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Major Field: Mathematics

Abstract: We study two types of equilibrium problems arising in potential theory.
The first type is concerned with a special case of Maxwell’s problem on the number
of equilibrium points of the Riesz potential of positive unit point charges placed at
the vertices of a regular polygon, given by

Us(z) :=
n∑
j=1

1

|z − ζjn|2s
, z ∈ C, n ≥ 3, s > 0,

where ζn = e2πi/n is the n-th primitive root of unity. We study the location and
asymptotic behavior of the equilibrium points. In addition, we obtain precise results
on the number of equilibrium points for certain values of the Riesz parameter s.

The second type is concerned with minimizing the weighted energy

IQ(µ) :=

∫∫
1

|x− y|s
dµ(x)dµ(y) + 2

∫
Q(x)dµ(x),

over the class M(E) of unit positive Borel measures supported on a compact subset
E of Rd, where d ≥ 3. It is assumed that the set E is immersed into a smooth
rotationally invariant external field Q.

We then restrict ourselves by considering the minimum energy problem on the unit
sphere Sd−1, assuming the charges interact according to Newtonian potential. We also
consider the minimum Riesz s-energy problem on the hyperdisk D ⊂ Rd, d ≥ 3, where
the charges are assumed to interact via the Riesz potential 1/rs, with d−3 < s < d−1,
with r denoting the Euclidean distance. The problems are solved by finding the
support of the extremal measure, and obtaining an explicit expression for the density.
We then consider applications to the external field generated by a point charge of
positive magnitude and to the external fields of polynomial type. Our results take
especially explicit and precise form in the case of Coulomb potential in R3. Finally,
we study the problem of recovering of the extremal measure when the support is no
longer the entire disk, but rather a ring, again paying special attention to the case of
classical Coulomb potential in R3.
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CHAPTER 1

Equilibrium Problems in Potential Theory

1.1 Maxwell’s problem

Consider a system of n positive unit point charges in R3 located at points xi, i =

1, 2, . . . , n. They produce an electric field

E(x) =
n∑
i=1

x− xi
|x− xi|3

, xi, x ∈ R3.

In 1873 Maxwell [55] raised a question about the number of equilibrium points of

the system of n point charges, which is the number of points where E(x) vanishes.

This is the same as the number of critical points of the Coulomb potential U(x)

associated with this electrostatic field E(x). Maxwell conjectured that, assuming

that considered configuration of charges has only non-degenerate critical points, the

number of equilibrium points for the system of n point charges has an upper bound

(n− 1)2. It was only in 2007 that Gabrielov, Novikov, and Shapiro [30] were able to

show the existence of an upper bound of 4n
2
(3n)2n for any non-degenerate configu-

ration of charges in R3. In 2009, Killian [43] improved the result obtained in [30] in

the case when all charges lie in a plane. Namely, he established that for n charges in

the plane there is an upper bound of (2n−1(3n − 2))2 on the number of equilibrium

points. He also showed that in the case when unit point charges are located at the

vertices of an equilateral triangle, there are exactly four equilibrium points. Shortly

after that Peretz [59] proved that in the case of three positive point charges on a

plane, there must be at least two equilibrium points, and generically an even number

of them, i.e. 2, 4, 6, 8, 10 or 12. Also Tsai [71] considered the case of three point
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charges of arbitrary signs placed at the vertices of isosceles and equilateral triangle,

and obtained an upper bound of 4 on the number of equilibrium points.

We also observe that there is a direct connection between electrostatics and the

theory of many-body problem in celestial mechanics, in particular due to the fact that

the potentials which appear in both are the same. It is often of an interest in celestial

mechanics to consider a many-body problem where the bodies are subjected to their

mutual attractions, governed by a central potential of the type 1/r2s, with s > 0,

where r is the Euclidean distance, see [29], [6]. The Coulomb potential is then just a

special case when s = 1/2. One often is interested in the equilibrium configurations

in the context of many-body problem, which amounts to nothing else but the study

of the critical points of a potential resulting from an arrangement of celestial bodies

[6].

Furthermore, in 1859 Maxwell wrote a paper on the stability of Saturn’s rings

[56]. Since at that time the structure of the rings was unknown, Maxwell considered

an approximation by studying the case of n equal mass bodies orbiting Saturn at a

common radius and uniformly distributed about a circle of this radius. Since then

this model gained a widespread recognition and was studied immensely. However,

the question on the number of equilibrium points in such a model remained open.

The first step in studying equilibria in a regular polygon arrangements of points by

means of a special integral representation of the gravitational potential was initiated

in 1899 by Tisserand [69] and later on appeared in a modern form in work of Lindow

[53]. These results were extended in 2003 by Bang and Elmabsout [5] to the general

central-type potentials of the form 1/r2s, with s > 0. Bang and Elmabsout used their

aforementioned work [5] to study the existence and the linear stability of equilibrium

positions of a zero-mass particle, submitted to the gravitational field generated by n

bodies of equal mass placed at the vertices of a regular n-gon, and rotating rigidly

around an additional mass at its center with a constant angular velocity [7].
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In our paper [8] the case when n positive unit point charges are placed at the

vertices of a regular n-gon was investigated. We showed that the Riesz potential

1/r2s (where r is the Euclidean distance) generated by this system, has critical points

located on the perpendicular bisectors to the sides of the polygon, as well as at the

origin. We also studied the asymptotic behavior of the critical points with respect

to n and s. Namely, for a fixed s and large n we prove that all the non-trivial

critical points become equidistributed on the unit circumference. When n is fixed

and s is approaching zero, it was shown that the non-trivial critical points slide to

the origin, while for s infinitely large we show that the non-trivial critical points slide

to the sides of a regular polygon. Finally, using the techniques of the theory of stable

mappings we demonstrated that for values of the parameter s in a small left hand-

side neighborhood of s = 1, the Riesz potential 1/r2s has only one equilibrium point

different from the origin on each perpendicular bisector, and one equilibrium point

at the origin.

1.2 Minimum energy problem on the hypersphere and other manifolds

Let Sd−1 := {x ∈ Rd : |x| = 1} be the unit sphere in Rd, with d ≥ 3, and where | · |

is the Euclidean distance. Given a compact set E ⊂ Sd−1, consider the class M(E)

of unit positive Borel measures supported on E. For 0 < s < d, the Riesz s-potential

and Riesz s-energy of a measure µ ∈M(E) are defined respectively as

Uµ
s (x) :=

∫
1

|x− y|s
dµ(y), Is(µ) :=

∫∫
1

|x− y|s
dµ(x)dµ(y).

Let

Ws(E) := inf{Is(µ) : µ ∈M(E)}.

Define the Riesz s-capacity of E as caps(E) := 1/Ws(E). We say that a property

holds quasi-everywhere (q.e.), if the exceptional set has a Riesz s-capacity zero. When

caps(E) > 0, there is a unique µE such that Is(µE) = Ws(E). Such µE is called the
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Riesz s-equilibrium measure for E.

An external field is defined as a non-negative lower-semicontinuous function Q :

E → [0,∞], such that Q(x) <∞ on a set of positive Lebesgue surface measure. The

weighted energy associated with Q(x) is then defined by

IQ(µ) := Is(µ) + 2

∫
Q(x)dµ(x).

The energy problem on Sd−1 in the presence of the external field Q(x) refers to the

minimal quantity

VQ := inf{IQ(µ) : µ ∈M(E)}.

A measure µQ ∈ M(E) such that IQ(µQ) = VQ is called the s-extremal (or positive

Riesz s-equilibrium) measure associated with Q(x).

We next state a Frostman-type theorem which guarantees the existence and unique-

ness of the measure µQ, while also characterizing the measure µQ in terms of its po-

tential. The proof of this theorem can be extracted from more general results of Zorii

[77], and follows closely the proof of [65, Theorem I.1.3]. The proof can also be found

in the forthcoming book [13], also see Theorem 10.3 in [57] or Proposition 3 in [18].

Theorem 1.2.1 Let 0 < s < d− 1. For the minimum energy problem on Sd−1 with

external field Q(x) the following properties hold:

(a) VQ is finite.

(b) There exists a unique s-extremal measure µQ ∈ M(E) associated with Q(x).

Moreover, the support SQ := supp(µQ) of this measure is contained in a compact

set EM := {x ∈ E : Q(x) ≤M} for some M > 0.

(c) The measure µQ satisfies the Gauss variational inequalities

UµQ
s (x) +Q(x) ≥ FQ q.e. on E,

UµQ
s (x) +Q(x) ≤ FQ for all x ∈ SQ,

(1.2.1)

(1.2.2)
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where

FQ := VQ −
∫
Q(x) dµQ(x).

(d) Inequalities (1.2.1) and (1.2.2) completely characterize the equilibrium measure

µQ in the sense that if ν ∈M(E) is a measure with finite s-energy such that for

some constant C

UνQ
s (x) +Q(x) ≥ C q.e. on E,

UνQ
s (x) +Q(x) ≤ C for all x ∈ SQ,

(1.2.3)

(1.2.4)

then ν = µQ and C = FQ.

We remark that for continuous external fields, the inequality in (1.2.1) holds ev-

erywhere, which implies that equality holds in (1.2.2).

We will also be studying the minimum energy problem for the Riesz potentials

on the hyperdisk D := {(x1, . . . , xn) ∈ Rd : x1 = 0, x2
2 + x2

3 + . . . + x2
d ≤ 1}. A

Frostman-type theorem similar to the one mentioned above can be stated in this case

as well, with the sphere Sd−1 being replaced with the hyperdisk D.

The minimum energy problems with external fields on the sphere Sd−1 ⊂ Rd,

d ≥ 3 were a subject of investigation by a group of Brauchart, Dragnev and Saff.

In 2007, Dragnev and Saff, working on separation results for the minimum energy

points on the sphere Sd−1, solved the minimum energy problem under the presence of

an external field produced by a point charge placed at the Northern Pole of the sphere

[28]. In 2009, Brauchart, Dragnev and Saff solved the minimum energy problem on

the sphere Sd−1 immersed in a field of a point charge located outside of the unit

sphere [17]. Their group, together with some other researchers, further extended the

obtained results to include the fields produced by a negative point charge [19], as well

as charges located inside the sphere [20].

We also note that the minimum energy problems on the manifolds other the the

unit sphere, were also considered. In particular, a minimum energy problem for
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logarithmic potential on the sets of revolution in R3 was considered by Hardin, Saff

and Stahl in [38]. The same problem for the Riesz s-potentials with 0 < s < 1, was

treated by Brauchart, Hardin and Saff in papers [14] and [15].

In our paper [10] we provided a solution to the weighted energy problem on the

sphere Sd−1 ⊂ Rd, d ≥ 3, immersed in a general external field, possessing rotational

symmetry with respect to the polar axis, when support is a spherical cap. It was as-

sumed that the charges interact according to the classical Newtonian potential 1/rd−2,

where r denotes the Euclidean distance. We obtained an equation that described the

support of the extremal measure, and also gave an explicit expression for the equilib-

rium density, thus extending an approach previously developed in our paper [9] for the

case d = 3. As an application of our results, we considered an external field produced

by a point charge of positive magnitude, placed at the North Pole of the sphere, and

explicitly computed support and density of the corresponding extremal measure. As

another application of the developed theory, we considered the case when the sphere

is immersed into a quadratic external field, and also explicitly found the support and

density of the extremal measure.

The treatments of minimum energy problem on the unit disk in R3 for the case of

Newtonian potential can be traced back to the beginning of 20th century. They were

studied, however, mostly by physicists. The first record of mathematically rigorous

treatment of this problem is due to Copson [26]. He developed an integral representa-

tion for the kernel of Newtonian potential, which enabled him to reduce the problem

to solving an Abel-type integral equation, thus obtaining a closed form solution. His

approach turned out to be fruitful. Using a generalized Copson-type representa-

tion, we solve the minimum energy problem on the unit hyperdisk D, immersed into

a general rotationally invariant external field by finding the extremal support and

then obtaining explicit expressions for the extremal measure. It is assumed that the

charges interact according to the Riesz s-potential 1/rs, with d − 3 < s < d − 1,
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where r is the Euclidean distance. We then consider the applications of the obtained

results. The first application of our results is concerned with a situation when the

disk D is immersed into a monomial external field. We find the extremal measure

corresponding to such a field, while also explicitly finding the extremal support. Our

second application is concerned with finding the extremal measure when an external

field is generated by a positive point charge, placed on the polar axis at a certain

distance above the disk D. A similar problem for the sphere S2 for the Coulomb

potential in R3 was raised by Gonchar [47], and solved in [17] for general Riesz po-

tentials on the sphere Sd−1 ⊂ Rd, d ≥ 3. The extensions and further results on

Gonchar’s problem are contained in works [19], [20]. The problem of finding a signed

measure representing the charge distribution on the disk D in R3 under the influence

of a positive point charge placed on the polar axis above the disk D, for the case of

Coulomb potential, was first considered in the classical work of Thomson [70], and

later solved by a different method by Gallop [31]. Below we solve this problem for

the case of higher dimensions and general Riesz s-potentials by finding the extremal

measure representing the positive charge distribution on the disk D. For the case of

higher dimensions and general Riesz s-potentials we give an explicit estimate on the

height and magnitude of the point charge, which guarantees for the extremal support

to occupy the whole disk D. Moreover, in the case of classical Coulomb potential in

R3 and a positive unit point charge, we are able to precisely determine the height of

the point charge so that the extremal support occupies the entire disk D.

Moreover, we investigate what happens to the support of the extremal measure

µQ if one moves a point charge closer to the disk, beyond the aforementioned height

threshold. It is demonstrated that under some mild restrictions on a general external

field, the support suppµQ will be a ring, contained in the disk D.
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1.3 Minimum energy problem for Coulomb potential on a ring in R3

We consider a special case when d = 3 and the charges are assumed to interact

according to the Newtonian potential, while the support of the extremal measure is

a ring, contained in disk D. There are essentially two different ways of attacking this

problem.

The first way consists of solving a Dirichlet problem for the Laplace equation on

the potential UµQ of the extremal measure µQ, with boundary data FQ − Q on the

ring. The work in this direction was initiated by Wangerin [73, 74] in 1870s. The

theory developed by Wangerin was applied specifically to the study of the Dirichlet

problem for the Laplace question in the ring by Poole in [61]–[62]. An approach

closely related to that of Poole’s was considered by Lebedev [51].

Another way to recover the extremal measure supported on a ring consists in

solving an integral equation arising from the equilibrium relations (1.2.1)-(1.2.2) on

the support suppµQ of the extremal measure µQ. The first attempt in solving such

an integral equation was undertaken by Gubenko and Mossakovksii [35]. Their work

was further advanced by Cooke [24] and Clements and Love [22]-[23].
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CHAPTER 2

Equilibria of Riesz Potentials of Point Charges at the Roots of Unity

This chapter is based on work [9]. Let n positive unit point charges be placed at the

vertices of a regular n-gon inscribed in a unit circumference. The Riesz potential of

this system is

Us(r, θ) =
n∑
j=1

1

|z − ζjn|2s
, n ≥ 3, s > 0, (2.0.1)

where ζn = e2πi/n is the n-th primitive root of unity and z = reiθ, with r ∈ [0, 1) and

θ ∈ [0, 2π). We can rewrite the potential (2.0.1) as

Us(r, θ) =
n∑
j=1

1

(1 + r2 − 2r cos(2πj/n− θ))s
. (2.0.2)

Note that for s = 1/2, expression (2.0.1) reduces to the usual Coulomb potential

U(r, θ) =
n∑
j=1

1

(1 + r2 − 2r cos(2πj/n− θ)) 1
2

. (2.0.3)

The following useful observation is due to Bang and Elmabsout [5]:

Proposition 2.0.1 Let α = q + µ, where q is positive integer and µ ∈ (0, 1). Then,

for every n ≥ 3, real θ and real r such that 0 ≤ r < 1

n∑
j=1

1

(1 + r2 − 2r cos(2πj/n− θ))α
=

n

Γ(α)Γ(1− µ)
×

∫ 1

0

tα−1

(1− t)µ
∂q

∂tq

{
tq

(1− tr2)α
1− (tr)2n

1 + (tr)2n − 2(tr)n cos(nθ)

}
dt.

(2.0.4)

In the special case α = q + 1 we obtain that

n∑
j=1

1

(1 + r2 − 2r cos(2πj/n− θ))α

=

{
n

q!

∂q

∂tq

{
tq

(1− tr2)α
1− (tr)2n

1 + (tr)2n − 2(tr)n cos(nθ)

}}
t=1

.

(2.0.5)
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As a corollary we obtain an important integral representation of the Riesz potential

(2.0.1):

Corollary 2.0.1 For s ∈ (0, 1), r ∈ [0, 1) and 0 ≤ θ < 2π, the potential Us(r, θ) can

be written as

Us(r, θ) =
n sin(πs)

π

∫ 1

0

ts−1(1− t)−s

(1− r2t)s
1− (rt)2n

1 + (rt)2n − 2(rt)n cos(nθ)
dt. (2.0.6)

Corollary 2.0.1 implies that in the case of Coulomb potential (s = 1/2) we have

U(r, θ) =
n

π

∫ 1

0

t−1/2(1− t)−1/2

(1− r2t)1/2

1− (rt)2n

1 + (rt)2n − 2(rt)n cos(nθ)
dt.

2.1 Critical points of the Riesz potential

Now we can use the integral representation of the Riesz potential Us(r, θ), when

s ∈ (0, 1), given in Corollary 2.0.1 to determine the location of the critical points of

Us(r, θ). It follows that all the non-trivial critical points of the potential Us(r, θ) are

located on the perpendicular bisectors to the sides of a polygon, corresponding to the

values of θ given by

θ = πk/n, k = 1, 3, 5 . . . , 2n− 1. (2.1.1)

More precisely we have

Theorem 2.1.1 The potential Us(r, θ), with s ∈ (0, 1), has all its non-trivial critical

points on perpendicular bisectors to the sides of the regular polygon, and a critical

point at the origin. Furthermore, each non-trivial critical point (r, θ) satisfies

r ∈ (rl(n, s), ru(n)),

where

rl(n, s) =

(
s

s+ n

) 1
n−2

, ru(n) = cos(π/n).
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Example 2.1.1 (n = 3, s = 1/2) Let n = 3 and s = 1/2. In this case, the charges

are located at the vertices of an equilateral triangle inscribed in a unit circle centered

at the origin. The Coulomb potential restricted to the bisectors is u1/2(r) = 2(r2−r+

1)−1/2 + (1 + r)−1. It is easy to see that the critical points are in the interval [0, 1/2].

Direct computation shows that the critical points are among the non-negative roots of

the polynomial r(r5 + 5r4 + r3 + r2 − 4r + 1). Applying the Descarte’s Rule of Signs

to the polynomial r5 + 5r4 + r3 + r2− 4r+ 1 we infer that there are two positive roots,

one of which must be discarded as being outside of [0, 1/2]. Thus there is a unique

critical point for u1/2(r) different from the origin, and therefore the potential U(r, θ)

has exactly four critical points.

Example 2.1.2 (n = 4, s = 1/2) Let n = 4 and s = 1/2. Now the charges are

placed at the vertices of a square inscribed in a unit circumference centered at the

origin. For the Coulomb potential on the bisectors we obtain that u1/2(r) = 2(r2 −
√

2r+ 1)−1/2 + 2(r2 +
√

2r+ 1)−1/2. It follows that the critical points for u1/2(r) must

be in the interval [0, 1/
√

2]. It is not hard to see that the critical points are among

the non-negative roots of the polynomial r(4r6 + r5 − 4r3 + 1) and again applying the

Descarte’s Rule of Signs to the polynomial 4r6 + r5 − 4r3 + 1 we conclude that it has

two positive zeros one of which must be dropped as being outside of [0, 1/
√

2]. Thus

u1/2(r) has exactly two critical points, namely 0 and some r0 6= 0. This shows that

U(r, θ) has exactly five critical points in the case of the square.

2.2 Asymptotic behavior of critical points

It is not hard to see that the potential Us(r, θ) has the same number of the critical

points on each perpendicular bisector to the sides of a polygon. Indeed, as it follows

from (2.0.6) and (2.1.1) the potential on the perpendicular bisectors is independent

of θ. We also remark that, if k(n) is the number of non-trivial critical points on each

perpendicular bisector, then if Maxwell’s conjecture is true, k(n) ≤ n− 2.
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We also observe that the radial coordinate r corresponding to an equilibrium posi-

tion on each perpendicular bisector naturally depends on n and s. We will show that

when s is fixed and the number of charges n increases to infinity, r(n, s) approaches

1. That is, we have the following:

Theorem 2.2.1 Let r(n, s) ∈ (0, 1) be a radial coordinate of a non-trivial critical

point on a perpendicular bisector to the sides. Then for a fixed s ∈ (0, 1) we have

lim
n→∞

r(n, s) = 1. (2.2.1)

Recalling that all the non-trivial critical points are located on perpendicular bisectors

to the sides of a polygon, Theorem 2.2.1 shows that the critical points (except the

one located at the origin) cluster on the unit circumference for large n. We also see

from (2.1.1) that for each fixed n ≥ 3 all the non-trivial critical points consist of

n-tuple subsets equidistributed on circumference with radius r(n, s). We deduce that

when n becomes infinitely large all the non-trivial critical points become uniformly

distributed on the unit circumference.

Now we investigate the dependence of r(n, s) on the parameter s when n is fixed.

We will consider the asymptotic behavior of critical points when s → 0+ and s →

+∞. First we treat the case s→ 0+.

Theorem 2.2.2 Let n ≥ 3 be fixed. Let r(n, s) be a radius corresponding to an

equilibrium position different from the origin. Then

lim
s→0+

r(n, s) = 0. (2.2.2)

We turn to the case s → +∞ now. First, we remark that since all the charges are

positive, it is a direct consequence of the generalized Lucas theorem, proved in [27]

(see also [32]), that all the critical points lie in a convex hall of the point charges.

Therefore, it is clear that an equilibrium position r(n, s) can not exceed (the length

of) an apothem of a regular polygon, for all non-negative s and all n ≥ 3. In our case

12



we have a regular polygon inscribed in a unit circumference, therefore its apothem is

just cos(π/n), and thus

r(n, s) ≤ cos
(π
n

)
. (2.2.3)

Furthermore, the following result shows that equality in (2.2.3) is attained in the limit

s→ +∞.

Theorem 2.2.3 Assume n ≥ 3 is fixed, and let r(n, s) be a radius corresponding to

an equilibrium position different from the origin. Under these assumptions we have

lim
s→+∞

r(n, s) = cos
(π
n

)
. (2.2.4)

2.3 Number of critical points of the Riesz potential Us(z) in the left

hand-side neighborhood of s = 1

In the case s = 1 the Riesz potential (2.0.2) takes the form

U1(r, θ) =
n∑
j=1

1

1 + r2 − 2r cos(2πj/n− θ)
. (2.3.1)

What is rather surprising is that the potential U1(r, θ) admits the following simple

closed representation.

Proposition 2.3.1 For r ∈ [0, 1) and 0 ≤ θ < 2π

U1(r, θ) =
n

1− r2

1− r2n

1 + r2n − 2rn cos(nθ)
. (2.3.2)

Now it is not hard to count the number of critical points of the potential U1(r, θ).

Theorem 2.3.1 The potential U1(r, θ) has exactly n + 1 critical points. Namely, it

has exactly one critical point on each perpendicular bisector to the sides of the polygon,

and a critical point at the origin.

Next, we observe that the restriction of the potential Us(r, θ) to a perpendicular

bisector to the sides is an analytic function in s, r. This fact, coupled with the theory
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of stable mappings shows that the property of the potential Us(r, θ) to have exactly

n+ 1 critical points is preserved when s varies in a small left hand-side neighborhood

of s = 1.

Theorem 2.3.2 There exists a number sl ∈ (0, 1) such that for each s ∈ (sl, 1]

the potential Us(r, θ) has n + 1 critical points. In particular, for each s ∈ (sl, 1]

the potential Us(r, θ) has only one critical point different from the origin on each

perpendicular bisector to the sides of the polygon, and a critical point at the origin.

In fact, as the next example clearly demonstrates, Maxwell’s conjecture for the

Riesz potentials holds for three unit positive point charges placed at the vertices of

an equilateral triangle for all s ∈ (0, 1).

Example 2.3.1 (n = 3, s ∈ (0, 1)) Let n = 3 and s ∈ (0, 1). Then the Riesz potential

Us(r, θ) has exactly four critical points. Namely, for all s ∈ (0, 1) there is one critical

point on each perpendicular bisector to the sides of a triangle, and a critical point at

the intersection of the perpendicular bisectors. The proof of this statement is given at

the Proofs section.

2.4 Proofs

Proof of Corollary 2.0.1. Proof of Corollary 2.0.1 can be found in [29] or [5], where

it arises in connection with a polygonal many-body problem. There is similarity

between the ideas arising in the theory of many-body problem and electrostatics, in

particular due to the fact that the potentials which appear in both are identical. The

idea behind Corollary 2.0.1 has its origin in the book of Tisserand [69] on celestial

mechanics, and later it appears more or less explicitly in the paper of Lindow [53]. For

the sake of self-containment we will reproduce the proof from the paper of Ferrario

and Portaluri [29].
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First we observe that potential (2.0.1) can be rewritten in the following manner:

Us(r, θ) =
n∑
j=1

1

|1− zζjn|2s
, n ≥ 3, s ∈ (0, 1). (2.4.1)

This follows from a fact that if ζn is the n-th primitive root of unity, we have that

ζ−1
n = 1/ζn is an n-th root of unity, and an observation |1− zζjn| = |z− ζ−jn |. In order

to transform the right-hand side of (2.4.1), we expand |1− rξ|−2s in a double power

series as follows:

Lemma 2.4.1 For each r ∈ [0, 1), ξ = eiθ, 0 ≤ θ < 2π, and s ∈ (0, 1), we have the

expansion

1

|1− rξ|2s
=

+∞∑
m=−∞

bmξ
m,

where

bm = b−m =
sin(sπ)

π
rm
∫ 1

0

(1− t)−sts−1tm(1− tr2)−s dt, m ≥ 0.

Proof. We have

|1− rξ|−2s = (1− rξ)−s(1− rξ−1)−s

=

(
∞∑
k=0

(
−s
k

)
(−rξ)k

)
·

(
∞∑
h=0

(
−s
h

)
(−rξ−1)h

)

=
∞∑

h,k=0

(
−s
k

)(
−s
h

)
(−r)k+hξk−h

=
∞∑

m=−∞

(−1)m
∑

k−h=m
k,h≥0

(
−s
k

)(
−s
h

)
rk+h

 ξm.

Let

bm = (−1)m
∑

k−h=m
k,h≥0

(
−s
k

)(
−s
h

)
rk+h.
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Next, recall that for each s > 0 and N ∈ N we have(
−s
N

)
= (−1)N

(
N + s− 1

N

)
= (−1)N

Γ(N + s)Γ(1− s)
Γ(N + 1)Γ(s)Γ(1− s)

=
(−1)N

Γ(s)Γ(1− s)
Γ(N + s)Γ(1− s)

Γ(N + 1)

=
(−1)N sin(πs)

π
B(1− s,N + s),

where B(x, y) is the Beta function and Γ(x) is the Gamma function. Here we have

used the following identities [2],

Γ(s)Γ(1− s) =
π

sin(sπ)
,(

−s
N

)
= (−1)N

Γ(N + s)

Γ(N + 1)Γ(s)
,(

s

N

)
=

Γ(1 + s)

Γ(N + 1)Γ(s−N + 1)
.

Using the integral representation for the Beta function [2, p. 4], we obtain(
−s
N

)
= (−1)N

sin(sπ)

π

∫ 1

0

(1− t)−sts−1tN dt.

This implies that for N = h+m,

bm = (−1)m
∞∑
h=0

(
(−1)m+h sin(sπ)

π

∫ 1

0

(1− t)−sts−1tm+h dt

(
−s
h

)
rm+2h

)
=

sin(sπ)

π
rm

∞∑
h=0

(
(−1)h

∫ 1

0

(1− t)−sts−1tm+h dt

(
−s
h

)
r2h

)

=
sin(sπ)

π
rm
∫ 1

0

(1− t)−sts−1tm

(
∞∑
h=0

(−1)hth
(
−s
h

)
r2h

)
dt

=
sin(sπ)

π
rm
∫ 1

0

(1− t)−sts−1tm(1− tr2)−s dt.

Here, we used the fact that

∞∑
h=0

(−tr2)h
(
−s
h

)
= (1− tr2)−s.
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Now observe that for each k ∈ Z

1

n

∑
y:yn=ξ

yk =

 ξk/n, if k ≡ 0 mod n,

0, if k 6≡ 0 mod n,

so for every s ∈ (0, 1), r ∈ [0, 1) and integer n ≥ 2, we obtain that

Us(r, θ) = n

∞∑
k=−∞

bnkξ
k.

Next, we have

∞∑
k=−∞

bnkξ
k =

∞∑
k=0

bnkξ
k +

∞∑
k=1

bnkξ
−k

=
∞∑
k=0

(
sin(sπ)

π
rnk
∫ 1

0

(1− t)−sts−1tnk(1− tr2)−sdt

)
ξk

+
∞∑
k=1

(
sin(sπ)

π
rnk
∫ 1

0

(1− t)−sts−1tnk(1− tr2)−sdt

)
ξ−k

=
sin(sπ)

π

∫ 1

0

(1− t)−sts−1

(1− tr2)s

[
∞∑
k=0

(tr)nkξk +
∞∑
k=1

(tr)nkξ−k

]
dt.

Since
∞∑
k=0

(tr)nkξk +
∞∑
k=1

(tr)nkξ−k =
1− (tr)2n

|1− (tr)nξ|2
,

we arrive at (2.0.6):

Us(r, θ) =
n sin(sπ)

π

∫ 1

0

(1− t)−sts−1

(1− tr2)s
1− (tr)2n

|1− (tr)nξ|2
dt.

Proof of Theorem 2.1.1. First we find the critical values of θ by using the integral

representation (2.0.6) given in Corollary 2.0.1. The derivative with respect to θ is

∂Us(r, θ)

∂θ
=− sin(nθ)

2n2rn sin(πs)

π
×∫ 1

0

tn+s−1(1− t)−s

(1− r2t)s
1− (rt)2n

(1 + (rt)2n − 2(rt)n cos(nθ))2
dt.

Then if θ is a critical value of the potential, we have ∂Us(r, θ)/∂θ = 0. This implies

that sin(nθ) = 0, so that nθ = πk, k ∈ Z, or

θ = πk/n, k ∈ Z, (2.4.2)
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because the above integral is positive.

Consider the case k = 0 in (2.4.2). We see that there are possible critical points on

a ray coming from the origin where our regular n-gon is centered, and going through

a vertex which sits on the x-axis. Now letting θ = 0 in (2.0.6), we see the potential

on that ray is given by

Us(r, 0) =
n sin(πs)

π

∫ 1

0

ts−1(1− t)−s

(1− r2t)s
1 + (rt)n

1− (rt)n
dt. (2.4.3)

The critical points of Us(r, 0) are found from

∂Us(r, 0)

∂r
= 0. (2.4.4)

Since the integrand on the right-hand side of (2.4.3) and its derivative are continuous

with respect to (r, t) ∈ [0, x0) × [0, 1], for any x0 ∈ [0, 1), we can differentiate under

the sign of the integral [64, p. 236]. Then for the derivative of Us(r, 0) we obtain

∂Us(r, 0)

∂r
=
n sin(πs)

π
×∫ 1

0

ts−1(1− t)−s
{

2srt

(1− r2t)s+1

1 + (rt)n

1− (rt)n
+

1

(1− r2t)s
2nrn−1tn

(1− (rt)n)2

}
dt.

(2.4.5)

For r ∈ (0, 1) and t ∈ [0, 1], we see that

1

1− t
≥ 1,

1

1− tr2
≥ 1,

1

1− rntn
≥ 1,

1 + rntn

1− rntn
≥ 1.

Therefore
∂Us(r, 0)

∂r
≥ n sin(πs)

π

∫ 1

0

ts−1
(
2srt+ 2nrn−1tn

)
dt

=
n sin(πs)

π

{
2sr

s+ 1
+

2nrn−1

n+ s

}
> 0.

Hence ∂Us(r, 0)/∂r is a strictly positive function for r ∈ (0, 1). Now looking at the

expression (2.4.5) for ∂Us(r, 0)/∂r, it is clear that it can be zero if and only if r = 0.

Thus for r ∈ [0, 1) the potential on that ray has only one critical point, namely at

the origin. This also shows that the potential us(r) does not have the critical points

different from the origin for the values of θ = πk/n, corresponding to the even values

of k ∈ Z.
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So far we have showed that all the critical points of the Riesz potential (2.0.1)

(if they exist) lie on the rays θ = πk/n, where k = 1, 3, 5, . . . , 2n − 1. We now want

to obtain further information on the critical points on those rays. For that we let

θ = πk/n, k = 1, 3, 5, . . . , 2n − 1 in (2.0.2) and consider the case k = 1, which is

enough for our purposes. We therefore obtain

us(r) := Us(r, π/n) =
n sin(πs)

π
Jsn(r), (2.4.6)

where

Jsn(r) :=

∫ 1

0

ts−1(1− t)−s

(1− r2t)s
1− (rt)n

1 + (rt)n
dt. (2.4.7)

We are interested in the critical points of Jsn(r),

dJsn(r)

dr
= 0, n ≥ 3.

Clearly the integrand in (2.4.7) and its derivative are continuous with respect to

(r, t) ∈ [0, x0) × [0, 1], for any x0 ∈ [0, 1). Hence we can differentiate under the sign

of the integral in (2.4.7) [64, p. 236].

Now let us show that u′s(r) > 0 for r from a small right-hand side neighborhood

of the origin, for all n ≥ 3. It is clear that

dJsn(r)

dr
= 2r

∫ 1

0

ts(1− t)−s

(1− r2t)s+1

gn(r, t)

(1 + (rt)n)2
dt, n ≥ 3, (2.4.8)

where

gn(r, t) = s(1− (rt)2n)− nrn−2tn−1(1− r2t). (2.4.9)

We can estimate gn(r, t) from below in the following manner,

gn(r, t) = s(1− (rt)2n)− nrn−2tn−1(1− r2t)

= s− sr2nt2n − nrn−2tn−1 + nrntn

≥ s− sr2n − nrn−2

≥ s− srn−2 − nrn−2

= s− rn−2(s+ n),
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for all t ∈ [0, 1], all n ≥ 3 and all s ∈ (0, 1). Thus if we take

r < rl(n, s) :=

(
s

s+ n

) 1
n−2

(2.4.10)

it follows that gn(r, t) > 0 for all t ∈ [0, 1] and all n ≥ 3.

Next, we note that the function ts(1− t)−s(1− r2t)−(s+1) is continuous and non-

negative for all 0 ≤ t ≤ 1. Therefore by the second Mean Value Theorem for integrals

there exists t∗ ∈ [0, 1] such that∫ 1

0

ts(1− t)−s

(1− r2t)s+1

gn(r, t)

(1 + (rt)n)2
dt

=
gn(r, t∗)

(1 + (rt∗)n)2

∫ 1

0

ts(1− t)−s

(1− r2t)s+1
dt

=
gn(r, t∗)

(1 + (rt∗)n)2
B(1 + s, 1− s)2F1(1 + s, 1 + s; 2; r2),

where 2F1 is the Gauss hypergeometric function [2]. Therefore, we see that if r ∈

(0, rl(n, s)), then u′s(r) > 0 for all n ≥ 3. One can also check that u′s(rl(n, s)) 6= 0.

Thus we proved the following

Lemma 2.4.2 Potential us(r) has no critical points on (0, rl(n, s)).

To obtain an upper estimate on the location of a critical point on a bisector we

recall that the Riesz potential on a bisector for 0 ≤ r < 1 and n ≥ 3 is given by

us(r) =
n∑
j=1

1

(1 + r2 − 2r cos(θj))s
, (2.4.11)

where θj = π(2j − 1)/n, j = 1, 2, . . . , n.

For the derivative u′s(r) we find

u′s(r) = −2s
n∑
j=1

r − cos(θj)

(1 + r2 − 2r cos(θj))s+1
. (2.4.12)

so that

u′s(cos(π/n)) = −2s
n∑
j=1

cos(π/n)− cos(θj)

(1 + cos2(π/n)− 2 cos(π/n) cos(θj))s+1
.
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It is now obvious that u′s(cos(π/n)) < 0 for all n ≥ 3. Let ru(n) := cos(π/n).

Since u′s(r) is continuous and changes sign on (0, ru(n)), we infer that there exists

r0 ∈ (0, ru(n)) such that u′s(r0) = 0. Also from (2.4.12) it is clear that u′s(r) < 0 for

r ∈ [ru(n), 1). Hence we proved the following

Lemma 2.4.3 Potential us(r) does not have critical points on [ru(n), 1).

Combining Lemma 2.4.2 and Lemma 2.4.3 we obtain

Lemma 2.4.4 Potential us(r) has all its critical points in the interval (rl(n, s), ru(n)).

Since the potential us(r) is a restriction of 2D potential Us(r, θ) to the perpendic-

ular bisectors, the proof of the theorem follows.

Remark 2.4.1 We note that for the potential us(r) a brief calculation reveals that 0

is a critical point and u′′s(0) = 2s2n. Therefore 0 is a local minimum for the potential

us(r).

Proof of Theorem 2.2.1. We know that r(n, s) ∈ (rl(n, s), ru(n)) for all s ∈ (0, 1)

and all n ≥ 3. Note that

lim
n→∞

rl(n, s) = lim
n→∞

(
s

s+ n

) 1
n−2

= 1,

lim
n→∞

ru(n) = lim
n→∞

cos
(π
n

)
= 1.

Therefore

lim
n→∞

r(n, s) = 1.

Proof of Theorem 2.2.2. Without loss of generality we may assume that s ∈

(0, 1/2). Recall that according to (2.4.6) the potential us(r) has the form

us(r) =
n sin(πs)

π

∫ 1

0

ts−1(1− t)−s

(1− r2t)s
1− (rt)n

1 + (rt)n
dt,
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and so

u′s(r) =
2nr sin(πs)

π

{
s

∫ 1

0

ts(1− t)−s

(1− r2t)s+1

1− (rt)n

1 + (rt)n
dt

−nrn−2

∫ 1

0

tn+s−1(1− t)−s

(1− r2t)s
1

(1 + (rt)n)2
dt

}
.

(2.4.13)

We want to estimate the integrals on the right-hand side of (2.4.13). For that a few

simple inequalities will prove handy.

Observe that 1−(rt)n = (1−(rt))(1+rt+(rt)2+. . .+(rt)n−1). Hence, as r ∈ (0, 1)

and t ∈ [0, 1] we deduce that 1 − (rt)n = (1− (rt))(1 + rt + (rt)2 + . . . + (rt)n−1) ≤

(1−r2t)(1+1+ . . .+1) = n(1−r2t). In addition, (1−r2t)−s ≤ (1− t)−s and, trivially

(1 + rntn)−1 ≤ 1. Therefore

∫ 1

0

ts(1− t)−s

(1− r2t)s+1

1− (rt)n

1 + (rt)n
dt =

∫ 1

0

ts(1− t)−s

(1− r2t)(1− r2t)s
1− (rt)n

1 + (rt)n
dt

≤
∫ 1

0

ts(1− t)−s

(1− r2t)(1− t)s
n(1− r2t)

1 + (rt)n
dt

≤ n

∫ 1

0

ts(1− t)−2s dt

= nB(1 + s, 1− 2s),

(2.4.14)

where B(x, y) is the beta-function.

Also, the second integral on the right-hand side of (2.4.13) can be estimated as

follows,

∫ 1

0

tn+s−1(1− t)−s

(1− r2t)s
1

(1 + (rt)n)2
dt ≥ 1

4

∫ 1

0

tn+s−1 dt

=
1

4(n+ s)
.

(2.4.15)

Inequalities (2.4.14) and (2.4.15) imply that

u′s(r) ≤
2n2r sin(πs)

π

{
sB(1 + s, 1− 2s)− rn−2

4(n+ s)

}
. (2.4.16)

Let

ru(n, s) := {4s(n+ s)B(1 + s, 1− 2s)}
1

n−2 . (2.4.17)
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Then, as it follows from (2.4.16), if r > ru(n, s) we have u′s(r) < 0. This shows that

there are no critical points on the right from ru(n, s). Hence all the critical points

belong to the interval (rl(n, s), ru(n, s)).

Note that (n ≥ 3 is fixed)

lim
s→0+

ru(n, s) = lim
s→0+

{4s(n+ s)B(1 + s, 1− 2s)}
1

n−2 = 0,

and also

lim
s→0+

rl(n, s) = lim
s→0+

(
s

s+ n

) 1
n−2

= 0.

Therefore, since rl(n, s) < r(n, s) < ru(n, s) clearly

lim
s→0+

r(n, s) = 0,

as desired.

Proof of Theorem 2.2.3. The idea of the following proof was suggested by Prof.

Boris Shapiro.

According to Theorem 1.7 of [30], we know that for a generic configuration of point

charges of the same sign, and for s sufficiently large, the critical points of the potential

are in one-to-one correspondence with the effective cells in the Voronoi diagram of the

considered configuration. Therefore, when positive unit point charges are placed at

the vertices of a regular n-gon, it follows that the equilibrium points of the potential

us(r) are within the distance O(1/s) from the point of intersection of a perpendicular

bisector and a side of a regular polygon. In our case the distance from the origin to

the point of intersection is just the length of an apothem of a regular n-gon inscribed

in a unit circumference, that is cos(π/n). Hence, we see that in the limit s → +∞,

we have

lim
s→+∞

r(n, s) = cos
(π
n

)
,

which proves the desired result.
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Proof of Proposition 2.3.1. Setting q = 0 in the second statement of Proposition

2.0.1, we easily obtain that

U1(r, θ) =
n∑
j=1

1

1 + r2 − 2r cos(2πj/n− θ)

=
n

1− r2

1− r2n

1 + r2n − 2rn cos(nθ)
,

as desired.

Proof of Theorem 2.3.1. It is easy to see that the critical values of the angle θ are

given by θ = πk/n, where k ∈ Z. Next, we sort out even and odd values of k. First,

we have the following fact.

Lemma 2.4.5 For r ∈ [0, 1), the potential U1(r, θ) on a ray corresponding to even k

has only one critical point, namely the origin.

Proof. It is sufficient to consider the case k = 0. We readily find

U1(r, 0) =
n

1− r2

1 + rn

1− rn
.

Differentiating, we obtain

∂U1(r, 0)

∂r
= n

{
2r

(1− r2)2

1 + rn

1− rn
+

2n

1− r2

rn−1

(1− rn)2

}
.

Now trivial estimates show that ∂U1(r, 0)/∂r > 0 for r ∈ (0, 1). Therefore the

potential U1(r, 0) has only one critical point on the rays corresponding to even k,

namely the origin.

Lemma 2.4.5 implies that all the critical points lie on the rays stemming from the

origin and bisecting the edges of the regular polygon, i.e. for θ = πk/n, k ∈ Z, with

odd k.

Let us consider a restriction of the potential U1(r, θ) to the perpendicular bi-

sectors of the sides. Without loss of generality we can assume k = 1 and set

v(r) := U1(r, π/n). Then

v(r) =
n

1− r2

1− rn

1 + rn
. (2.4.18)
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To find the critical points of v(r), we differentiate (2.4.18),

v′(r) = 2n
r(1− r2n − nrn−2 + nrn)

(1− r2)2(1 + rn)2
. (2.4.19)

We clearly see that there is a critical point of the potential v(r) located at the origin.

Now consider the polynomial pn(r) = −r2n+nrn−nrn−2+1. Then p′n(r) = −2nr2n−1+

n2rn−1−n(n− 2)rn−3, and p′′n(r) = −2n(2n− 1)r2n−2 +n2(n− 1)rn−2−n(n− 2)(n−

3)rn−4. Note that pn(1) = p′n(1) = 0 and p′′n(1) = −4n 6= 0 for all n ≥ 3. This shows

that r = 1 is a zero of multiplicity 2 of the polynomial pn(r). Now observe that by

Decartes’s rule polynomial pn(r) has exactly three positive roots. Next, we will need

the following lemma.

Lemma 2.4.6 For all r > 1 and for all n ≥ 3 pn(r) < 0.

Proof. Let r > 1 and n ≥ 3. First we show that p′n(r) < 0. As p′n(r) = −2nr2n−1 +

n2rn−1 − n(n − 2)rn−3, we need to show that 2nr2n−1 − n2rn−1 + n(n − 2)rn−3 > 0.

That is the same as n− 2 > nr2 − 2rn+2. Consider the function ψ(r) = nr2 − 2rn+2.

Then ψ′(r) = 2nr − 2(n + 2)rn+1 = 2r(n − (n + 2)rn) < 0 for r > 1, so that the

function ψ(r) is strictly decreasing. Hence ψ(1) > ψ(r) for r > 1. But ψ(1) = n− 2,

so n− 2 > nr2− 2rn+2, as claimed. This tells us that p′n(r) < 0 for r > 1, as desired.

Thus we see that pn(r) is a strictly decreasing function of r for r > 1. Therefore

pn(1) > pn(r) for r > 1, which implies that pn(r) < 0. This concludes the proof.

Since by the Lemma 2.4.6 pn(r) < 0 for all r > 1 and all n ≥ 3, we conclude that

pn(r) has exactly one simple zero on (0, 1). Thus the potential v(r) has exactly one

critical point on (0, 1). This completes the proof of the Theorem 2.3.1.

At this point we note that in the case s = 1 it is quite easy to show that the

potential is in fact a Morse function. Indeed, we have the following

Lemma 2.4.7 The potential v(r) is a Morse function, that is its critical points are

non-degenerate.
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Proof. We compute the first and the second derivatives as follows:

v′(r) = 2nrpn(r)(1− r2)−2(1 + rn)−2,

v′′(r) = 2n(1− r2)−4(1 + rn)−4

× {(pn(r) + rp′n(r))(1− r2)2(1 + rn)2 + rpn(r)((1− r2)2(1 + rn)2)′}.

Suppose that r0 6= 0 is a critical point of v(r), that is v′(r0) = 0. Then pn(r0) = 0 for

all n ≥ 3, and

v′′(r0) = 2n(1− r2
0)−4(1 + rn0 )−4×

{(pn(r0) + r0p
′
n(r0))(1− r2

0)2(1 + rn0 )2 + r0pn(r0)((1− r2)2(1 + rn)2)′(r0)}.

so that

v′′(r0) =
2nr0p

′
n(r0)

(1− r2
0)2(1 + rn0 )2

6= 0.

It is clear from the expressions for v′(r) and v′′(r) that r = 0 is a critical point for v(r)

and that it is not degenerate. Therefore all critical points of v(r) are non-degenerate,

which means that v(r) is Morse on [0, 1).

Proof of Theorem 2.3.2. First we will need a few facts from the theory of real

analytic functions [46]. In particular, we will need

Proposition 2.4.1 (Real Analytic Identity Theorem) Let D ⊂ Rm be an open

connected set and let f be a real-analytic function on D. If there is a non-empty open

set U ⊂ D such that f(x) = 0 for all x ∈ U , then f ≡ 0 on D. If D is an open

interval in R, and if there is U ⊂ D with an accumulation point in D, such that

f(x) = 0 for all x ∈ U , then f ≡ 0 on D.

We will also be making use of

Proposition 2.4.2 (Real Analytic Implicit Function Theorem) Suppose F :

R2 → R is real analytic in a neghborhood of (x0, y0) for some x0 ∈ R and some

y0 ∈ R. If F (x0, y0) = 0 and

∂F (x0, y0)

∂y
6= 0,
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then there exists a function h : R→ R which is real analytic in a neighborhood of x0

and such that

F (x, h(x)) = 0

holds in a neighborhood of x0.

Let us now briefly mention a few standard facts from the theory of stable mappings

that will be used in the content of the discussion below.

Let X and Y be smooth manifolds. Denote by C∞(X, Y ) the set of smooth

mappings from X to Y . The set C∞(X, Y ) equipped with Whitney topology becomes

a topological space (for details see [33]).

Let ϕ and ψ be elements of C∞(X, Y ). We will call ϕ and ψ isotopic if there

exist diffeomophisms f : X → X and g : Y → Y , each homotopic to the identity on

their respective space, such that ϕ = g ◦ ψ ◦ f . An element ϕ of C∞(X, Y ) will be

called stable if there is a neighborhood Wϕ of ϕ in C∞(X, Y ) such that each ψ in Wϕ

is isotopic to ϕ. Note that the stable mappings in C∞(X, Y ) always form an open

subset.

Now employ the following observation, which can be found, for example, in [40].

Assume that two stable mappings in C∞(X, Y ) are connected by a path γ consisting

of stable mappings. Then we can cover γ by a finite collection of open sets such that

any two mappings in each set are isotopic. Using an induction argument it follows

that any two mappings in γ are isotopic. Recalling that any two isotopic mappings

have the same number of critical points, it follows that any two mappings in γ will

have the same number of critical points.

Suppose X is a compact manifold and let ϕ be an element of C∞(X,R). Then ϕ is

stable if and only if ϕ is a Morse function whose critical values are pairwise distinct.

In particular, it follows that if we have two Morse functions with distinct critical

values connected by a path γ in C∞(X,R) consisting of Morse functions with distinct

critical values, any two functions in γ will have the same number of the critical points.
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We also note [36, Ex. 19, p. 47] that if f is a Morse function with not necessarily

distinct critical values, we can find a function f̃ that has the same critical points as

f and is arbitrarily close to f in the C2 topology. Moreover, the critical values of f̃

are distinct.

Now prove the following easy but important fact:

Lemma 2.4.8 The potential us(r) is a real analytic function in s, r.

Proof. Note that (1 + r2− 2r cos(θj)) > 0 is an analytic function of r. Hence log(1 +

r2 − 2r cos(θj)) is also analytic in r. Next, observe that (1 + r2 − 2r cos(θj))
−s =

exp(−s log(1 + r2 −2r cos(θj)), which is an analytic function in s, r.

We are now ready to state our extension result for the potential us(r).

Lemma 2.4.9 (Extension Theorem for us(r)) There exist real numbers sl and

sr such that 1 ∈ (sl, sr) so that for each s ∈ (sl, sr) the potential us(r) has a unique

critical point different from the origin, as well as a critical point at the origin.

Remark 2.4.2 Lemma 2.4.9 guarantees uniqueness for a non-trivial critical point

of us(r), with s ∈ (sl, sr), where 1 ∈ (sl, sr). However, when utilizing this result to

make appropriate claims for the 2D potential Us(r, θ), we are only permitted to use

the left hand-side neighborhood of s = 1, since a fact guaranteeing that all the non-

trivial critical points of the Riesz potential Us(r, θ) being located on the perpendicular

bisectors to the sides, was proved for s ∈ (0, 1].

Proof. Let g : R2 → R be defined as g(s, r) := u′s(r). By Lemma 2.4.8 the potential

us(r) is analytic in s, r, so its derivatives with respect to s and r are also analytic in

s, r. This implies that the function g(s, r) is analytic in s, r. Let r0 be a non-zero

critical point of the potential us0(r) for s0 = 1. By Lemma 2.4.7 we know that r0 is

a non-degenerate critical point, that is u′′s0(r0) 6= 0. Therefore

g(s0, r0) = 0,
∂g(s0, r0)

∂r
6= 0.
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By the Real Analytic Implicit Function Theorem there exist a neighborhood U0 =

(a, b) × (c, d) of (s0, r0) and an analytic function h : R → R such that {(s, r) ∈ U0 :

g(s, r) = 0} = {(s, h(s)) : s ∈ (a, b)}. That is, u′s(h(s)) = 0 in (a, b), and h(s) is the

only such a root of u′s(r) = 0.

We conclude that for each s in a neighborhood of s0 = 1 there exists a unique

critical point of us(r), call it rs, and rs depends analytically on s.

Now observe that from the Real Analytic Identity Theorem it follows that an

analytic function on a closed interval can only have a finite number of zeros. Therefore

∂g(s, r)/∂r has a finite number of zeros. One may shrink U0 such that ∂g(s, r)/∂r 6= 0

on U0 (since ∂g(s, r)/∂r 6= 0 at (s0, r0)). Denote an interval of such s’s as (sl, sr).

Then all critical points rs are non-degenerate for s ∈ (sl, sr). Note that 1 ∈ (sl, sr).

After these preliminary remarks let us make the following observation. Since we

know that the potential us(r) has no critical points on (cos(π/n), 1), we can assume

that r ∈ [0, cos(π/n)] and s ∈ (sl, sr). It is clear that us ∈ C∞([0, cos(π/n)],R) for

all s ∈ (sl, sr).

Next, note that for each s ∈ (sl, sr) the potential us(r) is a Morse function. Hence

us defines a path in C∞([0, cos(π/n)],R). Therefore by above considerations any two

functions in the path defined by us have the same number of critical points. As we

have shown that us(r) for s = 1 has exactly one critical point (excluding the origin),

and 1 ∈ (sl, sr), it follows that for any s ∈ (sl, sr) the potential us(r) also has exactly

one critical point (excluding origin). The proof of the lemma is complete.

Recalling that the potential us(r) is a restriction of the 2D potential Us(r, θ) to

the perpendicular bisectors to the sides, and utilizing the fact that all the non-trivial

critical points of the potential Us(r, θ) for s ∈ (0, 1] are located on perpendicular

bisectors to the sides, the statement of the theorem follows.

Proof of Example 2.3.1. In this case the Riesz potential on the bisectors is of the
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form

us(r) =
1

(1 + r)2s
+

2

(1 + r2 − r)s
, r ∈ (0, 1).

Its derivative is

u′s(r) =
−2s

(1 + r)2s+1
+
−2s(2r − 1)

(1 + r2 − r)s+1

=
−2s

(1 + r)2s+1(1 + r2 − r)s+1
((2r − 1)(1 + r)2s+1 + (1 + r2 − r)s+1)

= −2s(1 + r)−(2s+1)(1 + r2 − r)−(s+1)fs(r),

where fs(r) := (1 + r)2s+1(2r − 1) + (1 + r2 − r)s+1. Differentiating, we obtain

f ′s(r) = (2s+ 1)(1 + r)2s(2r − 1) + 2(1 + r)2s+1 + (s+ 1)(1 + r2 − r)s(2r − 1).

For the second derivative we have

f ′′s (r) = (2s+ 1)(2s(1 + r)2s−1(2r − 1) + 2(1 + r)2s)

+ 2(2s+ 1)(1 + r)2s

+ (s+ 1)(s(1 + r2 − r)s−1(2r − 1)2 + 2(1 + r2 − r)s)

= 2(2s+ 1)(1 + r)2s−1(s(2r − 1) + (1 + r))

+ 2(2s+ 1)(1 + r)2s

+ (s+ 1)(s(1 + r2 − r)s−1(2r − 1)2 + 2(1 + r2 − r)s)

= 2(2s+ 1)(1 + r)2s−1((2s+ 1)r + (1− s))

+ 2(2s+ 1)(1 + r)2s

+ (s+ 1)(s(1 + r2 − r)s−1(2r − 1)2 + 2(1 + r2 − r)s).

As s ∈ (0, 1), it follows that 1 − s > 0, and we see from the above that f ′′s > 0 for

all r ∈ (0, 1) and all s ∈ (0, 1). That says that fs is strictly convex on (0, 1) for all

s ∈ (0, 1).

Observe that the roots of fs(r) are exactly the critical points of the potential

us(r). Applying Theorem 2.1.1 with n = 3, we see that fs(r) has a positive root on

(0, 1/2), for all s ∈ (0, 1). Note that fs(0) = −1 + 1 = 0, and fs(1/2) = (3/4)s+1 > 0.

The strict convexity of fs(r) implies that this positive root is unique.
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We have shown that the potential us has a unique non-trivial critical point for all

s ∈ (0, 1). Recalling that the potential us(r) is a restriction of the 2D Riesz potential

Us(r, θ) to the perpendicular bisectors, we conclude that Us(r, θ) has exactly four

critical points in the case of an equilateral triangle for all s ∈ (0, 1), as claimed.
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CHAPTER 3

Minimum Energy Problem on the Hypersphere

3.1 Introduction and main results

This section is based on work [10]. We introduce hyperspherical polar coordinates

r, θ1, θ2, . . . , θd−2, ϕ, defined by

x1 = r cos θ1,

x2 = r sin θ1 cos θ2,

x3 = r sin θ1 sin θ2 cos θ3,

...

xd−2 = r sin θ1 sin θ2 . . . sin θd−3 cos θd−2,

xd−1 = r sin θ1 sin θ2 . . . sin θd−2 cosϕ,

xd = r sin θ1 sin θ2 . . . sin θd−2 sinϕ,

where 0 ≤ r, 0 ≤ θj ≤ π, j = 1, 2, . . . , d − 2, and 0 ≤ ϕ ≤ 2π, see [3]. The surface

area element of the unit sphere Sd−1, written in hyperspherical coordinates, is given

by

dσd = sind−2 θ1 sind−3 θ2 . . . sin θd−2 dθ1 dθ2 . . . dθd−2 dϕ.

The total surface area of the sphere Sd−1 is given by

ωd =
2πd/2

Γ(d/2)
.
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A spherical cap on the sphere Sd−1, centered at the North Pole, is defined via an angle

α, 0 < α ≤ π, as

CN,α := {(r, θ1, . . . , θd−2, ϕ) : r = 1, 0 ≤ θ1 ≤ α, 0 ≤ θj ≤ π,

j = 2, . . . , d− 2, 0 ≤ ϕ ≤ 2π}.

Similarly, a spherical cap centered at the South Pole, is defined in terms of an angle

α, 0 < α ≤ π, as

CS,α := {(r, θ1, . . . , θd−2, ϕ) : r = 1, α ≤ θ1 ≤ π, 0 ≤ θj ≤ π,

j = 2, . . . , d− 2, 0 ≤ ϕ ≤ 2π}.

In what follows, we will need to use certain special functions, for which we fix the

notation here. The incomplete Beta function B(z; a, b) is defined as

B(z; a, b) :=

∫ z

0

ta−1(1− t)b−1 dt. (3.1.1)

The Gauss hypergeometric function 2F1(a, b; c, z) is defined via series

2F1(a, b; c, z) :=
∞∑
n=0

(a)n (b)n
(c)n

zn

n!
, |z| < 1, (3.1.2)

where (a)0 := 1 and (a)n := a(a + 1) . . . (a + n − 1) for n ≥ 1 is the Pochhammer

symbol.

We begin by recording sufficient conditions on an external field Q, that guarantee

that the extremal support SQ of the equilibrium measure µQ is a spherical cap CS,α,

centered at the South Pole. The following proposition is a consequence of a more

general statement, proved in [17].

Proposition 3.1.1 Let a non-negative external field Q be rotationally invariant with

respect to rotations about the polar axis x1, that is Q(x) = Q(x1), where x =

(x1, x2, . . . , xd) ∈ Sd−1. Suppose that Q(x1) is an increasing convex function on

[−1, 1]. Then the support of the extremal measure µQ is a spherical cap centered

at the South Pole, that is SQ = CS,α.
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The following result is an important step towards the recovery of the equilibrium

measure.

Theorem 3.1.1 Suppose that an external field Q is rotationally invariant with re-

spect to rotations about the polar axis, and is such that Q ∈ C2(N), where N is an

open neighborhood of SQ = CS,α on the sphere Sd−1. Then the equilibrium measure µQ

is absolutely continuous with respect to the Lebesgue surface measure, with a locally

bounded density, that is dµQ = f(θ1) dσd, where f ∈ L∞([α, π]).

The support SQ is a main ingredient in determining the equilibrium measure µQ

itself. Indeed, if SQ is known, then the equilibrium measure µQ can be recovered by

solving the singular integral equation∫
1

|x− y|d−2
dµ(y) +Q(x) = FQ, x ∈ SQ, (3.1.3)

where FQ is a constant (see (1.2.2)).

We solve this equation and obtain the following two theorems, that describe explic-

itly the equilibrium density when support SQ is either a spherical cap CN,α, centered

at the North Pole, or CS,α, a spherical cap centered at the South Pole. This extends

the corresponding results stated in Theorem 2 and Theorem 3 in [9], for the case

d = 3.

Theorem 3.1.2 Suppose that an external field Q is rotationally invariant with re-

spect to rotations about the polar axis, and is such that Q ∈ C2(N), where N is an

open neighborhood of SQ in Sd−1. Assume that SQ is a spherical cap CN,α centered at

the North Pole, with 0 < α ≤ π. Let

F (η) =
Γ((d− 2)/2)

2 π(d+2)/2

1

sin η
secd−3

(
η

2

)
d

dη

∫ α

η

g(ζ) sin ζ dζ√
cos η − cos ζ

, (3.1.4)

with 0 ≤ η ≤ α, where

g(ζ) = cotd−3

(
ζ

2

)
d

dζ

∫ ζ

0

Q(θ) sind−3(θ/2) sin θ dθ√
cos θ − cos ζ

, 0 ≤ ζ ≤ α. (3.1.5)
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Then the density f of the equilibrium measure µQ is given by

f(η) = CQ

(
1 + cosα

1 + cos η

) d−1
2
(

1 + cosα

cos η − cosα

) 1
2

×

2F1

(
1,
d− 1

2
;
1

2
;
cos η − cosα

1 + cos η

)
+ F (η), 0 ≤ η ≤ α.

(3.1.6)

The constant CQ is uniquely defined by

CQ =
Γ(d/2− 1)

2d−2
√
π Γ((d− 1)/2)

(
B

(
sin2

(
α

2

)
;
d− 2

2
,
d

2

))−1

×{
Γ((d− 1)/2)

2π(d−1)/2
−
∫ α

0

F (η) sind−2 η dη

}
.

(3.1.7)

An analogous statement for the support being a spherical cap CS,α centered at the

South Pole, is of the following nature.

Theorem 3.1.3 Suppose that an external field Q is rotationally invariant with re-

spect to rotations about the polar axis, and is such that Q ∈ C2(N), where N is an

open neighborhood of SQ in Sd−1. Assume that SQ is a spherical cap CS,α, centered

at the South Pole, with 0 < α ≤ π. Let

F (η) =
Γ((d− 2)/2)

2 π(d+2)/2

1

sin η
cscd−3

(
η

2

)
d

dη

∫ η

α

g(ζ) sin ζ dζ√
cos ζ − cos η

, (3.1.8)

with α ≤ η ≤ π, where

g(ζ) = tand−3

(
ζ

2

)
d

dζ

∫ π

ζ

Q(θ) cosd−3(θ/2) sin θ dθ√
cos ζ − cos θ

, α ≤ ζ ≤ π. (3.1.9)

Then the density f of the equilibrium measure µQ is given by

f(η) = CQ

(
1− cosα

1− cos η

) d−1
2
(

1− cosα

cosα− cos η

) 1
2

×

2F1

(
1,
d− 1

2
;
1

2
;
cosα− cos η

1− cos η

)
+ F (η), α ≤ η ≤ π.

(3.1.10)

The constant CQ is uniquely determined by

CQ =
Γ(d/2− 1)

2d−2
√
π Γ((d− 1)/2)

(
B

(
cos2

(
α

2

)
;
d− 2

2
,
d

2

))−1

×{
Γ((d− 1)/2)

2π(d−1)/2
−
∫ π

α

F (η) sind−2 η dη

}
.

(3.1.11)
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3.2 Applications to the external field of a point charge and a quadratic

external field

We first consider the case of no external field, when the support is a spherical cap

centered at the South Pole, that is SQ = CS,α, Q = 0. The equilibrium measure

for the spherical cap centered at the South Pole CS,α, for the case of general Riesz

potentials, was first found in [28] (see also [17]).

Proposition 3.2.1 The density of the equilibrium measure of a spherical cap CS,α

with no external field is

f(η) =
Γ(d/2− 1)

2d−1 πd/2

(
B

(
cos2

(
α

2

)
;
d− 2

2
,
d

2

))−1

×(
1− cosα

1− cos η

) d−1
2
(

1− cosα

cosα− cos η

) 1
2

2F1

(
1,
d− 1

2
;
1

2
;
cosα− cos η

1− cos η

)
,

(3.2.1)

where α ≤ η ≤ π. The capacity of CS,α is given by

cap(CS,α) =
2d−2 Γ((d− 1)/2)√

π Γ(d/2− 1)
B

(
cos2

(
α

2

)
;
d− 2

2
,
d

2

)
. (3.2.2)

Suppose now that the sphere Sd−1 is immersed in an external field Q, that satisfies

the conditions of Proposition 3.1.1. Then the support SQ of the weighted equilibrium

measure µQ will be a spherical cap CS,α, centered at the South Pole. The angle α,

defining the extremal support CS,α, can be found via the Newtonian analog of the

Mhaskar-Saff F -functional, which is defined as follows.

Definition 3.2.1 The F-functional of a compact subset E ⊂ Sd−1 of positive (New-

tonian) capacity is defined as

F(E) := W (E) +

∫
Q(x) dµE(x), (3.2.3)

where W (E) is the Newtonian energy of the compact E and µE is the equilibrium

measure (with no external field) on E.
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The main objective of introducing the F -functional is its following extremal property,

proved in [17] for the general Riesz potentials.

Proposition 3.2.2 Let Q be an external field on Sd−1. Then F-functional is mini-

mized for SQ = supp(µQ).

If E = CS,α, taking into account that W (CS,α) = 1/ cap(CS,α), and inserting (3.2.2)

and (3.2.1) into (3.2.3), we find that F -functional is given by

F(CS,α) =

√
π Γ(d/2− 1)

2d−2 Γ((d− 1)/2)

(
B

(
cos2

(
α

2

)
;
d− 2

2
,
d

2

))−1

×{
1 +

1

π

∫ π

α

Q(η)

(
1− cosα

1− cos η

) d−1
2
(

1− cosα

cosα− cos η

) 1
2

×

2F1

(
1,
d− 1

2
;
1

2
;
cosα− cos η

1− cos η

)
sind−2 η dη

}
. (3.2.4)

As a first applications of our results, we consider the situation when the sphere

Sd−1 is immersed in an external field generated by a positive point charge of magnitude

q placed at the North Pole of the sphere, namely

Q(x) = q (1− x1)−(d−2)/2, q > 0, x ∈ Sd−1. (3.2.5)

Note that the extremal measure for such a field was first obtained in [28], for general

Riesz potentials. For d = 3 and when the charges are assumed to interact according

to the Newtonian potential, the extremal density and Mhaskar-Saff functional, along

with its critical points, were computed in [9] (see Proposition 4 and Theorems 4 and

5 there). We also remark that it is possible to extend the results of [17] to cover such

a case as well.

It is clear that external field Q in (3.2.5) is invariant with respect to the rotations

about the polar axis. Also, Q(x1) is a non-negative increasing convex function on

[−1, 1]. From Proposition 3.1.1 it then follows that the support of the corresponding

equilibrium measure µQ will be a spherical cap CS,α, centered at the South Pole. The

crucial step towards the recovery of the equilibrium measure for this external field
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is to determine the support of the equilibrium measure. For that we first compute

the Mhaskar-Saff F -functional, by inserting expression (3.2.5) for the external field

Q into (3.2.4).

Theorem 3.2.1 The F-functional for the spherical cap CS,α when the external field

is produced by a positive point charge of magnitude q, placed at the North Pole, is

given by

F(CS,α) =

√
π Γ(d/2− 1)

2d−2 Γ((d− 1)/2)

(
B

(
cos2

(
α

2

)
;
d− 2

2
,
d

2

))−1

×{
1 +

q 2(d−2)/2 Γ((d− 1)/2)√
π Γ(d/2− 1)

B

(
cos2

(
α

2

)
;
d− 2

2
,
1

2

)}
.

(3.2.6)

Applying Theorem 3.1.3, we compute the density of the equilibrium measure, corre-

sponding to this external field.

Theorem 3.2.2 For the external field Q given by (3.2.5), the support SQ is a spheri-

cal cap CS,α centered at the South Pole, with α = α0 ∈ (0, π). The angle α0 is defined

as a unique solution of the equation

cscd−1

(
α

2

)
B

(
cos2

(
α

2

)
;
d− 2

2
,
d

2

)
−B

(
cos2

(
α

2

)
;
d− 2

2
,
1

2

)
=

√
π Γ(d/2− 1)

q 2(d−2)/2 Γ((d− 1)/2)
.

(3.2.7)

Let

CQ =
Γ(d/2− 1)

2d−1 πd/2

(
B

(
cos2

(
α0

2

)
;
d− 2

2
,
d

2

))−1

×{
1 +

q 2(d−2)/2 Γ((d− 1)/2)√
π Γ(d/2− 1)

B

(
cos2

(
α0

2

)
;
d− 2

2
,
1

2

)}
.

(3.2.8)

The density of the equilibrium measure µQ is given by

f(η) = CQ

(
1− cosα0

1− cos η

)(d−1)/2

×√
1− cosα0

cosα0 − cos η
2F1

(
1,
d− 1

2
;
1

2
;
cosα0 − cos η

1− cos η

)
− q Γ((d− 1)/2)√

2 π(d+1)/2

1

(1− cos η)(d−1)/2

√
1− cosα0

cosα0 − cos η
, α0 ≤ η ≤ π.

(3.2.9)
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As a second application, we consider the case when the external field Q is a

quadratic polynomial of the form

Q(x) = (1 + x1)2, x ∈ Sd−1, d ≥ 3. (3.2.10)

An external field given by a quadratic polynomial was first considered in [9] for the

case d = 3 and Newton potential, see Proposition 5 and Theorems 7 and 8 there.

Below we extend the corresponding statements from [9] to the arbitrary dimension

d ≥ 3, for the monic quadratic polynomial of the form appearing on the right hand

side of (3.2.10).

It is a straightforward calculation to verify that Q(x) is a nonnegative convex

increasing function on [−1, 1], also possessing rotational symmetry with respect to

rotations about the polar axis. Therefore, by Proposition 3.1.1, the support of the

equilibrium measure µQ for this external field will be a spherical cap CS,α. Follow-

ing the established procedure, we first compute the Mhaskar-Saff F -functional, by

substituting expression for the external field (3.2.10) into (3.2.4).

Theorem 3.2.3 In the case of the rational external field (3.2.10), the Mhaskar-Saff

F-functional for the spherical cap CS,α is of the form

F(CS,α) =

√
π Γ(d/2− 1)

2d−2 Γ((d− 1)/2)

(
B

(
cos2

(
α

2

)
;
d

2
− 1,

d

2

))−1

×{
1 +

2d Γ((d+ 3)/2)√
π Γ(d/2 + 1)

B

(
cos2

(
α

2

)
;
d

2
+ 1,

d

2

)}
.

(3.2.11)

The density of the corresponding equilibrium measure is found by applying Theorem

3.1.3.

Theorem 3.2.4 If the external field Q defined via (3.2.5), the support SQ is a spher-

ical cap CS,α centered at the South Pole, with α = α0 ∈ (0, π). The angle α0 is defined

as a unique solution of the equation

cos4

(
α

2

)
B

(
cos2

(
α

2

)
;
d

2
− 1,

d

2

)
− B

(
cos2

(
α

2

)
;
d

2
+ 1,

d

2

)
=

√
πd(d− 2) Γ(d/2− 1)

2d(d2 − 1)Γ((d− 1)/2)
.

(3.2.12)

39



Let

F (η) =− 2 Γ((d+ 3)/2)

d(d− 2)π(d+1)/2
×{(

1− cosα0

1− cos η

)d/2 √
1− cos η

cosα0 − cos η
(1 + cosα0)2

+ 2(d− 1) B

(
cosα0 − cos η

1− cos η
;
1

2
,
d

2

)
− 2(d+ 1) (1− cos η) B

(
cosα0 − cos η

1− cos η
;
1

2
,
d

2
+ 1

)
+
d+ 3

2
(1− cos η)2 B

(
cosα0 − cos η

1− cos η
;
1

2
,
d

2
+ 2

)}
,

(3.2.13)

where α0 ≤ η ≤ π, and

CQ =
Γ(d/2− 1)

2d−1 πd/2

(
B

(
cos2

(
α0

2

)
;
d− 2

2
,
d

2

))−1

×{
1 +

2d Γ((d+ 3)/2)√
π Γ(d/2 + 1)

B

(
cos2

(
α0

2

)
;
d

2
+ 1,

d

2

)}
.

(3.2.14)

The density of the equilibrium measure µQ is given by

f(η) = CQ

(
1− cosα0

1− cos η

)(d−1)/2√
1− cosα0

cosα0 − cos η
×

2F1

(
1,
d− 1

2
;
1

2
;
cosα0 − cos η

1− cos η

)
+ F (η), α0 ≤ η ≤ π.

(3.2.15)

3.3 Proofs

Proof of Theorem 3.1.1. The idea of the proof is to show that the equilibrium

potential UµQ is Lipschitz continuous on CS,α. If that is established, it will imply

that the normal derivatives of UµQ exist a.e. on CS,α. Then the measure µQ can be

recovered from its potential by the formula

dµQ = − 1

(d− 2)ωd

(
∂UµQ

∂n+

+
∂UµQ

∂n−

)
dσ := f(θ1) dσ, (3.3.1)

where dσ is the Lebesgue surface measure on supp(µQ), n+ and n− are the inner and

the outer normals to the cap CS,α. It is clear that the normal derivatives of UµQ are

bounded a.e. by the Lipschitz constant, and hence we obtain f ∈ L∞loc([α, π]).

40



Our first step is to construct an extension of the external field Q to Sd−1 in such

a way that the extremal measures for the cap CS,α and the sphere Sd−1 are the same.

Recall that the external field Q is a C2 function on an open neighborhood N of SQ

in Sd−1. We can adjust Q in such a way that for the new external field Q̃ one has

UµQ(x) + Q̃(x) = FQ, x ∈ SQ,

UµQ(x) + Q̃(x) ≥ FQ, x ∈ Sd−1,

and also Q̃ ∈ C2(Sd−1). To show that it is indeed possible, we first remark that the

external field Q is rotationally symmetric with respect to the rotations about the polar

axis. Therefore, Q is a function of the polar angle θ1 only, that is Q = Q(θ1). This

symmetry is also inherited by potential, so that on the sphere Sd−1 we have UµQ(x) =

UµQ(θ1), x = (r, θ1, . . . , θd−2, ϕ) ∈ Sd−1. Next, note that N = {(r, θ1, . . . , θd−2, ϕ) :

r = 1, γ < θ1 ≤ π, 0 ≤ θj ≤ π, j = 2, . . . , d− 2, 0 ≤ ϕ ≤ 2π}, with some

γ ∈ (0, α). Pick a number ε such that γ < ε < α. We define a new external field Q̃

as follows: set Q̃(θ1) = Q(θ1), for ε < θ1 ≤ π, while on [0, ε] we tweak Q to Q̃ in such

a way that

UµQ(θ1) + Q̃(θ1) ≥ FQ,

and Q̃ ∈ C2(Sd−1). Applying Theorem 4.2.14 from [13], we infer that µQ̃ = µQ and

FQ̃ = FQ.

Let u and v denote the equilibrium potentials for the minimum energy problem

on CS,α and Sd−1, respectively. Since the equilibrium measure is the same for those

two sets, it immediately follows that u = v. Now observe that the spherical cap CS,α

is a part of the sphere Sd−1, which is a closed smooth surface. Thus we can invoke the

result of Götz [34] to conclude that v is Lipschitz continuous in an open neighborhood

U of Sd−1. Hence UµQ is Lipschitz continuous on CS,α.

We finish the proof by justifying formula (3.3.1).
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Lemma 3.3.1 Let Uµ be the potential of a measure µ in a domain G ⊂ Rd. Suppose

that the intersection of supp(µ) and the domain G is a connected C1 hypersurface Ω.

Suppose also that the potential Uµ is Lipschitz continuous on an open neighborhood

of Ω. Then on Ω the measure µ is locally absolutely continuous with respect to the

Lebesgue surface measure dσ, and we have the representation

dµ = − 1

(d− 2)ωd

(
∂Uµ

∂n+

+
∂Uµ

∂n−

)
dσ, (3.3.2)

where n+ and n− are the inner and the outer normals to Ω.

Proof. For the case d = 3 formula (3.3.2) is proved in [44, p. 164]. Also, when the

measure µ is supported on a hyperplane, expression (3.3.2) was derived in [76, Lemma

3.1, p. 48].

We begin by observing that there is a neighborhood of Ω where Ω separates G into

two pieces. We will be denoting the intersection of G with that neighborhood again

by G. We next pick an interior point x ∈ Ω and consider a small ball B(r, x) centered

at x, where r > 0 is chosen such that B(r, x) ⊂ G. We then choose a positive side of

Ω and denote the normal in that direction by n+, while the normal to a negative side

of Ω will be denoted by n−. We will also use the subscripts + and − to distinguish

the subsets of G and B(r, x) that lie on positive and negative sides of Ω.

Let u = Uµ and v(y) = 1/|x−y|d−2. Observe that when x is fixed, the function v(y)

is harmonic for y 6= x. In particular, it is harmonic on a neighborhood of G+\B+(r, x).

We also know that u is harmonic in G\Ω. Therefore, there exists a compact set with

a neighborhood where u and v are both harmonic. Let Vε := {x ∈ G : dist(x,Ω) < ε}

be a small open neighborhood of Ω, and set Kε := (G+ \B+(r, x)) \ Vε. The Green’s

identity [39, p. 22] states that∫
Kε

(u∆v − v∆u) dy =

∫
∂Kε

(
u
∂v

∂n
− v ∂u

∂n

)
dσ, (3.3.3)

where ∂/∂n denotes the inward normal derivative on G \ B(r, x). As both u and v
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are harmonic in a neighborhood of Kε, the left hand side of (3.3.3) is zero. Therefore,∫
∂Kε

(
u
∂v

∂n
− v ∂u

∂n

)
dσ = 0. (3.3.4)

Since the potential u is Lipschitz continuous, its normal derivative is bounded a.e. by

a Lipschitz constant. Therefore, passing to the limit ε→ 0+ in (3.3.4), and applying

the Dominated Convergence Theorem, we deduce that∫
∂(G+\B+(r,x))

(
u
∂v

∂n
− v ∂u

∂n

)
dσ = 0. (3.3.5)

We proceed by splitting the domain of integration in (3.3.5) into a component that

lies on Ω, and the two components that do not. On the positive side of Ω relation

(3.3.5) reads

∫
∂(G+\B+(r,x))\Ω

(
u
∂v

∂n+

− v ∂u
∂n+

)
dσ

+

∫
∂(G+\B+(r,x))∩Ω

(
u
∂v

∂n+

− v ∂u
∂n+

)
dσ = 0.

(3.3.6)

By similar considerations, working with the negative side of Ω, we obtain

∫
∂(G−\B−(r,x))\Ω

(
u
∂v

∂n−
− v ∂u

∂n−

)
dσ

+

∫
∂(G−\B−(r,x))∩Ω

(
u
∂v

∂n−
− v ∂u

∂n−

)
dσ = 0.

(3.3.7)

Adding the right hand sides of (3.3.6) and (3.3.7), and observing that the normal

derivatives of v on Ω \B(r, x) are of opposite values, we infer

∫
(G\B(r,x))∩Ω

v

(
∂u

∂n+

+
∂u

∂n−

)
dσ =

∫
∂G

(
u
∂v

∂n
− v ∂u

∂n

)
dσ

+

∫
∂B(r,x)

(
u
∂v

∂n
− v ∂u

∂n

)
dσ.

(3.3.8)

We now deal with the first integral on the right hand side of (3.3.8). Observe that

in a neighborhood of ∂G, the potential u does not depend on the choice of x, and

the function v is clearly harmonic as a function of x. It then follows that the first
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integral represents a function of x, which is harmonic in a neighborhood of ∂G, and

which will be denoted by g(x).

We now turn to the second integral on the right hand side of (3.3.8). First note

that

∂v

∂n
= −(d− 2)

1

rd−1
, y ∈ ∂B(r, x). (3.3.9)

Using (3.3.9) and the continuity of u, we obtain∫
∂B(r,x)

u
∂v

∂n
dσ = −d− 2

rd−1

∫
∂B(r,x)

u(y) dσ

= −(d− 2)ωd u(x) + o(1).

(3.3.10)

Now recall that the potential u is assumed to be Lipschitz continuous, with the Lips-

chitz constant which we will denote by L. Then it follows that the normal derivative

of u will be bounded a.e. by L. With that in hand, we have the following estimate∣∣∣∣∫
∂B(r,x)

v
∂u

∂n
dσ

∣∣∣∣ =

∣∣∣∣∫
∂B(r,x)

1

rd−2

∂u

∂n
dσ

∣∣∣∣
≤ 1

rd−2

∫
∂B(r,x)

∣∣∣∣∂u∂n
∣∣∣∣ dσ

≤ L

rd−2

∫
∂B(r,x)

dσ

= ωd L r.

(3.3.11)

Estimate (3.3.11) shows that

lim
r→0+

∫
∂B(r,x)

v
∂u

∂n
dσ = 0. (3.3.12)

Passing to the limit r → 0+ in left hand side of (3.3.8), and noting that χB(r,x) → 0

a.e. as r → 0+, by the Dominated Convergence Theorem we obtain

lim
r→0+

∫
(G\B(r,x))∩Ω

v

(
∂u

∂n+

+
∂u

∂n−

)
dσ

= lim
r→0+

∫
χG∩Ω (1− χB(r,x)) v

(
∂u

∂n+

+
∂u

∂n−

)
dσ

=

∫
χG∩Ω v

(
∂u

∂n+

+
∂u

∂n−

)
dσ

=

∫
G∩Ω

v

(
∂u

∂n+

+
∂u

∂n−

)
dσ.

(3.3.13)
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Collecting (3.3.13), (3.3.10) and (3.3.12), we obtain∫
G∩Ω

(
∂u

∂n+

+
∂u

∂n−

)
dσ

|x− y|d−2
= −(d− 2)ωd u(x) + g(x).

The uniqueness part of the Riesz Decomposition Theorem [50, Theorem 1.22′, p. 104]

then yields that on Ω the measure µ is given by the expression

dµ = − 1

(d− 2)ωd

(
∂Uµ

∂n+

+
∂Uµ

∂n−

)
dσ,

as desired.

The proof of the theorem is now complete.

Proof of Theorem 3.1.2. Let the support of the extremal measure µQ be a spherical

cap centered at the North Pole, that is SQ = CN,α. From Theorem 3.1.1 we know

that dµQ = f(θ1) dσd, where f ∈ L∞loc([0, α]).

In what follows, we will need an expression for the distance between a point on

a sphere Sd−1 and another point in the space Rd, which is not on the surface of the

sphere Sd−1. Let

x = (x1, x2, x3, . . . , xd) = (r cos θ1, r sin θ1 cos θ2, r sin θ1 sin θ2 cos θ3, . . . ,

r sin θ1 sin θ2 . . . sin θd−2 sinϕ) ∈ Rd,

and

y = (y1, y2, y3, . . . , xd) = (cos η1, sin η1 cos η2, sin η1 sin η2 cos η3, . . . ,

sin η1 sin η2 . . . sin ηd−2 sinψ) ∈ Sd−1,

be such two points, written in hyperspherical coordinates. Then, for the inner product

of x and y, we obtain

〈x, y〉 =
d∑
j=1

xjyj = x1y1 +
d∑
j=2

xjyj

= r cos θ1 cos η1 + r sin θ1 sin η1〈x, y〉,
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where

x =(cos θ2, sin θ2 cos θ3, . . . , sin θ2 . . .

sin θd−3 cos θd−2 cosϕ, sin θ2 . . . sin θd−3 cos θd−2 sinϕ) ∈ Sd−2,

y =(cos η2, sin η2 cos η3, . . . , sin η2 . . .

sin ηd−3 cos ηd−2 cosψ, sin η2 . . . sin ηd−3 cos ηd−2 sinψ) ∈ Sd−2.

Therefore, for the distance |x− y|, we obtain

|x− y|2 = |x|2 + |y|2 − 2〈x, y〉

= r2 + 1− 2r(cos θ1 cos η1 + sin θ1 sin η1〈x, y〉)

= r2 + 1− 2rλ,

where λ = cos θ1 cos η1 + sin θ1 sin η1 〈x, y〉. Thus, the potential UµQ becomes

UµQ(x) =

∫
CN,α

dµQ(y)

|x− y|d−2

=

∫ α

0

f(η1) sind−2 η1 dη1

∫
Sd−2

dσd−1(y)

(r2 + 1− 2rλ)(d−2)/2
.

On the surface of the sphere Sd−1 we have r = 1, so that

UµQ(x) =

∫ α

0

f(η1) sind−2 η1 dη1

∫
Sd−2

dσd−1(y)

(2− 2λ)(d−2)/2
, x ∈ CN,α. (3.3.14)

We will need the following proposition, which is a special case of the Funk-Hecke

theorem [3, p. 247].

Proposition 3.3.1 If f is integrable on [−1, 1] with respect to the weight (1−t2)(d−3)/2,

and y is an arbitrary fixed point on the sphere Sd−1, then∫
Sd−1

f(〈x, y〉) dσd(x) =
2π(d−1)/2

Γ((d− 1)/2)

∫ 1

−1

f(t) (1− t2)(d−3)/2 dt. (3.3.15)

Applying Proposition 3.3.1 to the inner integral in (3.3.14), we thus obtain∫
Sd−2

dσd−1(y)

(2− 2λ)(d−2)/2

=

∫
Sd−2

dσd−1(y)

(2− 2(cos θ1 cos η1 + sin θ1 sin η1〈x, y〉))(d−2)/2

=
2π(d−2)/2

Γ((d− 2)/2)

∫ π

0

sind−3 ξ dξ

(2− 2(cos θ1 cos η1 + sin θ1 sin η1 cos ξ))(d−2)/2
.
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Hence, for the potential UµQ on the spherical cap CN,α, we finally obtain

UµQ(θ1) =
2π(d−2)/2

Γ((d− 2)/2)

∫ α

0

f(η1) sind−2 η1 dη1

×
∫ π

0

sind−3 ξ dξ

(2− 2(cos θ1 cos η1 + sin θ1 sin η1 cos ξ))(d−2)/2

=
2π(d−2)/2

Γ((d− 2)/2)

∫ α

0

f(η1) sind−2 η1 dη1

∫ π

0

sind−3 ξ dξ

(2− 2γ)(d−2)/2
,

with 0 ≤ θ1 ≤ α, where γ is defined as

γ = cos θ1 cos η1 + sin θ1 sin η1 cos ξ. (3.3.16)

Therefore, integral equation (3.1.3) now assumes the form

2π(d−2)/2

Γ((d− 2)/2)

∫ α

0

f(η1) sind−2 η1 dη1

∫ π

0

sind−3 ξ dξ

(2− 2γ)(d−2)/2
= FQ −Q(θ1), (3.3.17)

where 0 ≤ θ1 ≤ α.

Integral equation (3.3.17), in the case d = 3, was first obtained and solved by

Collins [25]. A generalization of the results of [25] to the case of d dimensions, d ≥ 3,

was considered by Shail [66]. However, some of the arguments employed in [66], in

particular, those used in derivation of a special case of integral equation (3.3.17), are

not mathematically rigorous.

Letting

a := 2 sin

(
θ1

2

)
cos

(
η1

2

)
,

b := 2 sin

(
η1

2

)
cos

(
θ1

2

)
,

using elementary trigonometric identities, we can easily see that

2− 2γ = 2− 2(cos θ1 cos η1 + sin θ1 sin η1 cos ξ)

= a2 + b2 − 2ab cos ξ.

Observe that as 0 < α ≤ π, it is clear that a ≥ 0 and b ≥ 0 for all and 0 ≤ θ1 ≤ α and

0 ≤ η1 ≤ α. The next step is to further transform the kernel of the integral equation

(3.3.17). Namely, it is facilitated via the following
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Lemma 3.3.2 If a and b are positive numbers, a 6= b, and q ≥ 0, then∫ π

0

sin2q ξ dξ

(a2 + b2 − 2ab cos ξ)q+
1
2

=
2

a2q b2q

∫ min (a,b)

0

t2q dt√
a2 − t2

√
b2 − t2

. (3.3.18)

We remark that Lemma 3.3.2 is generalization of a result, obtained by Copson [26]

when q = 0. Lemma 3.3.2 is implicitly mentioned in [66], although with an incorrect

numerical coefficient. In [66], the author derives (3.3.18) using identities for the Bessel

functions. However, the form of the result suggests that its proof is independent of

any special function. We present such a proof below.

Proof. The proof hinges on the following identity, obtained by Kahane [42].

Proposition 3.3.2 Let a and b be positive numbers such that a 6= b, τ ∈ (0, 1), υ ∈ C

with Re(υ) ≥ 0, and u a real number with |u| ≤ 1. Then

(ab)υ

(a2 + b2 − 2abu)τ+υ
=

Γ(τ)Γ(υ + 1)

Γ(τ + υ)

2 sin(τπ)

π
×∫ min (a,b)

0

1− (t2/ab)2

(1 + (t2/ab)2 − 2(t2/ab)u)υ+1

(
t2

ab

)υ
t2τ−1 dt

(a2 − t2)τ (b2 − t2)τ
.

(3.3.19)

Setting τ = 1/2, υ = q ≥ 0 in Proposition 3.3.2, and using Fubini’s theorem, we

rewrite the left hand side of (3.3.18) as

∫ π

0

sin2q ξ dξ

(a2 + b2 − 2ab cos ξ)q+
1
2

=
2

a2q b2q

Γ(q + 1)√
πΓ(q + 1/2)

×∫ min (a,b)

0

(1− (t2/ab)2) t2q dt√
a2 − t2

√
b2 − t2

∫ π

0

sin2q ξ dξ

(1 + (t2/ab)2 − 2(t2/ab) cos ξ)q+1
.

(3.3.20)

Next, we show that∫ π

0

sin2q ξ dξ

(1 + (t2/ab)2 − 2(t2/ab) cos ξ)q+1
=

1

1− (t2/ab)2

√
π Γ(q + 1/2)

Γ(q + 1)
. (3.3.21)

The integral of a type appearing on the left hand side of (3.3.21) was previously

considered in [50, p. 400]. It was shown that∫ π

0

sinp−2 ξ dξ

(1 + ρ2 − 2ρ cos ξ)p/2
=

1

ρp−2(ρ2 − 1)

∫ π

0

sinp−2 ξ dξ, (3.3.22)

48



where ρ ≥ 1, and p ≥ 3 was assumed to be an integer. A careful analysis of the

evaluation of integral (3.3.22) in [50, p. 400] shows that, in fact, (3.3.22) holds true

for any p ≥ 2. We hence transform the left hand side of (3.3.21) as follows,∫ π

0

sin2q ξ dξ

(1 + (t2/ab)2 − 2(t2/ab) cos ξ)q+1
=

1

1− (t2/ab)2

∫ π

0

sin2q ξ dξ

=
1

1− (t2/ab)2
22q B(q + 1/2, q + 1/2)

=
1

1− (t2/ab)2

√
π Γ(q + 1/2)

Γ(q + 1)
,

as claimed. Therefore, upon inserting (3.3.21) into (3.3.20), we obtain desired repre-

sentation (3.3.18).

Setting q = (d− 3)/2 in Lemma 3.3.2, integral equation (3.3.17) is transformed into

4 π(d−2)/2

Γ((d− 2)/2)

∫ α

0

f(η1) sind−2 η1 dη1
1

ad−3 bd−3

∫ min (a,b)

0

td−3 dt√
a2 − t2

√
b2 − t2

= FQ −Q(θ1), 0 ≤ θ1 ≤ α.

To simplify notation, we will use η and θ instead of η1 and θ1, respectively. Then,

the last equation reads

4π(d−2)/2

Γ((d− 2)/2)

∫ α

0

f(η) sind−2 η dη×

1

ad−3 bd−3

∫ min (a,b)

0

td−3 dt√
a2 − t2

√
b2 − t2

= FQ −Q(θ), 0 ≤ θ ≤ α,

(3.3.23)

where

a = 2 sin

(
θ

2

)
cos

(
η

2

)
,

b = 2 sin

(
η

2

)
cos

(
θ

2

)
.

One can easily check that a < b for θ < η, while for θ > η, we have a > b. Splitting the

interval of integration of the outer integral in the left hand side of equation (3.3.23),
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we rewrite equation (3.3.23) as follows,∫ θ

0

f(η) sind−2 η dη
1

ad−3 bd−3

∫ b

0

td−3 dt√
a2 − t2

√
b2 − t2

+

∫ α

θ

f(η) sind−2 η dη
1

ad−3 bd−3

∫ a

0

td−3 dt√
a2 − t2

√
b2 − t2

=
Γ((d− 2)/2)

4 π(d−2)/2
(FQ −Q(θ)), 0 ≤ θ ≤ α.

Introducing the substitution

t = 2 cos

(
θ

2

)
cos

(
η

2

)
tan

(
ζ

2

)
,

we can further transform the last integral equation into∫ θ

0

f(η) sin η cosd−3(η/2) dη

∫ η

0

tand−3(ζ/2) dζ√
cos ζ − cos θ

√
cos ζ − cos η

+

∫ α

θ

f(η) sin η cosd−3(η/2) dη

∫ θ

0

tand−3(ζ/2) dζ√
cos ζ − cos θ

√
cos ζ − cos η

=
Γ((d− 2)/2)

2π(d−2)/2
sind−3

(
θ

2

)
(FQ −Q(θ)), 0 ≤ θ ≤ α.

(3.3.24)

Inverting the order of integration in the first integral in the left hand side of (3.3.24),

we recast equation (3.3.24) into∫ θ

0

tand−3(ζ/2) dζ√
cos ζ − cos θ

∫ α

ζ

f(η) sin η cosd−3(η/2) dη√
cos ζ − cos η

=
Γ((d− 2)/2)

2π(d−2)/2
sind−3

(
θ

2

)
(FQ −Q(θ)), 0 ≤ θ ≤ α.

(3.3.25)

Let

S(ζ) =

∫ α

ζ

f(η) sin η cosd−3(η/2) dη√
cos ζ − cos η

, 0 ≤ ζ ≤ α. (3.3.26)

Equation (3.3.25) then becomes∫ θ

0

S(ζ) tand−3(ζ/2) dζ√
cos ζ − cos θ

=
Γ((d− 2)/2)

2π(d−2)/2
sind−3

(
θ

2

)
(FQ −Q(θ)), (3.3.27)

where 0 ≤ θ ≤ α.

Equation (3.3.27) is an Abel type integral equation with respect to S(ζ) tand−3(ζ/2).

Since Q ∈ C2, the solution of (3.3.27) is [60, p. 50, # 23]

S(ζ) =
Γ((d− 2)/2)

2 πd/2
cotd−3

(
ζ

2

)
d

dζ

∫ ζ

0

(FQ −Q(θ)) sind−3(θ/2) sin θ dθ√
cos θ − cos ζ

,
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with 0 ≤ ζ ≤ α. Observing that equation (3.3.26) is again an Abel type integral

equation with respect to f(η) sin η cosd−3(η/2), we solve it and obtain

f(η) = − 1

π

1

sin η
secd−3

(
η

2

)
d

dη

∫ α

η

S(ζ) sin ζ dζ√
cos η − cos ζ

, 0 ≤ η ≤ α. (3.3.28)

Denote

g(ζ) = cotd−3

(
ζ

2

)
d

dζ

∫ ζ

0

Q(θ) sind−3(θ/2) sin θ dθ√
cos θ − cos ζ

, 0 ≤ ζ ≤ α. (3.3.29)

and let

F (η) =
Γ((d− 2)/2)

2π(d+2)/2

1

sin η
secd−3

(
η

2

)
d

dη

∫ α

η

g(ζ) sin ζ dζ√
cos η − cos ζ

, (3.3.30)

where 0 ≤ η ≤ α. In view of (3.3.29) and (3.3.30), expression for the density (3.3.28)

takes the form

f(η) =− FQ Γ((d− 2)/2)

2π(d+2)/2

secd−3(η/2)

sin η
×

d

dη

∫ α

η

sin ζ cotd−3(ζ/2)√
cos η − cos ζ

{
d

dζ

∫ ζ

0

sind−3(θ/2) sin θ dθ√
cos θ − cos ζ

}
dζ

+ F (η), 0 ≤ η ≤ α.

(3.3.31)

It is not hard to see that∫ ζ

0

sind−3(θ/2) sin θ dθ√
cos θ − cos ζ

=
√

2 B

(
d− 1

2
,
1

2

)
sind−2

(
ζ

2

)
.

Upon differentiating last expression with respect to ζ, we find that

d

dζ

∫ ζ

0

sind−3(θ/2) sin θ dθ√
cos θ − cos ζ

=
d− 2√

2
B

(
d− 1

2
,
1

2

)
sind−3

(
ζ

2

)
cos

(
ζ

2

)
.

Using the elementary transformations, one can show that∫ α

η

sin ζ cotd−3(ζ/2) sind−3(ζ/2) cos(ζ/2)√
cos η − cos ζ

dζ

=
√

2 cosd−1
(η

2

)
B

(
cos η − cosα

1 + cos η
;
1

2
,
d

2

)
.
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Hence, we can conclude that∫ α

η

sin ζ cotd−3(ζ/2)√
cos η − cos ζ

{
d

dζ

∫ ζ

0

sind−3(θ/2) sin θ dθ√
cos θ − cos ζ

}
dζ

= (d− 2) B

(
d− 1

2
,
1

2

)
cosd−1

(η
2

)
B

(
cos η − cosα

1 + cos η
;
1

2
,
d

2

)
.

Differentiating the latter, and simplifying, we see that

d

dη

∫ α

η

sin ζ cotd−3(ζ/2)√
cos η − cos ζ

{
d

dζ

∫ ζ

0

sind−3(θ/2) sin θ dθ√
cos θ − cos ζ

}
dζ

= −d− 2

2
B

(
d− 1

2
,
1

2

)
sin η

{
d− 1

2
cosd−3

(η
2

)
×

B

(
cos η − cosα

1 + cos η
;
1

2
,
d

2

)
+

cosd−1(α/2)

cos2(η/2)

√
1 + cosα

cos η − cosα

}
.

(3.3.32)

Inserting (3.3.32) into (3.3.31), after some algebra, we eventually find that

f(η) =
FQ Γ((d− 1)/2)

2π(d+1)/2

{
d− 1

2
B

(
cos η − cosα

1 + cos η
;
1

2
,
d

2

)
+

(
1 + cosα

1 + cos η

) d−1
2
√

1 + cosα

cos η − cosα

}
+ F (η), 0 ≤ η ≤ α.

(3.3.33)

The expression in braces on the right hand side of (3.3.33) represents (save for a

normalizing constant) the equilibrium density of the spherical cap centered at the

North Pole, for the case of no external field. Our goal at this stage will be to transform

this expression into a form first obtained in [17, p. 780, expression (44)], for the case

of general Riesz potential. This will prove useful in our further considerations.

Recalling that

2F1(1, a+ b; a+ 1; z) =
a

za (1− z)b
B(z; a, b), (3.3.34)

and denoting for brevity t := cosα, u := cos η, we see that

B

(
cos η − cosα

1 + cos η
;
1

2
,
d

2

)
= B

(
u− t
1 + u

;
1

2
,
d

2

)
=

Γ(1/2)

Γ(3/2)

(
u− t
1 + u

)1/2(
1 + t

1 + u

)d/2
2F1

(
1,
d+ 1

2
;
3

2
;
u− t
1 + u

)
= 2

(
u− t
1 + u

)1/2(
1 + t

1 + u

)d/2
2F1

(
1,
d+ 1

2
;
3

2
;
u− t
1 + u

)
.
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Therefore,

d− 1

2
B

(
cos η − cosα

1 + cos η
;
1

2
,
d

2

)
+

(
1 + cosα

1 + cos η

)(d−1)/2√
1 + cosα

cos η − cosα

=
d− 1

2
B

(
u− t
1 + u

;
1

2
,
d

2

)
+

(
1 + t

1 + u

)(d−1)/2(
1 + t

u− t

)1/2

=

(
1 + t

1 + u

)(d−1)/2(
1 + t

u− t

)1/2{
1 + (d− 1)

u− t
1 + u

2F1

(
1,
d+ 1

2
;
3

2
;
u− t
1 + u

)}
.

For brevity, let z := (u− t)/(1 + u). We will be working with the term z 2F1(1, (d+

1)/2; 3/2; z) = z 2F1(1, (d− 1)/2 + 1; 1/2 + 1; z), appearing in the right hand side of

the last expression. According to [1, p. 558, # 15.2.20],

c (1− z) 2F1(a, b; c; z)− c 2F1(a− 1, b; c; z) + (c− b)z 2F1(a, b; c+ 1; z) = 0,

which, in cojunction with the fact 2F1(0, b; c; z) = 1, entails

z 2F1

(
1,
d− 1

2
+ 1;

1

2
+ 1; z

)
=

1

d

{
(1− z) 2F1

(
1,
d− 1

2
+ 1;

1

2
; z

)
− 1

}
. (3.3.35)

Furthermore, [1, p. 558, # 15.2.14] states that

(b− a) 2F1(a, b; c; z) + a 2F1(a+ 1, b; c; z)− b 2F1(a, b+ 1; c; z) = 0,

which in our circumstances is equivalent to

2F1

(
1,
d− 1

2
+ 1;

1

2
; z

)
=

1

d− 1

{
(d− 3) 2F1

(
1,
d− 1

2
;
1

2
; z

)
+ 2 2F1

(
2,
d− 1

2
;
1

2
; z

)}
.

(3.3.36)

Inserting (3.3.36) into (3.3.35), we easily obtain that

z 2F1

(
1,
d− 1

2
+ 1;

1

2
+ 1; z

)
=

1

d(d− 1)

{
(d− 3)(1− z) 2F1

(
1,
d− 1

2
;
1

2
; z

)
+ 2(1− z) 2F1

(
2,
d− 1

2
;
1

2
; z

)
− (d− 1)

}
.

(3.3.37)

53



It is a direct consequence of [1, p. 558, # 15.2.10] that

2F1(2, b; c; z) =
1

z − 1

{
(c− 2 + z(1− b)) 2F1(1, b; c; z) + 1− c

}
. (3.3.38)

Substituting (3.3.38) into (3.3.37) and simplifying, we deduce that

z 2F1

(
1,
d− 1

2
+ 1;

1

2
+ 1; z

)
=

1

d− 1

{
2F1

(
1,
d− 1

2
;
1

2
; z

)
− 1

}
.

We thus demonstrated that

d− 1

2
B

(
u− t
1 + u

;
1

2
,
d

2

)
+

(
1 + t

1 + u

)(d−1)/2(
1 + t

u− t

)1/2

=

(
1 + t

1 + u

)(d−1)/2(
1 + t

u− t

)1/2

2F1

(
1,
d− 1

2
;
1

2
;
u− t
1 + u

)
=

(
1 + cosα

1 + cos η

)(d−1)/2(
1 + cosα

cos η − cosα

)1/2

2F1

(
1,
d− 1

2
;
1

2
;
cos η − cosα

1 + cos η

)
Expression (3.3.33) can now be written as

f(η) =
FQ Γ((d− 1)/2)

2π(d+1)/2

(
1 + cosα

1 + cos η

) d−1
2
(

1 + cosα

cos η − cosα

) 1
2

×

2F1

(
1,
d− 1

2
;
1

2
;
cos η − cosα

1 + cos η

)
+ F (η), 0 ≤ η ≤ α.

(3.3.39)

Next, we compute the Robin constant FQ. Recall that µQ is a probability measure,

so that its mass is 1. Therefore,

1 =

∫
dµQ =

∫ α

0

∫
Sd−2

f(η) sind−2 η dσd−1 dη. (3.3.40)

Inserting expression (3.3.39) into (3.3.40), we obtain

Γ((d− 1)/2)

2π(d−1)/2
=

1

ωd−1

=

∫ α

0

f(η) sind−2 η dη

=

∫ α

0

F (η) sind−2 η dη

+
FQ Γ((d− 1)/2)

2π(d+1)/2

∫ α

0

(
1 + cosα

1 + cos η

) d−1
2
(

1 + cosα

cos η − cosα

) 1
2

×

2F1

(
1,
d− 1

2
;
1

2
;
cos η − cosα

1 + cos η

)
sind−2 η dη.

(3.3.41)

To evaluate the second integral in the right hand side of the last expression, we will

be making use of the following result [16, Lemma A.1, p. 40].
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Lemma 3.3.3 Assume −1 ≤ a < b < c ≤ 1 and |y| ≤ 1. Set x := (b − a)/(c − a).

Then for all α, β, γ > 0 such that β + γ > α, one has∫ b

a

(u− a)β−1 (b− u)γ−1 (c− u)−α 2F1

(
α, β; γ; y

b− u
c− u

)
du

=
Γ(β) Γ(γ)

Γ(β + γ − α) Γ(α)
(b− a)β+γ−1 (c− a)−γ (c− b)γ−α (1− xy)−β

×
∫ 1

0

tβ+γ−α−1 (1− t)α−1 (1− xt)β−γ
(

1− x(1− y)

1− xy
t

)−β
dt.

We first bring the second integral in the right hand side of (3.3.41) into a form that

can be handled by invoking Lemma 3.3.3. Using trivial substitutions, we write∫ α

0

(
1 + cosα

1 + cos η

) d−1
2
(

1 + cosα

cos η − cosα

) 1
2

2F1

(
1,
d− 1

2
;
1

2
;
cos η − cosα

1 + cos η

)
×

sind−2 η dη = (1 + t∗)d/2×∫ t∗

−1

(t∗ − u)−1/2 (1− u)−1 (1 + u)(d−3)/2
2F1

(
1,
d− 1

2
;
1

2
;
t∗ − u
1− u

)
du,

where we set t∗ := − cosα.

Applying Lemma 3.3.3 with a = −1, b = t∗, c = 1, y = 1 and α = 1, β = (d −

1)/2, γ = 1/2, while reasoning along the lines of the proof of Lemma 30 in [17, p.

782], we find that

(1 + t)d/2
∫ t∗

−1

(t∗ − u)−1/2(1− u)−1 (1 + u)(d−3)/2
2F1

(
1,
d− 1

2
;
1

2
;
t∗ − u
1− u

)
du

=

√
π 2d−2 Γ((d− 1)/2)

Γ(d/2− 1)
B

(
sin2

(
α

2

)
;
d− 2

2
,
d

2

)
.

Thus we conclude that∫ α

0

(
1 + cosα

1 + cos η

) d−1
2
(

1 + cosα

cos η − cosα

) 1
2

2F1

(
1,
d− 1

2
;
1

2
;
cos η − cosα

1 + cos η

)
×

sind−2 η dη =

√
π 2d−2 Γ((d− 1)/2)

Γ(d/2− 1)
B

(
sin2

(
α

2

)
;
d− 2

2
,
d

2

)
.

Substituting this into (3.3.41), we find that

FQ =
πd/2 Γ(d/2− 1)

2d−3 (Γ((d− 1)/2))2

(
B

(
sin2

(
α

2

)
;
d− 2

2
,
d

2

))−1

×{
Γ((d− 1)/2)

2π(d−1)/2
−
∫ α

0

F (η) sind−2 η dη

}
.

(3.3.42)
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In light of (3.3.42), the expression for the equilibrium density (3.3.39) can be written

as

f(η) = CQ

(
1 + cosα

1 + cos η

) d−1
2
(

1 + cosα

cos η − cosα

) 1
2

2F1

(
1,
d− 1

2
;
1

2
;
cos η − cosα

1 + cos η

)
+ F (η), 0 ≤ η ≤ α,

with the constant CQ given by

CQ =
Γ(d/2− 1)

2d−2
√
π Γ((d− 1)/2)

(
B

(
sin2

(
α

2

)
;
d− 2

2
,
d

2

))−1

×{
Γ((d− 1)/2)

2π(d−1)/2
−
∫ α

0

F (η) sind−2 η dη

}
.

Proof of Theorem 3.1.3. If SQ = CS,α, equation (3.1.3) assumes the form

2π(d−2)/2

Γ((d− 2)/2)

∫ π

α

f(η) sind−2 η dη

∫ π

0

sind−3 ξ dξ

(2− 2γ)(d−2)/2
= FQ −Q(θ), (3.3.43)

where α ≤ θ ≤ π and γ = cos θ cos η + sin θ sin η cos ξ. Via the change of variables

θ̃ = π − θ, we transform (3.3.43) into

2π(d−2)/2

Γ((d− 2)/2)

∫ β

0

f0(η) sind−2 η dη

∫ π

0

sind−3 ξ dξ

(2− 2γ̃)(d−2)/2
= FQ −Q0(θ̃), (3.3.44)

with 0 ≤ θ̃ ≤ β and β = π − α, f0(η̃) = f(π − η̃), Q0(θ̃) = Q(π − θ̃), and γ̃ =

cos θ̃ cos η + sin θ̃ sin η cos ξ.

The integral equation (3.3.44) is of the form (3.3.17). Hence Theorem 3.1.2 applies,

and we obtain

F0(η̃) =
Γ((d− 2)/2)

2 π(d+2)/2

1

sin η̃
secd−3

(
η̃

2

)
d

dη̃

∫ β

η̃

g0(ζ) sin ζ dζ√
cos η̃ − cos ζ

, 0 ≤ η̃ ≤ β,

where

g0(ζ) = cotd−3

(
ζ

2

)
d

dζ

∫ ζ

0

Q0(θ) sind−3(θ/2) sin θ dθ√
cos θ − cos ζ

, 0 ≤ ζ ≤ β.
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The density f0 of the equilibrium measure µQ0 is

f0(η̃) = CQ

(
1 + cos β

1 + cos η̃

) d−1
2
(

1 + cos β

cos η̃ − cos β

) 1
2

2F1

(
1,
d− 1

2
;
1

2
;
cos η̃ − cos β

1 + cos η̃

)
+ F0(η̃), 0 ≤ η̃ ≤ β,

where the constant CQ is given by

CQ =
Γ(d/2− 1)

2d−2
√
π Γ((d− 1)/2)

(
B

(
sin2

(
β

2

)
;
d− 2

2
,
d

2

))−1

×{
Γ((d− 1)/2)

2π(d−1)/2
−
∫ β

0

F0(η̃) sind−2 η̃ dη̃

}
.

Going back to the η variable via η = π − η̃, after some algebra, we find

g(ζ) = tand−3

(
ζ

2

)
d

dζ

∫ π

ζ

Q(θ) cosd−3(θ/2) sin θ dθ√
cos ζ − cos θ

, α ≤ ζ ≤ π,

so that

F (η) =
Γ((d− 2)/2)

2π(d+2)/2

1

sin η
cscd−3

(
η

2

)
d

dη

∫ η

α

g(ζ) sin ζ dζ√
cos ζ − cos η

, α ≤ η ≤ π.

The constant CQ has the form

CQ =
Γ(d/2− 1)

2d−2
√
π Γ((d− 1)/2)

(
B

(
cos2

(
α

2

)
;
d− 2

2
,
d

2

))−1

×{
Γ((d− 1)/2)

2π(d−1)/2
−
∫ π

α

F (η) sind−2 η dη

}
.

We thus conclude that the equilibrium density, when support is a spherical cap cen-

tered at the South Pole, is given by

f(η) = CQ

(
1− cosα

1− cos η

) d−1
2
(

1− cosα

cosα− cos η

) 1
2

2F1

(
1,
d− 1

2
;
1

2
;
cosα− cos η

1− cos η

)
+ F (η), α ≤ η ≤ π.

Proof of Theorem 3.2.1. Recall that the external field Q in question is given by

(3.2.5), that is

Q(η) = q (1− cos η)−(d−2)/2, q > 0, 0 ≤ η ≤ π.

57



Substituting this expression into formula (3.2.4) for the F -functional, we are lead to

the following integral∫ π

α

(
1− cosα

1− cos η

) d−1
2
(

1− cosα

cosα− cos η

) 1
2

2F1

(
1,
d− 1

2
;
1

2
;
cosα− cos η

1− cos η

)
×

(1− cos η)−
(d−2)

2 sind−2 η dη.

Letting t := cosα, u := cos η, after some simple algebra, we obtain that

∫ π

α

(
1− cosα

1− cos η

) d−1
2
(

1− cosα

cosα− cos η

) 1
2

2F1

(
1,
d− 1

2
;
1

2
;
cosα− cos η

1− cos η

)
× (1− cos η)−

(d−2)
2 sind−2 η dη = (1− t)d/2×∫ t

−1

(1− u)−d/2 (1 + u)(d−3)/2 (t− u)−1/2
2F1

(
1,
d− 1

2
;
1

2
;
t− u
1− u

)
du.

(3.3.45)

Hence, our original integral further reduces to∫ t

−1

(1− u)−d/2 (1 + u)(d−3)/2 (t− u)−1/2
2F1

(
1,
d− 1

2
;
1

2
;
t− u
1− u

)
du. (3.3.46)

The integral in (3.3.46) closely resembles the integral appearing in Lemma 3.3.3. To

evaluate integral (3.3.46), we will develop an argument similar to the proof of Lemma

A.1 in [16]. Set a = −1, b = t, c = 1, γ = 1/2 and β = (d − 1)/2. Also, we let

x = (b−a)/(c−a), so that 0 < x < 1. Introducing the substitution (b−u)/(c−u) = xv,

after simplifications we deduce that

∫ t

−1

(1− u)−d/2 (1 + u)(d−3)/2 (t− u)−1/2
2F1

(
1,
d− 1

2
;
1

2
;
t− u
1− u

)
du

= (b− a)γ+β−1 (c− a)−γ (c− b)γ−d/2×∫ 1

0

vγ−1 (1− v)β−1
2F1(1, β; γ;xv) dv

= (b− a)γ+β−1 (c− a)−γ (c− b)γ−d/2 I,

(3.3.47)

where

I :=

∫ 1

0

vγ−1 (1− v)β−1
2F1(1, β; γ;xv) dv. (3.3.48)
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Substituting the series expansion for the Gauss hypergeometric function (3.1.2) into

the above integral and integrating term-by-term, we find

I =

∫ 1

0

vγ−1 (1− v)β−1
2F1(1, β; γ;xv) dv

=

∫ 1

0

vγ−1 (1− v)β−1 dv
∞∑
n=0

(1)n (β)n
(γ)n n!

xn vn

=
∞∑
n=0

(β)n
(γ)n

xn
∫ 1

0

vn+γ−1 (1− v)β−1 dv

=
∞∑
n=0

(β)n
(γ)n

xn B(n+ γ, β)

=
∞∑
n=0

(β)n
(γ)n

Γ(n+ γ) Γ(β)

Γ(n+ γ + β)
xn.

Taking into account that (a)n = Γ(a+ n)/Γ(a), we further obtain

I =
∞∑
n=0

(β)n
(γ)n

Γ(n+ γ) Γ(β)

Γ(n+ γ + β)
xn

= Γ(γ)
∞∑
n=0

Γ(β + n)

Γ(β + γ + n)
xn

= Γ(1/2)
∞∑
n=0

Γ(n+ (d− 1)/2)

Γ(n+ d/2)
xn

=

√
π Γ((d− 1)/2)

Γ(d/2)
2F1

(
1,
d− 1

2
;
d

2
;x

)
.

(3.3.49)

Substituting (3.3.49) into (3.3.47), and simplifying, we find that∫ t

−1

(1− u)−d/2 (1 + u)(d−3)/2 (t− u)−1/2
2F1

(
1,
d− 1

2
;
1

2
;
t− u
1− u

)
du

=

√
π Γ((d− 1)/2)√

2 Γ(d/2)
×

(1− cosα)−(d−1)/2 (1 + cosα)(d−2)/2
2F1

(
1,
d− 1

2
;
d

2
;
1 + cosα

2

)
.

Inserting the last integral into (3.3.45), we finally infer that∫ π

α

Q(η)

(
1− cosα

1− cos η

) d−1
2
(

1− cosα

cosα− cos η

) 1
2

×

2F1

(
1,
d− 1

2
;
1

2
;
cosα− cos η

1− cos η

)
sind−2 η dη =

q
√
π Γ((d− 1)/2)√

2 Γ(d/2)
×

(1− cosα)1/2 (1 + cosα)(d−2)/2
2F1

(
1,
d− 1

2
;
d

2
;
1 + cosα

2

)
.

(3.3.50)
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Furthermore, from (3.3.34) it follows that

(1− cosα)1/2 (1 + cosα)(d−2)/2
2F1

(
1,
d− 1

2
;
d

2
;
1 + cosα

2

)
=

2(d−1)/2 Γ(d/2)

Γ((d− 2)/2)
B

(
cos2

(
α

2

)
;
d− 2

2
,
1

2

)
,

(3.3.51)

thus reducing expression (3.3.50) to∫ π

α

Q(η)

(
1− cosα

1− cos η

) d−1
2
(

1− cosα

cosα− cos η

) 1
2

×

2F1

(
1,
d− 1

2
;
1

2
;
cosα− cos η

1− cos η

)
sind−2 η dη

=
q
√
π 2(d−2)/2 Γ((d− 1)/2)

Γ((d− 2)/2)
B

(
cos2

(
α

2

)
;
d− 2

2
,
1

2

)
.

(3.3.52)

Substituting (3.3.52) into (3.2.4), we finally obtain the desired expression (3.2.6) for

the F -functional,

F(CS,α) =

√
π Γ(d/2− 1)

2d−2 Γ((d− 1)/2)

(
B

(
cos2

(
α

2

)
;
d− 2

2
,
d

2

))−1

×{
1 +

q 2(d−2)/2 Γ((d− 1)/2)√
π Γ(d/2− 1)

B

(
cos2

(
α

2

)
;
d− 2

2
,
1

2

)}
.

(3.3.53)

Proof of Theorem 3.2.2. Assume that the support is a spherical cap CS,α, and an

external field Q on the sphere Sd−1 is given by (3.2.5), that is

Q(θ) = q (1− cos θ)−(d−2)/2, q > 0, α ≤ θ ≤ π.

The F -functional for this external field is given by expression (3.3.53). Taking into

account that

d

dz
B(z; a, b) = (1− z)b−1 za−1, (3.3.54)

and differentiating (3.3.53) with respect to α, one can show that

F ′(CS,α)

=

√
πΓ(d/2− 1)

2d−2Γ((d− 1)/2)

(
B

(
cos2

(
α

2

)
;
d− 2

2
,
d

2

))−2

cosd−3

(
α

2

)
sind−1

(
α

2

)
×
{

1− q 2(d−2)/2 Γ((d− 1)/2)√
π Γ(d/2− 1)

[
cscd−1

(
α

2

)
B

(
cos2

(
α

2

)
;
d− 2

2
,
d

2

)
− B

(
cos2

(
α

2

)
;
d− 2

2
,
1

2

)]}
.
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This shows that the critical points of F(CS,α) satisfy

cscd−1

(
α

2

)
B

(
cos2

(
α

2

)
;
d− 2

2
,
d

2

)
− B

(
cos2

(
α

2

)
;
d− 2

2
,
1

2

)
=

√
π Γ(d/2− 1)

q 2(d−2)/2 Γ((d− 1)/2)
.

(3.3.55)

The proof of existence and uniqueness of a zero for the function defined by expression

(3.3.55) is exactly the same in [17, Theorem 13, p. 773]. We therefore obtained an

equation for finding an angle α that defines the support CS,α of the extremal measure

µQ, when the external field is produced by a positive point charge of magnitude q,

placed at the North Pole of the sphere Sd−1.

We next obtain the expression for the equilibrium density, corresponding to the

external field under consideration. Applying Theorem 3.1.3, we first compute the

auxiliary function g(ζ), according to (3.1.9). We are thus led to the following integral,

appearing in right hand side of (3.1.9),∫ π

ζ

Q(θ) cosd−3(θ/2) sin θ dθ√
cos ζ − cos θ

= q 2−(d−3)/2

∫ π

ζ

(1− cos θ)−(d−2)/2 (1 + cos θ)(d−3)/2 sin θ dθ√
cos ζ − cos θ

Using the substitution 1 + cos θ = (1 + cos ζ) t, after a number of easy manipulations,

we infer that∫ π

ζ

(1− cos θ)−(d−2)/2 (1 + cos θ)(d−3)/2 sin θ dθ√
cos ζ − cos θ

= cosd−2(ζ/2)

∫ 1

0

t(d−3)/2 (1− t)−1/2 (1− cos2(ζ/2)t)−(d−2)/2 dt

=

√
π Γ((d− 1)/2)

Γ(d/2)
cosd−2

(
ζ

2

)
2F1

(
d− 2

2
,
d− 1

2
;
d

2
; cos2

(
ζ

2

))
,

where we used the integral representation of the hypergeometric function [1, p. 558,

# 15.3.1]. Therefore,∫ π

ζ

Q(θ) cosd−3(θ/2) sin θ dθ√
cos ζ − cos θ

=
q
√
π Γ((d− 1)/2)

2(d−3)/2 Γ(d/2)
cosd−2

(
ζ

2

)
2F1

(
d− 2

2
,
d− 1

2
;
d

2
; cos2

(
ζ

2

))
.
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Differentiating the last expression, and taking into account the fact [1, p. 556,

#15.2.1]

d

dz
2F1(a, b; c; z) =

ab

c
2F1(a+ 1, b+ 1; c+ 1; z),

we find, upon inserting the result of the differentiation into (3.1.9),

g(ζ) = −q
√
π (d− 2) Γ((d− 1)/2)

2(d−1)/2 Γ(d/2)
sind−2

(
ζ

2

)
×{

2F1

(
d− 2

2
,
d− 1

2
;
d

2
; cos2

(
ζ

2

))
+
d− 1

d
cos2

(
ζ

2

)
2F1

(
d

2
,
d+ 1

2
;
d

2
+ 1; cos2

(
ζ

2

))}
, α0 ≤ ζ ≤ π.

(3.3.56)

It turns out that the expression in braces on the right hand side of (3.3.56) can be

simplified rather dramatically. Indeed, according to the linear transformation formula

for the hypergeometric function [1, p. 559, #15.3.3], we have

2F1(a, b; c; z) = (1− z)c−a−b 2F1(c− a, c− b; c; z).

With this in mind, it is a straightforward calculation to see that

2F1

(
d− 2

2
,
d− 1

2
;
d

2
; cos2

(
ζ

2

))
= sin−(d−3)

(
ζ

2

)
2F1

(
1,

1

2
;
d

2
; cos2

(
ζ

2

))
.

(3.3.57)

Similarly,

2F1

(
d

2
,
d+ 1

2
;
d

2
+ 1; cos2

(
ζ

2

))
= sin−(d−1)

(
ζ

2

)
2F1

(
1,

1

2
;
d

2
+ 1; cos2

(
ζ

2

))
.

(3.3.58)

In light of (3.3.57) and (3.3.58), we see that

2F1

(
d− 2

2
,
d− 1

2
;
d

2
; cos2

(
ζ

2

))
+
d− 1

d
cos2

(
ζ

2

)
2F1

(
d

2
,
d+ 1

2
;
d

2
+ 1; cos2

(
ζ

2

))
= sin−(d−3)

(
ζ

2

){
2F1

(
1,

1

2
;
d

2
; cos2

(
ζ

2

))
+
d− 1

d

cos2(ζ/2)

1− cos2(ζ/2)
2F1

(
1,

1

2
;
d

2
+ 1; cos2

(
ζ

2

))}
.

(3.3.59)
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Using again the relation [1, p. 558, # 15.2.20],

c (1− z) 2F1(a, b; c; z)− c 2F1(a− 1, b; c; z) + (c− b)z 2F1(a, b; c+ 1; z) = 0,

it follows that

2F1

(
1,

1

2
;
d

2
; cos2

(
ζ

2

))
+
d− 1

d

cos2(ζ/2)

1− cos2(ζ/2)
2F1

(
1,

1

2
;
d

2
+ 1; cos2

(
ζ

2

))
= sin−2

(
ζ

2

)
,

which, in conjunction with (3.3.59), allows us to conclude

2F1

(
d− 2

2
,
d− 1

2
;
d

2
; cos2

(
ζ

2

))
+
d− 1

d
cos2

(
ζ

2

)
2F1

(
d

2
,
d+ 1

2
;
d

2
+ 1; cos2

(
ζ

2

))
= sin−(d−1)

(
ζ

2

)
.

Inserting the latter into (3.3.56), we obtain the desired simplified expression for g(ζ),

g(ζ) = −q
√
π (d− 2) Γ((d− 1)/2)

2(d−1)/2 Γ(d/2)
csc

(
ζ

2

)
, α0 ≤ ζ ≤ π. (3.3.60)

Having g(ζ) computed, we now proceed to evaluating the term F (η) given by (3.1.8),

which describes the contribution of the external field Q in the expression (3.1.10)

for the equilibrium measure µQ. Upon inserting (3.3.60) into the right hand side of

(3.1.8), we are presented with evaluation of the following integral,∫ η

α0

g(ζ) sin ζ dζ√
cos ζ − cos η

= −q
√
π (d− 2) Γ((d− 1)/2)

2(d−2)/2 Γ(d/2)

∫ η

α0

sin ζ dζ√
1− cos ζ

√
cos ζ − cos η

.

The integral on the right hand side of the last expression can be easily evaluated

using the substitution t2 = cos ζ − cos η, so that∫ η

α0

sin ζ dζ√
1− cos ζ

√
cos ζ − cos η

= 2 sin−1

√
cosα0 − cos η

1− cos η
.

Now it is not hard to see that

d

dη

∫ η

α0

g(ζ) sin ζ dζ√
cos ζ − cos η

= −q
√
π(d− 2)Γ((d− 1)/2)

2(d−2)/2Γ(d/2)

sin η

1− cos η

√
1− cosα0

cosα0 − cos η
, α0 ≤ η ≤ π.

(3.3.61)
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Inserting (3.3.61) into (3.1.8) and simplifying, we find

F (η) = −q Γ((d− 1)/2)√
2 π(d+1)/2

1

(1− cos η)(d−1)/2

√
1− cosα0

cosα0 − cos η
, α0 ≤ η ≤ π.

Having F (η) at hand, the constant CQ is found from (3.1.11), thus leading us to the

integral

∫ π

α0

F (η) sind−2 η dη

= −q Γ((d− 1)/2)√
2 π(d+1)/2

√
1− cosα0

∫ π

α0

(1 + cos η)(d−3)/2 sin η dη

(1− cos η)
√

cosα0 − cos η
.

(3.3.62)

Using the standard substitution 1 + cos η = 2t, it follows that∫ π

α0

(1 + cos η)(d−3)/2 sin η dη

(1− cos η)
√

cosα0 − cos η

= 2d/2−2

(
1 + cosα0

2

)(d−2)/2
Γ((d− 1)/2)

√
π

Γ(d/2)
2F1

(
1,
d− 1

2
;
d

2
; cos2

(
α0

2

))
=

√
π 2(d−3)/2 Γ((d− 1)/2)

Γ(d/2− 1)

1√
1− cosα0

B

(
cos2

(
α0

2

)
;
d− 2

2
,
1

2

)
,

where we used the integral representation for the hypergeometric function [1, p. 558,

# 15.3.1], as well as relation (3.3.51). Substituting the value of the last integral into

(3.3.62), we find that

∫ π

α0

F (η) sind−2 η dη

= −q 2(d−4)/2 (Γ((d− 1)/2))2

πd/2 Γ(d/2− 1)
B

(
cos2

(
α0

2

)
;
d− 2

2
,
1

2

)
.

(3.3.63)

Hence, after substituting (3.3.63) into (3.1.11) and some simple algebra, we infer that

the constant CQ is given by

CQ =
Γ(d/2− 1)

2d−1 πd/2

(
B

(
cos2

(
α0

2

)
;
d− 2

2
,
d

2

))−1

×{
1 +

q 2(d−2)/2 Γ((d− 1)/2)√
π Γ(d/2− 1)

B

(
cos2

(
α0

2

)
;
d− 2

2
,
1

2

)}
.
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Proof of Theorem 3.2.3. Substituting expression (3.2.10) into (3.2.4), we are

presented with the following integral∫ π

α

Q(η)

(
1− cosα

1− cos η

) d−1
2
(

1− cosα

cosα− cos η

) 1
2

2F1

(
1,
d− 1

2
;
1

2
;
cosα− cos η

1− cos η

)
×

sind−2 η dη = (1− t)d/2×∫ t

−1

(1− u)−1 (1 + u)(d+1)/2 (t− u)−1/2
2F1

(
1,
d− 1

2
;
1

2
;
t− u
1− u

)
du,

where we set t := cosα and u := cos η. We thus need to evaluate

J =

∫ t

−1

(1− u)−1 (1 + u)(d+1)/2 (t− u)−1/2
2F1

(
1,
d− 1

2
;
1

2
;
t− u
1− u

)
du.

This integral will be evaluated using the same approach we used when evaluating

similar integral (3.3.48). Letting a = −1, b = t, c = 1, γ = 1/2, β = (d − 1)/2,

x = (b− a)/(c− a), and again using the substitution (b− u)/(c− u) = xv, we find

J =

∫ t

−1

(1− u)−1 (1 + u)(d+1)/2 (t− u)−1/2
2F1

(
1,
d− 1

2
;
1

2
;
t− u
1− u

)
du

= (c− b)γ−1 (b− a)β+1 xγ ×∫ 1

0

vγ−1 (1− v)β+1 (1− xv)−(β+γ+1)
2F1(1, β; γ;xv) dv

= (c− b)γ−1 (b− a)β+1 xγ I,

(3.3.64)

where

I :=

∫ 1

0

vγ−1 (1− v)β+1 (1− xv)−(β+γ+1)
2F1(1, β; γ;xv) dv.

Using the series representation for the Gauss hypergeometric function 2F1 [1, p. 556,

# 15.1.1] and integrating term-by-term, we further write

I =

∫ 1

0

vγ−1 (1− v)β+1 (1− xv)−(β+γ+1)
2F1(1, β; γ;xv) dv

=
∞∑
n=0

(β)n
(γ)n

xn
∫ 1

0

vn+γ−1 (1− v)β+1 (1− xv)−(β+γ+1) dv

=
∞∑
n=0

(β)n
(γ)n

xn In,

(3.3.65)
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where

In :=

∫ 1

0

vn+γ−1 (1− v)β+1 (1− xv)−(β+γ+1) dv.

According to the integral representation of the function 2F1 [1, p. 558, # 15.3.1], we

further have

In =
Γ(n+ γ) Γ(β + 2)

Γ(n+ γ + β + 2)
2F1(β + γ + 1, n+ γ;n+ γ + β + 2;x).

Recalling that the function 2F1 is symmetric with respect to switching the first two

parameters [1, p. 556, # 15.1.1] , that is 2F1(β + γ + 1, n + γ;n + γ + β + 2; x) =

2F1(n+γ, β+γ+1;n+γ+β+2;x), and using the fact that n+γ+β+2 > β+γ+1

for all integer n ≥ 0, we continue by using again the integral representation of 2F1 [1,

p. 558, # 15.3.1] as follows,

In =
Γ(n+ γ) Γ(β + 2)

Γ(n+ γ + β + 2)
2F1(β + γ + 1, n+ γ;n+ γ + β + 2;x)

=
Γ(n+ γ) Γ(β + 2)

Γ(n+ γ + β + 2)
2F1(n+ γ, β + γ + 1;n+ γ + β + 2;x)

=
Γ(n+ γ) Γ(β + 2)

Γ(β + γ + 1) Γ(n+ 1)

∫ 1

0

vβ+γ (1− v)n (1− xv)−(n+γ) dv.

Inserting the last expression into (3.3.65), and switching the order of integration and

summation, which is justified by the uniform convergence of the series as v ∈ [0, 1],

we have

I =
∞∑
n=0

(β)n
(γ)n

xn In

=
Γ(β + 2)

Γ(β + γ + 1)

∫ 1

0

vβ+γ (1− xv)−γ dv
∞∑
n=0

(β)n Γ(n+ γ)

Γ(n+ 1) (γ)n

(
x

1− v
1− xv

)n
It is not difficult to see that

∞∑
n=0

(β)n Γ(n+ γ)

Γ(n+ 1) (γ)n
zn = Γ(γ) (1− z)−β, |z| < 1.

We thus eventually find

I =
Γ(β + 2) Γ(γ)

Γ(β + γ + 1)
(1− x)−β

∫ 1

0

vβ+γ (1− xv)−(γ−β) dv

=

√
π Γ(β + 2)

Γ(β + γ + 2)
(1− x)−β 2F1(γ − β, β + γ + 1; β + γ + 2;x),
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where we again used the integral representation of the hypergeometric function 2F1

[1, p. 558, # 15.3.1]. Inserting the latter into (3.3.64) and simplifying, we deduce

that ∫ π

α

Q(η)

(
1− cosα

1− cos η

) d−1
2
(

1− cosα

cosα− cos η

) 1
2

×

2F1

(
1,
d− 1

2
;
1

2
;
cosα− cos η

1− cos η

)
sind−2 η dη =

2d/2−1
√
π Γ((d+ 3)/2)

Γ(d/2 + 2)
×

(1 + cosα)d/2+1
2F1

(
1− d

2
,
d

2
+ 1;

d

2
+ 2; cos2

(
α

2

))
.

The last expression can be simplified even further. Indeed, using a linear transfor-

mation formula for the hypergeometric function [1, p. 559, #15.3.3] and (3.3.34), we

obtain the neat formula∫ π

α

Q(η)

(
1− cosα

1− cos η

) d−1
2
(

1− cosα

cosα− cos η

) 1
2

×

2F1

(
1,
d− 1

2
;
1

2
;
cosα− cos η

1− cos η

)
sind−2 η dη

=
2d/2
√
π Γ((d+ 3)/2)

Γ(d/2 + 1)
B

(
cos2

(
α

2

)
;
d

2
+ 1,

d

2

)
.

Inserting the last integral into (3.2.4), we obtain the desired expression (3.2.11).

Proof of Theorem 3.2.4. Let

w(α) =

√
π Γ(d/2− 1)

2d−2 Γ((d− 1)/2)

(
B

(
cos2

(
α

2

)
;
d− 2

2
,
d

2

))−1

{
1 +

2d/2 Γ((d+ 3)/2)√
π Γ(d/2 + 1)

B

(
cos2

(
α

2

)
;
d

2
+ 1,

d

2

)}
.

(3.3.66)

Differentiating w(α), we find

w′(α) = sind−1

(
α

2

)
cosd−3

(
α

2

)(
B

(
cos2

(
α

2

)
;
d− 2

2
,
d

2

))−1

ω(α), (3.3.67)

where

ω(α) = w(α)− 4(d2 − 1)

d(d− 2)
cos4

(
α

2

)
. (3.3.68)
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We therefore see that the critical points of w(α) are given by solutions of the equation

w(α) =
4(d2 − 1)

d(d− 2)
cos4

(
α

2

)
. (3.3.69)

Rearranging the latter, we obtain (3.2.12).

We continue by showing the existence and uniqueness of a critical point of w(α).

Our approach will be based on an argument developed in [17]. First, observe that

from (3.3.66) and (3.3.68) it follows that

lim
α→π−

ω(α) = +∞.

Hence, there is a smallest α0 ∈ [0, π) such that ω(α) > 0 for α ∈ (α0, π). If α0 = 0,

then w(α) is strictly increasing on (0, π), and attains minimum at α = 0. If α0 > 0,

we have that ω(α) > 0 for α ∈ (α0, π). Taking into account the continuity of ω(α),

by passing to the limit α → α0+ in the latter inequality, we infer that ω(α0) ≥ 0.

Since α0 was the smallest α such that ω(α) > 0 on (α0, π), we deduce that ω(α0) = 0.

From expression (3.3.67) it is clear that the sign of w′(α) is determined by the

sign of ω(α). This shows that w′(α) > 0 on (α0, π), and w′(α0) = 0. Next, suppose

that ξ ∈ (0, π) is a critical point of w(α), that is w′(ξ) = 0. Using expression (3.3.67),

we readily find that

w′′(α) =[
sind−1

(
α

2

)
cosd−3

(
α

2

)(
B

(
cos2

(
α

2

)
;
d− 2

2
,
d

2

))−1]′
ω(α)

+ sind−1

(
α

2

)
cosd−3

(
α

2

)(
B

(
cos2

(
α

2

)
;
d− 2

2
,
d

2

))−1

ω′(α),

(3.3.70)

where

ω′(α) = w′(α) +
8(d2 − 1)

d(d− 2)
cos3

(
α

2

)
sin

(
α

2

)
. (3.3.71)

We want to show that w′′(ξ) > 0. This readily follows from (3.3.70), since for 0 <

ξ < π,

w′′(ξ) =
8(d2 − 1)

d(d− 2)
cos3

(
ξ

2

)
sin

(
ξ

2

)
> 0.
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This means that w(α) has exactly one global minimum on [0, π), which is either a

unique solution α0 ∈ (0, π) of equation (3.3.69), if it exists, or α0 = 0, if such a

solution does not exist.

We finish by computing the equilibrium density. Substituting expression (3.2.10)

into (3.1.9), we are led to the following integral∫ π

ζ

Q(θ) cosd−3(θ/2) sin θ dθ√
cos ζ − cos θ

=
1

2(d−3)/2

∫ π

ζ

(1 + cos θ)(d+1)/2 sin θ dθ√
cos ζ − cos θ

.

Making the change of variables 1 + cos θ = (1 + cos ζ)t, we further write

2−(d−3)/2

∫ π

ζ

(1 + cos θ)(d+1)/2 sin θ dθ√
cos ζ − cos θ

= 2−(d−3)/2 (1 + cos ζ)(d+2)/2

∫ 1

0

t(d+1)/2 (1− t)−1/2 dt

= 2−(d−3)/2 (1 + cos ζ)(d+2)/2 B

(
d+ 3

2
,
1

2

)
=

25/2
√
π Γ((d+ 3)/2)

Γ(d/2 + 2)
cosd+2

(
ζ

2

)
.

We thus conclude∫ π

ζ

Q(θ) cosd−3(θ/2) sin θ dθ√
cos ζ − cos θ

=
25/2
√
π Γ((d+ 3)/2)

Γ(d/2 + 2)
cosd+2

(
ζ

2

)
. (3.3.72)

Differentiating (3.3.72) with respect to ζ and inserting the result into (3.1.9), we find

g(ζ) = −25/2
√
π Γ((d+ 3)/2)

Γ(d/2 + 1)
sind−2

(
ζ

2

)
cos4

(
ζ

2

)
, α0 ≤ ζ ≤ π. (3.3.73)

Substituting (3.3.73) into the right hand side of (3.1.8), we arrive to the integral∫ η

α0

sind−2

(
ζ

2

)
cos4

(
ζ

2

)
sin ζ dζ√

cos ζ − cos η
.

Making the change of variables ζ = π − y, and setting α̃0 = π − α0, η̃ = π − η, we

recast the latter integral as∫ η

α0

sind−2

(
ζ

2

)
cos4

(
ζ

2

)
sin ζ dζ√

cos ζ − cos η

=

∫ α̃0

η̃

cosd−2

(
y

2

)
sin4

(
y

2

)
sin y dy√

cos y − cos η̃

=2−(d/2+1)

∫ α̃0

η̃

(1 + cos y)(d−2)/2 (1− cos y)2 sin y dy√
cos y − cos η̃

.
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Making a simple observation that 1 − cos y = (1 + cos y) − 2, allows us to continue

the above string of integrals as∫ α̃0

η̃

(1 + cos y)(d−2)/2 (1− cos y)2 sin y dy√
cos y − cos η̃

=

∫ α̃0

η̃

(1 + cos y)(d−2)/2 ((1 + cos y)− 2)2 sin y dy√
cos y − cos η̃

=

∫ α̃0

η̃

(1 + cos y)(d−2)/2 (1 + cos y)2 sin y dy√
cos y − cos η̃

− 4

∫ α̃0

η̃

(1 + cos y)(d−2)/2 (1 + cos y)
sin y dy√

cos y − cos η̃

+ 4

∫ α̃0

η̃

(1 + cos y)(d−2)/2 sin y dy√
cos y − cos η̃

.

The three integrals on the right hand side of the last expression are evaluated using

the change of variables 1 + cos y = (1 + cos η̃)t. Performing these straightforward but

tedious evaluations, and reverting back to α0 and η, we eventually obtain∫ η

α0

sind−2

(
ζ

2

)
cos4

(
ζ

2

)
sin ζ dζ√

cos ζ − cos η

= 2−(d+2)/2

{
(1− cos η)(d+3)/2 B

(
cosα0 − cos η

1− cos η
;
1

2
,
d

2
+ 2

)
−4 (1− cos η)(d+1)/2 B

(
cosα0 − cos η

1− cos η
;
1

2
,
d

2
+ 1

)
+4 (1− cos η)(d−1)/2 B

(
cosα0 − cos η

1− cos η
;
1

2
,
d

2

)}
.

Differentiating the above expression with respect to η, and inserting the result into

(3.1.8), after simplifications we derive

F (η) =− 2Γ((d+ 3)/2)

d(d− 2)π(d+1)/2
×{(

1− cosα0

1− cos η

)d/2 √
1− cos η

cosα0 − cos η
(1 + cosα0)2

+ 2(d− 1) B

(
cosα0 − cos η

1− cos η
;
1

2
,
d

2

)
− 2(d+ 1) (1− cos η) B

(
cosα0 − cos η

1− cos η
;
1

2
,
d

2
+ 1

)
+
d+ 3

2
(1− cos η)2 B

(
cosα0 − cos η

1− cos η
;
1

2
,
d

2
+ 2

)}
,

(3.3.74)
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where α0 ≤ η ≤ π.

The value of the Robin constant can now be found from (3.1.11). However, going

via this standard route with the function F (η) of the type (3.3.74) usually involves

laborious calculations. Luckily, there is an alternative to that. Indeed, one observes

that from the variational inequalities (1.2.1)-(1.2.2) and Proposition 3.2.2 it follows

that F(CS,α0) = FQ. Therefore, using (3.2.11), we deduce that

FQ =

√
π Γ(d/2− 1)

2d−2 Γ((d− 1)/2)

(
B

(
cos2

(
α0

2

)
;
d− 2

2
,
d

2

))−1

{
1 +

2d Γ((d+ 3)/2)√
π Γ(d/2 + 1)

B

(
cos2

(
α0

2

)
;
d

2
+ 1,

d

2

)}
,

which in turn implies that

CQ =
Γ(d/2− 1)

2d−1 πd/2

(
B

(
cos2

(
α0

2

)
;
d− 2

2
,
d

2

))−1

{
1 +

2d Γ((d+ 3)/2)√
π Γ(d/2 + 1)

B

(
cos2

(
α0

2

)
;
d

2
+ 1,

d

2

)}
.

This completes the proof of the theorem.
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CHAPTER 4

Minimum Riesz Energy Problem on the Hyperdisk

4.1 Introduction and main results

This chapter is based on work [11]. Let DR := {(x1, . . . , xd) ∈ Rd : x1 = 0, x2
2 +

x2
3 + . . . + x2

d ≤ R2} be the disk of radius R in Rd, with d ≥ 3, and where | · | is the

Euclidean distance. The ring R(a, b) in Rd is defined as R(a, b) := {(0, rx) ∈ Rd :

a ≤ r ≤ b, x ∈ Sd−2}, and the unit disk in Rd will be denoted by D. We start by

taking advantage of the rotationally symmetry of D using the cylindrical coordinates

z, r, θ1, θ2, . . . , θd−3, ϕ, defined as

x1 = z,

x2 = r cos θ1,

x3 = r sin θ1 cos θ2,

x3 = r sin θ1 sin θ2 cos θ3,

...

xd−2 = r sin θ1 sin θ2 . . . sin θd−4 cos θd−3,

xd−1 = r sin θ1 sin θ2 . . . sin θd−3 cosϕ,

xd = r sin θ1 sin θ2 . . . sin θd−3 sinϕ,

where r ≥ 0, 0 ≤ θj ≤ π, j = 1, 2, . . . , d − 3, and 0 ≤ ϕ ≤ 2π. The surface area

element on a surface of constant height z, written in cylindrical coordinates, is given

by

dS = rd−2 sind−3 θ1 sind−4 θ2 . . . sin θd−3 dr dθ1 dθ2 . . . dθd−3 dϕ = rd−2 dr dσd−1,
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where σd is the surface area element of the unit sphere Sd−1. The total surface area

of the sphere Sd−1 is given by

ωd =
2πd/2

Γ(d/2)
.

In what follows, we will need to use certain special functions, for which we fix the

notation here. The incomplete Beta function B(z; a, b) is defined as

B(z; a, b) :=

∫ z

0

ta−1(1− t)b−1 dt, (4.1.1)

and the Beta function B(a, b) := B(1; a, b). The Gauss hypergeometric function

2F1(a, b; c, z) is defined via series

2F1(a, b; c, z) :=
∞∑
n=0

(a)n (b)n
(c)n

zn

n!
, |z| < 1, (4.1.2)

where (a)0 := 1 and (a)n := a(a + 1) . . . (a + n − 1) for n ≥ 1 is the Pochhammer

symbol.

We commence by recording the sufficient conditions on an external field Q that

guarantee that the support of the extremal measure µQ is a ring or a disk.

Theorem 4.1.1 Let s = (d−3)+2λ, with 0 < λ < 1. Assume that the external field

Q : D→ [0,∞] is invariant with respect to the rotations about the polar axis, that is

Q(x) = Q(r), where x = (0, rx) ∈ D, x ∈ Sd−2, 0 ≤ r ≤ 1. Further suppose that Q is

a convex function, that is Q(r) is convex on [0, 1]. Then the support of the extremal

measure µQ is a ring R(a, b), contained in the disk D. In other words, there exist real

numbers a and b such that 0 ≤ a < b ≤ 1, so that suppµQ = R(a, b).

Furthermore, if Q(r) is, in addition, an increasing function, then a = 0, which

implies that the support of the extremal measure µQ is a disk of radius b ≤ 1, centered

at the origin.

On the other hand, if Q(r) is a decreasing function, then b = 1, that is the support

of the extremal measure µQ will be a ring with outer radius 1.
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The support SQ is a main ingredient in determining the extremal measure µQ itself.

Indeed, if SQ is known, the equilibrium measure µQ can be recovered by solving the

singular integral equation∫
1

|x− y|s
dµ(y) +Q(x) = FQ, x ∈ SQ, (4.1.3)

where FQ is a constant (see (1.2.2)).

We solve this equation and obtain the following theorem, which explicitly gives

the density of the extremal measure when the support SQ is the disk DR. Our results

extend the original work of Copson [26], which dealt with classical Coulomb potential

in R3.

Theorem 4.1.2 Suppose that the support of the extremal measure µQ is the disk DR,

and the external field Q is invariant with respect to rotations about the polar axis,

that is Q(x) = Q(r), where x = (0, rx) ∈ DR, x ∈ Sd−2, 0 ≤ r ≤ R. Also assume that

Q ∈ C2(DR). Let s = (d− 3) + 2λ, with 0 < λ < 1, and let

F (t) =
sin(λπ) Γ((d− 3)/2 + λ)

π(d+1)/2 Γ(λ)

1

t

d

dt

∫ R

t

g(r) r dr

(r2 − t2)1−λ , 0 ≤ t ≤ R, (4.1.4)

with

g(r) =
1

rd+2λ−4

d

dr

∫ r

0

Q(u)ud−2 du

(r2 − u2)1−λ , 0 ≤ r ≤ R. (4.1.5)

Then for the extremal measure µQ we have

dµQ(x) = f(r) rd−2 dr dσd−1(x), x = (0, rx) ∈ DR, x ∈ Sd−2, 0 ≤ r ≤ R,

(4.1.6)

where the density f is explicitly given by

f(r) = CQ (R2 − r2)λ−1 + F (r), 0 ≤ r ≤ R, (4.1.7)

with the constant CQ uniquely defined by

CQ =
2 Γ((d− 1)/2 + λ)

Γ(λ) Γ((d− 1)/2)

1

Rd+2λ−3

{
Γ((d− 1)/2)

2 π(d−1)/2
−
∫ R

0

F (t) td−2 dt

}
. (4.1.8)
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4.2 Equation for the support and some applications

In what follows we will need to know the equilibrium measure and capacity of a

disk DR of radius R > 0. The following theorem extends the corresponding result of

Copson [26], which dealt with the Coulomb potential in R3.

Theorem 4.2.1 Let s = (d− 3) + 2λ, with 0 < λ < 1. The equilibrium measure µDR

of the disk DR of radius R is given by

dµDR(x) = f(r) rd−2 dr dσd−1(x), x = (0, rx) ∈ DR, x ∈ Sd−2, 0 ≤ r ≤ R,

(4.2.1)

where the density f is

f(r) =
Γ((d+ 2λ− 1)/2)

π(d−1)/2 Γ(λ)

1

Rd+2λ−3
(R2 − r2)λ−1, 0 ≤ r ≤ R. (4.2.2)

The capacity of the disk DR is given by

caps(DR) =
sin(λπ)Γ(λ)Γ((d− 1)/2)

πΓ((d+ 2λ− 1)/2)
Rd+2λ−3. (4.2.3)

Assume that the disk D is immersed into a general rotationally invariant external

field Q, satisfying the conditions of the second statement of Theorem 4.1.1. It then

follows that the support of the extremal measure µQ will be a disk DR of some radius

R ≤ 1. The (presently) unknown radius R can be found by minimizing the Mhaskar-

Saff functional, which is defined as follows [17].

Definition 4.2.1 The F-functional of a compact subset E ⊂ D of positive Riesz

s-capacity is defined as

Fs(E) := Ws(E) +

∫
Q(x) dµE(x), (4.2.4)

where Ws(E) is the Riesz s-energy of the compact E and µE is the equilibrium measure

(with no external field) on E.
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The main objective of introducing the Fs-functional is its following extremal property,

which originally was proved in [17] for the general Riesz potentials on the sphere Sd−1,

d ≥ 3.

Proposition 4.2.1 Let Q be an external field on D. Then Fs-functional is minimized

for SQ = supp(µQ).

Utilizing Proposition 4.2.1, we can now explicitly determine the support of the ex-

tremal measure provided the external field satisfies some mild restrictions.

Theorem 4.2.2 Let s = (d−3)+2λ, with 0 < λ < 1. Assume that the external field

Q : D→ [0,∞] is invariant with respect to the rotations about the polar axis, that is

Q(x) = Q(r), where x = (0, rx) ∈ D, x ∈ Sd−2, 0 ≤ r ≤ 1. Further suppose that Q

is a convex increasing function, that is Q(r) is convex increasing on [0, 1]. Then the

support of the extremal measure µQ will be a disk of radius R ≤ 1, centered at the

origin. The radius R of this disk is either the unique solution of the equation

2 sin(λπ)

π(d+ 2λ− 3)

∫ R

0

Q′(r) (R2 − t2)λ−1 td−1 dt = 1, (4.2.5)

on the interval (0, 1] if it exists, or R = 1 when such a solution fails to exist.

As the first applications of our results, we consider the situation when the disk D

is immersed into an external field given by a monomial, namely

Q(x) = qrα, q > 0, α ≥ 1, x = (0, rx) ∈ D, x ∈ Sd−2, 0 ≤ r ≤ 1. (4.2.6)

It is clear that external field Q in (4.2.6) is invariant with respect to the rotations

about the polar axis. Also, Q(r) is a non-negative increasing convex function on

[0, 1]. From Theorem 4.1.1 it then follows that the support of the corresponding

extremal measure µQ will be a disk DR, with some R ≤ 1. First invoking Theorem

4.2.2 we compute the extremal support, and then with that knowledge at hand we

use Theorem 4.1.2 to find a closed-form expression for the extremal measure.
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Theorem 4.2.3 Let s = (d − 3) + 2λ, with 0 < λ < 1. The extremal measure µQ,

corresponding to the monomial external field (4.2.6), is supported on the disk DR∗,

where R∗ is defined as

R∗ =

(
(d+ 2λ− 3)πΓ((d+ α + 2λ− 1)/2)

qα sin(λπ)Γ(λ)Γ((d+ α− 1)/2)

)1/(d+α+2λ−3)

. (4.2.7)

For the extremal measure µQ we have

dµQ(x) = f(r) rd−2 dr dσd−1(x), x = (0, rx) ∈ DR∗ ,

x ∈ Sd−2, 0 ≤ r ≤ R∗,

(4.2.8)

with the density f(r) is given by

f(r) = CQ (R2 − r2)λ−1 + F (r), 0 ≤ r ≤ R∗, (4.2.9)

where

F (r) =
q sin(λπ) Γ((d+ α− 1)/2) Γ((d+ 2λ− 3)/2)

π(d+1)/2 Γ((d+ α + 2λ− 3)/2)
Rα
∗ (R2

∗ − r2)λ−1×{
− 2F1

(
−α

2
, 1;λ+ 1; 1−

(
r

R∗

)2
)

+
α

2λ(λ+ 1)

(
1−

(
r

R∗

)2)
2F1

(
1− α

2
, 2;λ+ 2; 1−

(
r

R∗

)2
)}

,

(4.2.10)

for 0 ≤ r ≤ R∗, and the constant CQ is defined as

CQ =
Γ((d+ 2λ− 1)/2)

π(d−1)/2 Γ(λ)

{
1

Rd+2λ−3
∗

+
q sin(λπ) Γ((d+ α− 1)/2) Γ(λ)

π Γ((d+ α + 2λ− 1)/2)
Rα
∗

}
. (4.2.11)

Another application is concerned with finding the extremal measure µQ in the

case of the Riesz s-potential generated by a positive point charge. We assume that

the external field Q is produced by a positive point charge of magnitude q, placed on

the positive polar semi-axis at some distance h > 0 above the disk D. This external

field is given by

Q(x) =
q

(r2 + h2)s/2
, h > 0, q > 0, s > 0,

x = (0, rx) ∈ D, x ∈ Sd−2, 0 ≤ r ≤ 1.

(4.2.12)
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This problem is similar to the celebrated Gonchar’s problem, which was solved in

[17] for the case of classical Newtonian potential in Rd. The Gonchar’s problem

is concerned with a situation when a positive unit point charge is approaching the

insulated unit sphere, carrying a total charge 1, eventually causing a spherical cap free

of charge to appear. Gonchar raised a question about finding the smallest distance

from the point charge to the sphere such that the whole of the sphere still being

positively charged. In a slightly more general setting, the solution of the Gonchar’s

problem means that if a point charge of a non-negative magnitude q, located on the

positive polar semi-axis, is too far from the surface of the sphere S2, or the magnitude

q of the point charge is too small, the electrostatic field, created by this point charge, is

too weak to force the equilibrium charge distribution from occupying the whole surface

of the sphere S2. It is known that in the case of the positive unit point charge, the

critical height is precisely 1+ρ, where ρ is the golden ratio (1+
√

5)/2 ≈ 1.6180339887.

The question about the charge distribution on the surface of the disk D in R3,

influenced by a positive point charge placed above the disk on the polar axis, was

first considered by Thompson [70]. By a different method, the problem was treated

by Gallop [31].

Theorem 4.2.4 Let s = (d−3)+2λ, with 0 < λ < 1. Assume that the external field

Q is given by (4.2.12), with h > max{h−, h+}, where

h− :=

(
q ((1− λ)(d− 2λ+ 1) + 1)2 sin(λπ)

8π(d+ 2λ− 1)(1− λ)
B

(
λ,
d− 1

2

))1/(d+2λ−3)

, (4.2.13)

and h+ is the largest positive root of the function

p(h) =
2 Γ((d− 1)/2 + λ)

Γ(λ) Γ((d− 1)/2)

{
Γ((d− 1)/2)

2 π(d−1)/2
+ q cd,λ

}
− q sin(λπ) Γ((d− 1)/2)

π(d+1)/2

{
d− 2λ− 1

2

1

hd−1
B

(
1

1 + h2
;λ,

d− 2λ− 1

2

)
+

1

h2λ(1 + h2)(d−3)/2

}
,

(4.2.14)
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with

cd,λ :=
sin(λπ) Γ((d− 1)/2)

π(d+1)/2
h2(1−λ)×{

d− 2λ− 1

2

∫ 1

0

td−2

(h2 + t2)(d−2λ+1)/2
B

(
1− t2

1 + h2
;λ,

d− 2λ− 1

2

)
dt

+
Γ(λ) Γ((d− 1)/2)

2 Γ((d− 1)/2 + λ)

1

(1 + h2)(d−1)/2 2F1

(
1, λ;

d+ 2λ− 1

2
;

1

1 + h2

)}
.

(4.2.15)

The extremal measure µQ, corresponding to the external field of a point charge (4.2.12),

is given by

dµQ(x) = f(r) rd−2 dr dσd−1(x), x = (0, rx) ∈ D,

x ∈ Sd−2, 0 ≤ r ≤ 1,

(4.2.16)

where

f(r) = CQ (1− r2)λ−1 + F (r), 0 ≤ r ≤ 1. (4.2.17)

Here

F (r) = −q sin(λπ) Γ((d− 1)/2)

π(d+1)/2
h2(1−λ)×{

d− 2λ− 1

2

1

(h2 + r2)(d−2λ+1)/2
B

(
1− r2

1 + h2
;λ,

d− 2λ− 1

2

)
+

(1− r2)λ−1

(1 + h2)(d−3)/2 (h2 + r2)

}
, 0 ≤ r ≤ 1,

(4.2.18)

and where the positive constant CQ is given by

CQ =
2 Γ((d− 1)/2 + λ)

Γ(λ) Γ((d− 1)/2)

{
Γ((d− 1)/2)

2π(d−1)/2
+ q cd,λ

}
, (4.2.19)

In the important special case of Newtonian potential in the even dimensions starting

with 8, from the above Theorem it follows that the extremal measure can be written

in a simplified form.

Corollary 4.2.1 Let d = 2m + 4 and s = d− 2 = 2(m + 1), where m ≥ 2. Assume

that the external field Q is given by (4.2.12), with h > max{h−, h+}, with

h− :=

(
q (m+ 2) Γ(m+ 3/2)

8
√
π(m+ 1)!

)1/2(m+1)

, (4.2.20)
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and h+ is the largest positive root of the function

p(h) =
2 (m+ 1)!√
π Γ(m+ 3/2)

{
Γ(m+ 3/2)

2 πm+3/2
+ qc

}
− q Γ(m+ 3/2)

πm+5/2

{
2(m+ 1)h−(2m+3)

m∑
n=0

(−m)n
(2n+ 1)n!

(1 + h2)−(n+1/2)

+
1

h(1 + h2)m+1/2

}
,

(4.2.21)

with

c : =
(Γ(m+ 3/2))2

πm+5/2
h (1 + h2)−(m+1)

{
Γ

(
m+

3

2

)
(1 + h2)−(m+5/2)×

m∑
n=0

(−m)n
(2n+ 1)n!

(1 + h2)−n
m−2∑
l=0

(2−m)l Γ(n+ l + 3/2)

(n+m+ l + 2)!
(1 + h2)−l

+

√
1 + h2

h+
√

1 + h2

m∑
n=0

(−m)n
(m+ n+ 1)!

(√
1 + h2 − h√
1 + h2 + h

)n}
.

(4.2.22)

Then the extremal measure µQ, corresponding to the external field of a point charge

(4.2.12), is given by

dµQ(x) = f(r) rd−2 dr dσd−1(x), x = (0, rx) ∈ D,

x ∈ Sd−2, 0 ≤ r ≤ 1,

(4.2.23)

where

f(r) = CQ
1√

1− r2
+ F (r), 0 ≤ r ≤ 1. (4.2.24)

Here

F (r) =− qhΓ(m+ 3/2)

πm+5/2

{
2(m+ 1)

(h2 + r2)m+2

m∑
n=0

(−m)n
(2n+ 1)n!

(
1− r2

1 + h2

)n+1/2

+
1√

1− r2

1

(h2 + r2) (1 + h2)m+1/2

}
, 0 ≤ r ≤ 1.

(4.2.25)

and where the positive constant CQ is given by

CQ =
2(m+ 1)!√
πΓ(m+ 3/2)

{
Γ(m+ 3/2)

2πm+3/2
+ qc

}
. (4.2.26)
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The case of the three-dimensional Euclidean space R3 and Coulomb potential,

corresponding to d = 3 and λ = 1/2 in the context of Theorem 4.2.4, deserves special

attention. Assuming that the disk D is immersed into the external field generated by

a positive unit point charge, in this physically important case we are able to precisely

determine the height of the point charge that guarantees the extremal support µQ to

occupy the whole disk D. This is an improvement of Theorem 4.2.4, where we can

only provide an estimate of such a height.

Corollary 4.2.2 Suppose the external field Q is given by (4.2.12), with d = 3 and

s = 1, and where h is chosen such that h ≥ h+, where h+ is the unique positive root

of the function

p(h) =
1

2π

(
1 +

2h tan−1(1/h)

π
√

1 + h2

)
− 1

π2h
− 1

π2h2
tan−1(1/h).

Then, under these assumptions SQ = D, and the extremal measure µQ is given by

dµQ(x) = f(r) r dr dσ2(x), x = (0, rx) ∈ D, x ∈ S1, 0 ≤ r ≤ 1, (4.2.27)

where the density f(r) is

f(r) =
1

2π

(
1 +

2h tan−1(1/h)

π
√

1 + h2

)
1√

1− r2
− h

π2(h2 + r2)

1√
1− r2

− h

π2

1

(h2 + r2)3/2
tan−1

√
1− r2

h2 + r2
, 0 ≤ r ≤ 1.

(4.2.28)

If the height of the point charge is chosen such that h < h+, then the support of the

extremal measure µQ will no longer be the entire disk D, as there will be an opening

around the origin.

Note that from Corollary 4.2.2 it follows that if the charge is moved closer to the

disk past the critical height h+, then support of the extremal measure will no longer

be the entire disk. This means that when h < h+ the point charge clears out an

opening in the disk D at the origin, which will be free of charge and is likely to have

a ring structure.
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4.3 Proofs

Proof of Theorem 4.1.1. From the rotational invariance of Q it follows that the

support of the extremal measure µQ is also rotationally invariant. Therefore, there

exists a compact set K ⊂ [0, 1] and a non-negative real-valued function f ∈ L1(K)

such that

dµQ(x) = f(r) rd−2 dr dσd−1(x), x = (0, rx), x ∈ Sd−2,

suppµQ = {(0, rx) ∈ D : r ∈ K, x ∈ Sd−2}.

We will first prove that the set K is connected. We will follow the argument given

in [17]. Assume to the contrary that K is not connected. Then there is an interval

[r1, r2] ⊂ [0, 1] such that K ∩ [r1, r2] = {r1, r2}. We further denote K+ := K ∩ [r2, 1]

and K− := K ∩ [0, r1]. Then for

x = (0, rx), r ∈ (r1, r2), x ∈ Sd−2,

y = (0, ρy), ρ ∈ K− ∪K+, y ∈ Sd−2,

the s-potential of µQ can be written as

UµQ
s (x) =

∫
1

|x− y|s
dµ(y)

=

∫
K

f(ρ) ρd−2 dρ

∫
Sd−2

dσd−1(y)

(r2 + ρ2 − 2rρ〈x, y〉)s/2

=
2π(d−2)/2

Γ(d/2− 1)

∫
K

f(ρ) ρd−2 dρ

∫ π

0

sind−3 ξ dξ

(r2 + ρ2 − 2rρ cos ξ)s/2

=

∫
K−

f(ρ) k(r, ρ) dρ+

∫
K+

f(ρ) k(r, ρ) dρ,

where k(r, ρ) is given by

k(r, ρ) =
2π(d−2)/2

Γ(d/2− 1)

∫ π

0

sind−3 ξ dξ

(r2 + ρ2 − 2rρ cos ξ)s/2
. (4.3.1)

The result #3.665 of [37] states that for Re(ν) > 0 and |x| < 1,∫ π

0

sin2ν−1 ξ dξ

(1 + x2 + 2x cos ξ)s
=

Γ(ν)
√
π

Γ(ν + 1/2)
2F1(s, s− ν + 1/2; ν + 1/2;x2). (4.3.2)
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Using (4.3.2), for the case r > ρ (ρ ∈ K−) we can further transform (4.3.1) as follows,

k(r, ρ) =
2π(d−1)/2

Γ((d− 1)/2)

ρd−2

rs
2F1

(
s

2
, λ;

d− 1

2
;
(ρ
r

)2
)

=
2π(d−1)/2 ρd−2

Γ((d− 1)/2)

∞∑
n=0

(s/2)n (λ)n ρ
2n

((d− 1)/2)n n!

1

r2n+s
.

Hence, for r > ρ we have

k(r, ρ) =
2π(d−1)/2 ρd−2

Γ((d− 1)/2)

∞∑
n=0

(s/2)n (λ)n ρ
2n

((d− 1)/2)n n!

1

r2n+s
. (4.3.3)

It is clear that the functions r−(2n+s), n = 0, 1, 2, . . . are strictly convex for r ∈ (0, 1).

Therefore, taking into account the positivity of all coefficients of the series in the

right hand side of (4.3.3), and the fact that this series is uniformly convergent in r

on compact subsets of (r1, r2), the convexity of the right hand side of (4.3.3) follows

by differentiation with respect to r.

Exactly the same approach with ρ > r (ρ ∈ K+) leads to the following series

representation for k(r, ρ),

k(r, ρ) =
2π(d−1)/2

Γ((d− 1)/2) ρ2λ−1

∞∑
n=0

(s/2)n (λ)n
((d− 1)/2)n n! ρ2n

r2n. (4.3.4)

Obviously the functions r2n, n = 0, 1, 2 . . . are convex on (0, 1). Hence, we similarly

derive the convexity of the right hand side of (4.3.4).

From (4.3.3) and (4.3.4) we infer that the function k is a strictly convex function of

r on (r1, r2), for any fixed ρ ∈ K−∪K+. Using the convexity of Q(r), we deduce that

U
µQ
s (r)+Q(r) is a strictly convex function on (r1, r2). Furthermore, by (1.2.2), for the

weighted potential U
µQ
s (r) +Q(r) we have U

µQ
s (r1) +Q(r1) = FQ = U

µQ
s (r2) +Q(r2).

Then the strict convexity of U
µQ
s (r) + Q(r) implies that U

µQ
s (r) + Q(r) < FQ, for

r1 < r < r2. But this is an obvious contradiction with inequality (1.2.1), which is

valid for all 0 ≤ r ≤ 1.

We now prove the second part of the statement of Theorem 4.1.1. Assume that

Q(r), in addition to being convex, is also an increasing function. Suppose that a > 0.
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In this case the kernel k(r, ρ) is calculated according to (4.3.4), which shows that

U
µQ
s (r) is an increasing function on (0, a]. This implies that the weighted potential

U
µQ
s (r) +Q(r) is a strictly increasing function on (0, a]. Therefore for any r′ ∈ (0, a)

we have U
µQ
s (a) + Q(a) > U

µQ
s (r′) + Q(r′). On the other hand, since a ∈ SQ, from

(1.2.2) it follows that U
µQ
s (a) +Q(a) = FQ. We thus find that U

µQ
s (r′) +Q(r′) < FQ,

which clearly violates inequality (1.2.1).

The proof of the remaining part of the statement of Theorem 4.1.1 follows the

same logic as in the last paragraph. Indeed, assume that Q(r) besides being convex,

is also a decreasing function of r. Suppose that b < 1. In this case kernel k(r, ρ) is

calculated according to (4.3.3), which shows that U
µQ
s (r) is a decreasing function on

[b, 1). Hence the weighted potential U
µQ
s (r)+Q(r) is a strictly decreasing function on

[b, 1). Thus for any r′ ∈ (b, 1) we have U
µQ
s (b) + Q(b) > U

µQ
s (r′) + Q(r′). Observing

that b ∈ SQ, from (1.2.2) it follows that U
µQ
s (b) + Q(b) = FQ. We thus see that

U
µQ
s (r′) +Q(r′) < FQ, which again violates inequality (1.2.1).

Proof of Theorem 4.1.2. Assume that the support of the extremal measure µQ is

the disk DR, that is SQ = DR. Then there exists a non-negative real-valued function

f ∈ L1([0, R]) such that for x = (0, rx) ∈ DR, x ∈ Sd−2, 0 ≤ r ≤ R,

dµQ(x) = f(r) rd−2 dr dσd−1(x).

Let x and y be two points in D with |x| = r and |y| = ρ. Note that x := x/r ∈ Sd−2,

and similarly y := y/ρ ∈ Sd−2. For the distance |x− y| we then obtain

|x− y|2 = |x|2 + |y|2 − 2〈x, y〉

= r2 + ρ2 − 2rρ〈x, y〉.

We immediately notice that the rotational invariance of an external field Q is passed

on to the Riesz s-potential U
µQ
s , thanks to the uniqueness of the extremal measure.
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Therefore for x ∈ suppµQ we have U
µQ
s (x) = U

µQ
s (|x|). We will be using this fact

from now on without mentioning it explicitly on each separate occasion.

The Riesz s-potential U
µQ
s (x), with x = (0, rx) ∈ DR, x ∈ Sd−2, 0 ≤ r ≤ R, can

be written as

UµQ
s (x) =

∫
DR

1

|x− y|s
dµQ(y)

=

∫ R

0

f(ρ) ρd−2dρ

∫
Sd−2

dσd−1(y)

(r2 + ρ2 − 2rρ〈x, y〉)s/2
.

(4.3.5)

We will need the following proposition, which is a special case of the Funk-Hecke

theorem [3, p. 247].

Proposition 4.3.1 If f is integrable on [−1, 1] with respect to the weight (1−t2)(d−3)/2,

and y is an arbitrary fixed point on the sphere Sd−1, then∫
Sd−1

f(〈x, y〉) dσd(x) =
2π(d−1)/2

Γ((d− 1)/2)

∫ 1

−1

f(t) (1− t2)(d−3)/2 dt. (4.3.6)

Applying Proposition 4.3.1 to the inner integral on the right hand side in (4.3.5), we

derive∫
Sd−2

dσd−1(y)

(r2 + ρ2 − 2rρ〈x, y〉)s/2
=

2π(d−2)/2

Γ((d− 2)/2)

∫ π

0

sind−3 ξ dξ

(r2 + ρ2 − 2rρ cos ξ)s/2
.

Hence the potential U
µQ
s in (4.3.5) assumes the form

UµQ
s (r) =

2π(d−2)/2

Γ((d− 2)/2)

∫ R

0

f(ρ) ρd−2dρ

∫ π

0

sind−3 ξ dξ

(r2 + ρ2 − 2rρ cos ξ)s/2
, 0 ≤ r ≤ R.

The integral equation (4.1.3) can now be written as∫ R

0

f(ρ) ρd−2dρ

∫ π

0

sind−3 ξ dξ

(r2 + ρ2 − 2rρ cos ξ)s/2
=

Γ((d− 2)/2)

2π(d−2)/2
(FQ −Q(r)), (4.3.7)

where 0 ≤ r ≤ R.

Our next step is to further transform the inner integral on the left hand side of

the integral equation (4.3.7). This is achieved via the following fact.
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Lemma 4.3.1 If a and b are positive numbers, a 6= b, q ≥ 0 and 0 < λ < 1, then

∫ π

0

sin2q ξ dξ

(a2 + b2 − 2ab cos ξ)q+λ
=

2

a2q b2q

sin(λπ) Γ(λ) Γ(q + 1/2)√
π Γ(q + λ)

×∫ min (a,b)

0

t2(q+λ)−1 dt

(a2 − t2)λ (b2 − t2)λ
.

(4.3.8)

Note that Lemma 4.3.1 in the case when q = 0 and λ = 1/2 was obtained by Copson

[26]. Also, Lemma 4.3.1 when q ≥ 0 and λ = 1/2, is implicitly mentioned in [66],

although with an incorrect numerical coefficient. The correct version of the latter,

along with its proof, is given in [9, p. 8].

Proof. The proof is based on the following identity, obtained by Kahane [42].

Proposition 4.3.2 Let a and b be positive numbers such that a 6= b, λ ∈ (0, 1), q ∈ C

with Re(q) ≥ 0, and u a real number with |u| ≤ 1. Then

(ab)q

(a2 + b2 − 2abu)λ+q
=

Γ(λ)Γ(q + 1)

Γ(λ+ q)

2 sin(λπ)

π
×∫ min (a,b)

0

1− (t2/ab)2

(1 + (t2/ab)2 − 2(t2/ab)u)q+1

(
t2

ab

)q
t2λ−1 dt

(a2 − t2)λ(b2 − t2)λ
.

(4.3.9)

Taking q to be a non-negative real number in Proposition 4.3.2, and applying Fubini’s

theorem, we rewrite the left hand side of (4.3.8) as

∫ π

0

sin2q ξ dξ

(a2 + b2 − 2ab cos ξ)q+λ
=

1

a2q b2q

2 sin(λπ) Γ(λ) Γ(q + 1)

π Γ(q + λ)
×∫ min (a,b)

0

(1− (t2/ab)2) t2(q+λ)−1 dt

(a2 − t2)λ (b2 − t2)λ

∫ π

0

sin2q ξ dξ

(1 + (t2/ab)2 − 2(t2/ab) cos ξ)q+1
.

(4.3.10)

We will show that∫ π

0

sin2q ξ dξ

(1 + (t2/ab)2 − 2(t2/ab) cos ξ)q+1
=

1

1− (t2/ab)2

√
π Γ(q + 1/2)

Γ(q + 1)
. (4.3.11)

Indeed, the integral of a type appearing on the left hand side of (4.3.11) was previously

considered in [50, p. 400]. It was shown that∫ π

0

sinp−2 ξ dξ

(1 + ρ2 − 2ρ cos ξ)p/2
=

1

ρp−2(ρ2 − 1)

∫ π

0

sinp−2 ξ dξ, (4.3.12)
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where ρ ≥ 1, and p ≥ 3 was assumed to be an integer. A careful analysis of the

evaluation of integral (4.3.12) in [50, p. 400] shows that, in fact, (4.3.12) holds true

for any p ≥ 2. We hence transform the left hand side of (4.3.11) as follows,∫ π

0

sin2q ξ dξ

(1 + (t2/ab)2 − 2(t2/ab) cos ξ)q+1
=

1

1− (t2/ab)2

∫ π

0

sin2q ξ dξ

=
1

1− (t2/ab)2
22q B(q + 1/2, q + 1/2)

=
1

1− (t2/ab)2

√
π Γ(q + 1/2)

Γ(q + 1)
,

which is the right hand side of (4.3.11). Substituting (4.3.11) into (4.3.10), we obtain

the desired representation (4.3.8).

Setting q = (d− 3)/2 and observing that s = 2q + 2λ, by letting a = r and b = ρ

in Lemma 4.3.8, the inner integral on the left hand side of integral equation (4.3.7)

can be written in the following form,

∫ π

0

sind−3 ξ dξ

(r2 + ρ2 − 2rρ cos ξ)s/2
=

1

rd−3 ρd−3

2 sin(λπ) Γ(λ) Γ(d/2− 1)√
π Γ((d− 3)/2 + λ)

×∫ min (r,ρ)

0

td+2λ−4 dt

(r2 − t2)λ (ρ2 − t2)λ
.

(4.3.13)

Using (4.3.13), we recast integral equation (4.3.7) as

∫ R

0

f(ρ) ρ dρ

∫ min (r,ρ)

0

td+2λ−4 dt

(r2 − t2)λ (ρ2 − t2)λ

=
Γ((d− 3)/2 + λ)

4 sin(λπ) π(d−3)/2 Γ(λ)
rd−3 (FQ −Q(r)), 0 ≤ r ≤ R.

(4.3.14)

We now work with the integral on the left hand side of (4.3.14). Splitting the range
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of integration, and changing the order of integration in the first integral, we derive∫ R

0

f(ρ) ρ dρ

∫ min (r,ρ)

0

td+2λ−4 dt

(r2 − t2)λ (ρ2 − t2)λ
=

∫ r

0

f(ρ) ρ dρ

∫ ρ

0

td+2λ−4 dt

(r2 − t2)λ (ρ2 − t2)λ

+

∫ R

r

f(ρ) ρ dρ

∫ r

0

td+2λ−4 dt

(r2 − t2)λ (ρ2 − t2)λ

=

∫ r

0

td+2λ−4 dt

(r2 − t2)λ

∫ r

t

f(ρ) ρ dρ

(ρ2 − t2)λ

+

∫ r

0

td+2λ−4 dt

(r2 − t2)λ

∫ R

r

f(ρ) ρ dρ

(ρ2 − t2)λ

=

∫ r

0

td+2λ−4 dt

(r2 − t2)λ

∫ R

t

f(ρ) ρ dρ

(ρ2 − t2)λ
.

We can thus re-write integral equation (4.3.14) as∫ r

0

td+2λ−4 dt

(r2 − t2)λ

∫ R

t

f(ρ) ρ dρ

(ρ2 − t2)λ
=

Γ((d− 3)/2 + λ)

4 sin(λπ) π(d−3)/2 Γ(λ)
rd−3 (FQ −Q(r)), (4.3.15)

where 0 ≤ r ≤ R.

Let

S(t) =

∫ R

t

f(ρ) ρ dρ

(ρ2 − t2)λ
. (4.3.16)

Then (4.3.15) reads∫ r

0

S(t) td+2λ−4 dt

(r2 − t2)λ
=

Γ((d− 3)/2 + λ)

4 sin(λπ) π(d−3)/2 Γ(λ)
rd−3 (FQ −Q(r)), 0 ≤ r ≤ R. (4.3.17)

Integral equation (4.3.17) is an Abel-type integral equation with respect to S(t) td+2λ−4.

As Q ∈ C2([0, 1]), applying [60, # 44, p. 122], we solve this equation and find

S(r) =
Γ((d− 3)/2 + λ)

2π(d−1)/2 Γ(λ)

1

rd+2λ−4

d

dr

∫ r

0

(FQ −Q(t)) td−2 dt

(r2 − t2)1−λ . (4.3.18)

Now observe that (4.3.16) is also an Abel-type integral equation with respect to f(ρ) ρ.

Solving it in a similar fashion, we derive

f(t) = −2 sin(λπ)

π

1

t

d

dt

∫ R

t

S(ρ) ρ dρ

(ρ2 − t2)1−λ , 0 ≤ t ≤ R. (4.3.19)

Let

F (t) =
sin(λπ) Γ((d− 3)/2 + λ)

π(d+1)/2 Γ(λ)

1

t

d

dt

∫ R

t

g(r) r dr

(r2 − t2)1−λ , 0 ≤ t ≤ R,
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where

g(r) =
1

rd+2λ−4

d

dr

∫ r

0

Q(u)ud−2 du

(r2 − u2)1−λ , 0 ≤ r ≤ R.

Then expression (4.3.19) can be written as

f(t) = −FQ
sin(λπ) Γ((d− 3)/2 + λ)

π(d+1)/2 Γ(λ)

1

t
×

d

dt

∫ R

t

{
1

rd+2λ−4

d

dr

∫ r

0

ud−2 du

(r2 − u2)1−λ

}
r dr

(r2 − t2)1−λ + F (t), 0 ≤ t ≤ R.

Performing rather straightforward integrations and differentiations appearing on the

right hand side of the last expression, we deduce

f(t) = FQ
sin(λπ) Γ((d− 1)/2)

π(d+1)/2
(R2 − t2)λ−1 + F (t), 0 ≤ t ≤ R. (4.3.20)

We complete the proof by evaluating the Robin constant FQ. Recall that µQ is a

probability measure, so that it has mass one. Therefore,

1 =

∫
dµQ =

∫ R

0

f(t) td−2 dt

∫
Sd−2

dσd−1

= ωd−1

∫ R

0

f(t) td−2 dt.

We therefore obtain

Γ((d− 1)/2)

2π(d−1)/2
=

1

ωd−1

=

∫ R

0

f(t) td−2 dt

= FQ
sin(λπ) Γ((d− 1)/2)

π(d+1)/2

∫ R

0

(R2 − t2)λ−1 td−2 dt

+

∫ R

0

F (t) td−2 dt.

It is an elementary calculation to see that∫ R

0

(R2 − t2)λ−1 td−2 dt =
Γ((d− 1)/2) Γ(λ)

2 Γ((d− 1)/2 + λ)
Rd+2λ−3. (4.3.21)

Combining the last two expressions, we eventually find

FQ =
2π(d+1)/2 Γ((d− 1)/2 + λ)

sin(λπ) (Γ((d− 1)/2))2 Γ(λ)

1

Rd+2λ−3
×{

Γ((d− 1)/2)

2π(d−1)/2
−
∫ R

0

F (t) td−2 dt

}
.

(4.3.22)
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Inserting expression (4.3.22) into the formula for the extremal density (4.3.20), we

derive the following simple formula,

f(t) = CQ (R2 − t2)λ−1 + F (t), 0 ≤ t ≤ R,

where the constant CQ is given by

CQ =
2 Γ((d− 1)/2 + λ)

Γ(λ) Γ((d− 1)/2)

1

Rd+2λ−3

{
Γ((d− 1)/2)

2π(d−1)/2
−
∫ R

0

F (t) td−2 dt

}
.

Proof of Theorem 4.2.1. The expression for the equilibrium measure on the disk

DR when there is no external field present, follows from Theorem 4.1.2 upon setting

Q = 0. To obtain expression for the capacity of the disk DR, we first notice that

FQ = Ws(DR) when Q = 0. From formula (4.3.22) we find that when Q = 0,

FQ =
π Γ((d+ 2λ− 1)/2)

sin(λπ) Γ(λ) (Γ((d− 1)/2))2

1

Rd+2λ−3
.

Recalling that caps(DR) = 1/Ws(DR), we obtain desired expression (4.2.3).

Proof of Proposition 4.2.1. Let E be any compact subset of D with positive Riesz

s-capacity. For the range of the Riesz s-parameter satisfying d − 3 < s < d − 1, the

potential of the equilibrium measure µE (with no external field) satisfies the following

inequalities [50, p. 136],

UµE
s (x) = Ws(E), q. e. on E,

UµE
s (x) ≤ Ws(E), on D.

(4.3.23)

(4.3.24)

We first observe that variational inequalities (1.2.1)–(1.2.2) imply

Fs(SQ) = Ws(SQ) +

∫
Q(x) dµQ(x)

= Is(µQ) +

∫
Q(x) dµQ(x)

= FQ.
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We now show that for any compact set E ⊂ D with positive Riesz s-capacity we have

Fs(E) ≥ Fs(SQ). Indeed, integrating inequality (1.2.1) with respect to µE, we obtain∫
UµQ
s (x) dµE(x) +

∫
Q(x) dµE(x) ≥ FQ, (4.3.25)

where the inequality holds µE-a.e. as µE has finite Riesz s-energy. With (4.3.25) and

(4.3.23)–(4.3.24) in mind, we write down the following chain of inequalities,

Ws(E) =

∫
Ws(E) dµQ(x)

≥
∫
UµE
s (x) dµQ(x)

=

∫ (∫
1

|x− y|s
dµE(y)

)
dµQ(x)

=

∫ (∫
1

|x− y|s
dµQ(x)

)
dµE(y)

=

∫
UµQ
s (y) dµE(y)

=

∫
UµQ
s (x) dµE(x)

≥ FQ −
∫
Q(x) dµE(x).

We now see that

Fs(E) = Ws(E) +

∫
Q(x) dµE(x) ≥ FQ = Fs(SQ),

so that Fs(E) ≥ Fs(SQ), as claimed.

Proof of Theorem 4.2.2. If E = DR, taking into account thatWs(DR) = 1/ caps(DR),

and inserting (4.2.3) and (4.2.1) into (4.2.4), we find that Fs-functional is given by

Fs(DR) =
π Γ((d+ 2λ− 1)/2)

sin(λπ) Γ(λ) Γ((d− 1)/2)

1

Rd+2λ−3
×{

1 +
2 sin(λπ)

π

∫ R

0

Q(r) (R2 − r2)λ−1 rd−2 dr

}
.

(4.3.26)

Using the substitution R− r = Ru, we transform the integral on the right hand side
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of (4.3.26) as follows,∫ R

0

Q(r)(R2 − r2)λ−1 rd−2 dr

= 2λ−1Rd+2λ−3

∫ 1

0

Q((1− u)R)uλ−1 (1− u)d−2 (1− u/2)λ−1 du.

This allows us to write expression (4.3.26) as

Fs(DR) =c(d, λ)×{
1

Rd+2λ−3
+

2λ sin(λπ)

π

∫ 1

0

Q((1− u)R)uλ−1 (1− u)d−2 (1− u/2)λ−1 du

}
,

where for brevity we set

c(d, λ) :=
πΓ((d+ 2λ− 1)/2)

sin(λπ)Γ(λ)Γ((d− 1)/2)
.

Differentiating the last expression with respect to R, we derive

F ′s(DR) = c(d, λ)

{
− d+ 2λ− 3

Rd+2λ−2

+
2λ sin(λπ)

π

∫ 1

0

Q′((1− u)R)uλ−1 (1− u)d−1 (1− u/2)λ−1 du

}
= c(d, λ)

{
− d+ 2λ− 3

Rd+2λ−2

+
2 sin(λπ)

π

1

Rd+2λ−2

∫ R

0

Q′(r) (R2 − r2)λ−1 rd−1 dr

}
= −2 sin(λπ)c(d, λ)

πRd+2λ−2
∆(R),

(4.3.27)

with

∆(R) :=
π(d+ 2λ− 3)

2 sin(λπ)
−
∫ R

0

Q′(r) (R2 − r2)λ−1 rd−1 dr,

and where the differentiation under the integral sign is justified by invoking the Dom-

inated Convergence Theorem. Since the Fs-functional is minimized on the support

of the extremal measure, we obtain by setting F ′s(DR) to zero that the radius R must

satisfy the equation∫ R

0

Q′(r) (R2 − r2)λ−1 rd−1 dr =
π(d+ 2λ− 3)

2 sin(λπ)
, (4.3.28)
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which by a simple rearrangement can be brought into the required form (4.2.5).

We now discuss the existence and uniqueness of a solution to equation (4.3.28).

First we note that the left hand side can be written as

w(R) : =

∫ R

0

Q′(r) (R2 − r2)λ−1 rd−1 dr

= 2λ−1Rd+2λ−2

∫ 1

0

Q′((1− u)R)uλ−1 (1− u)d−1 (1− u/2)λ−1 du.

From the convexity of Q it follows that Q′(R) ≥ 0 for 0 ≤ R ≤ 1. Using the

Dominated Convergence Theorem we can show that the integral on the right hand

side of the last expression is an increasing function of R for 0 ≤ R ≤ 1. As w(R) is

a product of two non-negative increasing functions on [0, 1], the function w(R) itself

is an increasing function of R for 0 ≤ R ≤ 1. Moreover, a simple calculation shows

that w(0) = 0. These considerations make it clear that in a situation when (4.3.28)

does not have a solution on the interval [0, 1], it must be the case that

∆(R) =
π(d+ 2λ− 3)

2 sin(λπ)
−
∫ R

0

Q′(r) (R2 − r2)λ−1 rd−1 dr

=
π(d+ 2λ− 3)

2 sin(λπ)
− g(R) > 0, 0 ≤ R ≤ 1.

From (4.3.27) it then follows that F ′s(DR) < 0 for 0 ≤ R ≤ 1. Hence Fs(DR) is

strictly decreasing on [0, 1] and attains its global minimum at R = 1.

Suppose now that equation (4.3.28) does have a solution on the interval [0, 1], i.e.

Fs(DR) has a critical point on [0, 1]. From (4.3.27) we deduce that

F ′′s (DR) = c(d, λ)

{
(d+ 2λ− 3)(d+ 2λ− 2)

Rd+2λ−1

+
2λ sin(λπ)

π

∫ 1

0

Q′′((1− u)R)uλ−1 (1− u)d (1− u/2)λ−1 du

}
= c(d, λ)

{
(d+ 2λ− 3)(d+ 2λ− 2)

Rd+2λ−1

+
2 sin(λπ)

π

1

Rd+2λ−1

∫ R

0

Q′′(r) (R2 − r2)λ−1 rd dr

}
=
c(d, λ)2 sin(λπ)

πRd+2λ−1

{
π(d+ 2λ− 3)(d+ 2λ− 2)

2 sin(λπ)
+

∫ R

0

Q′′(r) (R2 − r2)λ−1 rd dr

}
.
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Recalling thatQ(r) is convex on [0, 1], from last expression it transpires that F ′′s (DR) >

0 for all 0 ≤ R ≤ 1. This means that if R∗ is a critical point of Fs(DR), then it will

be its global minimum.

We also observe that R = 0 cannot satisfy equation (4.3.28), which is evident from

(4.3.28) itself. We therefore conclude that Fs(DR) has exactly one global minimum on

(0, 1], which is either the unique solution R∗ ∈ (0, 1] of equation (4.3.28) if it exists,

or R∗ = 1.

Proof of Theorem 4.2.3. Inserting (4.2.6) into the integral in equation (4.2.5), we

find, using formula (4.3.21),∫ R

0

Q′(r) (R2 − r2)λ−1 rd−2 dr =
qαΓ((d+ α− 1)/2) Γ(λ)

2Γ((d+ α + 2λ− 1)/2)
Rd+α+2λ−3.

Inserting the above result back to equation (4.2.5), after simple algebra we derive

desired formula (4.2.7).

We now proceed with evaluating the density of the extremal measure µQ, as

outlined in (4.1.5) and (4.1.4). Inserting expression for the external field (4.2.6) into

(4.1.5), we arrive at the integral∫ r

0

Q(u)ud−2 du

(r2 − u2)1−λ =
q(α + d− 3)

4λ
B

(
1 + λ,

d+ α− 3

2

)
rd+2λ−3+α,

which is evaluated using the substitution tr2 = r2− u2. We therefore easily find that

g(r) =
q(α + d− 3)(d+ 2λ+ α− 3)

4λ
B

(
1 + λ,

d+ α− 3

2

)
rα.

Inserting this result into (4.1.4), we arrive at another integral∫ R∗

t

rα r dr

(r2 − t2)1−λ =
Rα
∗

2λ
(R2
∗ − t2)λ 2F1

(
−α

2
, 1;λ+ 1; 1−

(
t

R∗

)2
)
,

which is handled by substituting (R2
∗ − t2)u = r2 − t2 and then recalling the integral

representation [1, #15.3.1, p. 558] of the hypergeometric function 2F1(a, b; c; z). Now

94



inserting the above result into formula (4.1.4), we eventually deduce that

F (t) =
q sin(λπ) Γ((α + d− 1)/2) Γ((d+ 2λ− 3)/2)

π(d+1)/2 Γ((d+ α + 2λ− 3)/2)
Rα
∗ (R2

∗ − t2)λ−1

{
− 2F1

(
−α

2
, 1;λ+ 1; 1−

(
t

R∗

)2
)

+
α

2λ(λ+ 1)

(
1−

(
t

R∗

)2)
2F1

(
1− α

2
, 2;λ+ 2; 1−

(
t

R∗

)2
)}

, 0 ≤ t ≤ R∗.

It remains to find the constant CQ, which is computed according to (4.1.8). However,

to avoid the tedious calculations encountered while evaluating the integral appearing

on the right hand side of (4.1.8), we recall that the constant CQ is related to the

Robin constant FQ by

CQ =
sin(λπ) Γ((d− 1)/2)

π(d+1)/2
FQ.

Furthermore, from the proof of Proposition 4.2.1 it follows that FQ = Fs(DR∗), where

R∗ is given by (4.2.7). We now easily derive

CQ =
Γ((d+ 2λ− 1)/2)

π(d−1)/2 Γ(λ)

{
1

Rd+2λ−3
∗

+
q sin(λπ) Γ((d+ α− 1)/2) Γ(λ)

π Γ((d+ α + 2λ− 1)/2)
Rα
∗

}
.

Proof of Theorem 4.2.4. We commence by deriving expression (4.2.16) for the

density of the extremal measure µQ. For that upon inserting (4.2.12) into (4.1.5), we

arrive at the following integral∫ r

0

ud−2 du

(u2 + h2)s/2 (r2 − u2)1−λ

=
rd+2λ−3

2(r2 + h2)s/2

∫ 1

0

zλ−1 (1− z)(d−3)/2 (1− (r2/(r2 + h2))z)−s/2 dz

=
Γ((d− 1)/2)Γ(λ)

2Γ((d+ 2λ− 1)/2)

rd+2λ−3

(r2 + h2)s/2
2F1

(
s

2
, λ;

d+ 2λ− 1

2
;

r2

r2 + h2

)
=

Γ((d− 1)/2)Γ(λ)

2Γ((d+ 2λ− 1)/2)

rd+2λ−3

(r2 + h2)s/2
2F1

(
s

2
, λ;

s

2
+ 1;

r2

r2 + h2

)
,

where we used the substitution r2 − u2 = r2z and the integral representation of the

hypergeometric function [1, #15.3.1, p. 558]. Further recalling the known relation
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between the hypergeometric function 2F1(a, b; c; z) and the incomplete Beta function

B(z; a, b),

B(z; a, b) =
za

a
2F1(a, 1− b; a+ 1; z), (4.3.29)

we eventually find that∫ r

0

ud−2 du

(u2 + h2)s/2 (r2 − u2)1−λ

=
(d+ 2λ− 3) Γ(λ) Γ((d− 1)/2)

4Γ((d+ 2λ− 1)/2)
B

(
r2

r2 + h2
;
d+ 2λ− 3

2
, 1− λ

)
.

(4.3.30)

Differentiating both sides of (4.3.30) with respect to r, while keeping in mind the fact

d

dz
B(z; a, b) = (1− z)b−1 za−1, (4.3.31)

we deduce a concise expression for the function g,

g(r) =
q(d+ 2λ− 3) Γ(λ) Γ((d− 1)/2)

2 Γ((d+ 2λ− 1)/2)

h2(1−λ)

(r2 + h2)(d−1)/2
, 0 ≤ r ≤ 1. (4.3.32)

Having expression for the function g obtained, from formula (4.1.4) it follows that we

need to evaluate the integral∫ 1

t

r dr

(r2 + h2)(d−1)/2 (r2 − t2)1−λ =
(1− t2)λ

2

∫ 1

0

zλ−1 dz

(t2 + h2 + (1− t2)z)(d−1)/2

=
(1− t2)λ

2λ (t2 + h2)(d−1)/2 2F1

(
λ,
d− 1

2
;λ+ 1;− 1− t2

h2 + t2

)
=

(1− t2)λ

2λ (1 + h2)(d−1)/2 2F1

(
1,
d− 1

2
;λ+ 1;

1− t2

1 + h2

)
,

where in the last two steps we used the integral representation of the hypergeometric

function [1, #15.3.1, p. 558] and the linear transformation formula [1, #15.3.5, p.

559]. Using another relation between the hypergeometric function 2F1(a, b; c; z) and

the incomplete Beta function B(z; a, b),

B(z; a, b) =
za (1− z)b

a
2F1(1, a+ b; a+ 1; z), (4.3.33)

we eventually obtain, after some trivial simplifications,∫ 1

t

r dr

(r2 + h2)(d−1)/2 (r2 − t2)1−λ

=
1

2 (h2 + t2)(d−2λ−1)/2
B

(
1− t2

1 + h2
;λ,

d− 2λ− 1

2

)
.

(4.3.34)
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Therefore,

∫ 1

t

g(r)rdr

(r2 − t2)1−λ =
q(d+ 2λ− 3) Γ(λ) Γ((d− 1)/2)

4 Γ((d+ 2λ− 1)/2)
×

h2(1−λ)

(h2 + t2)(d−2λ−1)/2
B

(
1− t2

1 + h2
;λ,

d− 2λ− 1

2

)
.

(4.3.35)

Differentiating both sides of (4.3.35) with respect to t, and substituting the result

into (4.1.4), after some simple algebra we find

F (t) =− q sin(λπ) Γ((d− 1)/2)

π(d+1)/2
h2(1−λ)×{

d− 2λ− 1

2

1

(h2 + t2)(d−2λ+1)/2
B

(
1− t2

1 + h2
;λ,

d− 2λ− 1

2

)
+

(1− t2)λ−1

(1 + h2)(d−3)/2 (h2 + t2)

}
, 0 ≤ t ≤ 1.

(4.3.36)

Our next step is to evaluate the constant CQ, following the recipe contained in formula

(4.1.8). Inserting expression (4.3.36) into (4.1.8), we find that one of the integrals we

need to evaluate is∫ 1

0

(1− t2)λ−1

h2 + t2
td−2 dt =

1

2h2

∫ 1

0

u(d−3)/2 (1− u)λ−1 (1− (−h−2)u)−1 du

=
1

2h2

Γ(λ) Γ((d− 1)/2)

Γ((d+ 2λ− 1)/2)
2F1

(
1,
d− 1

2
;
d+ 2λ− 1

2
;− 1

h2

)
=

Γ(λ) Γ((d− 1)/2)

2 Γ((d+ 2λ− 1)/2)

1

1 + h2 2F1

(
1, λ;

d+ 2λ− 1

2
;

1

1 + h2

)
,

where the last two expressions were obtained using the integral representation of the

hypergeometric function [1, #15.3.1, p. 558] and the linear transformation formula

[1, #15.3.4, p. 559]. We subsequently obtain

∫ 1

0

(1− t2)λ−1

h2 + t2
td−2 dt

=
Γ(λ) Γ((d− 1)/2)

2 Γ((d+ 2λ− 1)/2)

1

1 + h2 2F1

(
1, λ;

d+ 2λ− 1

2
;

1

1 + h2

)
.

(4.3.37)

In light of (4.3.37), we finally derive that

CQ =
2 Γ((d− 1)/2 + λ)

Γ(λ) Γ((d− 1)/2)

{
Γ((d− 1)/2)

2π(d−1)/2
+ q cd,λ

}
,
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where

cd,λ :=
sin(λπ) Γ((d− 1)/2)

π(d+1)/2
h2(1−λ)×{

d− 2λ− 1

2

∫ 1

0

td−2

(h2 + t2)(d−2λ+1)/2
B

(
1− t2

1 + h2
;λ,

d− 2λ− 1

2

)
dt

+
Γ(λ) Γ((d− 1)/2)

2 Γ((d− 1)/2 + λ)

1

(1 + h2)(d−1)/2 2F1

(
1, λ;

d+ 2λ− 1

2
;

1

1 + h2

)}
.

Now we show that the obtained extremal measure is indeed a positive measure, pro-

vided the height of the point charge satisfies certain restrictions. The first step toward

that goal is to demonstrate that the density f(r) of the extremal measure µQ is an in-

creasing function of r. Differentiating its expression (4.2.17) and dropping a positive

term involving the incomplete Beta function, we see that

f ′(r) ≥ CQ
2r(1− λ)

(1− r2)2−λ + q
sin(λπ)Γ((d− 1)/2)

π(d+1)/2

h2(1−λ) r (d− 2λ+ 1)

(h2 + r2)2 (1− r2)1−λ (1 + h2)(d−3)/2

− q sin(λπ)Γ((d− 1)/2)

π(d+1)/2

h2(1−λ) 2r (1− λ)

(h2 + r2) (1− r2)2−λ (1 + h2)(d−3)/2

≥ Γ((d+ 2λ− 1)/2)

π(d−1)/2 Γ(λ)

2r(1− λ)

(1− r2)2−λ

+ q
sin(λπ)Γ((d− 1)/2)

π(d+1)/2

h2(1−λ) r (d− 2λ+ 1)

(h2 + r2)2 (1− r2)1−λ (1 + h2)(d−3)/2

− q sin(λπ)Γ((d− 1)/2)

π(d+1)/2

h2(1−λ) 2r (1− λ)

(h2 + r2) (1− r2)2−λ (1 + h2)(d−3)/2
.

Therefore,

f ′(r) π(d+1)/2 (1− λ)−1 (h2 + r2)2 r−1 (1− r2)2−λ (1 + h2)(d−3)/2

≥ 2π Γ((d+ 2λ− 1)/2)

Γ(λ)
(h2 + r2)2 (1 + h2)(d−3)/2

+ q(d− 2λ+ 1)(1− λ) sin(λπ) Γ((d− 1)/2)h2(1−λ) (1− r2)

− q sin(λπ)Γ((d− 1)/2)h2(1−λ) (h2 + r2)

≥ 2hd−3 Γ((d+ 2λ− 1)/2)

Γ(λ)

{
π (h2 + r2)2

+ q
(d− 2λ+ 1) (1− λ) sin(λπ)

2
B

(
λ,
d− 1

2

)
h5−2λ−d (1− r2)

− q sin(λπ)

2
B

(
λ,
d− 1

2

)
h5−2λ−d (h2 + r2)

}
.
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Let t = r2 + h2. Then the expression in the braces in the last line above becomes

π (h2 + r2)2 + q
(d− 2λ+ 1) (1− λ) sin(λπ)

2
B

(
λ,
d− 1

2

)
h5−2λ−d (1− r2)

− q (1− λ) sin(λπ)

2
B

(
λ,
d− 1

2

)
h5−2λ−d (h2 + r2)

= πt2 − q ((1− λ)(d− 2λ+ 1) + 1) sin(λπ)

2
B

(
λ,
d− 1

2

)
h5−2λ−d t

+ q
(d− 2λ+ 1) (1− λ) sin(λπ)

2
B

(
λ,
d− 1

2

)
h5−2λ−d (1 + h2).

The quadratic polynomial

m(t) := πt2 − q ((1− λ)(d− 2λ+ 1) + 1) sin(λπ)

2
B

(
λ,
d− 1

2

)
h5−2λ−d t

+ q
(d− 2λ+ 1) (1− λ) sin(λπ)

2
B

(
λ,
d− 1

2

)
h5−2λ−d (1 + h2)

has the discriminant

D =− q sin(λπ)h2(5−2λ−d)

4
B

(
λ,
d− 1

2

) {
8π(d+ 2λ− 1)(1− λ) (1 + h2)hd+2λ−5

−q((1− λ)(d− 2λ+ 1) + 1)2 sin(λπ) B

(
λ,
d− 1

2

)}
.

For the term in braces in the last expression we have the following trivial estimate

8π(d+ 2λ− 1)(1− λ) (1 + h2)hd+2λ−5

− q((1− λ)(d− 2λ+ 1) + 1)2 sin(λπ) B

(
λ,
d− 1

2

)
≥ 8π(d+ 2λ− 1)(1− λ)hd+2λ−3

− q((1− λ)(d− 2λ+ 1) + 1)2 sin(λπ) B

(
λ,
d− 1

2

)
> 0,

if h is chosen so that h > h−, where

h− :=

(
q ((1− λ)(d− 2λ+ 1) + 1)2 sin(λπ)

8π(d+ 2λ− 1)(1− λ)
B

(
λ,
d− 1

2

))1/(d+2λ−3)

With such a choice of h it is clear that the discriminant D is strictly negative, and

hence the polynomial m(t) does not have real roots. Therefore, m(t) > 0, which in
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turn shows that f ′(r) > 0. Thus, f(r) > f(0), for all 0 < r < 1 and if h chosen such

that h > h−.

Set p(h) := f(0). We then obtain

p(h) =
2 Γ((d− 1)/2 + λ)

Γ(λ) Γ((d− 1)/2)

{
Γ((d− 1)/2)

2π(d−1)/2
+ q cd,λ

}
− q sin(λπ) Γ((d− 1)/2)

π(d+1)/2

{
d− 2λ− 1

2

1

hd−1
B

(
1

1 + h2
;λ,

d− 2λ− 1

2

)
+

1

h2λ(1 + h2)(d−3)/2

}
.

It is not hard to see that

lim
h→0+

p(h) = −∞, lim
h→∞

p(h) =
Γ((d− 1)/2 + λ)

π(d−1)/2 Γ(λ)
> 0.

As p(h) is a continuous function, it has at least one positive root. Denote the largest

such root by h+. It then follows that f(r) > 0 provided h > max{h−, h+}, and

therefore µQ is a positive measure, as required.

Proof of Corollary 4.2.1. We begin by evaluating the integral appearing in the

right hand side of the constant cd,q,

∫ 1

0

td−2

(h2 + t2)(d−2λ+1)/2
B

(
1− t2

1 + h2
;λ,

d− 2λ− 1

2

)
dt

=
1

2λ
ξ(d+1)/2

∫ 1

0

uλ (1− u)(d−3)/2 (1− uξ)−1
2F1

(
1,
d− 1

2
;λ+ 1;uξ

)
,

(4.3.38)

where we put ξ = 1/(1+h2) for brevity. Recall that in the case of Newtonian potential

we have s = d − 2, where d = 2m + 4, with m ≥ 2 is a natural number. Using a

well-known fact [1, #15.4.1, p. 561] that the hypergeometric function 2F1(a, b; c; z)

reduces to a polynomial if either one of its first two parameters is a negative integer,

we easily find

2F1

(
1,
d− 1

2
;
3

2
;uξ

)
= (1− uξ)−(m+1)

m∑
n=0

(−m)n
(2n+ 1)n!

unξn. (4.3.39)
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Inserting expression (4.3.39) into the integral on the right hand side of (4.3.38) and

again using [1, #15.4.1, p. 561], we eventually find that

∫ 1

0

td−2

(h2 + t2)(d−2λ+1)/2
B

(
1− t2

1 + h2
;λ,

d− 2λ− 1

2

)
dt

= Γ

(
m+

3

2

)
ξm+5/2

m∑
n=0

(−m)n
(2n+ 1)n!

ξn
m−2∑
l=0

(2−m)l Γ(n+ l + 3/2)

(n+m+ l + 2)!
ξl

= Γ

(
m+

3

2

)
(1 + h2)−(m+5/2)×

m∑
n=0

(−m)n
(2n+ 1)n!

(1 + h2)−n
m−2∑
l=0

(2−m)l Γ(n+ l + 3/2)

(n+m+ l + 2)!
(1 + h2)−l.

(4.3.40)

We also note that the hypergeometric function appearing in the definition of the

constant cd,λ in this special case reduces to a finite sum involving elementary functions

only. Indeed, using [1, #15.3.19, p. 560], with some work we can show that

2F1

(
1, λ;

d+ 2λ− 1

2
;

1

1 + h2

)
= 2(m+ 1)!

√
1 + h2

h+
√

1 + h2

m∑
n=0

(−m)n
(m+ n+ 1)!

(√
1 + h2 − h√
1 + h2 + h

)n

.

(4.3.41)

We also reduce the Beta-function term, appearing in expression (4.2.18), to a finite

sum of expressions in elementary functions only. For that we first recall the relation

B

(
1− r2

1 + h2
;λ,

d− 2λ− 1

2

)
=

1

λ

(1− r2)λ

(1 + h2)(d−1)/2
(h2 + r2)(d−2λ−1)/2

2F1

(
1,
d− 1

2
;λ+ 1;

1− r2

1 + h2

)
,

which, after taking into account that λ = 1/2 and d = 2m+ 4, m ≥ 2, and using the

fact [1, #15.4.1, p. 561], gives us

d− 2λ− 1

2

1

(h2 + r2)(d−2λ+1)/2
B

(
1− r2

1 + h2
;λ,

d− 2λ− 1

2

)
=

2(m+ 1)

(h2 + r2)m+2

m∑
n=0

(−m)n
(2n+ 1)n!

(
1− r2

1 + h2

)n+1/2

.

(4.3.42)
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With the help of (4.3.42), expression (4.2.18) is reduced to

F (r) = −qhΓ(m+ 3/2)

πm+5/2

{
2(m+ 1)

(h2 + r2)m+2

m∑
n=0

(−m)n
(2n+ 1)n!

(
1− r2

1 + h2

)n+1/2

+
1√

1− r2

1

(h2 + r2) (1 + h2)m+1/2

}
, 0 ≤ r ≤ 1.

We similarly derive that in the case λ = 1/2 and d = 2m+ 4, m ≥ 2,

cd,λ =
(Γ(m+ 3/2))2

πm+5/2
h (1 + h2)−(m+1){

Γ

(
m+

3

2

)
(1 + h2)−(m+5/2)×

m∑
n=0

(−m)n
(2n+ 1)n!

(1 + h2)−n
m−2∑
l=0

(2−m)l Γ(n+ l + 3/2)

(n+m+ l + 2)!
(1 + h2)−l

+

√
1 + h2

h+
√

1 + h2

m∑
n=0

(−m)n
(m+ n+ 1)!

(√
1 + h2 − h√
1 + h2 + h

)n}
,

and also

CQ =
2(m+ 1)!√
πΓ(m+ 3/2)

{
Γ(m+ 3/2)

2πm+3/2
+ q cd,λ

}
.

Proof of Corollary 4.2.2. The expression (4.2.28) for the density f(r) of the

extremal measure µQ can be derived either using the recipe given in Theorem 4.1.2,

or alternatively from corresponding parts of Theorem 4.2.3.

After obtaining the required expression for the density f(r), the next step is to

show sure that the obtained solution is, in fact, represents a positive measure. Below

we will show that this is indeed the case, provided a point charge is located sufficiently

far from the surface of the disk D. In the course of the proof we precisely determine

the critical hight of location of the point charge, guaranteeing the positivity of the

extremal measure.

We begin by observing that the density f(r) is a strictly increasing function of r.
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Differentiating expression (4.2.28), after simplifications, one finds that

f ′(r) =
c

π2

r

(1− r2)3/2
+

3h

π2

1√
1− r2

r

(h2 + r2)2

− h

π2

1

(1− r2)3/2

r

h2 + r2
+

3h

π2

r

(h2 + r2)5/2
tan−1

√
1− r2

h2 + r2
,

with

c =
π

2

(
1 +

2h tan−1(1/h)

π
√

1 + h2

)
.

Using trivial estimates, we further obtain

π2f ′(r)(1− r2)3/2(h2 + r2)2r−1 ≥ c(h2 + r2)2 + 3h(1− r2)− h(h2 + r2)

≥ π

2
(h2 + r2)2 + 3h(1− r2)− h(h2 + r2)

=
1

2
(πt2 − 8ht+ 6h(1 + h2)),

with t = r2 + h2. The quadratic polynomial m(t) = πt2 − 8ht + 6h(1 + h2) has

discriminant D = −8h(3π(1 + h2) − 8h) < 0. Hence m(t) does not have real roots,

which implies that m(t) > 0. This in turn shows that f ′(r) > 0, as required, and so

f(r) > f(0) for all 0 < r < 1.

Denoting p(h) := f(0), we readily find

p(h) =
1

2π

(
1 +

2h tan−1(1/h)

π
√

1 + h2

)
− 1

π2h
− 1

π2h2
tan−1(1/h).

As observed during the course of the proof of Theorem 4.2.3, we have

lim
h→0+

p(h) = −∞, lim
h→∞

p(h) =
1

2π
> 0,

and so as p(h) is a continuous function, it has at least one positive root. Denote the

largest such a root by h+. We will show that h+ is the unique root of p(h) on [0,∞).

This follows from the fact that p(h) is a strictly increasing function on [0,∞), which

we now demonstrate. Indeed, the derivative of p(h) can be easily computed to be

p′(h) =
tan−1(1/h)

π2
√

1 + h2
− h

π2(1 + h2)3/2
− h2 tan−1(1/h)

π2(1 + h2)3/2

+
1

π2h2
+

2 tan−1(1/h)

π2h3
+

1

π2h2(1 + h2)
.

(4.3.43)
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From the Mean Value Theorem for the derivative it follows that for x > 0,

x

1 + x2
< tan−1 x < x. (4.3.44)

Using inequality (4.3.44) in conjunction with (4.3.43), we write down an estimate of

p′(h) from below,

p′(h) ≥ h

π2(1 + h2)3/2
− h

π2(1 + h2)3/2
− h

π2(1 + h2)3/2

+
1

π2h2
+

2

π2h2(1 + h2)
+

1

π2h2(1 + h2)

=
3

π2h(1 + h2)
+

1

π2h2
− h

π2(1 + h2)3/2

≥ 3

π2h2(1 + h2)
+

1

π2h2
− 1

π2h2

=
3

π2h2(1 + h2)
> 0, h > 0.

Clearly, p(h) ≥ 0 when h ≥ h+ and p(h) < 0 when h < h+. This implies that h = h+

is the critical height of the point charge, and so f(r) ≥ 0 for all 0 ≤ r ≤ 1, provided

h ≥ h+, which means that µQ is a positive measure.

If h < h+ then support of the extremal measure will no longer be the entire disk,

but rather will have an opening around the origin. Indeed, if this is not so, from the

fact that p(h) < 0 when h < h+, we see that in this case the density f(r) will be

negative for all 0 ≤ r ≤ 1. This implies that the measure µQ in (4.2.27) will no longer

be a positive measure, and thus cannot be the extremal measure. This contradiction

shows that when h < h+ the point charge will clear out an opening in the disk D at

the origin.

104



CHAPTER 5

Minimum Energy Problem on a Ring in R3

5.1 Introduction

Recall that in the case of the three-dimensional space d = 3, the hyperdisk is D =

{(x, y, z) ∈ R3 : x2 + y2 ≤ 1, z = 0}. Let R(a, b) := {(x, y, z) ∈ R3 : 0 ≤ a ≤

x2 + y2 ≤ b ≤ 1, z = 0} ⊂ D be a ring of inner radius a and outer radius b in the

xy–plane in R3. We will consider the minimum energy problem on R(a, b), assuming

that the charges interact according to the Newtonian potential 1/r, where r denotes

Euclidean distance. We will also assume that the ring R(a, b) is immersed into a

smooth rotationally invariant external field Q.

There are essentially two different ways of attacking this problem.

The first way consists of solving a Dirichlet problem for the Laplace equation for

the potential UµQ of the extremal measure µQ, with boundary data FQ − Q on the

ring R(a, b). The work in this direction was originally initiated by Wangerin [73, 74]

in 1870s. His idea was to describe the most general system of curvilinear coordinates,

in which the Laplace equation becomes R-separable, see [74]. An approach essentially

replicating the original work of Wangerin [74] was developed by Lagrange in 1939, see

[49] and a later work [48]. The theory developed by Wangerin was applied specifically

to the study of the Dirichlet problem for the Laplace question in the ring R(a, b) by

Poole in 1929. In a series of papers [61]–[62] he obtained an expression for the equilib-

rium potential (without an external field), in terms of a series of the so-called periodic

Lamé functions. An approach closely related to that of Poole’s, was considered by

Lebedev in 1937. In paper [51] he also obtained an expression for the equilibrium
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potential (without an external field), in term of a series of some special functions,

that were not previously tabulated. In addition, using the obtained expression for

the equilibrium potential, Lebedev calculated the density of the equilibrium measure.

An important consequence of Lebedev’s results was that in the case of no external

field, one should expect that the equilibrium density being unbounded at the rims of

ring R(a, b), that is

f(r) ∼ 1√
r2 − a2

, r → a+,

f(r) ∼ 1√
b2 − r2

, r → b− .

(5.1.1)

We also remark that Nicholson [58] in 1922 considered the aforementioned Dirichlet

problem for the ring as well. However, his approach did not fall under the umbrella of

Wangerin’s ideas, and was more of a physical nature. An important contribution of

his work was to obtain an approximate expression for the capacity of a ring, assuming

that it was thin enough.

The heart of the second way to recover the extremal measure supported on a ring

lies in solving an integral equation, arising from the equilibrium relations (1.2.1)-

(1.2.2). Indeed, in the case of a smooth rotationally invariant external field Q, from

relations (1.2.1)-(1.2.2) it follows that∫
1

|x− y|
dµQ(y) +Q(x) = FQ, x ∈ SQ, (5.1.2)

where FQ is a constant, and SQ is the ring R(a, b). Furthermore, as we already seen

before, for a rotationally invariant external field Q, the extremal measure µQ will be

absolutely continuous with respect to the Lebesgue area measure, with an integrable

density, that is dµQ(r, ϕ) = f(r) r dϕ dr, where f ∈ L1([0, 1]), ϕ ∈ [0, 2π). Therefore,

integral equation (5.1.2) can be written as∫ b

a

f(t) t dt

∫ 2π

0

dϕ√
r2 + t2 − 2rt cosϕ

= FQ −Q(r), a ≤ r ≤ b. (5.1.3)

Apparently the first attempt in solving integral equation (5.1.3) was undertaken

by Gubenko and Mossakovksii in 1960. In paper [35] they considered the problem
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of calculating the pressure that a rigid die, having a form of a circular concentric

ring, exerts on an elastic half-space. Having reduced that mechanics problem to an

equation of type (5.1.3), they used certain approximation techniques to arrive to an

approximate solution to (5.1.3), with a prescribed degree of accuracy, acceptable for

their needs. The next major step was undertaken by Cooke in 1963, while seeking to

obtain a closed form solution to equation (5.1.3). In his paper [24], he found a way

to reduce equation (5.1.3) to a Fredholm integral equation of the second kind of the

form

G(r)− 2

π2

∫ b

a

K(u, r)G(u) du =
FQ
2π

r√
r2 − a2

− F (r), a ≤ r ≤ b, (5.1.4)

where the function F is computed based on the external field Q, while the unknown

function G is used to recover the density f of the extremal measure µQ. The approach

of Cooke was based on exploiting certain representations of the inner integral in the

left hand side of (5.1.3), based on some intricate relations involving Bessel functions.

Williams [75] noticed that Cooke’s approach is in fact independent of any special

functions. However, due to the complexity of the kernel K in (5.1.4), mainly iterative

numerical procedures were used to obtain solutions of equation (5.1.4). A further

step in investigating equation (5.1.3) was taken by Clements and Love in 1970s. In

their papers [22] and [23], instead of reducing (5.1.3) to integral equation (5.1.4)

with a complicated kernel K, they reduced equation (5.1.3) to two Fredholm integral

equations of the second kind with a simple kernel. Namely, they showed how to

convert (5.1.3) to a pair of uncoupled integral equations

f+(x) +
2

π

∫ k

0

xt

1− x2t2
f+(t) dt = g+(x), for 0 < x < k,

f−(x)− 2

π

∫ k

0

xt

1− x2t2
f−(t) dt = g−(x), for 0 < x < k,

where f± are unknown functions, which are used to recover the density f of the

extremal measure µQ, while g± are known functions calculated based on the external

field Q, and k =
√
a/b. Based on these results, Love in [54] obtained a formula for
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the capacity of a ring, as an infinite series in terms of the kernel of the above pair

of uncoupled integral equations. His expression for capacity is useful in obtaining

estimates on the capacity, as well as its various approximations. We also remark that

paper [23] rigorously established the aforementioned asymptotics (5.1.1). Comparison

of the above two approaches for calculating the capacity of a thin ring was done in a

fairly recent paper by Lebedev and Skalskaya [52].

5.2 Recovery of the extremal measure via an integral equation on the

support

The support of the extremal measure is a main ingredient in determining the extremal

measure µQ itself. If SQ is known, the extremal measure µQ can be recovered by

solving the integral equation∫
1

|x− y|
dµQ(y) +Q(x) = FQ, x ∈ SQ, (5.2.1)

where FQ is a constant.

Suppose that the support of the extremal measure µQ is a ring R(a, b), that is

SQ = R(a, b).

We remark it it is possible to consider this problem in more general setting of

higher dimensions and general Reisz s-potentials. Our next statement addresses such

a problem and generalizes the known results to the case of higher dimensions and

general Riesz s-potentials.

Theorem 5.2.1 Let s = (d− 3) + 2λ, with 0 < λ < 1. Suppose that an external field

Q is invariant with respect to rotations about the polar axis, that is Q(x) = Q(r),

where x = (0, rx) ∈ D, x ∈ Sd−2, 0 ≤ r ≤ 1, and is such that Q ∈ C2(D). Assume

that suppµQ is a ring R(a, b). Let

F (r) =
Γ((d+ 2λ− 3)/2)Γ(3− 2λ)

2 Γ((d− 2λ+ 3)/2)

d

dr

∫ r

a

Q(t) td−2 dt

(r2 − t2)1−λ , a ≤ r ≤ b, (5.2.2)
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and further put

K(u, r) =
ad−2λ+1

u2 − r2

{
1

r2 2F1

(
1,
d+ 2λ− 3

2
;
d− 2λ+ 3

2
;
(a
r

)2
)

− 1

u2 2F1

(
1,
d+ 2λ− 3

2
;
d− 2λ+ 3

2
;
(a
u

)2
)}

.

(5.2.3)

Let f be the density of the extremal measure µQ, that is dµQ(x) = f(r) rd−2 dr dσd−1(x),

x = (0, rx) ∈ R(a, b), x ∈ Sd−2, a ≤ r ≤ b. We set

G(r) =

∫ b

r

f(t) t dt

(t2 − r2)λ
, a ≤ r ≤ b. (5.2.4)

Then the function G can be recovered by solving the Fredholm integral equation of the

second kind,

G(r)− Γ((d+ 2λ− 3)/2)Γ(3− 2λ)

2 Γ((d− 2λ+ 3)/2)

∫ b

a

G(u)K(u, r) du

= FQ
Γ((d+ 2λ− 3)/2)

2π(d−1)/2 Γ(λ)
×{

d+ 2λ− 3

2
rd+2λ−4 B

(
1−

(a
r

)2

;λ,
d− 1

2

)
+
ad−1

r
(r2 − a2)λ−1

}
− F (r), a ≤ r ≤ b.

(5.2.5)

The constant FQ is uniquely determined by the relation∫ b

a

f(t) td−2 dt =
Γ((d− 1)/2)

2π(d−1)/2
. (5.2.6)

We note that equation (5.2.5) is a Fredholm integral equation of the second kind. The

kernel K, given by (5.2.3), is symmetric, that is K(u, r) = K(r, u), which directly fol-

lows from its expression (5.2.3). A closed-form exact solution of integral equations of

type (5.2.5) is presently unknown. However, various numerical methods and methods

for finding approximate solutions to Fredholm integral equations of the second kind

are well-established. These results, among many other facts on virtually all known

types of integral equations can be found in book [60].

In the case of the classical Coulomb potential in R3, correspodnding to d = 3 and

s = 1 (λ = 1/2), the above Theorem assumes the following simplified form.
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Theorem 5.2.2 Suppose that an external field Q is rotationally invariant with re-

spect to rotations about the polar axis, and is such that Q ∈ C2(D). Assume that SQ

is a ring R(a, b). Let

F (r) =
1

2π

d

dr

∫ r

a

Q(ρ) ρ dρ√
r2 − ρ2

, a ≤ r ≤ b, (5.2.7)

and let

K(u, r) =
ur√

r2 − a2
√
u2 − a2

1

u2 − r2

×
{
u2 − a2

u
log

(
u+ a

u− a

)
− r2 − a2

r
log

(
r + a

r − a

)}
.

(5.2.8)

Also, if f is the density of the equilibrium measure µQ, we set

G(r) =

∫ b

r

f(u)u du√
u2 − r2

, a ≤ r ≤ b. (5.2.9)

Then the function G can be recovered by solving a Fredholm integral equation of the

second kind,

G(r)− 2

π2

∫ b

a

K(u, r)G(u) du =
FQ
2π

r√
r2 − a2

− F (r), a ≤ r ≤ b. (5.2.10)

The constant FQ is uniquely determined by the relation∫ b

a

f(t) t dt =
1

2π
. (5.2.11)

Now we concern ourselves with a different kind of task. For the case of R3 and the

classical Coulomb potential, we want to find an external field producing a prescribed

extremal measure, supported on a ring R(a, b).

Theorem 5.2.3 Let the external field Q be given by

Q(r) = C− 4

π(b2 − a2)

{
E
(r
b

)
− rE

(a
r

)
+
r2 − a2

r
K
(a
r

)}
, a ≤ r ≤ b, (5.2.12)

where C is any real constant, and where

K(k) :=

∫ π/2

0

dϕ√
1− k2 sin2 ϕ

, 0 < k < 1,
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is the complete elliptic integral of the first kind, and

E(k) :=

∫ π/2

0

√
1− k2 sin2 ϕdϕ, 0 < k < 1,

is the complete elliptic integral of the second kind.

Then the extremal measure µQ is given by dµQ = f(r) rdrdϕ, where

f(r) =
1

π(b2 − a2)
, a ≤ r ≤ b. (5.2.13)

5.3 Alternative way of recovering the extremal measure

It is known that the equilibrium potential UµQ is a harmonic function outside of the

support SQ, while on the support SQ it assumes the values FQ − Q. Hence, the

equilibrium potential UµQ satisfies the following Dirichlet problem,

∆UµQ(x) = 0, x ∈ R3 \R(a, b),

UµQ(x) = FQ −Q(x), x ∈ R(a, b),

UµQ(x) = O
(
|x|−1

)
, |x| → ∞.

(5.3.1)

(5.3.2)

(5.3.3)

If one can solve Dirichlet problem (5.3.1)–(5.3.3), the extremal measure µQ can be

recovered from its potential by the formula

dµQ(r, ϕ) = − 1

4π

(
∂UµQ

∂n+

+
∂UµQ

∂n−

)
dS := f(r)r dϕ dr, (5.3.4)

where dS = r dϕ dr is the Lebesgue surface area measure on suppµQ, and n± are the

inner and the outer normals to the ring R(a, b), see [44, pp. 164–165].

5.3.1 Coordinates of confocal cyclides of revolution

The geometry of the problem suggests a choice of a special coordinate system, which

can be described as follows.

The Laplace equation ∆ϕ = 0 in cylindrical coordinates (ρ, z, ψ) takes the form

1

ρ

∂

∂ρ

(
ρ
∂ϕ

∂ρ

)
+

1

ρ2

∂2ϕ

∂ψ2
+
∂2ϕ

∂z2
= 0. (5.3.5)
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Let u, v be new coordinates in the meridian plane such that z = z(u, v), ρ = ρ(u, v).

Wangerin [74] first described the most general systems of orthogonal coordinates u, v

in which the Laplace equation is R-separable, that is it admits solutions of the form

ϕ = ω(u, v)M(u)V (v)Ψ(ψ), (5.3.6)

where ω(u, v) is a fixed function, and the functions M , V and Ψ are solutions of

second order ordinary differential equations.

In particular, Wangerin in his paper [74] showed that if u, v are orthogonal coor-

dinates such that the Laplace equation written in those coordinates has solutions of

the form (5.3.6), then ω(u, v) = ρ−1/2, and the coordinates u, v may be chosen in such

a way that the mapping of the (z, ρ)-plane into the (u, v)-plane is conformal. Thus

we accordingly set

z + iρ = f(u+ iv), (5.3.7)

where f is a holomorphic function with f ′ 6= 0. We also set

ϕ = ρ−1/2 Φ(u, v) e±imψ, (5.3.8)

and insert this representation into the Laplace equation (5.3.5), thus obtaining

∂2Φ

∂ρ2
+
∂2Φ

∂z2
−
(
m2 − 1

4

)
1

ρ2
Φ = 0. (5.3.9)

Using the fact that f is holomorphic, one deduces that ρ = Im(f) and z = Re(f)

satisfy the Cauchy-Riemann equations,

∂z

∂u
=
∂ρ

∂v
,

∂z

∂v
= −∂ρ

∂u
. (5.3.10)

After some laborious calculations, this allows us to conclude that

∂2Φ

∂u2
+
∂2Φ

∂v2
= |f ′|2

(
∂2Φ

∂z2
+
∂2Φ

∂ρ2

)
.

Hence, it is easy to see now that equation (5.3.9) translates into the following partial

differential equation on function Φ:

∂2Φ

∂u2
+
∂2Φ

∂v2
−
(
m2 − 1

4

)
F (u, v) = 0, (5.3.11)
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where

F (u, v) =
|f ′(u+ iv)|2

(Imf(u+ iv))2
=
|f ′|2

ρ2
. (5.3.12)

Clearly, equation (5.3.11) will have solutions of the form M(u)V (v) if the function F

can be factored as a sum of a function of u and a function of v only,

F (u, v) = F1(u) + F2(v). (5.3.13)

If this is the case, the functions M(u) and N(v) will satisfy the ordinary differential

equations of the second order,

M ′′(u) +

(
h−

(
m2 − 1

4

)
F1(u)

)
M(u) = 0, (5.3.14)

N ′′(u) +

(
h−

(
m2 − 1

4

)
F2(u)

)
N(u) = 0, (5.3.15)

where h is a separation constant. It can be proved [74] that factorization (5.3.13) is

possible if and only if the function f is a solution of the following ordinary differential

equation of the second order,

(f ′(z))2 = a0 + a1f(z) + a2f
2(z) + a3f

3(z) + a4f
4(z) =: P4(f), (5.3.16)

with a0, . . . , a4 being some real constants. Therefore, f is either an elementary func-

tion or an elliptic function. Furthermore, the differential equation (5.3.16) is invariant

under the Möbius transformations

f 7→ Af +B

Cf +D
,

where A,B,C,D are real constants, chosen such that AD −BC 6= 0.

We will assume that P4 has four distinct zeros, so that P4 can be reduced to a one

of its canonical forms [3, p. 304]. The further classification distinguishes the cases of

P4 having all roots real, all roots complex, and two real and two complex roots. The

canonical forms of f in these three cases are

sn(u+ iv, k), i sn(u+ iv, k), cn(u+ iv, k), (5.3.17)
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where k is an elliptic modulus.

From this point on we will be presenting a slight variation of a solution given by

Poole in [61, 62]. An approach closed to that of Poole’s can also be found in a paper

of Lagrange [48]. The paper of Lebedev [51] explores the same idea as well, using,

however, a different substitution.

The geometry of the problem at hand suggests the choice of a canonical form of

f as follows,

f = i a sn(u+ iv, k), (5.3.18)

where the elliptic modulus k is defined as k = a/b, so that 0 < k < 1. The compli-

mentary elliptic modulus k′ is defined via k2 + k′2 = 1. Also, let K and K ′ denote

the complete elliptic integrals with moduli k and k′, respectively,

K =

∫ π/2

0

dϕ√
1− k2 sin2(ϕ)

, 0 < k < 1, (5.3.19)

K ′ =

∫ π/2

0

dϕ√
1− k′2 sin2(ϕ)

, 0 < k′ < 1. (5.3.20)

Thus,

z + iρ = i a sn(u+ iv, k). (5.3.21)

Note that the function sn(u+ iv, k) gives the mapping of the quadrant {z < 0, ρ > 0}

onto the rectangle with vertices at (0, 0), (K, 0), (K,K ′), (0, K ′), in the (u, v)-plane.

To complete the mapping we reflect in the (z, ρ)-plane along z = 0, and in the (u, v)-

plane either along v = 0, or along u = K. The choice of f , as in (5.3.18), becomes

now transparent, since the curves u = const, v = const in the (z, ρ)-plane are confocal

bicircular quadrics with real foci at z = 0, ρ = a and ρ = a/k = b.

Using the complex argument formulas for elliptic functions [21, p. 24], one can

show that the coordinates u, v, ψ are related to the Descartes’ coordinates (x, y, z) in
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the following manner,

x =
a

1− dn2(u, k) sn2(v, k′)
sn(u, k) dn(v, k′) cos(ψ),

y =
a

1− dn2(u, k) sn2(v, k′)
sn(u, k) dn(v, k′) sin(ψ),

z = − a

1− dn2(u, k) sn2(v, k′)
cn(u, k) dn(u, k) sn(v, k′) cn(v, k′),

(5.3.22)

Also,

ρ(u, v) =
a sn(u, k) dn(v, k′)

1− dn2(u, k) sn2(v, k′)
(5.3.23)

Theorem 5.3.1 The equilibrium potential UµQ is given by

UµQ(u, v) = ρ−1/2

∞∑
n=0

an Ec2n
−1/2(i(1 + k)(u−K), k2) Ec2n

−1/2((1− k)v, k2), (5.3.24)

where Ec2n
m (z, k2) are periodic Lamé functions [4, pp. 63–75], orthogonal in L2((a, b), w),

with [a, b] = [0, K] or [a, b] = [−K ′, K ′]. The positive weight w is given by

w = (1 + k)2 (5.3.25)

In particular, for l, n = 0, 1, 2, . . .,∫ K′

−K′
Ec2l

m−1/2((1− k)v, k2) Ec2n
m−1/2((1− k)v, k2) (1 + k)2 dv = δln. (5.3.26)

The convergence of the series in (5.3.24) is understood in the sense of L2
w. The

coefficients an are determined from the boundary values of the potential UµQ, given

in (5.3.2). In other words, they can be readily found from the external field Q, using

orthogonality property (5.3.26).

5.3.2 Equilibrium density in the (u, v) coordinates

Recall, that according to (5.3.4), the density f(r) of the extremal measure µQ is

recovered from the equilibrium potential UµQ via

f(r) = − 1

4π

(
∂UµQ

∂n+

+
∂UµQ

∂n−

)
, (5.3.27)
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where n± are the inner and the outer normals to the ring R(a, b). Obviously, equation

(5.3.27) can be written as

f(r) =
1

2π

(
∂UµQ

∂z

)
z=0

. (5.3.28)

Since the equilibrium potential UµQ was computed above in (5.3.24) as a function of

the coordinates (u, v), we need to recast formula (5.3.28) into the coordinates (u, v)

as well.

Proposition 5.3.1 The density f of the extremal measure µQ in coordinates (u, v)

is of the following form,

f(v) =
b

2πa

√
r(v)√

b2 − r2(v)
√
r2(v)− a2

(
∂g(u, v)

∂u

)
u=K

, −K ′ ≤ v ≤ K ′, (5.3.29)

where r(v) := ρ(K, v) = a/dn(v, k′), and where

g(u, v) =
∞∑
n=0

an Ec2n
−1/2(i(1 + k)(u−K), k2) Ec2n

−1/2((1− k)v, k2), (5.3.30)

with an defined through the external field Q via the orthogonality relation (5.3.26), as

explained in Theorem 5.3.1 above.

5.4 Proofs

Proof of Theorem 5.2.1. Recalling that the extremal measure is absolutely contin-

uous with respect to the Lebesgue surface area measure, and invoking Lemma 4.3.8

of Chapter 4, for the Riesz s-potential U
µQ
s we have the following representation, for

x = (0, rx) ∈ D, with x ∈ Sd−2 and 0 ≤ a ≤ r ≤ b ≤ 1,

UµQ
s (x) =

∫
1

|x− y|s
dµ(y)

=
2π(d−2)/2

Γ(d/2− 1)

∫ b

a

f(ρ) ρd−2 dρ

∫ π

0

sind−3 ξ dξ

(r2 + ρ2 − 2rρ cos ξ)s/2

=
4 sin(λπ) π(d−3)/2 Γ(λ)

Γ((d+ 2λ− 3)/2)
r3−d

∫ b

a

f(ρ) ρ dρ

∫ min (r,ρ)

0

td+2λ−4 dt

(r2 − t2)λ (ρ2 − t2)λ
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This allows us to write integral equation (4.1.3) in the following form,∫ b

a

∫ min(ρ,r)

0

f(ρ) ρ td+2λ−4 dt dρ

(r2 − t2)λ (ρ2 − t2)λ

=
Γ((d+ 2λ− 3)/2)

4 sin(λπ) π(d−3)/2 Γ(λ)
rd−3 (FQ −Q(r)) , a ≤ r ≤ b.

(5.4.1)

We continue by working with the left hand side of equation (5.4.1). Splitting the

domain of integration for the variable ρ, we write∫ b

a

∫ min(ρ,r)

0

f(ρ) ρ td+2λ−4 dt dρ

(r2 − t2)λ (ρ2 − t2)λ
=

∫ r

a

∫ ρ

0

f(ρ) ρ td+2λ−4 dt dρ

(r2 − t2)λ (ρ2 − t2)λ

+

∫ b

r

∫ r

0

f(ρ) ρ td+2λ−4 dt dρ

(r2 − t2)λ (ρ2 − t2)λ
.

(5.4.2)

In the first integral on the right hand side of the above expression, we further split

the domain of integration as follows,∫ r

a

∫ ρ

0

f(ρ) ρ td+2λ−4 dt dρ

(r2 − t2)λ (ρ2 − t2)λ
=

∫ r

a

∫ a

0

f(ρ) ρ td+2λ−4 dt dρ

(r2 − t2)λ (ρ2 − t2)λ

+

∫ r

a

∫ ρ

a

f(ρ) ρ td+2λ−4 dt dρ

(r2 − t2)λ (ρ2 − t2)λ
.

(5.4.3)

Similarly, the second integral is split in the following way,∫ b

r

∫ r

0

f(ρ) ρ td+2λ−4 dt dρ

(r2 − t2)λ (ρ2 − t2)λ
=

∫ b

r

∫ a

0

f(ρ) ρ td+2λ−4 dt dρ

(r2 − t2)λ (ρ2 − t2)λ

+

∫ b

r

∫ r

a

f(ρ) ρ td+2λ−4 dt dρ

(r2 − t2)λ (ρ2 − t2)λ
.

(5.4.4)

We then change the order of integration in the second integral on the right hand side

of (5.4.3) as follows,∫ r

a

∫ ρ

a

f(ρ) ρ td+2λ−4 dt dρ

(r2 − t2)λ (ρ2 − t2)λ
=

∫ r

a

∫ r

t

f(ρ) ρ td+2λ−4 dt dρ

(r2 − t2)λ (ρ2 − t2)λ
. (5.4.5)

Combining the first integral on the right hand side of (5.4.3) with the first integral

on the right hand side of (5.4.4), we obtain∫ r

a

∫ a

0

f(ρ) ρ td+2λ−4 dt dρ

(r2 − t2)λ (ρ2 − t2)λ
+

∫ b

r

∫ a

0

f(ρ) ρ td+2λ−4 dt dρ

(r2 − t2)λ (ρ2 − t2)λ

=

∫ b

a

f(ρ) ρ dρ

∫ a

0

td+2λ−4 dt

(r2 − t2)λ (ρ2 − t2)λ
,

(5.4.6)
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while similarly combining the integral on the right hand side of (5.4.5) with the second

integral on the right hand side of (5.4.4) yields

∫ r

a

∫ ρ

t

f(ρ) ρ td+2λ−4 dt dρ

(r2 − t2)λ (ρ2 − t2)λ
+

∫ b

r

∫ r

a

f(ρ) ρ td+2λ−4 dt dρ

(r2 − t2)λ (ρ2 − t2)λ

=

∫ r

a

td+2λ−4 dt

(r2 − t2)λ

∫ b

t

f(ρ) ρ dρ

(ρ2 − t2)λ
.

(5.4.7)

Collecting the above calculations, we conclude that integral equation (5.4.1) is trans-

formed into∫ r

a

td+2λ−4 dt

(r2 − t2)λ

∫ b

t

f(ρ) ρ dρ

(ρ2 − t2)λ
+

∫ b

a

f(ρ) ρ dρ

∫ a

0

td+2λ−4 dt

(r2 − t2)λ (ρ2 − t2)λ

=
Γ((d+ 2λ− 3)/2)

4 sin(λπ) π(d−3)/2 Γ(λ)
rd−3 (FQ −Q(r)) , a ≤ r ≤ b.

(5.4.8)

Our goal now is to further transform the second term on the left hand side of equation

(5.4.8). For that we introduce the function g(u, t) as a solution of the following Abel-

type integral equation,∫ ρ

a

g(u, t) du

(ρ2 − u2)λ
=

1

(ρ2 − t2)λ
, a ≤ ρ ≤ b, (5.4.9)

where the variable t, such that 0 ≤ t ≤ a, is fixed. We thus obtain

∫ b

a

f(ρ) ρ dρ

∫ a

0

td+2λ−4 dt

(r2 − t2)λ (ρ2 − t2)λ

=

∫ b

a

f(ρ) ρ dρ

∫ a

0

td+2λ−4 dt

(r2 − t2)λ

∫ ρ

a

g(u, t) du

(ρ2 − t2)λ

=

∫ b

a

f(ρ) ρ dρ

∫ a

0

td+2λ−4 dt

∫ r

a

g(s, t) ds

(r2 − s2)λ

∫ ρ

a

g(u, t) du

(ρ2 − u2)λ

=

∫ r

a

ds

(r2 − s2)λ

{∫ b

a

f(ρ) ρ dρ

∫ ρ

a

du

(ρ2 − u2)λ

∫ a

0

g(s, t) g(u, t) td+2λ−4 dt

}
=

∫ r

a

ds

(r2 − s2)λ

{∫ b

a

du

∫ b

u

f(ρ) ρ dρ

(ρ2 − u2)λ

{∫ a

0

g(s, t) g(u, t) td+2λ−4 dt

}}
.

(5.4.10)

Let

G(s) =

∫ b

s

f(u)u du

(u2 − s2)λ
. (5.4.11)
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Combining (5.4.10) and (5.4.11), we recast equation (5.4.8) into∫ r

a

G(t) dt

(r2 − t2)λ
+

∫ r

a

ds

(r2 − s2)λ

{∫ b

a

G(u) du

{∫ a

0

g(s, t) g(u, t) td+2λ−4 dt

}}
=

Γ((d+ 2λ− 3)/2)

4 sin(λπ) π(d−3)/2 Γ(λ)
rd−3 (FQ −Q(r)) , a ≤ r ≤ b.

or, ∫ r

a

ds

(r2 − s2)λ

{
G(s) +

∫ b

a

G(u) du

{∫ a

0

g(s, t) g(u, t) td+2λ−4 dt

}}
=

Γ((d+ 2λ− 3)/2)

4 sin(λπ) π(d−3)/2 Γ(λ)
rd−3 (FQ −Q(r)) , a ≤ r ≤ b.

(5.4.12)

Equation (5.4.12) is an Abel-type integral equation with respect to the function

G(s) +

∫ b

a

G(u) du

{∫ a

0

g(s, t) g(u, t) td+2λ−4 dt

}
.

Solving this equation [60, # 44, p. 122], we obtain the following integral equation,

G(r) +

∫ b

a

G(u) du

{∫ a

0

g(r, t) g(u, t) td+2λ−4 dt

}
=

Γ((d+ 2λ− 3)/2)

2π(d−1)/2 Γ(λ)

d

dr

∫ r

a

(FQ −Q(ρ)) ρd−3 ρ dρ

(r2 − ρ2)1−λ , a ≤ r ≤ b.

(5.4.13)

We now turn our attention to evaluating the following expression, present on the right

hand side of last expression,

d

dr

∫ r

a

ρd−3 ρ dρ

(r2 − ρ2)1−λ .

Using the substitution r2 − t2 = r2z, after some elementary calculations we find that∫ r

a

ρd−3 ρ dρ

(r2 − ρ2)1−λ =
1

2
rd+2λ−3 B

(
1−

(a
r

)2

;λ,
d− 1

2

)
,

where B(z; a, b) is the incomplete Beta function defined in (4.1.1).

Now it is easy to see that

d

dr

∫ r

a

ρd−3 ρ dρ

(r2 − ρ2)1−λ =
d+ 2λ− 3

2
rd+2λ−4 B

(
1−

(a
r

)2

;λ,
d− 1

2

)
+
ad−1

r
(r2 − a2)λ−1.

(5.4.14)
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Finally we deal with the inner integral on the left hand side of equation (5.4.13). First

we recover the function g from integral equation (5.4.9). Applying [60, #41, p. 11],

we find that the function g is given by

g(ρ, t) =
2 sin(λπ)

π

d

dρ

∫ ρ

a

u du

(ρ2 − u2)1−λ (u2 − t2)λ
, 0 ≤ t ≤ ρ ≤ b. (5.4.15)

Using the substitution ρ2 − u2 = z, after some work we find that∫ ρ

a

u du

(ρ2 − u2)1−λ (u2 − t2)λ
=

1

2λ

(
ρ2 − a2

ρ2 − t2

)λ
2F1

(
λ, λ;λ+ 1;

ρ2 − a2

ρ2 − t2

)
.

Taking derivative of the last expression with respect to ρ, and inserting the result

into (5.4.15) produces a remarkably simple expression for the function g,

g(ρ, t) =
2 sin(λπ)

π

ρ

ρ2 − t2

(
ρ2 − a2

a2 − t2

)λ−1

, 0 ≤ t ≤ a ≤ ρ ≤ b. (5.4.16)

We therefore obtain∫ a

0

g(r, t)g(u, t) td+2λ−4 dt

=

(
2 sin(λπ)

π

)2

ru (r2 − a2)λ−1(u2 − a2)λ−1

∫ a

0

(a2 − t2)2(1−λ) td+2λ−4 dt

(r2 − t2) (u2 − t2)
.

After simple but fairly laborious calculations one finds that∫ a

0

(a2 − t2)2(1−λ) td+2λ−4 dt

(r2 − t2) (u2 − t2)
=

Γ((d+ 2λ− 3)/2)Γ(3− 2λ)

2 Γ((d− 2λ+ 3)/2)

ad−2λ+1

u2 − r2

×
{

1

r2 2F1

(
1,
d+ 2λ− 3

2
;
d− 2λ+ 3

2
;
(a
r

)2
)

− 1

u2 2F1

(
1,
d+ 2λ− 3

2
;
d− 2λ+ 3

2
;
(a
u

)2
)}

.

Denote

K(u, r) =
ad−2λ+1

u2 − r2

{
1

r2 2F1

(
1,
d+ 2λ− 3

2
;
d− 2λ+ 3

2
;
(a
r

)2
)

− 1

u2 2F1

(
1,
d+ 2λ− 3

2
;
d− 2λ+ 3

2
;
(a
u

)2
)}

,

(5.4.17)

and let

F (r) =
Γ((d+ 2λ− 3)/2)Γ(3− 2λ)

2 Γ((d− 2λ+ 3)/2)

d

dr

∫ r

a

Q(t) td−2 dt

(r2 − t2)1−λ , a ≤ r ≤ b.
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We can now rewrite integral equation (5.4.13) as follows,

G(r)− Γ((d+ 2λ− 3)/2)Γ(3− 2λ)

2 Γ((d− 2λ+ 3)/2)

∫ b

a

G(u)K(u, r) du

= FQ
Γ((d+ 2λ− 3)/2)

2π(d−1)/2 Γ(λ)

{
d+ 2λ− 3

2
rd+2λ−4 B

(
1−

(a
r

)2

;λ,
d− 1

2

)
+
ad−1

r
(r2 − a2)λ−1

}
− F (r), a ≤ r ≤ b.

(5.4.18)

Integral equation (5.4.18) is a Fredholm integral equation of the second kind. We

remark that its kernel K(u, r) is symmetric, that is K(u, r) = K(r, u), which can be

easily seen from expression (5.4.17).

It remains to mention that the constant FQ is determined using the fact that µQ

is a probability measure, that is its mass is one. We therefore find that∫ b

a

f(t) td−2 dt =
Γ((d− 1)/2)

2π(d−1)/2
.

Proof of Theorem 5.2.3. Recalling that the extremal measure µQ is absolutely

continuous with respect to Lebesgue area measure, with a locally bounded density,

that is dµQ = f(r) rdrdϕ, with f ∈ L1([0, 1]), integral equation (5.2.1) in the case

SQ = R(a, b) becomes∫ b

a

f(t) t dt

∫ 2π

0

dϕ√
r2 + t2 − 2rt cosϕ

= FQ −Q(r), a ≤ r ≤ b. (5.4.19)

First will will transform the right hand side of (5.4.19) to make it more suitable to
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our goals at this moment. We have the following string of simple transformations,

∫ b

a

f(t) t dt

∫ 2π

0

dϕ√
r2 + t2 − 2rt cosϕ

=

∫ b

a

f(t) t dt

∫ 2π

0

dϕ√
(r + t)2 − 4rt cos2(ϕ/2)

=

∫ b

a

2t

r + t
f(t) dt

∫ π

0

dϕ√
1− (2

√
rt/(r + t))2 cos2 ϕ

=

∫ b

a

4t

r + t
f(t) dt

∫ π/2

0

dϕ√
1− (2

√
rt/(r + t))2 sin2 ϕ

=

∫ b

a

4t

r + t
K

(
2
√
rt

r + t

)
f(t) dt,

(5.4.20)

where

K(k) :=

∫ π/2

0

dϕ√
1− k2 sin2 ϕ

, 0 < k < 1,

is the complete elliptic integral of the first kind.

Now observe that according to [37, p. 864],

K(k) =
1

1 + k
K

(
2
√
k

1 + k

)
, 0 < k < 1. (5.4.21)

With (5.4.21) in hand, we continue transforming the last integral in (5.4.20) as

4

∫ b

a

1

(r/t) + 1
K

(
2
√
r/t

(r/t) + 1

)
f(t) dt

= 4

{∫ r

a

1

(r/t) + 1
K

(
2
√
r/t

(r/t) + 1

)
f(t) dt

+

∫ b

r

1

(r/t) + 1
K

(
2
√
r/t

(r/t) + 1

)
f(t) dt

}

= 4

{∫ r

a

t

r

1

(t/r) + 1
K

(
2
√
t/r

(t/r) + 1

)
f(t) dt

+

∫ b

r

1

(r/t) + 1
K

(
2
√
r/t

(r/t) + 1

)
f(t) dt

}
= 4

{∫ r

a

t

r
K

(
t

r

)
f(t) dt+

∫ b

r

K
(r
t

)
f(t) dt

}
.

(5.4.22)
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We can now rewrite integral equation (5.4.19) as follows,∫ r

a

t

r
K

(
t

r

)
f(t) dt+

∫ b

r

K
(r
t

)
f(t) dt =

1

4
FQ −

1

4
Q(r), (5.4.23)

where a ≤ r ≤ b.

Now suppose we are given a prescribed density f of the extremal measure µQ,

which is of the form

f(r) = c, a ≤ r ≤ b, (5.4.24)

where c is a constant that will be evaluated later. Our task at this point will be to

evaluate an external field which generates this prescribed density.

Inserting expression (5.4.24) into integral equation (5.4.23) we derive, after some

easy algebra, that

Q(r) = FQ − 4rc

{∫ 1

a/r

uK(u)du−
∫ r/b

1

K(u)

u2
du

}
, a ≤ r ≤ b. (5.4.25)

According to [21, 610.01, p. 272], up to an additive constant,∫
uK(u)du = E(u)− (1− u2)K(u), (5.4.26)

while, again up to an additive constant, by [21, 612.05, p. 273],∫
K(u)

u2
du = −E(u)

u
, (5.4.27)

where

E(k) :=

∫ π/2

0

√
1− k2 sin2 ϕdϕ, 0 < k < 1,

is the complete elliptic integral of the second kind. Upon substituting (5.4.26) and

(5.4.27), we deduce that

Q(r) = FQ − 4c

{
E
(r
b

)
− rE

(a
r

)
+
r2 − a2

r
K
(a
r

)}
, a ≤ r ≤ b. (5.4.28)

We now evaluate a yet unknown constant c. Its value can be easily found from the

fact that µQ is a probability measure, that is, its mass is one. We thus have∫ b

a

∫ 2π

0

f(r) r dr dϕ = 1,
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and the substitution of (5.4.24) into the latter expression gives us the value of the

constant c,

c =
1

π(b2 − a2)
. (5.4.29)

We therefore finally obtain,

Q(r) = C− 4

π(b2 − a2)

{
E
(r
b

)
− rE

(a
r

)
+
r2 − a2

r
K
(a
r

)}
, a ≤ r ≤ b, (5.4.30)

where C is any real constant.

Proof of Theorem 5.3.1. The usefulness of coordinates (u, v) will become trans-

parent in a moment. First, it is not hard to see that the surface u = K is the surface

of the ring R(a, b). Indeed, setting u = K in (5.3.23), and noting that sn(K, k) = 1,

dn(K, k) = k′ [21, p. 20], we find that on the surface u = K,

ρ(K, v) =
a dn(v, k′)

1− k′2 sn2(v, k′)
=
a dn(v, k′)

dn2(v, k′)

=
a

dn(v, k′)
.

If v = 0, we find, using the facts that dn(0, k′) = 1, sn(0, k′) = 0 [21, p. 20],

ρ(K, 0) = a,

which gives the inner rim a of the ring R(a, b). If v = K ′, using the fact that

dn(K ′, k′) = k [21, p. 20], we infer

ρ(K,K ′) =
a

k
=
a b

a
= b,

which gives the outer rim b.

We proceed by computing the function F (u, v). Performing the calculations, we

find that

F (u, v) =−
{

(1− k) sn

(
i(1 + k)(u−K),

1− k
1 + k

)}2

+

{
(1− k) sn

(
(1 + k)v,

1− k
1 + k

)}2

.

(5.4.31)
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We continue by determining the separation constant m. We observe that the func-

tion ϕ must be a single-valued function of the coordinates x and y. However, the

coordinates x and y are clearly periodic functions of ψ, with period 2π, as can be

seen from (5.3.22). Hence, to ensure that the solution ϕ of the Laplace equation is a

single-valued function, we must require that the function eimψ is periodic with period

2π. This requirement translates into the restriction m ∈ Z. Without loss of generality

we may restrict ourselves to non-negative values of m.

Now we are equipped to write down the ordinary differential equations of the

second order for functions M and N . Inserting (5.4.31) into (5.3.14) and (5.3.15), we

obtain

M ′′(u) +

(
m2 − 1

4

)(
1− k
1 + k

)2

sn2

(
i(1 + k)(u−K),

1− k
1 + k

)
M(u)

= −h(1 + k)2M(u),

N ′′(v)−
(
m2 − 1

4

)(
1− k
1 + k

)2

sn2

(
(1− k)v,

1− k
1 + k

)
N(v)

= h(1 + k)2N(v).

(5.4.32)

(5.4.33)

We now analyze equations (5.4.32) and (5.4.33). The plan is to impose special

boundary conditions on functions M(u) and N(v), which will constitute a Sturm-

Liouville problem for equations (5.4.32) and (5.4.33). This will allow us to determine

the separation constant h, and the corresponding eigenfunctions.

Following Edélyi [4, pp. 46-47, p. 53]), we remark the following. The endpoints of

the intervals for u and v represent ∞ and the degenerate surfaces of our coordinate

system. The degenerate surfaces act as branch-cuts, and the requirement of continuity

of a potential across these branch-cuts translates into the boundary conditions.

For a potential regular inside or outside a surface u = const, we map the half-

plane ρ > 0 onto the rectangle with vertices at (0,±K ′), (K,±K ′) in the (u, v)-plane.

Note that v = −K ′ and v = K ′ are both images of the z = 0, ρ > k−1. It now

follows that N(v) must be a periodic solution of the differential equation (5.4.33),
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with period 2K ′. This condition determines the characteristic values of h, and the

corresponding characteristic function N(v). As the external field is assumed to be at

least continuous, an analog of Theorem 4.8 in [65, p. 55] shows that the equilibrium

potential will be continuous on the ring. For a potential continuous inside the surface

u = const, the continuity condition across u = K (z = 0, a < ρ < b) dictates that

M(u) at u = K and N(v) at v = 0 have the same parity. For a potential regular

outside the surface u = const, M(u) must remain finite at u = 0.

Under these boundary conditions, equations (5.4.32) and (5.4.33) possess solu-

tions, called periodic Lamé functions. Under the assumed boundary conditions, equa-

tion (5.4.33) will have two types of solutions, an even and an odd. Only the even

functions will be required, since they correspond to a potential regular inside the sur-

face u = K. We will follow the standard notation introduced in [4, p. 64], and denote

these even solutions by Ec2n
m (z, k2), and the value of h belonging to Ecnm(z, k2), will

be denoted by a2n
m (k2) [4, p. 64]. Therefore, the unique solution of Sturm-Liouville

problem for equation (5.4.33) exists if and only if h = a2n
m−1/2(k2), and has the form

N(v) = Ec2n
m−1/2((1− k)v, k2), −K ′ ≤ v ≤ K ′, n = 0, 1, 2, . . . (5.4.34)

Setting h = a2n
m−1/2(k2) in equation (5.4.32), we deduce that the only solution of that

equation is

M(u) = Ec2n
m−1/2(i(1 + k)(u−K), k2), 0 ≤ u ≤ K, n = 0, 1, 2, . . . (5.4.35)

From the Sturm-Liouville theory it follows that the periodic Lamé functions, cor-

responding to different characteristic values, are orthogonal in L2((a, b), w), where

[a, b] = [0, K] or [a, b] = [−K ′, K ′], with positive weight w, given by

w = (1 + k)2 (5.4.36)

In particular, for l, n = 0, 1, 2, . . .,∫ K′

−K′
Ec2l

m−1/2((1− k)v, k2) Ec2n
m−1/2((1− k)v, k2) (1 + k)2 dv = δln. (5.4.37)
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A detailed account on periodic Lamé functions is given in [4, pp. 63–75].

Taking into account the axial symmetry of the potential, we arrive at the following

expression for the equilibrium potential UµQ ,

UµQ(u, v) = ρ−1/2

∞∑
n=0

an Ec2n
−1/2(i(1 + k)(u−K), k2) Ec2n

−1/2((1− k)v, k2), (5.4.38)

where the convergence of the series in (5.4.38) is understood in the sense of L2
w. The

coefficients an are determined from the boundary values of the potential UµQ , given

in (5.3.2).

Proof of Proposition 5.3.1. First observe that, as UµQ(z, ρ) = UµQ(z(u, v), ρ(u, v)),

we have
∂UµQ

∂u
=
∂UµQ

∂z

∂z

∂u
+
∂UµQ

∂ρ

∂ρ

∂u
,

∂UµQ

∂v
=
∂UµQ

∂z

∂z

∂v
+
∂UµQ

∂ρ

∂ρ

∂v
.

This can be written in matrix form as(UµQ)u

(UµQ)v

 =

zu ρu

zv ρv


(UµQ)z

(UµQ)ρ

 .

Inverting, we obtain(UµQ)z

(UµQ)ρ

 =
1

zuρv − zvρu

 ρv −ρu

−zv zu


(UµQ)u

(UµQ)v

 .

Hence,

(UµQ)z =
(UµQ)uρv − (UµQ)vρu

zuρv − zvρu
.

From (5.3.10) it follows that zuρv − zvρu = ρ2
u + ρ2

v = |f ′|2, so that

∂UµQ

∂z
=

1

|f ′|2

(
∂UµQ

∂u

∂ρ

∂v
− ∂UµQ

∂v

∂ρ

∂u

)
Note that |f ′| 6= 0, as the mapping f is conformal.
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The surface of the ring in the coordinates (u, v) is given via setting u = K. Since

ρ(u, v) =
a sn(u, k) dn(v, k′)

1− dn2(u, k) sn2(v, k′)
,

we easily find, taking into account that cn(K, k) = 0,(
∂ρ

∂u

)
u=K

= 0.

Therefore, (
∂UµQ

∂z

)
z=0

=

{
1

|f ′|2

(
∂UµQ

∂u

∂ρ

∂v
− ∂UµQ

∂v

∂ρ

∂u

)}
u=K

=

{
1

ρ2
u + ρ2

v

(
∂UµQ

∂u

∂ρ

∂v
− ∂UµQ

∂v

∂ρ

∂u

)}
u=K

=

{
∂UµQ

∂u

(
∂ρ

∂v

)−1
}
u=K

.

The formula for the density f in coordinates (u, v) has the form

f(v) =
1

2π

{
∂UµQ

∂u

(
∂ρ

∂v

)−1
}
u=K

, −K ′ ≤ v ≤ K ′. (5.4.39)

We continue by evaluating ρv,

∂ρ

∂v
= −k′2asn(u, k) sn(v, k′) cn(v, k′)

1− dn2(u, k) sn2(v, k′)

+ 2a
sn(u, k) dn2(u, k) sn(v, k′) cn(v, k′)dn2(v, k′)

(1− dn2(u, k) sn2(v, k′))2
.

Taking into account that sn(K, k) = 1, dn(K, k) = k′, and dn2(v, k′) = 1−k′2sn2(v, k′),

we have(
∂ρ

∂v

)
u=K

= −k′2asn(v, k′) cn(v, k′)

1− k′2 sn2(v, k′)
+ 2k′2a

sn(v, k′) cn(v, k′)dn2(v, k′)

(1− k′2 sn2(v, k′))2

= −k′2asn(v, k′) cn(v, k′)

dn2(v, k′)
+ 2k′2a

sn(v, k′) cn(v, k′)dn2(v, k′)

dn4(v, k′)

= −k′2asn(v, k′) cn(v, k′)

dn2(v, k′)
+ 2k′2a

sn(v, k′) cn(v, k′)

dn2(v, k′)

= k′2a
sn(v, k′) cn(v, k′)

dn2(v, k′)

Thus, (
∂ρ

∂v

)
u=K

= k′2a
sn(v, k′) cn(v, k′)

dn2(v, k′)
. (5.4.40)
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Let

g(u, v) =
∞∑
n=0

an Ec2n
−1/2(i(1 + k)(u−K), k2) Ec2n

−1/2((1− k)v, k2), (5.4.41)

with an defined through the external field Q, as explained above. The equilibrium

potential UµQ can now be written as

UµQ(u, v) = ρ(u, v)−1/2 g(u, v)

=
1√
a

(
1− dn2(u, k) sn2(v, k′)

sn(u, k) dn(v, k′)

)1/2

g(u, v).

Furthermore,

∂UµQ

∂u
=

1√
a

1

2

(
1− dn2(u, k) sn2(v, k′)

sn(u, k) dn(v, k′)

)−1/2

g(u, v){
− sn2(v, k′) 2 dn(u, k)(−k2) cn(u, k) sn(u, k)

sn(u, k) dn(v, k′)

− 1− dn2(u, k) sn2(v, k′)

sn2(u, k) dn(v, k′)
2 sn(u, k) cn(u, k) dn(u, k)

}
+

1√
a

(
1− dn2(u, k) sn2(v, k′)

sn(u, k) dn(v, k′)

)1/2
∂g(u, v)

∂u
.

Knowing that cn(K, k) = 0, we find(
∂UµQ

∂u

)
u=K

=
1√
a

(
1− k′2 sn2(v, k′)

dn(v, k′)

)1/2 (
∂g(u, v)

∂u

)
u=K

=
1√
a

(
dn2(v, k′)

dn(v, k′)

)1/2 (
∂g(u, v)

∂u

)
u=K

=
1√
a

√
dn(v, k′)

(
∂g(u, v)

∂u

)
u=K

.

Thus (
∂UµQ

∂u

)
u=K

=
1√
a

√
dn(v, k′)

(
∂g(u, v)

∂u

)
u=K

. (5.4.42)

Finally, inserting (5.4.40) and (5.4.42) into (5.4.39), we obtain

f(v) = − 1

2π

{
∂UµQ

∂u

(
∂ρ

∂v

)−1
}
u=K

= − 1

2π

1

k′2a

dn2(v, k′)

sn(v, k′) cn(v, k′)

1√
a

√
dn(v, k′)

(
∂g(u, v)

∂u

)
u=K

= − 1

2π

1

k′2a3/2

dn3/2(v, k′)

sn(v, k′) cn(v, k′)

(
∂g(u, v)

∂u

)
u=K

.
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Hence the expression for the density takes the form

f(v) =
1

2π

1

k′2a3/2

dn3/2(v, k′)

sn(v, k′) cn(v, k′)

(
∂g(u, v)

∂u

)
u=K

, −K ′ ≤ v ≤ K ′. (5.4.43)

Note that f(v) becomes infinite on the rims of the ring, for having the factors sn(v, k′)

and cn(v, k′) in the denominator in (5.4.43). Indeed, this follows from the fact that

the rims of the ring correspond to v = 0 and v = K ′, while sn(0, k′) = 0 and

cn(K ′, k′) = 0. Furthermore, since r(v) := ρ(K, v) = a/dn(v, k′), it follows that

dn(v, k′) = a/r(v). A brief calculation reveals that

sn(v, k′) =
1

k′ r(v)

√
r2(v)− a2,

cn(v, k′) =
a

k′b r(v)

√
b2 − r2(v).

Hence,

f(v) =
b

2πa

√
r(v)√

b2 − r2(v)
√
r2(v)− a2

(
∂g(u, v)

∂u

)
u=K

, −K ′ ≤ v ≤ K ′. (5.4.44)
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moniques, Acta mathematica 71 (1939), 283–315.

[50] N. Landkof, Foundations of modern potential theory, Springer-Verlag, Heidel-

berg, 1972.

135



[51] N. N. Lebedev, The functions associated with a ring of oval cross-section, Tech.

Phys. USSR 4 (1937), 3–24.

[52] N. N. Lebedev and I. P. Skalskaya, The capacity of a thin flat circular ring, Tech.

Phys. USSR 62 (1992), 1–8.

[53] M. Lindow, Der kreisfall im problem der n+1 körper, Astron. Nach. 228 (1924),

234–248.

[54] Love E. R., Inequalities for the capacity of an electrified conducting annular disc,

Proc. Royal Soc. Edin. 74 (1976), 257–270.

[55] J. C. Maxwell, A treatise on electricity and magnetism, Dover Publ., New York,

1954.

[56] J.C. Maxwell, On the stability of the motions of Saturn’s rings, Macmillan and

Co., Cambridge, 1859.

[57] Y. Mizuta, Potential theory in Euclidean spaces, Gakkotosho Co., Ltd., Tokyo,

1996.

[58] J. W. Nicholson, Problems relating to a thin plane annulus, Proc. of the Royal

Soc. of London 101 (1922), 195–210.

[59] R. Peretz, Application of the argument principle to Maxwell’s conjecture for

three point charges, Complex Var. Elliptic Eqns 58 (2011), 715–725.

[60] A. Polyanin and A. Manzhirov, Handbook of integral equations (2nd ed.), CRC

Press, 2008.

[61] E. G. C. Poole, Dirichlet’s Principle for a Flat Ring, Proc. London Math. Soc.

29 (1929), 342–354.

136



[62] E. G. C. Poole, Dirichlet’s Principle for a Flat Ring (Second Paper), Proc. Lon-

don Math. Soc. 30 (1930), 174–186.

[63] I. Pritsker, Weighted energy problem on the unit circle, Constr. Approx. 23

(2006), 103–120.

[64] W. Rudin, Principles of mathematical analysis, McGraw-Hill, 3rd edition, 1976.

[65] E. Saff and V. Totik, Logarithmic potentials with external fields, Springer, Berlin

Heidelberg, 1997.

[66] R. Shail, Hyperspherical caps in generalized axially symmetric potential theory,

Zeitschrift für angewandte Mathematik und Physik 14 (1963), 326–334.

[67] W. R. Smythe, The capacitance of a circular annulus, Journal of Applied Physics

22 (1951), 1499–1501.

[68] I. N. Sneddon, Mixed boundary value problems in potential theory, John Wiley

& Sons, New York, 1966.
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