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Abstract: 

 

Manduca sexta is a widely used model insect. The genome sequence was determined using 

454 sequencing technology, and Official Gene Set (OGS) 2.0 was generated with help from 

RNA-seq data and manually annotation by researchers all over the world. To improve gene 

models, we developed methods to compare and select gene models by MAKER2, 

Cufflinks, Oases and Trinity, and generate a new gene set, called MCOT 1.0. Compared 

with OGS 2.0, MCOT 1.0 has higher quality score as evaluated by BUSCO, and with nearly 

50% more unique proteins being predicted. 

The immune signaling pathways are critical for proper defense against pathogens for 

insects. To facilitate systematic studies of M. sexta immune system, we have identified and 

verified participant genes in the genome of M. sexta. We annotated 186 genes which encode 

199 proteins in Toll, Imd, MAPK-JNK-p38, JAK-STAT, autophagy, apoptosis and RNA 

interference pathways, analyzed their evolution and mRNA levels in different tissues and 

different developmental stages.  

To date, 67 cDNA libraries have been sequenced from different tissues and different 

developing stages of M. sexta. However, there is no systematic analyzation of these RNA-

seq data. We examined each library, found possible contaminant reads in each of these 

libraries, compared library similarity based on associated genes, and analyzed gene 

expression in different libraries. We found that most genes were expressed in library-

specific manner, and their expression patterns would help functional study in the future. 

Stress Responsive Peptides (SRPs) are cytokines activated under biotic and abiotic stresses, 

which may act as key signaling molecules for humoral and neural regulation of immune or 

other responses. Eight SRPs were identified in the genome of M. sexta. With similar amino 

acid sequence, their functions are very different. SRP6 can inhibit the growth of larvae, 

while SRP1 and SRP2 can induce the expression of different anti-microbial peptides. We 

verified activation site of SRP1 and SRP2 with MALDI-MS, and identified PAP3 as the 

upstream enzyme which can activate them. This study will help understand the roles of 

insect cytokines. 
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CHAPTER I 
 

 

INTEGRATED MODELING OF PROTEIN-CODING GENES IN THE MANDUCA 

SEXTA GENOME USING RNA-SEQ DATA FROM THE BIOCHEMICAL MODEL 

INSECT 

Xiaolong Caoa, Haobo Jiangb 

a Department of Biochemistry and Molecular Biology, Oklahoma State University, 

Stillwater, OK 74078, USA 
b Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, 

OK 74078, USA 

 

Key words: gene annotation; de novo assembly; tobacco hornworm; automated gene 

modeling; arthropod genomics. 

Abbreviations: OGS, official gene set; ORF, open reading frame; L, length; ML, match 

length; QL, query length; SL, subject length; M, MAKER; C, Cufflinks; T, Trinity; O, 

Oases; U, UniProt Arthropoda; Y, C/T/O; S, similarity ratio of lengths; MLI, match length 

index; S1/S2, Selection 1 or 2; “P”, perfect; “N”, near perfect; “O”, okay; “B”, bad; “W”, 

worst. 
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Abstract  

The genome sequence of Manduca sexta was recently determined using 454 technology. 

Cufflinks and MAKER2 were used to establish gene models in the genome assembly based on 

the RNA-Seq data and other species’ sequences. Aided by the extensive RNA-Seq data from 

50 tissue samples at various life stages, annotators over the world (including the present 

authors) have manually confirmed and improved a small percentage of the models after 

spending months of effort. While such collaborative efforts are highly commendable, many of 

the predicted genes still have problems which may hamper future research on this insect 

species. As a biochemical model representing lepidopteran pests, M. sexta has been used 

extensively to study insect physiological processes for over five decades. In this work, we 

assembled Manduca datasets Cufflinks 3.0, Trinity 4.0, and Oases 4.0 to assist the manual 

annotation efforts and development of Official Gene Set (OGS) 2.0. To further improve 

annotation quality, we developed methods to evaluate gene models in the MAKER2, 

Cufflinks, Oases and Trinity assemblies and selected the best ones to constitute MCOT 1.0 

after thorough crosschecking. MCOT 1.0 has 18,089 genes encoding 31,666 proteins: 32.8% 

match OGS 2.0 models perfectly or near perfectly, 11,747 differ considerably, and 29.5% are 

absent in OGS 2.0. Future automation of this process is anticipated to greatly reduce human 

efforts in generating comprehensive, reliable models of structural genes in other genome 

projects where extensive RNA-Seq data are available. 

 

1. Introduction 
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With five larval instars, a large body size and hemolymph volume, and a simple larval body 

structure, the tobacco hornworm Manduca sexta has been widely employed as a model 

organism to study basic physiological processes in insects, such as cuticle formation, neural 

transmission, hormonal regulation, nutrient transport, intermediary metabolism, and immune 

responses (Hopkins et al., 2000; Shield and Hildebrand, 2001; Riddiford et al., 2003; Kanost 

et al., 1990; Arrese and Soulages, 2010; Jiang et al., 2010). Acquired knowledge of the 

molecular mechanisms underlying these processes would lead to new means of pest control, 

because M. sexta may be a good representative of some serious agricultural pests in the order 

of Lepidoptera. Several transcriptome analyses have yielded sequences and expression patterns 

of genes related to immunity, digestion, and olfaction (Zou et al., 2008; Pauchet et al., 2010; 

Zhang et al., 2011; Grosse-Wilde et al., 2011; Gunaratna and Jiang, 2013), but the potential of 

this model species is far from fulfillment partly due to the lack of its genome sequence. The 

shortage of complete protein sequences based on correctly modeled genes substantially 

hampers proteomic studies, for instance, of the immune complex formed around 

entomopathogens. 

Recently, the genomic DNA isolated from a single male pupa of M. sexta was pyrosequenced 

at >20-fold coverage and assembled into Manduca Genome Assembly 1.0 (Msex 1.0) using 

Newbler with Atlas-GapFill (Kanost et al., 2016). Sixty cDNA libraries, representing mRNA 

samples of whole larvae, organs and tissues at various developmental stages, were sequenced 

using Illumina technology, yielding >350 gigabyte data. Some of these RNA-Seq datasets and 

other known M. sexta cDNA sequences were aligned to the reference genome to generate 

Manduca Cufflinks Assembly 1.0 and 1.0b using Bowtie, TopHat, and Cufflinks. Aided by the 

available sequence data from M. sexta and other arthropod species, approximately 18,000 
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genes in Msex 1.0 were predicted by MAKER2 generating the Manduca Official Gene Set 1.0 

(OGS 1.0). Some of the OGS 1.0 models were examined by annotators to detect errors using 

Manduca Cufflinks 1.0/1.0b, Trinity 3.0, and Oases 3.0 sequences. The latter two sets of gene 

transcripts, assembled solely based on the RNA-Seq datasets, were extensively used along with 

Cufflinks 1.0/1.0b to improve annotation quality. Over a period of more than one year, 2,498 

structural genes were successfully curated by approximately 70 researchers (Kanost et al., 

2016). PASA2 (http://pasa.sourceforge.net/) was then used to select the best models from the 

MAKER2, Cufflinks, Trinity, Oases, and manual assemblies to generate Manduca OGS 2.0 

(Kanost et al., 2016). 

During the course of gene cross-examination, we came to realize that some of the lessons 

learned can be valuable to future genome projects. For example, as extensive RNA-Seq data 

are becoming a norm, genome-dependent and independent assemblies are critically important 

in the validation and perfection of MAKER2 gene models. Due to limitations of the programs 

used to produce OGS 2.0 (Table 1), an integration of their outputs using computer programs 

may greatly reduce human efforts in sequence cross-examination and considerably increase 

the percentage of crosschecked gene models. To achieve these goals, we have developed 

methods to evaluate models in the MAKER, Cufflinks, Oases and Trinity assemblies. As proof 

of principle, a reliable, nearly complete set of protein sequences (MCOT 1.0) is generated to 

facilitate proteomic research in this model insect. In the following, we report the generation of 

Cufflinks 3.0, Oases 4.0 and Trinity 4.0 gene models, discuss their advantages, shortcomings 

and integration, and describe how MCOT 1.0 was developed and compared with OGS 2.0. 

 

http://pasa.sourceforge.net/
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2. Materials and Methods 

2.1. Data and program acquisition 

Manduca Genome Assembly 1.0 (Msex 1.0) and gene models in Manduca Official Gene Sets 

1.0 (OGS 1.0, Table S1) and 2.0 (OGS 2.0) and Cufflinks Assembly 1.0 (Cufflinks 1.0) 

(Kanost et al., 2016) were downloaded from Manduca Base 

(ftp://ftp.bioinformatics.ksu.edu/pub/Manduca/). Universal protein sequences in UniProtKB 

Arthropoda (Table S1) were downloaded from 

ftp://ftp.ebi.ac.uk/pub/databases/fastafiles/uniprot/. The RNA-Seq datasets (Kanost et al., 

2016) were acquired from Dr. Gary Blissard at Cornell University. SAMtools (0.1.19) (Li et 

al., 2009), Bowtie2 (2.2.1) (Langmead and Salzberg, 2012), TopHat (2.0.11) (Trapnell et al., 

2009), Cufflinks (2.1.1) (Trapnell et al., 2012; Roberts et al., 2011), Trinity (20131110) 

(Grabherr et al., 2011), Oases (0.2.08) (Schulz et al., 2012), and BLAST+ (2.2.29) (Camacho 

et al., 2009) were downloaded from http://samtools.sourceforge.net/, http://bowtie-

bio.sourceforge.net/bowtie2/index.shtml, http://ccb.jhu.edu/software/tophat/index.shtml, 

http://cufflinks.cbcb.umd.edu/, http://trinityrnaseq.sourceforge.net/, 

https://www.ebi.ac.uk/~zerbino/oases/, 

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/ and installed on a local 

supercomputer according to their manuals. 

2.2. Generation of Cufflinks 3.0 

The 60 RNA-Seq datasets were aligned to Msex 1.0 using TopHat at settings for three different 

read types: single end, paired end, and strand specific. “--read-realign-edit-dist 0” was selected 

to increase accuracy of read alignments. Cufflinks was used to translate the accepted hits 

ftp://ftp.bioinformatics.ksu.edu/pub/Manduca/
ftp://ftp.ebi.ac.uk/pub/databases/fastafiles/uniprot/
http://samtools.sourceforge.net/
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://ccb.jhu.edu/software/tophat/index.shtml
http://cufflinks.cbcb.umd.edu/
http://trinityrnaseq.sourceforge.net/
https://www.ebi.ac.uk/~zerbino/oases/
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/
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generated by TopHat to separate GTF files, with the “-u” command enabled to allow more 

accurate handling of multiple reads mapped to the same region. Cuffmerge was employed to 

combine GTF files of all the libraries to make the final GFF file (see scripts in the Supplemental 

Materials), from which transcript sequences were extracted using gffread to form Cufflinks 3.0 

dataset (Table S1). 

2.3. Reads treatment, normalization, and de novo assembling 

Paired end reads were trimmed to 80 bp using FASTX-Toolkit 

(http://hannonlab.cshl.edu/fastx_toolkit/index.html), with the forward reads combined in one 

file and the reverse ones in another. To handle the RNA-Seq data with 256 GB RAM of the 

supercomputer, the number of the reads was reduced according to Haas et al (2013). The Perl 

scripts provided in Trinity were used to perform in silico read normalization with maximum 

coverage set to 500. The single end and strand-specific reads were combined in one file for 

normalization at the same maximum coverage. After all normalized reads were pooled, Trinity 

was used to assemble the reads as paired end reads, generating Trinity 4.0 (Table S1). For 

Oases, four hash lengths (k: 25, 27, 29, 31) were chosen to assemble the reads as single end 

reads in four separate runs. Scaffolding was not allowed, preventing the stretches of Ns in 

assembled transcripts. The transcript files were then merged according to the Oases manual, 

generating Oases 4.0 (Table S1). In addition, reads that cannot be aligned to Msex 1.0 by 

TopHat were combined, trimmed to 80 bp, and assembled as paired end reads using Trinity. 

This new assembly (Trinity 4.0b, Table S1) was later used to identify unmapped genes, some 

of which may reside on the unsequenced W chromosome. 

2.4. Gene translation and sequence comparison 

http://hannonlab.cshl.edu/fastx_toolkit/index.html
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Gene transcripts in Trinity 4.0 and Oases 4.0 were translated to polypeptide sequences using 

TransDecoder in Trinity (http://transdecoder.sourceforge.net/) (Haas et al., 2013), with 

minimum protein length set at 60. For removing redundant sequences in the de novo 

assemblies, identical proteins were identified in one batch using Python scripts and only one 

of each group was kept in the final set of unique protein sequences. To identify the best 

sequences in the comparisons between assemblies, the BLOSUM62 scoring matrix in the 

BLAST source code was changed to -100 for all 190 non-identical residue pairs. As such, only 

identical or near identical sequences would be detected by BLASTP with a positive score of 

alignment. The gap opening penalty was set to the maximum (32,767) to avoid gapped 

matches. A batchwise BLASTP comparison of the two sets of translated sequences was 

performed, with the tabular outputs (e.g. match length, query length, subject length) exported 

to Excel for further analysis. Cufflinks 3.0 translations were used as queries to search Trinity 

4.0 or Oases 4.0 translations. 

2.5. Cross-examination and selection of protein sequences from different assemblies 

As illustrated in the flowchart (Fig. 1), the BLASTP results from comparisons of the unique 

protein sequences in Cufflinks 3.0, Trinity 4.0, and Oases 4.0 were examined by two methods 

to establish Selections 1 and 2. The results from one method were then cross-examined by the 

other to yield a dataset COT, later becoming a major part of MCOT 1.0. 

In the length-based method, the Cufflink-Trinity comparison resulted in pairs with match 

lengths (TMLs, T for Trinity) and Cufflinks lengths (CLs), and their ratios were used to 

determine whether or not the Trinity hits would be kept (Fig. 1A). If TML/CL was ≤ 0.7, the 

Trinity hits were ignored and corresponding Cufflinks sequences were further processed: for 

http://transdecoder.sourceforge.net/
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ones without ambiguous residues (Xs), their lengths (CLs) were directly used as CL*s; for the 

others with Xs, 70% of the CL values were used as CL*s. On the other hand, if TML/CL was 

> 0.7, the Trinity sequences were considered in the next step. The same procedure was carried 

out to compare Cufflinks and Oases translations and select the Oases ones (OML/CL > 0.7) 

for further consideration, together with the selected Cufflinks and Trinity sequences. The ones 

with the largest values (CL*, TL, or OL) were kept in Selection 1. If the values were equal, 

retention priority was given to the concerning sequences in the following order: Cufflinks, 

Trinity, and then Oases. 

In the ratio-based method, Cufflinks 3.0 translations were used as queries to search arthropod 

universal/UniProt (U) sequences using BLASTP with the original BLOSUM62 matrix (Fig. 

1B). Results were kept if identity >35% and ML/QL >0.7 or ML >200. When several regions 

were matched, ML equals the sum of match lengths between the same query and subject 

sequences. Up to five top hits were used to calculate UL (for UniProt length: mean ± SD) and 

ID of the best match was kept. Lengths (CL, TL, OL and UL) of the Cufflinks 3.0, Trinity, 

Oases, and UniProt proteins, correlated by the BLASTP searches, were used to calculate 

similarity ratios CUS, TUS, and OUS. For example, TUS (i.e. Similarity ratio of lengths in a 

T-U comparison) was defined as TL/UL or UL/TL, whichever is between 0 and 1, so that a 

TUS close to 1 indicates high similarity between this Trinity-UniProt pair. Depending on the 

absence or presence of Xs in the Cufflinks translations, CUS was directly used or adjusted to 

70% as CUS*. The proteins with the highest ratios (CUS*, TUS or OUS) will be kept in 

Selection 2 and, if the values were equal, the priority order of C > T > O was used to determine 

which ones to retain. 
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To cross-examine the two selections, the length (L) and match length (ML) of sequence Y (C 

or T or O) in Selection 2 (S2), UL of its correlated UniProt sequence, L and ML of its correlated 

sequence in Selection 1 (S1) were used to calculate YUSS2 – YUSS1 (Fig. 1C). YUS = L/UL 

or UL/L, whichever is 0 to 1. Sequences in S1 were kept if their YUSS2 – YUSS1 < 0.3, 

MLS1/CL > 0.95, or MLS1/CL > 0.8 when Cufflinks sequence contains Xs (route 1). Sequences 

in S2 were retained, if their YUSS2 – YUSS1 > 0.5 and LS2/CL > 0.7 (route 2). The remaining 

sequence pairs in the two selections were manually scrutinized to determine which ones to 

keep (route 3). In most cases, S1 and S2 were identical (YUSS2 = YUSS1). 

2.6. Classification of sequence comparison results 

If the lengths of a query sequence (QL), subject sequence (SL), and match length (ML) were 

identical (QL = SL = ML), the match was considered as “P” (for perfect). If 

(ML/QL)×(ML/SL) > 0.95 (e.g. when ML = QL, ML/SL > 0.95), the match was “N” (for near 

perfect). The 3rd and 4th categories “O” (for okay) and “B” (for bad) were separated based on 

match length index (MLI), defined as (ML/QL)/0.7 + ML/200. If MLI was ≥ 1, the match was 

“O”. In other words, even if QL is much greater than ML, >200 residues match is significant. 

Or, when ML/200 is small, >70% of QL falls into the matched region is considerable. If MLI 

was < 1, the match was “B”. In the last category of “W” (for worst), the query sequences had 

no match. When OGS 1.0 and Cufflinks 3.0 datasets were compared, OGS 1.0 IDs with “B” 

and “W” matches were recorded. 

2.7. Identification of proteins present only in OGS 1.0 

Although accuracy of the gene models in OGS 1.0 is relatively low, some are unique (Table 

1). Since Cufflinks is more sensitive than Trinity and Oases (Yandell and Ence, 2012), 
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MAKER2 proteins were used as queries to search the Cufflinks 3.0 translations using BLASTP 

with the modified scoring matrix, according to Section 2.4. Based on the results, those 

sequences in the categories of “B” or “W” were stored as “M” (for MAKER2 unique proteins), 

later incorporated into MCOT 1.0.  

2.8. Identification of unmapped genes in Trinity 4.0b 

Since a male pupa was used for genome sequencing, genes located on the W chromosome are 

not present in Msex 1.0. In addition, the genome assembly probably lacks genes or gene pieces 

on other chromosomes, as gaps between scaffolds or NNN regions. Trinity 4.0b was used to 

uncover transcripts of such unmapped genes. Based on results of the MCOT-Trinity 4.0b 

comparison, Trinity 4.0b protein sequences in the categories of “B” or “W” were kept for 

BLASTP search of arthropod UniProt sequences using the original BLOSUM62 scoring 

matrix. Hits with ML > 100, identity > 35%, and minimum/maximum of ML, QL and SL > 

0.7 were combined with the proteins in “M” (Section 2.7) and “COT” (Section 2.5) to generate 

MCOT 1.0 (Table S1) after redundant sequences were removed. The redundant ones were 

identical sequences or shorter sequences (with zero or three residues trimmed off from both 

ends) identical to a part of longer ones. 

 

3. Results and discussion 

3.1. Manduca Genome Assembly 1.0 

Shotgun sequencing of M. sexta genomic DNA fragments by the 454 technology resulted in a 

dataset at >20-fold of the genome size (422 ± 12 Mb), which was then assembled into Msex 
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1.0 (Kanost et al., 2016). The genome assembly consists of 20,891 scaffolds (Table 2) with 

N50 at 664 kb, much longer than the size of a typical lepidopteran insect gene. While this 

sequence set is good enough for gene modeling, other features may complicate the process: 1) 

50.5% and 41.0% of the scaffolds are <1 kb and 1 kb to 10 kb, accounting for 1.70% and 4.05% 

of the 419 Mb assembly size, respectively (Fig. 2A); 2) over 17,000 undetermined nucleotide 

(NNN) regions (average: 1,118 bp; range: 1–124,308 bp) (Fig. 2B) may contain genes or gene 

elements, even though they only account for 4.71% of the entire assembly; 3) conserved and 

novel repetitive elements, accounting for 25% of Msex 1.0 (Kanost et al., 2016), and other 

highly similar sequences may cause errors in this assembly (Cao et al., 2015). Consequently, 

gene modeling can be a challenge in some cases. 

3.2. Manduca Cufflinks Assembly 3.0 

Cufflinks uses RNA-Seq data to model genes in a genome assembly (Table 1) (Trapnell et al., 

2012; Roberts et al., 2011). We took advantage of Msex 1.0 and all 60 RNA-Seq datasets 

(Kanost et al., 2016) to generate a new assembly, namely Cufflinks 3.0. As an update of 

Manduca Cufflinks 1.0, assembled using 33 of the 60 libraries, Cufflinks 3.0 contains 36,027 

genes and 62,497 transcripts (Table 3). Cufflinks 1.0 has 37,281 genes and 64,301 transcripts. 

Perhaps, lacking RNA-Seq data support from scarcely expressed genes has split some genes 

and their transcripts into two or more pieces in Cufflinks 1.0. Analysis of Cufflinks 3.0 dataset 

indicates that 75% of the genes have one transcript form and 16% have 2 or 3 splicing alternates 

(Fig. 3). Thus, alternative splicing appears to be a minor concern for the genes predicted 

autonomously. In comparison, 96% of the MAKER2 gene models in OGS 1.0 have no splice 

variant, indicating this program is not good at predicting such variations. 
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3.3. Trinity and Oases assemblies 

Based on the same reference genome, Cufflinks and MAKER2 may incorrectly predict genes 

if there are flaws in their corresponding genomic regions (Table 1, Section 3.1). To discover 

and repair this problem, we de novo assembled transcripts using the 60 RNA-Seq datasets. 

Totally, 317,062 transcripts corresponding to 193,161 genes were established using Trinity 

and 552,733 from 88,397 genes by Oases (Table 3). Due to characteristics of the Trinity and 

Oases programs (Table 1), the transcript numbers were 5.1 to 27.2-fold higher than those in 

Cufflinks 3.0 and OGS 1.0. The percentages of short transcripts (< 512 bp) were 48% in Trinity 

and 30% in Oases, much higher than 14% in Cufflinks 3.0 or OGS 1.0 (Fig. 4A, Table S2). 

Many of the short contigs in the genome-independent assemblies were probably caused by how 

these different programs handle problems such as single nucleotide polymorphisms, low 

quality reads, and posttranscriptional modifications. While Oases allows multiple hash levels, 

merging them does not necessarily produce a better assembly than Trinity did. The gene 

number was 88,397 or 45.8% of the Trinity models, but the protein number (total: 304,367, 

unique: 130,474) was 1.95- and 2.27-fold of the Trinity proteins (total: 155,825, unique: 

57,593) (Table 3). Nonetheless, the numbers of transcripts and unique proteins in different size 

ranges (Fig. 4, A and B) did indicate that the RNA-Seq datasets were large and diverse enough 

for modeling a majority of the active genes and, in some cases, their splicing variants, all based 

on experimental evidence. 

3.4. Translation of the gene model sets 

We focus our efforts on structural genes to make M. sexta amenable to proteomic studies in 

the future. By translating their transcripts and setting the size limit to > 60 residues, we expect 
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to detect antimicrobial peptides (e.g. cecropins) but not some neuropeptides that are too small 

to tell apart from the noise of short open reading frames (ORFs). Some of the transcripts 

contain two or more ORFs, in most cases due to the merging of adjacent genes. As an extreme 

example, MAKER2 merged eleven adjacent genes into one coding for a gigantic 

“polyprotease”. While the transcript numbers in Trinity and Oases are 5.1 and 8.8 times of that 

in Cufflinks, the numbers of unique proteins are just 1.5 to 3.5 times respectively (Table 3, Fig. 

4B), suggesting that differences in the non-coding regions may also be responsible for the high 

transcript counts. Based on the protein size distribution (Table S3), Cufflinks outperforms the 

other three programs in modeling proteins longer than 2,049 residues, owing to its high 

sensitivity and reliance on Msex 1.0 (Table 1). The unique proteins shorter than 2,048 residues 

in Oases 4.0 are significantly higher in number than those in Trinity 4.0, then Cufflinks 3.0, 

and OGS 1.0 at last (Fig. 4B). Although part of this could be an artifact caused by Oases and 

Trinity to a lesser extent, the de novo assemblies well complement the other two assemblies by 

closing the gaps in Msex 1.0 (Table 1). MAKER2, primarily designed to model structural 

genes, has generated OGS 1.0. Albeit the smallest, this assembly contains unique genes. These 

genes are either scarcely expressed in the 52 tissue samples or expressed in unsampled tissues 

or stages so that they are not detected even by Cufflinks. In summary, an integration of the 

assemblies is necessary to generate a reliable, concise, and complete set of structural genes. 

3.5. Comparison of proteins in OGS 1.0 and Cufflinks 3.0 

To facilitate comparison among the four M. sexta assemblies, we modified the scoring matrix 

of BLASTP so that all non-identical residue pairs (e.g. Leu and Ile) score -100 (Section 2.4). 

Consequently, unless there is a long stretch of identical or near identical amino acid sequence 

in a query and a subject, the comparison always yields a negative score, allowing us to ignore 
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the less-than-perfect matches that cause complications. After the proteins in OGS 1.0 and 

Cufflinks 3.0 were compared, 17,907 of the pairs were 100% identical, 226 were 98.0 to 99.9% 

identical, and these two groups together accounted for 99.95% of the total matches (Table 4). 

In this way, match length (ML) in the query (Q) and subject (S) were directly used to calculate 

(ML/QL)×(ML/SL) and (ML/QL)/0.7 + ML/200 (i.e. MLI or match length index), without any 

concern about the exact percentage identity. The ML, QL, SL, (ML/QL)×(ML/SL) and MLI 

values were then used to categorize the matches into “P”, “N”, “O”, “B”, and “W” (Section 

2.6). Among the 22,310 unique proteins from the MAKER2 models, 6,481 perfectly and 2,245 

near perfectly matched those from Cufflinks 3.0 (Table 5). Together, they account for 39.1% 

of the total. Another 39.1% fall into the “O” category. Proteins in the categories “B” (678) and 

“W” (4,177) are considered to be unique, as they are not modeled by Cufflinks, Trinity, or 

Oases. The latter two are less sensitive than Cufflinks (Table 1). 

3.6. Comparison of proteins in Trinity 4.0, Oases 4.0, and Cufflinks 3.0 

Using the same method, we separately compared proteins in Cufflinks 3.0 with Trinity 4.0 and 

Oases 4.0 translations. Because translations of the MAKER2 models (Section 3.5), de novo 

assemblies, and arthropod UniProt sequences (Section 3.7) were all compared with translations 

of Cufflinks 3.0, identifications of the Cufflinks hits from these BLASTP searches serve as a 

liaison for all these datasets. The correlated protein sequences can then be evaluated to find the 

best model (Fig. 1). 

In the comparison of Cufflinks 3.0 with Oases 4.0 translations, for example, 67.8% of the total 

matched sequences had ML/QL > 0.95 (Fig. 5A). The rest of hits fell into the realms of 0.95-

0.7 (19.7%) and 0.7-0 (12.5%). We arbitrarily set the ML/QL threshold at 0.7 to identify Q 
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and S sequences representing the same gene and kept the longer ones in Selection 1 (Fig. 1A). 

Likewise we found that 39.9% of the total O-C matches had (ML/QL)×(ML/SL) > 0.95 (Fig. 

5B); 1.7% of the total had (ML/QL)/0.7 + ML/200 (i.e. match length indices or MLIs) less 

than one (Fig. 5C). Using cutoff values of 1.0 for ML/QL, 0.95 for (ML/QL)×(ML/SL), and 1 

for MLI, we categorized the matches into “P”, “N”, “O”, “B” or “W”. By correlating the results 

from T-C (Trinity 4.0 vs. Cufflinks 3.0) and O-C comparisons (Fig. 1A), we found 5,516 and 

968 of the proteins in Cufflinks 3.0 perfectly and near perfectly matched both Trinity and Oases 

models (Table 6), respectively. Among the 37,316 total hits, 26,702 (71.6%) fell into the same 

categories (P, N, O, B or W) from the comparisons, indicating that Trinity and Oases models 

are consistent in the protein-coding region at least. While 7,094 or 19.4% of the proteins were 

highly reliable (PP, NP, PN, and NN), 1,944 or 5.2% (BB, BW, WB, and WW) were probably 

modeled by Cufflinks only due to its high sensitivity (Table 1). The P/N/O proteins distributed 

normally over a broad size range; 68.7% of the B/W were short (<128 residues) (Table S4 and 

Fig. 6). Possibly the short proteins came from untranslated regions of some genes, noncoding 

RNAs, or small protein genes expressed but undetected. In contrast to these extreme categories, 

18,509 or 49.6% of the 37,316 total hits belong to the OO comparison and further efforts were 

made to select useful information from these sequences. 

3.7. Comparison of proteins in UniProtKB Arthropoda and Cufflinks 3.0 

Reliable proteins from other arthropods are useful for validating gene models. Therefore, we 

used BLASTP algorithm and the original BLOSUM62 matrix to compare query (Q) proteins 

in Cufflinks 3.0 translations with UniProtKB Arthropoda (i.e. UniProt or U) as described in 

Section 2.5. Of the 37,316 unique proteins in the Cufflinks 3.0, 30,313 or 81.2% had one to 

five matches; 7,003 had no match and may be unique in M. sexta. Their length distributions 
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were normal distributions for the ones with 1 to 5 matches, but not so for those with 0 match 

(Table S5, Fig. 7) – 3,149 or 45.0% of them were shorter than 128 residues. Some of the small 

proteins may not exist and it is also possible that BLASTP at the default settings has bias 

against short proteins. Nonetheless, assuming the sequence lengths of orthologous proteins are 

similar, we can exploit the links among UniProt, Cufflinks, Trinity, and Oases datasets to 

choose models by the ratio-based method to generate Selection 2 (Fig. 1B). 

3.8. Model selection among Cufflinks 3.0, Trinity 4.0, and Oases 4.0 

For all hits with ML/CL > 0.7, we chose the longest models for Selection 1 (S1, Fig. 1A, 

Section 2.5). When Xs (caused by NNNs) were present in the Cufflinks translations, the use of 

CL* (i.e. 0.7CL), instead of CL, allowed the de novo proteins to survive and replace the 

ambiguous Cufflinks models. To complement S1, lengths of the Trinity, Oases, Cufflinks, and 

UniProt (U) proteins, correlated through Cufflinks IDs from the T-C, T-O, and T-U 

comparisons, were used to calculate the similarity ratios TUS, CUS* and OUS (Section 2.5, 

Fig. 1B). The models with ratios closest to 1.0 were kept in Selection 2 (S2). Cross-

examination of the correlated proteins in S1 and S2 by ratio comparison (YUSS2-YUSS1) 

resulted in the retention of 36,205 proteins without Xs (Fig. 1C, route 1). Crosschecking S2 

contributed 35 proteins (route 2); manual checking improved the other 77 in S1 or S2 (route 

3). Of the 999 sequences with Xs, 996 were selected via route 1 and three via route 2. Of 36,317 

proteins without Xs, 29,612 have the same S1 and S2 result, and the rest, 6,593 keep S1 (route 

1), 35 keep S2 (route 2) and only 77 needed manual checking (route 3). 

3.9. Generation of MCOT 1.0 
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During the comparison of OGS 1.0 and Cufflinks 3.0 translations (Section 3.5), we found that 

4,855 B/W proteins in OGS 1.0 were not properly modeled by Cufflinks, possibly due to the 

limitation of detection sensitivity or scope. However, after these sequences were used as 

queries to search the de novo datasets with the length-based method, only 2,230 had B/W 

matches in both Trinity 4.0 and Oases 4.0 translations; the other ones were P/N/O. Because 

some of the P/N/O proteins were detected in the Cufflinks transcripts by TBLASTN, we 

realized that, due to its settings, TransDecoder filtered out 2,625 proteins, accounting for 

4.94% of the 53,102 Cufflinks 3.0 proteins. These 4,855 B/W proteins in OGS 1.0 were 

compared with translations of Trinity 4.0 and Oases 4.0 and model selection was performed as 

per the Cufflinks 3.0 translations. 

After comparing Trinity 4.0 and Oases 4.0 translations with Cufflinks 3.0 translations (Section 

3.8), we selected the best model for each of the 37,316 Cufflinks proteins (COT). Pooling the 

4,855 MAKER2 models (M) with B/W matches to Cufflinks resulted in 42,171 IDs, some of 

which were selected more than once. After removing them, we found 35,567 IDs, removed 

2,036 redundant sequences, eliminated 2,763 and 764 (100% identical to a part of another after 

removal of 0 and 3 residues from each end, respectively), and obtained 30,004 protein 

sequences. 

The intermediate BAM files generated by TopHat indicated that 20 to 30% of the RNA-Seq 

reads were not mapped to Msex 1.0 and may represent: 1) exons in the gaps, NNNs and W 

chromosome, 2) mitochondrial RNAs, or 3) others (e.g. polyA, mRNA of symbionts). To 

identify unmapped nuclear genes of M. sexta, we generated Trinity 4.0b using the unmapped 

reads (Section 2.3) and adopted relatively strict standards to scrutinize the Trinity sequences 

(Section 2.8). Of the 39,809 unique proteins (> 60 residues) translated from Trinity 4.0b, 
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10,534 had no match (W) with the 30,004 proteins; 212 had bad matches. In these 10,746 B/W 

proteins, only 1,183 (1,162 unique) had good UniProt matches. Some of the other 9,563 came 

from bacteria. The 1,162 proteins were combined with the 30,004 to generate MCOT 1.0. Of 

the 31,166 protein sequences in MCOT 1.0, 1,162 are from Trinity 4.0b, 7,118 are from Trinity 

4.0, 2,559 from Oases 4.0, 3,715 from OGS 1.0 and 16,612 from Cufflinks 3.0. 31% of those 

proteins from Trinity or Oases were updated from their original versions in Cufflinks 3.0 

translations. 3.7% were newly added genes in unsequenced genome regions including the W 

chromosome. 

3.10. Comparison of MCOT 1.0 with OGS 2.0 

There are 31,166 protein sequences in MCOT 1.0. Since they are originally from MAKER2, 

Cufflinks or Trinity 4.0b models, we traced back to their gene IDs, and found 18,089 protein-

coding genes gave rise to 28,449 transcripts after model selection and 31,166 proteins (Table 

7). In comparison, there are 14,165 genes, 18,979 transcripts, and 20,888 proteins in OGS 2.0 

(after being filtered by the same method for MCOT 1.0). There are 21.7% fewer genes, 29.7% 

fewer transcripts and 33.0% fewer proteins in OGS 2.0 compared to MCOT 1.0 after counting 

genes, transcripts and proteins with exactly the same standard as MCOT 1.0. We then used the 

protein sequences in MCOT 1.0 as queries to search OGS 2.0 using BLASTP and the modified 

scoring matrix. The results showed 8,034 P, 2,178 N, 11,747 O, 996 B, and 8,211 W, indicating 

that 32.8% were P/N, 37.7% were O, and 29.5% were B/W (Table 8). The differences are 

substantial between the two assemblies. MCOT 1.0 is more inclusive than OGS 2.0 in terms 

of covering proteins. To facilitate the usage of MCOT 1.0 for proteomic studies, we have 

developed a naming system, which provides information of their sources, identification, 

matching qualities, and reference to OGS 2.0 (Fig. 8).  
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To estimate gene modeling quality, we use BUSCO to check the quality of all gene models 

used discussed above (Simão et al., 2015). With a single-copy orthologous gene database, 

BUSCO can assess completeness of genome assembly and modeled gene set. The result shows 

that MCOT 1.0 outperforms all other programs, with 93% complete genes modeled whereas 

OGS 2.0 only have 84% (Table 9). 

3.11. Additional information from Cufflinks 3.0 

A major part of MCOT 1.0 is refined from Cufflinks 3.0 models which includes 36,027 genes 

and 62,497 transcripts (Table 3). Using Transdecoder, we found 20,289 of the Cufflinks genes 

were not translated to proteins (based on the definition in Section 2.4), suggesting that most of 

them are noncoding. While 22,615 of the Cufflinks genes are absent in MCOT 1.0, the 

difference of 2,326 indicated that some of them may have been correctly merged during MCOT 

1.0 generation. Of the 20,289 noncoding genes, the most complex gene (4,000 bp in length, 

71.5% of A/T) have 33 alternative splicing forms and could be a long, noncoding RNA. Length 

distributions of the coding and noncoding transcripts in Cufflinks 3.0 (Fig. 9) were strikingly 

different: the coding ones are a lot longer. Surprisingly, 4,144 noncoding genes are 2,049–

8,192 bp and 183 are > 8,193 bp. While MCOT 1.0 focuses on structural genes, the non-coding 

genes are another world to explore in the future. 

3.12. Summary 

We developed an integrated approach to select the best models based on BLASTP comparison 

of the Cufflinks dataset with sequences in OGS 1.0 and the de novo assemblies. The modified 

scoring matrix greatly simplified the sequence comparison by keeping pairs with >98% 

identity. Correlated by Cufflinks IDs, the models in different assembles (Trinity 4.0, Oases 
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4.0, OGS 1.0, and UniProt) were compared and chosen based on length-derived parameters. 

By incorporating unique sequences in OGS 1.0 and unmapped genes in the Trinity 4.0b, we 

generated MCOT 1.0, which has 60% more proteins than OGS 2.0. As extensive RNA-Seq 

data are available for most genome projects nowadays, automation of our procedures will 

produce comprehensive models of protein-coding genes in the future. 
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Tables 

Table 1.  Comparison of the four gene prediction programs 

Program Algorithm Advantages Disadvantages 

Cufflinks 

map reads to the reference genome with 
TopHat and Bowtie to identify splice 

sites, and then use outputs of TopHat to 

create gene models 

most sensitive; accurate splicing sites; 
GTF file for gene annotation; fast, less 

computation; more tolerant to low 

quality reads 

carry errors in the genome scaffolds 
(gaps, NNNs, misassembling, etc.); 

many isoforms from closely located and 

related genes do not exist 

Maker2 

align EST and protein sequences to 

genome to produce ab initio gene 

predictions and can use RNA-Seq data 
to improve the prediction. 

less redundant; model genes poorly 
represented in the RNA-Seq datasets; 

GTF file for gene annotation 

low quality of predictions, such as extra 

or skipped exons, inaccurate splicing 

junctions, and merging of adjacent 
genes; biased on proteins 

Trinity 
De novo assemble transcripts using 
RNA-Seq data 

not influenced by problems in the 
genome assembly 

single hash level (k: 25); less sensitive 

than Cufflinks; redundant transcripts; 

no GTF file; SNPs etc. 

Oases 
De novo assemble transcripts using 
RNA-Seq data, and use Velvet for 

contig assembling 

accurate, not influenced by problems in 

the genome assembly, 

multiple hash levels to improve quality 
of transcript assembly 

less sensitive than Cufflinks, redundant 

transcripts; intense computation for 

large datasets; no GTF file; SNPs and 
other variations 

 

Table 2.  Summary statistics of M. sexta scaffolds in Msex 1.0 (data from Kanost et al., 

2016) 

size range number 
% of total 

number 
length 

% of total 

length 

NNN 

number 
NNN length 

% of NNN 

length 

<1 x103 10,543 50.5 7,516,906 1.8 13 13 0.00 

103–104 8,572 41.0 16,986,901 4.1 340 551,049 3.24 

104–105 1,083 5.2 40,475,711 9.6 3,568 4,970,857 12.28 

105–106 604 2.9 209,932,343 50.0 9,576 10,185,979 4.85 
>106 89 0.4 144,530,018 34.5 4,188 4,061,178 2.80 

total 20,891 100 419,441,879 100 17,685 19,769,076 4.71 

 

Table 3.  Numbers of genes, transcripts, and proteins predicted by different programs   

program assembly genes transcripts proteins unique proteins 

MAKER2 OGS 1.0 18,750 20,317 22,310 22,310 

Cufflinks Cufflinks 3.0 36,027 62,497 53,102 37,316 

Trinity Trinity 4.0 193,161 317,062 155,825 57,593 

Oases Oases 4.0 88,397 552,733 304,367 130,474 
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Table 4.  Distribution of numbers of matched proteins over sequence identity in the BLASTP 

comparison of the protein sequences in OGS 1.0 and Cufflinks 3.0 

Identity (%) Count 
% of total 

counts 

96-97 1 0.01 

97-98 8 0.04 

98-99 58 0.32 

99-100 168 0.94 

100 17,672 98.69 

 

Table 5.  BLASTP comparison of OGS 1.0 and Cufflinks 3.0 models 

category count 
% of total 

counts 

P (perfect) 6,481 29.05 

N (near perfect) 2,245 10.06 

O (okay) 8,729 39.13 

B (bad) 678 3.04 

W (worst) 4,177 18.72 

total 22,310 100 

  

Table 6.  BLASTP comparison of Cufflinks 3.0, Trinity 4.0, and Oases 4.0 models 

Cufflinks 
Oases 

P N O B W 

Trinity 

P 5,516 407 3,490 178 228 

N 203 968 1,511 39 22 

O 1,592 824 18,509 796 361 

B 22 6 213 325 89 

W 151 21 315 146 1,384 

 

 

Table 7.  Summary statistics of MCOT 1.0 and OGS 2.0 

 MCOT 1.0 OGS 2.0 

gene # 18,089 14,165 

transcript # 28,449 18,979 

final protein # 31,166 20,888 
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Table 8.  Comparison of MCOT 1.0 and OGS 2.0 

Query to Subject P N O B W 

MCOT1.0 to OGS2.0 8,034 2,178 11,747 996 8,211 

 

 

Table 9.  BUSCO estimation of different gene models 

Gene set Size BUSCO assessment results 

OGS 1.0 20,137 C:82%[D:10%],F:9.0%,M:8.4% 

OGS 2.0 27,404 C:84%[D:37%],F:8.5%,M:7.1% 

CufflinksV3 53,102 C:76%[D:47%],F:8.7%,M:14% 

TrinityV4 155,825 C:90%[D:51%],F:4.6%,M:4.3% 

OasesV4 304,367 C:78%[D:72%],F:13%,M:7.9% 

TrinityW 43,871 C:54%[D:22%],F:21%,M:24% 

MCOT 1.0 31,166 C:93%[D:32%],F:3.4%,M:2.5% 

*C, complete. D, duplicated. F, fragmented. M, missing. 
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Table S1.  Datasets generated or used in this study and their descriptions 

Name of Dataset Description 

Msex 1.0 Manduca Genome Assembly 1.0 generated by Newbler with Atlas-GapFill 

Cufflinks 3.0 RNA-Seq reads aligned to the genome by TopHat; genes modeled by Cufflinks 

Trinity 4.0 RNA-Seq reads normalized and assembled by Trinity 

Trinity 4.0b Trinity assembly of RNA-Seq reads not aligned to the genome 

Oases 4.0 RNA-Seq reads normalized and then assembled by Oases with four different hash lengths 

OGS 1.0 Genes modeled based on the genome sequence by MAKER2 

OGS 2.0 OGS 1.0 improved by manual annotation and PASA2 using Cufflinks and de novo assemblies    

Uniprot Arthropoda Downloaded from Uniprot database on April 15, 2014 

MCOT 1.0 Assembled using Msex 1.0, Cufflinks 3.0, Trinity 4.0 & 4.0b, Oases 4.0, and Uniprot Arthropoda  

 

 

Table S2.  Transcript length distribution of different modeling programs 

size range (bp) 
frequency percentage 

MAKER2 Cufflinks Trinity Oases MAKER2 Cufflinks Trinity Oases 

<128 64 1,391 0 151 0.32 2.23 0.00 0.00 

128–256 674 2,365 64,982 45,369 3.35 3.78 20.50 8.21 

257–512 2,154 5,162 88,035 121,868 10.70 8.26 27.77 22.05 

513–1,024 3,897 10,476 54,326 131,931 19.35 16.76 17.13 23.87 

1,025–2,048 4,593 13,572 39,500 118,958 22.81 21.72 12.46 21.52 

2,049–4,096 4,566 13,990 35,656 88,667 22.67 22.39 11.25 16.04 

4,097–8,192 3,263 11,530 27,919 38,658 16.20 18.45 8.81 6.99 

8,193–16,384 850 3,547 6,450 6,481 4.22 5.68 2.03 1.17 

>16,385 76 464 193 650 0.38 0.74 0.06 0.12 

total 20,317 62,497 317,062 552,733 100 100 100 100 

 
 

Table S3.  Unique protein length distribution of different modeling programs 

size range 
(aa) 

frequency percentage 

MAKER2 Cufflinks Trinity Oases MAKER2 Cufflinks Trinity Oases 

<64 580 869 1,740 4,737 2.60 2.33 3.02 3.63 

64–128 4,825 6,175 13,293 39,111 21.63 16.55 23.08 29.98 

129–256 5,201 7,026 11,437 35,350 23.31 18.83 19.86 27.09 

257–512 6,460 11,859 16,816 32,388 28.96 31.78 29.20 24.82 

513–1,024 3,771 7,820 10,255 14,580 16.90 20.96 17.81 11.17 

1,025–2,048 1,212 2,711 3,362 3,729 5.43 7.27 5.84 2.86 

2,049–4,096 232 626 592 515 1.04 1.68 1.03 0.39 

4,097–8,192 25 159 83 52 0.11 0.43 0.14 0.04 

8,193–16,384 3 61 15 12 0.01 0.14 0.03 0.00 

16,385–32,768 1 10 0 0 0.00 0.03 0.00 0.00 

total 22,310 37,316 57,593 130,474 100 100 100 100 
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Table S4.  Length distribution of the Cufflinks 3.0 proteins with P/N/O or B/W matches  

length 
count percentage 

B/W P/N/O B/W P/N/O 

<64 293 94 15.07 1.33 

64–128 1,042 802 53.60 11.31 

129–256 258 1,266 13.27 17.85 

257–512 296 2,796 15.23 39.41 

513–1024 40 1,708 2.06 24.08 

1,025–2,048 15 382 0.77 5.38 

2,049–4,096 0 40 0 0.56 

4,097–8,192 0 6 0 0.08 

 

 

Table S5.  Length distribution of Cufflinks 3.0 proteins with different numbers of hits in UniProt 

length 
match number 

0 1 2 3 4 5 

<64 524 53 44 28 21 199 

64–128 2,625 448 473 309 326 1,994 

129–256 1,174 636 838 523 661 3,194 

257–512 1,590 1,092 1,259 806 1,234 5,878 

513–1,024 827 945 1,061 561 874 3,552 

1,025–2,048 223 334 506 238 270 1,140 

2,049–4,096 36 106 89 63 97 235 

>4,096 4 101 33 37 26 29 

total 7,003 3,715 4,303 2,565 3,509 16,221 
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Figures 

 
Fig. 1.  Scheme of sequence comparison and selection.  A) The length-based comparison of 

Cufflinks (C), Trinity (T), and Oases (O) protein sequences to generate Selection 1 (S1).  B) 

The ratio-based comparisons (C-U, T-U and O-U) to generate Selection 2 (S2).  C) Cross-

examination of S1 and S2 to generate COT, a major component of MCOT 1.0. 
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Fig. 2.  Length distributions of Scaffolds and NNN regions.  A) Percentage of scaffold 

numbers and sizes; B) lengths of NNN regions and corresponding scaffolds. 

 

 

Fig. 3.  Percentages of genes with 1, 2, 3, 4, 5, or ≥ 6 splicing forms based on Cufflinks 3.0 

(left) and MAKER2-generated OGS 1.0 (right) 
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Fig. 4.  Size distributions of transcripts (A) and unique proteins (B) predicted by the four 

programs. 
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Fig. 5.  Distributions of ML/QL (A), (ML/QL)×(ML/SL) (B), and (ML/QL)/0.7 + ML/200 (C) 

values from Cufflinks-Oases comparison. 

 

 

Fig. 6.  Size distributions of unique Cufflinks proteins in the P/N/O (red) and B/W (gray) 

categories after comparison with the de novo assemblies. 
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Fig. 7.  Size distributions of unique Cufflinks proteins with 0, 1, 2, 3, 4, and ≥ 5 UniProt hits. 

 

 

Fig. 8.  Naming of MCOT 1.0 sequences.  In gene “MCOT.X#”, X stands for “M” 

(MAKER2), “C” (Cufflinks 3.0) or “W” (Trinity 4.0b) to indicate its original source (before 

BLAST search and model selection), and # is the 5-digit ID (e.g. 02367). Transcripts are named 

“MCOT.X#.#”, where the second # (1, 2 …) stands for the 1st/2nd/… transcript from the same 

gene. Likewise proteins are named “MCOT.X#.#.#.XYZ#V”, where the third # represents the 

1st/2nd/… protein from the same transcript. If one gene generates one transcript and then one 

protein, the second and third #’s are marked as “0”. Multicistronic genes are rare, but do exist 

in insects. The 2nd X indicates the final sequence source of “M”, “C”, “T (Trinity 4.0)”, “O” 

(Oases 4.0), or “W” (unmapped, including those on the W chromosome). Y and Z are the 

quality of matching with Trinity 4.0 and Oases 4.0, respectively: “P” (perfect), “N” (near 

perfect), “O” (okay), “B” (bad), “W” (worst), or “X” (data unavailable). The fourth # is the 

number of kept UniProt hits (0 to 5 or X for data unavailable). V marks the quality of matching 

with OGS 2.0: if “P”, “N” or “O”, the corresponding OGS 2.0 ID is added next to “|”; otherwise 

“X” is added to indicate no good match. 
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Fig. 9.  Size distributions of the coding and noncoding transcripts in Cufflinks 3.0. 
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Abbreviations: Atg, autophagy-related protein; aPKC, atypical protein kinase C; CF, 

control fat body; CH, control hemocytes; IF, induced fat body; IH, induced hemocytes; 

Deaf, deformed epidermal autoregulatory factor; Dnr1, defense repressor-1; Dsp1; Dorsal 

switch protein-1; ECSIT, evolutionarily conserved intermediate in Toll pathways; FPKM, 

fragments per kilobase of exon per million fragments mapped; GPRK, G protein-coupled 

receptor kinase; IAP, inhibitor of apoptosis; Imd, immunodeficiency; IKK, IκB kinase; 

JNK, Jun N-terminal kinase; Jra, Jun-related antigen; MAPK, mitogen-activated protein 

kinase; MASK, multiple ankyrin repeats single KH domain; ML, MD2-like; MLK, mixed-

linage kinase; NFκB and IκB, nuclear factor-κB and its inhibitor; NTF, nuclear transport 

factor; PIAS, protein inhibitor of activated STAT; PIRK, poor Imd response upon knock-

in; PVF, platelet-derived and vascular endothelial growth factor; PVR, PDGF/VEGF 

receptor; STAT, signal transducer and activator of transcription; PG and PGRP, 

peptidoglycan and peptidoglycan recognition protein; SUMO, small ubiquitin-like 

modifier; TAK, transforming growth factor β activated kinase; TAMP, Toll activation 

mediating protein; TIR, Toll/interleukin-1 receptor; TRAF, tumor necrosis factor receptor-

associated factor. 

 

Abstract 

Signal transduction pathways and their coordination are critically important for proper 

functioning of animal immune systems. Our knowledge of the constituents of the 

intracellular signaling network in insects mainly comes from genetic analyses in 

Drosophila melanogaster. To facilitate future studies of similar systems in the tobacco 
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hornworm and other lepidopteran insects, we have identified and examined the 

homologous genes in the genome of Manduca sexta. Based on 1:1 orthologous relationship 

in most cases, we hypothesize that the Toll, Imd, MAPK-JNK-p38 and JAK-STAT 

pathways are intact and operative in this species, as are most of the regulatory mechanisms. 

Similarly, cellular processes such as autophagy, apoptosis and RNA interference probably 

function in similar ways, because their mediators and modulators are mostly conserved in 

this lepidopteran species. We have annotated a total of 186 genes encoding 199 proteins, 

studied their domain structures and evolution, and examined their mRNA levels in tissues 

at different life stages. Such information provides a genomic perspective of the intricate 

signaling system in a non-drosophiline insect. 

 

1. Introduction 

Insects fight against invading pathogens and parasites via their innate immune system 

(Gillespie et al., 1997; Lemaitre and Hoffmann, 2007). Like other physiological processes, 

insect immune responses involve sensors, effectors, and signal transducers, linking 

pathogen recognition with cellular and humoral responses. Some of the responses occur in 

minutes while others involve transcriptional activation of genes that are not highly 

expressed under normal conditions, and thus may provide responses in hours to days. In 

the latter case, a relay system must exist to transduce the extracellular signals of wounding 

or invasion into the nuclei of cells, where transcriptional regulation occurs. If pathogens 

are sensed by receptors (e.g. PGRP-LC) on the cell surface, responses are more direct than 

if recognition occurs in hemolymph. In the latter scenario, receptors (e.g. PGRP-SA) in 

hemolymph bind to the pathogens and initiate extracellular signal transduction to generate 
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active cytokines. The cytokines then interact with their receptors on the cell surface to 

induce cellular responses including phagocytosis, encapsulation, apoptosis, autophagy, and 

synthesis of immune effectors (Strand, 2008; Jiang et al., 2010). Consequently, the 

intracellular signal transduction network is essential for mediating immune responses in 

insects. 

Receptor-mediated Toll, Imd, MAPK-JNK-p38, JAK-STAT and other pathways are 

widely conserved in metazoans, functioning as regulators and mediators of humoral and 

cellular immune responses (Buchon et al., 2014). Extensive studies in Drosophila 

melanogaster have revealed many details of the signal transduction network. The Toll 

pathway was discovered in the screens that identified mutations in genes affecting the 

establishment of dorsoventral axis and later found to regulate the expression of immunity-

related genes through Dorsal and Dif, transcription activators of the Rel family (Valanne 

et al., 2011). Gram-positive bacteria and fungi trigger this pathway via an extracellular 

serine protease cascade that activates the cytokine Spätzle through limited proteolysis. This 

activated cytokine binds to the Toll receptor, leading to antimicrobial peptide synthesis and 

differentiation of certain hemocytes into lamellocytes. These lamellocytes are capable of 

encapsulating and killing parasites such as parasitoid wasps (Sorrentino et al., 2004). In the 

case of Gram-negative bacteria, DAP-type peptidoglycans (PGs) elicit the Imd pathway 

via transmembrane PGRP-LC and intracellular signal mediators (Kaneko et al., 2006; 

Rämet et al., 2002). Activated Relish, another Rel factor, then migrates into the nucleus to 

turn on a set of immunity-related genes overlapping with that induced by Dorsal and Dif 

(Imler and Hoffmann, 2001; Mellroth et al., 2005). Cytokines, growth factors, or stress 

signals stimulate the MAPK-JNK-p38 pathway to regulate apoptosis, Imd pathway, and 
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cell differentiation (Ragab et al., 2011; Chen et al., 2010; Dong et al., 2002). The JAK-

STAT pathway, RNA interference, autophagy and other defense mechanisms are involved 

in antiviral responses (Kisseleva et al., 2002; Baeg et al., 2005; Kingsolver et al., 2013). 

Based on the available information, these pathways are mostly conserved among insects 

but differences do exist. For instance, the honeybee Apis mellifera has considerably fewer 

immunity-related genes (Evans et al., 2006). A. mellifera has five Toll genes compared 

with the nine found in D. melanogaster. The pea aphid Acyrthosiphon pisum lacks the 

entire Imd pathway (Gerardo et al., 2010). With such plasticity observed among the few 

genomes available in the Insecta, it is therefore critically important to examine and 

characterize the immune signaling components in different major orders of insects. 

Lepidoptera comprises about 160,000 described species of moths and butterflies in 126 

families and 46 superfamilies (Kristensen et al., 2007). Larvae of many lepidopterans are 

serious agricultural pests but they are susceptible and can be controlled by biological agents 

such as entomopathogens (e.g. viruses, bacteria, fungi) and parasitoid wasps. Studies of 

lepidopteran immune systems and the associated signaling pathways are extremely 

important for developing effective biological control methods. Manduca sexta and Bombyx 

mori have been used as powerful biochemical models to explore various aspects of innate 

immunity (Jiang et al., 2010). Immunity-related genes in the silkworm were previously 

compared with those in D. melanogaster, Anopheles gambiae and A. mellifera (Tanaka et 

al., 2008) and analyses of the M. sexta hemocyte and fat body transcriptomes revealed a 

set of 232 genes encoding proteins for pathogen recognition, signal transduction, microbe 

killing (Gunaratna and Jiang, 2013), and modulation of mRNA levels in response to an 

immune challenge (Zhang et al., 2011). Recently, the M. sexta genome assembly became 



40 
 

available along with 52 RNA-Seq datasets of tissues at various life stages (X et al., 2015). 

To better understand immune signal transduction in this undomesticated pest species, we 

have annotated genes for the putative pathway members, studied their expression patterns, 

and proposed a signal transduction network based on 1:1 orthology. The results represent 

working models for future studies on M. sexta and other lepidopteran pests. 

 

2. Materials and methods 

2.1. Gene identification, sequence improvement, and feature prediction 

Manduca Genome Assembly 1.0 and gene models in Manduca Official Gene Sets 

(OGS) 1.0 and 2.0 and Cufflinks Assembly 1.0 (X et al., 2015) were downloaded from 

Manduca Base (ftp://ftp.bioinformatics.ksu.edu/pub/Manduca/). Protein sequences of the 

putative signal transducers from M. sexta (Gunaratna and Jiang, 2013) and other insects 

were used as queries to search Cufflinks 1.0, OGS 1.0 and OGS 2.0 using the TBLASTN 

algorithm (http://darwin.biochem.okstate.edu/blast/blast_links.html). Hits with aligned 

regions longer than 30 residues and identity over 40% were retained for retrieving 

corresponding cDNA sequences. Errors resulting from problematic regions (e.g. NNN…) 

in the genome assembly were manually corrected after BLASTN search of Manduca Oases 

and Trinity Assemblies 3.0 of the RNA-Seq data (Cao and Jiang, 2015). The two genome-

independent RNA-Seq assemblies were developed to cross gaps between genome scaffolds 

or contigs and detect errors in the gene models. In some complex cases, all exons of a gene 

were examined based on the GT-AG rule and sequence alignment to identify the splicing 

junctions. Correct open reading frames in the improved sequences were identified using 

ORF Finder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html) and validated by BLASTP 

ftp://ftp.bioinformatics.ksu.edu/pub/Manduca/
http://darwin.biochem.okstate.edu/blast/blast_links.html
http://www.ncbi.nlm.nih.gov/gorf/gorf.html
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search against GenBank (http://www.ncbi.nlm.nih.gov/) or Uniprot 

(http://www.uniprot.org/). Signal peptides were predicted using SignalP4.1 (Petersen et al., 

2011). Conserved domain structures were identified using SMART (http://smart.embl-

heidelberg.de/smart/set_mode.cgi) and InterProScan 

(http://www.ebi.ac.uk/Tools/pfa/iprscan/). 

2.2. Sequence alignment and phylogenetic analysis 

Multiple sequence alignments of immune signal transducers from M. sexta and other 

insects were performed using MUSCLE, a module of MEGA 6.0 (Tamura et al., 2013) at 

the following settings: refining alignment, gap opening penalty (‒2.9), gap extension 

penalty (0), hydrophobicity multiplier (1.2), maximal iterations (100), UPGMB clustering 

(for iterations 1 and 2) and maximum diagonal length (24). The aligned sequences were 

used to construct neighbor-joining trees by MEGA 6.0 with bootstrap method for the 

phylogeny test (1000 replications, Poisson model, uniform rates, and complete deletion of 

gaps or missing data). 

2.3. Gene expression profiling 

Coding DNA sequences from the improved gene models were retrieved and employed 

as templates for mapping reads in the 52 M. sexta RNA-Seq datasets, representing mRNA 

samples from whole insects, organs or tissues at various developmental stages. Illumina 

reads (M. sexta genome and transcriptome project; http://www.ncbi.nlm.nih.gov/bioproject 

/PRJNA81039) were trimmed to 50 bp and mapped to the coding regions using Bowtie 

(0.12.8) (Langmead et al, 2009). Numbers of the mapped reads were used to calculate 

FPKM (fragments per kilobase of exon per million fragments mapped) values using RSEM 

(Li and Dewey, 2011). Hierarchical clustering of the log2(FPKM+1) values was performed 

http://www.ncbi.nlm.nih.gov/
http://www.uniprot.org/
http://smart.embl-heidelberg.de/smart/set_mode.cgi
http://smart.embl-heidelberg.de/smart/set_mode.cgi
http://www.ebi.ac.uk/Tools/pfa/iprscan/
http://www.ncbi.nlm.nih.gov/bioproject%20/PRJNA81039
http://www.ncbi.nlm.nih.gov/bioproject%20/PRJNA81039
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using MultiExperiment Viewer (v4.9) (http://www.tm4.org/mev.html) with the Pearson 

correlation-based metric and average linkage clustering method. To study transcript level 

changes after immune challenge, the entire CDS set was used to search for corresponding 

contigs in the CIFH09 database (http://darwin.biochem.okstate.edu/blast/blast_links.html) 

(Zhang et al., 2011) by TBLASTN. The numbers of CF, CH, IF, and IH reads (C for 

control, I for induced after injection of bacteria, F for fat body, H for hemocytes) assembled 

into these contigs were retrieved for normalization and calculation of IF/CF and IH/CH 

ratios. When a polypeptide sequence corresponded to two or more contigs, sums of the 

normalized read numbers were used to calculate its relative mRNA abundances in fat body 

and hemocytes (Gunaratna and Jiang, 2013). 

 

3. Results and discussion 

3.1. Spätzle-1−7, cytokines with distinct structures, functions, and expression patterns 

There are seven genes encoding Spätzle-like proteins in M. sexta (Table S1), which 

differs from the number present in Tribolium castaneum (9), D. melanogaster (6), and A. 

gambiae (6), B. mori (3) and A. mellifera (2) (Tanaka et al., 2008). The M. sexta proteins 

contain a signal peptide, a 50 to 360-residue segment with 0−4 low complexity regions, 

and a cystine-knot cytokine domain (Fig. 1). For Spätzle-1, cleavage between QR and LG 

results in a dimer of the C-terminal fragment that induces antimicrobial peptide synthesis 

(An et al., 2010), presumably via a Toll receptor. While Spätzle-2−7 may be activated by 

trypsin-like serine proteases, Spätzle-3 and 5 can also be processed by furin-like enzymes 

next to their recognition sequences, RHAR and RPRR, respectively. The C-terminal 

fragments of Spätzle-3−6 contain an even number of Cys residues, which might allow them 

http://www.tm4.org/mev.html
http://darwin.biochem.okstate.edu/blast/blast_links.html
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to possibly dimerize via additional disulfide bonds. Molecular modeling suggests that 

Spätzle-1−5 and 7 adopt a similar fold with three pairs of antiparallel β-strands stabilized 

by 3 or 4 intrachain disulfide bonds (data not shown). Phylogenetic analysis of the entire 

proteins indicates that Spätzle-3−6 each forms a tight group with their orthologs from the 

other insects (Fig. 1A), suggestive of conserved functions. From parallel studies (Cao et 

al., 2015; Rao et al., 2015; He et al., 2015), we have noticed that the mRNA levels of many 

immunity-related genes in fat body and midgut greatly increase at the onset of wandering 

stage and peak on day 1 of the pupal stage. This infection-independent gene up-regulation 

during metamorphosis also occurs in other lepidopterans such as Galleria mellonella 

(Altincicek and Vilcinskas, 2008). Spätzle-1, 2 and 7 transcripts display this pattern with 

the highest FPKM values of 224, 760 and 564, respectively (Fig. 2A). These three genes 

are induced upon immune challenge, whereas Spätzle-3−6 mRNAs were detected only at 

very low levels (Gunaratna and Jiang, 2013; Zhang et al., 2011; Table 1). Spätzle-1B 

mRNA level is low in ovary, higher in eggs and down-regulated after hatching. In contrast, 

Spätzle-2 mRNA levels are high in ovary, lower in eggs, and become higher in 1st instar 

larvae. The expression patterns of Spätzle-3 and 5 are similar to each other. Spätzle-4 and 

6 are almost exclusively produced in the midgut of 2nd and 3rd instar larvae. The detection 

of Spätzle-2, 3, 5 and 7 mRNAs in head is interesting, since Drosophila Toll6, Toll7 and 

Toll8 act as receptors of neurotrophins (Drosophila Spätzle-2, 3 and 5) (McIlroy et al., 

2013; Ballard et al., 2014). 

3.2. Structure, expression, and evolution of Toll receptors  

Toll receptors are a group of transmembrane proteins with extracellular Leu-rich 

repeats (LRRs) and a cytoplasmic Toll/interleukin-2 receptor (TIR) homology domain 
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(Fig. 3A). We have identified sixteen such genes and named them Toll1−6, 7_1−3, 8, 9_1, 

9_2, 10_1−3 and 12 (Table S1). These names are based on and mostly consistent with their 

orthologs in B. mori (Tanaka et al., 2008). Toll1 is reported as an immune-inducible gene 

that is predominantly expressed in hemocytes (Ao et al., 2008b; Gunaratna and Jiang, 

2013) (Table 1). Along with Toll2−5 and B. mori Toll3_1−3, M. sexta Toll1 is grouped 

with D. melanogaster Toll1, 3−5, A. gambiae Toll1A, 1B, 5A and 5B, and T. castaneum 

Toll1−4 (Fig. 3B). Nonetheless, M. sexta Toll1, 3 and 4 have only 4 to 5 LRRs (Fig. 3B), 

instead of the 12 LRRs and 2 Cys-rich C-terminal domains that are present in Drosophila 

Toll1. The mRNA levels of Toll1, 3 and 4 are very low in the 52 libraries (Fig. 2A). Hence, 

the putative roles as Spätzle-1 or 2 receptors need validation. In contrast, Toll2 and 5 

transcripts are highly abundant in fat body and their profiles of expression are closely 

similar to those of Dorsal, Serpent and Spätzle-1B. Interestingly, Manduca Dorsal and 

Serpent may interact with each other to activate moricin gene transcription (Rao et al., 

2011). Toll2 and 5, containing a Cys-rich C-terminal domain, are more similar in domain 

structure to Drosophila Toll1. Based on this and other evidence, we suggest M. sexta Toll2 

and 5 are better candidates than Toll1 as receptors of Spätzle-1, 2 and 7. In D. 

melanogaster, Toll6, 7 and 8 (i.e. Tollo) are involved in neurotrophism (McIlroy et al., 

2013; Ballard et al., 2014) and recent studies suggest that Toll7 may also be a pattern 

recognition receptor for vesicular stomatitis virus, activating cellular autophagy of the virus 

(Nakamoto et al., 2012). Their orthologous genes (Toll6, 7_1−3 and 8) are expressed in 

heads at levels higher than other tissues (Fig. 2A) and may play similar roles in M. sexta. 

The M. sexta Toll9_1 mRNA levels are high in Malpighian tubules of pre-wandering larvae 

and adults, as well as in midgut of feeding larvae. Human myeloid differentiation factor-2 
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(MD2) forms a complex with Toll-like receptor-4 to recognize lipopolysaccharide and lead 

to inflammation and cytokine production. A MD2-like protein (ML1) from A. gambiae 

specifically regulates the resistance to Plasmodium falciparum (Dong et al., 2006). We 

have identified five MD2-like proteins (MLs) in M. sexta, which contain a signal peptide 

and may increase binding specificity of the Toll receptors (Ao et al., 2008a). 

Despite the fact that the coding regions being 2.2−4.0 kb in length, half of the 16 genes 

(Toll6, 7_1−3, 8, 10_1−3) only contain a single exon (Fig. 3C). They correspond 1:1 with 

their orthologous genes on chromosome 23 in B. mori. M. sexta Toll7_1, 10_3, 10_2, 10_1 

and 6 on Scaffold (S) 00066 have the same orientations as those in the silkworm, flanked 

by Toll7_3 (S00185), 7_2 (S00183), and 8 (S00166) (Fig. 3C). When we compared the 

orthologous genes in A. gambiae, D. melanogaster and T. castaneum, similar gene orders 

were found. These orthologous genes include: Toll7_3 to 1, 10_3 to 1, 6 and 8 in the 

lepidopterans; Toll11&10, 7, 8 and 6 in the mosquito; Toll2&7, 8 and 6 in the fruit fly; 

Toll6, 8, 10, and 7 in the beetle. The underlined genes result from lineage-specific gene 

duplications. Except for AgToll8, TcToll8 and TcToll10 (with 5, 2 and 2 exons, 

respectively), the remaining genes are intronless. In comparison, MsToll1−5 have 7 or 8 

exons, BmToll3_1−3 have 7, 5 and 8 exons, DmToll1, 3−5 have 2 or 4 exons, AgToll1A, 

1B, 5A and 5B have 3 exons, and TcToll1−5 have 3 or 4 exons. Together, these 

observations reveal a dramatic evolutionary history of this ancient family of genes along 

the lineages of holometabolous insects. 

3.3. Intracellular members of the Toll pathway and their regulation 

We have identified 1:1 orthologs for most of the intracellular pathway members and 

modulators known so far. These include MyD88, Tube, Pelle, Pellino, Cactus, G protein-
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coupled receptor kinase-2 (GPRK2), Tollip-1&2, Cactin, Aos, Uba2, Smt3, Lesswright, 

and deformed epidermal autoregulatory factor-1 (Deaf1) (Fig. 4A, Table S1) in 

Drosophila. In the current model, activated Toll receptor associates with its adaptor 

MyD88 via their TIR domains. MyD88, Tube and Pelle (a kinase-like protein) form a 

complex via their death domains to phosphorylate Cactus. Pellino, with a RING E3 

ubiquitin ligase domain, may ubiquitinate Pelle to enhance the Toll signaling. Unlike its 

ortholog in the fruit fly, the C-terminal Ser/Thr protein kinase domain of M. sexta Tube is 

predicted to be active catalytically and thus, actively involved in the pathway activation. 

The phosphorylation of Cactus by Pelle and perhaps Tube, causes it to dissociate from 

Dorsal or Dif become polyubiquitinated and degraded by the proteasome. Dorsal and Dif 

appear to be the products of a lineage-specific gene duplication (data not shown). GPRK2 

may interact with Cactus to enhance signaling. Atypical protein kinase C (aPKC), together 

with its partners Ref2P and TRAF2 (TNF-receptor-associated factor-2), may interact with 

Pelle and directly activate Dorsal/Dif (Avila et al., 2002). Free, active Dorsal/Dif 

translocates into the nucleus to activate target gene transcription along with Deaf1 and 

other transcription factors (e.g. U-shaped and Toll activation mediating protein, TAMP). 

This pathway is likely regulated at other steps. For instance, Tollips may associate with the 

Toll receptor and suppress the kinase activity of Pelle (Zhang and Ghosh, 2002). In D. 

melanogaster, Cactin may bind Cactus to block its function and cause embryonic 

ventralization (Lin et al., 2000). Conjugation of Dorsal/Dif by Smt3, a small ubiquitin-like 

modifier (SUMO), may potentiate function of Dorsal/Dif (Bhaskar et al., 2002). Aos1 and 

Uba2 may form a dimer which acts as an E1 SUMO-activating enzyme (Paddibhatla et al., 

2010). The Lesswright homolog of Ubc9, an E2 SUMO-conjugating enzyme, negatively 
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impacts the pathway (Chiu et al., 2005). The E3 SUMO ligase, Ulp1 peptidase and its 

helper Kurtz, reduces SUMO conjugation and response level of Dorsal/Dif-induced genes 

(Anjum et al., 2013). 

Three Dorsal and two Dif variants are generated via alternative splicing (Table S1). 

The major Dorsal A is widely produced in tissues whereas B- and C-forms are 

preferentially expressed in fat body and head, respectively (Fig. 2A). Dif mRNA levels are 

lower compared to Dorsal. Like MyD88, Aos1 and Smt3, Manduca Tube, Pelle, Pellino, 

Lesswright, Uba2, Ref2Ps, aPKC-A, TRAF2, Cactus, Dorsal-A, ML2, cactin, Tollip-1 and 

2 are widely expressed in all the tissues examined. However, mRNA levels of the latter 

genes (Tube through Tollip-2) increase considerably in fat body during the wandering stage 

and reach peaks in pupae at day 1. As well, most of these genes are induced by 24 h 

following an immune challenge (Table 1). 

3.4. The Imd pathway, JNK branch, and their regulation 

The Imd pathway, considered specific for Gram-negative bacteria, regulates the 

transcription of a set of immunity-related genes that overlaps with that controlled by the 

Toll pathway (Kleino and Silverman, 2014). This pathway is also branched to JNK and 

apoptosis (Fig. 4B). We have identified 1:1 orthologs for nearly all of the pathway 

components (Table S1) and, therefore, propose that the M. sexta Imd pathway is triggered 

by DAP-PG, a component of the cell wall in most Gram-negative bacteria as well as Gram-

positive Bacillus and Listeria species. Since there is no PGRP-LE ortholog in the moth 

(Zhang et al., 2015), membrane-bound PGRP-LCa and LCb may work together to detect 

them. The longer splicing variant LCa contains two transmembrane domains, raising the 

possibility that it detects intracellular bacteria. Upon DAP-PG binding, a cytosolic portion 
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of these variants may interact with the adaptor Imd and then FADD through their death 

domains. FADD recruits Dredd, the mammalian caspase-8 homolog, which cleaves Imd 

and Relish (Ertürk-Hasdemir et al., 2009) or a pro-caspase that leads to apoptosis. Cleaved 

Imd is susceptible to ubiquitination by IAP2 (inhibitor of apoptosis-2, an E3 ubiquitin 

ligase), Uev1A, Ubc13/Bendless and Ubc5/Effete (E2 ubiquitin-conjugating enzymes) 

(Paquette et al., 2010). Following ubiquitination, Imd likely recruits transforming growth 

factor β-activated kinase-1 (TAK1) and its binding protein TAB2 (Aggarwal, 2003). The 

dimer of TAB2 and TAK1 may then phosphorylate both Kenny/IKKβ and 

IRD5/IKKγ/NEMO in a complex, and JNK and Basket through MKK4 or 

MKK7/hemipterous (Hep) (Geuking et al., 2009). JNK may activate Aop and the AP-1 

complex of Jra/Jun and Fos/Kayak to regulate downstream genes (e.g. PIRK). The IKK 

complex may phosphorylate the cleaved Relish to cause chain separation. While the C-

terminal ankrin repeats and death-like domain are destined to be degraded, the N-terminal 

fragment (Relish-N), assisted by nuclear transport factor 2 (NTF2), could translocate into 

the nucleus and activate expression of immunity-related genes (e.g. antimicrobial peptides) 

via its Rel homology domain. 

Additional regulatory mechanisms are known for the Imd pathway in Drosophila 

(Kleino and Silverman, 2014). PIRK interferes with the association of Imd, FADD, and 

Dredd (Kleino et al., 2008). Dnr1 (defense repressor-1) inhibits the caspase Dredd while 

Sickie and Caspar have opposite effects on Dredd-induced activation of Relish (Foley and 

O'Farrell, 2004). USP36 deubiquitinates Imd for its degradation and, thus, represses Imd 

signaling (Thevenon et al., 2009). Another deubiquitinase, CYLD (for Cylindromatosis), 

modulates the IKK complex to control Relish phosphorylation (Tsichritzis et al., 2007). 
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POSH controls the complex of TAK1 and TAB2; an SCF complex of Skp1, Cullin and F-

box protein regulates the phosphorylated Relish-N; Akirin and Relish-N co-regulate some 

target genes of the Imd pathway (Tsuda et al., 2005; Cardozo and Pagano, 2004; Bonnay 

et al., 2014).  

Most genes in the putative Imd pathway are widely expressed in different tissues at 

various life stages (Fig. 2B). The mRNA levels of Imd, FADD, Dredd, Relish, and many 

other genes are considerably higher in midgut than in fat body. This is consistent with the 

finding that local immune response of epithelial cells is Imd pathway-dependent, as the 

Imd pathway is fast and can be activated within minutes following a challenge (Kleino and 

Silverman, 2014; Paquette et al., 2010). While mRNA levels of a few genes are higher at 

24 h after the immune challenge, others are similar to or even lower than the control levels 

(Table 1). This contrasts drastically with most of the Toll pathway genes, whose induced 

expression in fat body and hemocytes lasts longer than 24 h. Consistent with their immune 

inducibility, most Imd pathway members are highly expressed in fat body from the pre-

wandering larval stage to the early pupal stage (Fig. 2B). Their up-regulation in midgut is 

less pronounced and varies among the Imd pathway members during the same period, 

perhaps due to gut purging. 

3.5. MAPK-JNK-p38 pathways 

MAPK pathways are responsive to growth factors, cytokines and stress signals, and 

thereby regulate cell proliferation, differentiation, inflammation, and death. In Drosophila, 

components of these pathways activate MAPKs (Rolled, JNK and p38), down-regulate the 

Imd pathway, and stimulate hemocyte proliferation and lamellocyte formation (Fig. 4C) 

(Ragab et al., 2011; Dong et al., 2002; Lee and Ferrandon, 2011). We have identified 
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homologs of two platelet-derived and vascular endothelial growth factors (PVFs), a 

PDGF/VEGF receptor (PVR), two small GTPases (Ras85D and Rac1), three kinases 

(Polehole, Dsor1 and Rolled), and a transcription factor (Pointed) that induces PIRK (poor 

Imd response upon knock-in) production. By interfering with Imd-FADD-Dredd 

association, PIRK, a small protein with no known domain structure, may inhibit Imd 

signaling. JNK may be activated through an Imd branch (Fig. 4B) and perhaps also by 

MLK1, MKK4, PVR or Alk (PVR and Alk are receptors with a Ser/Thr kinase domain). 

We have also found putative members of the cytokine-triggered MAPK pathway, namely 

Eiger, Wengen, TRAF1, and Misshapen that may recruit and sequentially activate TAK1-

TAB2 dimer, MKK7/hemipterous, and JNK (Liu et al., 1999; Geuking et al., 2009). A 

protein called ECSIT (evolutionarily conserved intermediate in Toll pathways) is linked to 

the Toll receptor through TRAF2, and may activate a kinase cascade of MEKK1, MKK3, 

and p38 to induce the formation of the AP-1 complex (Kopp et al., 1999). In addition, Spitz 

and Vein may induce MAPK signaling in the presence of reactive oxygen species but their 

receptors are unknown in Manduca. 

Certain members of the putative MAPK-JNK-p38 pathways (i.e. Eiger, Rac1, MASK, 

Rolled, JNK, p38, Aop, Jra, Fos) in M. sexta are transcriptionally activated in larval fat 

body or hemocytes after an immune challenge (Gunaratna and Jiang, 2013) (Table 1). In 

addition to these, PVF2, PVR, Wengen, Ras85D, Cdc42, Dsor1, Misshapen, MLK and 

Pointed show mRNA level increases in fat body from pre-wandering to early pupal stage 

(Fig. 2C). Transcript levels for most of these genes in midgut are similar to or higher than 

those in fat body. Levels of PVR, Rac1, Misshapen-B&C, p38B, Ras85D, Jra and Fos 

mRNAs reach peak levels during pupation. Expression of the pathway members in head, 
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muscles, Malpighian tubules, testis, and ovary clearly indicates that roles of the MAPK-

JNK-p38 pathways are beyond immunity. 

3.6. JAK-STAT pathway and other antiviral mechanisms  

3.6.1. JAK-STAT pathway and its regulation 

The JAK-STAT pathway is involved in antiviral immune responses in insects (Dostert 

et al., 2005; Kingsolver et al., 2013). In Drosophila, an extracellular protein, Unpaired3, 

binds to Domeless, causes receptor dimerization, and recruits STAM and Hopscotch/JAK, 

which in turn phosphorylates itself and then STAT (Fig. 4D). We did not find an Unpaired3 

ortholog in M. sexta or T. castaneum (Zou et al., 2007). However, the M. sexta ortholog of 

Vago may bind to an unknown receptor to activate JAK and STAT in a way similar to the 

unknown ligand of Domeless. After phosphorylation, the STAT dimer translocates into the 

nucleus to induce antiviral gene expression. SOCS (a JAK inhibitor) and PIAS (protein 

inhibitor of activated STAT) may down-regulate the pathway. Except for the ligand, 

orthologs of all the pathway components are present in M. sexta (Table S1). Domeless and 

SOCS mRNA levels increased 2.6-fold in larval fat body at 24 h after the injection of a 

mixture of bacteria (Gunaratna and Jiang, 2013) (Table 1). We also found that their mRNA 

levels became more abundant in fat body and midgut between wandering larval and early 

pupal stages (Fig. 2D). Similar increases were observed for other members of the predicted 

pathway, including JAK, STAT and STAM. 

3.6.2. RNA interference (RNAi) pathways 

RNA interference plays important roles in limiting viral infection in insects (Kingsolver 

et al., 2013; Fablet, 2014). There are three RNAi pathways (Fig. 4E): 1) small interfering 

RNAs (siRNAs) are generated from double-stranded RNA (dsRNA) of viruses and siRNAs 
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degrade or inhibit viral RNA and thereby disrupt the viral infection cycle; 2) microRNAs 

(miRNAs) are produced from cellular gene transcripts and typically function to control the 

translation or half-life of their target transcripts, including those regulating immune 

responses; 3) Piwi-interacting RNAs (piRNAs) provide epigenetic control of transposable 

elements and viral transcripts in germ-line cells in order to prevent genome disruption. The 

siRNA pathway is mostly responsible for antiviral activity in insects. Viral RNAs may 

form double stranded RNAs due to innate secondary structures or via replication 

intermediate, and these dsRNAs are recognized and cleaved by Dicer-2 to generate 

siRNAs, which are then loaded into RNA-induced silencing complexes consisting of 

Argonaute-2 and other proteins. Unwinding of the duplex occurs along with guide strand 

selection. After target RNA recognition by the guide RNA, the targeted viral RNA is 

degraded by Argonaute-2. We have identified 28 putative pathway members suggesting 

that these pathways are functional in M. sexta (Fig. 4E, Table S1). Since R2D2 is not found 

in M. sexta, we suggest that R3D1 (an ortholog of Drosophila Loquacious) acts as a Dicer-

1 partner in the miRNA pathway, as well as a Dicer-2 partner in the siRNA pathway. Unlike 

Drosophila, which has distinct Piwi and Aubergine genes, lepidopteran insects have a 

single PIWI-clade protein that we refer to as Aub/Piwi. Transcript levels for members of 

the siRNA pathway are relatively higher than those for either piRNA or miRNA pathways 

(Fig. 2E), consistent with its greater role in antiviral immunity (Kingsolver et al., 2013). 

Expression profiles of these pathways do not exhibit fat body- and midgut-specific up-

regulation from wandering to early pupal stage, except for Dicer-2 and Argonaute-2. The 

Argonaute-2 mRNA levels increased moderately in induced fat body and hemocytes (Table 

1). Although transcript abundances for piRNA pathway components vary, they are almost 
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always higher in testis and ovary than the other tissues, consistent with their roles in the 

germline cells.    

3.6.3. Autophagy 

Autophagy is a cellular process in which dysfunctional or unnecessary cellular 

materials or components are selectively targeted, then separated from the cytoplasm in 

double membrane vesicles (autophagosomes), and ultimately degraded by lysosomes 

(Mulakkal et al., 2014). Some pathogens may also be targeted to autophagosomes. 

Autophagy recycles the cellular materials and maintains cellular homeostasis under a 

variety of conditions. It is implicated in cellular responses to stress by nutrient-restriction, 

developmental changes involving tissue reorganization during metamorphosis, and certain 

pathological processes. The signaling of autophagy is mediated through the 

phosphoinositide 3-kinase (PI3K)-Akt pathway (Fig. 4F), which phosphorylates TOR to 

suppress autophagy. Autophagy itself involves about 20 components conserved throughout 

eukaryotes from yeast to mammals. In Drosophila, autophagy is induced upon infection by 

some viruses, intracellular bacteria (e.g. Listeria monocytogenes), and other pathogens 

(Yano et al., 2008; Kingsolver et al., 2013), suggesting that in addition to other cellular 

functions, it may also serve as an ancient cellular immune response. We have identified 

orthologs of all known autophagy pathway members (Fig. 4F, Table S1) and examined 

their expression profiles (Fig. 2F). As components of a ubiquitination complex, Atg3, 4, 5, 

7, 8, 10, 12 and 16 are highly expressed in all the tissue samples used for RNA-Seq 

analyses. The mRNA levels of these autophagy pathway genes are generally higher in 

midgut than in fat body, testis and ovary. Since there is no major increase in mRNA levels 

in the pupal stage, autophagy may be partly supported by pre-existing proteins. Transcript 
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levels of Atg2 through 6, 8, 9, and 16 are up-regulated in fat body and midgut from 

wandering larvae and young pupae, and decrease in the later stages. These changes may 

correlate with cellular reorganization in cells undergoing metamorphosis.  In contrast, the 

PI3K, Akt, TOR, Vps34, Atg1, 7, 10, 12, 13, 17, 18, and 101 mRNA levels remain high 

from pupal to adult stage. Based on our current data (Fig. 2F), expression of autophagy-

related genes appears to be a development-regulated process. There is no strong correlation 

with their immune inducibility, perhaps due to the fact we did not use viruses or 

intracellular bacteria to challenge the larvae. 

3.6.4. Apoptosis 

Apoptosis, the best characterized mechanism of programmed cell death, is a part of 

normal developmental processes such as tissue modeling and homeostasis, but apoptosis 

can also participate in pathological processes including cancer and defense against 

pathogens (Opferman and Korsmeyer, 2003). In Drosophila, the initiator caspase Dronc 

and an adaptor protein (Ark) form a large protein complex (apoptosome) in response to 

intrinsic signals (Hay and Guo, 2006). It is not clear how the other Drosophila initiator 

caspases, Dredd and Strica, are activated. Once Dronc is activated, it cleaves and activates 

effector caspases such as Drice and Dcp1 to cleave other protein substrates that lead to the 

downstream events of programmed cell death. Negative regulators of caspases (e.g. IAPs, 

Dnr1) control the pathway by inhibiting the activation of initiator caspases through either 

direct binding or by ubiquitination-induced degradation (Orme and Meier, 2009). 

Likewise, IAP antagonists (e.g. Reaper, Hid, Grim and Sickle) inactivate IAPs and, thus 

induce apoptosis. We have identified 12 members of the core apoptosis pathway in M. 

sexta, including Reaper, IAP1, IAP2, Deterin/IAP3, Dnr1, Ark, Dredd/caspase-6, 
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Dronc/caspase-5, caspase-1, -3, and -4 (Fig. 4G) (Courtiade et al., 2011). While Dnr1, 

Dredd, and IAP2 are likely involved in the balance between the Imd and apoptosis 

pathways, the other proteins may be devoted to programmed cell death. Reaper, an indirect 

pathway activator, is produced in the embryo, pupal fat body and midgut, as well as adult 

head, Malpighian tubules, testis and ovary (Fig. 2G), suggesting a possible role of apoptosis 

in tissue remodeling. The IAP3 mRNA, which is related to Survivin, a mitotic spindle-

associated protein, is strikingly high and may perhaps regulate embryonic development. 

With a similar expression profile, IAP1 may block caspase-3 and -4 in cells of midgut, fat 

body, and other tissues. The high transcript abundances in midgut of feeding and wandering 

larvae, pupae and adults could indicate that the tissue is poised to undergo or carefully 

regulate active programmed cell death and regeneration. In addition, the caspase-1 and 

IAP1 mRNA peaks in fat body and midgut from wandering to early pupal stage correlate 

with their immune inducibility (Table 1). 

3.7. Concluding remarks 

  Our search of the M. sexta genome has yielded 187 genes encoding 198 putative 

members of the immunity-related signal transduction pathways, namely Toll, Imd, MAPK-

JNK-p38, JAK-STAT, piRNA, siRNA, miRNA, autophagy and apoptosis. Analysis of the 

expression profiles reveals differences among the proposed pathways (e.g. Toll, Imd, and 

MAPK-JNK-p38) and among some of the components (e.g. Spätzles, Tolls). These results 

suggest that the intracellular signaling system is functional in this undomesticated insect, 

and thus pave the way for understanding and potentially modulating similar pathways in 

pest lepidopteran species. The proposed signaling network needs experimental validation 

using biochemical, molecular and cellular biological methods. 
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Tables 

Table 1. Relative mRNA abundances of the intracellular signaling pathway members in 

induced (I) and control (C) fat body (F) and hemocytes from the larvae of M. sexta. 

Name 
IF/C

F 
IH/C

H 
Name 

IF/C
F 

IH/C
H 

Name 
IF/C

F 
IH/C

H 
Name 

IF/C
F 

IH/C
H 

Spätzle1* 1.4 3.9 Dredd* 1.8 1.2 MLK1* 1 2.1 
R3D1/Loq
s 

0.8 1.3 

Spätzle2 1.5 2.2 Relish* 5.2 1.5 MKK4* 0.8 0.5 Dicer1 0 0.7 
Spätzle7 4.1 3.6 NTF2* 1.2 1.7 JNK* 1.8 1.6 Ago1 1 2.6 
Toll1* 2.5 6.2 TAK1* 0.5 3.6 Basket 1.3 2.7 Drosha 1.3 1.1 
Toll2 0.7 0.8 Tab2* 2.5 1 ECSIT* 1 1.7 Pasha - 1.5 
Toll3 2.5 6.2 IKKβ* 0.5 0.2 MEKK1* 0 0.6 Expotin5 4.1 1.7 
Toll4 2.5 6.4 IKKγ* 2.5 1.2 MKK3* 1.4 1.1 Nibbler 0.7 1.4 
Toll5 2.9 0.9 NEMO 1 1.2 p38* 2.2 1 Gawky 0.9 0.9 
ML1 2.2 0.6 Dnr1 2.2 0.5 Aop* 3.1 1.2 Me31B 1 0.8 
ML2 1.8 0.8 Sickie* 1 33.2 FOS* 2 1.9 Ge-1 0.5 1 
MyD88* 1.5 1.5 Caspar* 3.1 1.6 Jra* 1.6 0.9 Atg1 2.8 0.9 
Tube* 8.4 0.8 IAP2* 0.3 0.9 Ebi 1 1.4 Atg13 0.4 1.3 
Pelle* 5.1 2.2 Bendless* 1.2 2.1 Smrter 1.8 1.2 Atg101 1.3 0.6 
Pellino* 2.3 1.3 Uev1A* 1.4 1.1 Rpd3/HDAC1 0.2 1.2 Atg17 0.6 0.7 
Cactus* 9.2 1.8 Effete 0.8 1.1 Domeless* 2.4 0.8 Vps34 0.5 1.2 
Dorsal* 1.3 1.2 USP36 0.5 1.4 Stam* 2 1.1 Vps15 0.5 1.6 

Tollip-1* 1 
- 

POSH1* 1.7 0.9 
JAK/Hopscotch
* 

1 0.5 Atg6 0.5 1.2 

Tollip-2* 0.8 1.1 POSH2 0.8 1.3 STAT* 0.4 0.7 Atg18 3.6 0.8 
Ref2P* 1.5 1 CYLD 3.6 0.8 PIAS* 1.6 1 Atg12 0.5 3 
aPKC* - 1 SkpA 0.5 1.7 SOCS* 2.5 0.8 Atg7 0.5 0.5 
GPRK2 0.1 0.7 Cullin 0.9 1.3 ZHF1 0.7 1 Atg5 0.5 1 
Cactin 0.5 2.5 SlimB 1.5 0.7 Piwi 0.4 0.8 Atg4 0.2 1.1 
Aos1* 0.7 1.7 Akirin 9.2 1.7 Armitage 1.4 1 Atg8 3.1 0.6 
Uba2* 2.5 1.5 Dsp 2 1.4 Yb 0.5 0.2 Atg3 0.3 1 
Lesswright
* 

4.6 1.2 Eiger* 0.8 8 Shu 0.5 5.9 Atg2 1.2 0.2 

Ulp1 5.6 0.8 PVR* 1 1.4 Qin 0.7 0.9 Atg9 1.5 0.9 
Kurtz 1 0.7 Ras85D* 0.7 1.7 Dicer2 1.3 1.5 Akt 1 1 
Smt3* 1.6 1.6 Rac1* 2.5 1.3 Ago2 0.8 1 TOR 0.2 0.8 
Deaf1 - 0.9 Cdc42* 1.3 1.4 Vig 0.9 1.1 PI3K 1.5 0.9 
Serpent* 0.4 0.9 MASK* 1.2 1.4 TSN 0.6 1.2 IAP1 1.6 1.1 
Pannier-1 0.5 2.4 Polehole 0.5 1 Ars2 3.1 1.7 Deterin - 0.7 
Pannier-2 1 2.4 Dsor1* 0.5 1.1 CBC - 3.1 Dronc 0.5 1.2 
GATAe 0.5 2.4 Rolled 1.9 1.1 Belle/Cap 1.2 1.5 Ark 2 0.6 
U-shaped 0.3 1.1 Pointed 0.3 0.9 Blanks 2.5 1.1 Caspase-1 1.5 1.4 

Imd* 2.7 1 
Misshapen
* 

1.6 0.8 Translin 0.5 0.9 
   

FADD* 0.6 1.3 
Hep/MKK7
* 

1.5 1.2 Tis11 1.3 0.9 
   

As described in Section 2.3, the transcriptome data of larval fat body and hemocytes before and after 

the immune challenge (Zhang et al., 2011) were processed again according to Gunaratna and Jiang (2013), 

based on the BLAST search using 196 complete coding sequences as queries. The ones with no hit in the 

CIFH library are omitted from the table. Note that, due to the increase in query sizes and contig hits, the 

reported relative abundances (*) (i.e. IF/IH and CF/CH) (Gunaratna and Jiang, 2013) may be different for 

certain genes. “-”: C and I = 0. 
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Figures 

 

Fig. 1.  Phylogenetic relationships of Spätzles in M. sexta, B. mori, T. castaneum, and D. 

melanogaster.  (A) Tree. Based on the sequence alignment of 29 full-length Spätzles, a tree 

was generated with branches shown in colors representing closely related groups.  (B) 

Aligned sequences of the cystine-knot cytokine domains in M. sexta Spätzles-1 through 7. 

Cys residues are indicated in a red font. Some Cys residues may form intra- (1−1, 2−2, 

3−3) and inter- (4) chain disulfide bonds. Proteolytic activation sites, known for Spätzle-1, 

are predicted to be next to the Arg (red) in Spätzle-2 through 6. The putative processing 

site (RXXR) is underlined in Spätzle-3 and 5. 
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Fig. 2.  Transcript profiles of the putative signaling protein genes in the 52 tissue samples.  

The mRNA levels, as represented by log2(FPKM+1) values, are shown in the gradient heat 
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map from blue (0) to red (≥10). The values of 0−0.49, 0.50−1.49, 1.50−2.49 … 8.50−9.49, 

9.50−10.49 10.50−11.49, and 11.50−12.49 are labeled 0, 1, 2 … 9, A, B and C, 

respectively. The cDNA libraries are constructed from the following tissues and stages: 

head [2nd (instar) L (larvae), d1 (day 1); 3rd L, d1; 4th L, d0.5; 4th L, late; 5th L, d0.5; 5th L, 

d2; 5th L, pre-W (pre-wandering); P (pupae), late; A (adults), d1; A, d3; A, d7], fat body 

(4th L, late; 5th L, d1; 5th L, pre-W; 5th L, W; P, d1-3; P, d15-18; A, d1-3; A, d7-9), whole 

animals [E (embryos), 3h; E, late; 1st L; 2nd L; 3rd L), midgut (2nd L; 3rd L; 4th L, 12h; 4th L, 

late; 5th L, 1-3h; 5th L, 24h; 5th L, pre-W; 5th L, W; P, d1; P, d15-18; A, d3-5; 4th L, 0h), 

Malpighian tubules (MT) (5th L, pre-W; A, d1; A, d3), muscle (4th L, late; 5th L, 12h; 5th L, 

pre-W; 5th L, W), testis (P, d3; P, d15-18; A, d1-3), and ovary (P, d15-18; A, d1). Some 

libraries (underlined) are from single-end sequencing; the others are from paired-end 

sequencing. Note that some synonymous libraries exhibit different FPKMs due to method 

differences. Panel A, Toll; B, Imd with JNK branch; C, MAPK-JNK-p38; D, JAK-STAT; 

E, pi- si- and mi-RNA pathways, F, autophagy; G, apoptosis. 
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Fig. 3.  Domain structures (A), phylogenetic relationships (B), and gene orders (C) of Tolls 

in M. sexta.  (A) Signal peptide (SP), Leu-rich repeat (LRR), amino- and carboxyl-terminal 

(NT & CT) LRRs, low complexity (LC) region, transmembrane (TM) segment, and TIR 

(Toll/interleukin-1 receptor) domain are shown in different colors and shapes as indicated. 

(B) Amino acid sequences of the 58 full-length Toll proteins from M. sexta, B. mori, T. 

castaneum, A. gambiae, and D. melanogaster are aligned to generate the tree with its 

branches in different colors for closely related groups. (C) Orientations and orders of the 

Toll genes in the five insects are schematically shown as arrows in the same colors as in 

panel B. Arrows for the single exon genes are in black frame. 
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Fig. 4.  Putative signaling pathways and regulators for antimicrobial immune responses in 

M. sexta.  Panels A, Toll; B, Imd with JNK branch; C, MAPK-JNK-p38; D, JAK-STAT; 

E, pi- si- and mi-RNA pathways, F, autophagy; G, apoptosis. Panels A through G are 

described in the text. 
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Abstract 

The tobacco hornworm, Manduca sexta has been widely used as a model insect to study 

insect immunity, metabolism, nervous system, hormonal regulation and other 

physiological processes. 67 cDNA libraries from different tissues and different developing 

stages were sequenced along with the genome project or by other research groups. After 

analyzing the relationship between genome transcribed ratio with mapped bases, we found 

the transcribed ratio could be influenced by number of mapped bases, sequencing method 

and the library tissue resources and developmental stages. During the previouse Cufflinks 

gene modeling, more than 40% of the total reads cannot be mapped to the genome. We did 

a careful analysis, and found most unmapped reads are from ribosomal RNAs. Similarity 

among libraries was measured based on associated genes, and there is a clear difference 

between different tissues at different developmental stages.  We calculated gene expression 

level and analyzed the most highly expressed genes in different libraries. Majority of the 

highly expressed genes are cuticle, muscle or odorant-binding proteins, and some are 

proteins with known function. We analyzed tissue-specific gene expression and identified 

over 20 groups of genes with distinct expression patterns, which facilitate function 

prediction for many unknown proteins. This work will help future research of M. sexta. 
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1 Introduction 

Next generation sequencing (NGS) is a powerful tool for molecular studies of living 

organisms, including insects. To the date of June 1st, 2016, over 52,542 sequencing 

experiments from about 1,400 insect species were submitted to Sequence Read Archive 

(SRA) of National Center for Biotechnology Information (NCBI) using NGS technology. 

The two obvious outlier of insect species in terms of number of sequencing studies are 

Drosophila melanogaster and Anopheles gambiae, which accounts for 43% sequencing 

runs, 29% of sequencing bases and 16% of sequencing runs and 23% of sequencing bases, 

respectively.   This is reasonable, as D. melanogaster is the mostly widely used model 

insects for genetics and other biological researches, and A. gambiae is the vector of malaria, 

one of the most dangerous diseases in world. For other insects, due to the lack of research 

resources, they were not extensively sequenced. For some species, transcriptome 

sequencing, or RNA-seq, becomes an excellent choice for specific research goals, 

providing not only gene models but also gene expression information, for instance, the 

immunotranscriptome of Manduca sexta (Gunaratna and Jiang, 2013; Zhang et al., 2011) 

and Helicoverpa armigera (Xiong et al., 2015). 

As a typical holometabolous lepidopteran insect with five larval instars, a large and simple 

larval body, M. sexta has advantages over other model insects in studying physiological 

processes of insects, especially cuticle formation, metabolism, metamorphosis, hormonal 

and neural regulation, and immunity (Arrese and Soulages, 2010; Hopkins et al., 2000; 

Jiang et al., 2010; Riddiford et al., 2003; Shields and Hildebrand, 2001). Under laboratory 

condition, M. sexta is  easy to raise with simple artificial food and has a well conserved life 
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cycle, with each developmental stage in a clear time range (Reinecke et al., 1980). These 

developing stages are egg stage, five instar feeding stages and molting sleep between them, 

cessation of feeding, body wetting, wandering to burrowing, dorsal pigmentation, fluid 

excretion, burrowing, reduced movement, stationary stage, metathoracic bars, pupation, 

pupa stage and adult stage. Being not an insect for genomics study, the genome of lab-

raised M. sexta have less genome diversity and their gene expression and regulation should 

be much conserved as long as they were raised similarly.  

Recently, the draft genome sequence of M. sexta is published with 52 cDNA libraries of 

different tissues of different life stages (Kanost et al., 2016) , together with a series of 

papers focusing on different genes, including microRNAs (Zhang et al., 2015b), 

antimicrobial effector genes (He et al., 2015), pattern recognition receptors (Zhang et al., 

2015a), nondigestive serine proteases (Cao et al., 2015b), immune signaling pathway (Cao 

et al., 2015a), C-type lectin-domain proteins (Rao et al., 2015), cuticle proteins (Dittmer et 

al., 2015), chitin metabolism enzymes (Tetreau et al., 2015a) and chitin binding proteins 

(Tetreau et al., 2015b). The transcriptome data has greatly helped the gene modeling, and 

improved gene annotation and function prediction for these individual studies. 

Additionally, 8 cDNA libraries studying sex-biased gene expression (Smith et al., 2014) 

and 7 libraries studying chemosensory receptor genes (Koenig et al., 2015) were public 

available in SRA. The expression of genes in Official Gene Set 2.0 (OGS 2.0) were 

provided along with the genome paper and gene expression of individual genes were 

analyzed in these individual papers. However, as the genome paper was focused on the 

immune system and cuticle/chitin metabolism, the RNA-seq data was not thoroughly 

described and analyzed, and overview gene expression with the transcriptome data is not 
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provided. Additionally, the MCOT 1.0 models contains some protein coding genes not well 

modeled by OGS 2.0 (Cao and Jiang, 2015), and both OGS 2.0 and MCOT 1.0 have bias 

for protein coding genes but not non-coding genes, so a large portion of genes are not 

analyzed in the genome paper. To make full use of the public available RNA-seq data to 

help researchers studying M. sexta, we did a thorough transcriptome study with these 67 

datasets. 
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2 Materials and Methods 

2.1 Data and program acquisition 

Final version of M. sexta Genome Assembly 1.0 (Msex 1.0) and gene models in Manduca 

Official Gene Sets 2.0 (OGS2.0) were downloaded from Manduca sexta workspace at of 

National Agricultural Library (NAL) (https://i5k.nal.usda.gov/Manduca_sexta) (Kanost et 

al., 2016). The RNA-seq datasets were downloaded from NCBI SRA database with 

accession number listed in Table S1, or previously acquired from Dr. Gary Blissard at 

Cornell University. Trimmomatic (0.32) (Bolger et al., 2014), Samtools (1.3.1) (Li et al., 

2009), Bowtie2 (2.2.6) (Langmead and Salzberg, 2012), TopHat (2.0.12) (Kim et al., 

2013), Cufflinks (2.2.1) (Trapnell et al., 2012), STAR (2.5.2a) (Dobin et al., 2013), 

TransDecoder (3.0.0) (https://github.com/TransDecoder), BLAST+ (2.2.30) (Camacho et 

al., 2009), RSEM (1.2.29) (Li and Dewey, 2011), tRNAscan-SE (1.3.1) (Lowe and Eddy, 

1997) were downloaded from their official sites and installed on a local supercomputer. 

MeV (Multiple Experiment Viewer 4.9.0, http://mev.tm4.org/) and Cluster 3.0 (by Michael 

B. Eisen) were installed in a local computer. The MCOT 1.0 gene models were generated 

in our previous study (Cao and Jiang, 2015). 

2.2 Reads alignment and Generation of Cufflinks 4.0 

Reads from 67 libaries were first trimmed with Trimmomatic to remove adaptors and low 

quality bases with the setting “SLIDINGWINDOW:4:20 LEADING:10 TRAILING:10 

MINLEN:50”. Trimmed paired and non-paired reads in each library were aligned to the 

genome with TopHat. Cufflinks and Cuffmerge was used to generate and combine GTF 

files to make the final gene models, Cufflinks 4.0 in same method as previously described 

https://i5k.nal.usda.gov/Manduca_sexta
https://github.com/TransDecoder
http://mev.tm4.org/
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(Cao and Jiang, 2015). Cufflinks 4.0 GTF file was used to build the genome for STAR 

alignment. Trimmed reads were also aligned to the genome in the 2-pass mapping mode to 

insure the maximum alignment. Unmapped reads were stored in individual libraries for 

further analysis. 

2.3 Reads aligned to mitochondria genome, mRNA, non-coding genes and rRNA genes 

Gene models in Cufflinks 4.0 were analyzed and separated to 4 groups, mitochondria, 

mRNA, non-coding and rRNA genes. Basically, gene models located in the mitochondrial 

sequence of the genome were from mitochondria. Scaffolds AIXA01032915.1, 

AIXA01021581.1, AIXA01037114.1, AIXA01021582.1 were fragments of ribosomal 

RNAs genes, and genes models from them were rRNA. A gene would be considered 

mRNA if any transcript of it can be translated to protein by TransDecoder under the default 

setting (minimum protein length of 100), otherwise it was considered a non-coding gene. 

The reads count and FPKM value of each gene were calculated with RSEM. Reads counts 

of different gene groups were summed and plotted. 

2.4 Genome coverage by mapped reads 

The number of reads mapped to each scaffold of the genome were extracted using samtools 

idxstats function. The sequencing depth for each base of the genome in each library were 

extracted with “depth” function of samtools. Genome transcribed region was obtained by 

counting the non-zero numbers in each library. Transcripts in Cufflinks 2.0 were 

transcribed with TransDecoder in the genome-guided mode, which outputs a GTF file with 

coding sequence (CDS), mRNA, gene and UTR location. The length of a gene was defined 

as the maximum distance between its exons’ edges. For transcribed or CDS ratio in 
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Cufflinks 4.0, a base would be considered transcribed if it was within any exon or CDS 

region of Cufflinks 4.0 (regardless of positive or negative strand of the exon). For scaffolds 

longer than 200 kilobases (mitochondrial and rRNA scaffolds are shorter than 200 

kilobases), mapping depth for each bases were normalized and represented by BPKM 

(bases per kilobase per million mapped bases) value used in transcriptome paper of D. 

melanogaster (Brown et al., 2014), which is equal to number of bases mapped to one base 

out of one billion mapped bases. The bases in the genome were sorted based on BPKM 

value and were divided into 20 groups in each library, which are top 400, 400×2n to 

400×2n+1 where n equals 0 to 17, and below 104,857,600 which is equal to 400×218. Since 

all values in group 20 are 0, only the top 19 groups were used. Average BPKM for each 

group were calculated in each library. For each group, z-score were calculated across the 

67 libraries and used to make the figure. Ratio of bases in each group were calculated and 

plotted in Fig. 3D. 

2.5 Unmapped reads analysis 

Unmapped reads from running STAR were blasted against the non-redundant nucleotide 

database (nt, 2016-07-18 version) of NCBI in a local supercomputer, with E-value 

threshold setting to 10-6 and one hit kept in the hit-table format. The number of reads with 

BLASTN hits were counted. The matched subject sequences were retrieved from NCBI 

with the accession number. The reads number mapped to each subject sequences were 

counted with simple python script in each library. The subject sequences were grouped to 

7 categories, which were rRNA (“ribosomal RNA” or “rRNA”), mitochondrion 

(“mitochondrial” or “mitochondrion”), phage (“phage”), M. sexta (“M. sexta”, “manduca” 

or “sexta”), E. coli ("Escherichia coli”, “e.coli” or “e. coli"), Oryza (“oryza”), and Other. 
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Keywords were listed behind the group name and subject sequences were grouped by 

matching these keywords in case-ignored manner in order of the group names listed, which 

meant that a sequence of rRNA of M. sexta would be grouped to rRNA, instead of M. sexta. 

Percentage of reads mapped to each groups were calculated.  

2.6 Gene expression calculation 

Trimmed reads were aligned to OGS 2.0, MCOT 1.0 and Cufflinks 4.0 in different runs, 

and gene/transcript expression in different libraries was calculated with RSEM according 

to its manual. The FPKM value, expected reads count for each gene/transcript were 

summarized together for analysis. 

2.7 Library associated genes and comparison between libraries 

The same definition and method were used to identify library-associated genes and to 

compare different libraries (Li et al., 2014).  Basically, z-scores were calculated from the 

FPKM values of each gene, with the formula zi=(xi-µ)/s, where xi is the FPKM value, µ is 

average FPKM and s is standard deviation. Genes with z-score over 1.5 and FPKM value 

over 1 will be considered as associated gene for that library. 

The comparisons between different libraries were done by testing the dependence of 

associated genes. Library X and Y are two samples from a population, and the null 

hypothesis is that they are independent. Suppose total gene number is n, associated genes 

in X and Y are x and y, and they share c common associated genes. If X and Y are 

independent, c equals (x×y)/(n×n), and the possibility of observing higher c will decrease 

as the value of c increases. The chance we observe over c common genes were calculated 

as  
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Bonferroni corrected P-value = P-value × number of pairwise comparison 

Mapping score = -log10(Bonferroni corrected P-value) 

Here, the pairwise comparison is 67×67=4,489. For mapping score over 10, the corrected 

p-value will be very small, and we can reject the null hypothesis and consider two libraries 

are dependent. The log2(mapping score) were calculated and plotted in the figure. 

2.8 Library-specific gene expression 

FPKM values OGS 2.0, MCOT 1.0, and Cufflinks 4.0 were calculated with RSEM. Z-score 

were calculated based on the FPKM value. MCOT 1.0 genes with bad or no match with 

OGS2.0 were considered as MCOT-specific genes, and non-coding genes in Cufflinks 4.0 

were defined as those genes which cannot be translated to proteins. OGS2.0, MCOT-

specific, and non-coding genes were combined, and Genes with at least one FPKM value 

over 100 of 67 libraries were selected for hierarchical clustering of the z-score with MeV 

(4.9.0). The clustered genes were split into three groups based on their source and plotted 

in individual figures. 

2.9 tRNA gene modeling and codon usage 

tRNAscan-SE was used to scan the genome to identify tRNA genes under the default 

setting for seach eukaryotic sequences. Genome-based Codon usage was calculated by 

adding up codon used of different genes in OGS 2.0 directly. Transcriptome-based Codon 

usage was calculated by first getting numbers of codons used by different transcripts with 
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the CDS sequencing from TransDecoder, multiplying these numbers by FPKM value of 

that transcript, summing up the product according to each codon, calculating the percentage 

of usage in each library, and averaging percentage across 67 libraries. 

 

3 Results 

3.1 Life cycle and origins of 67 RNA-seq libraries 

In SRA database, there are 67 RNA-seq runs studying M. sexta with public RNA-seq reads 

available, which are 52 cDNA libraries of different tissues and developmental stages which 

are described in Table S8 of the genome paper of M. sexta (Kanost et al., 2016), 8 libraries 

of adult head studying sex-biased gene expression (Smith et al., 2014),  and 7 libraries of 

male and female antennae studying chemosensory receptor genes (Koenig et al., 2015). 

Details about construction of these libraries were described in these papers. We label these 

libraries with number 1 to 67, of which 33 are paired-end reads and 34 single-end (Fig. 1). 

For libraries 1 to 52, 11 of them are from head, 8 from fat body, 5 from whole body, 13 

from midgut, 3 from Malpighian tubule, 7 from muscle, 3 from testis and 2 from ovary. 

Typically, there are no biological replicates for 52 libraries, but some samples such as G-

L5-W, M-L5-12h, M-L5-preW, M-L5-W were sequenced with both single-end and paired-

end sequencing technology. Libraries 53 to 60 are 4 biological replicates for male or female 

head of day 1 adult. Libraries 61 to 67 are from antenna of larva or adult. From three 

different studies, these libraries can be divided into four groups, which are Group P and S 

for 33 Paired-end and 19 Single-end libraries in the genome paper, respectively, and Group 

H and A for 8 single-end libraries from Head and 7 from Antenna. Reads length in Group 
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P, S, H, and A are 100, 51, 51 and 94 (table S1). Samples for these libraries were collected 

from different kind of tissues at different developmental stages (Fig. 1, table S1). 

3.2 Overview of 67 RNA-seq datasets 

As shown in Fig. 2A, the number of reads in each library varies a lot, ranging from 4.2 

million in G-L5-preW-S (Lib. #32) to 73 million in F-L5-preW (Lib. #14). The box-plot 

Fig. 2B shows the average, median and range of reads number in library group P, S, H and 

A. Generally, there are many more reads in group P than in S, with average number of 

reads 37 million versus 7.7 million. The variation of reads number is also big in group P, 

with Lib. #14 as an outlier, and small in group H and A, as these libraries are biological 

replicates from same sample types.  

We then wanted to have an overview of the origins of reads in each library, including how 

much reads can be aligned to the genome, what are these mapped and unmapped reads. To 

reach that goal, reads need to be aligned to the genome first. We re-aligned all these reads 

and re-assembled the Cufflinks 4.0 model instead of our previous result in MCOT (Cao 

and Jiang, 2015) for several reasons. First, the newer version of official genome, Msex1.0, 

is slightly different from the previous version we used, with new IDs for scaffolds and with 

3 sequences from mitochondrial. Additionally, we had extra 7 extra RNA-seq libraries to 

analyze. Finally, we decided to do quality control for reads before the alignment to make 

full use of reads and to improve gene models.  

We trimmed reads with Trimmomatic, and only kept reads longer than 50 after quality 

control to reduce the chance of non-specific matching when we analyze unmapped reads 

later on. The survival rates were shown in Fig. 2B and 2C. Library group S has higher 
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survival rate compared to group P, and survival rates in group H are almost the same.  The 

overall survival rates are higher than 85%, with Lib. #66 and #67 as outliers, with a survival 

rate around 61%. 

We then mapped the trimmed high quality reads to the genome with TopHat, and get the 

Cufflinks 4.0 according to the manual (Trapnell et al., 2012). Because we were also 

interested in unmapped reads, we used STAR to map the reads to the genome again. With 

the help of GTP file generated from Cufflinks and running in 2-pass mapping mode, STAR 

mapped more reads to the genome, with an increase of nearly 10% for trim-survived reads 

(Fig. 2C and 2E), with library group P from 82% to 91%, and group A 83% to 96%. Lib. 

#11 is an outlier, with a mapping rate of 60% by TopHat and 69% by STAR. 

For aligned reads, we first noticed that a large portion of reads were aligned to the 3 

mitochondrial sequences in the genome after extracting count of reads mapped to each 

scaffold of the genome with samtools. In the beginning, we defined non-coding genes as 

Cufflinks 4.0 genes that cannot be translated by TransDecoder, and we found 4 genes non-

coding genes with extremely high FPKM values. After blast search, we found these genes 

were rRNA genes, and they were actually 4 individual scaffolds in the genome. Since the 

3 mitochondrial scaffolds also codes 3 individual genes, we finally separate genes in 

Cufflinks 4.0 to four groups, and got total reads ratios mapping to each group (Fig. 2F). 

The 33,378 genes in Cufflinks 4.0 include 3 from  mitochondria, 4 from rRNA, 14,532 

coding and 18,839 non-coding genes. Even through the number of non-coding genes is 

higher than coding genes in Cufflinks 4.0, as described previously, the non-coding genes 

were generally shorter than coding genes (Cao and Jiang, 2015), and in RNA-seq data, 

their contribution to total reads is only about 10% that of coding genes (Fig. 2F). 
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Surprisingly, the percentage of reads mapped to mitochondria and rRNA genes can be very 

high. Library group S has high percentage of reads mapped to mitochondria, some with 

more than 20%, and have almost no rRNA reads, and group P has average 20% rRNA 

reads, and around 5% mitochondrial reads with big variation and outliers, while groups H 

and A have both low rRNA and mitochondrial reads with Lib. #63 as an outlier which has 

19% mitochondrial reads. Group P and S sequencing samples were prepared separately by 

different groups using techniques in different places, and were sequenced much earlier 

comparing to group H and A. The differences between these groups may be explained by 

different sample preparing methods and the improved mRNA purification techniques over 

time. We did not see biological explanations for these observations. 

3.3 Genome transcription 

In different tissue or developmental stages, different parts of the genome were actively 

transcribed to RNA which can be sequenced with RNA-seq technology. Based on Cufflinks 

4.0 models, 51.73% of the genome consists of gene regions, 17.12% can be transcribed to 

mRNA and 5.31% is protein coding region. Interestingly, based on the mapped reads, the 

transcribed genome ratio goes up to 63.89%, and in different libraries, the ratios are very 

different, ranging from 1.54% in Lib. #45 (M-L5-preW-S) to 23.22% in Lib. #49 (T-P-

D15~18) (Table S1).  

It was reasonable to consider that the mapped ratio of the genome will increase as more 

RNA-seq bases were aligned to the genome, and the observations supports this idea. The 

relationship between genome mapped ratio and aligned bases were shown in Fig. 3A. We 

artificially added two linear regression lines for single-end libraries and paired-end 
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libraries. Libraries below the lines mean that compared to other libraries, less ratio of the 

genome is transcribed, which also means that there might be some very highly transcribed 

bases in the genome, while libraries above the line may have less highly transcribed bases. 

Testis libraries, especially Lib #49, are very far above the line. This is consistent with the 

observation that these libraries have less highly expressed genes as reported in the genome 

paper (Kanost et al., 2016). Overall, the mapped ratio in library group P is much higher 

than group S, likely because of the much higher number of aligned bases (Fig. 3B). 

Genome mapped ratios are very different across different libraries, and despite the total 

number of aligned bases, the distribution of aligned bases across the genome may also be 

a big contributor to the variations. To test this hypothesis, we first obtained the sequencing 

depth for each bases in the genome in each libraries. Because rRNA and mitochondrial 

reads were over-represented in some libraries as discussed before, we remove bases from 

scaffolds less than 200kd before the analysis. We then normalized the sequence depth using 

the BPKM value, and sort the bases according to their sequencing depth, and divided them 

to 20 groups from high to low. To compare across libraries, z-scores were calculated for 

each of the 20 groups (Fig. 3C). The ratio of aligned bases in each group are shown in Fig. 

3D. As expected, libraries above the regression line in Fig. 3A usually have higher BPKMs 

in highly transcribed base groups, such as library #14 and #15, they have higher BPKMs 

in group 1 to 6. For Lib. #5 and #16, which have similar numbers of aligned bases and very 

different genome aligned ratios, average BPKM of #5 is higher than #16 in the top-

transcribed groups, and lower in the less-transcribed groups. Comparing libraries from 

midgut, we can see the transition from larva to adult. Testis and ovary have higher BPKM 

in low-transcribed groups, which is consistent with their higher position in Fig. 3A. Large 
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variations were observed from the ratios of each top-transcribed groups. Groups 1 to 4 are 

top 3,200 transcribed bases, which have the length of 1 to 2 genes on average, as the 

average length of genes in OGS 2.0 is about 2,000. This means that, in some libraries, two 

genes may contribute over 20% even close to 40% of total mRNA bases. Groups 1 to 12 

are top 819,200 transcribed bases, which may represent 400 genes, 2.6% of genes in OGS 

2.0. On average, they occupy over 63% of aligned bases. Groups 13 to 16 contributes to 

32% of aligned bases, and there are about 6,000 genes in them. This result means that genes 

expression levels vary a lot, with few highly expressed genes contribute the major part of 

the sequenced RNAs, which is consistent with reports in the genome paper that very few 

highly expressed genes contribute a large part of total FPKM values (Kanost et al., 2016). 

Additionally, the variations between different libraries indicates that the highly expressed 

genes may be very different from library to library. It will be interesting to check those 

highly expressed and library-specific genes. 

3.4 Unmapped reads 

When we first tried to model genes with Cufflinks, we noticed that the ratio of reads which 

could map to the genome was very low, only around 60%. We were curious about these 

unmapped reads since that time. Here, with our improved method, we could almost totally 

explain this low mapping rate. First, about 10% of reads were discarded after quality 

control with Trimmamatic, and a certain percentage of reads were trimmed, which could 

not be aligned to the genome due to low quality of some bases. Secondly, TopHat might 

have a relatively high standard to consider a read as mapped, and the mapping rate might 

be lower without the help of the GTF file which stored the splicing site information. 

Without the GTF file, some reads near the splice junctions might not be mapped properly 
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due to the short anchoring sequences, while here STAR were provided not only with the 

GTF file generated by Cufflinks, but also allowed running in the 2-pass mode (Dobin et 

al., 2013). As a result, STAR mapped about 10% more reads comparing to TopHat. Finally, 

the mitochondrial sequences were not included in the previous version of the genome, and 

as described before, on average, nearly 7% of TopHat mapped reads were mapped to 

mitochondrial DNA.  Still, on average, 7.4% of trimmed reads cannot be mapped to the 

genome, and in library #11, the unmapped rate was 31% even after these settings.  

The unmapped reads from STAR were blasted to non-redundant nucleotide (nt) database, 

the subject genes were grouped to four and the number of reads matched to each gene 

groups were counted. One thing to note was that nt did not include sequences from OGS 

2.0. If the unmapped rate by STAR was higher, the ratio of reads with blastn match would 

generally be higher, and paired-end libraries had higher unmapped rate and higher ratio of 

reads with blastn match, with libraries #48 and #50 from testis as outlier, and these un-

matched reads might be originated from the W chromosome, which was not included in 

the official genome of M. sexta (Fig. 4A). Reads with no blastn matches might be AT rich 

sequences from poly-A tail of mRNA, or from un-sequenced part of the genome.  

We divided the blastn target sequences to 7 groups after checking them carefully. The total 

number and composition of unmapped reads with blastn match are shown in Fig. 4B. It 

turned out that rRNAs were the major part (80%) of these reads (Table S2), and library 

group P had a higher ratio of rRNA of unmapped reads, just like they had higher rRNA 

ratio in mapped reads (Fig. 2G), and library #19 was an outlier which contained a lot of 

phage sequences. These rRNAs were mostly from other lepidopteran species. Phage 

sequences, majorly Enterobacteria phage phiX174, which were reported as a positive 
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control in DNA sequencing, accounted for 6.87%, and their ratios in different libraries were 

very different. For mitochondrion group, it turned out that majority reads were mapped to 

a more complete version of M. sexta mitochondrion in NCBI.  Oryza group contained 

sequences from different plants, and they were only identified in midgut of larva, not adult. 

This may be explained by the fact that during wandering stage, all the content in the gut 

will be eliminated from the larva, and the adult of M. sexta is fed on different food. 

However, it was hard to explain that library G-L4-0h had few Oryza reads. G-L5-W-S and 

G-L5-W were supposed to be from the same sample. However, Oryza reads were only 

identified in single-end libraries. Group E. coli reads were also much higher in the gut, 

possibly related with the function of the gut. However, we cannot rule out the possibility 

of contamination, as they were also high in library #53 to #60 which were from the head. 

2.79% of reads matched to sequences of M. sexta, including lysozyme, apolipophorin 

protein and other previously reported genes. Maybe these genes were not well sequenced 

in the genome, or these reads cannot map to the genome due to higher variation from single-

nucleotide polymorphism. Group other included sequences various sources, including 

other lepidoptera species, different bacteria and even human beings. Result from our 

partner and this study show that no viral sequences were identified other than the phage 

genome, though it was believed that insects were commonly infected with various viruses 

and next generation sequencing can help identify insect virus (Liu et al., 2011). 

 

3.5 Comparison between different libraries 
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Genes were selectively expressed in different tissues at different developmental stages, and 

result in comparing genome transcription depth implies that different libraries may have 

very different gene expression patterns. We followed the definition of library-associated 

genes as genes with FPKM over 1 and Z-score over 1.5 as in the previous study comparing 

D. melanogaster and C. elegans RNA-seq libraries (Li et al., 2014).  Based on this standard, 

15,289 out of 15,543 genes are associated with some libraries, and those un-associated 

genes are all very lowly expressed genes (FPKM <1). The number of associated genes in 

each library ranges from 200 to 3,000. Early egg, adult pupa and fat body generally have 

more associated genes and three libraries from testis have the highest number of associated 

genes. High expressed associated genes (FPKM >100) are mostly proportional to the 

number of associated genes (Fig. 5B). Table S3 stores the number of associated genes in 

each libraries and shared associated gene numbers between different libraries.  

We used the same strategy to compare different libraries from M. sexta by calculating the 

mapping score (Li et al., 2014) summarized in Fig. 5A. We improved the heatmap by 

including mapping scores up to 100, compared to up to 10 in the reference paper, and we 

also included log2(mapping score) value as single letter in the figure. First, as expected, 

mapping scores close to the diagonal line were the highest, indicating libraries of closer 

developmental stage from same tissue types are more similar to each other. Secondly, there 

are square-shaped regions of different size along the diagonal line, with some squares share 

common elements in diagonal line and some not. For instance, library #1 to #3 and library 

#3 to 5 from head form two different squares, and they do not share a common element, 

while squares of library #32 to #36 and #34 to #37 from the midgut share several elements. 

This difference may be explained by the fact that starting from late 4th instar, the head of 
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larva already changes a lot to prepare for pupa stage. The gene expression profiles in 5th 

instar, wandering stage, pupa stage and adult stage are very different, maybe because all 

gut content was cleaned and liquid was secreted in wandering stage and a lot of cells wre 

disrupted and new tissues were grown in the pupa stage. For libraries from the same 

tissue/organ/body part, if they are too far away in terms of developing stage, they will share 

much less associated genes and behave like independent in this mapping score heatmap. 

Third, libraries share common tissues may have higher similarity, and they are mostly from 

the same development stages. Library #53 to #60 are from day 1 adult, and they show high 

similarity with library #9 and #10, which are from day 1 and day 2 adult. Antenna libraries, 

#61 to #67, both larva and adult have some level of similarity, but only libraries from adult 

antennae show similarity only to female head (library #53 to #56), and the only male 

antenna library has lower similarity with male head than female head. Maybe the male and 

female antennaes are very similar, while the heads are very different. The whole body 

libraries, #20 to #24, show more similarity with libraries from larva midgut, head and 

muscle. This similarity is reasonable as the major task for larva is thinking about how to 

move to eat as much as possible. Ovary libraries, O-P-D15~18 and O-A-D1 are very similar 

to fat body libraries F-P-D15~18 and F-A-D7~9, and surprisingly, F-A-D1~3 are more 

similar to MT-A-D1 and MT-A-D3. One possible explanation is that fat body is a very 

large organ or tissue, fat body from different parts of the body were used in these libraries. 

Finally, sequencing methods have obvious influence in determining library similarity. As 

mentioned before, library group P have more rRNA reads while group S have more 

mitochondrial reads, and the read numbers in group P are much higher than in group S. 

Library #42 and #43, #44 and #45, #46 and #47 had sequenced same sample with two 
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technologies, paired-end and single-end. Only the single-end libraries have high similarity 

with library #5 to #7, which were also single-end libraries, and there are other examples. 

This difference may be caused by the sequencing technique itself, or the way each sample 

was prepared before the sequencing, or simply due to the influence of sequencing depth. 

3.6 Top expressed genes in different libraries 

Different genes were very differently expressed in different libraries. The highly expressed 

genes, which contributes the major part of the RNA-seq reads and FPKM values, usually 

play vital functions. To limit the total number of genes for manually checking, we only 

included top 3 expressed genes in each library. After removing duplicate genes, 69 genes 

in OGS 2.0 were found to be the top 3 expressed genes in at least one of the libraries. Their 

expression level and descriptions were shown in Fig. 6. Of the 69 genes, some are 

housekeeping genes highly expressed in almost all libraries, including ribosomal proteins 

and energy metabolism related proteins. Another two big groups are odorant 

binding/chemosensory proteins and cuticle proteins, which can be specific or non-specific 

in larva and adult. Muscle libraries are from tissues with skin, and this can account for the 

high level of cuticle proteins in muscle libraries.  

The other tissue specific proteins include digestion related proteins which are highly 

expressed in whole body and gut, serine protease 102 in O-P-D15~18, titin in MT-A-D1 

and MT-A-D3, histone H2B and histone H4 in W-E-3h-S and W-E-Late-S, circadian 

clock-controlled genes in H-L5-preW-S, antimicrobial peptides including diapausin and 

lysozyme, and etc. The development of insects is controlled by diverse clocks, including 

the circadian clock (Numata et al., 2015), and the fact that circadian clock-controlled 
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proteins were extremely highly expressed in heads of pre-wandering stage larva indicates 

that protein-level control plays a vital role in wandering behavior and development of 

insects. A groups of diapausins of M. sexta were identified and reported to have antifungal 

activity (Al Souhail et al., 2016; He et al., 2015). They received the name diapausin for 

their diapause-specific expression when first identified in leaf beetle (Tanaka et al., 2003). 

These may explain the fact that two diapausins are extremely highly expressed not only in 

fat body, major resources for antimicrobial peptides, but also in the head, controlling center 

for diapause behavior.  

We also noticed that library #63 has very high expression of actin and other muscle 

proteins, different from its biological replicate library #61 and #62. Gene Msex2.15420 is 

extremely highly expressed in many libraries, and though no homolog sequences were 

identified, we consider it as ribosomal RNA due to its high amount and FPKM values 

proportional to the ratio of rRNAs in different libraries. Msex2.13838 seems a short non-

coding gene, and it is highly expressed in adults, indicating that non-coding genes are 

regulated similar to coding genes. There are six other uncharacterized proteins which show 

high specificity to some libraries. Functional studies of these genes may help understanding 

biological behavior of this model insect.  

3.7 Library-specific expression of genes 

Genes were differently expressed in different libraries. Theoretically, FPKM values are 

proportional to mRNA levels inside the cell, and the uncertainty for higher FPKM values 

is smaller.  To have an overview of library-specific gene expression, we made a heat map 

with z-score of only those high-expressed genes with at least one FPKM value over 100 
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(Fig. 7). We manually grouped these genes to 22 cluster groups based on their expression 

patterns. 

Clearly we can see many of these genes were very differently expressed in different 

libraries. 551 genes in cluster 1 are more highly expressed in all three testis libraries, while 

about 341 genes in cluster 2 are either highly expressed in T-P-D3 or T-P-D15~18 and T-

A-D1~3. Cluster 4 are genes expressed in O-A-D1, adult ovary; cluster 9 in 3-hour egg; 

cluster 12 in larva midgut, which includes a lot of digestive serine proteases (data not 

shown); cluster 17 in pre-wandering head; clusters 20 and 21 in adult and larva antennae, 

respectively. Non-coding genes and MCOT specific genes show similar expression 

patterns (Fig. S1). 

It’s not easy to describe genes in each cluster group, and most of these genes were not 

studied, nor is there well-defined functions for each of them. Besides, generally different 

genes have different functions, so it might be hard to find a common term to describe 

diverse genes. We did a gene ontology enrichment assay for cluster 1 with Blast2GO (Götz 

et al., 2008), and found top 3 most significantly increased GO terms in molecular function 

were microtubule binding, ATP-binding and protein serine/threonine kinase activity (Table 

S3).  

3.8 tRNA genes and codon usage 

Different organisms have different codon preferences. Codon preference in the codon 

preference database were calculated simply based on the published sequences in NCBI. To 

get a more precise codon preference data table and to check the relationship between codon 

preference and tRNA gene numbers, we predicted tRNA genes and calculated codon 
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preference based on the OGS 2.0 sequence and based on the RNA-seq data (table 1). We 

can see that codon preference does not have high relationship with tRNA gene numbers. 

For some codons, the predicted tRNA gene number is 0, such as CTC, while the frequency 

of CTC in genome and transcriptome is 15.2 and 17.7 per thousand, respectively. The ratio 

of codon in genome and transcriptome are generally similar. We also calculated codon 

preference in different libraries based on the RNA-seq data, and did not observe clear 

global codon preference change. We also tried to check tRNA gene expression levels by 

calculating BPKM values of tRNA gene regions. However, these regions were almost not 

mapped by any reads, which means that tRNAs were cleaned from the sample and not 

sequenced in these libraries (data not shown). 

 

4 Discussion 

We did a thorough analysis of all currently public available RNA-seq data for M. sexta, 

described the quality, content of the reads. It is surprising that some libraries have high 

amount of rRNA and mitochondrial reads, which may significantly influence BPKM value 

of genome bases and FPKM value of genes. It reminds researchers to do the experiment 

carefully, to reduce these kinds of contamination as much as possible. Also, when 

calculating gene expression levels, we recommend to remove rRNA genes and 

mitochondrial genes, which might have too high FPKM value and will lower FPKM values 

for other genes. The dissection of different tissues aids in finding tissue-specific genes and 

in elucidating gene functions. It is very important to prepare the sample well, as this 

determines the RNA-seq quality. 
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Based on the RNA-seq data, up to 63.89% of the genome may be transcribed, which is 

consistent with the finding that 85% of human genome can be transcribed (Hangauer et al., 

2013), and up to 51.73% of the genome is Cufflinks 4.0 gene regions, which is a relatively 

compact genome with not so many inter-gene regions.  We calculated gene expression 

levels based on different gene models, including OGS 2.0, Cufflinks 4.0 and MCOT 1.0. 

Based on the clustering assay to check library-specific gene expression, we can clearly see 

that majority of highly expressed genes are very library-specific, some of which become 

extremely high only in one library. Part of the reason is that with a big body size, M. sexta 

is easy to dissect, and enough RNA can be extracted from a few insects which reduces the 

variation from differences of insects, and the relative long life cycle ensures that these 

insects are in very close developmental stage. Of course single cell sequencing will be good 

to reducing this problem, but this technique is still too expensive for most researchers. 

These genes are tightly regulated, and the cellular machinery are very specific and efficient 

in regulating their expression. Given the fact less inter-gene bases in the genome, M. sexta 

may be also a good model for studying transcription elements and factors regulating the 

development, which may also help study development of other insects and help control 

pests.  

Since different genes are very differently expressed in these libraries, and gene expression 

in these diverse libraries can provide vital information with gene function, we suggest 

researchers look at information provided with RNA-seq data of genes they are interested 

in advance, such as gene expression, possible alternative splicing and co-regulated genes. 

Gene alternative splicing also plays important role in gene regulation, though we did not 

talk about that in this paper. It is almost impossible to look at the genes one by one. Thus, 
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it is very important to provide user friendly resources so anyone can check information 

they are interested in easily. 

Egg, larva, pupa, and adult are three distinct stages for holometabolous insects. Our 

comparison across libraries clearly show that from gene level, they are very different. 

Different tissues have different genes expressed, and this is clearly supported by the 

library-specific gene expression heat map. This means genes can be separated to different 

small groups. Together with domain structure, and protein level information from mass 

spectrometry, gene functional study will be accelerated. 

One of the highest expressed gene, Msex2.15420 is very likely a ribosomal protein, though 

it can be translated to a protein by TransDecoder. However, we did not found any 

homologous sequences in NCBI nt or nr database. It is hard to imagine that we do not have 

enough knowledge for rRNAs. Additionally, some of the highest expressed genes remain 

unknown, with no homolog sequences or homolog sequences un-studied. These highly 

expressed, and tissue-specific unknown genes are good targets for future research. What’s 

more, although reads from non-coding genes account for around 10% of coding gene, we 

did see some highly-expressed and very tissue-specific non-coding genes. While function 

of most of them are unknown, they might be interesting research area in the future. 

5 Summary 

We comprehensively studied all current RNA-seq reads for M. sexta, checked the amount 

of rRNA, mitochondrial, mRNA and non-coding reads. We also explained the source for 

unmapped reads for all these libraries. We compared transcription activity from the genome 

view, and did similarity comparison across 67 libraries. We provided gene expression level 



96 
 

based on different gene modeling programs, and found that with so many tissue- and time-

specific libraries, most genes are expressed in a library-specific manner. This information 

will greatly help experimental design of future RNA-seq work and basic research of M. 

sexta and other insects. 
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Tables 

Table 1. Codon usage in Manduca sexta 

 T C A G  

 codon AA 
freq. 

G*1 

freq. 

T*2 

tRNA 

#*3 
codon AA freq. G freq. T tRNA # codon AA freq. G freq. T tRNA # codon AA freq. G freq. T tRNA #  

T 

TTT F 13.7 11.0 1 TCT S 12.6 12.3 19 TAT Y 12.7 10.4 1 TGT C 9.1 6.1 0 T 

TTC F 20.8 24.8 26 TCC S 11.3 13.4 0 TAC Y 19.0 22.6 28 TGC C 11.9 10.5 21 C 

TTA L 14.5 10.7 14 TCA S 12.8 9.8 9 TAA -*4 0.9 2.0 0 TGA - 0.6 1.2 1*5 A 

TTG L 16.7 15.6 16 TCG S 13.9 9.2 15 TAG - 0.4 0.6 3*6 TGG W 11.0 9.2 8 G 

C 

CTT L 10.3 11.7 15 CCT P 13.3 14.1 28 CAT H 10.7 9.0 0 CGT R 6.6 9.3 24 T 

CTC L 15.2 17.7 0 CCC P 11.9 16.1 0 CAC H 15.0 14.1 23 CGC R 13.9 13.1 0 C 

CTA L 9.2 7.0 6 CCA P 15.0 13.4 17 CAA Q 19.1 17.1 23 CGA R 7.1 4.9 14 A 

CTG L 22.5 20.1 18 CCG P 16.5 10.4 11 CAG Q 19.6 20.2 20 CGG R 7.3 4.7 0 G 

A 

ATT I 15.5 15.4 27 ACT T 14.9 13.2 23 AAT N 22.4 19.0 1 AGT S 12.2 9.6 1 T 

ATC I 17.1 24.0 0 ACC T 13.1 15.4 4 AAC N 24.3 25.8 41 AGC S 13.7 11.9 16 C 

ATA I 19.3 12.0 11 ACA T 16.3 14.5 28 AAA K 34.1 33.6 22 AGA R 13.0 10.9 9 A 

ATG M 22.6 22.3 44 ACG T 14.0 9.3 11 AAG K 27.8 40.5 26 AGG R 9.8 10.9 13 G 

G 

GTT V 13.3 14.9 24 GCT A 17.5 23.3 33 GAT D 25.2 23.8 6 GGT G 13.6 19.7 1 T 

GTC V 14.1 17.8 0 GCC A 17.8 24.8 0 GAC D 29.8 32.5 54 GGC G 21.0 23.3 32 C 

GTA V 12.1 12.8 12 GCA A 14.3 14.3 23 GAA E 34.2 34.1 33 GGA G 14.7 17.1 18 A 

GTG V 25.3 24.7 24 GCG A 23.0 17.5 22 GAG E 31.0 32.4 28 GGG G 7.9 7.0 3 G 

*1, freq. G: frequency per thousand number based on transcripts CDS sequence. *2, Freq. 

T: frequency based on RNA-seq data. *3, number of tRNA genes with corresponding 

anticodon. *4, - stands for stop codon. *5, Seleno-Cysteine tRNA gene. *6, suppressor 

tRNA gene. 

 

Table S2 Umapped reads with blastn match in each group 

 Sum of unmapped reads with blastn match Percentage (%) 

rRNA 76,843,832 80.23 

phage 6,582,176 6.87 

Other 5,271,964 5.50 

mitochondrion 1,714,581 1.79 

E. coli 1,605,683 1.68 

M. sexta 2,675,232 2.79 

Oryza 1,080,110 1.12 

Sum 95,773,578 100 
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Figures 

 

Fig. 1. Life cycle and public available RNA-seq data sets of M. sexta. Bars in the circle 

represent different developing stages of M. sexta and are proportional to time length of the 

insect raised with artificial food described in previous publication (Reinecke et al., 1980). 

For library names, the first part indicates the type of tissue that the libraries are from, and 

were labeled in different color shown in the figure. The second part, L for larvae, P for 

pupa, and A for adult. The third part, D for day, h for hour, preW for pre-wandering stage, 

W for wandering stage, M for male, and F for female. The –S in the end represents that 

reads were single-end, otherwise paired-end. The cDNA libraries represent the following 

tissues and stages: head [1. 2nd (instar) L (larvae), d1 (day 1); 2. 3rd L, d1; 3. 4th L, 12h 

(hour); 4. 4th L, late; 5. 5th L, d0.5; 6. 5th L, d2; 7. 5th L, pre-W (pre-wandering); 8. P 

(pupae), late; 9. A (adults), d1; 10. A, d3; 11. A, d7], fat body (12. 4th L, late; 13. 5th L, d1; 

14. 5th L, pre-W; 15. 5th L, W; 16. P, d1-3; 17. P, d15-18; 18. A, d1-3; 19. A, d7-9), whole 

animals [20. E (embryos), 3h; 21. E, late; 22. 1st L; 23. 2nd L; 24. 3rd L), midgut (25. 2nd L; 

26. 3rd L; 27. 4th L, 0h; 28. 4th L, 12h; 29. 4th L, late; 30. 5th L, 1-3h; 31. 5th L, 24h; 32. 5th 

L, pre-W; 33-34. 5th L, W; 35. P, d1; 36. P, d15-18; 37. A, d3-5;), MT (38. 5th L, pre-W; 

39. A, d1; 40. A, d3), muscle (41. 4th L, late; 42-43. 5th L, 12h; 44-45. 5th L, pre-W; 46-47. 

5th L, W), testes (48. P, d3; 49. P, d15-18; 50. A, d1-3), and ovaries (51. P, d15-18; 52. A, 

d1), head [53-56. A, d1, F (Female); 57-60, A, d1, M (male)], antenna (61-63, 5th L; 64-

66, A, F; 67, A, M). 
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Fig. 2. Overview of 67 cDNA libraries. A, reads number in each library. Color represent 

tissues source of mRNA, and 1 to 67 represent library number (black for paired end reads, 

cyan for single end reads), the same as in Fig. 1. B, up-boundaries represent ratio of reads 

after different treatment, including trimming, mapping with STAR and TopHat. Total reads 

in each library were set to 1. C, D, box-plot of reads number and trimming survival rate in 

each library categories, respectively. E, mapping rates of trimming survival reads by STAR 

and TopHat. F, ratio of TopHat mapped reads mapping to mitochondria, mRNA, non-

coding and rRNA genes. G, H, box-plot of ratio of mapping ration to mitochondria and 

rRNA of different library groups. For library categories, P for 33 paired-end of 52 libraries 

sequenced together with genome project, S for 19 single-end of 52 libraries, H for 8 

libraries from head and A for 7 libraries from antenna in two different individual studies. 

Library names were the same as in Fig. 1. 
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Fig. 3. Reads aligned to genome. A, relation between mapping ratio of genome and 

aligned bases by TopHat. Each symbol in the figure represents one library, with their 

library numbers labeled. Square for paired-end libraries, Circle for single-end libraries. 

Two lines were linear regression of paired-end libraries and single-end libraries. B, box-

plot of mapping ratio of genome in different library groups. P for paired, S for single, H 

for head, A for antenna, as described in results. C, heatmap of z-score in each base groups. 

Bases in the genome were sorted based on BPKM value first. Group 1 to 19 are top 400 

bases, 400×2n to 400×2n+1 where n equals 0 to 17. Heatmap is colored based on the z-score 

of average BPKM in each group. D, ratio of total aligned bases in each base groups. 
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Fig. 4. Unmapped Reads. A, relationship between ratio of unmapped reads with blastn 

match and ration of unmapped reads by STAR. B, distribution of unmapped reads with 

blastn match. Different colors of bars represent different types of reads. Lines in the figure 

show the number of unmapped reads with blastn match. C, box-plot of ratio of rRNA-reads 

in unmapped reads with blastn match. Number in the figure represents library number, the 

same as in Fig. 1. Square for paired-end, circle for single-end. Color indicating the library 

type, the same as in Fig. 1 and Fig. 3. 
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Fig. 5. Library-associated genes and comparison of different libraries. A, mapping 

scores of different library pairs. Values in the cells were log2(mapping score). A value 

greater than 4 (mapping score greater than 16) means two libraries were very dependent. 

B, number of associated genes in each library. Grey bars were associated genes with FPKM 

value greater than 100. 
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Fig. 6. Expression profile of 69 highly expressed genes in 67 libraries. Top 3 expressed 

genes in each library were included, and their mRNA levels were represented by 

log2(FPKM+1) values, are shown in the rainbow gradient color in heat map. Library names 

and descriptions were the same as in Fig. 1. 
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Fig. 7. Library-specific expression of different genes in OGS 2.0. Z-scores for high 

expressed genes were calculated from FPKM values. Genes were clustered based on Z-

score and divided to different groups manually based on the expression pattern. 
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Fig. S1. Library-specific expression of MCOT 1.0-specific and non-coding genes. A), 

MCOT 1.0 specific genes. B) Non-coding genes. 
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CHAPTER IV 
 

 

FUNCTIONAL STUDY OF STRESS RESPONSIVE PEPTIDES IN IMMUNITY AND OTHER 

BIOLOGICAL PROCESSES OF MANDUCA SEXTA 

 

Abstract 

Cytokines are important regulators of biological process. Stress responsive peptides (SRPs) 

are a conserved group of insect cytokine. Eleven SRPs were identified in Manduca sexta, 

including uENF1, uENF2, PP, and SRP 1 to 8. Among them, SRP5, 7 and 8 are lowly 

expressed in 52 RNA-seq libraries. PAP1 and PAP3 are proved capable of activating 

proSRP1 and proSRP2. MALDI-MS suggested that the predicted activation site is right. 

uENF1, uENF2, PP, SRP1 and SRP2 can induce expression of some AMPs, while SRP6 

can block the feeding and growth of larvae. The functions of different SRPs are diverse, 

and this work helps elucidate the role of cytokines in insect immunity and development. 
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1. Introduction 

As main agricultural pests and vectors of many human or animal diseases (e.g., malaria, 

Dengue fever), insects cause losses up to one fifth of agricultural production in the world 

and threaten people’s life and health. In 2007, $4.3 were spent on insecticides 

(https://www.epa.gov/sites/production/files/2015-10/documents/market_estimates2007.pdf) and, 

according to WHO, 438,000 people died of malaria carried by mosquitos in 2015 

(http://apps.who.int/gho/data/node.main.A1368?lang=en). Immune system plays key role 

in defense against pathogens and the study of insect immune system may help us reduce 

agricultural loss and control disease transmission.  

With five larval instars, large body size and hemolymph volume, the tobacco hornworm 

M. sexta is widely used as a model organism to study various insect physiological 

processes, especially immune-related proteins in the hemolymph (Jiang et al., 2010). 

Among various immune responses, antimicrobial peptides (AMPs) are key components of 

the innate immune system, which are evolutionarily conserved weapons against bacteria, 

fungi and viruses, and widely used throughout the plant and animal kingdoms (Diamond 

et al., 2009; Imler, 2013; Izadpanah and Gallo, 2005; Pasupuleti et al., 2012). After years 

of study in Drosophila melanogaster and other insects, the Toll and IMD pathways are 

found to be two main cellular signaling cascades that control the expression of AMPs and 

other immune responses (Kleino and Silverman, 2013). Other important immune responses 

include phenoloxidase (PO) activation which induces melanization and kills a wide range 

of pathogens, and cellular response, such as swallowing of bacteria by plasmatocytes 

(Eleftherianos et al., 2009; Isaac and Alex, 2012). 
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In humans, the signaling and development of different immune cells are tightly regulated 

by various immune-related cytokines, but only a few cytokines were identified and studied 

in insects. One of the most studied insect cytokines is paralytic peptide (PP), which induces 

AMP expression (Tsuzuki et al., 2012) and regulates melanization (Ninomiya and 

Hayakawa, 2007), causes paralysis, blocks larval growth, and induces the plasmatocyte 

(Yang Wang, 1999). Interestingly, PP can be translated from a tricistronic transcript, which 

encodes two other proteins, named uENF1 and uENF2, whose function remains unclear. 

In 2011, a new cytokine, named stress responsive peptide (SRP), was identified in 

Spodoptera litura. SRP was induced under stress conditions, including heat, cold, injury, 

and infection by microbes and parasites. Similar to PP, it inhibits feeding activity, retards 

larval growth, and causes plasmatocyte spreading. SRP is more highly expressed in 

hemocytes and brain than in fat body(Yamaguchi et al., 2012). All these data suggest that 

SRP and PP are key signaling molecules for humoral and neural regulation of immune or 

stress responses. 

By searching the M. sexta genome, we identified eight SRP genes in different regions of 

the genome. Together with uENF1, uENF2 and PP, 11 cytokines were identified in M. 

sexta. With remarkable differences, the SRPs, uENFs, and PP share some common features 

in amino acid sequences, and are potential regulators of AMP expression or other innate 

immune pathways.  
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2. Literature review 

Cytokines can be loosely defined as small signaling proteins which are usually released to 

influence behavior of surrounding cells through receptors. Nearly all biological processes 

are regulated by cytokines, including embryonic development, stem cell differentiation, 

specific or non-specific immune responses, and the aging process (Vilcek and Feldmann, 

2004). Several types of best known cytokines, including interferons, interleukins and 

chemokines, are well-studied for their vital roles in the mammalian immune response, such 

as cell-to-cell communication between macrophage, neutrophil cells, mast cell, T-cells, and 

B-cells, and immune cell activation, differentiation and proliferation, and other immune 

responses (Stenken and Poschenrieder, 2015).  

Over 100 different kinds of cytokines have been identified and studied (Arango Duque and 

Descoteaux, 2014), while only a few of cytokines were studied in any single insect species. 

Many insect cytokines were first studied in Drosophila melanogaster, the most widely used 

model insect, including Dpp, dawdle, Eiger, GBP, Spätzle, Udp3, and Vago (Clark et al., 

2011; Safia et al., 2008; Tsuzuki et al., 2012). Other than those cytokines, a group of 

bioactive peptides with similar functions were identified in at least six orders of insects 

(Matsumoto et al., 2012). The first member of these peptides was firstly identified in a 

wasp parasite lepidopteran species, Mythimna separata, and named growth blocking 

peptide (GBP) for its function in blocking the development of host larva (Hayakawa, 1990). 

Later on, this GBP peptides were identified and studied in other lepidopteran species, and 

they were named growth blocking, paralytic, plasmatocyte spreading, or stress responsive 

peptide (GBP/PP/PSP/SRP) for their diverse functions (Clark et al., 1997; Skinner et al., 
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1991; Yamaguchi et al., 2012). Even though they were grouped as one group of peptides, 

their sequences and functions can be very different. We will use the term stress responsive 

peptides (SRPs) to represent this group of cytokines as they are activated under certain 

stress. 

2.1 Sequence features of SRPs 

The active SRP peptides are usually 22 to 32 residues, follow this loose formula (R/K)-

X1/15-C-X7/9-G-X1/2-C-X1/15, where R/K indicating the putative activation cleavage site and 

X represents amino acids other than cysteine, and the two cysteine residues form an 

intramolecular disulfide bond which determine the basic loop structure of the peptides 

(Matsumoto et al., 2012). The precursor proteins, typically 60 to 150 residues long, usually 

have a signal peptide (15 to 23 amino acids), a pro-region with no or few cysteine residues 

and a relative unique cleavage site such as R/K or R/K-X1/2-R/K, and a functional peptide 

region, a typical structure of pre-pro-proteins. The signal peptide of pre-pro-SRPs indicates 

that these proteins can be secreted outside the cell. The pro-SRPs are secreted waiting for 

activation through specific cleavage by extracellular proteases, or further cleaved by 

intracellular processing enzymes and stored as active peptides in secretory vesicles inside 

the cell (Hayakawa et al., 1995; Nakatogawa et al., 2009; Wang et al., 1999). 

2.2 Paralytic peptides (PPs)  

The first SRP peptide in a lepidopteran species, M. separata, and named GBP (Hayakawa, 

1990). A group of seven peptides purified from hemolymph of other lepidopteran insects, 

including M. sexta, Spodoptera exigua, and Heliothis virescens, were named paralytic 

peptides (PPs) for the rigid paralysis behavior observed of larvae injected with those 
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peptides (Skinner et al., 1991). Later on, a new peptide was identified in another 

lepidopteran insect, Pseudoplusia includens, and named plasmatocyte-spreading peptide 

(PSP) for its function in inducing the spreading of plasmatocyte, a key class of hemocytes 

involved in cellular immunity of insects (Clark et al., 1997). All these peptides turn out 

from the same group, all start with Glu-Asn-Phe (ENF) with highly conserved sequences, 

and were named ENF peptides collectively (Strand et al., 2000). We will use PP to 

represent this group of cytokines. 

These lepidopteran PPs have diverse functions. First, they can block the growth of insects, 

retarding larval body weight gaining and delaying pupal formation. In the first PP-related 

study in M. separata, the parasitic wasp, Apantales kariyai, can induce the expression of 

PP, which somehow would reduce the activity of juvenile hormone (JH) esterase, and thus 

decrease the level of JH which is important in larva’s preparation for pupation (Hayakawa, 

1990). The elongated larval stage was beneficial for the growth and development of 

parasites. Similar growth blocking function of M. separata PP were also observed in 

Bombyx mori, by injecting different amount of M. separata PP to B. mori larvae, but the 

efficiency was lower comparing with B. mori PP. This indicated that while different PPs 

might work across species for their conservation, the receptors in each species were co-

evolved with their PPs and thus more sensitive to their own PPs (Hayakawa and Yasuhara, 

1993; Miura et al., 2002).  

Secondly, PPs induce paralysis behavior of larvae after injected into hemocoel. This effect 

was observed in several different insects, including B. mori, M. sexta and M. separata (Ha 

et al., 1999; Wang et al., 1999). The contraction of muscle is somehow influenced by the 
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peptides in a dose-dependent manner, and whether this works through the neuron system 

remains unknown (Ishii et al., 2015). 

Third, PPs influence the behavior of plasmatocytes and other hemocytes. Plasmatocytes 

have similar function as mammalian monocyte or macrophage cells, which involve in 

phagocytosis and encapsulation of pathogens (Williams, 2007). Plasmatocytes account for 

90% of hemocytes in D. melanogaster, while in most other studied insects, the most 

abundant hemocytes are granulocytes, which are characterized by the presence of granules 

in the cytoplasm, and are also capable of adhering to foreign molecules or pathogens. PP 

can increase spreading and attaching speed of plasmatocytes in M. separata, P. includens, 

M. sexta, and S. litura. This may explain the loss of plasmatocytes after injection of PP 

(Wang et al., 1999). Spreading and attaching of plasmatocytes help clot formation to stop 

bleeding after the insect became injured and promote wound healing. Plasmatocytes 

become more active after injection of PP, and become more capable to phagocytose co-

injected bacteria, Staphylococcus aureus, in B. mori (Ishii et al., 2010).  

Fourth, PPs regulate immune-related gene expression. Antimicrobial peptides (AMPs) are 

hugely induced after immune challenge, attacking invading pathogens directly and play 

vital role in insect immunity and (Lemaitre and Hoffmann, 2007). Upon infection, insects 

also generate reactive oxygen/nitrogen species (ROS/RNS) including NO, hydroxyl and 

peroxides to kill microbes. Injection of PP increased expression of several AMPs and nitric 

oxide synthase (NOS) expression in B. mori (Ishii et al., 2013; Ishii et al., 2010). 

Tetraspanin, a hemocytes surfaced protein involved in encapsulation, was also upregulated 

by PP, which may enhance phagocytosis by plasmatocytes (Ishii et al., 2010).  
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Finally, PPs have mitogenic activity. PPs from B. mori and P. separata enhanced 

nucleotide consumption by cultured cells in vitro, a sign of increased mitogenic activity 

(Hayakawa and Ohnishi, 1998; Tsuzuki et al., 2012). Surprisingly, in vivo, injection of 1 

or 10 pmol of PP to M. separata larvae has the opposite function, one promoting and one 

inhibiting the body weight gain, respectively. The mechanism behind this controversial 

function is still unknown. 

2.3 uENF peptides 

Most eukaryotic mRNAs are monocistronic and only a few are dicistronic. Surprisingly, 

the PP of M. separata is encoded by two different transcripts, one monocistronic and one 

tricistronic. The shorter one codes PP only, and the tricistronic one codes PP and two other 

upstream proteins, named uENF1 and uENF2 (Kanamori et al., 2010). A similar tricistronic 

transcript is found in each of the well-sequenced lepidopteran species, and is a conserved 

gene in lepidopteran species. In vitro experiments suggested that all three proteins can be 

translated, and the mechanism was context-dependent leaky-scanning of ribosome. The 

amount of the longer form transcript was higher in embryo, while the shorter form 

dominated in most other developmental stages. Both uENF1 and uENF2 sequences are 

conserved among different lepidopteran species, and preliminary research shows that 

uENF1 promotes while uENF2 inhibits spreading of plasmatocytes. More study is needed 

to elucidate their functions. 

2.4 SRP peptides 

The first cytokine formally named SRP was discovered in Spodoptera litura. Similar to of 

PP, this S. litura SRP was also identified in moth larva parasitized by a wasp (Yamaguchi 
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et al., 2012). This study shows that S. litura SRP have similar functions as PPs, including 

blocking growth of larvae and inducing spreading of hemocytes. The expression of this 

SRP can be induced by parasitization, injury, and heat-treatment. The first cloned SRP was 

from Hyphantria cunea. By injecting bacteria to the hemocoel of larva, several inducible 

genes were found and cloned, one of which was named Hdd23, the homolog of S. litura 

SRP (Shin et al., 1998). Similar induction of SRP by bacteria infection was also found in 

Helicoverpa armigera. Knocking down of H. armigera SRP by injection of double-

stranded RNA would decrease nodule formation and transcription of prophenoloxidase 

gene, and increase E. coli survival rate in hemolymph (Qiao et al., 2014). Despite 

functional similarity of SRPs with PPs, SRPs, with obvious distinct sequence features, 

widely exist in lepidopteran species and evolve independent of PPs. 

2.5 SRPs of non-lepidopteran insects 

SRPs were also identified in other insect species, including D. melanogaster, Tribolium 

castaneum and Lucilia cuprina, and were usually named GBP in these species. Their 

sequences are already very different from PPs and SRPs of lepidopteran species. GBPs of 

D. melanogaster and L. cuprina, like PP, can induce the expression of AMPs in a Toll/Imd-

independent way, spreading of plasmatocytes of D. melanogaster, and also have mitogenic 

activity. Similar to S. litura SRP, GBP of D. melanogaster can also be induced by heat-

treatment and bacterial infection (Tsuzuki et al., 2012). 
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3 Materials and Method 

3.1 Insect rearing and injection, total RNA preparation, and cDNA synthesis 

Eggs of M. sexta were purchased from Carolina Biological Supply, and larvae were reared 

on an artificial diet mainly consisted of wheat germ. Different tissue samples were 

collected from naïve day 2 fifth instar larvae, and stored in TRIZOL reagent (Thermo 

Fisher Scientific). Day 2 fifth instar larvae were injected with PBS, 4 µg synthetic SRP 

peptides in 40 µl PBS, or a mixture of pathogens, including Escherichia coli (2×107 cells), 

Micrococcus luteus (20 μg) (Sigma-Aldrich), and curdlan (20 μg, insoluble β-1,3-glucan 

from Alcaligenes faecalis) (Sigma-Aldrich) in 40 μl H2O. Hemolymph and fat body 

samples were collected at 6 or 24 hours after challenge. Total RNA was extracted according 

the manual of the manufacture. The cDNA was synthesized from total RNA with iScript 

cDNA synthesis kit for qRT-PCR (bio-rad).  

3.2 Quantitative real-time polymerase chain reaction (qRT-PCR) 

The final 10 µl reaction system consists of 200 ng cDNA samples, 1× iTag Universal 

SYBR Green Supermix (Bio-Rad), and specific primers (0.5 μM each) in triplicate. The 

primers were: j037 (5’ CATGATCCACTCCGGTGACC) and j038 

(CGGGAGCATGATTTTGACCTTAA) for rpS3; j1070 

(GCAGGCGACGACAAGAAC) and j1071 (ATGCGTGTTGGTAAGA GTAGC) for 

attacin; j1072 (CCGTGTTTTATTCTTCGTCTTC) and j1073 

(AATCCTTTGACCTGCACCC) for cecropin-6; j1827 

(GCTGTTGATCTGCGTGACAT) and j1828 (TC CTCCTTTGAATCCACGTC) for 
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defensin-2; j1074 (GCAAGTCGGCAACAATGG) and j1075 

(ACCCTGTCCTGTCAGTTTG) for gloverin; j1076 (GTGTGCCTCGTGGAGAATG) 

and j1077 (ATGCCTTGGTGATGTCGTC) for lysozyme; j1078 

(TGCTTTCTTTAACCTTTGTCCTC) and j1079 

(TATTCTAACACAGCCTATAATGCG) for moricin-1; j1819 

(TGCTCGTGCCTATACTCGTG) and j1834 (TACCTTGGCTACACGCACTG) for 

uENF1; j1821 (GGACGCGAAATTTGTGCTAT) and j1822 

(TTTGTCTGCAGTTCCCCAAC) for uENF2; j1823 (GCGTGGTGTGGGAAAGTTAT) 

and j1824 (AACCCCCTGCAAAGTTTTCT) for PP; j1066 (GCCGAGGGTATCGTT) 

and j1067 (TCAGGCTTTGGCGTT) for SRP1; j1068 (GCCGAGGGCATCACC) and 

j1069 (CGGATGAGTTCTTCGTTTA) for SRP2; j1832 

(TGGTGGATGTGAACCTCAAA) and j1833 (TACATAGCCTTTCGGGCATC) for 

SRP3. The thermal cycling conditions were: denaturation at 95°C for 3 minutes followed 

by 40 cycles of 95°C for 10 seconds and 60°C for 30 seconds. After the PCR was complete 

on a CFX Connect Real-Time PCR Detection System (Bio-Rad), melt curves of the PCR 

products were examined to ensure proper shape and TM values. Amplification efficiencies 

(E), measured by amplifying a series dilution of cDNA sample diluted using the different 

primer pairs under the same conditions, were 93.8%% (rpS3), 105.3% (attacin), 90.0% 

(cecropin-6), 104.7% (defensin-2), 71.2% (gloverin), 88.1% (lebocin D), 121.0% 

(lysozyme-1), 88.9% (moricin-1), 91.2% (uENF1), 93.4% (uENF2), 100.4% (PP), 103.2% 

(SRP1), 105.3% (SRP2), 129.3% (SRP3). Relative mRNA levels were calculated as: (1 + 

ErpS3)
Ct, rpS3/(1 + Ex)

Ct, x (Rieu and Powers, 2009). 

3.3 SRP genes identification in M. sexta and arthropods 
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Proteins of all arthropods were downloaded from the European Bioinformatics Institute 

website (ftp://ftp.ebi.ac.uk/pub/databases/fastafiles/uniprot/uniprotkb_arthropoda.gz). A 

python script was written to find proteins less than 250 amino acids, ending with K/R-

X1−15-C-X3−10-G-X1/2-C-X1-15, where X represents any amino acid residue other than 

cysteine, from the MCOT 1.0 gene models of M. sexta (Cao and Jiang, 2015) and arthropod 

protein sequences. This motif is modified from the SRP consensus sequence of C-X2-G-

X4/6-G-X1/2-C-K/R (Matsumoto et al., 2012). The reported SRP protein sequences were 

also used for tblastn search against Transcriptome Shortgun Assembly (TSA) of NCBI, 

setting the organism to arthropoda. The transcripts from tblastn search were translated to 

protein sequences. Protein sequences from both searches were combined and manually 

examined to identified putative SRPs, which are usually shorter than 250 residues, with a 

signal peptide and a simple pro-region with few or no cysteine. 

3.4 Sequence alignment and phylogenetic analysis 

Multiple sequence alignments of different groups of SRPs from M. sexta and other insects 

were performed using MUSCLE, a module of MEGA 7.0 (Tamura et al., 2013) at the 

following settings: refining alignment, gap opening penalty (‒2.9), gap extension penalty 

(0), hydrophobicity multiplier (1.2), maximal iterations (100), UPGMB clustering (for 

iterations 1 and 2) and maximum diagonal length (24). The aligned sequences were used 

to construct neighbor-joining trees by MEGA 7.0 with bootstrap method for the phylogeny 

test (1000 replications, Poisson model, uniform rates, and complete deletion of gaps or 

missing data). 

3.5 Expression and purification of pro-SRPs from E. coli 

ftp://ftp.ebi.ac.uk/pub/databases/fastafiles/uniprot/uniprotkb_arthropoda.gz


122 
 

DNA fragments of SRPs were obtained from cDNA pool of 5th instar M. sexta fat body or 

hemocytes by PCR, with primers j1055 

(GAATTCATATGGCGCCGACCTTAATTCAAGA) and j1057 

(GTCGACCTATTACTGCCAAGGCTGCCTGCA) for uENF1, j1056 

(GAATTCATATGGGTGTGGTTTTTAATTTTCA) and j1058 

(GTCGACCTATTAAAACCTTTGTCTGCAGT) for uENF2, j1059 

(GAATTCATATGAAGACCAAAGAGTTCCCGTTAC) and j1060 

(GTCGACTTACTCGAGGTAGTCGTCATCRGG) for SRP1 and SRP2, and j1081 

(GAATTCCGTGTGATCGACTCGAC) and j1082 

(CTCGAGTTAATAGTCATAATCC) for SRP3. Primer j1060 is a mixture, where base R 

stands for A/G. The recovered PCR fragments were ligated with pGEM-T vector 

(Promega) and transformed to E. coli cell line JM109 (Promega). After verification by 

sequencing, the fragments were sub-cloned to pSKB3, an expression vector modified from 

pET-28a vector. 

Proteins were expressed in E. coli BL21 gold (DE3) cells (Stratagene). Bacteria carrying 

the plasmid were grown in 800 ml LB medium at 37 ℃ until optical density at wavelength 

of 600 nm (OD600) reached 0.4. Bacteria were cultured for another 6 hours at 37 ℃ after 

adding IPTG (isopropyl-β-D-thiogalactopyranoside) to 1 mM final concentration. The cells 

were harvested by centrifugation at 4 ℃ and homogenized by sonication on ice. Cell lysates 

were centrifuge at 12,000 rpm for 30 minutes at 4 ℃. The pellets were dissolved in lysis 

buffer B (0.1 M NaH2PO4, 0.01 M Tris-HCl, 8 M urea, pH 8.0) at room temperature and 

centrifuged at 30,000 rpm for one hour at 25 ℃ to remove the insoluble pellets. The 

supernatants were loaded to a Ni-NTA column (Qiagen) and binding recombinant protein 
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was eluted with buffer B with pH 6.3, 5.9 and 4.5. The purified denatured protein was 

recovered by dialysis against buffer for renaturing the protein (20 mM Tris, pH 7.5, 100 

mM NaCl, 2 mM reduced glutathione, 0.2 mM oxidized glutathione, 5% glycerol) with 4 

M, 2 M, 1 M and 0 M urea for 12 hours each. After centrifugation to remove pellets, protein 

was concentrated and buffer was changed with spin columns (cutoff 3,500 daltons). 

3.6 ProSPRs cleavage by hemolymph, hemolymph fractions and PAPs 

Bar stage hemolymph fractions were collected from a hydroxyapatite (HT) column as 

described previously (Wang et al., 2014). In each tube, 2 µl fraction, 500 ng recombinant 

pro-SRP and tris buffer (20 mM Tris, 100 mM NaCl, pH8.0) were mixed together (totally 

12 µl) and reacted at room temperature for 30 minutes. 20 µl of 100% saturated ammonium 

sulfate was added to 20 µl induced or pupa day 1 hemolymph to 50% saturation. Pellets 

were collected after centrifugation to remove storage protein and re-dissolved in 40 µl Tris 

buffer. 10 µg Micrococcus luteus was added to activate the hemolymph. In each tube, 10 

µl reaction system contained 2 µl activated hemolymph resuspension, 500 ng pro-SRP and 

Tris buffer, and reacted at room temperature for 30 minutes. PAP3 was kindly provided by 

Yang Wang and was purified from M. sexta hemolymph. In reaction with PAP3, the 10 ul 

reaction system included about 50 ng PAP3 and 500 ng proSRP, and reacted at room 

temperature for 30 minutes. ProPAP3, kindly provided by Yingxia Hu, was expressed and 

purified in insect Sf9 cell lines. In reaction with proPAP3, 10 ul reaction system included 

about 5 ng PAP3, 200 ng proPAP3 and 100 ng proSPR3. Tricine loading buffer was added 

and samples were boiled 100 ℃ for 5min. Western blot was done with mouse anit-His×6 

as primary antibody and alkaline-phosphatase linked goat anti-mouse IgG as secondary 

antibody.   
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3.7 Cleavage site identification by MALDI-MS 

The reaction system contained about 5 ng PAP3, 200 ng proPAP3 and 5 µg recombinant 

proSRP2 and reacted at room temperature for 1 hour. Samples with PAP3 and proPAP3 

only or proSPR2 only were used as negative control. Matrix-assisted laser desorption-

ionization time-of-flight mass spectrometry (MALDI-TOF MS) was performed in the core 

facility of Oklahoma State University to detect newly generated peptide. 

 

4. Results 

4.1 Overview of SRPs in insects 

We use SRP to represent this group of cytokines including PP, uENF1, uENF2 and SRPs. 

19 PP, 5 uENF1 and 5 uENF2 genes were found in NCBI GenBank database directly by 

simple blast search (Fig. 1A, B, C). The uENF1 and uENF2 sequences of Plutella xylostella 

were manually identified by translating nucleotide sequences to proteins. As one of the 

first identified and most well-studied insect cytokines, PPs are very conserved in different 

lepidopteran species, usually a 23 amino acid peptides with the common sequence of ENF-

A/S/R-GGC-A/L/V-A/T-GY/F-M/Q-RT-A/S-DGRCKPTF. Several residues in the 

sequences, including the first three residues, ENF, and the last 8 residues, DGRCKPTF are 

very conserved across all species. Deletion of the N-terminal E would eliminated 

plasmatocyte spreading activity without influence mitogenic activity, while deletion of C-

terminal F would eliminate mitogenic activity without influence plasmatocyte spreading 

activity in P. separata (Aizawa et al., 2001). Alanine-scanning mutagenesis of P. includens 

found that E1A mutation increased plasmatocyte activity while F3A had no activity, 
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indicating critical role of F3 (Clark et al., 2001). However, PP of P. xylostella has M instead 

of F at third position. Encoded by the same tricistronic mRNA, uENF1 have less conserved 

residues than PP and uENF2. uENF1, uENF2 and PP of P. xylostella are more different 

from other species, which can be partially explained by the fact that it is a more ancient 

species compared to others (Mutanen et al., 2010). 

As mentioned previously, the first cytokine named SRP was identified in S. litura (Slit1 in 

Fig. 1D). By tblastn search against TSA, we identified 11 peptides highly similar to SRP 

of S. litura, including SRP1 of M. sexta (Fig. 1D), and 31 peptides less similar, including 

M. sexta SRP2 and another two SRP from S. litura (Slit2 and Slit3 in Fig. 1E). The first 

group has sequence like H-G/N-IRVG-T/A-CP-L/S/A-GY-T/V/S-R/K-RGGFCFPDDDY, 

while the second group has less conserved residues. Surprisingly, the species Lygus 

hesperus of Hemiptera order also has a SRP very similar to Slit2, suggesting the possible 

conserved role of SRPs in insects other than Lepidoptera. 

Tree of Drosophila GBP (Fig. 1F) shows that even though these sequences are from species 

belong to the same genus, the conservation of them are lower compared to PPs. These 

sequences are very different from SRPs in lepidopteran species. The low conservation of 

SRPs in insects makes it hard for evolutionary analysis. 

4.2 SRPs in M. sexta 

Totally 11 cytokines were found in M. sexta. SRP1 to 5, 7 and 8 were grouped together in 

the tree (Fig. 2), with a D-rich C-terminus usually ended with Y.  The predicted cutting site 

for SRP1, 2 and 3 is between R and F in the sequences, and between R and N for SRP6 

(only F/N shown in Fig. 2). Comparing with other SRPs, SRP1 is more similar with SRP 
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of S. litura, and thus may play similar roles. SRP2 and SRP3 have very similar sequence 

with SRP1 and may also have similar functions with SRP1, while SRP6 is already very 

different than other sequences, and may have its unique roles. 

4.3 Expression of SRPs of M. sexta by RNA-seq 

52 cDNA libraries were sequenced together with the genome of M. sexta (Kanost et al., 

2016), and are very excellent resources for preliminary checking of gene expression in 

different tissues of different developmental stages. As shown in Table 1 and Fig. 3, SRP5, 

7 and 8 are almost not expressed in all libraries. Translated from the same mRNA, uENF1 

and uENF2 have almost identical FPKM values in Fig. 3. The genes coding uENF1, uENF2 

and PP have two forms, the longer one coding all three and shorter one coding PP only. 

The ratio of two different transcripts can be estimated from FPKM values of uENFs and 

PPs. In most libraries, the shorter one dominated at high value, and surprisingly, starting 

from pre-wandering stage, the longer form became the major one and expressed at high 

level in midgut. SRP2, 3 and 4 are generally higher expressed than SRP1 in most libraries, 

though SRP1 is more similar to the first studied SRP from S. litura. Surprisingly, SRP6 

became extremely highly expressed in pre-wandering and wandering gut, indicating its 

potential role in influence the behavior of midgut at these stages. 

4.4 PAP1 and PAP3 are enzymes activating proSRPs in hemolymph 

Similar to PP, SRPs were secreted in the form of pro-protein and activated by limited 

cleavage at the activation site. Since PP can be cleaved in hemolymph (Yang Wang, 1999), 

we first check the cleavage of recombinant proSRPs in induced hemolymph. As shown in 

Fig. 4A, proSRP1, 2 and 3 can be cleaved, while pro-uENF1 and 2 cannot.  
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In order to identify the enzyme which activates proSRP1 and proSPR2, we used the bar 

stage hemolymph fractions to react with recombinant proteins. As shown in Fig. 4B, the 

first few tubes have higher activity in cleavage of both proSRP1 and 2. PAP1 and PAP3 

were eluted in first in HT column and their cutting site is between R and F (Wang et al., 

2014), which are the predicted activation site of proSRP1, 2 and 3. Thus we checked 

whether PAP1 and PAP3 did cleave proSRP1, 2 and 3. With induced (IH) and pupa 

hemolymph (PH) as positive control, PAP1 and PAP3 can cut proSRP1 and 2 (Fig. 4C), 

while it is not clear whether proSRP3 can be cleaved or not (data not shown). Different 

from proSRP1 and 2, the pro-region of proSRP3 might be further cleaved by enzyme, 

which explains why his antibody cannot detect it well. Due to the limited amount of PAP1 

and PAP3 purified from hemolymph, we then used recombinant proPAP3, which can be 

self-activated by active PAP3 (Wang et al., 2014), to cut proSRP3. ProSRP3 can be totally 

cleaved by proPAP3. However, proSRP3 is not well cleaved in IH and PH, indicating 

possible other activating enzymes. 

4.5 Activation site of proSRP2 

The active S. litura SRP peptides were activated by cleavage between R and H, and the 

predicted activation site for M. sexta SRP1, 2 and 3 is between R and F. Without purifying 

active SRPs from the hemolymph, we decided to check the activation site with recombinant 

protein in vitro. The result of MALDI-MS supported our hypothesis (Fig. 5). The signal of 

full-length recombinant proSRP2 can be detected in proSRP2 only sample. After mixing 

with PAP3 and proPAP3, there is a very strong peak from 2992 to 3000 Da, the position 

of activated recombinant peptide FGVKDGKCPSGRVRRLGICVPDDDYLE (2994.5 

Da). This result showed PAP3 specifically cleaved between R and F.  
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4.6 SRP6 blocks growth of M. sexta larvae 

S. litura SRP peptides could block the growth of larvae after injection (Yamaguchi et al., 

2012). We first checked similar function of SRP1 and SRP2, the mostly similar peptides 

to S. litura SRP (Fig. 6A). There is no significant difference of larvae injected with SRP1 

or 2 and PBS. Noticing that SRP6 is extremely expressed in pre-wandering and wandering 

midgut, we also tested function of SRP6 (Fig. 6B). We observed that, after injection of 

SRP6, in the first 6 hours, the larvae stopped feeding, and had more feces compared to 

control, which was why the body weight decreased after 6 hours. After 24 hours, the body 

weight was significantly lower than control group. Blast search showed that there was a 

group of proteins very similar to SRP6 in lepidopteran species (data not shown). This result 

indicates that SRP6 is an important regulator of larva feeding behavior, and plays important 

role in pre-wandering and wandering stage. 

4.7 qRT-PCR analysis of expression of SRPs in different tissues and after different 

treatments 

PP and S. litura SRP were both identified in parasitized moth larvae, and are possible 

regulator of immune response. We did qRT-PCR checking expression of SRPs under 

immune challenge and in different tissues to investigate their roles in immunity and to 

verify the expression by RNA-seq data (Fig. 7 and 8). Similar expression pattern was 

observed for uENF1 and uENF2 in different cDNA libraries, as they are from the same 

mRNA. PP is much higher expressed than uENF1 and uENF2, and mostly highly expressed 

in fat body. mRNA level of PP decreased 6 hours after immune challenge, and recovered 

after 24 hours. Generally, SRP2 was more highly expressed than SRP1 and SRP3, and 
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mostly highly expressed in hemocytes, but was not induced after immune challenge. One 

the other hand, both SRP1 and SRP3 can be significantly induced after 6 hours, and SRP1 

even reached a higher level than SRP2. However, the expression of SRP3 is much less 

compared to SRP1 and SRP2. Heat treatment 42 ℃ for 1 hour did not influence expression 

of these cytokines. Overall, SRP1 was mostly likely the ortholog of S. litura SRP, though 

we did not observe the growth blocking function of it (Fig. 6A). 

4.8 Injection of SRPs induces expression of AMPs 

A dramatic phenomenon of immune response of insects is the induction of many AMP 

genes. Injection of PP induced expression several AMPs and other immune-related genes 

in B. mori (Ishii et al., 2013; Ishii et al., 2010). We used qRT-PCR to check expression of 

AMP gene expression in fat body after injection synthetic peptides for 6 hours (Fig. 9). PP 

significantly induced the expression of cecropin 6, gloverin, attacin, lysozyme and moricin. 

uENF1 and uENF2 had a little stronger effect than PP. SRP1 and SRP2 also induced 

expression of several AMPs, while SRP3 did not induce expression of AMPs. Overall, PP, 

uENF1, uENF2, SRP1 and SRP2 could induce the expression of AMPs, but efficiency is 

much lower compared to pathogens (data not shown). 

 

5 Discussion 

The mRNA level of PP is the highest and of the 11 cytokines it is the only one identified 

in the proteome peptidome study of hemolymph of M. sexta (He et al., 2016; Zhang et al., 

2014), indicating higher protein level in hemolymph of 5th instar larva. This may be why 

PP is the first identified and well-studied immune-related cytokine. ProPP is stored in 



130 
 

hemolymph and can be activated upon immune challenge. However, the upstream enzyme 

of proPP remains undiscovered. 

Based on the RNA-seq data, the longer transcript coding uENF1, uENF2 and PP is lowly 

transcribed in fat body, the major source of hemolymph proteins, and is only about 10% of 

the shorter form coding PP only. It becomes highly transcribed and seems the only form in 

midgut after pre-wandering stage. While the ratio of uENF1, uENF2 and PP proteins 

translated from this transcript remains unknown, it may play a more import role in midgut.  

SRP1 is most similar to S. litura SRP, with similar sequence and both being highly induced 

after immune challenge. S. litura SRP was reported with similar function like PP. However, 

SRP1 behaves like AMPs, whose expression levels increase 6 hours after challenge and 

decrease after 24 hours. It takes time to accumulate enough pro-SRP1 in hemolymph, and 

at that time, PAP1 or PAP3, activator of proSRP1, may be already deactivated. 

Surprisingly, the expression of PP drops 6 hours after challenge. May be proSRP1 is stored 

for next immune response.  

SRP2 is very similar to SRP1, both with PDDDY in the c-terminus and both can be 

activated by PAP1 and PAP3. SRP2 is much higher expressed in hemocytes than in fat 

body. Beginning from wandering stage, SRP2 expression increase and peaks at pupa 1 to 

3 days in fat body, a sign of immune-related genes (He et al., 2015). It is unknown how 

SRP1 and SRP2 are differently regulated to regulate immune response. 

There is a family of SRP6 like cytokines in lepidopteran species. M. sexta SRP6 become 

very highly expressed in pre-wandering and wandering midgut, and likely the important 

regulator of behavior of midgut in wandering stage. Proteins expressed in midgut are 
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usually not secreted to hemocoel, and how injection of SRP6 works remains unknown. It 

will be interesting to check activation and working mechanisms of SRP6, which may help 

control pest in the future. 
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Tables 

Table 1. Expression of SRPs in fat body and midgut libraries 
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SRP1 0 0 0 2 6 2 2 7 14 2 1 0 2 2 1 61 17 6 0 0 

SRP2 14 29 8 191 784 27 69 198 11 12 1 2 6 2 6 313 205 909 35 5 

SRP3 5 1 1 2 12 63 10 27 1 12 0 8 9 1 1 8 1 4 1 0 

SRP4 3 4 2 21 199 17 4 16 15 5 4 5 7 2 3 108 16 47 2 2 

SRP5 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 

SRP6 1 1 0 0 1 158 31 0 110 194 144 142 187 324 1947 8548 1200 126 426 152 

SRP7 0 0 0 0 3 4 0 1 0 0 0 0 0 1 0 0 1 0 0 0 

SRP8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

uENF1 62 94 5 104 65 35 59 10 17 44 20 27 62 60 30 316 303 567 144 245 

uENF2 74 104 7 103 192 39 55 11 23 88 26 41 88 91 62 441 261 520 166 199 

PP 762 865 274 776 740 190 493 261 34 1418 333 141 214 155 76 699 174 445 229 211 
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Fig. 1. Multiple sequence alignment and sequence logo of SRPs.  A, PP. B, uENF1. C, 

uENF2. D, SRPs most similar to S. litura SRP. E, SRPs less similar to S. litura SRP. F, 

GBP of Drosophila. Species: Aech, Acromyrmex echinatior; Aseg, Agrotis segetum; Atra, 

Amyelois transitella; Alep, Athetis lepigone; Bsup, Biston suppressaria; Bmor, Bombyx 

mori; Cinc, Chrysodeixis includens; Dple, Danaus plexippus; Dana, Drosophila 

ananassae; Dere, Drosophila erecta; Dgri, Drosophila grimshawi; Dmel, Drosophila 

melanogaster; Dvir, Drosophila virilis; Dyak, Drosophila yakuba; Harm, Helicoverpa 

armigera; Hass, Helicoverpa assulta; Hvir, Heliothis virescens; Hcun, Hyphantria cunea; 

Lhes, Lygus hesperus; Ldis, Lymantria dispar; Mbra, Mamestra brassicae; Msex, 

Manduca sexta; Msep, Mythimna separata; Nhim, Neogurelca himachala sangaica; Ofur, 

Ostrinia furnacalis; Pmac, Papilio maChaon; Ppol, Papilio polytes; Pxut, Papilio xuthus; 

Pxyl, Plutella xylostella; Scyn, Samia cynthia pryeri; Sric, Samia ricini; Seri, Spodoptera 

eridania; Sexi, Spodoptera exigua; Sfru, Spodoptera frugiperda; Slit, Spodoptera litura; 

Salb, Striacosta albicosta; Tpit, Thaumetopoea pityocampa; Tjap, Theretra japonica; Tni, 

Trichoplusia ni. Families (fa.): Bo, Bombycidae; Er, Erebidae; Ge, Geometridae; No, 

Noctuidae; Nt, Notodontidae; Ny, Nymphalidae; Pa, Papilionidae; Pl, Plutellidae; Py, 

Pyralidae; Sa, Saturniidae; Sp, Sphingidae. All families before are from the order of 

Lepidoptera. Mi, Miridae, order of Hemiptera. 

 

 

Fig. 2. Sequence alignment of SRPs of M. sexta.  
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Fig. 3. Expression of SRPs in different cDNA libraries. The cDNA libraries represent 

the following tissues and stages: head [1. 2nd (instar) L (larvae), d1 (day 1); 2. 3rd L, d1; 3. 

4th L, 12h (hour); 4. 4th L, late; 5. 5th L, d0.5; 6. 5th L, d2; 7. 5th L, pre-W (pre-wandering); 

8. P (pupae), late; 9. A (adults), d1; 10. A, d3; 11. A, d7], fat body (12. 4th L, late; 13. 5th 

L, d1; 14. 5th L, pre-W; 15. 5th L, W; 16. P, d1-3; 17. P, d15-18; 18. A, d1-3; 19. A, d7-9), 

whole animals [20. E (embryos), 3h; 21. E, late; 22. 1st L; 23. 2nd L; 24. 3rd L), midgut (25. 

2nd L; 26. 3rd L; 27. 4th L, 0h; 28. 4th L, 12h; 29. 4th L, late; 30. 5th L, 1-3h; 31. 5th L, 24h; 

32. 5th L, pre-W; 33-34. 5th L, W; 35. P, d1; 36. P, d15-18; 37. A, d3-5;), MT (38. 5th L, 

pre-W; 39. A, d1; 40. A, d3), muscle (41. 4th L, late; 42-43. 5th L, 12h; 44-45. 5th L, pre-

W; 46-47. 5th L, W), testes (48. P, d3; 49. P, d15-18; 50. A, d1-3), and ovaries (51. P, d15-

18; 52. A, d1). 
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Fig. 4. In vitro activation of SRPs. A, cleavage of pro-SRPs in induced hemolymph (IH). 

B, activation of pro-SRP1/2 in different hydroxyapatite (HT) column fractions of bar stage 

hemolymph. C, cleavage of pro-uENF1, pro-uENF2, pro-SRP1 and pro-SRP2 by IH and 

PH (day 1 pupa hemolymph). D, cleavage of pro-SRP3 by activated PAP3. PAP3 purified 

from hemolymph was added to the system to induce the auto-cleavage of proPAP3. 

 

 

Fig. 5. Identification of proSRP2 cleavage site by MALDI-MS. PAP3 and proSRP2 

were mixed together for one hour at room temperature. MALDI-MS were performed for 

three samples. m/z, molecular weight/charge. +1, +2, charge of fragments. 
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Fig. 6. Effects of SRPs on growth rate. A, body weight fold change of 5th instar larvae 

injected with SRP1 and SRP2. PBS as control. B, body weight fold change of 5th instar 

larvae injected with SRP6. 5th instar day 1 larvae were injected with 40 µl PBS or PBS with 

4 µg peptides. Body weight was measured different time after injection. Time 0 body 

weight was set to 1. Body weight fold change was calculated for each larva. Each value 

represents the mean ± S.D. for 4 to 6 different larvae.  
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Fig. 7. Expression of SRPs in different tissues. Relative amount of SRPs to rpS3 by qRT-

PCR. cDNA libraries: C, cuticle; N, nerve; MG, midgut; M, muscle, MT, malpighian 

tubule; SG, salivary gland; T, trachea; H, hemocytes; F, fat body. 
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Fig. 8. Expression of SRPs with heat treatment or bacteria challenge. Relative amount 

of SRPs to rpS3 by qRT-PCR. cDNA libraries (all from fat body): C, control, healthy 5th 

instar day 2 larvae; H6, 6 hours after one hour of 42℃ heat treatment; I6, 6 hours after 

injecting mixture of pathogens; I24, 24 hours after injecting mixture; P6, 6 hours after 

injecting PBS. *, p <0.05 compared with library P6. 
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Fig. 9. Expression of AMPs after injection of SRPs. Relative amount of AMPs to rpS3 

by qRT-PCR. Each library with 3 biological replicates. 5th instar day 2 larvae were injected 

with 40 ul 100ng/ul synthetic peptides in PBS, and after 6 hours, fat bodies were collected. 

Libraries: P6, PBS; u1, uENF1; u2, uENF2; PP, paralytic peptide; S1, SRP1; S2, SRP2; 

S3, SRP3. *, p <0.05 compared with library P6. 
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