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Major Field: HORTICULTURE 
 
Abstract: Bermudagrass (Cynodon spp.) is the predominant warm-season turfgrass in the 
U.S., largely due to its excellent adaptation and stress tolerance. However, bermudagrasses 
are not adapted to shaded environments. A three-year field study was conducted from 2014 
through 2016 to test the shade tolerance of bermudagrass including two Oklahoma State 
University experimental genotypes (OKS 2011-1 and OKS 2011-4) and eight commercial 
cultivars of bermudagrass (‘Latitude 36’, ‘Northbridge’, ‘Riviera’, ‘Yukon’, ‘Patriot’, 
‘Celebration’, ‘TifGrand’, and ‘Princess 77’). Bermudagrasses were evaluated under a 
combined neutral and vegetative shade environment: severe shade (75 % shade), moderate 
shade (49 % shade), and open sun (0 % shade). In terms of cumulative turf performance, 
Northbridge and Celebration were the top two performers in moderate shade and severe 
shade, respectively. Patriot was the worst performing cultivar under severe shade. Under 
severe shade, each cultivar demonstrated turf quality below the ‘minimally acceptable’ 
threshold. 
 
Shade and drought stress commonly co-exist in managed turfgrass systems. Two 
greenhouse experiments tested the hypothesis that shade would reduce the severity of 
drought stress on common bermudagrass [C. dactylon (L.) Pers.] and interspecific hybrid 
bermudagrasses (C. dactylon x C. transvaalensis) as compared to a non-shaded 
environment. The cultivars Celebration, Latitude 36, and Patriot were established from 
washed plugs in 10 cm diameter x 45cm long pots filled with a 1:1 top soil: sand root-zone. 
‘Non-shade’ and ‘Shade’ (58% shade) treatments were applied using a black shade fabric. 
Irrigation was applied manually with treatments being either well-watered (100% ET) or 
drought-stressed (50% ET). Data collected included TQ, NDVI, leaf relative water content, 
leaf electrolyte leakage, and evapotranspiration rate. Patriot had the poorest performance 
in drought stress alone, shade alone or combined shade and drought stress treatments. 
Whereas, Celebration and Latitude 36 performed similarly under each treatment. Shade 
delayed visible bermudagrass drought stress symptoms by one week in the first experiment, 
but no delay in drought stress was detected in the second experiment. 
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CHAPTER I 
 

 

LITERATURE REVIEW 

 

Introduction 

Bermudagrass (Cynodon spp. L.C. Rich) is the most widely used warm-season turfgrass in 

the southern United States (Emmons, 1995). It is adapted to a wide range of soil pH, soil texture, 

and soil fertility (Hanna et al., 2013). Bermudagrass can establish rapidly and recuperates well 

because it propagates quickly through stolons and rhizomes (Turgeon, 2002). Turf bermudagrass 

is suitable for almost all turf conditions in golf courses, athletic fields, home lawns, industrial parks 

and for soil stabilization as well. Turf bermudagrass is common in warm, humid tropical and sub-

tropical climates because it performs relatively well in dry and saline soil and shows resistance to 

most disease and insect pests (Christians, 2011). However, the most serious limitation of 

bermudagrass within its adapted region is poor shade tolerance (Emmons, 1995).  

 

It has been estimated that 20 to 25% of existing turfs are managed under some degree of 

shade from trees, shrubs or buildings (Beard, 1973). For instance, trees are inevitable components 

of a golf course system, but the shade from trees on turfgrass community creates a challenge for 

turfgrass managers.  
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Likewise, shade spots in home lawns and landscape gardens either from trees and shrubs or from 

physical structures bring challenges in managing turf under shade. In recent years, modern 

architectural design of sports stadium has increased shade stress in athletic fields as well (Gardner 

and Gross, 2013). 

 

Turfgrasses evolved under full sun environments and thus are often not well-adapted to 

grow under shade (Gardner and Goss, 2013). In shaded environments, reduction in light intensity 

is usually combined with several other important environmental factors, such as alteration of light 

quality, air flow restriction, tree-root competition, and increased relative humidity (Beard, 1973). 

Shade, a major physiological stress can rapidly alter morphological and physiological 

characteristics of a turfgrass community (McBee, 1969; Stanford et al., 2005). While a primary 

consequence of shade stress on cool-season turfgrasses is increased disease pressure, warm-season 

turfgrass growth and development can be dramatically altered (Beard, 1997). Cool-season grasses 

contain the C3 photosynthetic system while warm-season grasses contain the C4 photosynthetic 

system. It is known that C3 grasses have a lower light compensation point and have greater 

photosynthetic efficiency at lower light conditions compared to C4 grasses. Cool-season 

turfgrasses, therefore, perform better in moderate shade than warm-season turfgrasses. Several 

physiological and morphological changes such as reduced photosynthesis, increased disease 

pressure, reduced carbohydrate production, increased tree-root competition, and reduced lateral 

stem growth have been reported to affect warm-season turfgrasses under shade (Baldwin et al., 

2008). 

 

Light intensity, light quality and light duration are the three aspects of light that are 

influenced by shade-inducing structures (Baldwin et al., 2008; Bell et al., 1999; Bunnell et al., 

2005a). These factors, along with the other microclimatic factors interact within shaded turfgrass 

ecology to cause changes in physiology, morphology, and anatomy (Beard, 1973). Shade stress can 
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be alleviated to some extent by following cultural practices such as increasing mowing heights, 

reducing nitrogen rates, and applying plant growth regulators (Gardner and Goss, 2013). 

Alternatively, proper selection of species or cultivars can improve turf performance in shade. 

Efforts to improve shade tolerance in bermudagrass turf may lead to reduced inputs needed to 

maintain good turf quality in shaded environments.  

 

Bermudagrass (Cynodon spp. L. C. Rich) 

Taxonomically, all grasses including turfgrasses belong to a single family of a plant 

kingdom called Gramineae or Poaceae. Within this family, there are 12 subfamilies including a 

total of 51 tribes, 80 subtribes, 771 genera, and 12074 species (Soreng et al., 2015). Among them, 

only a few dozens of species are tolerant of frequent relatively low mowing and traffic and, 

therefore, are adapted as turfgrasses. All turfgrasses are broadly categorized into three sub-families: 

Festucoideae, Panicoideae, and Eragrostoideae or Chloridoideae. Festucoid turfgrasses grow best 

at temperatures between 600 F to 750 F growing actively in cooler portion of the year, therefore, 

usually referred as cool-season turfgrasses. While turfgrasses under Panicoideae and Eragrostoidea 

subfamilies have optimum growing temperature between 800 F and 950 F. These grasses grow 

actively in warmer portion of the year and, therefore, called warm-season turfgrasses (Turgeon, 

2002). Not only do these two broad categories of turfgrasses vary in optimum growing temperature 

but also, they vary in photosynthetic pathway. Cool-season grasses use the Calvin cycle (or C3 

cycle) to fix carbon-dioxide for photosynthesis; hence, they are also referred to as C3 grasses. 

Warm-season turfgrasses fix carbon through the Hatch and Slack pathway (or C4 cycle); hence, 

they are also referred to as C4 grasses (Taiz and Zeiger, 2010). In C3 plants, photosynthesis process 

yields the first stable metabolite 3-phosphoglyeric acid a three-carbon product whereas in C4 plants, 

oxaloacetate- a four-carbon product is produced (Hull, 1992). 
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Bermudagrass belongs to the sub-family Chloridoideae and tribe Cynodonteae (Hanna et 

al., 2013). Taliaferro et al. (2004) noted that Cynodon species are distributed world-wide and are 

particularly abundant in Africa extending to South-east Asia. Early records suggest that 

bermudagrass thrived in southern Colonial America and began its spread through the southern 

colonies (Taliaferro et al., 2004). Within the genus Cynodon, common bermudagrass [C. dactylon 

(L.) Pers. var. dactylon] and interspecific hybrid of common bermudagrass and African 

bermudagrass (C. transvaalensis Burtt Davy), commonly known as hybrid bermudagrass are the 

most successful turf bermudagrasses. These bermudagrasses are genetically diverse which show 

significant differences within cultivars in color, texture, density, vigor, and environmental 

adaptation (Taliaferro, 2003). Bermudagrasses are widely adapted to warm humid, tropical and 

sub-tropical regions of the world (Beard, 1973). In the United States turfgrass adaptation zone, 

bermudagrasses extend from southern warmer zone to southern and central parts of transition zone, 

but they cannot overcome winters in northern transition zone (Christians, 2011). Several cultivars 

of common bermudagrass and hybrid bermudagrass have been developed so far and have been 

extensively used as fine turfs for use in golf course tees, roughs, fairways, putting greens, home 

lawns and athletic fields as well. 

 

A major factor limiting use of bermudagrass within its zones of adaptation is poor shade 

tolerance, but prior studies suggest variation in shade tolerance exists within the species. In a study 

of effects of low light treatments in hybrid bermudagrass, significant differences have been reported 

among hybrid bermudagrass cultivars in turf quality, color, density, canopy photosynthetic rate, 

canopy chlorophyll index, canopy spectral reflectance, and leaf dry weight when subjected to 70% 

and 90% low light treatments (Jiang et al., 2004). Similarly, variation in response among 32 

bermudagrass cultivars under 90% perpetual shade have been reported (Gaussoin et al., 1988). 

Because of the apparent genetic variability among bermudagrasses, it is reasonable to hypothesize 

that improvement in the shade tolerance trait is possible. 
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Light intensity and quality 

 

Light intensity 

Light is essential for plant life. Plant growth and development are dependent on the amount 

of solar energy which is converted into chemical energy by photoautotrophic plants via 

photosynthesis (Stier and Gardner, 2007). Only 1 to 2% of the total incident light energy is absorbed 

and converted into chemical energy by higher plants while the major portion of the incident light 

is either transmitted, reflected or re-radiated at longer wavelengths (Beard, 1973). 

 

The light energy that reaches a defined area is known as irradiance. It can be measured in 

terms of energy (watts per square meter) also called solar irradiance. Alternatively, it can be 

measured in number of photons. Quantum measurement of incident light in moles per square meter 

per second (mol/ m2/ s) is also defined as photon flux or quantum flux. For biological processes, 

the quantum flux of light with a distinct wavelength is more relevant than the irradiance (Taiz and 

Zeigler, 2010). Solar energy varies at different wavelengths of light. Solar radiation in 400 nm to 

700 nm (visible band) is commonly referred to as photosynthetically active radiation (PAR). This 

PAR designates the spectral range of light where photosynthetic apparatus can capture light energy 

for photochemical processes (Wherley et al., 2005). Plants predominantly use sunlight in two 

distinct regions within the PAR wavelengths. Chlorophyll a absorbs light at 410 nm, 430 nm and 

660 nm whereas Chlorophyll b absorbs light at 430 nm, 455 nm, and 640 nm (Taiz and Zeiger, 

2010).  The amount of PAR available to the plant is described as photosynthetic flux density 

(PPFD) which is conventionally measured in µmol m-2 s-1 (Bell et al., 2000). For instance, in the 

Midwestern United States, a clear day in June will produce a peak PPFD of approximately 1900 

µmol m-2 s-1 (Gardner and Goss, 2013). 
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For purposes of carbon balance estimates, PPFD is often summed for a given day which 

gives the daily light integral (DLI, mol m-2 d-1). The average monthly DLI for the United States 

ranges from 55 to 60 mol m-2 d-1 in the south during summer months to 5 to 10 mol m-2 d-1 in the 

north during winter months (Korczynski et al., 2002). Because of the frequent changes in micro-

climate, DLI values fluctuate constantly over a short period of time (Korczynski et al., 2002). These 

variations may be due to location, diurnal cycle, season, atmospheric conditions, cloud cover, plant 

organ, and plant competition (Gardner and Goss, 2013). Therefore, light conditions need to be 

monitored in a site-specific basis to determine the exact level of incident irradiance.  

 

In the recent years, the minimum DLI requirements needed to maintain acceptable turf 

quality (TQ) in a few warm-season turfgrasses have been determined. Bunnell et al. (2005c) 

determined that the DLI requirements for ‘TifEagle’ bermudagrass to maintain acceptable TQ is 

32.6 mol m-2 d-1. Similarly, Bunnell et al. (2005a) reported a DLI requirement for hybrid 

bermudagrasses (‘Tifway’ and ‘TifSport’) to be 16.7 mol m-2 d-1 during August through October 

and ‘Celebration’ bermudagrass to be 11.9 and 18.4 mol m-2 d-1 for acceptable TQ during fall and 

summer months, respectively. In a similar study done by Miller et al. (2005), ‘Floradwarf’ and 

‘Tifdwarf’ bermudagrass required 45.6 mol m-2 d-1 to maintain acceptable turf cover.  

 

Light intensity in shaded environment 

 

Chlorophyll-containing green plant tissue fixes atmospheric carbon-dioxide to form 

carbohydrates through photosynthesis utilizing energy from sunlight. These carbohydrate reserves 

are utilized by plants in respiration. Plant survival requires net photosynthesis to exceed respiration 

(Wilkinson et al., 1975). However, under reduced light intensities, carbohydrate consumption by 

respiration may exceed the production by photosynthesis resulting in deterioration of overall 
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turfgrass health (Wilkinson et al., 1975). If the rate of photosynthesis equals the respiration rate, a 

compensation point is reached. The light intensity at which the photosynthesis rate equals the 

respiration rate is defined as the light compensation point (Danneberger, 1993). Below this point, 

a deficit in the carbohydrate balance occurs. Increasing the light on a single leaf will increase CO2 

assimilation rates up to a certain level. However, at one level of light intensity, a saturation effect 

occurs where additional light will not affect photosynthesis and any additional incident light will 

be lost through radiation-less transfer (Gardner and Goss, 2013). 

 

In a comparative study of light saturation curves of apparent photosynthesis, natural sun 

plants showed higher compensation point and higher saturation point than natural shade plants 

(Burnside and Bohning, 1957). It is also reported that more shade tolerant species will have lower 

light compensation points (Gardner and Goss, 2013). In general, cool-season turfgrasses that are 

more shade tolerant reach saturation point at 50 % of full sunlight, while warm-season turfgrasses 

that are relatively less shade tolerant require full sunlight to saturate (Kephart et al., 1992). 

 

According to Beard (1969), light intensity under shade varies among tree species. 

Generally, evergreen trees block more light than deciduous trees. Also, due to differences in leaf 

density and design, maples (Acer spp.) and oaks (Quercus spp.) provide more shade than ash 

(Fraxinus spp.) or locust (Robinia spp.). However, shade related research is usually carried out 

under neutral shade cloth either in field or greenhouse environments. These shade cloths are 

specifically designed to reduce light intensity without altering light quality. 

 

In a study to investigate the response of isolated leaf tissue to varying light intensity as 

compared to total leafage of plant community, Alexander and McCloud (1962) found that in 

bermudagrass community, the diurnal range effects of light intensities will be the product of inter-

leaf interference as well as orientation of the incoming radiation on the individual swards of plant. 
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Alexander and McCloud (1962) estimated light intensities between 511 to 613 µmol m-2 s-1 are 

required for saturation of individual bermudagrass leaves. However, in bermudagrass swards, light 

saturation points for different cutting heights were different. In a plant community, the partial 

shading, angle of the leaf, and reflected light on the underside of the leaves will increase the light 

saturation point. 

 

Light quality 

The relative number of photons of each wavelength within a light spectrum is referred to 

as light quality. The light spectrum is generally separated into three segments of infra-red (greater 

than 700 nm), visible light (400 nm for blue to 700 nm for red) and ultra-violet (below 400 nm). 

Turfgrass response to light quality is like other plant species. Plant pigments including chlorophyll 

and carotenoids have peak spectral absorption at specific wavelengths of light (French, 1963). 

According to Hendricks (1958), several plant responses, such as flowering, stem elongation, seed 

germination, leaf enlargement, and rhizome development are influenced by 630 nm to 780 nm 

region. In general, blue light of about 435 nm influences compact growth, mesocotyl elongation, 

and has more effects on chlorophyll a than that of red light. Red light enhances shoot elongation, 

rhizome development and seed germination whereas, infra-red light inhibits seed germination. It 

was found that turfgrass quality was better when grown under the blue and green wavelengths than 

the red (McBee, 1969).  

 

The ratio of red to far-red (R:FR) wavelengths of light is also considered important in plant 

development as it regulates phytochrome activity (Gardner and Goss, 2013). Light quality is also 

reported to vary with the season and time of a day (Beard, 1973). For instance, at dawn and dusk, 

the shorter wavelengths are filtered because of lesser angle of incident light. Turfgrass grown in 

full sun are not affected by the seasonal and diurnal variations in light quality; however, in shade 
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environment where selective reflection, absorption, and transmission occur turfgrass growth and 

development is affected.  

 

Shade reduces light intensity and alters the light quality which affects the photosynthesis 

and photo-morphogenensis in turfgrass (Dudeck and Peacock, 1992). McKee (1963) studied 

characteristics of spectral quality in various types of shade with a color temperature meter. It was 

found that red wavelengths were filtered in deciduous shade and shade from buildings, while blue 

light was depleted in dense herbaceous shade. In a similar study with saran shade cloth, Gaskin 

(1965) found that when shade reduced light intensity by less than 75%, the quality of light (in terms 

of proportion of red and blue light) did not change compared to tree shade. However, when light 

intensity was more than 75% in saran shade cloth, the light spectrum changed due to the increased 

absorption of blue light by tree leaves and quality of light was not comparable between tree shade 

and cloth shade. Bell et al. (2000) assessed the light spectrum in four different environments: 

deciduous tree shade, coniferous shade, building shade, and full sun. Changes in spectral quality in 

morning and afternoon periods in full sun without affecting the total PAR were reported. Results 

indicated that both shade sources and shade density influence plant pigment content. Light quality 

differed in shade from tree canopies and buildings compared to those in full sun, with shade from 

tree canopy preferentially reducing red and blue quanta compared to shade from buildings.  

 

In another study by Baldwin et al. (2009), three warm-season turfgrass species were 

subjected to variable light spectral qualities in a greenhouse. Turfgrasses selected were ‘Diamond’ 

zoysiagrass [Zoysia matrella (L.) Merr.], ‘Sea Isle 2000’ seashore paspalum (Paspalum vaginatum 

Swartz.) and ‘Tifway’ and ‘Celebration’ bermudagrass [Cynodon dactylon (L.) Pers. × C. 

transvaalensis Burtt-Davy]. To create the varying light spectra, four differently-colored shade 

cloths were used to filter specific wavelengths of visible light. Measurements found that black 

shade was most detrimental to turfgrass health followed by blue shade, yellow shade, and red shade. 
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Across shade treatments, Tifway declined the most in turf quality (TQ), while Diamond was the 

least affected, and Sea Isle 2000 and Celebration responded intermediately. Results indicated that 

different types of shade have significant impact on TQ of warm-season turfgrasses.  

 

Shade avoidance versus shade tolerance 

Shade tolerance can be described as various leaf-level traits interacting together to 

maximize carbon fixation under reduced solar irradiance (Henry and Aarssen, 1997). Valladares 

and Niinemets (2008) pointed out shade tolerance as a vital trait in plant community dynamics as 

all plants are exposed to some degree of shade during their lifetime. Although, general agreement 

is made on the group of traits that control shade tolerance, the research is still insufficient in 

understanding the relative importance of traits in influencing the plant growth and development for 

shade versus full sun environment. According to Grime (1966), shade avoidance can be commonly 

described as architectural traits causing strong vertical growth under reduced light environment. 

Mowing turfgrass under shade causes rapid shoot growth. Each time the turf is mowed, shoot 

growth has to start again resulting loss of energy reserves in clippings. The term shade avoidance 

is used in conjunction with shade tolerance to explain different mechanisms that can occur 

simultaneously or exclusively within a plant under shade stress. 

 

Henry and Aarssen (2001) have studied the differences between shade avoidance and shade 

tolerance in temperate deciduous trees. Generally, shade tolerance is the outcome of physiological 

changes, while shade avoidance is the result of morphological changes. In a study of relationship 

between shade avoidance and shade tolerance in woody plants, Henry and Aarssen (1997) 

described three traits related to shade tolerance mechanism: efficient blue light capture, efficient 

low irradiance light capture, and efficient harvesting of sunflecks. Sunflecks are brief increases in 

solar irradiance due to change of sun angle. In understory forest plants, sunflecks contribute 

significant amount of photon flux density (PFD) available for photosynthesis (Leakey et al., 2004). 
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Morphological traits relating to shade avoidance are varied, but many of them are observed 

visually. Generally, mechanisms of shade avoidance are similar to those of strong apical dominance 

(Smith, 1986). Plants exhibiting apical dominance when grown under low light maximize light 

interception in the future by growing vertically (Franklin, 2008). Other architectural traits observed 

are rapid stems and leaves elongation (Morgan and Smith, 1979), upward shift of leaf orientation 

(Whitelam and Jhonson, 1982), and reduction in leaf chlorophyll content (Smith and Whitelam, 

1997).  

 

One of the most serious effects of shade in grasses is the decline in basal axillary meristem 

activity and ultimately reduced tillering (Bahmani et al., 2000). Reduction in R:FR ratio in shaded 

environment triggers apical dominance at the expense of tiller development (Brutnell, 2007). 

According to Devlin et al. (1999), shade avoidance can reduce leaf area and shoot biomass due to 

shifting of resources in seed setting and flowering if R:FR reduction persists. Smith and Whitelam 

(1997) have referred these responses collectively as shade avoidance syndrome. Morphological and 

physiological responses influenced by the reduced light intensity and altered spectral quality is 

commonly defined as the shade avoidance syndrome (Brutnell, 2007).  

 

Responses to shade 

 

Physiological responses to shade 

All turfgrass species grow best in full sun. Shade can cause numerous morphological and 

physiological changes (Dudeck and Peacock, 1992). Some of these changes in the turfgrass 

physiology include decrease in respiration rate, light compensation point, carbohydrate reserve, 

C/N ratio, transpiration rate, and osmotic pressure; as well as an increase in chlorophyll content 

and tissue moisture (Beard, 1973).  
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Chlorophyll content 

Photosynthesis of a turfgrass plant depends on amount of light pigments in leaf tissue 

(Gardner and Goss, 2013), and the amount of light absorbing pigment will vary in different light 

intensities and light qualities. According to Beard (1973), chlorophyll content is reduced when 

leaves are exposed to high light intensity due to pigment degradation, while chlorophyll content is 

maximum at relatively lower light intensity. Wilkinson and Beard (1975) found that ‘Merion’ 

Kentucky bluegrass (Poa pratensis L.)  exposed to shade produced more chloroplasts and had 

higher concentrations of chlorophyll in relation to leaf area, yet lower chlorophyll concentrations 

in relation to leaf weight.  

 

More recent research indicates chlorophyll concentration of plants in shaded environments 

varies with species and cultivar. Jiang et al. (2005) reported exposure to low light treatments caused 

reduction in chlorophyll a and chlorophyll b by 34 to 36 % in ‘Sea Isle 1’ seashore paspalum and 

by 51 to 63 % in ‘TifSport’ hybrid bermudagrass relative to their high light treatments. Low light 

treatment (60 to 100 µmol m-2 s-1) showed no effect in chlorophyll a/b ratio in ‘Sea Isle 1’ but 

increased the ratio in ‘TifSport’ hybrid bermudagrass compared to high light treatment (500 to 900 

µmol m-2 s-1). When grasses were transferred from low light to high light environment, both 

chlorophyll a and chlorophyll b increased but with a greater rate in Sea Isle 1. However, 

photochemical efficiency did not change under shade in either species. Baldwin et al. (2008) also 

found variability in shoot chlorophyll concentration tested among 42 bermudagrass cultivars at four 

and eight weeks after 64% continuous shade initiation. Up to 42% chlorophyll concentration was 

found to have increased in few genotypes after eight weeks in shade environment, however, the 

increment was reported to be transient. A few cultivars decreased by nearly 66% in chlorophyll 

concentration under shade when compared with full sunlight. Bell and Danneberger (1999) found 

that creeping bentgrass grown in perpetual shade or 100 % morning shade had a lower chlorophyll 
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content than did bentgrass grown in full sun, 100 % afternoon shade, or 80 % morning or afternoon 

shade. Plant pigments (chlorophyll a, chlorophyll b, neoxanthin, violaxanthin, and lutein) varied 

significantly in creeping bentgrass among each treatment, but the chlorophyll a/b ratio was 

unaffected. Results indicated that ratio of chlorophyll a to chlorophyll b was not a reliable indicator 

of turfgrass shade stress. The concentration of violaxanthin was least in perpetual shade followed 

by temporal shade and full sun treatments. The authors suggested that violaxanthin content can be 

better used as a direct indicator of light stress or an inverse indicator of shade stress. 

 

Management practices can influence the turfgrass physiological response and performance 

in shaded environments. In a study assessing the impacts of growth factor (gibberellic acid, 

trinexapac-ethyl, nitrogen) and mowing heights on ‘TifEagle’ bermudagrass performance, Bunnell 

et al. (2005b) found that each treatment combination of growth factors and mowing heights (3.2 

mm and 4.7 mm) influenced total shoot chlorophyll concentration in reduced light at four weeks of 

shade initiation. Specifically, each of the growth factors increased the total shoot chlorophyll 

concentration. At four weeks after shade initiation, trinexapac-ethyl increased the chlorophyll 

content by 19-42 % compared with other factors. In the same study, the higher mowing height 

increased the chlorophyll content by 24% and 45% at four weeks and eight weeks after shade 

initiation, respectively. Results indicated that greater mowing heights in ‘TifEagle’ bermudagrass 

increases total leaf area and net photosynthesis and ultimately increasing the chlorophyll content.  

 

Morphological and anatomical responses to shade 

Shade induces numerous changes in the morphology and anatomy of the turfgrass leaf 

blade, leaf sheath, rhizome, stolon and root (Gardner and Goss, 2013). Increases in leaf area, 

specific leaf area, leaf length, plant height but decrease in root/shoot ratio are some of the 

morphological changes demonstrated by shaded turfgrass (Dudeck and Peacock, 1992). The 

common visible changes in the shaded turfgrasses are elongated stems, narrower leaf blades, 
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reduced tillering, and decreased lateral stem growth (Beard 1973; Gardner and Goss, 2013). At the 

root and rhizome level, shade reduces both the biomass and total lengths. Genotypes capable of 

maintaining higher root biomass and root length are reported to able to tolerate shade in a better 

way. In 64% neutral shade study for 60 days, ‘Celebration’ bermudagrass outperformed 41 other 

cultivars in shade tolerance (as defined by turf quality) due to its capacity to maintain root biomass 

and root length (Baldwin et al., 2008). Wilkinson and Beard (1975) noted shade tolerant ‘Pennlawn’ 

red fescue (Festuca rubra L.) modified leaf angle remaining horizontal to enhance light 

interception and to avoid green tissue loss, whereas leaf angle in shade intolerant Kentucky 

bluegrass increased. Jiang et al. (2004) reported differences in plant heights of non-mowed turfs 

under 70% and 90% shade whereas, no differences in plant heights were observed in full sunlight 

among seashore paspalum and bermudagrass cultivars. Increased vertical growth for turf managed 

under shade is a common visible attributes of shade avoidance.  

 

Anatomical characteristics of turfgrass leaves associated with photosynthesis, such as 

stomatal density and mesophyll cell density are determined earlier in ontogeny than the 

physiological and biochemical characteristics. Consequently, they result in decreased net CO2 

exchange rate in shaded turfgrass leaves either by anatomical or physiological characteristics or 

both when compared to full sun grown leaves (Allard et al., 1991). In studying the effects of shade 

on anatomy of tall fescue leaves, Allard et al. (1991) found that leaf blades under dense shade 

environment were longer, thinner and had more leaf area but less specific leaf weight than those 

grown in partial shade or full sun environment. It was reported that leaves in low irradiance showed 

lower total stomatal density but greater air space than those in high irradiance. Fescues grown at 

30% sun showed a reduction in dry matter production associated with a shift towards a higher 

shoot/root ratio and higher leaf area ratio than those grown in full sun. Results indicated that shaded 

plants effectively partitioned carbohydrates to produce leaf area; however, those leaves had fewer 

mesophyll cells, more air space per unit area, and lower stomatal density.  
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Effects of management in shaded turfgrass 

Fertilization, irrigation, and mowing are the three primary cultural practices in turfgrass 

management. Because the turfgrass growing under shade will undergo numerous physiological and 

morphological changes, it creates a unique maintenance challenge. Therefore, management 

practices should be modified accordingly to increase the turfgrass adaptation and performance 

under shade.  

 

Mowing 

Mowing height is a critical management practice for a successful turfgrass stand grown in 

shade. A higher height of cut provides greater leaf area which presumably increases carbon uptake 

capacity (Dudeck and Peacock, 1992). However, this increased leaf area may potentially cause 

higher respiration rates, increased shading from surrounding blades, decreased leaf evaporation, 

and reduced traffic tolerance that can negatively affect turfgrass quality (Gardner and Goss, 2013).  

  

Few studies have been done on evaluating the shade tolerance of turfgrasses based on 

mowing height. A shaded 'TifEagle' bermudagrass green when mowed at 4.7 mm improved turf 

quality and chlorophyll content compared to bermudagrass green maintained at 2.5 mm height 

(Bunnell et al., 2005b). However, total nonstructural carbohydrates in roots were reduced by 

increasing mowing heights after eight weeks of shade initiation. In a similar study, Miller and 

Edenfield (2002) reported that increasing mowing height from 3 mm to 4 mm in ‘Champion’, 

‘Floradwarf’, ‘TifEagle’, ‘Tifdwarf’, and ‘Reesegrass’ bermudagrass had little effects on root 

biomass. However, net photosynthetic rates were increased by 13% for full sun treatment versus 

increased by 10% for 30% shade treatment at greater mowing heights. In a recent study, Dunne et 

al. (2017) found that increasing mowing height from 19 mm to 51 mm improved percent turfgrass 

cover, percent divot recovery and NDVI in bermudagrass cultivars treated under 63% shade.  
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Fertilization 

Nitrogen is the essential nutrient in turfgrass management that provides color, density, 

recuperative ability and improves overall plant health when used at proper rates. It is commonly 

accepted that in low light environment, reduction of nitrogen will benefit overall turfgrass health. 

In ‘Coastal’ bermudagrass, Burton et al. (1959) reported high nitrogen fertilization increased plant 

density and total leaf area in full sunlight whereas, in 64% shade, plant density and total leaf area 

were decreased with addition of nitrogen. Lower nitrogen by alternate monthly application (98 kg 

N ha-1) comparted to higher nitrogen (195 kg N ha-1) was reported to improve NDVI, turfgrass 

cover, lateral spread, and recovery in bermudagrass cultivars grown under 63% shade (Dunne et 

al., 2017). 

 

Plant growth regulators 

Turfgrass performs poorly in shade due to the excessive elongation of shoot and reduction 

of tillering capacity. Plant growth regulator, such as trinexapac-ethyl (TE) effectively reduces 

gibberellic acid bio-synthesis and subsequent shoot cell elongation (Ervin et al., 2002). Application 

of TE to ‘Meyer’ zoysiagrass under shade (77% and 89% shade) reduced shoot growth and 

improved turf quality compared to control (Ervin et al., 2002).  

 

Qian and Engelke (1999) assessed the effects of TE on ‘Diamond’ zoysiagrass under shade. 

Plants receiving monthly (0.048 kg a.i. ha-1) and bimonthly treatments (0.096 kg a.i. ha-1) 

maintained acceptable turf quality throughout the treatment period, while control treatment 

declined in turf quality after shading. Results illustrated TE when applied once or twice a month 

decreased 76% to 73% vertical shoot growth and 77% to 75% clipping yield, while increased 40% 

to 38% total nonstructural carbohydrates, 60% to 50% root mass, 51% to 46% root viability and 

48% to 42% photosynthesis rate (Qian and Engleke, 1999).  
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Effects of gibberellic acid inhibiting plant growth regulators, TE and its combination with 

other growth regulators and bio-stimulants in shaded creeping bentgrass were also studied (Ervin 

et al., 2004). It was reported that twice monthly application of TE improved leaf color and turf 

quality relative to control. Also, the creeping bentgrass under 88% shade responded better to 

propiconazole treatment in terms of leaf color, density and overall turf quality than the control. The 

combinations of other stimulants with TE did not influenced better than TE alone. The effects of 

TE alone or combined with lower mowing height were reported to improve turfgrass cover in 

bermudagrass cultivars under 63% shade (Dunne et al., 2017). The above studies support the use 

of plant growth regulators as an effective tool in management of shade stress. 

 

Relative shade tolerance of bermudagrass cultivars 

Among the warm-season turfgrasses, bermudagrass is considered relatively shade 

intolerant turfgrass. The relative shade tolerance of bermudagrass is considered better than 

bahiagrass (Paspalum notatum Fluegge), and buffalograss [Buchloe dactyloides (Nutt.) 

Engelm.] but worse than St. Augustine (Stenotaphrum secundatum Walt.), zoysiagrass, 

centipedegrass [Eremochloa ophiuroides (Munro) Hack.], and seashore paspalum (Gardner and 

Goss, 2013).  

 

Among the turf-type bermudagrasses, there have been reports of considerable variation in 

shade adaptation (Gaussoin et al., 1988; Baldwin et al., 2008). Gaussoin et al. (1988) evaluated the 

performance of 32 bermudagrass clones in shade where ‘Boise’, ‘No Mow’, ‘R9-P1’, ‘NM2-13’, 

and ‘NM3’ were reported to be relatively shade tolerant, whereas ‘NM 47-3’, ‘Santa Ana’, and ‘AZ 

Common’ were highly shade intolerant. Rankings were based on percent dry matter yield reduction 

from high to low light treatment and non-significant treatment differences for measured attributes 

(Gaussoin et al., 1988). Baldwin et al. (2008) in a recent evaluation of 42 bermudagrass cultivars 



18 
 

under shade classified them into separate groups based on their relative shade tolerance. Cultivars 

with the best performance under shade were ‘Celebration’, ‘Tift No.4’ (later named TifGrand), 

‘Tift No.1’, and ‘Transcontinental’. Cultivars ‘SWI-1014’, ‘Arizona Common’, ‘Sundevil’, ‘SR 

9554’, ‘GN-1’, and ‘Patriot’ were most shade sensitive. And cultivars with intermediate shade 

tolerance included ‘Aussie Green’, ‘MS-Choice’, ‘Princess 77’, ‘SWI-1045’, ‘SWI-1041’, and 

‘SWI-1012’.  

 

Currently, the National Turfgrass Evaluation Program (NTEP) 2013 bermudagrass trial has 

set out eight standard entries namely ‘Tifway’, ‘Latitude 36’, ‘Patriot’, ‘Celebration’, ‘NuMex-

Sahara’, ‘Princess 77’, ‘Riviera’, and ‘Yukon’(ntep.org). Parameters used to access selected 

turfgrass in the NTEP typically include turfgrass quality, color, leaf texture, density, spring green 

up, seedling vigor, living ground cover, drought tolerance, winter kill, disease/insect damage 

(Morris and Shearman, 2000).  

 

Interaction of shade and drought 

 

Evapotranspiration and drought resistance 

Evapotranspiration (ET) is the total water loss through evaporation from soil and 

vegetation and plant water loss through transpiration. Evapotranspiration is affected by wind 

velocity, relative humidity, air temperature, soil temperature, turfgrass species and cultivar, and 

soil characteristics (Kim and Beard, 1988). Water requirements of turfgrass depend on the species, 

the function of the turf, and the climate in which it is grown (Kopp and Jiang, 2013). Turfgrass 

water requirements can generally be described in terms of their relationship to ET. It is a common 

practice to measure ET using hydrological approaches such as lysimeter, which provide a direct 

measurement of ET. However, higher variability in ET rates either between the species or within 
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the species of turfgrasses have been reported. Highly variable results are due to climatic conditions, 

turfgrass species and cultivars, mowing height and fertilization (Romero and Dukes, 2016).  

 

When soil moisture is insufficient to meet the water demand of a turfgrass, plants become 

exposed to drought stress. Drought stress is an extensive area of research in turfgrass because of 

limitations of urban water use and a societal need for water conservation. Although bermudagrass 

is considered a drought resistant species, adequate soil moisture is needed to maintain high quality 

turf (Taliaferro, 2003). In the context of perennial turfgrass species, plants can exhibit two 

mechanisms of drought resistance: tolerance and / or avoidance. Drought avoidance mechanism 

allows plant to avoid tissue dehydration either by developing deep root system to reach soil 

moisture in deeper soil profile and/or by closing stomata to slow down transpiration (Fry and 

Huang, 2004). Drought tolerance mechanism allows plant to maintain cell turgor at low water 

potential through osmotic adjustments and to delay wilting (Fry and Huang, 2004).  

 

Numerous studies have been conducted in improving the drought resistance in 

bermudagrass. On evaluating the drought resistance of seven commonly used turfgrasses, Carrow 

(1996) reported ‘Tifway’ bermudagrass and common bermudagrass were the best performers. 

Baldwin et al. (2006) conducted a greenhouse study to evaluate the drought resistance of six 

bermudagrass cultivars. Although, no cultivars showed acceptable turf quality after four weeks of 

5 d irrigation interval, observed differences at week two suggested ‘Celebration’ and ‘Aussie 

Green’ were better than others tested. In another study of evaluating the turf quality after 60 d of 

dry-down, Steinke et al. (2011) found that among eight cultivars of bermudagrass, cultivars 

‘Celebration’ and ‘Texturf’ showed greater drought resistance than others tested.  

Several studies have suggested different physiological techniques for screening drought 

resistance including leaf water potential (Sojka et al., 1981), relative water content (Fu et al., 2004; 
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Jiang et al., 2009), canopy temperature (Jiang et al., 2009), and electrolyte leakage (Jiang and 

Huang 2001; Su et al., 2007). 

 

Combined effects of shade and drought 

Shade stress is often confounded with soil water stress due to tree root competition. 

Although there have been numerous studies on individual effect of either shade stress or drought 

stress on turf quality, there is no attempt made until now to study the combined effects of shade 

and drought interactions. However, studies on combined impacts of shade and drought on woody 

seedlings are common. In studying the interaction, the basic question is to know whether a drought 

stress has facilitation role or trade-off role in tolerance.  

 

Sack and Grubb (2002) synthesized five hypotheses to explain the relationship between 

shade and drought stress in a plant community. First, the influential trade-off hypothesis predicts 

that drought has a stronger negative effect on shade-weakened plants. This could be more important 

for plants having lower root: shoot ratio, resulting in greater sensitivity to drought stress a high 

specific leaf area and leaf area ratio for efficient irradiance capture at the expense of their root 

allocation as indicated by Smith and Huston (1989). Second, the above-ground facilitation 

hypothesis predicts that shade-induced temperature moderation reduces the effect of drought stress 

by alleviating the evaporative demand at the leaf. Third, the primary limitation hypothesis predicts 

that the impact of drought will be less in dense shade because water will have less role in growth 

due to limitation of light. Shade reduces the effect of drought stress in a linear relationship with the 

severity of shade. The fourth is the interplay hypothesis, which predicts that moderate shade 

reduces the effect of drought stress while dense shade can worsen it. Finally, a null hypothesis 

predicts that effects of shade and drought are orthogonal. These hypotheses have not been tested 

for managed turfgrasses and how the two stresses shade and drought interact to influence turfgrass 

quality warrants study.  
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Research goal and objectives 

The long-term goal of this research is to develop best management practices for shaded landscapes 

in regards to grass selection and water management. 

 

The objectives of this research are: 

1. To compare the relative shade tolerance of eight commercially-available and two experimental 

bermudagrass cultivars in a transition zone climate. 

2. To measure the effect of drought stress on shaded and non-shaded bermudagrass turf quality 

and water use rate. 

3. To determine if the response to shade, drought, or combined shade and drought differ among 

bermudagrass cultivars.   

 

Testable hypothesis 

1. The two experimental bermudagrass lines (OKS 2011-1 and OKS 2011-4) will demonstrate 

better or equal turf quality to commercially available cultivars when grown under moderate to 

heavy shade in Oklahoma. 

2. Shade will reduce the severity of drought stress in bermudagrass cultivars. 

3. Relative performance of bermudagrass cultivars will differ in shade alone, drought alone, or 

combine shade and drought environments. 
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CHAPTER II 
 

EVALUATION OF BERMUDAGRASS CULTIVARS IN DIFFERENT SHADE DENSITIES 

IN OKLAHOMA 

 

Introduction 

Nearly 25% of turfgrasses are estimated to be growing under shade (Beard, 1973). The 

unfavorable microclimatic conditions created by shade can include reduced solar irradiance, altered 

light quality, restricted air-flow, and increased tree-root competition (Baldwin et al., 2009; Gardner 

and Goss, 2013; Koh et al., 2003). Turfgrass areas encounter shade caused by adjacent physical 

structures or trees and shrubs, often resulting in reduced turfgrass quality. Bermudagrass (Cynodon 

spp.) is a popular turfgrass species in the southern United States and commonly used in home lawns 

and golf course roughs. The reason for bermudagrass’ widespread usage is its many desirable traits 

including drought resistance, traffic tolerance, disease resistance, weed resistance and excellent 

recuperative potential (Beard, 1973). However, bermudagrasses are sensitive to low irradiance. In 

the transition zone, this often requires managers to establish multiple turfgrass species within a 

single landscape which decreases the uniformity of the turf and increases the complexity of 

managing two turfgrass species. Development of a more shade-tolerant bermudagrass would 

remove the necessity for multi-species lawns. 
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Screening of germplasm, poly-crossing, and testing the performance of potential cultivars 

for better shade tolerance are standard approaches to identifying and improving plant stress 

tolerance. There has been a continuing effort from turfgrass scientists to improve the shade 

tolerance trait in bermudagrass but this has been met with minimal success. However, considerable 

variation in the adaptation of bermudagrass cultivars to shade has been reported. Under 90% 

perpetual shade, Gaussoin et al. (1998) found variations in shade tolerance among 32 bermudagrass 

clones. Similarly, under 64% perpetual shade, 42 bermudagrass cultivars were categorized into 

three distinct shade tolerance groups based on their relative performance in shade (Baldwin et al., 

2006). Five bermudagrass cultivars exhibited variable shade tolerance evaluated in summer and 

autumn seasons (Trappe et al., 2011). Under 70% shade, the interspecific hybrid bermudagrass 

[Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt-Davy] ‘TifGrand’ exhibited a two-fold 

increase in turf cover compared to other dwarf bermudagrass cultivars (Hanna et al., 2010). Several 

studies have reported better shade tolerance in common bermudagrass [C. dactylon (L.) Pers.] 

‘Celebration’ (Baldwin et al., 2008; Bunnell et al., 2005; Dunne et al., 2015). However, the 

improved shade tolerance of Celebration and TifGrand remains inadequate in maintaining 

acceptable quality for moderate and severe shade conditions. Further, these two cultivars were 

developed in sub-tropical climates and are not likely to be well-adapted to the transition zone of 

the United States. Improving cold and shade tolerance traits in bermudagrass will eventually 

broaden the species use and function while reducing management inputs for golf and lawn sites. 

Therefore, there is a critical need to evaluate and improve the shade tolerance of bermudagrasses 

for use in the transition zone.  

 

The objective of this research was to compare the relative shade tolerance of eight 

commercially-available and two experimental bermudagrass cultivars in a transition zone climate. 

The hypothesis for this experiment was that two experimental lines of bermudagrass tested in the 

project will perform better in shade than the commercially available cultivars. 
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Materials and methods 

 

Experimental area 

A field study was conducted at the Oklahoma Agriculture Experiment Station, Turfgrass 

Research Center in Stillwater, OK (lat. 360 7’ N, long. 970 6’ W). The research site was composed 

of three light blocks which subjected turfgrasses to either ‘open sun’, ‘moderate shade’ (average 

52% shade), or ‘severe shade’ (average 75% shade). The severe shade block was bordered by 

evergreen trees on the west, eastern redbud (Cercis canadensis L.) on the east and sugar maple 

(Acer saccharum Marsh.) on the south. The effect of this natural vegetation in the borders reduced 

the daily photosynthetically active radiation (PAR) by an average of 25% compared to the open 

sun in 2016. Two 3m- wide strips of black shade fabric (high density polyethylene knitted cloth) 

rated to reduce incoming radiation by 75% were laid across a hoop structure 4.5m above the site to 

reduce mid-day radiation. The moderate shade treatment was implemented by suspending a 3m 

strip of shade cloth across a metal structure approximately 2.7m tall and centered on the plots. 

Nearby deciduous trees on the east and west sides of the block applied shade only in the early 

morning and late evening. The open sun block had no artificial obstruction to light, although 

deciduous trees to the east applied shade for 2 hours each morning. 

 

Cultivars 

Ten bermudagrass cultivars were planted within 0.9m x 1.5m plots in summer 2013 and 

allowed to establish under ambient conditions for one year. Two of the cultivars, OKS 2011-1 and 

OKS 2011-4, were experimental cultivars whose parental lines had previously demonstrated 

improved shade tolerance (Bell and Wu, 2014). These two synthetic cultivars were obtained by 

poly-crossing the 10 best-performing clones from a 3-year shade selection process. The other eight 

entries were commercially-available seeded and clonal cultivars: ‘Celebration’, ‘Latitude 36’, 



32 
 

‘Northbridge’, ‘TifGrand’, ‘Patriot’, ‘Princess 77’, ‘Riviera’, and ‘Yukon’ (Table 1). Clonal 

cultivars were established from plugs, while seeded cultivars were established from seeds.  

  

Research design and data analysis 

The study was arranged in a randomized complete block design where ten cultivars of 

bermudagrass were replicated four times in each light treatment block. Shade treatments were 

applied for three consecutive years from 2014 through 2016. The replications were created along 

north-south direction to control the potential gradients. All data were analyzed using analysis of 

variance (ANOVA) with the general linear model procedure (GLM) in SAS software version 9.4 

(SAS Institute, 2012). Treatment means were separated using Fisher’s protected Least Significant 

Difference (LSD) test at p < 0.05 level. Cultivars were also assessed using a turf performance index 

(TPI) which aggregates multiple assessment dates and parameters to determine the most consistent 

performer across dates and environments (Wherley et al., 2011). A cumulative TPI score was 

generated for each cultivar, representing the number of times it occurred in the top statistical group 

as determined by least significant differences across all parameters and all sampling dates.  

 

 

Cultural management 

Grasses were mowed once per week at a 5cm height to simulate the mowing height of a 

golf course rough. Fertilization was applied at a rate of 24 kg N ha-1 (urea) biweekly during the 

active growing season during the first two years of the study. A total of 246 kg N ha-1 yr-1 and 172 

kg N ha-1 yr-1 were applied in 2014 and 2015, respectively. During 2016, the fertilizer rate was 

reduced to 24 kg N ha-1 once per month (123 kg N ha-1 yr-1) because of substantial scalping in the 

previous year. Fields were irrigated as needed to prevent visible drought stress. A mix of 2,4-D, 

Mecoprop-p, and Dicamba (Strike 3, Winfield Solutions) at a rate of 3.5 L of product ha-1 and 

glyphosate at a rate of 1.75 L ha-1 were applied in the winter (Feb, 2014; Jan, 2015; Jan 2016) of 
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each year for post-emergence control of annual and perennial weeds. Oxadiazon (Ronstar Flo, 

Bayer Environmental Science) was sprayed at a rate of 2.2 kg ha-1 before spring green up in each 

year (Feb 2014; March 2015; Feb 2016) to control summer annual weeds. Pendimethalin 

(Pendulum 3.3 EC, BASF) was applied at a rate of 2 kg ha-1 in the fall (September, 2014; Aug 

2015). Imidacloprid (Merit 2F, Bayer Environmental Science) was applied once at a rate of 0.45 

kg ha-1 in Oct 2014 to control grubs. Glyphosate was sprayed in borders between cultivars as needed 

to prevent contamination.  

 

Data collection 

Data collection was performed in June through September for each treatment year (i.e., 

2014, 2015, and 2016). In each treatment block, photosynthetically active radiation (PAR) was 

measured every 30 min using quantum sensors installed approximately at 0.5m above the ground 

(Spectrum Technologies, Plainfield, IL). In 2014 and 2015, data were measured from a single 

sensor per block. In 2016, three additional sensors were placed within the severe shade treatment 

to assess variation in shade across replication. In 2016, a WatchDog 2550 micro-weather station 

(Spectrum Technologies, Plainfield, IL) was also installed on the severe shade and open sun 

treatment blocks to record wind speed, air temperature, and relative humidity.  

 

Turf quality (TQ) was evaluated biweekly in the growing season using the National 

Turfgrass Evaluation Program (NTEP) visual scale of 1 to 9, where 1 = brown dead turf and 9 = 

ideal green healthy turf and 6 = minimally acceptable turf (Morris and Shearman, 2000). Spring 

green-up was similarly evaluated using NTEP methodology each April. 

 

Canopy spectral reflectance was collected using an active sensor reflectance meter 

(Trimble Navigation Inc., Sunnyvale, CA) to calculate a normalized difference vegetation index 

(NDVI) using the following formula: 
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NDVI= (NIR - Red) / (NIR + Red)  (Eq. 1), 

where Red and NIR are spectral reflectance measurements acquired in the red (visible) and near-

infrared regions, respectively. Measurements were made monthly as a single pass across the middle 

of the plots. The NDVI has been shown to be an objective measure of turfgrass color and density 

for assessing turfgrass performance in shade (Bell et al., 2002).  

 

Digital images of each plot were taken monthly during 2016 to assess the turfgrass cover 

using a camera (Canon Power Shot G16, Melville, NY) mounted on the top of an enclosed light 

box illuminated with four fluorescent lamps following the methods of Richardson et al. (2001). The 

images were then analyzed using SigmaScan Pro version 5.0 (Systat Software, Inc., San Jose, CA) 

to determine the percent green cover (Karcher and Richardson, 2005). While analyzing the images, 

hue and saturation threshold settings ranged from 30 to 140 and 0 to 100 respectively.  

 

Results 

The cultivar x year interactions were significant for TQ and spring green-up in open sun 

and moderate shade (Appendix I), so the data were analyzed separately for individual year. Data 

were analyzed individually for each light treatment as a separate experiment because there was no 

replication of light treatment. The response of each cultivar under open sun, moderate shade and 

severe shade was analyzed from June through September.  

 

Micro-environment 

In 2014, compared to open sun, the severe shade received on average 21% of open sun (8.9 

mol m-2 d-1) and moderate shade received on average 41% of open sun (17.2 mol m-2 d-1) (Table 2). 

In 2016, compared to open sun, severe shade received average 20% sunlight (9.2 mol m-2 d-1) and 

moderate shade received 39% sunlight (17.7 mol m-2 d-1) (Table 2). In severe shade, average mean 

temperature was 0.40 C lower, relative humidity was 1.2 % higher, wind speed was 0.9 mph lower, 
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and wind gust was 1.9 mph lower than in open sun (Table 2). Light data from the 2015 growing 

season were lost during a computer crash, but the micro-environments were likely similar to those 

measured in other years of the study. 

 

Open sun   

Under open sun, cultivars differed significantly in TQ, NDVI, spring green up, and percent 

green cover in each year (Table 3-5). In 2014, Latitude 36 and Northbridge had similar average TQ 

to each other but a significantly higher average TQ than other entries (Table 6). In 2015, 

Northbridge had the highest average TQ; while in 2016, Latitude 36 and Northbridge demonstrated 

the highest average TQ (Table 7-8). TifGrand and OKS 2011-4 had the lowest average TQ in each 

year (Table 6-8). The average TQ scores were above minimally acceptable in each year for each 

cultivar except TifGrand and OKS 2011-4 in 2016 (Table 6-8).  

In 2014, Latitude 36 showed the highest numerical average NDVI but was statistically not 

different from OKS 2011-1, Northbridge and Riviera (Table 6). The lowest average NDVI in 2014 

was observed in OKS 2011-4 but it was similar to Celebration, Patriot, Princess 77, or TifGrand 

(Table 6). In 2015, Latitude 36 had the highest numerical average NDVI but it was statistically 

similar to Northbridge and OKS 2011-1 (Table 7). The lowest average NDVI in 2015 was observed 

in Patriot and Princess 77, but each was not different from OKS 2011-4, Celebration, TifGrand or 

Yukon (Table 7). In 2016, OKS 2011-1 had the highest average NDVI, and Patriot had the lowest 

(Table 8).  

Cultivars in the top statistical group for spring green-up were Latitude 36 and Northbridge 

in 2014; OKS 2011-1, Riviera, and Yukon in 2015; and Latitude 36 in 2016 (Table 6-8). In 2016, 

Latitude 36 and Northbridge had the highest green coverage (90% and 89% respectively) and 

TifGrand and Yukon had the least green coverage (66% for each) (Table 9). Overall performance 
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of the cultivars using the TPI was ranked as follows: Latitude 36 > Northbridge > OKS 2011-1 > 

Riviera > Yukon > Celebration > Princess 77 > 2011-4 = Patriot > TifGrand. 

Moderate shade 

In 2014, Latitude 36 and Riviera demonstrated the highest average TQ rating and average 

NDVI rating, respectively, while each cultivar maintained TQ greater than the minimally 

acceptable threshold (Table 10). In 2014, Latitude 36 and Northbridge had a similar green-up rating 

to each other but better than other entries. In 2015, each cultivar maintained minimally acceptable 

turfgrass quality, but no significant differences were observed among cultivars, although TifGrand 

showed a poor spring green-up capability (Table 11). In 2016, cultivars were not significantly 

different based on average TQ or NDVI ratings and were below the minimally acceptable quality 

threshold (Table 12). Northbridge and Latitude 36 had the highest average green coverage (65 % 

and 63% respectively), while OKS 2011-4 and TifGrand had the lowest average green coverage 

(39% for each) (Table 13). That same year, TifGrand and Princess 77 were the slowest to green-up 

in spring compared to other cultivars. Overall performance of cultivars using the TPI was ranked 

as follows: Northbridge > Latitude 36 > Princess 77 > OKS 2011-1 = Riviera > Celebration > 

Yukon > Patriot > OKS 2011-4 > TifGrand.  

Severe shade 

In 2014, only three cultivars (Latitude 36, Northbridge, and Celebration) demonstrated 

average TQ above a minimally acceptable rating (Table 14). That same year, Patriot had the lowest 

average NDVI rating, and Latitude 36 had the best spring green-up rating. By 2015, none of the 

cultivars could maintain an acceptable turfgrass quality, although Celebration showed the highest 

quality and Patriot the lowest (Table 15). Similarly, Patriot and Princess 77 were the slowest to 

green-up each in spring, while Riviera was the fastest. Princess 77 and Yukon had the highest 

average NDVI ratings but were similar to OKS 2011-1, Celebration, Latitude 36, and Northbridge. 

By 2016, Celebration showed the highest average TQ among other cultivars tested and 
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demonstrated the fastest spring green-up, while Patriot had the least average TQ and the slowest to 

green-up in spring (Table 16). Celebration, OKS 2011-1, Northbridge and Princess 77 showed 

statistically similar average NDVI among each other but were better than the other cultivars tested 

(Table 16). Latitude 36, Celebration, and Northbridge had similar green coverage (40%, 38% and 

36% respectively) but better than others in 2016 (Table 17). Overall performance of cultivars using 

the TPI was ranked as follows: Celebration > Northbridge > Latitude 36 > OKS 2011-1 > Riviera 

= Princess 77 = Yukon > OKS 2011-4 > TifGrand > Patriot (Table 18).  

Seeded entries 

Because of differences in establishment methods and the presence of more genetic variation in 

seeded cultivars (as compared to clonal cultivars), targeted comparisons among seeded cultivars 

was of interest. Among seeded cultivars, OKS 2011-1 demonstrated the best TPI for open sun and 

severe shade, while Princess 77 was the best in moderate shade (Table 18). However, even the best 

seeded entry in moderate shade or severe shade did not maintain an acceptable TQ at the end of 

study. OKS 2011-4 was consistently the worst seeded type in each environment and each year. 

Discussion 

This study was different from several previous shade studies due to the incorporation of 

shade from both natural vegetation and neutral shade fabric. Furthermore, these methods created 

additional stressors such as tree-root competition and restricted air-flow. Although it is likely that 

these additional changes could have increased random error within the experiment, the environment 

was a more realistic simulation of actual shaded sites. Along with the reduced irradiance, these 

factors are likely to have contributed to worsening the turf quality and performance. Koh et al. 

(2002) found airflow restriction of creeping bentgrass (Agrostis palustris Huds.) putting greens 

reduced turf color, density and root mass and restriction alone caused greater reduction in turf color 

and density than shade.  



38 
 

 

Due to the limited space and resources, it was not feasible to replicate the light treatment. 

By analyzing each light block as a separate experiment, we were still able to quantify the relative 

performance for each individual shade environment. Overall, the performance of each cultivar 

gradually declined as duration of shade increased within each year. Cultivars in moderate shade 

were poorer than in open sun and cultivars in severe shade were poorer than in moderate shade and 

open sun. The quality and performance of cultivars (based on NDVI and percent green cover) was 

affected by the cumulative shade duration effect as well. Several studies have reported similar 

decline in turf quality, density and color due to prolonged shade (Baldwin et al., 2008; Bell and 

Danneberger, 1999; Bunnell et al., 2005; Dunne et al., 2015; Jiang et al., 2004). 

 

Cultivars TifGrand and Patriot were consistently in the lowest statistical group in each year 

and light treatment block. The poor turf quality and overall performance of TifGrand and Patriot, 

regardless of light treatment, suggests these two cultivars were not well-adapted to the present study 

site or management conditions. Specifically, the taller mowing height (5cm) may have exceeded 

the ideal range for these two cultivars, which presumably could have led to reduced plant density 

and poorer turf quality. The poor performance of TifGrand in shade contradicts prior research by 

Hanna et al., (2010) and Baldwin et al., (2008) who reported TifGrand did better than other 

bermudagrass cultivars under 70% shade and 64% shade respectively. Furthermore, TifGrand was 

especially developed for use in shaded turf sites (Hanna et al., 1997). On the other hand, the poor 

performance of Patriot in shade is in agreement with previous reports that Patriot is highly shade 

sensitive and the poorest among bermudagrass cultivars under 64%, 60%, or 49% continuous shade 

(Baldwin et al., 2008; Hanna and Mow, 2007; and Trappe et al., 2011).  
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Cultivars performing better in open sun were better than others in moderate shade or severe 

shade as well. For instance, Latitude 36 and Northbridge were well adapted to our study sites and 

had ranked in top three group in each light environment based on cumulative TPI table. 

Interestingly, Celebration had demonstrated varying shade tolerance in terms of TQ and NDVI in 

different shade densities. In open sun, it had maintained fairly good quality in each year but was 

behind the top performing cultivars, such as Northbridge and Latitude 36. In moderate shade, the 

performance of Celebration was at acceptable level for first two years but was not ranked in the top 

group. In severe shade, although it was below acceptable quality, it had outcompeted all other 

cultivars as shade intensified. The better shade tolerance of Celebration in severe shade agrees with 

prior studies by Bunnell et al., (2005) and Baldwin et al., (2008) who reported Celebration 

outcompeted TifSport and Tifway under 71% shade and Celebration was top performer under 64% 

shade among 42 bermudagrass cultivars tested respectively. Baldwin et al., (2008) had ranked the 

relative shade tolerance of bermudagrass as Celebration > TifGrand > Princess 77 > Riviera > 

Yukon > Patriot. Excluding TifGrand, this ranking is in close agreement with the results found in 

this study. 

 

The relatively better turf quality demonstrated by Celebration in severe shade could have 

been associated with a lower light compensation point. Previous work by Miller et al., (2005) using 

bermudagrass putting greens reported difference in light compensation point between Tifdwarf and 

Floradwarf cultivars. The same authors had also noticed the prostate growth habit of Floradwarf, 

which could have benefitted in tolerating more shade. Utilizing carbohydrate reserves in lateral 

spread rather than in vertical growth might help grass to maintain green cover while saving more 

photosynthetic materials being clipped off. Research working towards finding alternative ways to 

differentiate shade tolerance among large numbers of cultivars are needed. 
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Conclusion 

This study confirmed that variability exists among bermudagrass cultivars in terms of 

shade tolerance although none maintained acceptable turf quality under the most severe shade 

treatment. The seeded experimental cultivars evaluated in this experiment did not perform better 

than commercially available cultivars in moderate or severe shade suggesting further recurrent 

selection is required.  
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Table 1. Bermudagrass genotypes evaluated in the three-year shade study. 
Genotypes Species Propagation materialz 

OKS 2011-1 C. dactylon Seed 
OKS 2011-4 C. dactylon Seed 
Riviera C. dactylon Seed 
Yukon C. dactylon Seed 
Princess 77 C. dactylon Seed 
Latitude 36 C. dactylon x C. transvaalensis Plugs 
Northbridge C. dactylon x C. transvaalensis Plugs 
Patriot C. dactylon x C. transvaalensis Plugs 
TifGrand C. dactylon x C. transvaalensis Plugs 
Celebration C. dactylon Plugs 

zCultivars were propagated using seeds and plugs for seeded and clonal types respectively. 
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Table 2. Daily mean accumulated PARz in 2014 and daily mean accumulated PAR, air 
temperature, relative humidity, wind speed, and wind gust in 2016 shade study. 

zPhotosynthetically active radiation (PAR) was recorded every 30 min intervals using quantum light sensor and data 
aggregated per month. 
 
  
 

Blocks June July Aug Sept Avg 
 2014 PAR (mol m-2 d-1) 
Full Sun 43.8 ± 10.6 43.8 ± 16.1 46.9 ± 6.2 32.4 ± 11.6 41.7 ± 11.1 
Moderate shade 17.8 ± 5.4 18.1 ± 8.2 17.5 ± 7.7 15.5± 7.4 17.2 ± 7.1 
Severe shade 9.3 ± 6.4 9.8 ± 9.7 9.1 ± 5.9 7.5 ± 6.5 8.9 ± 7.1 
 2016 PAR (mol m-2 d-1) 
Full Sun 50.7 ± 14.8 51.7 ± 10.9 42.4 ± 11.0 37.1 ± 9.4 45.5 ± 11.5 
Moderate shade 21.4 ± 5.0 19.9 ± 5.2 18.6 ± 4.5 15.2 ± 3.4 18.8 ± 4.5 
Severe shade 11.1 ± 2.4 9.5 ± 2.9 7.0 ± 3.2 7.0 ± 2.4 8.7 ± 2.7 
 2016 Mean air temperature (0 C) 
Full Sun 26.7 ± 5.2 28.0 ± 5.0 26.7 ± 4.9 23.3 ± 5.5 26.2 ± 5.2 
Severe shade 26.2 ± 5.3 27.7 ± 4.5 26.4 ± 4.8 23.0 ± 5.9 25.8 ± 5.1 
 2016 Mean relative humidity (%) 
Full Sun 72.0 ± 18.2 73.8 ± 17.7 73.4 ± 18.4 75.8 ± 17.9 73.8 ± 18.0 
Severe shade 73.3 ± 19.8 75.3 ± 17.4 74.6 ± 17.2 76.9 ± 18.3 75.0 ± 18.2 
 2016 Mean wind speed (m s-1) 
Full Sun 0.6 ± 0.2 0.8± 0.2 0.5 ± 0.2 0.6 ± 0.2 0.6 ± 0.2 
Severe shade 0.2 ± 0.4 0.3 ± 0.4 0.2 ± 0.4 0.2 ± 0.4 0.2 ± 0.4 
 2016 Mean wind gust (m s-1) 
Full Sun 2.3 ± 1.3 2.9 ± 1.4 2.1 ± 1.3 2.2 ± 1.3 2.4 ± 1.3 
Severe shade 1.5 ± 1.4 1.9 ± 1.6 1.4 ± 1.3 1.5 ± 1.4 1.6 ± 1.4 
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Table 3.Analysis of variance for turf quality, normalized difference vegetation index, and spring green-up across months in open sun, 
moderate shade, and severe shade environments in 2014 at Oklahoma State University Turfgrass Research Center.  
   Turf quality  Normalized difference vegetation index Spring  

green-up 
Source df June July Aug Sept Avg  June July Aug Sept Avg April 
  Pr > F 
    Full Sun 
Cultivar 9 ** *** *** *** ***  *** *** * *** *** *** 
Block 3 NS NS NS NS NS  *** NS NS * NS *** 
Error 27                        
    Moderate Shade 
Cultivar 9 ** *** *** *** ***  *** NS * *** *** *** 
Block 3 ** * *** ** ***  *** NS * *** ** NS 
Error 27                        
    Severe Shade 
Cultivar 9 *** *** *** *** ***  *** NS *** *** *** *** 
Rep 3 * * * ** **  NS NS NS NS NS NS 
Error 27                        

*, **, ***, and NS= P < 0.001, P < 0.01, P < 0.05, and P > 0.05, respectively. 
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Table 4. Analysis of variance for turf quality, normalized difference vegetation index, and spring green-up across months in open sun, 
moderate shade, and severe shade environments in 2015 at Oklahoma State University Turfgrass Research Center. 
   Turf quality  Normalized difference vegetation index Spring  

green-up 
Source df June July Aug Sep Avg  June   Aug Sep Avg April 

    Pr > F 
    Full Sun 
Cultivar 9 *** *** *** NS ***  **   * NS *** *** 
Block 3 NS NS NS NS NS  ***   *** NS NS NS 
Error 27                        
    Moderate Shade 
Cultivar 9 *** *** *** *** NS  ***   *** NS ** NS 
Block 3 *** *** *** *** *  ***   *** *** NS ** 
Error 27                        
    Severe Shade 
Cultivar 9 *** *** *** *** ***  *** *** *** * *** *** 
Block 3 NS NS ** NS NS  * NS NS *** ** NS 
Error 27                        

*, **, ***, and NS= P < 0.001, P < 0.01, P < 0.05, and P > 0.05, respectively. 
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Table 5. Analysis of variance for turf quality, normalized difference vegetation index, spring green-up, and percent green cover across 
months in open sun, moderate shade, and severe shade environments in 2016 at Oklahoma State University Turfgrass Research Center. 

  Turf quality 
 

Normalized difference vegetation index 
Spring 
green-
up 

Percent green cover 

Source df June July Aug Sep Avg  June July Aug Sep Avg April June July Aug Avg 
    Pr > F 
    Full Sun 
Cultivar 9 *** *** *** ** ***  ** NS ** * * *** *** *** *** *** 
Block 3 NS ** *** *** ***  NS NS NS * *** NS NS NS NS NS 
Error 27                           
    Moderate Shade 
Cultivar 9 ** NS NS * NS  * NS ** * NS ** *** *** *** *** 
Block 3 ** * NS *** **  * NS * *** * NS *** *** NS *** 
Error 27                           
    Severe Shade 
Cultivar 9 * ** ** * **  *** * *** * *** *** *** *** *** *** 
Block 3 NS ** *** * **  * *** *** NS ** NS NS NS *** NS 
Error 27                           

*, **, ***, and NS= P < 0.001, P < 0.01, P < 0.05, and P > 0.05, respectively. 
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Table 6. Turf quality, normalized difference vegetative index, and spring green-up ratings in open sun study of bermudagrass in 2014 at 
Oklahoma State University Turfgrass Research Center. 
  TQz  NDVIy  Spring 

 

Cultivars June July Aug Sept Avg  June July Aug Sept Avg  green-upx TPIw 
OKS 2011-1 7.0bv 7.0cd 7.0d 6.9dc 7.0cd  0.860a 0.848ab 0.821a 0.862de 0.848ab  4.7bc 4 
OKS 2011-4 6.2c 7.0cd 7.0d 6.7d 6.7d  0.841bc 0.824d 0.789abc 0.836f 0.822d  4.5c 1 
Celebration 6.7bc 7.0cd 7.2cd 7.4ab 7.0bcd  0.840c 0.832cd 0.797abc 0.858e 0.832cd  4.2c 2 
Latitude 36 7.7a 7.9a 8.0a 7.4ab 7.7a  0.860a 0.851a 0.798abc 0.895a 0.851a  7.0a 11 
Northbridge 7.7a 7.9a 8.0a 7.6a 7.8a  0.843bc 0.845ab 0.804ab 0.887ab 0.845ab  6.7a 10 
Patriot 6.5bc 6.9d 7.5bc 7.0bcd 7.0cd  0.836c 0.830cd 0.781bc 0.871cd 0.829cd  4.7bc 0 
Princess 77 7.0b 7.1cd 7.0d 7.2abc 7.0cd  0.842bc 0.829cd 0.787abc 0.856e 0.828cd  3.2d 2 
Riviera 6.7bc 7.0cd 7.4bcd 7.6a 7.2bc  0.853ab 0.840abc 0.786abc 0.878bc 0.839abc  5.2b 5 
TifGrand 6.7bc 7.5b 7.5bc 6.1e 7.0cd  0.840c 0.830cd 0.765c 0.876bc 0.828cd  4.7bc 0 
Yukon 7.0b 7.2bc 7.7ab 7.5a 7.4b  0.861a 0.836bc 0.791abc 0.856e 0.836bc  7.7bc 4 
LSD0.05

 0.7 0.4 0.4 0.5 0.3  0.012 0.013 0.037 0.011 0.013  0.7 
 

zTQ: Turf visual quality ratings recorded bi-weekly and data aggregated per month; 9= ideal healthy turf; 6=minimally acceptable quality; 1= brown dead turf. 
yNDVI is the normalized difference vegetative index gives the measure of turf color plus density. 
xSpring green-up rating measures the transition from dormant to active growth stage in the spring. It was recorded in early April on 1 to 9 scale where 1= brown dormant 
turf and 9=fully green turf. 
wTPI is the turf performance index representing the number of times an entry occurred in the top statistical group “a”. 
vValues within a column followed by the same letter are not significantly different at P ≤ 0.05 by Fisher’s protected least significant difference (LSD). 
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Table 7. Turf quality, normalized difference vegetative index, and spring green-up ratings in open sun study of bermudagrass in 2015 at 
Oklahoma State University Turfgrass Research Center.  
  TQz  NDVIy  Spring    
Cultivars June July Aug Sept Avg  June Aug Sept Avg  green-upx TPIw 
OKS 2011-1 8.0abcv 7.6b 8.0a 7.5 7.8bc  0.845abc 0.837ab 0.814 0.832abc  6.8ab 6 
OKS 2011-4 7.0d 7.3cd 7.3bc 7.0 7.1f  0.822e 0.800ab 0.806 0.821cde  7.0a 2 
Celebration 7.8bc 7.5bc 7.4bc 7.3 7.5de  0.843abcd 0.827bc 0.800 0.823cde  4.3d 1 
Latitude 36 8.3ab 8.3a 8.0a 7.5 8.0ab  0.852ab 0.851a 0.821 0.841a  5.8c 7 
Northbridge 8.5a 7.5bc 7.9a 7.5 8.1a  0.859a 0.841ab 0.815 0.838ab  6.0bc 6 
Patriot 7.5cd 7.4bcd 7.6ab 6.9 7.4def  0.821e 0.834ab 0.792 0.816e  3.3e 2 
Princess 77 7.0d 7.5bc 7.6ab 7.3 7.3ef  0.824e 0.813c 0.806 0.814e  2.3f 1 
Riviera 7.8bc 7.1d 7.9a 7.4 7.6cd  0.834bcde 0.834ab 0.818 0.829bcd  7.0a 3 
TifGrand 7.0d 7.5bc 7.3bc 7.0 7.1f  0.826de 0.829bc 0.812 0.822cde  3.0ef 0 
Yukon 7.8bc 8.5a 7.1c 7.1 7.4def  0.834cde 0.826bc 0.795 0.818de  7.0a 2 
LSD0.05 0.6 0.3 0.4 NS 0.3  0.018 0.017 NS 0.012  0.9   

zTQ: Turf visual quality ratings recorded bi-weekly and data aggregated per month; 9= ideal healthy turf; 6=minimally acceptable quality; 1= brown dead turf. 
yNDVI is the normalized difference vegetative index gives the measure of turf color plus density. 
xSpring green-up rating measures the transition from dormant to active growth stage in the spring. It was recorded in early April on 1 to 9 scale where 1= brown dormant 
turf and 9=fully green turf. 
wTPI is the turf performance index representing the number of times an entry occurred in the top statistical group “a”. 
vValues within a column followed by the same letter are not significantly different at P ≤ 0.05 by Fisher’s protected least significant difference (LSD). 
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Table 8. Turf quality, normalized difference vegetative index, and spring green-up ratings in open sun study of bermudagrass in 2016 at 
Oklahoma State University Turfgrass Research Center.  

 TQz  NDVIy  Spring  
Cultivars June July Aug Sept Avg  June July Aug Sept Avg  green-upx 
OKS 2011-1 5.8bw 5.8c 6.3bc 6.4abc 6.0cd  0.853abc 0.780 0.829a 0.798a 0.815a  6.8bc 
OKS 2011-4 5.8b 5.8c 6.0cd 6.3bc 5.9d  0.836cd 0.773 0.788bc 0.779abc 0.794bc  6.5c 
Celebration 6.0b 6.0c 6.3bc 6.5abc 6.2bcd  0.845bcd 0.776 0.775cd 0.783ab 0.795bc  7.0ab 
Latitude 36 7.5a 6.8ab 6.8a 6.9a 7.0a  0.851abc 0.786 0.790bc 0.785ab 0.803ab  7.3a 
Northbridge 7.5a 6.9a 6.5ab 6.3bc 6.8a  0.869a 0.762 0.794bc 0.793ab 0.805ab  7.0ab 
Patriot 7.0a 6.3bc 5.9d 6.0cd 6.3bc  0.862ab 0.781 0.756d 0.757c 0.789c  6.0d 
Princess 77 6.0b 6.0c 6.4b 6.8ab 6.3bc  0.829d 0.780 0.794bc 0.798a 0.800bc  6.0d 
Riviera 6.3b 6.1c 6.5ab 6.6ab 6.4b  0.830d 0.770 0.814ab 0.782ab 0.800bc  7.0ab 
TifGrand 5.0c 5.0d 5.4e 5.6d 5.3e  0.852abc 0.788 0.804abc 0.774bc 0.805ab  6.0d 
Yukon 5.8b 5.9c 6.4b 6.4abc 6.1bcd  0.846bcd 0.765 0.806abc 0.797a 0.804ab  6.8bc 
LSD0.05 0.5 0.5 0.4 0.6 0.3  0.018 NS 0.031 0.023 0.012  0.4 

zTQ: Turf visual quality ratings recorded bi-weekly and data aggregated per month; 9= ideal healthy turf; 6=minimally acceptable quality; 1= brown dead turf. 
yNDVI is the normalized difference vegetative index gives the measure of turf color plus density. 
xSpring green-up rating measures the transition from dormant to active growth stage in the spring. It was recorded in early April on 1 to 9 scale where 1= brown dormant 
turf and 9=fully green turf. 
wValues within a column followed by the same letter are not significantly different at P ≤ 0.05 by Fisher’s protected least significant difference (LSD). 
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Table 9. Percent green cover in open sun study of bermudagrass in 2016 at Oklahoma State University Turfgrass Research Center.  
Percent green coverz   

Cultivars June July Aug Average TPIy 

OKS 2011-1 85.3abx 68.9bc 77.3b 77.1b 6 
OKS 2011-4 71.6c 68.0bc 44.8g 61.5f 1 
Celebration 74.0c 75.2b 61.1c 70.1c 3 
Latitude 36 89.4a 90.7a 89.8a 90.0a 13 
Northbridge 92.9a 86.5a 86.4a 88.6a 12 
Patriot 78.4bc 67.9c 50.9ef 65.7de 2 
Princess 77 76.3c 73.9bc 48.8fg 66.3de 2 
Riviera 74.6c 73.2bc 60.1c 69.3cd 5 
TifGrand 71.7c 68.0bc 56.8cd 65.5e 3 
Yukon 75.7c 66.9c 54.5de 65.7e 3 
LSD0.05 8.8 7.3 4.3 3.6  

zPercent green cover was generated analyzing the digital images through SigmaScan Software. 
yTPI is the turf performance index representing the number of times an entry occurred in the top statistical group “a”. 
xValues within a column followed by the same letter are not significantly different at P ≤ 0.05 by Fisher’s protected least significant difference (LSD). 
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Table 10. Turf quality, normalized difference vegetative index, and spring green-up ratings in moderate shade study of bermudagrass in 
2014 at Oklahoma State University Turfgrass Research Center. 

 TQz  NDVIy  Spring  
Cultivars June July Aug Sept Avg  June July Aug Sept Avg  green-upx TPIw 
OKS 2011-1 6.2cdev 6.8cde 6.5cd 6.4bcd 6.5cd  0.861a 0.825 0.776ab 0.838cd 0.825ab  5.0b 2 
OKS 2011-4 6.0de 6.3e 6.3d 6.3cde 6.2de  0.838bc 0.833 0.746abc 0.801e 0.805c  4.0c 1 
Celebration 6.7abc 7.0bcd 6.8bc 6.9a 6.8b  0.842abc 0.823 0.76abc 0.852bc 0.819abc  5.0b 5 
Latitude 36 7.2a 7.6a 7.4a 6.9a 7.3a  0.851ab 0.829 0.761abc 0.871a 0.828ab  6.0a 10 
Northbridge 6.7abc 7.5ab 7.0ab 6.9a 7.0ab  0.829c 0.832 0.731c 0.857ab 0.812bc  6.8a 7 
Patriot 5.7e 6.5de 6.4cd 6.0de 6.2e  0.794d 0.809 0.720c 0.828d 0.788d  4.5bc 0 
Princess 77 5.7e 6.8cde 7.0ab 6.5abc 6.5c  0.849ab 0.829 0.781a 0.841bcd 0.825ab  2.3d 5 
Riviera 6.5bcd 7.0bcd 6.8bc 6.8ab 6.8bc  0.858ab 0.828 0.784a 0.854bc 0.831a  5.0b 4 
TifGrand 6.5bcd 7.3abc 6.4cd 5.9e 6.5c  0.849ab 0.833 0.741abc 0.855ab 0.82abc  4.8bc 5 
Yukon 7.0ab 7.0bcd 6.6bcd 6.6abc 6.8b  0.861a 0.821 0.738bc 0.849bc 0.817abc  5.0b 4 
LSD0.05 0.7 0.5 0.4 0.5 0.3  0.020 NS 0.043 0.017 0.016  1.0   

zTQ: Turf visual quality ratings recorded bi-weekly and data aggregated per month; 9= ideal healthy turf; 6=minimally acceptable quality; 1= brown dead turf. 
yNDVI is the normalized difference vegetative index gives the measure of turf color plus density. 
xSpring green-up rating measures the transition from dormant to active growth stage in the spring. It was recorded in early April on 1 to 9 scale where 1= brown dormant 
turf and 9=fully green turf. 
wTPI is the turf performance index representing the number of times an entry occurred in the top statistical group “a”. 
vValues within a column followed by the same letter are not significantly different at P ≤ 0.05 by Fisher’s protected least significant difference (LSD). 
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Table 11. Turf quality, normalized difference vegetative index, and spring green-up ratings in moderate shade study of bermudagrass in 
2015 at Oklahoma State University Turfgrass Research Center. 

 TQz  NDVIy  Spring  
Cultivars June July Aug Sept Avg  June Aug Sept Avg  green-upx TPIw 
OKS 2011-1 7.3cdev 7.3a 6.3ab 6.3abc 6.8  0.786ab 0.737a 0.712 0.745ab  6.8 6 
OKS 2011-4 7de 6.4c 6.1bc 6.0c 6.4  0.785ab 0.708a 0.699 0.731ab  6.8 3 
Celebration 7.8bc 6.8b 5.9c 6.1bc 6.6  0.786ab 0.749a 0.720 0.752ab  4.3 3 
Latitude 36 8.5a 7.4a 6.1bc 6.5ab 7.1  0.803a 0.741a 0.676 0.740ab  6.5 6 
Northbridge 8.0ab 7.4a 6.1bc 6.5ab 7.0  0.787ab 0.711a 0.653 0.717abc  6.5 6 
Patriot 7.0de 6.4c 6.0bc 6.0c 6.3  0.696c 0.695a 0.613 0.668c  3.8 1 
Princess 77 7.3cde 7.4a 6.5a 6.4abc 6.9  0.786ab 0.668a 0.679 0.711abc  3.3 6 
Riviera 7.3cde 6.8b 6.5a 6.6a 6.8  0.812a 0.745a 0.738 0.765a  6.5 5 
TifGrand 7.5bcd 6.6bc 6.0bc 6.1bc 6.6  0.746b 0.654a 0.686 0.695bc  3.0 1 
Yukon 6.8e 6.5bc 6.1bc 6.0c 6.3  0.783ab 0.749a 0.617 0.716bc  6.3 2 
LSD0.05 0.5 0.3 0.3 0.5 NS  0.042 0.113 NS 0.058  NS   

zTQ: Turf visual quality ratings recorded bi-weekly and data aggregated per month; 9= ideal healthy turf; 6=minimally acceptable quality; 1= brown dead turf. 
yNDVI is the normalized difference vegetative index gives the measure of turf color plus density. 
xSpring green-up rating measures the transition from dormant to active growth stage in the spring. It was recorded in early April on 1 to 9 scale where 1= brown dormant 
turf and 9=fully green turf. 
wTPI is the turf performance index representing the number of times an entry occurred in the top statistical group “a”. 
vValues within a column followed by the same letter are not significantly different at P ≤ 0.05 by Fisher’s protected least significant difference (LSD). 
 
 
 



52 
 

Table 12. Turf quality, normalized difference vegetative index, and spring green-up ratings in moderate shade study of bermudagrass in 
2016 at Oklahoma State University Turfgrass Research Center. 

 TQz  NDVIy  Spring 

Cultivars June July Aug Sept Avg  June July Aug Sept Avg  green-
upx 

OKS 2011-1 5.0bw 5.0 5.1 5.4ab 5.1  0.721ab 0.618 0.682abc 0.676a 0.674  6.0ab 
OKS 2011-4 5.0b 5.0 5.5 5.4ab 5.2  0.690d 0.622 0.673bc 0.670a 0.664  6.3ab 
Celebration 5.0b 5.1 5.5 5.6ab 5.3  0.714abc 0.625 0.665c 0.665ab 0.667  5.5bc 
Latitude 36 5.5a 5.4 5.4 5.4ab 5.4  0.722ab 0.630 0.685abc 0.679a 0.679  6.0ab 
Northbridge 5.5a 5.4 6.0 5.8a 5.7  0.716abc 0.652 0.694ab 0.663ab 0.681  6.3ab 
Patriot 5.5a 5.0 4.9 5.0bc 5.1  0.711abcd 0.627 0.631d 0.606c 0.643  5.8ab 
Princess 77 4.8b 5.0 5.4 5.5ab 5.2  0.704bcd 0.615 0.703a 0.679a 0.675  4.8c 
Riviera 5.0b 4.9 5.3 5.8a 5.2  0.71abcd 0.636 0.687bc 0.676a 0.670  6.5a 
TifGrand 4.8b 4.8 4.6 4.6c 4.7  0.696cd 0.620 0.673bc 0.678bc 0.652  4.8c 
Yukon 5.0b 5.0 5.4 5.4ab 5.2  0.732a 0.626 0.674bc 0.667a 0.675  5.8ab 
LSD0.05 0.5 NS NS 0.7 NS  0.022 NS 0.028 0.048 NS  0.8 

zTQ: Turf visual quality ratings recorded bi-weekly and data aggregated per month; 9= ideal healthy turf; 6=minimally acceptable quality; 1= brown dead turf. 
yNDVI is the normalized difference vegetative index gives the measure of turf color plus cover. 
xSpring green-up rating measures the transition from dormant to active growth stage in the spring. It was recorded in early April on 1 to 9 scale where 1= brown dormant 
turf and 9=fully green turf. 
wValues within a column followed by the same letter are not significantly different at P ≤ 0.05 by Fisher’s protected least significant difference (LSD). 
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Table 13. Percent green cover in moderate shade study of bermudagrass in 2016 at Oklahoma State University Turfgrass Research Center.   
Percent green coverz   

Cultivars June July Aug Avg TPIy 

2011-1 56.1cdx 39.9cd 32.0c 42.7cd 5 
2011-4 51.0d 37.9cd 28.3c 39.0d 3 
Celebration 58.6cd 48.7bc 43.1ab 50.1b 4 
Latitude 36 79.1ab 58.2ab 51.8a 63.0a 6 
Northbridge 89.5a 63.6a 47.8a 65.0a 10 
Patriot 67.3bc 38.5cd 24.0c 43.3bcd 7 
Princess 77 62.7cd 44.7c 32.6bc 46.7bc 3 
Riviera 62.9cd 40.0cd 27.3c 43.4bcd 4 
TifGrand 57.1cd 31.9d 27.0c 38.7d 0 
Yukon 62.1cd 42.4cd 25.5c 43.4bcd 4 
LSD0.05 12.5 11.7 10.7 7.2   

zPercent green cover was generated analyzing the digital images through SigmaScan Software. 
yTPI is the turf performance index representing the number of times an entry occurred in the top statistical group “a”. 
xValues within a column followed by the same letter are not significantly different at P ≤ 0.05 by Fisher’s protected least significant difference (LSD). 
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Table 14. Turf quality, normalized difference vegetative index, and spring green-up ratings in severe shade study of bermudagrass in 2014 
at Oklahoma State University Turfgrass Research Center. 

 TQz  NDVIy  Spring  
Cultivars June July Aug Sept Avg  June July Aug Sept Avg  green-upx TPIw 
OKS 2011-1 5.5bcv 5.8ab 5.9b 5.8ab 5.7bcd  0.787ab 0.828 0.759ab 0.808a 0.795ab  3.3c 6 
OKS 2011-4 5.0c 5.4bc 5.6b 5.3bc 5.3de  0.764bc 0.819 0.733bc 0.750ab 0.767ab  3.0c 2 
Celebration 5.8ab 6.1a 6.1ab 5.8ab 5.9abc  0.799ab 0.827 0.771a 0.794ab 0.798a  3.0c 9 
Latitude 36 6.3a 6.4a 6.6a 5.8ab 6.3a  0.827a 0.799 0.727bc 0.811a 0.791ab  5.0a 9 
Northbridge 5.8ab 6.1a 6.6a 6.0a 6.1ab  0.796ab 0.819 0.725c 0.798a 0.785ab  4.3b 8 
Patriot 3.5d 4.1d 4.4c 4.3d 4.1f  0.614d 0.791 0.648e 0.639c 0.673c  2.0d 0 
Princess 77 4.0d 4.8cd 5.9b 5.8ab 5.1e  0.727c 0.831 0.780a 0.784ab 0.781ab  2.0d 4 
Riviera 5.5bc 5.8ab 6.1ab 5.6ab 5.8abcd  0.790ab 0.797 0.758ab 0.772ab 0.779ab  3.0c 8 
TifGrand 5.5bc 5.9ab 5.8b 4.9c 5.5cde  0.796ab 0.824 0.692d 0.735b 0.762b  3.0c 2 
Yukon 6.0ab 6.0ab 6.0ab 5.8ab 5.9abc  0.800ab 0.809 0.733bc 0.784ab 0.782ab  4.0b 8 
LSD0.05 0.7 0.7 0.6 0.6 0.5  0.049 NS 0.032 0.062 0.035  0.6  

zTQ: Turf visual quality ratings recorded bi-weekly and data aggregated per month; 9= ideal healthy turf; 6=minimally acceptable quality; 1= brown dead turf. 
yNDVI is the normalized difference vegetative index gives the measure of turf color plus density. 
xSpring green-up rating measures the transition from dormant to active growth stage in the spring. It was recorded in early April on 1 to 9 scale where 1= brown dormant 
turf and 9=fully green turf. 
wTPI is the turf performance index representing the number of times an entry occurred in the top statistical group “a”. 
vValues within a column followed by the same letter are not significantly different at P ≤ 0.05 by Fisher’s protected least significant difference (LSD). 
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Table 15. Turf quality, normalized difference vegetative index, and spring green-up ratings in severe shade study of bermudagrass in 2015 
at Oklahoma State University Turfgrass Research Center. 

 TQz  NDVIy  Spring  
Cultivars June July Aug Sept Avg  June Aug Sept Avg  green-upx TPIw 
OKS 2011-1 5.0cdv 5.6bc 4.8abc 4.1bcd 4.9bcd  0.709ab 0.654abc 0.615a 0.659ab  5.5ab 6 
OKS 2011-4 4.5de 4.9de 4.0def 4.0cd 4.3e  0.636cd 0.602cde 0.552abc 0.597cd  5.5ab 2 
Celebration 6.3a 6.5a 5.3a 4.9a 5.7a  0.714ab 0.656ab 0.586a 0.652ab  4.3cd 9 
Latitude 36 5.8abc 5.8b 4.5cd 4.0cd 5.0bc  0.707ab 0.681a 0.571ab 0.653ab  4.8bc 5 
Northbridge 6.0ab 5.8b 5.1ab 4.5ab 5.3ab  0.708ab 0.666ab 0.608a 0.661ab  5.5ab 9 
Patriot 3.8e 4.1f 3.6f 3.5e 3.8f  0.588d 0.560e 0.511bc 0.553d  3.0e 0 
Princess 77 4.5de 5.4bcd 4.6bc 4.3bc 4.7cde  0.750a 0.704a 0.619a 0.691a  3.3e 4 
Riviera 5.0cd 5.6bc 4.9abc 4.1bcd 4.9bcd  0.669bc 0.628bcd 0.556abc 0.618bc  6.0a 3 
TifGrand 5.3bcd 5.1cde 3.9ef 3.8de 4.5de  0.631cd 0.601de 0.484c 0.572cd  3.8de 0 
Yukon 4.8d 4.8e 4.4cde 4.0cd 4.5de  0.750a 0.698a 0.570ab 0.673a  5.5ab 5 
LSD0.05 0.9 0.6 0.5 0.5 0.5  0.054 0.053 0.074 0.054  0.8   

zTQ: Turf visual quality ratings recorded bi-weekly and data aggregated per month; 9= ideal healthy turf; 6=minimally acceptable quality; 1= brown dead turf. 
yNDVI is the normalized difference vegetative index gives the measure of turf color plus density. 
xSpring green-up rating measures the transition from dormant to active growth stage in the spring. It was recorded in early April on 1 to 9 scale where 1= brown dormant 
turf and 9=fully green turf. 
wTPI is the turf performance index representing the number of times an entry occurred in the top statistical group “a”. 
vValues within a column followed by the same letter are not significantly different at P ≤ 0.05 by Fisher’s protected least significant difference (LSD). 
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Table 16. Turf quality, normalized difference vegetative index, and spring green-up ratings in severe shade study of bermudgrasses in 2016 
at Oklahoma State University Turfgrass Research Center. 
  TQz  NDVIy  Spring 
Cultivars June July Aug Sept Avg  June July Aug Sept Avg  green-

upx 
OKS 2011-1 3.4bcw 3.0bc 2.8b 3.4ab 3.1b  0.640bc 0.525ab 0.652a 0.608a 0.606a  4.5ab 
OKS 2011-4 2.6bc 2.6bc 2.4bc 2.6bc 2.6bc  0.608bcd 0.443bc 0.570ab 0.551a 0.543ab  3.5bcd 
Celebration 5.3a 5.8a 4.9a 4.9a 5.2a  0.753a 0.549a 0.602ab 0.586a 0.623a  5.0a 
Latitude 36 3.8ab 3.4bc 3.0b 2.8bc 3.2b  0.631bcd 0.527ab 0.563bc 0.558a 0.570ab  3.5bcd 
Northbridge 3.8ab 3.2bc 3.2b 3.4ab 3.4b  0.684abc 0.541a 0.636ab 0.574a 0.609a  4.3abc 
Patriot 1.9c 1.9c 1.5c 1.5c 1.7c  0.419e 0.395c 0.441d 0.402b 0.414c  2.0e 
Princess 77 3.8ab 3.8b 3.4b 3.4ab 3.6b  0.708ab 0.553a 0.616ab 0.583a 0.615a  3.3cd 
Riviera 2.6bc 2.6bc 2.6bc 2.8bc 2.7bc  0.615bcd 0.499ab 0.581ab 0.565a 0.565ab  4.5ab 
TifGrand 2.3bc 2.3bc 2.6bc 2.6bc 2.4bc  0.522de 0.467abc 0.483cd 0.520a 0.498b  2.5de 
Yukon 2.6bc 2.6bc 2.6bc 3bc 2.7bc  0.575cd 0.493ab 0.567b 0.548a 0.546ab  3.5cd 
LSD0.05 1.8 1.5 1.3 1.6 1.4  0.114 0.089 0.084 0.107 0.081  1.1 

zTQ: Turf visual quality ratings recorded bi-weekly and data aggregated per month; 9= ideal healthy turf; 6=minimally acceptable quality; 1= brown dead turf. 
yNDVI is the normalized difference vegetative index gives the measure of turf color plus cover. 
xSpring green-up rating measures the transition from dormant to active growth stage in the spring. It was recorded in early April on 1 to 9 scale where 1= brown dormant 
turf and 9=fully green turf. 
wValues within a column followed by the same letter are not significantly different at P ≤ 0.05 by Fisher’s protected least significant difference (LSD). 
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Table 17. Percent green cover in severe shade study of bermudgrasses in 2016 at Oklahoma State University Turfgrass Research Center.  
Percent green coverz   

Cultivars June July Aug Average TPIy 

2011-1 33.8bcx 32.4bc 12.6cde 26.3b 6 
2011-4 22.7cd 19.4ef 7.5f 16.5cd 3 
Celebration 46.7a 41.0ab 27.7a 38.5a 15 
Latitude 36 50.7a 46.0a 23.7ab 40.1a 8 
Northbridge 47.0a 41.5ab 20.4b 36.3a 11 
Patriot 17.7d 13.2f 9.5ef 13.4d 0 
Princess 77 40.0ab 30.8cd 14.6c 28.5b 8 
Riviera 26.5cd 23.2cde 14.3cd 21.3bc 5 
TifGrand 25.9cd 16.2ef 9.7def 17.3cd 2 
Yukon 31.0bc 22.6def 11.4cdef 21.6bc 3 
LSD0.05 11.7 9.8 4.6 7.4   

zPercent green cover was generated analyzing the digital images through SigmaScan Software. 
yTPI is the turf performance index representing the number of times an entry occurred in the top statistical group “a”. 
xValues within a column followed by the same letter are not significantly different at P ≤ 0.05 by Fisher’s protected least significant difference (LSD). 
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Table 18. Cumulative turf performance index (TPI) in open sun, moderate shade, and severe shade in 2014, 2015, and 2016 at Oklahoma 
State University Turfgrass Research Center.   

Cumulative Turf Performance index (TPI)z 
  

 
Latitude 36 Northbridge OKS 2011-1 Celebration Riviera Princess 77 Yukon OKS 2011-4 TifGrand Patriot     

Full Sun   
    

2014 11 10 4 2 5 2 4 1 0 0 
2015 7 6 6 1 3 1 2 2 0 2 
2016 13 12 6 3 5 2 3 1 3 2 
Total TPI 31 28 16 6 13 5 9 4 3 4    

Moderate Shade  
    

2014 10 7 2 5 4 5 4 1 5 0 
2015 6 6 6 3 5 6 2 3 1 1 
2016 6 10 5 4 4 3 4 3 0 7 
Total TPI 22 23 13 12 13 14 10 7 6 8    

Severe Shade  
    

2014 9 8 6 9 8 4 8 2 2 0 
2015 5 9 6 9 3 4 5 2 0 0 
2016 8 11 6 15 5 8 3 3 2 0 
Total TPI 22 28 18 33 16 16 16 7 4 0 

zTPI is the turf performance index representing the number of times an entry occurred in the top statistical group “a”. 
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CHAPTER III 
 

INVESTIGATIONS INTO THE INTERACTIONS OF SHADE AND DROUGHT ON 

BERMUDAGRASS TURF 

 

Introduction 

Turfgrasses require water for maintaining acceptable quality and need to be irrigated when 

precipitation is inadequate. Amid increasing water demand, water use rates of turfgrass is a 

concerning issue. It is estimated that 31 million acres of irrigated turfgrass are maintained in the 

United States (Milesi et al., 2005). Irrigation can be a significant component of domestic water 

demand, particularly in summer. The water use rates of bermudagrasses (Cynodon spp.) varied 

from 4.8 to 5.5 mm d-1 in Oklahoma during the growing season (Moss and Martin, 2014). However, 

water use rates can depend on climatic conditions, cultural regimes, species and cultivar adaptation 

(Huang, 2008; Kopp and Jiang, 2013). Although bermudagrasses as a group exhibit good drought 

resistance, water use rates and drought resistance can vary by cultivar (Baldwin et al., 2006; 

Carrow, 1996; Qian et al., 1997; Steinke et al., 2011). 

An estimated 25% of the turfgrass is grown under shade (Beard, 1973). Bermudagrass 

performs poorly in shade in compared to other warm-season species, such as zoysiagrass (Bunnell 

et al., 2005a). Variability among the bermudagrass cultivars in shade tolerance has been reported 

(Baldwin et al., 2008; Gaussoin et al. 1998; Trappe et al., 2011). 
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Turfgrass water use rates are sensitive to solar radiation and therefore can be much lower 

in shaded environments. Under full-sun conditions, ‘Midlawn’ hybrid bermudagrass [C. dactylon 

(L.) Pers. x C. transvaalensis Burtt-Davy], maintained acceptable turf quality with irrigation level 

at 60% actual ET replacement in a mobile rainout shelter. In southern California, ET of lawns under 

trees was lower than without trees by 0.9 to 3.9 mm d-1 (Litvak et al., 2014). A study from Israel 

found that turfgrass shaded either by trees or by shade mesh reduced total water use rate by at least 

50% (Shashua-Bar et al., 2009).  

In a turfgrass system, shade stress often co-exists with drought stress. Sack and Grubb 

(2002) synthesized five hypotheses to explain the relationship between shade and drought stress in 

a plant community. First, the influential trade-off hypothesis predicts that drought has a stronger 

negative effect on shade-weakened plants. This could be more important for plants having lower 

root: shoot ratio, resulting in greater sensitivity to drought stress a high specific leaf area and leaf 

area ratio for efficient irradiance capture at the expense of their root allocation as indicated by 

Smith and Huston (1989). Second, the above-ground facilitation hypothesis predicts that shade-

induced temperature moderation reduces the effect of drought stress by alleviating the evaporative 

demand at the leaf. Third, the primary limitation hypothesis predicts that the impact of drought will 

be less in dense shade because water will have less role in growth due to limitation of light. The 

fourth is the interplay hypothesis, which predicts that moderate shade reduces the effect of drought 

stress while dense shade can worsen it. Shade reduces the effect of drought stress in a linear 

relationship with the severity of shade. Finally, a null hypothesis predicts that effects of shade and 

drought are orthogonal.  

Although there have been numerous studies on individual effect of either shade stress or 

drought stress on turf quality, there is limited prior research to study the combined effects of shade 

and drought on turfgrasses. Thus, a greenhouse study was conducted to evaluate the effects of 

combined drought and shade stress on bermudagrass performance and water use rate. The 

objectives of this research were 1) to measure the effect of drought stress on shaded and non-shaded 
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bermudagrass turf quality and water use rate and 2) to determine if the response to shade, drought, 

or combined shade and drought differ among bermudagrass cultivars. 

 

Materials and methods 

 

Establishment: 

Two greenhouse experiments were conducted at the Oklahoma State University 

Horticulture Research Greenhouse located in Stillwater, OK (lat. 360 8’ N, long. 970 5’ W). The 

first experiment was conducted from March 19, 2017 through May 20, 2017 (hereafter referred to 

as Expt. 1). A second experiment was conducted from July 16, 2017 through September 02, 2017 

(hereafter referred to as Expt. 2).  

Grasses were established in growth tubes [10 cm diameter x 46 cm long polyvinyl chloride 

pipe (PVC) with a flat bottom cap] from washed plugs on July 19, 2016 and March 16, 2017 for 

Expt. 1 and Expt. 2, respectively. Soil was air-dried in the sun, sieved through a 2-mm screen and 

uniformly mixed in equal volume with silica sand using electric concrete mixer to obtain a 1:1 v/v 

root-zone medium. Pots were well-watered to avoid drought stress during establishment and before 

starting treatments. Fertilizer was applied at 12 kg N ha-1 every week using 20-20-20 water soluble 

fertilizer (Jr Peters Inc., Allentown, PA) throughout the study. Grasses were clipped at a height of 

5cm once a week and clippings were removed.  

The whole experiment was divided into two separate light treatment blocks: 'Non-shade’ 

and ‘Shade’. Non-shade treatment block received natural sunlight inside the greenhouse plus 

supplemental lighting from a 400-watt high pressure sodium lamp (Rudd Lighting Inc., Racine, 

WI). Shade treatment block received filtered light passing through a black shade fabric that was 

anchored to a 2.5cm diameter PVC pipe frame (1m x 1m x 1m). The fabric was 0.5m above the 

turf canopy at its center but was allowed to drape over the sides of the frame to a height 0.34m 

above the turf canopy to reduce light during low sun angles while maintaining air movement.  
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  Expt. 1 was arranged as a 2 x 2 factorial completely randomized design with three 

replications. Two bermudagrass cultivars and two irrigation levels were randomized within each 

light treatment block. The two cultivars, ‘Celebration’, a common bermudagrass [Cynodon 

dactylon (L.) Pers.] and ‘Latitude 36’, a hybrid bermudagrass [C. dactylon (L.) Pers. x C. 

transvaalensis Burtt-Davy], were selected as industry standards for their respective types. Water 

was applied to replace 100% actual ET in all pots for the first two weeks under light treatments. 

After two weeks of acclimation to light treatments, irrigation treatments were applied twice per 

week to replace either 100% actual ET or 50% actual ET based on the average of water loss of all 

experimental units for a given treatment combination. Measurements were taken for a period of 

eight weeks after the onset of light treatments.  

Expt. 2 was similar to Expt. 1 with the subsequent differences. The experiment was 

arranged as 3 x 2 factorial completely randomized design. A shade-sensitive hybrid bermudagrass 

cultivar ‘Patriot’ was added along with Celebration and Latitude 36 from Expt. 1. The supplemental 

lighting was removed from the Non-shade treatment due to anticipation of greater solar radiation 

and higher temperatures during this period. Grasses were kept well-watered for four weeks to allow 

for acclimation to shade, and drought treatment was applied after four weeks of shading. Water was 

applied once a week based on 100% and 50% actual ET replacement. Measurements were taken 

for a period of six weeks after drought treatment was initiated. Other materials and methods 

remained same as in Expt. 1.  

 

Measurements: 

Photosynthetically active radiation (PAR) was recorded using a quantum light sensor 

(Spectrum Technologies, Inc., Plainfield, IL) and data logged every 30 mins in µmol m-2 s-1 using 

a Watchdog 1000 (Spectrum Technologies, Inc., Plainfield, IL). The PAR data were converted to 

a daily light integral (DLI) and averaged over treatment period for each cycle of trial. Relative 
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humidity and air temperature were also recorded at a similar resolution using the same 

instrumentation.  

Visual turf quality was assessed weekly following National Turfgrass Evaluation Program 

(NTEP) guidelines (Morris and Shearman, 2000). Ratings were taken on a scale of 1 to 9 (9 = ideal 

turf, 6= minimum acceptable turf, and 1= brown dead turf). Normalized difference vegetation index 

(NDVI) was measured every week using a Spectral Reflectance Sensor (Decagon Devices Inc., 

Pullman, WA). This gives the measure of turf density plus color and the value ranges from 0 to 1. 

Measurements were taken by hand at a height 5cm above the turf canopy to ensure consistency 

across all measurements and ensure sampling area remained within the 10cm pot diameter.  

Leaf relative water content was measured at 0, 2, 4, 6 and 8 weeks after treatment (WAT) 

in Expt. 1 and at 0, 4, and 6 WAT in Expt. 2. From each pot, shoots were randomly harvested and 

transported to lab in freezer bags stored on ice in a cooler. For each pot, ten leaves of similar 

physiological age (third or fourth fully expanded) were separated from shoots and weighed using 

an analytical balance (XS64, Mettler Toledo). For turgid weight, leaves were placed in covered 

petri-dishes, hydrated in de-ionized water for 4 h at room temperature and dried with kimwipes 

before weighing. Finally, leaves were dried in oven at 80 0C for 48 h and dry weights were recorded. 

Leaf relative water content (RWC) was determined gravimetrically using the following equation:  

RWC= (FW-DW) / (TW-DW) x 100    (Eq. 2)  

Where FW is fresh weight of leaf samples, DW is dry weight of leaves after being dried in oven at 

80 0C for 48 h, and TW is turgid weight of leaves after hydration at 4 0C for 4 h (Barrs and 

Weatherly, 1962).  

Cell membrane stability was determined by measuring leaf relative electrolyte leakage 

(EL) following the methods of Abraham et al. (2004). Measurements were taken at 0, 4, 6 and 8 

WAT in Expt. 1 and at 0, 4 and 6 WAT in Expt. 2. Shoots were sampled from each pot, placed in 

freezer bags and transported in ice-cooler. For each pot, ten leaves of similar physiological age 

were detached from shoots, rinsed three times in distilled deionized water, and placed in a test tube 
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containing 20 mL of distilled deionized water. After the leaves were shaken for 24 h at 120 rpm, 

the initial conductivity of the solution (C initial) was measured using a conductance meter (Model 

32, Yellow Spring Instruments Co.., Yellow Springs, OH). Leaves were then killed by autoclaving 

at 120 0C for 30 min. The test tubes were again shaken for 24 h at 120 rpm before measuring the 

final conductivity (Cmax). Relative EL was calculated as the percentage of Cinitial over Cmax.  

 

Evapotranspiration (ET) rates were measured gravimetrically by weighing the pots in each 

treatment combination (Bremer, 2003). Before shade initiation, pots were fully saturated by placing 

them in a plastic tub filled with water to approximately 10cm below the top of the pot until free 

water was visible at the soil surface (24 h). Pots were then allowed to drain freely for another 24 h 

to achieve soil moisture at apparent field capacity, at which point drainage holes were sealed with 

cork, dried with a towel, and weighed. In Expt. 1, pots were weighed again after every 2 or 3 days 

and the difference in mass attributed to ET. In Expt. 2, pots were weighed every 7 days. Cumulative 

water use (mm) for each treatment was determined as the sum of all water applied during the entire 

study. Measurement days for each parameter were different in each week and are presented 

separately for each experiment (Table 19). 
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Table 19. Timeline for parameter measurements in Expt. 1 and Expt. 2. 

Parameters Week 0 Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 

 ………………………….……….……Expt. 1………...………………….……… 

TQ Sun Sun Sun Sun Sun Sun Sun Sun Sun 

NDVI Mon Mon Mon Mon Mon Mon Mon Mon Mon 

RWC Mon  Mon  Mon  Mon  Mon 

EL Mon    Mon  Mon  Mon 

ET Tue/Fri Tue/Fri Tue/Fri Tue/Fri Tue/Fri Tue/Fri Tue/Fri Tue/Fri Tue/Fri 

 ………………………….……….……Expt. 2……...………………….……… 

TQ Sun Sun Sun Sun Sun Sun Sun   

NDVI Mon Mon Mon Mon Mon Mon Mon   

RWC Mon    Mon  Mon   

EL Mon    Mon  Mon   

ET Fri Fri Fri Fri Fri Fri Fri   
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Results 

 

Statistical analysis: 

The study was arranged in 2 x 2 completely randomized factorial design in Expt. 1 and    3 

x 2 completely randomized factorial design in Expt. 2. For each trial, data were analyzed separately 

by light treatment. All data were analyzed using analysis of variance (ANOVA) with the general 

linear model procedure (GLM) in SAS software version 9.4 (SAS Institute, 2012). ANOVA was 

conducted for the main effects of cultivar, water, date and their two-way and three-way interactions. 

The date x water interaction was significant for each parameter and therefore data were 

subsequently analyzed within each date for both trials. Data were pooled across treatments when 

there was no significant interaction effect. Treatment means were separated by Fisher’s protected 

least significant difference (LSD) test at p < 0.05. 

 

Micro-environment of light treatments 

In Expt. 1, the Non-shade block received an average of 20.8 mol m-2 d-1 PAR, while the 

Shade block received an average of 10.1 mol m-2 d-1 (49% of Non-shade) PAR during the treatment 

period. The daily mean air temperature and relative humidity was 31.8 0 C and 65.0% in Non-Shade 

and 30.7 0 C and 67.5% in Shade, respectively (Table 20).  

In Expt. 2, the Non-shade block received an average of 26.8 mol m-2 d-1 PAR, while the 

Shade block received an average of 9.7 mol m-2 d-1 (36% of Non-shade) PAR during the treatment 

period. The daily mean air temperature and relative humidity were 27.5 0 C and 47.7% in Non-

shade and 26.4 0 C and 49.6% in Shade, respectively.  
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Expt. 1 

 

Turf quality (TQ) 

 There was no significant effect of cultivar or any higher order interaction involving 

cultivar; thus, data were pooled across cultivar to estimate main effects of water treatment (Table 

21 and 22). In the Non-shade block, the 50% ET treatment maintained a minimally acceptable 

rating until 5 weeks after treatment (WAT) (Table 23). Leaf rolling and firing thereafter reduced 

turf quality until grasses were completely brown at 8 WAT. Compared to the 100% ET treatment, 

the 50% ET treatment resulted in lower TQ at 3 WAT and remained lower thereafter. In Shade, the 

100% ET treatment maintained an acceptable rating of 6 through the duration of the study (Table 

23). The 50% ET treatment was similar to 100% ET treatment until 4 WAT and maintained a 

minimally acceptable rating until 6 WAT.  

 

Normalized difference vegetation index (NDVI) 

 Data were pooled across cultivar in Non-shade due to lack of cultivar effect; whereas, in 

Shade, cultivars were analyzed separately due to a significant effect of cultivar or higher order 

interaction involving cultivar (Table 21 and 22). In Non-shade, the 100% ET treatment consistently 

had a high NDVI (NDVI ≥ 0.922) that was significantly greater than the 50% ET treatment starting 

2 WAT (Table 24). In Shade, the 100% ET treatment demonstrated a greater NDVI than the 50% 

ET treatment starting at 4 WAT and thereafter. In shade, cultivars demonstrated similar NDVI 

under the 100% ET treatment, but within the 50% ET treatment, Latitude 36 had a higher NDVI 

than Celebration at 4 and 8 WAT.  
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Leaf relative water content (RWC): 

 Data were pooled across cultivars due to lack of a significant effect of cultivar (Table 21 

and 22). In Non-shade, the 100% ET treatment demonstrated a significantly higher RWC than the 

50% ET treatment at 4, 6, and 8 WAT (Table 25). By the end of study, the 50% ET treatment had 

12.1% RWC. In Shade, the 100% ET treatment had a significantly higher RWC than the 50% ET 

treatment at 4, 6, and 8 WAT (Table 25). By the end of the study, the RWC in 100% and 50% ET 

treatments was 66.6% and 28.3%, respectively.  

 

Leaf relative electrolyte leakage (EL): 

 Data were pooled across cultivar due to lack of a significant effect of cultivar (Table 21 

and 22). In Non-shade, the 50% ET treatment had a significantly higher EL than the 100% ET 

treatment at 4, 6, and 8 WAT, reaching 66.8% EL by the end of the study (Table 25). In Shade, the 

50% ET treatment had significantly higher EL than the 100% ET treatment at 4, 6, and 8 WAT 

(Table 25). At 8 WAT, EL in 100% and 50% ET treatments was 16.6% and 36.9%, respectively.  

 

Evapotranspiration (ET) rate: 

 Due to a significant cultivar x water interaction, further analysis was conducted within 

water treatment (Table 21 and 22). In Non-shade plus the 100% ET treatment, Celebration and 

Latitude 36 had ET rates that ranged from 7.2 to 8.4 mm d-1 and 6.2 to 7.3 mm d-1, respectively 

(Table 26). The ET rate of the 50% ET treatment was similar to the 100% ET treatment until 23 

days after treatment (DAT) at which time they sharply declined. In Shade plus the 100% ET 

treatment, Celebration and Latitude 36 had ET rates that ranged from 3.5 - 6.2 mm d-1 and 3.2 - 6.1 

mm d-1, respectively (Table 26). Similar to the results in Non-shade, the Shade plus 50 % ET 

treatment had a sharp decline in ET beginning at 23 DAT. 
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Cumulative water use rate (CW): 

 In Non-shade plus the 100% ET treatment, Celebration had a higher CW rate (443.8 mm) 

than Latitude 36 (389.0 mm) (Fig. 1). In contrast, no differences were observed between cultivars 

under the Non-shade plus the 50% ET treatment. Under Shade, Celebration had similar CW rates 

to Latitude 36 in both the 100% ET and 50% ET treatments (Fig. 2).  

 

Expt. 2 

Turf quality (TQ) 

 There was no significant effect of the cultivar x water interaction; thus, data were to 

estimate main effects of water or cultivar treatment (Table 27 and 28). In the Non-shade block, the 

50% ET treatment maintained a minimally acceptable rating until 3 weeks after treatment (WAT) 

(Table 29). Latitude 36 maintained acceptable TQ until 5 WAT, while Celebration and Patriot 

maintained acceptable TQ until 4 WAT. In Shade, 100% and 50% ET treatments maintained 

acceptable turf quality until 5 WAT and 3 WAT, respectively (Table 29). Starting 0 WAT (4 weeks 

after shade), Celebration and Latitude 36 had similar but significantly higher TQ than Patriot and 

remained significantly different thereafter. 

 

Normalized difference vegetation index (NDVI) 

 In Non-shade, the 100% ET treatment was significantly greater than the 50% ET 

treatment starting 2 WAT and remained greater thereafter (Table 30). Differences among cultivars 

were observed only at 4 and 6 WAT, where Celebration and Latitude 36 were similar to each other 

and superior to Patriot. As early as 0 WAT (4 weeks after shade), Celebration and Latitude 36 were 

similar and superior to Patriot.  
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Leaf relative water content (RWC): 

 There was no significant effect of cultivar x water interaction; thus, data were to estimate 

main effects of cultivar or water treatments (Table 27 and 28). In Non-shade, the 100% ET 

treatment had significantly higher RWC than the other at 4 and 6 WAT (Table 31). By the end of 

study, the 50% ET treatment had a 17.7% RWC. At 4 and 6 WAT, Celebration and Latitude 36 had 

a similar RWC to each other but higher than Patriot. In Shade, the 100% ET treatment had a higher 

RWC than the 50% ET treatment at 4 and 6 WAT. By the end of study, the 50% ET treatment had 

a 31.5% RWC. At 4 and 6 WAT, Celebration and Latitude 36 had RWC similar to each other but 

higher than Patriot.  

 

Electrolyte leakage (EL): 

 There was no significant effect of the cultivar x water interaction; thus, data were to 

estimate main effects of water or cultivar treatment (Table 27 and 28). In Non-shade, the 50% ET 

treatment had significantly higher EL than the 100% ET treatment at 4 and 6 WAT (Table 31). By 

the end of study, EL from the 50% ET treatment reached 71.9%. At 4 and 6 WAT, Celebration and 

Latitude 36 had similar EL to each other but less than Patriot. In Shade, the 50% ET treatment had 

significantly higher EL than the 100% ET treatment at 4 and 6 WAT. By the end of study, EL of 

the 50% ET treatment reached 59.3%. At 4 WAT, Patriot and Latitude 36 had similar EL to each 

other but higher than Celebration. At 8 WAT, Celebration had less EL than Patriot but was similar 

to Latitude 36.  

 

Evapotranspiration (ET) rate: 

 Due to a significant cultivar x water and cultivar x water x date interaction further analysis 

was conducted for cultivar x water treatment combination (Table 27 and 28). In Non-shade plus 

the 100% ET treatment, ET rates varied from 5.0 to 6.0 mm d-1, 3.9 to 5.2 mm d-1, 5.7 to 6.5 mm 

d-1 for Celebration, Latitude 36, and Patriot, respectively (Table 32). ET rates in the 50% ET 
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treatment sharply declined at 5 DAT and continued to decline as drought stress intensified. In Shade 

plus 100% ET treatment, ET rates varied from 2.0 to 5.3 mm d-1, 1.7 to 5.0 mm d-1, 1.0 to 5.7 mm 

d-1 for Celebration, Latitude 36, and Patriot, respectively.  

 

Cumulative water use rate (CW): 

 In Non-shade plus the 100% ET treatment, Patriot had the highest CW rate (230.0 mm), 

followed by Celebration (213.5 mm) and Latitude 36 (181.2 mm) (Fig. 3). Within the 50% ET 

treatment, Patriot had similar a CW rate (77.6 mm) to Celebration (74.9 mm) but higher than that 

of Latitude 36 (66.3 mm). Under Shade plus the 100% ET treatment, Celebration had the highest 

CW rate (139.7 mm), followed by Latitude 36 (127.7 mm) and Patriot (115.9 mm) (Fig. 4). Within 

the 50% ET treatment, Latitude 36 and Patriot had similar CW rates (50.6 mm and 50.0 mm, 

respectively) but less than that of Celebration (58.2 mm).  

 

 

Discussion 

 Differences in micro-climate between the two trials were apparent. Use of supplemental 

lighting in the Non-shade block only in Expt. 1 resulted greater PAR in compared to Expt. 2. 

However, use of the same shade structure in both trials provided nearly similar PAR in shaded 

block.  

 Drought treatment replacing 50% ET had progressively lowered the TQ and NDVI 

throughout the treatment period in both trials. Reduction of TQ and NDVI due to shade alone or 

drought alone stress have been reported in previous studies (Baldwin et al., 2009; Bunnell et al., 

2005a; Fu et al., 2004; Jiang et al., 2009). The apparent delay in drought stress under shaded 

conditions is related to a similar delay in soil water depletion due to the lower evaporative demand. 

Litvak et al. (2014) suggested tree shade could reduce ET rate of turf while the combined ET rate 
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of tree plus turf remained less than that of turf without trees in open sun. Whether these findings 

hold true for all tree-turf interactions is beyond the scope of project.  

 Shade stress reduced the RWC for 100% ET treatments, but increased RWC for 50% ET 

treatments. Within 50% ET treatment, non-shaded grasses showed more leaf desiccation than 

shaded grasses possibly due to high evaporative demand. In a previous study, lower RWC in 

zoysiagrass was related to decline in canopy net photosynthesis (Fu, 2003). In contrast, Shade 

promoted drought avoidance which resulted in improved TQ compared to Non-shade. Likewise, 

Patriot’s lower RWC is likely related to its poor performance under shade or drought in this study.  

 Patriot has been reported as having poor shade tolerance even among other 

bermudagrasses (Baldwin et al., 2008; Trappe et al., 2011). In contrast, Celebration was reported 

as having superior shade tolerance among several bermudagrass cultivars (Baldwin et al., 2008; 

Bunnell et al., 2005a). In recent field trials, Latitude 36 was reported to have good performance 

relative to other cultivars under 55% shade (20.5 µmol m-2 d-1) (Chapter II). The present study is in 

agreement with much of these previous reports suggesting Patriot as being inferior to Celebration 

or Latitude 36 in regards to shade tolerance. The implications for this on water relations were 

evidenced by the relatively high water use of Patriot in the Non-shade block and the relatively low 

water use in the Shade block. Higher demand for water in Patriot could be one of the reasons for 

poor performance when subjected to individual or combined stress. 

 The effect of increasing drought stress on ET rate differed between shaded and non-

shaded turfgrasses. Shaded grasses showed gradual decline in ET rates but non-shaded grasses had 

sharp decline in ET rates. Reductions in ET or transpiration among turfgrass with increasing 

drought have been reported by a few previous researchers (Cathey et al., 2013; Qian and Fry, 1997; 

Zhang et al., 2017).  

 The present study did not consider the impact of tree-root competition or vegetative shade 

that can possibly alter the relationship between shade and drought stress. Future studies 



75 
 

investigating the interaction of shade and drought in field condition under tree canopy that 

simulates the real-world scenario may bring new useful information to turf industry. 

 

Conclusion 

 The modification of the above-ground environment reduced the severity of drought stress 

to some extent suggesting reduced water demand in shade could lead to maintenance of green cover 

during prolonged drought. There is evidence that shade tolerance of the turfgrass can have a role in 

tolerance of the combined shade and drought stress as well. The present study was among the first 

to directly investigate the combined effects of shade and drought stress on bermudagrass turf. 

Results will contribute towards improving irrigation management of shaded turf sites and the long-

term sustainability of turfgrass management.  
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Table 20.Weather data retrieved from micro-weather station installed during light and shade 
study. 

zMean ± standard deviation calculated from each day of measurement.  

 

 

Study period Daily Light 
Integral (DLI) Mean Air temperature (0C) Relative humidity 

 mol m-2 d-1 High Low Mean (%) 

  Non-shade  

Expt. 1 26.8 ± 8.0z 36.9 ± 4.7 21.7 ± 1.3 27.5 ± 1.9 47.7 ± 13.1 

Expt. 2 20.8 ± 5.7 43.3 ± 4.9 25.5 ± 1.2 31.8 ± 2.2 65.0± 8.0 

  Shade  

Expt. 1 9.7 ± 4.3 32.4 ± 2.8 21.8 ± 1.4 26.3 ± 1.5 49.6 ± 13.5 

Expt. 2 10.1 ± 3.0 39.2 ± 3.8 25.5 ± 1.1 30.7 ± 1.9 67.5 ± 11.8 
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Table 21. Analysis of variance for the effects of cultivar, water, date and their interactions on turf quality (TQ), normalized difference 
vegetation index (NDVI), leaf relative water content (RWC), leaf relative electrolyte leakage (EL), and evapotranspiration rate (ET) under 
non-shade combined with drought stress in Expt. 1 in bermudagrass. 

  TQ NDVI  RWC  EL  ET 

Source df Sign Sign df Sign df Sign df Sign 

Cultivar (C) 1 NS NS 1 NS 1 NS 1 *** 

Water (W) 1 *** *** 1 *** 1 *** 1 *** 

Date (D) 8 *** *** 4 *** 3 *** 17 *** 

C x W 1 NS NS 1 NS 1 NS 1 *** 

C x D 8 NS NS 4 NS 3 NS 17 NS 

W x D 8 *** *** 4 *** 3 *** 17 *** 

C X W X D 8 NS NS 4 NS 3 NS 17 NS 

Error 72   40  32  144  

*, **, ***, and NS= P < 0.001, P < 0.01, P < 0.05, and P > 0.05, respectively. 
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Table 22. Analysis of variance for the effects of cultivar, water, date and their interactions on turf quality (TQ), normalized difference 
vegetation index (NDVI), leaf relative water content (RWC), leaf relative electrolyte leakage (EL), and evapotranspiration rate (ET) under 
shade combined with drought stress in Expt. 1 in bermudagrass. 

  TQ NDVI  RWC  EL  ET 

Source df Sign Sign df Sign df Sign df Sign 

Cultivar (C) 1 NS *** 1 NS 1 NS 1 *** 

Water (W) 1 *** *** 1 *** 1 *** 1 *** 

Date (D) 8 *** *** 4 *** 3 *** 17 *** 

C x W 1 NS *** 1 NS 1 NS 1 NS 

C x D 8 NS *** 4 NS 3 NS 17 NS 

W x D 8 *** *** 4 *** 3 *** 17 *** 

C X W X D 
8 NS *** 4 NS 3 NS 17 NS 

Error 
72   40  32  144  

*, **, ***, and NS= P < 0.001, P < 0.01, P < 0.05, and P > 0.05, respectively. 
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Table 23. Turf quality of bermudagrasses as affected by shade, drought, or combined shade and 
drought in Expt. 1. 

Light Treatments 
Weeks after treatment 

0 1 2 3 4 5 6 7 8 
  Turf qualityz (1-9, 9= green ideal turf) 

Non-shade 100% ET 9.0 9.0 9.0 9.0ax 9.0a 9.0a 9.0a 8.0a 8.0a 
 50% ET 9.0 9.0 9.0 8.0b 7.0b 6.3b 4.3b 3.2b 1.0b 

 LSD0.05 NSy NS NS 0.00 0.00 0.46 0.46 1.06 0.00 
Shade 100% ET 9.0 9.0 8.0 8.0 7.2a 7.3a 7.0a 6.0a 6.0a 

 50% ET 9.0 9.0 8.0 8.0 6.3b 6.0b 6.0b 5.3b 4.3b 

 LSD0.05 NS NS NS NS 0.59 0.47 0.00 0.47 0.47 
zTurf quality ratings recorded on a scale of 1-9; 9= ideal healthy turf; 6=minimally acceptable quality; 1= brown dead 
turf. 
yNS= Not significant at p=0.05. 
xValues within a column followed by the same letter are not significantly different at P = 0.05 by Fisher’s protected 
least significant difference. 
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Table 24. Normalized Difference Vegetation Index (NDVI) of bermudagrasses as affected by shade, drought, or combined shade and drought 
in Expt. 1. 

 
 

 Weeks after treatment 
 0 1 2 3 4 5 6 7 8 

Light Water Cultivars Normalized difference vegetation indexz 

Non-shade 100% ET  0.936 0.936 0.937ax 0.937a 0.937a 0.936a 0.934a 0.928a 0.922a 
 50% ET  

0.937 0.936 0.932b 0.925b 0.822b 0.725b 0.611b 0.555b 0.372b  
LSD0.05  NSy NS 0.002 0.002 0.003 0.013 0.042 0.031 0.053 

Shade 100% ET Celebration  0.938 0.937 0.936 0.932 0.931a 0.916a 0.91a 0.876a 0.748a 
 100% ET Latitude 36 0.936 0.937 0.934 0.932 0.931a 0.92a 0.911a 0.868a 0.763a 
 50% ET Celebration  0.936 0.937 0.936 0.930 0.83c 0.805c 0.731c 0.678b 0.593c 
 50% ET Latitude 36 0.939 0.936 0.936 0.935 0.853b 0.835b 0.788b 0.767b 0.689b 
 LSD0.05  NS NS NS NS 0.011 0.012 0.036 0.041 0.027 

zNormalized difference vegetative index (NDVI) gives the measure of turf color plus %GC and ranges from 0 to 1. 
yNS= Not significant at p=0.05. 
xValues within a column followed by the same letter are not significantly different at P = 0.05 by Fisher’s protected least significant difference. 
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Table 25. Leaf relative water content and leaf relative electrolyte leakage of bermudagrasses as 
affected by shade, drought, or combined shade and drought in Expt. 1. 

zLeaf relative water content was measured gravimetrically and expressed in percentage. 
yNS= Not significant at p=0.05. 
xValues within a column followed by the same letter are not significantly different at P = 0.05 by Fisher’s protected 
least significant difference. 
wLeaf relative electrolyte leakage gives the measure of membrane stability and expressed in percentage. 
 
 
 

 

 

 

Light Treatments 
Weeks after treatment 

0 2 4 6 8 
  Leaf relative water contentz   
  ………………………….%............................................ 
Non-shade 100% ET 87.9 85.9 85.0ax 86.4a 82.0a 
 50% ET 88.7 89.1 75.9b 45.3b 12.1b 

 LSD0.05 NSy NS 2.8 6.7 6.4 
Shade 100% ET 88.5 85.4 82.8a 70.6a 66.6a 
 50% ET 89.5 86.1 77.9b 68.8b 28.3b 

 LSD0.05 NS NS 3.0 4.4 11.2 

  Leaf relative electrolyte leakagew  

  ..………………………….%......................................... 

Non-shade 100% ET 5.6 - 6.3b 7.3b 10.6b 
 50% ET 5.8 - 13.1a 43.5a 66.8a 
 LSD 0.05 NS  1.3 6.7 7.2 

Shade 100% ET 5.7 - 6.4b 11.3b 16.6b 
 50% ET 5.6 - 9.2a 24.3a 36.9a 
 LSD0.05 NS  0.5 4.4 5.6 
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Table 26. Evapotranspiration rates (mm d-1) z over days after treatment as affected by shade, drought, or combined shade and drought in Expt. 1. 

 Days after treatment 
Cultivars 2 5 9 12 16 19 23 26 30 33 37 40 44 47 51 54 58 61 
       Non-shade- 100% ET        
Celebration  8.4ayx 8.1a 7.8a 7.9a 7.7a 8.0a 7.7a 7.9a 7.7a 7.7a 7.5a 7.7a 7.6a 7.5a 7.3a 7.7a 7.2a 7.4a 
Latitude 36 7.3b 7.1c 6.8b 7.1b 6.6c 7.0c 6.4b 6.6b 6.2b 6.6b 6.6b 7.0a 6.9a 7.1a 6.6b 6.9b 6.6b 6.8b 
       Non-shade- 50% ET        
Celebration  8.2ab 7.9ab 7.8a 7.8a 7.6a 7.7ab 6.3b 5.7c 5.4c 5.8c 4.8c 3.7c 3.5c 3.4b 2.1c 1.7c 1.6c 1.2c 
Latitude 36 7.7b 7.6abc 7.5a 7.4b 7.2b 7.3bc 6.2b 5.7c 4.8d 5.3c 4.7c 3.6c 3.3d 2.9b 1.9d 1.5c 1.4c 1.1c 
LSD0.05 0.69 0.60 0.48 0.39 0.37 0.50 0.80 0.83 0.48 0.70 0.46 0.41 0.37 0.40 0.28 0.36 0.21 0.41 
       Shade- 100% ET        
Celebration  6.2 6.1 6.0a 6.0 5.7a 5.7a 5.4a 5.2a 5.1a 5.1a 5.0a 5.3a 4.7a 4.7a 4.4a 4.1a 4.1a 3.5a 
Latitude 36 6.1 6.0 5.9ab 5.7 5.6a 5.5b 5.0a 5.2a 4.8b 4.9a 4.8a 4.7b 4.7a 4.5a 4.1b 3.8a 3.6b 3.2a 
       Shade- 50% ET        
Celebration  5.6 5.6 5.7ab 6.0 5.7a 5.7a 4.7ab 4.3b 3.4d 3.3b 3.1b 3.0c 2.8b 2.5b 2.3c 2.0b 1.7c 1.5b 
Latitude 36 5.3 5.3 5.1b 5.2 4.9b 4.8ab 4.4b 4.0b 3.7c 3.5b 3.0b 3.0c 2.7b 2.4b 2.1c 2.0b 1.6c 1.5b 
LSD0.05 0.77 0.82 0.84 0.79 0.63 0.62 0.59 0.38 0.26 0.35 0.43 0.53 0.45 0.51 0.42 0.64 0.49 0.49 

zMean evapotranspiration rate (ET) was calculated by water balance method. 
yET rate was divided by number of days between water applications to generate ET in mm day-1. 
xValues within a column followed by the same letter are not significantly different at P = 0.05 by Fisher’s protected least significant difference. 
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Fig. 1. Cumulative water use rates of two non-shaded bermudagrasses as affected by drought 
stress in Expt. 1. 

 
zMeans with the same letter are not significantly different at P = 0.05 by Fisher’s protected least significant difference. 
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Fig. 2. Cumulative water use rates of two shaded bermudagrasses as affected by drought stress in 
Expt. 1. 

 

zMeans with the same letter are not significantly different at P = 0.05 by Fisher’s protected least significant difference. 
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Table 27. Analysis of variance for the effects of cultivar, water, date and their interactions on turf quality (TQ), normalized difference 
vegetation index (NDVI), leaf relative water content (RWC), leaf relative electrolyte leakage (EL), and evapotranspiration rate (ET) under 
non-shade combined with drought stress in Expt. 2 in bermudagrass. 

  TQ NDVI  RWC  EL  ET 

Source df Sign Sign df Sign df Sign df Sign 

Cultivar (C) 2 *** ** 2 *** 2 *** 2 *** 

Water (W) 1 *** *** 1 *** 1 *** 1 *** 

Date (D) 6 *** *** 2 *** 2 *** 6 *** 

C x W 2 NS NS 2 ** 2 NS 2 *** 

C x D 12 * NS 4 ** 4 * 12 NS 

W x D 6 *** *** 2 *** 2 *** 6 *** 

C X W X D 12 NS NS 4 NS 4 NS 12 *** 

Error 84   36  36  84  
*, **, ***, and NS= P < 0.001, P < 0.01, P < 0.05, and P > 0.05, respectively. 
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Table 28. Analysis of variance for the effects of cultivar, water, date and their interactions on turf quality (TQ), normalized difference 
vegetation index (NDVI), leaf relative water content (RWC), leaf relative electrolyte leakage (EL), and evapotranspiration rate (ET) under 
shade combined with drought stress in Expt. 2 in bermudagrass. 

  TQ NDVI  RWC  EL  ET 

Source df Sign Sign df Sign df Sign df Sign 

Cultivar (C) 2 *** *** 2 *** 2 *** 2 *** 

Water (W) 1 *** *** 1 *** 1 *** 1 *** 

Date (D) 6 *** *** 2 *** 2 *** 6 *** 

C x W 2 NS ** 2 NS 2 NS 2 * 

C x D 12 NS *** 4 NS 4 NS 12 *** 

W x D 6 *** *** 2 *** 2 *** 6 *** 

C X W X D 12 NS NS 4 NS 4 NS 12 ** 

Error 84   36  36  84  
*, **, ***, and NS= P < 0.001, P < 0.01, P < 0.05, and P > 0.05, respectively. 

.



87 
 

Table 29. Turf quality of three bermudagrasses as affected by shade, drought, or combined shade 
and drought in Expt. 2. 

 

zTurf quality ratings recorded on a scale of 1-9; 9= ideal healthy turf; 6=minimally acceptable quality; 1= brown dead 
turf. 
yNS= Not significant at p=0.05. 
xValues within a column followed by the same letter are not significantly different at P = 0.05 by Fisher’s protected 
least significant difference. 
 
 
 

 

 

 

Light  Treatment Weeks after treatment 
  0 1 2 3 4 5 6 
  Turf qualityz (1-9, 9= green ideal turf) 
Non-shade 100% ET 9.0 9.0 8.4ax 8.5a 8.7a 8.0a 8.0a  

50% ET 9.0 9.0 7.6b 7.5b 5.0b 3.4b 2.3b  
LSD0.05 NSy NS 0.34 0.34 0.34 0.99 0.64 

Non-shade Celebration 9.0 9.0 7.7b 7.9b 7.2a 5.7 5.0  
Latitude 36 9.0 9.0 8.5a 8.5a 7.4a 6.0 5.5 

 Patriot 9.0 9.0 7.7b 7.5b 6.0b 5.4 4.9  
LSD0.05 NS NS 0.42 0.42 0.42 NS NS 

Shade 100% ET 7.7 7.5 7.0a 6.9 6.9a 6.0a 5.4a 
 50% ET 7.7 7.5 6.5b 6.5 5.7b 5.2b 3.3b 
 LSD0.05 NS NS 0.54 NS 0.34 0.54 0.42 
Shade Celebration 8.0a 7.5a 7.0a 6.9a 6.7a 6.0a 4.9a 
 Latitude 36 8.0a 8.0a 7.2a 7.2a 6.7a 6.0a 4.9a 
 Patriot 7.0b 6.9b 6.0b 6.0b 5.5b 4.7b 3.2b 
 LSD0.05 0.00 0.51 0.66 0.78 0.42 0.66 0.51 
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Table 30. Normalized Difference Vegetation Index (NDVI) of three bermudagrasses as affected by shade, drought, or combined shade and 
drought in Expt. 2. 

Light Water  Weeks after treatment 
  0 1 2 3 4 5 6 
Non-shade 100% ET 0.902 0.895 0.870ax 0.878a 0.859a 0.809a 0.806a  

50% ET 0.899 0.888 0.849b 0.831b 0.770b 0.555b 0.489b  
LSD0.05 NSy NS 0.016 0.018 0.030 0.056 0.054  
Celebration 0.897 0.899 0.859 0.854 0.833a 0.701 0.651ab  
Latitude 36 0.905 0.889 0.859 0.855 0.830a 0.688 0.683a 

 Patriot 0.900 0.886 0.860 0.855 0.782b 0.657 0.608b  
LSD0.05 NS NS NS NS 0.037 NS 0.066 

Shade 100% ET 0.816a 0.858a 0.849a 0.834a 0.759a 0.719a 0.706a 
 50% ET 0.858b 0.806b 0.777b 0.772b 0.741b 0.654b 0.608b 
 LSD0.05 0.027 0.023 0.017 0.022 NS 0.051 0.046 
 Celebration 0.862a 0.857a 0.832a 0.834a 0.771a 0.717a 0.713a 
 Latitude 36 0.835ab 0.839a 0.835a 0.801b 0.784a 0.728a 0.714a 
 Patriot 0.814b 0.801b 0.772b 0.774b 0.694b 0.615b 0.544b 
 LSD0.05 0.033 0.029 0.021 0.027 0.037 0.062 0.056 

zNormalized difference vegetative index (NDVI) gives the measure of turf color plus %GC and ranges from 0 to 1. 
yNS= Not significant at p=0.05. 
xValues within a column followed by the same letter are not significantly different at P = 0.05 by Fisher’s protected least significant difference. 
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Table 31. Leaf relative water content and leaf relative electrolyte leakage of three bermudagrasses 
as affected by shade, drought, or combined shade and drought in Expt. 2. 

Light Treatments Weeks after treatment 
  0 4 6 
  Leaf relative water contentz 

  ------------------------%------------------------ 
Non-shade 100% ET 94.6 94.2ax 80.1a  

50% ET 95.4 54.4b 17.7b  
LSD0.05 NSy 2.8 2.4 

Non-shade Celebration 95.2 77.1a 50.3a  
Latitude 36 95.1 75.9a 50.5a 

 Patriot 94.8 69.8b 45.8b  
LSD0.05 NS 3.4 3.0 

Shade 100% ET 78.6 70.5a 49.7a 
 50% ET 78.4 49.0b 31.5b 
 LSD0.05 NS 6.4 4.2 
Shade Celebration 81.8a 61.0a 46.8a 
 Latitude 36 78.9ab 68.2a 41.5b 
 Patriot 74.9b 50.1b 33.6c 
 LSD0.05 4.3 7.9 5.2 
  Electrolyte leakagew 

  ------------------------%------------------------ 
Non-shade 100% ET 4.5 6.2a 7.7a 
 50% ET 4.6 15.7b 71.9b 
 LSD0.05 NS 1.4 3.4 
Non-shade Celebration 4.5 9.3b 38.0b 
 Latitude 36 4.5 10.6b 38.3b 
 Patriot 4.6 13.1a 43.0a 
 LSD0.05 NS 1.7 4.2 
Shade 100% ET 15.7 24.8b 38.9b 
 50% ET 15.1 31.0a 59.3a 
 LSD0.05 NS 3.2 9.0 
Shade Celebration 12.4b 24.9a 42.8b 
 Latitude 36 15.8ab 26.2b 47.8ab 
 Patriot 18.1a 32.6b 56.7a 
 LSD0.05 3.9 3.9 11.0 

zLeaf relative water content was measured gravimetrically and expressed in percentage. 
yNS= Not significant at p=0.05. 
xValues within a column followed by the same letter are not significantly different at P = 0.05 by Fisher’s protected 
least significant difference. 
wLeaf relative electrolyte leakage gives the measure of membrane stability and expressed in percentage. 
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Table 32. Evapotranspiration rates (mm d-1)z over days after treatment as affected by shade, drought, or combined shade and drought in 
Expt. 2. 

Light Water  Cultivars Days after treatment 
   5 12 19 26 33 40 46 
Non-shade 100% ET Celebration 6.0byx 5.3ab 5.4ab 5.0b 5.4a 5.4a 5.2b  

100% ET Latitude 36 5.2c 4.7a-d 4.7bc 4.4c 4.7b 3.9b 4.0c 
 100% ET Patriot 6.5a 5.7a 5.8a 5.5a 5.8a 5.7a 5.7a  

50% ET Celebration 6.1b 4.4cd 4.1cd 3.6e 2.8c 2.3c 1.4d  
50% ET Latitude 36 5.5c 3.9d 3.6d 2.9f 2.6c 2.3c 1.4d  
50% ET Patriot 6.5a 4.9abc 4.3cd 3.9d 2.7c 2.0c 1.2d  
LSD0.05  0.32 0.80 0.72 0.26 0.59 0.68 0.34 

Shade 100% ET Celebration 5.3b 4.2b 4.2a 3.1a 2.5a 2.4a 2.0a 
 100% ET Latitude 36 5.0c 4.1b 3.5ab 2.9b 2.5a 2.0b 1.7b 
 100% ET Patriot 5.7a 4.7a 2.7bc 2.0d 1.8c 1.4c 1.0c 
 50% ET Celebration 5.3b 4.1b 3.2bc 2.4c 2.0b 1.5c 1.0c 
 50% ET Latitude 36 4.9c 3.8c 2.6bc 2.0d 1.6d 1.3c 0.7d 
 50% ET Patriot 5.5ab 4.3b 2.3c 1.6e 1.3e 1.0d 0.6d 
 LSD0.05  0.27 0.26 0.92 0.19 0.16 0.26 0.22 

zMean evapotranspiration rate (ET) was calculated by water balance method. 
yET rates was divided by number of days between water applications to generate ET in mm day1. 
xValues within a column followed by the same letter are not significantly different at P = 0.05 by Fisher’s protected least significant difference. 
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Fig. 3. Cumulative water use rates of three non- shaded bermudagrasses as affected by drought stress in Expt. 2. 

 

zMeans with the same letter are not significantly different at P = 0.05 by Fisher’s protected least significant difference. 
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Fig. 4. Cumulative water use rates of three shaded bermudagrasses as affected by drought stress in Expt. 2. 

 

zMeans with the same letter are not significantly different at P = 0.05 by Fisher’s protected least significant difference. 
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CONCLUSION 

Bermudagrass, a widely popular warm-season turfgrass shows relatively poor tolerance to 

shade. It suffers from change in physiology, morphology, and eventual decline in turf health when 

grown under low-light conditions. Variability among bermudagrass cultivars in terms of shade 

tolerance have been reported previously and thus, there is a critical need for developing shade 

tolerant genotypes and understanding the shade tolerance mechanism at the plant level. The 

research presented herein was designed to contribute to the long-term goal of developing best 

management practices for shaded landscapes in regards to grass selection and water management.  

A three-year field experiment demonstrated that variability exists among bermudagrass 

cultivars in terms of shade tolerance although none of the tested genotypes maintained acceptable 

turf quality under the most severe shade treatment. The seeded experimental cultivars evaluated in 

this experiment did not perform better than commercially available cultivars in moderate or severe 

shade suggesting further recurrent selection is required.  

Two greenhouse experiments conducted in spring and summer of 2017 demonstrated that 

the severity of drought stress can be alleviated by the presence of shade due to decreased water 

use rates. No differences were observed between cultivars Latitude 36 and Celebration; however, 

the poor performance of the shade sensitive cultivar Patriot provides evidence that shade tolerance 

of the turfgrass can have a role in tolerance of the combined shade and drought stress as well. The 

present study was among the first to directly investigate the combined effects of shade and drought 

stress on bermudagrass turf. 
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One aspect of shade environment that was not possible to address in this greenhouse study 

was the tree-turf interaction. Because of the greenhouse setting of this experiment, the results from 

this study will likely differ when conducted in field where tree-root competition, alteration of light 

quality, restricted air-flow, and sunflecks might interact differently. Results from this study will 

contribute towards improving irrigation management of shaded turf sites and the long-term 

sustainability of turfgrass management. 
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APPENDICES 

 
Appendix I: Analysis of variance for effect of cultivar x year on turf quality, normalized difference 
vegetation index, and spring green-up. 
        
Source df  Turf Quality df NDVIz df Spring green up 
   Pr > F 
   Full Sun 
Cultivar (C) 9  *** 9 *** 9 *** 
Year (Y) 2  *** 2 *** 2 *** 
Block 3  *** 3 * 3 NS 
C x Y 18  ** 18 NS 18 *** 
Error 87   87  87  
   Moderate shade 
Cultivar (C) 9  *** 9 *** 9 *** 
Year (Y) 2  *** 2 *** 2 *** 
Block 3  *** 3 *** 3 NS 
C x Y 18  ** 18 NS 18 *** 
Error 87   87  87  
   Severe shade 
Cultivar (C) 9  *** 9 *** 9 *** 
Year (Y) 2  *** 2 *** 2 *** 
Block 3   * 3  *** 3  NS 
C x Y 18  NS 18 NS 18 *** 
Error 87   87  87  

zNormalized difference vegetative index (NDVI) gives the measure of turf color plus density. 
*, **, ***, and NS= P < 0.001, P < 0.01, P < 0.05, and P > 0.05, respectively. 
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Appendix II: Analysis of variance for effect of cultivar x date on turf quality, normalized difference 
vegetation index, and spring green-up. 
Source df Turf Quality df NDVIz df Percent green upy 

  Pr > F 
  2014 
Cultivar (C) 9 *** 9 ***   
Date (D) 3 *** 3 ***   
Block 3 *** 3 NS   
C x D 27 NS 27 NS   
Error 437  437    
  2015 
Cultivar (C) 9 *** 9 NS   
Date (D) 3 *** 2 *   
Block 3 NS 3 NS   
C x D 27 NS 18 NS   
Error 437  327    
  2016 
Cultivar (C) 9 *** 9 * 9 *** 
Date (D) 3 NS 3 *** 2 *** 
Block 3  NS 3  NS 3 NS 
C x D 27 NS 27 NS 18 NS 
Error 437  437  327  

zNormalized difference vegetative index (NDVI) gives the measure of turf color plus density. 
yPercent green up data were collected only in the year 2016. 
*, **, ***, and NS= P < 0.001, P < 0.01, P < 0.05, and P > 0.05, respectively. 
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Appendix III: Methods for percent green cover, canopy photosynthesis, and chlorophyll content.  
 

Digital images were taken weekly using a Power Shot G15 camera (Canon USA Inc., 
Melville, NY) mounted on a light box. A standard light box was illuminated by two 5-watt lamps 
connected to an external portable 600-watt power source (Duracell Powerpack Pro 1300). Images 
were then processed and analyzed for percent green cover (GC) using SigmaScan Pro 5.0 (SysStat 
Software, 1999) and the methods of Karcher and Richardson (2003) and Richardson et al. (2001).  

Canopy photosynthesis rate was measured with a LI-6400XT portable gas exchange system 
(LI-COR Inc., Lincoln, NE) using a custom built clear top plexiglass chamber. Measurements were 
taken at 2, 4, 5, 6, 7 and 8 WAT in Expt. 1 and weekly in Expt. 2. Measurements occurred between 
1100 to 1400 h from a single replication within both Non-shade and Shade block. After each 
measurement, the chamber was shaded by covering with a black cloth to completely block solar 
radiation to the chamber. Canopy gross photosynthesis (µmol CO2 m-2 s-1) was obtained using an 
equation: Gross photosynthesis = Sunlit chamber + Shaded chamber (Bremer and Han, 2005). 

Chlorophyll content in clippings was measured at 0, 4 and 8 WAT for Expt. 1 and 0, 4, and 
6 WAT for Expt. 2. Fresh clippings were harvested from each pot using scissors and transported in 
freezer bags stored on ice in a cooler. Clippings were weighed (approx. 0.1 g) and placed in a glass 
test tube with 7 mL N, N- Dimethylformamide. Samples were then shaken in horizontal shaker for 
24 h at a low setting for extraction (Inskeep and Bloom, 1985). Upon completion of extraction, 
samples were passed through Whatman 41 filter paper and brought to volume in a 10-mL 
volumetric flask. Absorbance values were recorded at 665 nm and 647 nm wavelengths using a 
spectrophotometer (Genesys 20, ThermoSpectronic, Rochester, NY). The following formulae were 
used to calculate concentrations of chlorophyll a, chlorophyll b and total chlorophyll following the 
methods of Inskeep and Bloom (1985). 

Chla (mg/L) = 12.7* A665 – 2.79* A647     (Eq. 1) 

Chlb (mg/L) = 20.7* A647 – 4.62* A665     (Eq. 2) 

Total Chl (mg/L) = 17.9* A647 + 8.08* A665    (Eq. 3) 

Chlorophyll contents (mg g-1)   were calculated as:  

𝐶𝐶ℎ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑦𝑦𝑦𝑦𝑦𝑦 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �𝑚𝑚𝑚𝑚
𝐿𝐿 �𝑥𝑥 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑚𝑚𝐿𝐿)

𝑔𝑔 𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
=  𝐶𝐶ℎ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑦𝑦𝑦𝑦𝑦𝑦 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑚𝑚𝑚𝑚 𝑔𝑔 − 1)  

(Eq. 4) 
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Appendix IV:  Analysis of variance for the effects of cultivar, water, date and their interactions on percent ground cover (%GC), canopy 
gross photosynthesis rate (Pg), chlorophyll a content (Chla), chlorophyll b content (Chlb), and total chlorophyll content (TChl) under shade 
combined with drought stress in Expt. 1 in bermudagrass. 
 
 ………….………. Non-shade……….….………. …………………………………Shade…………………………. 

  %GC  Chla Chlb TChl  %GC  Chla Chlb TChl 

Source df Sign df Sign Sign Sign df Sign df Sign Sign Sign 

Cultivar (C) 1 NS 1 NS NS NS 1 NS 1 ** NS ** 

Water (W) 1 *** 1 *** *** *** 1 *** 1 *** *** *** 

Date (D) 8 *** 2 *** *** *** 8 *** 2 *** *** *** 

C x W 1 NS 1 NS NS NS 1 NS 1 NS NS NS 

C x D 8 NS 2 NS NS NS 8 NS 2 *** ** *** 

W x D 8 *** 2 *** *** *** 8 *** 2 *** *** *** 

C X W X D 8 NS 2 NS NS NS 8 NS 2 NS NS NS 

Error 72  24    72  24    

*, **, ***, and NS= P < 0.001, P < 0.01, P < 0.05, and P > 0.05, respectively. 
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Appendix V: Percent green cover (%GC), and canopy gross photosynthesis rate leakage of bermudagrasses as affected by shade, drought, or 
combined shade and drought in Expt. 1. 

Light Treatments 
Weeks after treatment 

0 1 2 3 4 5 6 7 8 
  Percent green %GCz 

Non-shade 100% ET 95.5ay 94.7a 94.1a 94.1a 94.6a 94.7a 94.5a 88.2a 84.1a 
 50% ET 96.3a 93.9a 93.5a 85.5b 75.3b 55.6b 53.6b 31.2b 12.3b 
 LSD 0.05 NS NS NS 3.45 1.57 3.85 2.53 2.64 1.62 

Shade 100% ET 93.2 94.1 92.1 88.0 84.7a 70.4a 73.4a 64.3a 45.8a 
 50% ET 93.1 93.7 92.0 88.0 78.5b 63.9b 64.9b 55.4b 41.2b 
 LSD0.05 NS NS NS NS 2.66 5.96 2.46 3.79 4.62 
  Canopy gross photosynthesis ratex    
  Weeks after treatment    
  2 4 5 6 7 8    

Non-shade 100% ET 25.9 25.8 32.6 26.1 29.3 16.9    
 50% ET 26.2 10.5 8.2 5.9 1.1 -0.01    

Shade 100% ET 18.6 21.5 21.3 18.0 10.7 5.1    
 50% ET 18.3 14.9 14.9 8.7 4.8 3.4    

zPercent green %GC was generated analyzing the digital images through SigmaScan Software. 
yValues within a column followed by the same letter are not significantly different at P = 0.05 by Fisher’s protected least significant difference. 
xCanopy gross photosynthesis rate was measured using LI-6400 XT portable gas exchange chamber by adding gas exchange rates in sunlit and shade chamber.  
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Appendix VI: Mean chlorophyll a, chlorophyll b, and total chlorophyll content in mg g-1 of fresh 
clippings in bermudagrasses as affected by shade, drought, or combined shade and drought in 
Expt. 1. 

Light Treatments 
Weeks after treatment 

0 4 8 
  Chlorophyll a content (mg g-1) z 

Non-shade 100% ET 1.88 1.80ay 0.95a 
 50% ET 1.90 1.51b 0.07b 

 LSD0.05 NS 0.17 0.27 
Shade 100% ET 1.98 2.22a 1.73a 
 50% ET 2.08 1.19b 1.38b 

 LSD0.05 NS 0.250 0.09 

Shade Celebration 1.85b 1.78 1.46b 
 Latitude 36 2.21a 1.63 1.65a 
 LSD0.05 0.18 NS 0.09 

  Chlorophyll b content (mg g-1) x 

Non-shade 100% ET 0.66 0.69a 0.53a 
 50% ET 0.70 0.58b 0.09b 
 LSD 0.05 NS 0.088 0.083 

Shade 100% ET 0.67 0.75a 0.63a 
 50% ET 0.70 0.51b 0.51b 
 LSD0.05 NS 0.080 0.04 

Shade Celebration 0.63b 0.66 0.55 
 Latitude 36 0.74a 0.61 0.59 
 LSD0.05 0.05 NS NS 

  Total Chlorophyll content (mg g-1) w 

Non-shade 100% ET 2.53 2.48a 1.47a 
 50% ET 2.59 2.09b 0.16b 
 LSD 0.05 NS 0.178 0.206 

Shade 100% ET 2.65 2.97a 2.35a 
 50% ET 2.77 1.69b 1.89b 
 LSD0.05 NS 0.25 0.12 

Shade Celebration 2.47b 2.43 2.01b 
 Latitude 36 2.94a 2.23 2.23a 
 LSD0.05 0.23 NS 0.13 

zChlorophyll a content was determined in mg per g of fresh clippings using the equation described by Inskeep and 
Bloom (1985). 
yValues within a column followed by the same letter are not significantly different at P = 0.05 by Fisher’s protected 
least significant difference. 
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xChlorophyll b content was determined in mg per g of fresh clippings using the equation described by Inskeep and 
Bloom (1985). 
wTotal Chlorophyll content is the sum of chlorophyll a and chlorophyll b content. 
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Appendix VII:  Analysis of variance for the effects of cultivar, water, date and their interactions on percent ground cover (%GC), canopy 
gross photosynthesis rate (Pg), chlorophyll a content (Chla), chlorophyll b content (Chlb), and total chlorophyll content (TChl) under shade 
combined with drought stress in Expt. 2 in bermudagrass. 
 
  ………………Non- shade………………… …………………………. Shade…………………………… 

  %GC  Chla Chlb TChl  %GC  Chla Chlb TChl 

Source df Sign df Sign Sign Sign df Sign df Sign Sign Sign 

Cultivar (C) 2 *** 2 NS NS NS 2 *** 2 *** NS *** 

Water (W) 1 *** 1 *** *** *** 1 *** 1 * ** *** 

Date (D) 6 *** 2 *** *** *** 6 *** 2 *** *** *** 

C x W 2 * 2 NS NS NS 2 NS 2 NS NS NS 

C x D 12 NS 4 NS NS NS 12 *** 4 NS NS *** 

W x D 6 *** 2 *** *** *** 6 *** 2 ** NS *** 

C X W X D 12 NS 4 NS NS NS 12 NS 4 ** NS ** 

Error 84  36    84  36    

*, **, ***, and NS= P < 0.001, P < 0.01, P < 0.05, and P > 0.05, respectively. 
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Appendix VIII: Mean percent green cover (%GC) and canopy gross photosynthesis rates of three 
bermudagrasses as affected by shade, drought, or combined shade and drought in Expt. 2. 

 

zPercent green %GC was generated analyzing the digital images through SigmaScan Software. 
yValues within a column followed by the same letter are not significantly different at P = 0.05 by Fisher’s protected 
least significant difference. 
xCanopy gross photosynthesis rate was measured using LI-6400 XT portable gas exchange chamber by adding gas 
exchange rates in sunlit and shade chamber.  
 
 

Light  Treatment Weeks after treatment 
  0 1 2 3 4 5 6 
  Percent green %GCz 

Non-shade 100% ET 95.8 95.2ay 93.5a 93.7a 93.2a 85.8a 84.5a 
 50% ET 95.7 93.0b 88.3b 59.5b 52.8b 20.6b 17.4b 
 LSD0.05 NS 1.5 2.4 1.8 3.6 4.7 3.9 
Non-shade Celebration 96.0 93.7 91.6 77.7a 74.4a 52.6 50.8ab 
 Latitude 36 95.6 94.9 91.9 78.3a 74.9a 55.2 54.4a 
 Patriot 95.6 93.6 89.2 73.8b 69.6b 52.0 47.5b 
 LSD0.05 NS NS NS 2.2 4.4 NS 4.8 
Shade 100% ET 75.8 73.5a 71.0a 65.4a 58.2a 48.5a 47.1a 
 50% ET 74.9 71.1b 62.8b 53.5b 51.1b 26.8b 33.6b 
 LSD0.05 NS 2.17 3.09 4.11 4.34 3.74 3.31 
Shade Celebration 77.2a 74.2a 69.7a 66.4a 61.1a 47.8a 54.7a 
 Latitude 36 77.3a 72.9a 68.6a 62.7a 58.8a 42.3b 46.8b 
 Patriot 71.6b 69.8b 62.4b 49.3b 44.2b 23.0c 19.6c 
 LSD0.05 2.75 2.66 3.78 5.03 5.31 4.58 4.05 
  Canopy gross photosynthesis ratesx 
Non-shade 100% ET 33.5 34 32.8 32.4 29.3 25.2 25.6 
 50% ET 33.5 35.6 28.8 18.7 6.5 1.1 -5.7 
Shade 100% ET 22.7 22.3 19.3 18.6 14.0 8.7 7.1 
 50% ET 24.0 22.3 16.5 13.0 10.1 2.7 -1.7 
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Appendix IX: Mean chlorophyll a and chlorophyll b contents in mg g-1 of fresh clippings of three 
bermudagrasses as affected by shade, drought, or combined shade and drought in Expt. 2. 
Light Treatments Chlorophyll a content (mg g-1) z 

  0 4 6 
Non-shade 100% ET 2.62 1.71ay 1.86a 
 50% ET 2.58 1.02b 0.19b 
 LSD 0.05 NS 0.26 0.28 
Shade 100% ET 2.6 1.64 0.83a 
 50% ET 2.81 1.46 0.34b 
 LSD0.05 NS NS 0.08 
Shade Celebration 3.10a 1.88a 0.69a 
 Latitude 36 2.67b 1.41b 0.67a 
 Patriot 2.35b 1.36b 0.40b 
 LSD0.05 0.40 0.26 0.09 
  Chlorophyll b content (mg g-1) x 

Non-shade 100% ET 0.83 1.69a 0.88a 
 50% ET 0.84 0.44b 0.26b 
 LSD 0.05 NS 0.24 0.09 
Shade 100% ET 1.16 0.96a 0.54 
 50% ET 1.02 0.58b 0.49 
 LSD0.05 NS 0.20 NS 
Shade Celebration 1.26 0.77ab 0.51 
 Latitude 36 1.02 0.95a 0.51 
 Patriot 0.99 0.58b 0.52 
 LSD0.05 NS 0.25 NS 

zChlorophyll a content was determined in mg per g of fresh clippings using the equation described by Inskeep and 
Bloom (1985). 
yValues within a column followed by the same letter are not significantly different at P = 0.05 by Fisher’s protected 
least significant difference. 
xChlorophyll b content was determined in mg per g of fresh clippings using the equation described by Inskeep and 
Bloom (1985). 
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Appendix X: Total chlorophyll content in mg g-1 of fresh clippings of three bermudagrasses as 
affected by shade, drought, or combined shade and drought in Expt. 2. 
Light Treatments Total chlorophyll content (mg g-1) z 

  0 4 6 
Non-shade 100% ET 3.49 3.39a 2.74a 
 50% ET 3.44 1.46b 0.44b 
 LSD 0.05 NS 0.16 0.26 
Shade 100% ET 3.75 2.59a 1.36a 
 50% ET 3.83 2.03b 0.83b 
 LSD0.05 NS 0.13 0.07 
Shade Celebration 4.35a 2.65a 1.2a 
 Latitude 36 3.68b 2.35b 1.18a 
 Patriot 3.33c 1.94c 0.91b 
 LSD0.05 0.29 0.16 0.09 

zTotal Chlorophyll content is the sum of chlorophyll a and chlorophyll b content. 
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