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Abstract: Continental rifts most often nucleate within the thinner and weaker lithosphere of 
orogenic belts at the margins of cratons, rather than within cratons themselves. However, some 
studies in the East African Rift System (EARS) have shown that continental rifts can develop 
crossing the boundaries of orogenic belts or even extend into cratons. This work provides insights 
into the processes leading to the rifting of cratons by investigating the Pleistocene age (~1.5 Ma) 
Eyasi Rift, which propagates in a WSW direction into the Archean-Paleoproterozoic age 
Tanzanian craton. The Eyasi Rift is located in the northern part of Tanzania where the Eastern 
Branch of the EARS transitions from a narrow rift (~70 km wide) to a wide rift referred to as the 
North Tanzanian Divergence (~300 km wide). However, unlike the rest of the Eastern Branch 
segments, the Eyasi Rift does not follow the Neoproterozoic age Mozambique orogenic belt 
located on the eastern margin of the Tanzanian craton. To better understand what lithospheric 
structures are contributing to the evolution of Eyasi Rift, this work generated lithospheric-scale 
cross-sections across the Eyasi Rift perpendicular to its longitudinal direction using: (1) Shuttle 
Radar Tomography Mission (SRTM) Digital Elevation Model (DEM) to map surface rift-related 
brittle structures; (2) Aeromagnetic data enhanced by a Source Parameter Imaging (SPI) filter to 
image the depth to the Precambrian crystalline basement; and (3) World Gravity Model 2012 
(WGM 2012) to calculate crustal and lithospheric thickness by applying the two-dimensional 
(2D) radially-averaged power spectral analysis. These cross-sections show that the Eyasi Rift 
nucleates within a previously unidentified suture zone within the Tanzanian craton and that this 
suture zone is characterized by thinner lithosphere (as thin as ~95 km). This zone of thinner 
lithosphere is offset southeastward from the surface expression of the Eyasi Rift and this 
observation is used to advance a simple shear model for the rift evolution. Furthermore, the 
lithospheric thickness map indicates that the Tanzanian craton is heterogeneous and possibly 
composed of multiple smaller cratonic fragments.  

 
 
 



v"
"

TABLE OF CONTENTS 
 

Chapter          Page 
 
I. INTRODUCTION ..................................................................................................... 1 
 
 
II. TECTONIC SETTING ............................................................................................ 5 
  
 The East African Rift System and its Eastern Branch ............................................ 5 
 The North Tanzanian Divergence ........................................................................... 7 
 The Eyasi Rift ......................................................................................................... 9 
 The Precambrian Crystalline Basement ................................................................ 12 
 
 
III. DATA AND METHODS ..................................................................................... 14 
 
 Magnetic Data and Methods ................................................................................. 14 
 Gravity Data and Methods .................................................................................... 16 
 Data Integration .................................................................................................... 19 
  
 
IV. RESULTS ............................................................................................................. 24 
 
 Magnetic Fabrics and Depth to the Precambrian Crystalline Basement ............... 24 
 The Bouguer Gravity Anomaly and Moho Depths ............................................... 25 
 Lithospheric-Asthenospheric Boundary (LAB) Depths ....................................... 26 
 Lithospheric Cross-sections .................................................................................. 27 
 
 
V.  DISCUSSION ....................................................................................................... 29 
 
 
VI.  CONCLUSION .................................................................................................... 33 
 

REFERENCES ........................................................................................................... 34 
 

 



vi"
"

LIST OF TABLES 

 

 

Table           Page 
 
Table 1: Comparison between the Moho depths determined from Last et al.’s (1997) 
study via modeling receiver functions and Rayleigh wave phase velocities from 
teleseismic earthquakes (Seismic Method) and Moho depths determined from this study 
by applying two-dimensional (2D) radially-averaged power spectral analysis to the 
Bouguer gravity anomaly of the World Gravity Map 2012 (WGM 2012) (Gravity 
Method) ....................................................................................................................... 27



vii"
"

LIST OF FIGURES 

 

Figure           Page 
 
Figure 1: Digital Elevation Model (DEM) from the Earth Topography 1 arc second 
(ETOP1) showing the geographic extent of the East African Rift System (EARS) ..... 3 
 
Figure 2: Tectonic map of the Eastern and Western branches of the East African Rift 
System (EARS) ............................................................................................................. 4 
 
Figure 3: Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) of 
the Eastern and Western branches of the East African Rift System (EARS) and the 
surrounding plates ......................................................................................................... 7 
 
Figure 4: Digital Elevation Model (DEM) from the Shuttle Radar Topography Mission 
(SRTM) data showing the North Tanzanian Divergence ............................................. 8 
 
Figure 5: Generalized geologic map of the western portion of the North Tanzanian 
Divergence .................................................................................................................. 10 
 
Figurer 6: NW-SE geological sections across the western part of the North Tanzanian 
Divergence .................................................................................................................. 11 
 
Figure 7: Total Magnetic Intensity (TMI) of the Reduced to Pole (RTP) aeromagnetic 
data of the North Tanzanian Divergence superimposed on Shuttle Radar Topography 
Mission (SRTM) Digital Elevation Model (DEM) ..................................................... 15 
 
Figure 8: Horizontal derivative aeromagnetic map of the North Tanzanian Divergence 
superimposed on Shuttle Radar Topography Mission (SRTM) Digital Elevation Model 
(DEM) ......................................................................................................................... 16 
 
Figure 9: Depth to the Precambrian crystalline basement map of the North Tanzanian 
Divergence generated from the Source Parameter Imaging (SPI) filter of the 
aeromagnetic data superimposed on Shuttle Radar Topography Mission (SRTM) Digital 
Elevation Model (DEM) ............................................................................................. 17 
 
Figure 10: Bouguer anomaly map of the North Tanzanian Divergence generated from the 
World Gravity Map 2012 (WGM 2012) superimposed on Shuttle Radar Topography 
Mission (SRTM) Digital Elevation Model (DEM) ..................................................... 18 
 



viii"
"

Figure 11: Examples of the two-dimensional (2D) radially-averaged power spectral 
curves extracted from 1.0° x 1.0° (~110 x ~110 km) sub-regions A and B from the World 
Gravity Map 2012 (WGM 2012) Bouguer gravity anomaly map .............................. 20 
 
Figure 12: Moho depth estimate map of the North Tanzanian Divergence obtained from 
the two-dimensional (2D) radially-averaged power spectrum analysis of the World 
Gravity Map 2012 (WGM 2012) superimposed on Shuttle Radar Topography Mission 
(SRTM) Digital Elevation Model (DEM) ................................................................... 21 
 
Figure 13: Lithosphere-Asthenosphere Boundary (LAB) depth estimate map of the North 
Tanzanian Divergence obtained from the two-dimensional (2D) radially-averaged power 
spectrum analysis of the World Gravity Map 2012 (WGM 2012) superimposed on Shuttle 
Radar Topography Mission (SRTM) Digital Elevation Model (DEM) ...................... 22 
 
Figure 14: Plot of topography from Shuttle Radar Topography Mission (SRTM) Digital 
Elevation Model (DEM), depth to the Precambrian crystalline basement from the Source 
Parameter Imaging (SPI) filter analysis of the aeromagnetic data, and the depth to the 
Moho and the Lithosphere-Asthenosphere Boundary (LAB) from the two-dimensional 
(2D) radially-averaged power spectral analysis of the World Gravity Map 2012 (WGM 
2012) Bouguer gravity anomalies along three profiles ............................................... 23 
 
Figure 15: Conceptual model for the evolution of the Eyasi Rift ............................... 32 



1"
"

CHAPTER I 
 

 

INTRODUCTION 

 

 

 

Understanding the processes of continental rifting are of significant importance because 

continental rifts represent the initial stages of continental breakup leading to the transition into sea 

floor spreading and ultimately the formation of passive margins (e.g. Buck, 2007; Bridges et al., 

2012). In addition, continental rifts are sites of hydrocarbon accumulation and geologic hazards 

such as volcanism, earthquakes, poisonous gas emissions, and landslides (Abdelsalam et al., 

2004; Katumwehe et al., 2015).  

Numerous studies on the dynamics of continental rifting have advanced our understanding of the 

various processes involved with extensional regimes. Nonetheless, the processes leading to rift 

initiation through the localization of extensional strain along narrow zones within the continental 

lithosphere remains not fully understood. One common explanation for strain localization during 

rift initiation is the presence of pre-existing structures underlain by thinner and weaker 

lithosphere (e.g. Corti et al., 2013; Leseane et al., 2015; Sarafian et al., 2017). 

It is generally agreed that continental rifts nucleate within orogenic belts at the margin of older 

cratons (Corti et al., 2013). This holds true for segments of the East African Rift System (EARS) 
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including the majority of the N-trending Neogene age (~20 - 5 Ma) magma-rich Eastern Branch 

(Fig. 1), which follows the Neoproterozoic age Mozambique orogenic belt (representing the 

southern part of the East African Orogen; Stern, 1994) on the eastern edge of the Tanzanian 

craton (Fig. 2; e.g. Daly et al., 1989). This also includes the NW-trending Neogene age (~20 Ma) 

magma-poor Rukwa Rift, which represents the central part of the Western Branch (Fig. 2) and 

stretches within the Paleoproterozoic age Ubendian orogenic belt sandwiched between the 

Tanzanian craton in the northeast and the Bangweulu cratonic block to the southwest (Fig. 2; e.g. 

Rosendaht et al., 1992; Delvaux, 2001). However, some geological and geophysical observations 

have shown that continental rifts can develop crossing the boundaries of orogenic belts and 

extend within cratons. For example, Katumwehe et al. (2015) have shown that the Neogene age 

(~20 Ma) magma-poor Albertine-Rhino graben which represent the northern segment of the 

Western Branch (Fig. 2) extends for ~200 km in a NE-SW direction within the Archean-

Paleoproterozoic age Northeast Congo block which represents the northeastern extension of the 

Congo craton (Fig. 2).  

Unlike the majority of the segments of the Eastern Branch of the EARS, which follow the 

Mozambique orogenic belt on the eastern margin of the Tanzanian craton, the Eyasi Rift extends 

for ~150 km in a WSW direction into the Tanzanian craton (Fig. 2; e.g. Foster et al., 1997). The 

propagation of this rift has been explained as a result of reactivation of pre-existing basement 

fabric within the Archean-Paleoproterozoic age lithosphere of the Tanzanian craton (Ebinger et 

al., 1997; Foster et al., 1997; Le Gall et al., 2008). In order to better understand the factors that 

facilitate the propagation of the Eyasi Rift into the Tanzanian craton, this work investigated the 

lithospheric structures beneath the Eyasi Rift. For this, it used remote sensing and geophysical 

data to image the lithospheric structures at various depths. First, it used the Shuttle Radar 

Topography Mission (SRTM) Digital Elevation Model (DEM) to image surface rift-related brittle 

structure. Second, it implemented aeromagnetic data enhanced by a Source Parameter  
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Imaging (SPI) filter to image the depth to the Precambrian crystalline basement. Third, it utilized 

the World Gravity Model 2012 (WGM 2012) to map crustal and lithospheric thickness (depth to 

Moho and the lithosphere-asthenosphere boundary (LAB) using two-dimensional (2D) radially-

averaged power spectral analysis. Subsequently, it integrated results from these analyses to 

generate three lithospheric-scale cross-sections transecting the Eyasi Rift parallel to the direction 

of extension of the rift. Finally, it used these cross-sections to propose a simple shear model for 

the evolution of the Eyasi Rift. 

Figure 1: Digital Elevation Model (DEM) from the Earth Topography 1 arc second (ETOPO1) 
showing the geographic extent of the East African Rift System (EARS) as indicated by the read 
areas. Study area location is indicated by the smaller black box. 

"
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Figure 2: Tectonic map of the Eastern and Western branches of the East African Rift System 
(EARS). After Katumwehe et al. (2015)."
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CHAPTER II 
 

 

TECTONIC SETTING 

 

 

 

The East African Rift System and its Eastern Branch 

The EARS is a world-class example of an ongoing continental rifting and a perfect laboratory for 

investigating all rift’s evolutionary stages from incipient rifting in the Okavango rift zone in the 

southwestern-most end of the EARS (e.g. Modisi et al., 2000; Kinabo et al., 2007; Leseane et al., 

2015; Yu et al., 2015a, b, c, 2017) to the transitioning from continental rifting to sea floor 

spreading in the northeastern-most end of the EARS (e.g. Berckhemer et al., 1975; Makris and 

Ginzburg; 1987; Hayward and Ebinger, 1996; Tapponnier et al., 1990; Sigmundsson, 1992; 

Manighetti et al., 1998; Kidane et al., 2003; Beyene and Abdelsalam, 2005; Bridges et al., 2012; 

Benoit et al., 2006; Bastow et al., 2008; Rooney et al., 2012, 2013, 2016; Stab et al., 2016). The 

EARS comprises two main branches represented by the magma-rich Eastern Branch and the 

magma-poor Western Branch and both branches wrap around the Archaen-Paleoproterozoic age 

Tanzanian craton (Figs. 1 and 2; e.g. Chorowicz, 2005). These two branches were initiated 

simultaneously during the Oligocene time (~25 Ma) (Roberts et al., 2012) possibly as the result of 

the deflection of a rising mantle plume to the east beneath the relatively thicker lithospheric root 
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of the Tanzanian craton (Koptev et al., 2015). This allowed for the development of the Eastern 

Branch as a magma-rich continental rift and the Western Branch as a magma-poor continental 

rift. Currently, the kinematics of the Eastern and Western branches are controlled by the eastward 

movement of the Somalia and Victoria plates relative to the Nubian Plate (Fig. 3; Stamps et al., 

2008; Saria et al., 2014).  

The Eastern Branch extends from the Afar Depression in the northeast southward for a distance 

of ~2,200 km through the Main Ethiopian Rift (Abebe et al., 2007; Corti, 2009), the Turkana Rift, 

and the Kenya Rift, to the North Tanzanian Divergence (Fig. 1; Ebinger et al., 2000). The Afar 

Depression and the Main Ethiopian Rift are associated with the Ethiopia-Yemen Plateau whereas 

the Eastern Branch and Western Branch are associated with the East African Plateau (Fig. 1; 

Emishaw et al., 2017). The two plateaus are separated by the Turkana topographic corridor (Fig. 

1; Emishaw et al., 2017).  

For the most part, segments of the Eastern Branch typify narrow rifts with width ranging between 

50 km and 100 km (e.g. Chorowicz, 2005). However, there are two segments of the Eastern 

Branch that are ~300 km wide and these include the Broadly Rifted Zone in the southern Main 

Ethiopian Rift (Cerling and Powers, 1977; Moore and Davidson, 1978; WoldeGabriel and 

Aronson, 1987; Hayward and Ebinger, 1996; Ebinger and Hayward, 1996; Boccaletti et al., 1998; 

Ebinger et al., 2000; Bonini et al., 2005; Philippon et al., 2014; Emishaw et al., 2017) and the 

North Tanzanian Divergence in the southern end of the Eastern Branch (Chorowicz, 2005; Le 

Gall et al., 2008; Mubilo and Nyblade, 2016) (Fig. 1). Similar to the narrow rift segments of the 

Eastern Branch, the Broadly Rifted Zone of the southern Main Ethiopian Rift extends within the 

Neoproterozoic age East African Orogen represented by the Arabian-Nubian Shield north of the 

Turkana topographic corridor and the Mozambique orogenic belt south of the corridor (Stern, 

1994). However, the Eyasi Rift, which represents a segment of the North Tanzanian Divergence, 

departs from following the N-trending Mozambique orogenic belt and extends in a ENE-WSW 
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direction within the Tanzanian craton (Fig. 4; e.g. Le Gall et al., 2008).     

 

 

 

The North Tanzanian Divergence 

The North Tanzanian Divergence is a Miocene age (<8 Ma) segment of the Eastern Branch and 

can be divided into three distinct domains (Le Gall et al., 2008). The north domain of the North 

Figure 3: Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) of the 
Eastern and Western branches of the East African Rift System (EARS) and the surrounding 
plates. Red vectors represent surface motion velocities in mm/year (Saria et al., 2014)."
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Tanzanian Divergence is dominated by the Natron-Magadi Rift, which is a relatively narrow, N-S 

oriented rift basin with a width ranging between 50 and 80 km (Fig. 4). The Natron-Magadi Rift 

changes from an asymmetrical graben in the north to a half-graben in the south and both the 

asymmetrical graben and the half graben dissect Late Miocene-Present volcanic flows directly 

Figure 4: Digital Elevation Model (DEM) from the Shuttle Radar Topography Mission (SRTM) 
data showing the North Tanzanian Divergence. The surface expression of the boundary between 
the Tanzanian craton in the west and the Mozambique orogenic belt to the east is indicated by the 
NNW-trending thrust fault symbol with the triangles on the hanging-wall. Rift basins are shown 
in yellow and include clockwise rotation from north: NMR = Natron-Magadi Rift; PR = Pangani 
Rift; MR = Manyara Rift; BR = Balangida Rift; YD = Yaida Depression; ER = Eyasi Rift and 
WR = Wembere Rift. The Ngorongoro-Kilimanjaro Volcanic Belt (NKVB) is shown in pink, and 
its accompanying volcanic edifices are shown in red and include clockwise rotation from west: 
NV = Ngorongoro Volcano; KV = Kilimanjaro Volcano; and HV = Hanang Volcano. The Eyasi 
Rift border fault is labeled (EF)."
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overlying the Precambrian crystalline basement rocks of the Mozambique orogenic belt (Le Gall 

et al., 2008). In southern Kenya the Moho depth outside the Natron-Magadi Rift is known to be 

~40 km and this depth shallows to ~35 km beneath the rift axis (Last et al., 1997; Le Gall et al., 

2008). 

The central domain of the North Tanzanian Divergence is characterized by a 200 x 50 km E-W 

trending volcanic belt (the Ngorongoro-Kilimanjaro Volcanic Belt) extending from the 

Ngorongoro volcano in the west to the Kilimanjaro volcano to the east (Fig. 4). This volcanic belt 

includes numerous (<20) volcanic edifices, that were emplaced between 8 Ma and Present (Fig. 

4; Le Gall et al., 2008). 

The south domain represents the main diverging rift structure of the ~300 km wide North 

Tanzanian Divergence (Fig. 4) and has only been undergoing extension and volcanism for the 

past 1.5 Ma (Le Gall et al., 2008). This domain is bound in the west by the ENE-trending Eyasi 

Rift that continues southward into the N-trending Wembere Rift southward, and in the east by the 

NNW-trending Pangani Rift (Fig. 4). The N-trending Manyara Rift, and the NE-trending 

Balangida and Yaida rifts are found between the Eyasi and Pangani rifts (Fig. 4; Mubilo and 

Nyblade, 2016).  

 

The Eyasi Rift 

The NE-trending Eyasi Rift, located within the eastern margin of the Tanzanian craton, is a NW-

dipping half-graben with its ~150 km long border fault (the Eyasi Main Border Fault; Fig. 5) 

located in the northwestern side of the rift and it is dipping to the southeast (Fig. 6A; Ebinger et 

al., 1997). The northeastern end of this rift terminates near the base of the Ngorongoro volcano at 

the southwestern part of the Ngorongoro-Kilimanjaro Volcanic Belt (Fig. 4). The Precambrian 

crystalline basement rocks of the Tanzanian cratons are found on all sides of the rift (Fig. 5) and 
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the Eyasi Basin itself is filled with syn-rift sediment (Ring et al., 2005). Euler solutions derived 

from aeromagnetic data have indicated that the maximum depth of the Eyasi Rift is 3.5 km 

(Ebinger et al., 1997). The hanging-wall of the Eyasi main border fault has undergone flexural 

warp resulting in a rollover anticline and the development of several smaller parallel NE-trending 

normal faults (Fig. 6B; Foster et al., 1997). To the southeast of this rollover anticline’s fold axis is 

a 100 km long asymmetric graben (the Yaida Basin) which developed parallel to the Eyasi Rift 

(Fig. 6B; Foster et al. 1997).  

Figure 5: Generalized geological map of the western portion of the North Tanzanian Divergence. 
NW-SE lines labeled A-A’, B-B’, and C-C’ show the location of the near-surface cross-sections 
in Figure 6 and the lithospheric-scale cross-sections in Figure 14. The surface expression of the 
boundary between the Tanzanian craton in the west and the Mozambique orogenic belt to the east 
is indicated by the NNW-trending thrust fault symbol with the triangles on the hanging-wall. Rift 
basins are labeled in clockwise rotation from north: NMR = Natron-Magadi Rift; PR = Pangani 
Rift; MR = Manyara Rift; BR = Balangida Rift; YD = Yaida Depression; ER = Eyasi Rift; and 
WR = Wembere Rift. The Ngorongoro-Kilimanjaro Volcanic Belt (NKVB) is covered by 
Miocene-recent volcanic rocks. Modified from Ring et al. (2005); Le Gall et al. (2008); 
Katumwehe et al. (2015)."
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Previous studies have suggested that the onset of the Eyasi Rift was the result of strain being 

localized within the Precambrian fabrics of the upper crust of the Tanzanian craton. This 

suggestion is based mainly on the observation that the northeast strike of the Eyasi Rift’s main 

border fault is aligned with the northeast strike of the regional Precambrian metamorphic fabrics 

(Ebinger et al., 1997; Foster et al., 1997; Le Gall et al., 2008). However, according to Le Gall et 

al. (2008) the southeast dip of the Eyasi Rift’s main border fault is opposite to that of the 

northwest dip of the surrounding regional Precambrian metamorphic fabrics, which could indicate 

this pre-existing structure may have had less of an impact on strain localization and 

accommodation during the onset of the Eyasi Rift than previously thought. 

 

Figure 6: NW-SE geological sections across the western part of the North Tanzanian 
Divergence. See Figure 5 for locations of the geologic cross-sections. Vertical Exaggeration 
(VE) = 20."
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The Precambrian Crystalline Basement  

Within the North Tanzanian Divergence the Eyasi Rift, the Wembere Rift, the Yaida Depression, 

and the Balangida Rift extend within the Archaen-Paleoproterozoic age Tanzanian craton while 

the Natron-Magadi Rift, the Manyara Rift, and the Pangani Rift extend within the Neoproterozoic 

Mozambique orogenic belt (Fig. 5; Ebinger et al., 1997). The contact between the Tanzanian 

craton and the Mozambique orogenic belt is exposed along the uplifted flanks of the Eyasi Rift 

and in several locations in Kenya. However, the surface exposure of this contact is less clear to 

the south due to soil, alluvium, and volcanic rocks covering the Precambrian crystalline basement 

rocks, thus limiting the exposure of this contact (Ebinger et al., 1997). Nonetheless, this contact is 

described as a SW-verging thrust (Fig. 5) that developed during the collision between the 

Tanzanian craton and the Mozambique orogenic belt at ~850 Ma after the consumption of an 

oceanic basin referred to as the Mozambique Ocean (Smith & Mosley, 1993; Shackleton, 1993; 

Stern, 1994; Fritz et al., 2013).  

Exposures of the Tanzanian craton are found in the southwestern part of the study area and these 

are described by Thomas et al. (2016) as Neoarchean supracrustal rocks (Chlorite schist, quartz 

sericite schist, banded iron formation, and hornblende gneisses) and these seem to be intruded by 

a variety of plutonic rocks (granites, diorite, syenite, and gabbro). U/Pb zircon geochronological 

analyses obtained from different rock types (granite, syenite, granodiorite, gneiss, quartzite) 

produced ages ranging between 2612 Ma and 2775 Ma (Thomas et al., 2016).  

Within the Archaen-Paleoproterozoic rocks of the Tanzanian craton major structural trends are N-

S, E-W, and NE-SW (Barth, 1990). Numerous doleritic and gabbroic dikes are found on the 

eastern margin of the Tanzanian craton and these are generally NE-trending and are exposed 

along the margins of the Eyasi and Wembere rifts. However, a few dikes trending NNW are also 

present (Barth, 1990; Ebinger et al., 1997).  
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The Mozambique orogenic belt located within the study area consists of the Eastern and Western 

granulite belts (Fig. 2; Le Gall, 2008; Fritz et al., 2013). The Eastern Granulite Belt is dominated 

by Neoproterozoic age rocks whereas the Western Granulite belt is made-up of Archean-

Paleoproterozoic age rocks, which were reworked during the Neoproterozoic (Fritz et al., 2013). 

The structure dominating the Western Granulite Belt consist of near recumbent folds, faults, and 

lithological contacts within the gneisses and quartzites that make-up the major part of its 

composition (Barth, 1990; Dawson, 1992; Ebinger, 1997). Recently, Thomas et al. (2016) raised 

the possibility that the Western Granulite Belt represents the eastern margins of the Tanzania 

craton that might have been metacratonized during the Neoproterozoic East African orogenic 

event.
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CHAPTER III 
 

 

DATA AND METHODS 

 

 

 

This work used aeromagnetic data and the WGM 2012 to image the lithospheric structures 

beneath the Eyasi Rift and surroundings. 

 

Magnetic Data and Methods 

The aeromagnetic data used in this study were acquired by Geosurvey International between 1977 

and 1980 at 200 m elevation, 1 km line spacing, and 10 km tie line spacing with E-W flight lines. 

These data were then reduced to the pole (RTP) to transform the dipolar magnetic anomalies to 

monoplar anomalies centered over their causative bodies (Fig. 7) (Lawal and Osazuwa, 2003). 

Following this, a horizontal derivative filter was applied to the aeromagnetic data to enhance the 

edges of the magnetic anomalies, especially those associated with the regional fabric of the 

Precambrian crystalline basement rocks (Fig. 8). Subsequently, the RTP magnetic data were 

upward continued to 5 km and a Source Parameter Imaging (SPI) filter was applied to image the 

depth to the Precambrian crystalline basement (Fig. 9). Different from the three-dimensional (3D) 

Euler deconvolution technique which produces relatively accurate depth to basement calculations  



15"
"

at individual discrete locations, the SPI method is an inversion technique with higher lateral 

resolution, but with lower vertical accuracy. This is found to be useful in identifying the overall 

distribution and geometry of sedimentary basins, while simultaneously obtaining estimates of 

their depths. 

 

 

 

 

 

 

 

Figure 7: Total Magnetic Intensity (TMI) of the Reduced to Pole (RTP) aeromagnetic data of 
the North Tanzanian Divergence superimposed on Shuttle Radar Topography Mission 
(SRTM) Digital Elevation Model (DEM). The surface expression of the boundary between 
the Tanzanian craton in the west and the Mozambique orogenic belt to the east is indicated by 
the NNW-trending thrust fault symbol with the triangles on the hanging-wall. Rift basins are 
labeled in clockwise rotation from north: NMR = Natron-Magadi Rift; PR = Pangani Rift; 
MR = Manyara Rift; BR = Balangida Rift; YD = Yaida Depression; ER = Eyasi Rift; and 
WR = Wembere Rift. . The Ngorongoro-Kilimanjaro Volcanic Belt (NKVB) and its 
accompanying volcanic edifices include clockwise rotation from west: NV = Ngorongoro 
Volcano; KV = Kilimanjaro Volcano; and HV = Hanang Volcano. The Eyasi Rift border 
fault is labeled (EF)."



16"
"

 

 

 

 

 

 

Gravity Data and Methods 

The WGM 2012, produced by the Bureau Gravimetrique International (BGI), was derived from 

the Earth Geopotential Model 2008 (EGM 2008; also produced by BGI) and developed in 

spherical harmonics with ~9 km spatial resolution (Balmino et al., 2012). The EGM 2008 model 

includes surface gravity measurements (from land, marine, and airborne surveys) and satellite 

Figure 8: Horizontal derivative aeromagnetic map of the North Tanzanian Divergence 
superimposed on Shuttle Radar Topography Mission (SRTM) Digital Elevation Model 
(DEM). The surface expression of the boundary between the Tanzanian craton in the west 
and the Mozambique orogenic belt to the east is indicated by the NNW-trending thrust fault 
symbol with the triangles on the hanging-wall. Rift basins are labeled in clockwise rotation 
from north: NMR = Natron-Magadi Rift; PR = Pangani Rift; MR = Manyara Rift; BR = 
Balangida Rift; YD = Yaida Depression; ER = Eyasi Rift; and WR = Wembere Rift. . The 
Ngorongoro-Kilimanjaro Volcanic Belt (NKVB) and its accompanying volcanic edifices 
include clockwise rotation from west: NV = Ngorongoro Volcano; KV = Kilimanjaro 
Volcano; and HV = Hanang Volcano. The Eyasi Rift border fault is labeled (EF)."
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gravimetry measurements from the Gravity Recovery and Climate Experiment (GRACE) 

mission. The Bouguer gravity anomalies were then computed using the EGM 2008 data set and 

spherical harmonic analysis Earth Topography 1 arc second (ETOPO1) data set with a reference 

density of 2670 km/m3 for crustal rock (Balmino et al., 2012). 

The Bouguer gravity anomaly of the WGM 2012 (Fig. 10) was used to estimate crustal and 

Figure 9: Depth to the Precambrian basement map of the North Tanzanian Divergence 
generated from the Source Parameter Imaging (SPI) filter of the aeromagnetic data 
superimposed on Shuttle Radar Topography Mission (SRTM) Digital Elevation model 
(DEM). The surface expression of the boundary between the Tanzanian craton in the west 
and the Mozambique orogenic belt to the east is indicated by the NNW-trending thrust fault 
symbol with the triangles on the hanging-wall. Rift basins are labeled in clockwise rotation 
from north: NMR = Natron-Magadi Rift; PR = Pangani Rift; MR = Manyara Rift; BR = 
Balangida Rift; YD = Yaida Depression; ER = Eyasi Rift; and WR = Wembere Rift. . The 
Ngorongoro-Kilimanjaro Volcanic Belt (NKVB) and its accompanying volcanic edifices 
include clockwise rotation from west: NV = Ngorongoro Volcano; KV = Kilimanjaro 
Volcano; and HV = Hanang Volcano. The Eyasi Rift border fault is labeled (EF)."
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lithospheric thickness by determining the Moho and the LAB depths beneath the Eyasi Rift and 

surroundings. This was accomplished by applying the 2D radially-averaged power spectral 

analysis to the Bouguer gravity anomaly using 1.0°!x 1.0° (~110 x ~110 km) sub-regions (Fig. 

10) and 75% overlap between these sub-regions.  

 

 

 

 

 

 

Figure 10: Bouguer anomaly map of the North Tanzanian Divergence generated from the 
World Gravity Map 2012 (WGM 2012) superimposed on Shuttle Radar Topography Mission 
(SRTM) Digital Elevation Model (DEM). Squares A and B are 1.0°!x 1.0° (~110 x ~110 km) 
sub-regions for which two-dimensional (2D) radially-averaged power spectral curves are 
shown in Figure 9. The surface expression of the boundary between the Tanzanian craton in 
the west and the Mozambique orogenic belt to the east is indicated by the NNW-trending thrust 
fault symbol with the triangles on the hanging-wall. Rift basins are labeled in clockwise 
rotation from north: NMR = Natron-Magadi Rift; PR = Pangani Rift; MR = Manyara Rift; BR 
= Balangida Rift; YD = Yaida Depression; ER = Eyasi Rift; and WR = Wembere Rift. . The 
Ngorongoro-Kilimanjaro Volcanic Belt (NKVB) and its accompanying volcanic edifices 
include clockwise rotation from west: NV = Ngorongoro Volcano; KV = Kilimanjaro Volcano; 
and HV = Hanang Volcano. The Eyasi Rift border fault is labeled (EF)."
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It is possible to estimate the Moho and the LAB depth using the 2D radially-averaged power 

spectral analysis because the relationship between gravity power spectra and depth is log-linear, 

thus the slope of the spectral curve provides an estimate of the depth to the gravity anomaly 

sources including the depth to Moho and the LAB (Russo and Speed, 1994; Tselentis et al., 1988; 

Sanchez-Rojas and Palma, 2014). The spectral curves are constructed by plotting “ln(Power 

Spectrum)” against the “wavenumber (k)” (e.g. Fig. 11). Depths to differing gravity anomalies 

representing boundaries of significant density contrast in the subsurface such as the Moho and 

LAB can be estimated by fitting straight lines through linear segments of the spectral curve 

(Tselentis et al., 1998). Linear segments of the spectral curve that correspond to higher 

wavenumbers represent deeper density contrast boundaries and lower wavenumber segments 

represent shallower density contrast boundaries (Tselentis et al., 1988; Gomez-Oritz et al., 2005). 

Examples of the 2D radially-averaged power spectral curves from the Tanzanian craton and the 

Mozambique orogenic belt are shown in Figure 11 A and B, respectively. The Moho and the LAB 

depth estimation from all of the sub-regions of the study area (240 sub-regions) were extrapolated 

using the minimum-curvature gridding algorithm in OasisMontaj. Results of the Moho and the 

LAB depth estimation using the 2D radially-averaged power spectral analysis of the Bouguer 

gravity anomaly obtained from the WGM 2012 are shown in Figures 12 and 13, respectively. 

 

Data Integration 

In order to integrate results of the rift-related surface structure from the SRTM DEM, the depth to 

the Precambrian basement from the aeromagnetic data, and the depth to Moho and the LAB from 

the Bouguer gravity anomaly WGM 2012, three NW-SE trending lithospheric-scale cross-

sections were constructed (Fig. 14) and the location of these cross-section are shown by lines 

labeled A-A’, B-B’, and C-C’ in Figure 5. Cross-section A-A’ traverses the central part of the 
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Eyasi Rift and the surrounding Tanzanian craton to the northwest and southeast. Cross-section B-

B’ traverses the Eyasi Rift, the Yaida Depression and the Balangida Rift with the Tanzanian 

craton exposed between them and to the northwest of the Eyasi Rift and southeast of the 

Balangida Rift. The southeastern part of this cross-section extends into the Mozambique orogenic 

belt. Cross-section C-C’ intercepts the Tanzanian craton in its northwestern part, the Ngorongoro-

Kilimanjaro Volcanic Belt in its central part and the Mozambique orogenic belt in its southeastern 

part.  

 

 

 

 

 

 

 

 

 

Figure 11: Examples of the two-dimensional (2D) radially-averaged power spectral curves 
extracted from 1.0°!x 1.0° (~110 x ~110 km) sub-regions A and B from the World Gravity 
Map 2012 (WGM 2012) Bouguer gravity anomaly map shown in Figure 6."



21"
"

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 12: Moho depth estimate map of the North Tanzanian Divergence obtained from the 
two-dimensional (2D) radially-averaged power spectrum analysis of the World Gravity Map 
2012 (WGM 2012) superimposed on Shuttle Radar Topography Mission (SRTM) Digital 
Elevation Model (DEM). The white and black circles are Moho depth estimates from Last et 
al.’s (1997) passive seismic receiver functions study with accompanying seismic station 
names. The surface expression of the boundary between the Tanzanian craton in the west and 
the Mozambique orogenic belt to the east is indicated by the NNW-trending thrust fault 
symbol with the triangles on the hanging-wall. Rift basins are labeled in clockwise rotation 
from north: NMR = Natron-Magadi Rift; PR = Pangani Rift; MR = Manyara Rift; BR = 
Balangida Rift; YD = Yaida Depression; ER = Eyasi Rift; and WR = Wembere Rift. . The 
Ngorongoro-Kilimanjaro Volcanic Belt (NKVB) and its accompanying volcanic edifices 
include clockwise rotation from west: NV = Ngorongoro Volcano; KV = Kilimanjaro Volcano; 
and HV = Hanang Volcano. The Eyasi Rift border fault is labeled (EF)."
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Figure 13: Lithosphere-Asthenosphere Boundary (LAB) depth estimate map of the North 
Tanzanian Divergence obtained from the two-dimensional (2D) radially-averaged power 
spectrum analysis of the World Gravity Map 2012 (WGM 2012) superimposed on Shuttle 
Radar Topography Mission (SRTM) Digital Elevation Model (DEM). The surface expression 
of the boundary between the Tanzanian craton in the west and the Mozambique orogenic belt 
to the east is indicated by the NNW-trending thrust fault symbol with the triangles on the 
hanging-wall. Rift basins are labeled in clockwise rotation from north: NMR = Natron-Magadi 
Rift; PR = Pangani Rift; MR = Manyara Rift; BR = Balangida Rift; YD = Yaida Depression; 
ER = Eyasi Rift; and WR = Wembere Rift. . The Ngorongoro-Kilimanjaro Volcanic Belt 
(NKVB) and its accompanying volcanic edifices include clockwise rotation from west: NV = 
Ngorongoro Volcano; KV = Kilimanjaro Volcano; and HV = Hanang Volcano. The Eyasi Rift 
border fault is labeled (EF)."
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Figure 14: In (A), (B) and (C) The left column illustrates the plot of topography from Shuttle 
Radar Topography Mission (SRTM) Digital Elevation Model (DEM), depth to the 
Precambrian crystalline basement from the Source Parameter Imaging (SPI) filter analysis of 
the aeromagnetic data, and the depth to the Moho and the Lithosphere-Asthenosphere 
Boundary from the two-dimensional (2D) radially-averaged power spectral analysis of the 
World Gravity Model 2012 (WGM 2-012) Bouguer gravity anomalies along the profiles 
labeled A-A’, B-B’, and C-C’ in Figure 5. Vertical Exaggeration (VE) for surface topography 
and of the depth to the Precambrian crystalline basement = 20. The right panel is schematic 
lithospheric-scale cross-sections along the same profiles depicting the evolution of the Eyasi 
Rift through simple shearing."
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CHAPTER IV 
 

 

RESULTS 

 

 

 

Magnetic Fabrics and Depth to the Precambrian Crystalline Basement 

The Total Magnetic Intensity (TMI) of the aeromagnetic data covering the study area (Fig. 7) 

shows that the Mozambique orogenic belt is characterized by a higher averaged TMI compared to 

the Tanzanian craton. Also, even without enhancing filters applied to the aeromagnetic data, NE- 

and NNW-trending magnetic lineations are observable in the Tanzanian craton. In addition, 

extreme high and low TMI are present throughout the Ngorongoro-Kilimanjaro Volcanic Belt and 

no magnetic anomalies are associated with the Eyasi Rift or other rifts within the North 

Tanzanian Divergence. 

The horizontal derivative filter applied to the aeromagnetic anomaly data (Fig. 8) shows high 

amplitude, narrow NE- and NNW-trending magnetic lineaments within the Tanzanian craton and 

revealed these magnetic lineaments more clearly than the TMI map. Ebinger et al. (1997) 

interpreted the NE-trending magnetic lineaments within the Tanzanian craton to be associated 

with the regional fabric of the Precambrian crystalline rocks as well as the presence of dikes. 

Within the Mozambique orogenic belt, sporadic, multi-directional linear, and non-linear magnetic  
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anomalies exist. Also, the Neogene volcanic rocks are characterized by higher magnetization and 

the sedimentary basins by lower magnetization possibly due to the presence of rift-sediment fill.  

The SPI filter applied to the aeromagnetic data produced a depth to the Precambrian crystalline 

basement map where depths vary from 0 (exposed Precambrian crystalline basement) to 3.47 km 

where rift-sediment fill is present. The deepest depth to the Precambrian crystalline basement is 

located in the western portion of the Eyasi Rift (Fig. 9). Also, the SPI filter image revealed that 

the Eyasi Main Border Fault extends ~40 km further to the west-southwest than what has 

previously been mapped based on the surface geology alone. 

 

The Bouguer Gravity Anomaly and Moho Depths 

The Bouguer anomaly map (Fig. 10) shows that the Mozambique orogenic belt is generally 

characterized by a higher gravity anomaly compared to the Tanzanian craton. This is possibly due 

to the presence of thinner lithosphere beneath the orogenic belt and thicker lithosphere beneath 

the craton. Within the Tanzanian craton, the lowest gravity anomalies are found in narrow NE-

trending belts where the rift-sediment fill is present. In addition, the portion of the Mozambique 

orogenic belt covered by the Ngorongoro-Kilimanjaro Volcanic Belt have a lower gravity 

anomaly compared to the rest of the orogenic belt, which could be due to the presence of melt 

existing beneath the volcanic belt.  

The 2D radially-averaged power spectral analyses of the WGM 2012 Bouguer gravity anomaly 

shows the average crustal thickness calculated for the Moho depth beneath the Eyasi Rift and 

surroundings to be 42.5 km. The thickest crust (48.5 km) was found beneath the eastern side of 

the Ngorongoro-Kilimanjaro Volcanic Belt (Fig. 12) and this could be due to magmatic under-

plating associated with the volcanic activities. The thinnest crust (36.2 km) was found in the 

northwestern part of the study area within the Tanzanian craton (Fig. 12). It is not clear if there is 
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any connection, but the region where the Moho depth map shows the thinnest crust coincides with 

the location of exposed Neoarchean greenstone belt (Thomas et al., 2016). In addition, the depth 

to Moho map suggests that the crustal thickness throughout the study area is heterogeneous 

beneath the Tanzanian craton and the Mozambique orogenic belt with no systematical crustal 

thinning beneath the Eyasi Rift and other rifts in the North Tanzanian Divergence, excluding the 

Pangani Rift (Fig. 12).  

Results from the Moho depth estimates from the 2D radially-average power spectral analysis of 

the WGM 2012 of the Bouguer gravity anomalies were compared with the Moho depth estimates 

obtained by Last et al. (1997) using passive seismic receiver function and Rayleigh wave phase 

velocity modeling from teleseismic earthquakes (Table 1; Fig. 12). When comparing the Moho 

depth estimates from this studies to those of Last et al. (1997) it is found that the average 

difference between the two methods is 3.7 km, with the highest difference being 5.8 km, and the 

lowest difference being 0.6 km (Table 1). 

 

Lithospheric – Asthenospheric Boundary (LAB) Depths 

It is found from the 2D radially-averaged power spectral analyses of the WGM 2012 Bouguer 

gravity anomaly that the average lithospheric thickness (depth to LAB) beneath the Eyasi Rift and 

surroundings is 159.2 km, which is consistent with Fishwick’s (2010) lithospheric thickness 

calculated from passive seismic tomography models. The most noticeable feature of the LAB 

depth map is the presence of a NNE oriented zone of thinner lithosphere between the Tanzanian 

craton and the Mozambique orogenic belt in which the LAB depth varies between 95 km and 125 

km (Fig. 13). Two additional zones of thinner lithosphere have also been imaged within the 

Tanzanian craton itself, both of which branch off from the NNE oriented zone of the thinner 

lithosphere between the Tanzanian craton and the Mozambique orogenic belt (Fig. 13). The first  
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Depth to Moho (km) 

 Station Seismic Method Gravity Method Difference (km) 
BASO 41.4 42.3 0.9 
KOMO 37.4 43.2 5.8 
KOND 38.3 42.2 3.9 
LONG 40.0 45.0 5.0 
MBWE 37.1 42 4.9 
MTOR 38.9 39.5 0.6 
SING 38.1 42.5 4.4 
TARA 38.1 42.5 4.4 

 

 

 

 

of these two zones of relatively thinner lithosphere extends from near the northeastern tip of the 

Yaida Depression northwestward towards Lake Victoria (Fig. 13). The second zone of the 

relatively thinner lithosphere extends from the main NNE oriented zone of thinner lithospheric 

for ~175 km in a NE-SW direction before changing to an E-W direction further southwest (Fig. 

13). The northeastern part of this zone of thinner lithosphere stretches to the southeast of the 

surface expression of the Eyasi Rift (Fig. 13). 

 

Lithospheric Cross-sections 

The NW-SE trending lithospheric-scale sections generated in this study across the Eyasi Rift (Fig. 

14) reveal several new insights into the lithospheric structure of the Eyasi Rift and surroundings. 

One of the most notable and unexpected of these insights being that the Moho in all three cross-

sections is relatively flat. However, when observing the lithospheric thickness, there are zones of 

Table 1: Comparison between the Moho depths determined from Last et al.’s (1997) study via 
modeling receiver functions and Rayleigh wave phase velocities from teleseismic earthquakes 
(Seismic Method) and Moho depths determined from this study by applying two-dimensional 
(2D) radially-averaged power spectral analysis to the Bouguer gravity anomaly of the World 
Gravity Map 2012 (WGM 2012) (Gravity Method). The locations of the seismic stations and 
their corresponding names are shown in Figure 12."
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lithospheric thinning present in all three cross-sections. In Section A-A’ the southeastern half of 

the cross-section shows thinner lithosphere, which is related to the NE-SW zone of the thinner 

lithosphere within the Tanzanian craton shown in Figure 13. Section B-B’ exhibits lithospheric 

thinning near its central part reflecting the NNE oriented zone of thinner lithosphere between the 

Tanzanian craton and the Mozambique orogenic belt (Fig. 13). Section C-C’ shows crustal 

thinning in its northwestern part reflecting the central part of the NNE oriented zone of thinner 

lithosphere between the Tanzanian craton and the Mozambique orogenic belt as well as the NW-

SE trending zone of thinner lithosphere within the Tanzanian craton (Fig. 13). In section A-A’ 

and B-B’, the zone of thinner lithosphere is offset southeastward from the surface expression of 

the Eyasi Rift (Fig. 14A and B). This can be used to call for simple shear rifting model. This is 

less clear in section C-C’ although the zone of thinner lithosphere is still found offset to the 

southeast of the surface expression of the Eyasi Rift (Fig. 14C). 
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CHAPTER V 
 

 

DISCUSSION 

 

 

 

One of the key findings from this study is that there does not appear to be significant crustal 

thinning associated with rifting within the Eyasi Rift. This is not to say crustal thinning does not 

occur, but that any crustal thinning that might have occurred in relation to rifting is beyond the 

limits of detection using the 2D radially-average power spectral analysis of the WGM 2012 

Bouguer gravity anomalies. However, considering that the majority of extension at the surface of 

the Eyasi Rift has only occurred within the last 1.5 Ma (Le Gall, 2008), it seems reasonable to 

assume that there has only been a minor amount of crustal thinning in relation to rifting. 

Differently, results of lithospheric thickness in this study reveal a heterogeneous lithosphere with 

several linear zones of thinner lithosphere. These zones include a NNE oriented zone along the 

eastern margin of Tanzanian craton between it and the Mozambique orogenic belt directly 

beneath the surface expression of the Natron and the Manyara rifts and two additional zones of 

thinner lithosphere beneath the Tanzanian craton itself to the northwest and southeast of the 

surface expression of the Eyasi Rift (Fig. 13).  

There are several factors that can explain why the lithosphere might have been thinner beneath  
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the eastern margin of the Tanzanian craton adjacent to the Mozambique orogenic belt. First, there 

is the possibility that suture zone-guided zonal delamination of the subcontinental lithospheric 

mantle (SCLM) occurred at the eastern margin of the Tanzanian craton due to its collision with 

the Mozambique orogenic belt and this might have resulted in the metacratonization of the 

eastern margin of the Tanzanian craton (Thomas et al., 2016). Second, it is possible that the 

mantle plume rising beneath the Tanzanian craton is being deflected eastward by the thicker 

lithospheric root of the Tanzanian craton (Koptev, 2017) and this can result in preferential 

thermal erosion of the thinner lithosphere existing at this suture zone. The current state of the 

stress in East Africa is exerting an E-W directed far-field tensile stress (Saria et al., 2014) and 

such stress can easily be localized as extensional strain within NNE and NE oriented zones of 

lithospheric weakness. Therefore, it is suggested here that the presence of a relatively thin, and 

tectonically and thermally weakened lithosphere combined with E-W directed far-field minimum 

horizontal stress is allowing for continental rifting to occur along the eastern margin of the 

Tanzanian craton. 

Although the distribution of zones of thinner lithosphere beneath cratons are less understood, it is 

realized that larger cratons are often made-up of smaller cratonic blocks stitched together along 

ancient suture zones and these zones of thinner lithosphere could be the sub-surface expression of 

these ancient suture zones. For example, the Kalahari craton in southern Africa is made-up of the 

Zimbabwe craton in the north and the Kaapvaal craton to the south and these two cratonic blocks 

are sutured together by the Paleoproterozoic Limpopo-Shashe orogenic belt. (e.g. Begg et al., 

2009). Some of the thrusts associated with this orogenic belt have been recently reactivated as 

normal faults, which triggered a Mw 6.5 within-plate earthquake that occurred in Botswana in 

April 3rd, 2017 (Kolawole et al., 2017). It is also worth noting that the ENE-trending Archaen 

metamorphic fabric of the Tanzanian craton near the Eyasi Rift parallels the linear zone of the 

thinner lithosphere to the southeast of the Eyasi Rift. These metamorphic fabrics could have 
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formed during an Archaen-Paleoproterozoic suturing event between two cratonic blocks within 

the Tanzanian craton. Therefore, the extension occurring at the Eyasi Rift could be related to the 

reactivation of an ancient suture zone where lithospheric weakness exists.  

This work proposes that extension at the Eyasi Rift is caused by simple shear style of rifting of 

the lithosphere within an ancient suture zone between two cratonic fragments constituting the 

Tanzanian craton. The key factors that are allowing for rifting to occur at this locality are: (1) a 

zone of thinner and weaker lithosphere inherited from the presence of an ancient suture zone 

between two cratonic blocks constituting the Tanzanian craton; (2) further weakening of the 

lithosphere due to the eastward deflection of a mantle plume by the thicker cratonic keel of the 

Tanzanian craton; and (3) E-W directed far-field tensile stress exerted by the eastward movement 

of the Somalian Plate relative to the Nubian Plate. A conceptual model illustrating this model is 

shown in Figure 15. 
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Figure 15: Conceptual model for the evolution of the Eyasi Rift drawn along the trace of 
profile labeled B-B’ in Figure 5. The model illustrates the evolution of the rift through simple 
shear extension with the lithospheric-scale master fault of the rift localized within a 
Precambrian suture zone between blocks of the Tanzanian craton where the already thinner 
lithosphere is further thermally weakened by eastward deflected mantle plume material 
beneath the craton."
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CHAPTER VI 
 

 

CONCLUSION 

 

 

 

This study imaged the depth to the Precambrian crystalline basement, the Moho, and the LAB 

beneath the western portion of the Cenozoic age North Tanzanian Divergence (including the 

Eyasi Rift) of the Eastern Branch of the EARS that extends within the eastern margin of the 

Archean-Paleoproterozoic age Tanzanian craton and along the Neoproterozoic age Mozambique 

orogenic belt. For this, this work applied a SPI filter to aeromagnetic data and 2D radially 

averaged power spectral analysis to the WGM 2012 Bouguer gravity anomalies. It found no clear 

indication of crustal thinning in association with the ongoing rifting. However, a linear, NNE 

oriented zone of thinner lithosphere is found in the eastern margin of the Tanzanian craton 

adjacent to the Mozambique orogenic belt. Beneath the Tanzanian craton itself, linear zones of 

thinner lithosphere were found existing to the northwest and southeast of the Eyasi Rift, 

suggesting the Tanzanian craton consists of several smaller cratonic blocks. The linear zone of 

thinner lithosphere southeast of the Eyasi Rift is interpreted to be associated with an intra-cratonic 

suture zone that was activated by simple shear style of rifting resulting in the formation of the 

Eyasi Rift.
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