
ANT COLONY APPROACH

 FOR

 MULTIPLE PICKUP AND MULTIPLE DROPOFF

 By

 GORTHI VENKATA SREERAM PHANI SAI

 Bachelor of Technology in Computer Science

 GITAM University

 Visakhapatnam, Andhra Pradesh, India

 2009 - 2013

 Submitted to the Faculty of the

 Graduate College of the

 Oklahoma State University

 in partial fulfillment of

 the requirements for

 the Degree of

 MASTER OF SCIENCE

 December 2017

ii

 ANT COLONY APPROACH

 FOR

 MULTIPLE PICKUP AND MULTIPLE DROPOFF

 Thesis Approved:

 Dr. Johnson P Thomas

 Thesis Adviser

 Dr. K M George

 Dr. David Cline

iii
Acknowledgements reflect the views of the author and are not endorsed by committee
members or Oklahoma State University.

ACKNOWLEDGEMENTS

I would like to take a moment to express my sincere gratitude to my advisor Dr. Johnson

Thomas for his support, patience and continuous guidance throughout my work. His expert

suggestions and valuable feedback had helped me to achieve my goal.

I would also like to thank Dr. David Cline and Dr. K. M. George for being very supportive

and being part of my committee.

My sincere thanks to the Ruutdrop company for providing valuable feedback and

continuous assessment on my project.

Last but not least, I would like to thank my parents for everything. They have made me

into the person I am now. Their hard work and motivation have paved the path for me to

achieve my goals.

iv

Name: GORTHI VENKATA SREERAM PHANI SAI

Date of Degree: DECEMBER 2017

Title of Study: ANT COLONY APPROACH FOR MULTIPLE PICKUP AND

MULTIPLE DROPOFF

Major Field: COMPUTER SCIENCE

Abstract:

The Multiple Travelling Salesman Problem, popularly known as MTSP is an NP-hard problem.

MTSP is a well-known combinatorial optimization problem in which more than one salesmen visit

all cities only once and return to the depot. In our problem, we apply the MTSP algorithm to

multiple drivers picking and dropping packets at multiple locations and the drivers not returning to

the starting location. There are no exact solutions for solving this combinatorial problem that can

guarantee to find the optimal route within a reasonable time. A meta-heuristic algorithm, Ant

Colony Optimization (ACO) is used as a base for our solution construction for different variations

of the problem such as handling multiple pickups and multiple drop-offs using a single driver,

multiple drivers, drivers starting at different times, and drivers available for different times. The

goal is to maximize the number of goods delivered while minimizing distance (or time) within

some threshold limits. The results are compared to existing algorithms like Brute-force approach

and Nearest Neighbor algorithms. Our results show that the proposed ant colony algorithm achieves

better results or at worst identical results to the Brute-force approach.

v

TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION 1

 1.1 Background 2

 1.2 Motivation 3

 1.3 Outline of existing work 3

 1.4 Outline of proposed work 4

 1.5 Outline of the thesis 5

2. REVIEW OF LITERATURE 6

 2.1 Review 6

 2.2 Existing Algorithm on MTSP 8

 2.2.1 Greedy Algorithm 8

 2.2.2 Nearest Neighbor Algorithm 8

 2.2.3 Genetic Algorithm 9

 2.2.4 Gravitational Emulation Local Search Algorithm 9

 2.2.5 Ant Colony Optimization 10

 2.3 Critique 10

3. PROPOSED SOLUTION AND RESULTS 11

 3.1 Problem Specification 11

 3.2 Swarm Intelligence 13

vi

Chapter Page

 3.2.1 Ant Colony Optimization 14

 3.3 Proposed Ant Colony Algorithm 15

 3.3.1 Selecting Neighboring Nodes 15

 3.3.2 Pheromone Update 16

 3.3.3 Ending Criteria 17

 3.4 Variations and Results 17

 3.4.1 Multiple pickups and multiple deliveries with

 single driver (MPMD – SD) 17

 3.4.1.1 Implementation of MPMD - SD 20

 3.4.1.2 Results of MPMD – SD 24

 3.4.2 Multiple pickups and multiple deliveries with multiple

 drivers starting at the same time (MPMD – MD) 26

 3.4.2.1 Implementation of MPMD - MD 27

 3.4.2.2 Results for MPMD - MD 30

 3.4.3 Multiple pickups and multiple deliveries with multiple

 driver starting at different times (MPMD – MD_DT) 38

 3.4.3.1 Implementation of MPMD – MD_DT 39

 3.4.3.2 Results of MPMD – MD_DT 42

 3.4.4 Multiple pickups and multiple deliveries with multiple

 drivers starting at different timings and available for different

 shift times (MPMD – MD_DST) 56

 3.4.4.1 Implementation of MPMD – MD_DST 57

 3.4.4.2 Results for MPMD – MD_DST 61

vii

4. CONCLUSIONS 77

REFERENCES 80

viii

LIST OF TABLES

Table Page

TABLE 3.1: DISTANCE MATRIX FOR A GRAPH OF 20 NODES 19

TABLE 3.2: KEY OF CITIES SHOWN IN TABLE 3.1 20

TABLE 3.3: INPUT FOR MPMD-SD SIMULATION 24

TABLE 3.4: REQUESTS AT EACH NODE 25

TABLE 3.5: INPUT FOR MPMD-MD SIMULATION 30

TABLE 3.6: REQUESTS AT EACH NODE 30

TABLE 3.7: COMPARISON OF DISTANCE WITH 31

TABLE 3.8: COMPARISON OF NUMBER OF 32

TABLE 3.9: COMPARISON OF NUMBER OF BOXES 32

TABLE 3.10: COMPARISON OF NUMBER OF BOXES DELIVERED WITH 33

TABLE 3.11: INPUT FOR MPMD-MD SIMULATION 34

TABLE 3.12: REQUESTS AT EACH NODE 35

TABLE 3.13: COMPARISON OF DISTANCE TRAVELED 35

TABLE 3.14: COMPARISON OF NUMBER OF PICKED 36

TABLE 3.15: COMPARISON OF NUMBER OF BOXES 37

TABLE 3.16: COMPARISON OF NUMBER OF BOXES DELIVERED WITH 37

TABLE 3.17: INPUT FOR MPMD-MD_DT SIMULATION 42

TABLE 3.18: REQUESTS AT EACH NODE 43

TABLE 3.19: COMPARISON OF TOTAL DISTANCE 43

TABLE 3.20: COMPARISON OF NUMBER OF PICKUP 44

TABLE 3.21: COMPARISON OF NUMBER OF BOXES 45

TABLE 3.35: COMPARISON OF NUMBER OF BOXES 54

TABLE 3.36: COMPARISON OF NUMBER OF BOXES DELIVERED 54

TABLE 3.37: NUMBER OF BOXES DELIVERED 55

TABLE 3.38: TIME MATRIX FOR A GRAPH OF 20 NODES IN MINUTES 58

TABLE 3.39: INPUT FOR MPMD-MD_DST SIMULATION 61

TABLE 3.40: REQUESTS AT EACH NODE 62

TABLE 3.41: COMPARISON OF DISTANCE 62

TABLE 3.42: COMPARISON OF HANDLING NUMBER OF 63

ix

TABLE 3.43: COMPARISON OF NUMBER OF BOXES 64

TABLE 3.44: COMPARISON OF NUMBER OF BOXES DELIVERED 65

TABLE 3.45: NUMBER OF BOXES DELIVERED 65

TABLE 3.46: INPUT FOR MPMD-MD_DST SIMULATION 66

TABLE 3.47: REQUESTS AT EACH NODE 627

TABLE 3.48: COMPARISION OF DISTANCE 67

TABLE 3.49: COMPARISON OF NUMBER OF PICKED REQUESTS 68

TABLE 3.50: COMPARISON OF NUMBER OF BOXES 69

TABLE 3.51: COMPARISON OF NUMBER OF BOXES DELIVERED 70

TABLE 3.52: NUMBER OF BOXES DELIVERED 70

TABLE 3.53: INPUT FOR MPMD-MD_DST SIMULATION 71

TABLE 3.54: REQUESTS AT EACH NODE 72

TABLE 3.55: COMPARISION OF DISTANCE 72

TABLE 3.56: COMPARISION OF NUMBER OF PICKED REQUESTS 73

TABLE 3.57: COMPARISON OF NUMBER OF BOXES 74

TABLE 3.58: COMPARISON OF NUMBER OF BOXES DELIVERED 75

TABLE 3.59: NUMBER OF BOXES DELIVERED 75

x

LIST OF FIGURES

Figure Page

FIGURE 3.1: NATURAL BEHAVIOR OF ANT 13

FIGURE 3.2: SAMPLE GRAPH REPRESENTING NODES AND EDGES WITH SINGLE DRIVER 18

FIGURE 3.3: MODIFIED ANT COLONY ALGORITHM 22

FIGURE 3.4: VEHICLE LOADING FUNCTION 23

FIGURE 3.5: VEHICLE UNLOADING FUNCTION 23

FIGURE 3.6: NUMBER OF BOXES DELIVERED BY SINGLE DRIVER 26

FIGURE 3.7: SAMPLE GRAPH REPRESENTING NODES AND EDGES WITH MULTIPLE DRIVERS

 277

FIGURE 3.8: ALGORITHM FOR MPMD - MD 299

FIGURE 3.9: DISTANCE TRAVELED BY EACH DRIVER 31

FIGURE 3.10: NUMBER OF PICKUP REQUESTS HANDLED BY EACH DRIVER 32

FIGURE 3.11: NUMBER OF BOXES DELIVERED BY EACH DRIVER 333

FIGURE 3.12: NUMBER OF BOXES DELIVERED BY EACH DRIVER WITH 333

FIGURE 3.13: DISTANCE TRAVELED BY EACH DRIVER 366

FIGURE 3.14: NUMBER OF PICKUP REQUESTS HANDLED BY EACH DRIVER 366

FIGURE 3.15: NUMBER OF BOXES DELIVERED BY EACH DRIVER 377

FIGURE 3.16: NUMBER OF BOXES DELIVERED BY EACH DRIVER WITH RESPECT TO 388

FIGURE 3.17: CLIENT ENVIRONMENT FOR MPMD-MD_DT 40

FIGURE 3.18: SERVER ENVIRONMENT FOR MPMD-MD_DT 41

FIGURE 3.19: TOTAL DISTANCE TRAVELED BY EACH DRIVER 44

FIGURE 3.20: NUMBER OF PICKUP REQUESTS HANDLED BY EACH DRIVER 44

FIGURE 3.21: NUMBER OF BOXES DELIVERED BY EACH DRIVER 45

FIGURE 3.22: NUMBER OF BOXES DELIVERED BY EACH DRIVER WITH 46

FIGURE 3.23: NUMBER OF BOXES DELIVERED BASED ON THE ENTRY TIME OF DRIVER'S 46

FIGURE 3.24: TOTAL DISTANCE TRAVELED BY EACH DRIVER 488

FIGURE 3.25: NUMBER OF PICKUP REQUESTS HANDLED BY EACH DRIVER 499

FIGURE 3.26: NUMBER OF BOXES DELIVERED BY EACH DRIVER 499

FIGURE 3.27: NUMBER OF BOXES DELIVERED BY EACH DRIVER 50

FIGURE 3.28: NUMBER OF BOXES DELIVERED BASED ON THE ENTRY TIME OF DRIVER’S 51

xi

FIGURE 3.29: TOTAL DISTANCE TRAVELED BY EACH DRIVER 53

FIGURE 3.30: NUMBER OF PICKUP REQUESTS HANDLED BY EACH DRIVER 53

FIGURE 3.31: NUMBER OF BOXES DELIVERED BY EACH DRIVER 54

FIGURE 3.32: NUMBER OF BOXES DELIVERED BY EACH DRIVER 55

FIGURE 3.33: NUMBER OF BOXES DELIVERED BASED ON THE ENTRY TIME OF DRIVER’S 55

FIGURE 3.34: CLIENT ENVIRONMENT FOR MPMD - MD_DST 59

FIGURE 3.35: SERVER ENVIRONMENT FOR MPMD - MD_DST 60

FIGURE 3.36: VEHICLE_LOADING FUNCTION IN MPMD - MD_DST 61

FIGURE 3.37: DISTANCE TRAVELED WITH RESPECT TO AVAILABLE TIME BY MULTIPLE

DRIVERS 63

FIGURE 3.38: NUMBER OF PICKED REQUESTS BY EACH DRIVER 63

FIGURE 3.39: NUMBER OF BOXES DELIVERED BY EACH DRIVER 64

FIGURE 3.40: NUMBER OF BOXES DELIVERED BY EACH 65

FIGURE 3.41: NUMBER OF BOXES DELIVERED BASED ON THE ENTRY TIME OF DRIVERS 66

FIGURE 3.42: TOTAL DISTANCE TRAVELED BY EACH DRIVER 68

FIGURE 3.43: NUMBER OF PICKED REQUESTS BY EACH DRIVER 68

FIGURE 3.44: NUMBER OF BOXES DELIVERED BY EACH DRIVER 69

FIGURE 3.45: NUMBER OF BOXES DELIVERED BY EACH 70

FIGURE 3.46: NUMBER OF BOXES DELIVERED BY BASED ON THE ENTRY TIME 71

FIGURE 3.47: TOTAL DISTANCE TRAVELED BY EACH DRIVER 73

FIGURE 3.48: NUMBER OF PICKED REQUESTS BY EACH DRIVER 73

FIGURE 3.49: NUMBER OF BOXES DELIVERED BY EACH DRIVER 74

FIGURE 3.50: NUMBER OF BOXES DELIVERED BY EACH 75

FIGURE 3.51: NUMBER OF BOXES DELIVERED BY BASED ON THE ENTRY TIME 76

FIGURE 4.1: COMPARISION OF SHORTEST DISTANCE GENERATED BY MODIFIED ANT 78

FIGURE 4.2: RUNTIME ANALYSIS OF BRUTE FORCE AND ANT COLONY 78

1

CHAPTER I

INTRODUCTION

The Multiple Travelling Salesman Problem (MTSP) is a generalization of the

Travelling Salesman Problem. MTSP has many applications in the real world, such as crew

scheduling, school bus routing, interview scheduling, and the design of global navigation

satellite surveying networks [1]. These kinds of problems are frequently encountered in

logistics. Finding efficient routes for different salesmen (vehicles) to serve multiple

locations has been studied over several decades in logistics. If a company can reduce the

route length traveled by individual salesmen, or reduce the number of vehicles needed to

serve all locations, it will be able to service a large number of customer requests with

minimal cost. The Multiple Travelling Salesman problem involves multiple salesmen

visiting cities which are geographically dispersed only once and returning to the initial

starting point. Within this field, many variations have been researched using different

constraints such as time windows, vehicle capacity, delivering and picking up goods, and

open systems where drivers need not return to the initial pickup location. Due to its

economic importance and a wide range of applications, MTSP research has grown for

many decades. Problem variations typically involve finding the minimum cost of a total

2

tour, finding the minimum number of vehicles for covering all the locations, etc. The cost

can be defined in many ways, such as the distance between cities, time, and capacity. In

the cases mentioned above, only one objective function exists, and optimization is

performed based on that objective function.

In MTSP, there exists more than one vehicle to serve the given location in

delivering or picking up goods. In the variation that this thesis considers, the vehicles need

not return to the starting location (i.e., initial pickup location after it serves all the pre-

determined locations assigned to it). Once the task is completed by the vehicle, it can go to

any location where it can find new requests to take. In this variation, the cost is related to

two parameters, namely, vehicle occupancy and distance between locations. The

optimization should be performed based on the two parameters listed above making this

combinatorial problem NP-hard as well as a bi-criterion problem. The selection of the next

location from the current location is defined based on these parameters. Based on these

requirements, an optimal route is built using meta-heuristic algorithms.

1.1 Background:

 The Multi Travelling Salesman Problem is an extension of the Travelling Salesman

Problem which is one of the best known NP-hard problems. There are many real-world

applications in which MTSP plays a major role [1]. For example, MTSP is used in genetic

engineering to minimize the length of DNA, in spacecraft to minimize fuel combustion,

and in the design of global satellite systems. MTSP also plays a large role in road networks

in designing routes for school buses, emergency services, traffic controls and logistics.

3

1.2 Motivation

 Many MTSP variants have addressed the problems of handling different constraints

that are mentioned above. Our current problem relates to the capacities of vehicles. In this

work, there are multiple vehicles with varying capacities that start at different locations

instead of starting at a single depot. Vehicles do not drop any goods at the starting point;

they only pick up goods from that location. Once the vehicle is loaded with the goods,

MTSP handles the construction of the route. At each point along the route, a vehicle may

pick up or drop off boxes or do both. Vehicles do not pick up any goods at the end point of

the graph, and they do not return to the initial starting point.

The goal of this work is to maximize the number of delivered boxes while

minimizing the distance (or time).

1.3 Outline of existing work

 MTSP can be defined as follows: given n cities and m salesmen starting at a given

location (i.e., depot), all the cities must be visited at least once by m salesmen with minimal

total distance. Each salesman should visit a city, which has not visited by the other

salesman. MTSP determines the route for the salesman with the minimal distance, to visit

all cities. The factors that need to be optimized can be the distance to be traveled, time, or

capacity. [1]. There are different MTSP variants such as single and multiple depots, number

of salesmen, and time frame. The heuristic and metaheuristic algorithms that are used for

handling such variants are Greedy Algorithm, Genetic Algorithm [3] [10], Ant Colony

Optimization [11], and Particle Swarm Optimization [10]. These algorithms generate a

feasible route based on the distance that each salesman needs to travel. Also, these

4

algorithms usually consider single objective functions, namely, distance, time or

minimizing the number of vehicles.

 The goal of our work is to maximize the occupancy and minimize the distance to

travel. Existing works have looked at objective functions such as minimizing the total

distance travelled by individual salesmen [3], vehicles ending at a special node instead of

returning to the depot [5], number of vehicles that are required to complete a task [4],

assigning vehicles based on road capacity [2] etc. Existing work does not address our

problem of maximizing the deliverable goods while minimizing the distance traveled.

Hence, a new solution is required to address our problem.

1.4 Outline of proposed work

 In this problem, we are handling two parameters, namely distance (or time) and the

capacity of the vehicle, which makes the problem a bi-criterion problem. Some solutions

have been proposed for MTSP as outlined above. We chose the Ant Colony approach

because Ant Colony Optimization has an inherent parallelism and can rapidly discover

good solutions based on positive feedback. Ant Colony Optimization is also adaptive and

works efficiently for dynamic requests in polynomial time.

 We modified the ant colony optimization algorithm to fit our problem. The regular

way that an ant selects its next node is manipulated, and it selects based on the objective

function defined above.

5

1.5 Outline of the Thesis

 The rest of the thesis document is outlined as follows: Chapter 2 describes various

research works that are related to the work of the thesis. Chapter 3 outlines the deficiency

of existing work and provides the detailed solution to our approach. The proposed

algorithms are simulated and the results are presented. Chapter 4 concludes the thesis with

suggestions for possible future work.

6

CHAPTER 2

LITERATURE REVIEW

2.1 Review

 Different variations of the Multiple Travelling Salesman Problem are surveyed in

[1]. The different variations listed in [1] are single vs. multiple depots [5] along with fixed

and non-fixed destinations, number of salesmen, fixed charges, and time windows. Each

variant is further modified according to the needs of real-world problems in designing

applications. MTSP is applied in various routing and scheduling applications such as print

press scheduling, crew scheduling, school bus routing, and hot roll scheduling. [1]. Another

variant of MTSP is the time frame, i.e., MTSPTW – Multiple Travelling Salesman with

Time Windows. Based on this, research has been done for finding the minimum number

of vehicles needed to perform pickup and delivery requests in a given time window using

precedence graphs [5]. This research is done primarily on vehicles that do not return to the

depot after the deliveries are completed and end up at a special node. Asken, Ozyurt, and

Aras in [5] developed a new Open Tabu Search algorithm for handling this problem. Fixed

destinations are those where the salesman returns to the same depot after visiting

7

all the cities.

MTSP also has a wide range of important applications in the logistics field. Based

on the type of goods they carry and on handling the pickups and deliveries there are

different variants of MTSP. Some works have looked into multiple pickups, and deliveries

using simulated annealing and ejection pool algorithms along with node exchange and,

node relocation heuristics [6]. Handling the deliveries and pickups at the same location

involves issues such as the load shuffling problem [6]. Due to this issue, there are again

several variants in the problem which carries the deliveries with last-in-first-out loading

[7] and first-in-first-out loading [8]. There are other variants where only the deliveries are

carried out first and then requests are taken for picking up goods [6]. Other work addressed

splitting the tasks where the customer is visited twice for handling requests [9] using a local

search with a relocate operator, relocate split operator and a hybrid heuristic algorithm.

 All these variations of MTSP, TSP, and VRP optimize a single objective function

either by time, distance or type of delivery. However, there are very few works that address

multiple objective functions. One such work addresses the issue of optimizing both driving

time and energy consumption which are inversely proportional to each other [10] using a

pseudo-polynomial time algorithm with vertex labeling algorithm.

 In MTSP, if the deliveries and pickups are carried at the same time, with the same

vehicle, some issues need to be considered. One such issue is the Load Shuffling Problem

[6]. This problem can be defined as follows: when the vehicle handles both the pickups

and deliveries in any order, there may arise a situation where the delivery goods are

8

inaccessible in the vehicle. This shuffling involves time spent in ordering the goods at every

stop.

2.2 Existing Algorithms on MTSP

 The algorithms mentioned below are some of the algorithms which are used for

different MTSP problems.

2.2.1 Greedy Algorithms

 This classic algorithm approximates the shortest distance that covers all the cities

for a single salesman. First, all the edges are taken into the solution space and sorted. Once

they are sorted, the algorithm starts constructing the route based on the shortest distance

repeatedly until it covers all the nodes in the graph [11]. The algorithm is checked for both

symmetric and asymmetric TSP problems based on the domination number and proved that

the results are unsatisfactory because it generated the worst tour [11].

2.2.2 Nearest Neighbor Algorithm

 The Nearest Neighbor (NN) algorithm starts the tour from a given starting point i

and finds the nearest neighbor j from i (i ≠ j). The tour continues until all nodes in the

solution set S are visited exactly once [11]. Repeated NN (RNN) algorithm works similar

to the NN, but RNN constructs the route by taking every node in the solution set as a

starting point and finds the routes. The best route to the nearest distance is selected among

the generated routes [11]. Both NN and RNN are analyzed with the domination number

approach for symmetric and asymmetric TSP problems, and the results are obtained are

not desirable since it generated the worst tour when n ≥ 2 [11].

9

2.2.3 Genetic Algorithm

 The algorithm initially generates the population of “chromosomes” which

represents tours and evaluates the fitness for each of them. By selecting two chromosomes

randomly from the parent population, it generates two offspring using process called

selection, crossover, and mutation which are inspired by biological processes. A fitness

function is maintained to guide the search process in the solution space of chromosomes.

The old population is replaced by the new population, and the fitness is evaluated again.

The search process continues till the best set population is created [14]. The list of tours is

taken as the population, and the parents are selected from the population to create new child

tours. The search continues until near optimal solution is obtained. The creation of new

child tours and comparing them with existing tours becomes complex with increase in

population size.

2.2.4 Gravitational Emulation Local Search Algorithm (GELS)

 This GELS algorithm [12] is based on a local search using gravity and velocity.

Gravity helps in attracting objects to each other. A heavier object has more gravity and

attracts lighter objects. Each objective function is represented by a mass, and the solution

with the highest mass is the best solution. In MTSP, all the cities are divided into a different

group, and each group is considered as a TSP problem. Each group has different neighbors,

and each neighbor is determined by the distance and the direction of the neighbor solution.

The next city is selected based on the nearest distance, and with the highest velocity.

10

2.2.5 Ant Colony Optimization

 This algorithm [13] uses the behavior of natural ants for finding optimal solutions.

Ants lay pheromone trails along their route while searching for food. These pheromone

trails tend to evaporate slowly. The shorter distances tend to have more pheromone

deposited along their routes and are therefore likely to be chosen by other ants. This

algorithm gives the solution when an ant finds a good route to the food using positive

feedback. The solution for the current problem is based on ant colony optimization. In

MTSP, each ant (drivers) traverses through the cities and selects the next neighboring city

based on heuristics. The ant will either select the nearest city or the path which has more

pheromone deposits. After each iteration, the pheromone is updated, and the best route is

selected based on the shortest distance, time or capacity.

2.3 Critique

 The variations and algorithms mentioned in section 2.1 handle most of the time

single objective functions which either gives the best distance or estimates the required

number of vehicles needed for completing the requests. No research has been done that

seeks to maximize delivered goods based on vehicle capacity and minimize distance (or

time) travelled. Hence, existing methods cannot provide a complete solution for our

problem. Ant Colony Optimization solves the problem very quickly and is flexible to

handle dynamic requests.

11

CHAPTER 3

PROPOSED SOLUTION AND RESULTS

3.1 Problem Specification

 We call our system The Pick-up and Drop-off Multiple Travelling Salesman

Problem (PD-MTSP). Our goal is to maximize the number of boxes delivered at different

locations on a route using vehicles with different capacities while minimizing the distance.

Initially, the vehicles that are available to deliver and pick up requests are connected

through an application. When the requests that come from customers to pick up boxes

crosses a threshold in terms of the number of boxes, one or more vehicles are assigned to

satisfy customer requests to pick up and drop off boxes. PD-MTSP then works out the

routes and assigns the best vehicle to satisfy the request. We assume that the driver has

sufficient time available at his disposal to deliver and pick up the goods or boxes. The

driver then travels to the initial pickup location and starts scanning the boxes that need to

be delivered to the addresses. At the initial pickup location, the driver does not deliver any

goods. The driver then loads the vehicle with the scanned boxes and delivers them to

customers following the generated route. Along the route, the driver may pick up boxes for

delivery to other locations. Of course, the vehicle must have sufficient capacity or space

12

pick up requests.

We look at following variations of this scheme:

 Multiple pickups and multiple drop-offs using a single driver.

 Multiple pickups and multiple drop-offs using multiple drivers starting at the same

time.

 Multiple pickups and multiple drop-offs using multiple drivers starting at different

times.

 Multiple pickups and multiple drop-offs using multiple drivers starting at different

times and available for different times.

These variants help to maximize the number of boxes delivered along the route

while minimizing the total distance traveled. Handling two objective functions makes our

problem a bi-criterion NP-hard problem.

Given n salesmen and m cities, each salesman starts at an initial location and starts

visiting all the cities in his route at least once. The PD-MTSP will generate the route for

the driver. The number of cities m is always greater than the number of drivers, i.e., n

(m>n). In this problem, the drivers do not start from a central location (depot). Instead,

they are dispersed around the cities. PD-MTSP automatically identifies the drivers, once

they come online and assigns them a route starting at their initial pickup location to handle

multiple requests. The vehicle capacities vary based on the type of vehicle. Bigger vehicles

can carry more boxes.

13

3.2 Swarm Intelligence

 Ant Colony Optimization belongs to the Swarm intelligence group of algorithms

[13]. The main idea of Swarm intelligence is to study the behavior patterns of different

social insects like bees, ants, etc., and introduce the same patterns into technology to

simulate the process based on their behavior. One such metaheuristic algorithm which

follows this swarm intelligence is Ant Colony Optimization. The Ant Colony Optimization

algorithm follows the natural behavior of ants that are searching for food laying pheromone

tracks as they go. The ants move around in search of food laying down pheromone so that

other ants follow the trail as seen in figure 3.1.

Figure 3.1: Natural behavior of Ant

14

3.2.1 Ant Colony Optimization

 The PD-MTSP problem deals with two parameters. One is the distance (or time)

between cities, i.e., the distance between two cities i and j represented as Dij. The second

parameter is the capacity Ck of vehicle k.

 The Ant Colony Optimization algorithm is an artificial intelligence algorithm that

can be applied to combinatorial problems like PD-MTSP where different possible routes

are searched for a feasible route with the minimum distance to supply a maximum number

of boxes. Ant Colony Optimization(ACO) is a type of search algorithm that seeks the best

feasible solution using the pheromone trails of artificial ants. Artificial ants follow the same

pattern of behavior as natural ants. Natural ants search for food while laying pheromone

on their path, using which other ants follow the same path. Once they reach the food, they

head back on the same path to the initial starting location. This traveling of an ant increases

the pheromone deposit in the path. Pheromones are not only deposited, but they also

evaporate over time. Hence, if a path has not been used for some time, it will contain less

pheromone. There may be other ants that follow another path to the same food in a shorter

distance that results in more pheromone being deposited than the previous trails. These

pheromone deposited paths make other ants follow the new shorter route while slowly

evaporating. Artificial ants follow the same procedure while searching for a route that visits

all the cities and complete customer requests to pick up and drop off boxes. Each edge

between the cities has an initial pheromone level so that no route dominates the other

routes. Once a route has been constructed based on the heuristics (shortest distance) using

the Ant Colony Optimization algorithm, the edges that belong to the solution are chosen

for reducing the pheromone deposits to find other possible routes. The same process of

15

route construction is repeated for some iterations to find different possible solutions around

the initial best. The final output is selected, such that the total route length is the minimal

distance while delivering the maximum number of boxes.

3.3 Proposed Ant Colony Optimization Algorithm

 The Ant Colony Optimization algorithm initially constructs the route by selecting

neighboring edges from the driver’s current location, based on probability of pheromone

levels and heuristic values, along with the boxes to deliver at nodes, until it meets the

ending criteria of the algorithm. Once the route for an iteration is constructed the

pheromone on the edges is updated, and the next iteration takes place. The algorithm ends

when a feasible route that meets the requirements is obtained.

3.3.1 Selection of Neighboring Nodes

 Each salesman starts from the initial pick up location, where he loads the boxes into

the vehicle. The ant (driver) selects the next city to be visited from the neighboring nodes,

initially using the probability that is calculated based on the pheromone and heuristic values

between neighboring nodes. Then the selected node is checked for the deliverables based

on the pickup requests. If the selected node is not a delivery point, the next best node that

is a delivery point is selected. Once it gets the node based on the probability and the boxes

that need to be delivered, this node will be the current node and the construction of the

route continues till it reaches the ending criteria.

𝑗 = argmax{(𝜏𝑖𝑢)(𝜂𝑖𝑢)
𝛽} 𝑓𝑜𝑟 𝑢 ∉ 𝑅 , 𝑖𝑓 𝑞 ≤ 𝑞0 (1)

 otherwise S

16

where, 𝜂𝑖𝑢 =
1

𝐷𝑖𝑢

Diu is the distance between the node i and its neighbors u

𝜏𝑖𝑢 is the amount of pheromone laid on a path between node i and neighboring

locations u. The pheromone laid on the edges of the route between node i and neighboring

node u is initially the same for all the edges. 𝜂𝑖𝑢 is the inverse of distance between i and

the neighboring node u. 𝛽 is the weight of the heuristic i.e., selection based on the shortest

distance (𝛽 > 0). R is the list of nodes that are already visited and stored in the memory. q

is a random uniform variable that lies in the range of 0 and 1. 𝑞0 is a parameter.

 If q > 𝑞0, then the ant selects the next node randomly from unvisited neighboring

nodes based on the following probability distribution function,

𝑃𝑖𝑗 =
(𝜏𝑖𝑗)(𝜂𝑖𝑗)

𝛽

∑ (𝜏𝑖𝑢)(𝜂𝑖𝑢)
𝛽

𝑢 ∉ 𝑅
 if j ∉ R , Otherwise 0 (2)

 Based on the above equations, the next neighbor is selected either by the heuristic

value or randomly using the probabilistic distribution around the nodes.

3.3.2 Pheromone Update

 As mentioned, the ant lays pheromone on the path it travels. The initial

pheromone is same for all the edges so that no edges dominate while constructing the

route. Once a possible route is constructed using the ACO, the edges in the route will

have their pheromone updated using the below formula,

𝜏𝑖𝑗 = (1 - 𝛼) 𝜏𝑖𝑗 + (𝛼) 𝜏0 (3)

17

 𝛼 is the parameter that controls the speed of evaporation on the edges in the route.

𝜏0 is the inverse of total length of the individual route. 𝜏𝑖𝑗 is the pheromone value between

nodes i and j.

3.3.3 Ending Criteria

 The driver will not drop any goods at the initial pickup location, and will not pick

up any goods at the last destination in the route. The route is constructed based on the

probability of the heuristic values and capacity of the vehicle. Once the node is selected,

the vehicle capacity is updated automatically before going to the next node. The route

construction is continued till the vehicle does not contain any boxes, or all the nodes have

been visited by the vehicle. The total number of boxes that are required to be delivered is

denoted by the term GD, and the total amount of boxes that must be picked up is denoted

by the term GP. So the ending criterion is represented as follows, GP – GD = 0.

3.4 Variations and Results

 The following variations have been designed considering different conditions such

as drivers starting at the same time, handling multiple pickups and multiple deliveries, and

handling single and multiple drivers to achieve the goal mentioned above.

3.4.1 Multiple pickups and multiple deliveries with single driver (MPMD

– SD)

The Travelling Salesman problem is a well know combinatorial problem, where

each salesman finds the shortest path, to visit, all the cities at least once. In the TSP

problem, the salesman starts and ends at the depot. In this variation, i.e., handling multiple

18

pickups and multiple deliveries with a single driver, there are multiple requests that need

to be handled by a single driver, unlike the normal TSP problem. At each node

(city/address), there are multiple requests for picking of boxes, which need to be delivered

to other nodes (cities/addresses). In this variation, the driver does not start at a depot or any

specific location; it can be any place such as a home or any random location in the city.

Once the driver is ready to take up the requests, the details are provided to the system such

as driver location and vehicle capacity. In this variation, we have assumed that the driver

is starting at one of the locations where the requests for picking up boxes are available,

instead of a random location. However, in a real-time application, the drivers can start at

any location as stated above, and from that location, the nearest pickup location (node) is

selected, and the driver can start picking up boxes. The map for the requests is taken in the

form of a graph with edges and nodes as shown in figure 3.2, where edges represent the

route between two nodes and nodes represent cities or addresses where the requests are

available. A request is defined as picking up boxes at a certain location where boxes are

available for delivery.

Figure 3.2: Sample graph representing nodes and edges with

 single driver where each node is a pickup and/or delivery point

Driver

19

As stated above, at each node, there will be multiple requests for picking up boxes

and each node can be a pickup location and a delivery point, such as at node A, where the

driver may have to pick up boxes that need to be delivered at some of the directly connected

nodes such as D, G, H and I. Similarly, the driver may have to pick up boxes at other nodes

i.e., B, C, D,..., J as shown in figure 3.2 and deliver at different delivery points. At each

delivery point, i.e., D, G, H and I, there may be multiple boxes that need to be delivered,

and those boxes are picked up at node A. The distance between the nodes, i.e., Diu, where

i is the current node, and u is the set of neighboring nodes is represented in the form of a

matrix. The distances in the matrix shown in table 3.1 are distances between 20 cities in

Oklahoma obtained from google maps. The cities are listed below in table 3.2.

Table 3.1: Distance matrix for a graph of 20 nodes

20

Table 3.2: Key of cities shown in table 3.1

3.4.1.1. Implementation of MPMD – SD

 MPMD – SD, i.e., Multiple Pickup and Multiple Drop-off with Single Driver

described above was implemented using java. The following assumptions are made in

implementing MPMD - SD,

 The driver starts at one of the nodes, where there is a request to pick up boxes

 The driver has no time restrictions

 The requests are known prior to the drivers starting from the first point.

Requests at each node are randomly generated, i.e., at each node a random number

of nodes are selected as delivery points, and at each node, a random number of boxes are

randomly generated. These requests are generated based on the number of nodes present

in the graph. The distance between nodes is taken from the distance matrix, where the

21

distances between the nodes are randomly generated. Once the information regarding the

map is generated by the system, driver information is taken as input, i.e., driver’s starting

location and vehicle capacity. Based on this information, the modified ant algorithm runs

through the map (generated as mentioned above) and generates the route with the shortest

distance while delivering a maximum number of boxes.

Algorithm

 The ant algorithm is modified as below to optimize the number of boxes picked up

and delivered by the vehicle. The next node is selected using the above probability

equations, but it may lead to a node where the driver has no goods to deliver. Therefore,

the node that is generated by the ant colony algorithm is always checked for the

deliverables. If there is a delivery, then the node is added to the route, if not, the next best

nodes are selected based on the heuristics. By this, at every node, the driver delivers the

goods and can pick up new requests, which increases the number of boxes handled. Also,

at every node, before delivering boxes, all the visited nodes are checked for the picked up

boxes to deliver at this node. All the boxes picked up to deliver at this node so far are

summed up and delivered at this location, and new boxes picked up if any. The driver is

considered as an ant and the number of ants are equal to the number of drivers present in

the system. In the algorithm, when there are no neighboring nodes, that have delivery

requests from the current node, the system iterates through the visited nodes and pickup

requests handled by the driver (ant) so far and finds the node that has the maximum number

of boxes that need to be delivered. The selected node is taken as maxnode and the number

of boxes that need to be delivered are taken as maxval as shown below.

22

Figure 3.3: Modified ant colony algorithm

23

 The vehicle_loading function as shown in figure 3.4, checks the capacity of the

vehicle and finds the number of boxes to be picked at the next node. If the total number of

boxes exceeds the vehicle limit of handling boxes, the variable overloaded is set to 1. When

overloaded is set 1, the next best neighbor is selected and checked for the capacity

constraint. If none of the available nodes satisfies the criteria, then the selected node is sent

to the pending queue, and the pickup request is not serviced and, only boxes will be

delivered at that point.

Figure 3.4: Vehicle loading function

 The vehicle_unloading function checks all the visited nodes and tracks the boxes

that have been picked up so far to be delivered to the selected node. This step helps to

reduce revisits of nodes and delivers all the boxes once at every node. Handling all boxes

to deliver once at each node, makes space to handle further requests.

Figure 3.5: Vehicle unloading function

24

 Based on the above-modified ant algorithm, the ant selects the next node either

based on shortest distance or based on the boxes it needs to deliver. The following

parameters are used in the implementation of above algorithm for MPMD – SD [13] [15],

q  random variable between 0 and 1, q0  0.9, α  0.01, β  4. The best results are

obtained at these values after implementing with several different values. The initial

pheromone value is set to the smallest value greater than 0; in our case we have taken 0.8

as initial pheromone value. By using the above parameters, we achieved the shortest

distance while maximizing the number of boxes delivered compared to existing algorithms

like nearest neighbor algorithm.

3.4.1.2 Results for MPMD – SD

 The table below shows the simulation input for the below results obtained by the

modified ant colony algorithm. The requests at each node are generated as mentioned

above.

Table 3.3: Input for MPMD-SD simulation

Driver Starting City Vehicle Capacity

D1 1 500

 The below table 3.4 shows the number of boxes that need to be picked up at each

node and number of boxes that need to be delivered at the same node.

25

Table 3.4: Requests at each node

Location Number of boxes to be picked up Number of boxes to be delivered

1 86 61

2 21 54

3 64 79

4 57 37

5 68 53

6 59 96

7 56 42

8 91 92

9 91 79

10 91 20

11 69 110

12 70 59

13 48 62

14 42 61

15 54 93

16 65 83

17 75 44

18 81 66

19 19 43

20 108 81

Below are the results obtained for a single driver visiting 20 different cities with 500 boxes

capacity limit. The number of boxes delivered with respect to capacity and total distance

traveled is shown in figure 3.6.

26

Figure 3.6: Number of boxes delivered by single driver

3.4.2 Multiple pickups and multiple deliveries with multiple drivers

starting at the same time (MPMD – MD)

 In this variation, all the available salesmen start at different locations. There is no

particular depot in our variation, unlike normal MTSP problems. The vehicles are

connected through the application, and all the available drivers are assigned with nearby

requests as stated above. The graph considered in this variation is a symmetric graph as

shown in figure 3.7, and represented through nodes and edges. Each node had multiple

requests for picking up the boxes that need to be delivered to other nodes.

500

5957

1315

0

1000

2000

3000

4000

5000

6000

7000

Capacity Distance Number of boxes
deliveredd

is
ta

n
ce

,c
ap

ac
it

y,
 a

n
d

 b
o

xe
s

d
el

iv
er

ed

Driver

Number of boxes delivered based on capacity

27

Figure 3.7: Sample graph representing nodes and edges with multiple drivers

 The requests are generated randomly as stated before and the distance

between the nodes, i.e., Diu, where i is the current node and u is the set of neighboring

nodes is represented in the form of a matrix. The distances in the matrix, as mentioned are

taken from google maps considering 20 different cities from Oklahoma state as shown in

table 3.1, and the distance the between i to j is equal to the distance between j to i.

3.4.2.1 Implementation of MPMD - MD

 MPMD – MD, Multiple pickups and multiple deliveries with multiple drivers is

implemented using java. The following assumptions are made while implementing MPMD

– MD:

 Drivers start at one of the request nodes

 Drivers have no time restrictions

Driver_3

Driver_4

Driver_2

Driver_1

28

 Limited number of requests are available

 All drivers start at the same time for processing requests

In this variation, we know the number of drivers that are available to take up the

requests upfront. Multiple requests are generated at each node randomly based on the

number of nodes present in the graph. The distances at each edge between nodes are taken

from the distance matrix as stated above. Each driver has a different starting location and

varied vehicle capacity. The input of the algorithm in this variation is the driver’s starting

location and vehicle capacity along with the number of drivers available. The modified ant

algorithm runs through the graph with multiple requests and assigns the route to each

driver. The distribution of the nodes is equal among the multiple drivers based on the FCFS

(First Come First Serve) basis. No two drivers try to pick the boxes at the same location in

this variation. He or she might visit the location to drop-off the boxes, but no pickup request

is carried out if it is assigned to some other driver.

Algorithm

 The ant colony algorithm is modified as above (figure 3.3) to handle MPMD – MD.

The main issue that comes while handling MPMD – MD is tracking the boxes picked up

by drivers. Drivers cannot handle requests which are already assigned to some other

drivers. Hence a tracking system is needed to keep track of the deliveries. All the deliveries

are tracked by the deliveries_track set where initially all the deliveries are assigned 0, and

when it is picked by a certain driver, the node is added to the driver_picked_requests, and

the value is changed to 1. Therefore, other drivers can have pickups only if the

deliveries_track is set to 0. In this way, no two drivers can go for the same pickup request.

In the same way, while delivering the boxes, the system updates the vehicle storage by

29

removing the boxes which driver has picked up. Once the vehicle storage is updated, the

value is set to 2, which means the request has been completed. So while assigning nodes,

the modified ant algorithm will not include these nodes in assigning them to a driver, since

they have already been processed by one of the drivers.

Figure 3.8: Algorithm for MPMD - MD

 The generate_next_node function is similar to the algorithm shown in figure 3.3.

Nodes are assigned to the driver until all the available requests are processed, and picked

boxes are delivered by all the drivers. The vehicle_loading and vehicle_unloading

functions work similarly to what is shown in figures 3.4 and 3.5 respectively. The following

parameters are used in the implementation of the above algorithm for MPMD – MD, q 

random variable between 0 and 1, q0  0.9, α  0.01, β  4. Multiple values are

considered for β such as 2.3, 3, 4, and 8 [13] [15], and the best results are seen at β  4.

Similarly, α values are also tried with 0.1, 0.001, and 0.01 and the best results are achieved

with the above parameter value. The shortest distance is compared to the results obtained

using brute force and nearest neighbor algorithms.

30

3.4.2.2 Results for MPMD – MD

 The below table shows the simulation input for the below results obtained by the

modified ant colony algorithm. The requests at each node are generated as mentioned

above. The below table shows the number of boxes that need to be picked up at each node

and number of boxes that need to be delivered at the same node.

Table 3.5: Input for MPMD-MD simulation

Driver Starting City Vehicle Capacity

D1 1 100

D2 8 300

D3 18 500

Table 3.6: Requests at each node

Location Number of boxes to be picked up Number of boxes to be delivered

1 21 79

2 62 53

3 47 63

4 52 65

5 26 50

6 32 45

7 50 51

8 47 49

9 64 68

10 47 52

11 67 35

12 55 50

13 106 17

14 78 61

15 60 60

16 98 55

17 29 59

18 36 40

19 53 64

20 44 58

31

The below figures and tables shows the results of MPMD – MD, i.e., Multiple

Pickup and Multiple Deliveries with Multiple Drivers. These results are based on two

scenarios, same capacities, and varied capacities. The distance, number of delivered and

picked requests are compared to each driver’s vehicle capacity. We achieve the best results

as below by using the modified ant colony algorithm.

1) Varied capacities with multiple drivers

Table 3.7: Comparison of distance with

vehicle capacity

Drivers Vehicle Capacity Distance

D1 100 2244

D2 300 3481

D3 500 3447

Figure 3.9: Distance traveled by each driver

100
300

500

2244

3481 3447

0

500

1000

1500

2000

2500

3000

3500

4000

D1 D2 D3

D
is

ta
n

ce
 a

n
d

 c
ap

ac
it

y

Drivers

Distance with respect to vehcile capacity

Vehicle Capacity Distance

32

Table 3.8: Comparison of number of

picked requests with the vehicle's capacity

Drivers Vehicle Capacity Picked Requests

D1 100 4

D2 300 7

D3 500 9

Figure 3.10: Number of pickup requests handled by each driver

Table 3.9: Comparison of number of boxes

 delivered with the vehicle's capacity

Drivers Vehicle Capacity Delivered boxes

D1 100 132

D2 300 374

D3 500 568

100

300

500

4 7 9
0

100

200

300

400

500

600

D1 D2 D3

p
ic

ke
d

 r
eq

u
es

ts
 a

n
d

 c
ap

ac
it

y

Drivers

Number of picked requests with respect to
vehicle capacity

Vehicle Capacity Picked Requests

33

Figure 3.11: Number of boxes delivered by each driver

Table 3.10: Comparison of number of boxes delivered with

the total distance traveled and vehicle's capacity

Drivers Vehicle Capacity Delivered boxes Distance

D1 100 132 2244

D2 300 374 3481

D3 500 568 3447

Figure 3.12: Number of boxes delivered by each driver with

 respect to capacity and total distance traveled

100

300

500

132

374

568

0

100

200

300

400

500

600

D1 D2 D3

B
o

xe
s

an
d

 c
ap

ac
it

y

Drivers

Number of delivered boxes with respect to
vehicle capacity

Vehicle Capacity Boxes Delivered

100 132

2244

300 374

3481

500 568

3447

0

1000

2000

3000

4000

Vehicle Capacity Boxes Delivered Distance

B
o

xe
s,

 d
is

ta
n

ce
 a

n
d

 c
ap

ac
it

y

Drivers

Number of boxes delivered with repect to vehcile
capacity and distance

D1 D2 D3

34

In the above figure 3.12, driver D3 travelling more distance than the drivers D1 and

D2, because of the varied capacities. D1 can hold only 100 boxes and therefore handles

fewer pickup requests than the vehicles with larger capacities i.e., 300 and 500. Similarly,

D2 handles more pickup requests than D1 and fewer number of requests than D3 because

it can handle more requests compared to D1 and fewer number of requests compared to

D3. Hence, the number of delivery points decreases respectively based on the number of

pickup requests. Therefore, the driver handling fewer pickup requests travels less distance

compared to the driver handling more pickup requests because of capacity constraints.

2) Same vehicle capacities with multiple drivers

The below table shows the simulation input for the below results obtained by the

modified ant colony algorithm. The requests at each node are generated as mentioned

above.

Table 3.11: Input for MPMD-MD simulation

Driver Starting City Vehicle Capacity

D1 1 300

D2 8 300

D3 18 300

The below table 3.12 shows the number of boxes that need to be picked up at each

node and number of boxes that need to be delivered at the same node.

35

Table 3.12: Requests at each node

Location Number of boxes to be picked up Number of boxes to be delivered

1 85 53

2 96 52

3 77 73

4 78 88

5 85 67

6 78 79

7 67 80

8 14 60

9 65 69

10 54 82

11 18 48

12 82 52

13 81 41

14 63 93

15 23 48

16 65 76

17 61 106

18 93 78

19 71 51

20 99 59

Table 3.13: Comparison of distance traveled

 with vehicle's capacity

Drivers Vehicle Capacity Distance

D1 300 3317

D2 300 3923

D3 300 4278

36

Figure 3.13: Distance traveled by each driver

Table 3.14: Comparison of number of picked

 requests with the vehicle's capacity

Drivers Vehicle Capacity Picked requests

D1 300 5

D2 300 8

D3 300 7

Figure 3.14: Number of pickup requests handled by each driver

300 300 300

3317

3923
4278

0

1000

2000

3000

4000

5000

D1 D2 D3

D
is

ta
n

ce
 a

n
d

 c
ap

ac
it

y

Drivers

Distance travelled with respect to vehicle
capacity

Vehicle Capacity Distance

300 300 300

5 8 7

0

50

100

150

200

250

300

350

D1 D2 D3

P
ic

ke
d

 r
eq

u
es

ts
 a

n
d

 c
ap

ac
it

y

Drivers

Number of picked requests with respect to
vehicle capacity

Vehicle Capacity Picked Requests

37

Table 3.15: Comparison of number of boxes

 delivered with the vehicle's capacity

Drivers Vehicle Capacity Boxes delivered

D1 300 406

D2 300 439

D3 300 510

Figure 3.15: Number of boxes delivered by each driver

Table 3.16: Comparison of number of boxes delivered with

the total distance traveled and vehicle’s capacity

Drivers Vehicle Capacity Boxes delivered Distance

D1 300 406 3317

D2 300 439 3923

D3 300 510 4278

300 300 300

406
439

510

0

100

200

300

400

500

600

D1 D2 D3

B
o

xe
s

an
d

 c
ao

ac
it

ty

Drivers

Number of delivered boxes with respect to
vehicle capacity

Vehicle Capacity Boxes Delivered

38

Figure 3.16: Number of boxes delivered by each driver with respect to

the total distance traveled and vehicle's capacity

In the above figure 3.16, the vehicles are considered with the same capacities.

However, the requests are generated randomly as stated in the implementation section. The

distance travelled by the vehicle is proportional to the total number of boxes picked up by

the driver. The nodes are assigned to the driver based on a first come first serve basis. The

driver can pick up requests only if they are not assigned to the other drivers.

 3.4.3 Multiple pickups and multiple deliveries with multiple drivers

starting at different times (MPMD – MD_DT)

 In MPMD - MD_DT, the drivers start at different locations, and at different times

with varied vehicle capacities. They can start at any location, and based on their location;

the drivers are given the nearest initial pickup location. The drivers travel to the initial

pickup location and pick up boxes for delivery. In this variation, we assume the driver start

at initial pickup location. The main issue in handling drivers starting at different times is

300 406

3317

300 439

3923

300 510

4278

0

1000

2000

3000

4000

5000

Vehicle Capacity Boxes Delivered DistanceB
o

xe
s,

 d
is

ta
n

ce
 a

n
d

 c
ap

ac
it

y

Drivers

Number of boxes delivered with respect to
vehcile capacity and distance

D1 D2 D3

39

to maintain the modified ant algorithm running continuously so that when the drivers come

in the algorithm starts assigning the nodes to the drivers based on their vehicle capacity

and the nodes that have not been serviced yet. The system takes the driver information once

the driver comes online, and start generating the route based on the driver’s location. In

MPMD - MD_DT, the handling of boxes follows the same rules of MPMD – MD, i.e.,

when a pickup request is assigned to a driver at a certain location, other drivers will not be

assigned the same pickup request, although they can deliver boxes at that node.

3.4.3.1 Implementation of MPMD – MD_DT

 MPMD – MD_DT, i.e., Multiple Pickup and Multiple Deliveries with Multiple

Drivers starting at different times is implemented using java client-server/ socket

programming and java multi-threading. The following assumptions are made for MPMD

– MD_DT:

 Driver start at one of the nodes, where there is a request to pick up boxes

 Driver has no time restrictions

 Requests are available prior to the drivers check in.

In MPMD – MD_DT, as stated above, the modified ant algorithm has to run

continuously, to process the pickup requests with drivers starting at different times. Hence

we used the client-server model for this implementation. The diver information, i.e.,

driver’s location and vehicle capacity are taken as input from the client side and sent to the

server side through sockets. Once the driver information is entered, the server responds to

the information and the algorithm thread starts running. The algorithm thread starts

assigning nodes to the driver based on his or her location and vehicle capacity. When a

40

new driver comes online, and the driver’s information is recorded on the client side and the

new driver’s information is sent to the server. The thread which is already running with a

single driver is updated with the new information and starts assigning nodes to both the

drivers with the pickup requests left. The remaining requests are distributed equally among

the drivers. In the same way, the algorithm runs continuously until all requests are assigned

to the drivers based on their time of entry.

Algorithm

 The algorithm for this implementation is divided into two parts; one is the client

side, and the other is on the server side. As mentioned above, at the client side, driver

information is taken as input, and at the server side, the input is processed. The client-side

implementation is shown in the below algorithm in figure 3.17.

Figure 3.17: Client environment for MPMD-MD_DT

 The server-side implementation is shown in below figure 3.18. At the server side,

the algorithm is implemented in a separate thread, which executes in parallel to the main

41

thread. At the main thread, information is taken from the output stream. Once the main

thread reads the information from the client side, it updates the algorithm thread.

Figure 3.18: Server environment for MPMD-MD_DT

 The modified ant algorithm of figure 3.18 works similar to the algorithm of figure

3.3. The vehicle_loading and vehicle_unloading functions work similar to the algorithms

of figures 3.4 and 3.5 respectively. The following parameters are used in the

implementation of the above algorithm for MPMD – MD_DT, q  random variable

between 0 and 1, q0  0.9, α  0.01, β  4. These values are based on the research in

[13][15].

 In this implementation, at the server side the system checks for the availability of

new drivers after assigning each node to existing drivers. In real time implementation, the

requests are added dynamically to the system and hence the system assigns the route to the

driver based on his vehicle capacity and availability time. In our simulation, we have

considered limited number of cities and hence we increased the time that the system waits

to check the driver availability and assigns the nodes once the driver is available to take

the requests based on the vehicle capacity and availability time. We implemented this in

java by using multi-threading and client-server architecture.

42

3.4.3.2 Results for MPMD – MD_DT

 The below figures are the results visualized in tables and graphs. The results for

MPMD – MD_DT are shown for three scenarios, i.e., drivers coming at different time

intervals i.e., small time gap, mixed time interval and large time interval. The total distance

traveled by each driver, the number of boxes handled by each driver are compared based

on vehicle capacity as shown below.

 Scenario 1: Drivers entering in short gap of time in intervals of 3 minutes

The below table shows the simulation input for the below results obtained by the

modified ant colony algorithm. The requests at each node are generated as mentioned

above.

Table 3.17: Input for MPMD-MD_DT simulation

Driver Starting City Vehicle Capacity Driver Arrival Time

D1 1 100 0

D2 8 300 3

D3 18 500 6

The below table shows the number of boxes that need to be picked up at each node

and number of boxes that need to be delivered at the same node.

43

Table 3.18: Requests at each node

Location Number of boxes to be picked up Number of boxes to be delivered

1 29 55

2 30 40

3 58 65

4 63 43

5 65 72

6 37 45

7 11 44

8 18 64

9 42 38

10 71 26

11 48 40

12 47 63

13 42 34

14 37 53

15 14 74

16 67 56

17 112 51

18 54 9

19 70 35

20 37 45

In this scenario each driver enters at intervals of 3 minutes into the system and once

the drivers are checked in to the system, the drivers are assigned their routes. The

simulation results are shown below.

Table 3.19: Comparison of total distance

traveled with vehicle's capacity

Drivers Vehicle Capacity Distance Driver Arrival Time

D1 100 2094 0

D2 300 2380 3

D3 500 2033 6

44

Figure 3.19: Total distance traveled by each driver

Table 3.20: Comparison of number of pickup

 requests handled with respect to vehicle’s capacity

Drivers Vehicle Capacity Picked requests Driver Arrival Time

D1 100 2 0

D2 300 8 3

D3 500 10 6

Figure 3.20: Number of pickup requests handled by each driver

100
300

500

2094
2380

2033

0

500

1000

1500

2000

2500

D1 D2 D3D
is

ta
n

ce
 a

n
d

 c
ap

ac
it

y

Drivers

Distance travelled with respect to vehicle
capacity

Vehicle Capacity Distance

100

300

500

2 8 10
0

100

200

300

400

500

600

D1 D2 D3

P
ic

ke
d

 r
eq

u
es

ts
 a

n
d

 c
ap

ac
it

y

Drivers

Number of picked requests with respect to
vehicle capacity

Vehicle Capacity Picked Requests

45

Table 3.21: Comparison of number of boxes

delivered with respect to the vehicle's capacity

Drivers Vehicle Capacity Delivered boxes Driver Arrival Time

D1 100 87 0

D2 300 404 3

D3 500 461 6

Figure 3.21: Number of boxes delivered by each driver

Table 3.22: Comparison of number of boxes delivered with

 respect to total distance traveled and vehicle's capacity

Drivers Vehicle Capacity Delivered boxes Distance Driver Arrival Time

D1 100 87 2094 0

D2 300 404 2380 3

D3 500 461 2033 6

100

300

500

87

404
461

0

100

200

300

400

500

600

D1 D2 D3

B
o

xe
s

d
el

iv
er

ed
 a

n
d

 c
ap

ac
it

y

Drivers

Number of boxes delivered with respect to
vehicle capacity

Vehicle Capacity Boxes Delivered

46

Figure 3.22: Number of boxes delivered by each driver with

 respect to total distance traveled and vehicle's capacity

Table 3.23: Number of boxes delivered based

 on the driver's entry time

Drivers time (min) boxes delivered

D1 0 87

D2 3 404

D3 6 461

Figure 3.23: Number of boxes delivered based on the entry time of driver's

100 87

2094

300 404

2380

500 461

2033

0

500

1000

1500

2000

2500

Vehicle Capacity Boxes Delivered Distance

B
o

xe
s,

 d
is

ta
n

ce
 a

n
d

 c
ap

ac
it

y

Drivers

Number of boxes delivered with respect to
vehicle capacity and distance

D1 D2 D3

87

404

461

0

50

100

150

200

250

300

350

400

450

500

0 1 2 3 4 5 6 7

B
o

xe
s

d
el

iv
er

ed

Time line (min)

Boxes Delivered

47

Scenario 2: Drivers entering in mixed time intervals of 20 and 40 minutes

The below table shows the simulation input for the below results obtained by the

modified ant colony algorithm. The requests at each node are generated as mentioned

above. The below table shows the number of boxes that need to be picked up at each node

and number of boxes that need to be delivered at the same node.

Table 3.24: Input for MPMD-MD_DT simulation

Driver Starting City Vehicle Capacity Driver Arrival Time

D1 1 100 0

D2 8 300 20

D3 18 500 40

Table 3.25: Requests at each node

Location Number of boxes to be picked up Number of boxes to be delivered

1 17 51

2 61 36

3 51 42

4 47 53

5 70 90

6 75 71

7 16 44

8 68 36

9 55 36

10 38 50

11 80 19

12 37 53

13 25 42

14 34 45

15 93 36

16 50 56

17 51 57

18 20 39

19 24 31

20 48 73

48

In this scenario each driver enters at mixed interval of 20 and 40 minutes into the

system and once the drivers are checked in to the system, the drivers are assigned their

routes. The simulation results are shown below.

Table 3.26: Comparison of total distance

traveled with respect to vehicle's capacity

Drivers vehicle capacity Distance Driver Arrival Time

D1 100 1761 0

D2 300 1672 20

D3 500 1381 40

Figure 3.24: Total distance traveled by each driver

Table 3.27: Comparison of number of pickup

requests handled with respect to vehicle’s capacity

Drivers vehicle capacity picked requests Driver Arrival Time

D1 100 2 0

D2 300 8 20

D3 500 10 40

100
300

500

1761 1672
1381

0

500

1000

1500

2000

D1 D2 D3

D
is

ta
n

ce
 a

n
d

 c
ap

ac
it

y

Drivers

Distance travelled with respect to vehicle
capacity

Vehicle Capacity Distance

49

Figure 3.25: Number of pickup requests handled by each driver

Table 3.28: Comparison of number of boxes

delivered with respect to the vehicle's capacity

Drivers vehicle capacity Boxes delivered Driver Arrival Time

D1 100 67 0

D2 300 360 20

D3 500 533 40

Figure 3.26: Number of boxes delivered by each driver

100

300

500

2 8 10
0

100

200

300

400

500

600

D1 D2 D3

P
ic

ke
d

 r
eq

u
es

ts
 a

n
d

 c
ap

ac
it

y

Drivers

Number of picked requests with respect to
vehicle capacity

Vehicle Capacity Picked Requests

100

300

500

67

360

533

0

100

200

300

400

500

600

D1 D2 D3

B
o

xe
s

d
el

iv
er

ed
 a

n
d

 c
ap

ac
it

y

Drivers

Number of boxes delivered with respect to
vehicle capacity

Vehicle Capacity Boxes Delivered

50

Table 3.29: Comparison of number of boxes delivered

with respect to total distance traveled and vehicle's capacity

Drivers vehicle capacity Boxes delivered Distance Driver Arrival Time

D1 100 67 1761 0

D2 300 360 1672 20

D3 500 533 1381 40

Figure 3.27: Number of boxes delivered by each driver

 with respect to total distance traveled and vehicle's capacity

Table 3.30: Number of boxes delivered

based on the driver’s entry time

Drivers time(min) Boxes delivered

D1 0 67

D2 20 360

D3 40 533

100 67

1761

300 360

1672

500 533

1381

0

500

1000

1500

2000

Vehicle Capacity Boxes Delivered Distance

B
o

xe
s,

 c
ap

ac
it

y
an

d
 d

is
ta

n
ce

Drivers

Number of boxes delivered with respect to
vehicle capacity and distance

D1 D2 D3

51

Figure 3.28: Number of boxes delivered based on the entry time of driver’s

Scenario 3: Drivers entering at long gap of one-hour time intervals

The below table shows the simulation input for the below results obtained by the

modified ant colony algorithm. The requests at each node are generated as mentioned

above.

Table 3.31: Input for MPMD-MD_DT simulation

Driver Starting City Vehicle Capacity Driver Arrival Time

D1 1 100 0

D2 8 300 60

D3 18 500 120

The below table shows the number of boxes that need to be picked up at each node

and number of boxes that need to be delivered at the same node.

67

360

533

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35 40 45

B
o

xe
s

d
el

iv
er

ed

Time line (min)

Boxes Delivered

52

Table 3.32: Requests at each node

Location Number of boxes to be picked up Number of boxes to be delivered

1 54 87

2 36 63

3 62 52

4 27 51

5 41 50

6 76 42

7 69 31

8 69 95

9 33 60

10 26 23

11 59 26

12 78 58

13 63 11

14 51 28

15 46 26

16 34 71

17 49 65

18 41 57

19 42 19

20 50 91

In this scenario each driver enters at an interval of 60 minutes into the system and

once the drivers are checked in to the system, the drivers are assigned with the routes and

the following data is presented based on the number of requests, deliveries that each driver

can handle based on their entry time.

Table 3.33: Total distance traveled by each driver

Drivers Vehicle capacity Distance Driver Arrival Time

D1 100 1561 0

D2 300 1828 60

D3 500 1615 120

53

Figure 3.29: Total distance traveled by each driver

Table 3.34: Comparison of number of pickup

requests handled with respect to vehicle’s capacity

Drivers Vehicle capacity Picked requests Driver Arrival Time

D1 100 2 0

D2 300 8 60

D3 500 10 120

Figure 3.30: Number of pickup requests handled by each driver

100
300

500

1561
1828

1615

0

500

1000

1500

2000

D1 D2 D3D
is

ta
n

ce
 a

n
d

 c
ap

ac
it

y

Drivers

Distance travelled with respect to vehicle
capacity

Vehicle Capacity Distance

100

300

500

2 8 10
0

100

200

300

400

500

600

D1 D2 D3

P
ic

ke
d

 r
eq

u
es

ts
 a

n
d

 c
ap

ac
it

y

Drivers

Number of picked requests with respect to
vehicle capacity

Vehicle Capacity Picked Requests

54

Table 3.35: Comparison of number of boxes

delivered with respect to the vehicle's capacity

Drivers Vehicle capacity Boxes delivered Driver Arrival Time

D1 100 80 0

D2 300 336 60

D3 500 590 120

Figure 3.31: Number of boxes delivered by each driver

Table 3.36: Comparison of number of boxes delivered

 with respect to total distance traveled and vehicle's capacity

Drivers Vehicle capacity Boxes delivered Distance Driver Arrival Time

D1 100 80 1561 0

D2 300 336 1828 60

D3 500 590 1615 120

100

300

500

80

336

590

0

100

200

300

400

500

600

700

D1 D2 D3B
o

xe
s

d
el

iv
er

ed
 a

n
d

 d
is

ta
n

ce

Drivers

Number of boxes delivered with respect to
vehicle capacity

Vehicle Capacity Boxes Delivered

55

Figure 3.32: Number of boxes delivered by each driver

 with respect to total distance traveled and vehicle’s capacity

Table 3.37: Number of boxes delivered

 based on driver’s entry time

Drivers time (min) Boxes delivered

D1 0 80

D2 60 336

D3 120 590

Figure 3.33: Number of boxes delivered based on the entry time of driver’s

100 80

1561

300 336

1828

500 590

1615

0

500

1000

1500

2000

Vehicle Capacity Boxes Delivered Distance

B
o

xe
s,

 d
is

ta
n

ce
 a

n
d

 c
ap

ac
it

y

Drivers

Number of boxes delivered with respect to
vehicle capacity and distance

D1 D2 D3

80

336

590

0

100

200

300

400

500

600

700

0 20 40 60 80 100 120 140

B
o

xe
s

d
el

iv
er

ed

Time line (min)

Boxes Delivered

56

In the above figures, the driver D1 enters first with a capacity of 100 boxes and then

after some time driver D2 enters with a capacity of 300 boxes and then later on driver D3

enters with a capacity of 500 boxes at different time intervals. The algorithm assigns the

nodes in a first-come-first-serve basis and starts assigning the nodes to driver D1 first. Even

though driver D1 has less capacity when compared to the other drivers, he or she is able to

serve more number of boxes since he or she arrived first and no other drivers were

available. Later driver D2 comes, and the remaining nodes apart from the nodes assigned

to driver D1 are distributed between drivers D1 and D2. The same happens when driver

D3 arrives. Driver D2 has delivered fewer number of boxes because he has checked in after

driver D1 and his vehicle capacity is also less compared to driver D3. Since driver D3 holds

more capacity to pick up boxes, he has taken more requests compared to driver D2.

3.4.4 Multiple pickups and multiple deliveries with multiple drivers

starting at different timings and available for different shift times

(MPMD – MD_DST)

In this variation, MPMD – MD_DST, i.e., Multiple Pickup and Multiple Drop-off

with multiple drivers having different shift timings, a new variable, availability time is

added. In MPMD – MD_DST, all the drivers are distributed sparsely around the cities and

connected through an application. The driver can start his work at any time and any

location. The driver should also provide the driver’s availability hours along with starting

location and vehicle capacity. In MPMD – MD_DST, we have considered the driver’s

working hours on an hourly basis. The availability time limit has not been specified. The

MPMD – MD_DST will allocate nodes based on his or her availability hours. In this

57

variation, the drivers come at different timings and also with different availability timings.

Therefore, in this version, the server needs to be running continuously to handle the

upcoming drivers. The client-server approach is similar to the MPMD – MD_DT scheme

in the previous section. The driver’s information is taken from the client end, and the server

runs through the graph (map) and available requests with the driver’s information and

assigns the route which maximizes the number of boxes based on his or her availability

time.

3.4.4.1 Implementation of MPMD – MD_DST

 MPMD_MD_DST, i.e., Multiple Pickup and Multiple Delivery with multiple

drivers having different shift timings are implemented using Java's multi-threading and

networking concepts. The following assumptions are made while implementing MPMD –

MD_DST,

 The driver starts at one of the nodes, where there is a request to pick up boxes

 The driver is available for a certain amount of time in number of hours

 Requests are available before searching for drivers

 The distance is taken as miles and time for covering the distance is in minutes

Time is the new variable which is added to the existing modified algorithm shown

in figure 3.3. The algorithm checks the time it takes to travel from one node to another, as

the route assigned to the driver has to be within the driver’s availability time. The driver is

allowed to pick the boxes only if he can deliver those boxes within the availability time

frame. Hence, at any node, there may be few pickup requests which are not serviced by a

driver, but can be handled by one of the other drivers who are close to that location and

58

have sufficient time on their hands. Hence, unlike previous versions, it is possible that

handling pickup requests more than once at the same node for different drivers will occur,

based on the driver’s availability. A new time matrix is taken from google maps for 20

cities. The distance matrix generated by considering the same 20 cities in Oklahoma state

is shown in table 3.1, is used for time matrix below, that shows the time to travel between

the same cities. This results in a new time matrix as shown below in figure 3.38.

Table 3.38: Time matrix for a graph of 20 nodes in minutes

The system now takes both the distance matrix and its related time matrix as input

along with the driver’s information. The requests are randomly generated at each node,

with a random number of delivery points and boxes at those delivery points. The driver’s

information is taken as the input from the client side, and the algorithm which runs

continuously at the server side handles the information from the client side and generates

the route based on these parameters.

59

Algorithm

 The implementation of this algorithm has two parts, the client environment, and the

server environment. The client environment is similar to MPMD – MD_DT, where the

driver’s information of starting location and vehicle capacity is taken along with driver

availability hours. A new variable driver.availability_time is added to the driver's

information in the environment as shown below in figure 3.34.

Figure 3.34: Client environment for MPMD - MD_DST

 The server environment is similar to MPMD – MD_DT, except for a condition to

check for the threshold limit on the number of boxes handled per hour. If the number of

boxes handled per hour is less than 20 boxes, then the driver is sent to the waiting list and

all the assigned requests are set back to the initial state. If the boxes are above 20 in number,

then the driver is assigned with the route to handle the requests. The server environment of

MPMD – MD_DST is shown below in figure 3.35.

60

Figure 3.35: Server environment for MPMD - MD_DST

 The vehicle_loading function is reloaded with few functionalities as mentioned

below compared to the previous versions in the above sections. Since in MPMD –

MD_DST we have introduced the new variable time, the algorithm needs to check the total

time it takes to handle the deliveries that have been picked up by the driver. So, every time

the node is selected, the travel time is also calculated, and if it comes below the total

availability time, the node is added to the route, else the next best node is selected. The

vehicle_loading function is shown in figure 3.36.

 The vehicle_unloading function is similar to the previous variations as shown in

figure 3.7. The following parameters are used in the implementation of the above algorithm

for MPMD – MD_DST, q  random variable between 0 and 1, q0  0.9, α  0.01, β 

4. The values were selected based on [13][15].

61

Figure 3.36: Vehicle_loading function in MPMD - MD_DST

3.4.4.2 Results for MPMD – MD_DST

 The results generated below are for three scenarios where all the drivers enter at

different time intervals i.e., short time, mixed time and large time intervals as shown in

the below tables and graphs. Also in scenario four the results are shown for multiple

drivers available for different times.

Scenario 1: Drivers entering in short time gap of 3 minute intervals

The below table shows the simulation input for the below results obtained by the

modified ant colony algorithm. The requests at each node are generated as mentioned

above. The below table shows the number of boxes that need to be picked up at each node

and number of boxes that need to be delivered at the same node.

Table 3.39: Input for MPMD-MD_DST simulation

Driver Starting City Vehicle Capacity Driver Arrival Time Driver Available time

D1 1 100 0 180

D2 8 300 3 300

D3 18 500 6 480

62

Table 3.40: Requests at each node

Location Number of boxes to be picked up Number of boxes to be delivered

1 18 34

2 105 41

3 87 66

4 104 89

5 89 71

6 44 86

7 35 88

8 68 86

9 63 63

10 108 111

11 73 47

12 32 114

13 49 62

14 44 55

15 107 128

16 72 51

17 48 72

18 116 82

19 49 68

20 130 27

In this scenario each driver enters at an interval of 3 minutes and once the drivers

are checked in to the system, the drivers are assigned with the routes. The simulation results

are shown below

Table 3.41: Comparison of distance

traveled with respect to available time

Drivers Available time Distance Driver Arrival Time

D1 180 249 0

D2 300 373 3

D3 480 489 6

63

Figure 3.37: Distance traveled with respect to available time by multiple drivers

Table 3.42: Comparison of handling number of

 picked requests with respect to available time

Drivers Available Time Picked Requests Driver Arrival Time

D1 180 2 0

D2 300 1 3

D3 480 1 6

Figure 3.38: Number of picked requests by each driver

180

300

480

249

373

489

0

100

200

300

400

500

600

D1 D2 D3D
is

ta
n

ce
 a

n
d

 a
va

ila
b

le
 t

im
e

Axis Title

Distance travelled with respect to availability
time

Available Time Distance

180

300

480

2 1 1
0

100

200

300

400

500

600

D1 D2 D3

P
ic

ke
d

 r
eq

u
es

ts
 a

n
d

 t
im

e

Drivers

Number of picked requests with respect to
available time

Available Time Picked Requests

64

Table 3.43: Comparison of number of boxes

 delivered with respect to availability time

Drivers Available Time Boxes Delivered Driver Arrival Time

D1 180 27 0

D2 300 40 3

D3 480 38 6

 In this scenario, the number of boxes delivered by driver D2 who is available for 3

hours of time is more than the number of boxes delivered by driver D3 who is available for

8 hours. The total distance travelled by driver D3 is larger compared to driver D2 which

eventually increases the total time required to handle the requests. Since driver D3 is

available for 8 hours he handled the requests through that route and the total number of

boxes available at each node is generated randomly and independent of the distance

travelled and time to cover the distance.

Figure 3.39: Number of boxes delivered by each driver

180

300

480

27 40 38

0

100

200

300

400

500

600

D1 D2 D3

B
o

xe
s

d
el

iv
er

ed
 a

n
d

 t
im

e

Drivers

Number of boxes delivered with respect to
available time

Available Time Boxes Delivered

65

Table 3.44: Comparison of number of boxes delivered

with respect to available time and distance

Drivers Available Time Boxes Delivered Distance Driver Arrival Time

D1 180 27 249 0

D2 300 40 373 3

D3 480 38 489 6

Figure 3.40: Number of boxes delivered by each

driver with respect to available time and distance

Table 3.45: Number of boxes delivered based

 on the driver’s entry time

Drivers Time (min) Boxes Delivered

D1 0 27

D2 3 40

D3 6 38

180

27

249
300

40

373

480

38

489

0

100

200

300

400

500

600

Available Time Boxes Delivered Distance

B
o

xe
s,

 a
va

ila
b

le
 t

im
e

an
d

 d
is

ta
n

ce

Drivers

Number of boxes delivered with respect to
available time and distance

D1 D2 D3

66

Figure 3.41: Number of boxes delivered based on the entry time of driver’s

Scenario 2: Drivers entering in mixed time intervals of 20 and 40 minutes

The below table shows the simulation input for the below results obtained by the

modified ant colony algorithm. The requests at each node are generated as mentioned

above. The below table shows the number of boxes that need to be picked up at each node

and number of boxes that need to be delivered at the same node.

Table 3.46: Input for MPMD-MD_DST simulation

Driver Starting City Vehicle Capacity Driver Arrival Time Driver Available time

D1 1 100 0 180

D2 8 300 20 300

D3 18 500 40 480

27

40
38

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6 7

B
o

xe
s

d
el

iv
er

ed

Time line (min)

Boxes Delivered

67

Table 3.47: Requests at each node

Location Number of boxes to be picked up Number of boxes to be delivered

1 125 105

2 153 107

3 121 0

4 135 92

5 72 88

6 29 111

7 81 57

8 182 78

9 38 179

10 198 146

11 191 131

12 69 115

13 37 118

14 101 110

15 75 152

16 57 150

17 131 82

18 85 78

19 60 97

20 159 103

In this scenario each driver enters in mixed interval of 20 and 40 minutes into the

system and the drivers are assigned the routes. The simulation results are shown below.

Table 3.48: Comparison of total distance

 traveled with respect to available time

Drivers Availability Time Distance Driver Arrival Time

D1 180 306 0

D2 300 250 20

D3 480 310 40

68

Figure 3.42: Total distance traveled by each driver

Table 3.49: Comparison of number of pickup

requests handled with respect to available time

Drivers Availability Time Picked Requests Driver Arrival Time

D1 180 1 0

D2 300 1 20

D3 480 2 40

Figure 3.43: Number of pickup requests handled by each driver

180

300

480

306
250

310

0

100

200

300

400

500

600

D1 D2 D3

A
va

ila
b

le
 t

im
e

an
d

 d
is

ta
n

ce

Drivers

Distance travelled with respect to available time

Available Time Distance

180

300

480

1 1 2
0

100

200

300

400

500

600

D1 D2 D3P
ic

ke
d

 r
eq

u
es

ts
 a

n
d

 t
im

e

Drivers

Number of picked requests with respect to
available time

Available Time Picked Requests

69

Table 3.50: Comparison of number of boxes

 delivered with respect to available time

Drivers Availability Time Boxes Delivered Driver Arrival Time

D1 180 33 0

D2 300 38 20

D3 480 36 40

Similarly, in this simulation the number of boxes delivered by driver D2 who is

available for 3 hours of time is more than the number of boxes delivered by driver D3 who

is available for 8 hours. The total distance travelled by driver D3 is larger compared to

driver D2 which eventually increases the total time required to handle the requests. Since

driver D3 is available for 8 hours he handled the requests through that route and the total

number of boxes available at each node is generated randomly and independent of the

distance travelled and time to cover the distance.

Figure 3.44: Number of boxes delivered by each driver

180

300

480

33 38 36

0

100

200

300

400

500

600

D1 D2 D3

B
o

xe
s

d
el

iv
er

ed
 a

n
d

 t
im

e

Drivers

Number of boxes delivered with respect to
available time

Available Time Boxes Delivered

70

Table 3.51: Comparison of number of boxes

delivered with respect to total distance traveled and available time

Drivers Availability Time Boxes Delivered Distance Driver Arrival Time

D1 180 33 306 0

D2 300 38 250 20

D3 480 36 310 40

Figure 3.45: Number of boxes delivered by each driver

with respect to total distance traveled and available time

Table 3.52: Number of boxes delivered

 based on the driver’s entry time

Drivers Time (min) Boxes Delivered

D1 0 33

D2 20 38

D3 40 36

180

33

306300

38

250

480

36

310

0

100

200

300

400

500

600

Available Time Boxes Delivered Distance

b
o

xe
s,

 d
is

ta
n

ce
 a

n
d

 t
im

e

Drivers

Number of boxes delivered with respect to
distance and available time

D1 D2 D3

71

Figure 3.46: Number of boxes delivered based on the entry time of driver’s

Scenario 3: Drivers entering in large time gap of one-hour time interval

The below table shows the simulation input for the below results obtained by the

modified ant colony algorithm. The requests at each node are generated as mentioned

above.

Table 3.53: Input for MPMD-MD_DST simulation

Driver Starting City Vehicle Capacity Driver Arrival Time Driver Available time

D1 1 100 0 180

D2 8 300 60 300

D3 18 500 120 480

The below table shows the number of boxes that need to be picked up at each node

and number of boxes that need to be delivered at the same node.

33

38

36

32

33

34

35

36

37

38

39

0 5 10 15 20 25 30 35 40 45

B
o

xe
s

d
ei

liv
er

ed

Time line (min)

Boxes Delivered

72

Table 3.54: Requests at each node

Location Number of boxes to be picked up Number of boxes to be delivered

1 164 81

2 124 153

3 146 119

4 143 115

5 24 62

6 40 87

7 97 120

8 121 46

9 57 68

10 28 154

11 108 130

12 198 84

13 51 54

14 152 117

15 73 96

16 108 133

17 171 96

18 138 114

19 40 140

20 48 62

In this scenario each driver enters at an interval of 60 minutes into the system and

the drivers are assigned the routes. The simulation results are shown below.

Table 3.55: Comparison of total distance

traveled with respect to available time

Drivers Availability Time Distance Driver Arrival Time

D1 180 288 0

D2 300 286 60

D3 480 378 120

73

Figure 3.47: Total distance traveled by each driver

Table 3.56: Comparison of number of pickup

requests handled with respect to available time

Drivers Availability Time Picked Requests Driver Arrival Time

D1 180 2 0

D2 300 1 60

D3 480 1 120

Figure 3.48: Number of pickup requests handled by each driver

180

300

480

288 286

378

0

100

200

300

400

500

600

D1 D2 D3D
is

ta
n

ce
 a

n
d

 a
va

ila
b

le
 t

im
e

Drivers

Distance travelled with respect to available time

Available Time Distance

180

300

480

2 1 1
0

100

200

300

400

500

600

D1 D2 D3

P
ic

ke
d

 r
eq

u
es

ts
 a

n
d

 t
im

e

Drivers

Number of picked requests with respect to
available time

Available Time Picked Requests

74

Table 3.57: Comparison of number of boxes

delivered with respect to available time

Drivers Availability Time Boxes Delivered Driver Arrival Time

D1 180 33 0

D2 300 58 60

D3 480 41 120

Similarly, in this simulation the number of boxes delivered by driver D2 who is

available for 3 hours of time is more than the number of boxes delivered by driver D3 who

is available for 8 hours. The total distance travelled by driver D3 is larger compared to

driver D2 which eventually increases the total time required to handle the requests. Since

driver D3 is available for 8 hours he handled the requests through that route and the total

number of boxes available at each node is generated randomly and independent of the

distance travelled and time to cover the distance.

Figure 3.49: Number of boxes delivered by each driver

180

300

480

33 58 41

0

100

200

300

400

500

600

D1 D2 D3

B
o

xe
s

d
el

iv
er

ed
 a

n
d

 t
im

e

Drivers

Number of boxes delivered with respect to
available time

Available Time Boxes Delivered

75

Table 3.58: Comparison of number of boxes delivered

with respect to total distance traveled and available time

Drivers Availability Time Boxes Delivered Distance Driver Arrival Time

D1 180 33 288 0

D2 300 58 286 60

D3 480 41 378 120

Figure 3.50: Number of boxes delivered by each driver

with respect to total distance traveled and available time

Table 3.59: Number of boxes delivered

based on the driver’s entry time

Drivers Time (min) Boxes delivered

D1 0 33

D2 60 58

D3 120 41

180

33

288300

58

286

480

41

378

0

100

200

300

400

500

600

Available Time Boxes Delivered Distance

b
o

xe
s,

 t
im

e
an

d
 d

is
ta

n
ce

Drivers

Number of boxes delivered with respect to
available time and distance

D1 D2 D3

76

Figure 3.51: Number of boxes delivered based on the entry time of driver’s

In the above figures, the requests are generated randomly as mentioned in the

previous sections. The drivers start at different locations, at different timings and are

available for different times. Driver D1 is started first, later on driver D2, D3 and each

driver started in the different time intervals. In this simulation, each driver has different

vehicle capacity.

 In the above results, the requests are generated randomly as mentioned above. The

number of boxes that need to be picked up and delivered at particular node is not constant,

they vary for every simulation and hence the number of boxes delivered by each driver are

similar and independent of time. Since Driver D1 and D2 has arrived before D3 the requests

are first assigned and when driver D3 arrives the remaining requests are assigned based on

availability. Driver D2 might not cover larger distance because of his availability, but

driver D3 is able to cover larger distances and fulfil the requests at each node.

33

58

41

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140

B
o

xe
s

d
el

iv
er

ed

Time line (min)

Boxes Delivered

77

CHAPTER 4

CONCLUSIONS

The Multiple pickups and Multiple drop-off problems, with single and multiple

drivers, drivers starting at same and different times, varied vehicle capacities, drivers

starting at different times with different shift timings, is solved with a modified ant colony

algorithm. The variations are tested for different samples of data as shown above i.e.,

multiple drivers, and different maps. Our approach is able to produce similar results to the

brute-force approach and better results than the Nearest Neighbor algorithm. The Ant

colony algorithm works efficiently by providing good results in polynomial time and also

for dynamically increasing data. As far as we are aware, the work done in this thesis has

not been addressed by other researchers. The results are compared with the shortest

distance that each driver travels and also with the amount of time for the algorithm to run.

The results are shown in terms of the number of boxes delivered and also in terms of total

distance traveled by each driver with respect to vehicle capacity, and his or her availability

time in the previous section. The graph in figure 4.1 show the results of our modified ant

colony algorithm compared with brute-force approach and nearest neighbor algorithms.

The x-axis represents the number of nodes used in the simulation and y-axis shows the

shortest distance generated by the algorithms. As stated, the modified ant colony algorithm

is able to generate similar results

78

Figure 4.1: Comparison of shortest distance generated by modified

 ant colony algorithm with different algorithms

to brute force approach and better results than nearest neighbor algorithm.

Figure 4.2: Runtime Analysis of Brute force and Ant colony

49
54

59
64

68
76

49
54

59
64

68
76

53
58

62
67

71
76

0

10

20

30

40

50

60

70

80

10 11 12 13 14 15

d
is

ta
n

ce

locations

Shortest distance comparision

Brute-Force Ant-Colony NN

85 85 96 96 101 111
109 890

23000 120000
1680000

21600000

0

5000000

10000000

15000000

20000000

25000000

10 11 12 13 14 15

Ti
m

e
(i

n
 m

ill
is

ec
o

n
d

s)

locations

Runtime analysis

ACO BF

79

The above figure 4.2 shows the runtime analysis of modified ant colony algorithm

with brute – force method and results shows that the modified ant colony algorithm is able

to produce better results in polynomial time.

Future work can include further development as a mobile application with a map

interface along with these functionalities. The application can be used in real-world

scenarios that involve multiple pickups and multiple delivereies. Future work may also

implement features like handling multiple drivers available at the same locations, i.e., near

malls, and regular pickup locations in a first-in-first-out manner.

80

REFERENCES

[1] T. Bektas, “The multiple traveling salesman problem: An overview of formulations

and solution procedures,” Omega, vol. 34, no. 3, pp. 209–219, 2006.

[2] R. Ponraj and G. Amalanathan, “Optimizing multiple traveling salesman problem

considering the road capacity,” J. Comput. Sci., vol. 10, no. 4, pp. 680–688, 2014.

[3] S. H. Chen, “Minimization of the Total Traveling Distance and Maximum Distance

by Using a Transformed-Based Encoding EDA to Solve the Multiple Traveling

Salesmen Problem,” Math. Probl. Eng., vol. 2015, 2015.

[4] R. Krishnamurti, “The Multiple Traveling Salesman Problem with Time Windows :

Bounds for the Minimum Number of Vehicles,” Time, pp. 1–16, 2002.

[5] M. S. Hou and D. B. Liu, “A novel method for solving the multiple traveling

salesmen problem with multiple depots,” Chinese Sci. Bull., vol. 57, no. 15, pp.

1886–1892, 2012.

[6] N. Wassan and G. Nagy, “Vehicle Routing Problem with Deliveries and Pickups:

Modelling Issues and Meta-heuristics Solution Approaches,” Int. J. Transp., vol. 2,

no. 1, pp. 95–110, 2014.

[7] B. Cheang, X. Gao, A. Lim, H. Qin, and W. Zhu, “Multiple pickup and delivery

traveling salesman problem with last-in-first-out loading and distance constraints,”

Eur. J. Oper. Res., vol. 223, no. 1, pp. 60–75, 2012.

[8] G. Erdogan, J. F. Cordeau, and G. Laporte, “The pickup and delivery traveling

salesman problem with first-in-first-out loading,” Comput. Oper. Res., vol. 36, no.

6, pp. 1800–1808, 2009.

[9] Y. Wang, X. Ma, Y. Lao, Y. Wang, and H. Mao, “Vehicle Routing Problem

Simultaneous Deliveries and Pickups with Split Loads and Time Windows,” Transp.

Res. Rec., vol. 1500, no. 2378, pp. 120–128, 2013.

81

[10] M. T. Goodrich and P. Pszona, “Two-Phase Bicriterion Search for Finding Fast and

Efficient Electric Vehicle Routes,” pp. 193–202, 2014.

[11] G. Gutin, A. Yeo, and A. Zverovich, “Traveling salesman should not be greedy :

domination analysis of greedy-type heuristics for the TSP,” vol. 117, pp. 81–86,

2002.

[12] A. S. Rostami, F. Mohanna, H. Keshavarz, and A. A. R. Hosseinabadi, “Solving

multiple traveling salesman problem using the gravitational emulation local search

algorithm,” Appl. Math. Inf. Sci., vol. 9, no. 2, pp. 699–709, 2015.

[13] J. E. Bell and P. R. McMullen, “Ant colony optimization techniques for the vehicle

routing problem,” Adv. Eng. Informatics, vol. 18, no. 1, pp. 41–48, 2004.

[14] Varshika Dwivedi, Taruna Chauhan, Sanu Saxena, Princie Agarwal, “Traveling

Salesman Problem Using Genetic Algorithm,” Internation Journal of Computer

Applications, 2012.

[15] Alaya Ines, Solnon Christine, Khaled Ghedira, “Ant Colony Optimization for

Mixed-Objective Optimization Problems,” Evolutionary computation, Vol. 18, pp.

503-518, 2010.

VITA

Gorthi, Venkata Sreeram Phani Sai

Candidate for the Degree of

Master of Science

Thesis: ANT COLONY APPROACH FOR MULTIPLE PICKUP AND MULTIPLE

DROPOFF

Major Field: COMPUTER SCIENCE

Biographical:

Education:

Completed the requirements for the Master of Science in Computer Science at

Oklahoma State University, Stillwater, Oklahoma in December 2017.

Completed the requirements for the Bachelor of Technology in Computer

Science at GITAM University, Visakhapatnam, Andhra Pradesh, India in 2013.

