 ft., SUI 145089  
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Figure 12 – Gnathodus aff. texanus? (Roundy, 1926); Elinore 1-18, sample depth: 

4479.0-4480.0 ft., SUI 145090 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



177 
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Plate 2 

Figure 1 – Adetognathus unicornis? (Rexroad and Burton, 1961); Doberman 1-25, 

sample depth: 5022.0-5022.5 ft., SUI 145091 

Figure 2 –  Gnathodus sp. A (Thompson and Fellows, 1970); Elinore 1-18, sample 

depth: 4451.5-4452.5 ft., SUI 145092 

Figure 3 – Gnathodus cuneiformis (Mehl and Thomas, 1947); Elinore 1-18, 

sample depth: 4458.5-4459.0 ft., SUI 145093 

Figure 4 – Vogelgnathus campbelli (Rexroad, 1957); Adkisson 1-33, sample 

depth: 5570.0-5571.0 ft., SUI 145094 

Figure 5 – Gnathodus n. sp. 15 (aff. punctatus) (Boardman et al., 2013); Elinore 

1-18, sample depth: 4451.5-4452.5 ft., SUI 145095 

Figure 6 – Gnathodus texanus (Roundy, 1926); Elinore 1-18, sample depth: 

4456.5-4457.0 ft., SUI 145096 

Figure 7 – Lochriea commutata? (Branson and Mehl, 1941b); Elinore 1-18, 

sample depth: 4367.5-4468.0 ft., SUI 145097  

Figure 8 – Polygnathus bischoffi (Rhodes et al., 1969); Elinore 1-18, sample 

depth: 4481.0-4481.7 ft., SUI 145098 
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