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Abstract: Pavement skid resistance and texture characteristics are important aspects of 

road safety. Traditional pavement friction measurement from limited contact with 

pavement is influenced by multiple factors such as temperature, water depth, and testing 

speed. Friction prediction from texture data has a potential to save resources and reduce 

inconsistence of friction measurement due to the existence of water and rubber in friction 

data collection. This dissertation investigates the application of pavement 2-dimensional 

/3-dimensional (2D/3D) texture data for friction evaluation from different perspectives.  

3D texture data with ultra-high resolution 3D laser scanner and friction data with 

Dynamic Friction Tester are collected on the Long Term Pavement Performance (LTPP) 

Specific Pavement Study 10 (SPS-10) site in Oklahoma. 2D macro-texture data with 

High Speed Profiler and friction data with Grip Tester are measured on 49 High Friction 

Surface Treatment (HFST) sites scattered in 12 states in the United States. 

Firstly, novel 3D parameters, rather than traditional texture indicators, are calculated for 

3D texture data to identify the most important and appropriate texture parameters for skid 

resistance evaluation. Pavement friction models including the identified 3D texture 

parameters are developed with fairly good accuracy. 

Secondly, the wavelet and deep learning methodologies are employed to better use 2D 

macro-texture data. Discrete wavelet transform is implemented to decompose 2D macro-

texture data, which are collected on six HFST sites in Oklahoma, into multiple 

wavelengths. The Total Energy and Relative Energy are calculated as indicators to 

represent macro-texture characteristics at various wavelengths. A robust non-contact 

friction prediction model incorporating energy indicators is proposed with good accuracy. 

In addition, FrictionNet, a Convolutional Neural Network based model, is developed to 

pairwise relationship between pavement texture and friction using 2D macro-texture 

profile as a whole. 49 HFST sites distributed in the 12 states are surveyed including 

various types of lead-in and lead-out pavement sections. The FrictionNet achieves high 

accuracy for training, validation, and testing in friction prediction.  

In summary, novel 3D texture parameters for 3D texture data are identified, and new 

computing technologies are implemented to better use 2D macro-texture data with 

respect to pavement friction evaluation. The results demonstrate the potential of using 

non-contact texture measurements for pavement friction evaluation. 
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CHAPTER I INTRODUCTION 

 

 

 

 

1.1 Background 

Pavement skid resistance properties play a significant role in road safety. It has long been 

recognized that adequate friction between the vehicle tire and pavement is a critical factor in 

reducing crashes and improving roadway safety. Some studies have reported that up to 13.5% of 

fatal crashes and 25% of all crashes happen during wet weather condition (Kuemmel et al., 2000). 

Therefore, it is important that Departments of Transportation (DOTs) monitor the friction of their 

pavement networks frequently and systematically to minimize friction-related vehicle crashes by 

ensuring that pavements provide adequate friction properties throughout their lives. A proactive 

friction management program can help identify areas that have elevated friction-related crash 

rates, investigate road segments with friction deficiencies, and prioritize use of resources to 

reduce friction-related vehicle crashes in a cost-effective manner (AASHTO, 2008;  Flintsch & 

McGhee, 2009). 

There are many devices currently used for measuring pavement friction, which can be categorized 

into three groups based on the friction measurement principles: (1) side-force friction testers (e.g. 

Mu-meter, ASTM E670-09); (2) slip-speed testers, including devices with 100% slip (e.g., 

Locked-wheel trailers ASTM E274-06), fixed slip tester (e.g. Grip Tester and Dynatest Highway  
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Friction tester, E2340/E2340M-11R15), and variable slip tester (e.g., Roar ASTM E1859/E1859M-

11R15); and (3) small slider testers (e.g. Dynamic Friction Tester, ASTM E1911-09a; and British 

Pendulum Tester, ASTM E0303-93R13). Full-scale friction measurement devices apply the first two 

principles, while the small testers are generally operated in a static manner. Dragging a testing 

tire/rubber pad across a road/specimen has been the most common approach in measuring the skid 

resistance of a road during the past decades (Flintsch et al., 2012). 

Pavement texture is a critical factor to maintain desired pavement skid resistance under traffic polish, 

and it is recognized as another safety factor contributing to crash ratios (Hall et al., 2009; Roe et al., 

1991; Roe et al., 1998). Pavement texture is defined as the deviations of pavement surface from a true 

planar surface, and normally two types of surface texture affect wet pavement friction: micro-texture 

(wavelengths of 1 µm to 0.5 mm) and macro-texture (wavelengths of 0.5 mm to 50 mm) (Henry, 

2000). Pavement micro-texture is mainly dependent on aggregate shape, angularity and texture, while 

macro-texture is a function of asphalt mix properties, compaction method, aggregate gradation, or 

groove treatment in some surfaces. Of fundamental importance on both wet and dry roads, especially 

important at low speeds, is the micro-texture, while macro-texture is critical to skid resistance on wet 

pavement for high speed (Flintsch et al., 2012).  

Pavement micro-texture is normally collected in laboratory statically through high resolution devices 

based on imaging analysis (Ergun et al., 2005; Dunford, 2012; Nataadmadja et al., 2012; Ueckermann 

et al., 2015). Pavement macro-texture can be measured via sand patch test, Circular Track Meter, or 

High Speed Profiler in terms of Mean Texture Depth (MTD) and Mean Profile Depth (MPD) in field 

(ASTM E965-15; ASTM E2157-15; Flintsch et al., 2012). It is widely accepted that minimal MPD or 

MTD should be maintained for various pavement surfaces with desired surface skid resistance for 

roadway safety over their lives (Henry, 2000; Dupont & Bauduin, 2005; Ahammed & Tighe, 2010). 
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1.2 Problem Statement 

Existing friction measurements universally require the contacting of testing rubbers/tires and 

pavement surface. Many factors, such as pavement temperature, water film depth, testing speed, and 

tire conditions, impact the consistency of friction measurement. The currently available friction 

testing devices require wetting pavement surface and consuming testing tires during data collection. 

Due to the limitation of water tank volume used in friction measurement, current skid resistance 

survey is generally performed at the project level on a needed basis. In addition, existing friction 

measurement methods rely on physical contact between testing tires/sliders and pavement, which 

cover only a small portion of pavement surface. Because of potential traffic wandering during time 

series friction data collection, the friction data could be measured along different paths resulting in 

inconsistent measurements. 

Additionally, due to the viscoelastic properties of friction testing tires, friction values could vary even 

for measurements on the same pavement section but at different pavement temperature. Temperature 

correction is needed to quantify the temperature variation in friction measurement (Jayawickrama & 

Thomas, 1998; Sang et al., 2008; Bijsterveld & Val, 2016). However, acquiring such adjustment 

factors could be challenging because the temperature variation is limited within a short period of time 

while traffic polishing on pavement is insignificant.  

Besides, acquired friction number decreases with the increase of testing speed (Sang et al., 2008). It is 

challenging to maintain the standard testing speed 64 km/h (40 MPH) in the field in many occasions, 

such as high volume roads with higher traffic speed or sharp curves. Accordingly, speed adjustment is 

necessary for comparing data collected at different speeds over different sites. In addition, friction 

measurements via traditional devices are also depending on contact pressure, water film depth, and 

the level of wearing of the testing tire.  
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Various studies have found the correlation between pavement friction and pavement texture. Various 

parameters, such as traffic level, aggregate characteristics, and pavement texture, were included to 

develop pavement friction prediction models (Ergun et al., 2005; Ahammed & Tighe, 2008; 

Ahammed & Tighe, 2012; Rezaei & Masad, 2013; Ueckermann et al., 2015). Other studies measured 

3-dimensional (3D) pavement macro-texture data in the field via high-speed laser scanners using a 

wide range of texture indicators and evaluated their relationships with pavement friction performance 

(Liu & Shalaby, 2015; Li et al., 2016). Several other research activities correlated pavement texture 

with friction performance using advanced data analysis methodologies including “Hilbert-Huang 

transform”, fractal analysis, power spectral analysis, and wavelet analysis (Hartikainen et al., 2014; 

Rado & Kane, 2014; Villani et al., 2014; Zelelew et al., 2014; Kane et al., 2015). A comprehensive 

evaluation of field performance for several high friction surface treatment (HFST) sites was 

conducted and no direct relationship was found between mean profile depth (MPD) and friction 

performance (Izeppi et al., 2010). There has been limited research to investigate the relationship 

between pavement friction and micro-texture based on 2-dimensional (2D) pavement profiles or 3D 

images with resolution up to 0.015 mm (Bitelli et al., 2012; Serigos, 2013; Kanafi et al., 2015; Li, 

2016). However, they relied on traditional texture parameters to characterize micro-texture property 

and failed to identify proper texture parameters to predict pavement friction performance. Despite 

extensive studies conducted in the past decades, the relationship between pavement texture and 

surface skid resistance has not been fully understood. 

With the development of non-contact 3D measurement technologies and the vast improvement in the 

computing and processing power of computers in the past decades, it is feasible and desirable to 

describe road surface texture in both macro- and micro-scale under 3D at high resolution. These 3D 

based indices and parameters not only promise a quantum leap in describing road surface texture 

characteristics, but also could provide in-depth understanding of the relationship between texture and 

friction for the purpose of replacing existing friction measurement methodologies. If such a 
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relationship between pavement friction and texture is proved to be rigorous, it may be feasible to 

apply non-contact pavement texture measurements for skid resistance analysis.  

On the other hand, pavement 2D macro-texture data has been collected extensively without contact at 

highway speed by transportation agencies. However, the analysis of pavement 2D macro-texture 

profile is usually limited to the calculation of traditional parameter MPD which is outdated and 

irrelevant to friction characteristics. To better use 2D macro-texture profile data, it is feasible to 

extract information or directly use rich profile data as a whole for friction prediction with advanced 

soft computing technologies.   

1.3 Research Objectives 

The objective of this work is to explore the potential relationship between pavement texture and 

surface skid resistance using soft computing techniques. An Ultra-high resolution 3D laser scanner 

named LS-40 and a Dynamic Friction Tester are used to collect high resolution 3D texture data and 

friction data on the Long Term Pavement Performance (LTPP) Specific Pavement Study 10 (SPS-10) 

site in Oklahoma. An AMES High Speed Profiler and a Grip Tester are employed to measure high 

speed macro-texture profile and friction data on 49 High Friction Surface Treatment (HFST) sites 

located in 12 states in United States. 

Specifically, the research aims to address the following sub-objectives:. 

 To better characterize pavement 3D texture attributes. Five categories of novel 3D 

areal parameters, including height parameters, function related parameters, hybrid 

parameters, spatial parameters, and feature parameters, are explored using the high 

resolution 3D texture data for friction evaluation. The most influential 3D macro- and 

micro-texture parameters which exhibit good correlation with friction data will be 

identified. 
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 To study the high speed texture profiles for better skid resistance characterization. 

Discrete wavelet transform is implemented to decompose pavement 2D macro-texture 

data into multi-scales. Two types of energy indicators, Total Energy (TE) and 

Relative Energy (RE), are calculated from the decomposed texture profiles to 

represent the characteristics of macro-texture at various wavelengths and investigate 

their suitability for pavement friction prediction.  

 To develop deep learning based friction perdition model using high speed texture 

profiles. A Convolutional Neural Network (CNN) friction prediction model is 

developed using high speed pavement texture data as a whole for friction prediction. 

49 high friction surface treatment (HFST) sites located in 12 states are tested with 

different surface types, including HFST, traditional flexible & rigid pavements with 

and without grooving, bridge deck. 80%, 10%, and 10% of the prepared data sets are 

randomly selected for model training, validation, and testing. 

1.4 Organization of Dissertation 

The following chapters are included in this dissertation to achieve the research objectives: 

 Chapter 2 – performs comprehensive literature review on pavement texture and 

measurement, pavement skid resistance and measurement, and relationship between 

pavement texture and skid resistance.  

 Chapter 3 – explores novel 3D texture parameters to characterize pavement 3D 

texture attributes. The core material volume and the peak density are identified as the 

most influential macro- and micro-texture parameters. A non-contact pavement 

friction prediction model with fairly good accuracy is therefore developed based on 

the selected 3D texture parameters. 
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 Chapter 4 – decomposes 2D macro-texture profiles into multi-scale via discrete 

wavelet methodology. Contribution of macro-texture at different wavelengths to 

friction performance is evaluated via energy indicators. A non-contact friction 

prediction model with good accuracy is proposed incorporating the 2D macro-texture 

energy indicators. 

 Chapter 5 – introduces FrictionNet as a non-contact friction prediction model which 

identifies the pairwise relationship of a whole 2D macro-texture profile and friction 

data. Variety of pavement types are considered, and the model achieves high accuracy 

in predicting friction number. 

 Chapter 6 – summarizes the conclusions in this dissertation and the recommended 

future works. 
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CHAPTER II LITERATURE REVIEW 

 

 

 

 

2.1 Pavement Texture and Measurement 

2.1.1 Pavement Texture 

Pavement texture is defined as the deviations of the pavement surface from a true planar surface 

(Hall et al., 2009). Two types of surface texture affect wet pavement friction: micro-texture 

(wavelengths of 1µm to 0.5mm) and macro-texture (wavelengths of 0.5mm to 50mm) (Henry, 

2000). As Figure 2.1 shows, micro-texture is the degree of roughness imparted by individual 

aggregate particles, whereas macro-texture is the degree of roughness imparted by the deviating 

among particles. Micro-texture is generally provided by the relative roughness of the aggregate 

particles in asphalt pavement, and by the fine aggregate in concrete surface. Macro-texture is 

generally provided by proper aggregate gradation in asphalt pavement, and by a supplemental 

treatment such as tinning, broom, diamond grinding, or grooving for concrete surface. 
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Figure 2.1 Micro-texture and Macro-texture (Flintsch et al., 2003) 

Currently there is no national wide specification on pavement texture within the U.S. while some 

countries provide following requirement to maintain proper performance of pavement texture. 

Great Britain attempted to provide a MTD of 1.5 mm (0.06 in.) for new asphalt pavements, and 

Minnesota required a MTD greater than 0.8 mm (0.03 in.) on new concrete surfaces (Henry, 

2000). Current British specification also requested a minimum 0.65 mm (0.026 in.) sand patch 

MTD for transversely textured new concrete surfaces while 1.0 mm (0.039 in.) laser-based MTD 

to meet the skid resistance requirement (Ahammed & Tighe, 2010). France had established 

specifications from ≥ 0.40 mm (0.016 in,) to ≥ 0.70 mm (0.028 in.) glass beads MTD on urban 

and suburban roads depending on speed, longitudinal grade, and number of lanes per direction; as 

rural (interurban) roads, the desired glass beads MTD varied from ≥ 0.60 mm (0.024 in.) to ≥ 

0.80 mm (0.031 in.) depending on speed, longitudinal slope, curve radius, and number of lanes 

per direction (Dupont & Bauduin, 2005). China specified texture depth (TD) greater than 0.55 

mm (0.022 in.) on asphalt interstate pavements, and TD varies from 0.77 mm (0.03 in.) to 1.1 mm 

(0.043 in.) on interstate concrete pavements. Larson et al. (2008) had recommended a minimum 

macro-texture for Ohio, which is the same as the French specification for intervention at network 

level, but a 1.0 mm (0.039 in.) as an investigatory (desirable) value for network as well as project 

levels. Threshold of texture depth on trunk roads to maintain good skid resistance for high speeds 
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at different levels were summarized as following: > 1.1 mm (0.043 in.) as ‘Sound’, 0.8 mm 

(0.031 in.) – 1.1 mm (0.043 in.) as ‘Some Deterioration’, 0.4 mm (0.016 in.) – 0.8 mm (0.031 in.) 

as ‘Warning Level of Concern’ and < 0.4 mm (0.016 in.) as ‘Severe Deterioration Requiring 

Urgent Investigation and Possible Remedial Action’ (Viner et al., 2006). 

Researches on relating pavement texture to crash ratio, pavement texture variation, and texture 

maintenance level have been conducted. Roe et al. (1991) applied high-speed texture meter to 

assess texture depth, and claimed that coarse macro-texture related less accident than fine texture, 

and accident risk started to increase when texture depth was less than 0.7 mm (0.028 in.). Sensor-

measured texture depth was also identified a critical point of the effect of texture depth on loss of 

friction: below 0.7 mm (0.028 in.), less friction was observed due to the lower texture depth (Roe 

et al., 1998). Kanafi et al. (2015) monitored variation of pavement texture and observed macro-

texture reduction and micro-texture increase during summer time. Early rapid reduction followed 

by an increase and subsequent gradual decline of macro-texture change of asphalt concrete 

samples in lab was observed by close range photogrammetry with proprietary photogrammetric 

software (Millar et al., 2009). Wavelet analysis was applied to interpret macro-texture collected 

by CT meter to determine the wavelength ranges and energy content that affect the macro-texture 

properties of asphalt pavements (Zelelew et al., 2013; Zelelew et al., 2014). 
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2.1.2 Texture Measurement 

 
(a) Sand Patch Method 

 
(b) Outflow Meter Device 

Figure 2.2 Traditional Macro-texture Measurement 

ASTM has two standards relating to traditional pavement macro-texture measurement: E965-15 

“Standard Test Method for Measuring Pavement Macro-texture Depth Using a Volumetric 

Technique” and E2380/E2380M-15 “Standard Test Method for Measuring Pavement Texture 

Drainage Using an Outflow Meter” (Figure 2.2). In E965, Mean Texture Depth (MTD) is 

calculated by dividing sample volume to the area covered by the material and reported as texture 

indicator. In E2380, the outflow meter time is recorded to indicate pavement drainage 

information and MTD is estimated to represent texture information. Therefore sand patch test 

only captures pavement texture information, whereas the test by outflow meter relates the texture 
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to the drainage capacity and provides an indication of pavement hydroplaning potential under wet 

conditions. The Grease Smear Method is applied to evaluate airport pavement macro-texture by 

FAA, and texture depth requirement for runway is also documented in AC 150/5320-12C (FAA, 

1997). Doty (1974) compared sand patch and outflow meter methods and concluded poor to fair 

repeatability of sand patch test. Pidwerbesky et al. (2006) applied fast Fourier transform to 

analyze the texture image collected on chip seal pavement and verified the potential to replace 

sand patch test by digital image process. Sarsam and Ali (2015) compared sand patch test and 

close range photogrammetric approaches, and high correlation between these two devices 

indicated that photogrammetric approach could produce permanent documentation of texture 

condition with lower cost and comparable accuracy. 

 

Figure2.3 Circular Track Meter 

ASTM E2157-15 “Standard Test Method for Measuring Pavement Macro-texture Properties 

Using the Circular Track Meter” introduces a laser based static device to collect pavement macro-

texture profile (Figure 2.3). The CT meter is designed to measure the same circular track that is 

measured by the Dynamic Friction Tester. The computer software can process the data to report 
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either the Mean Profile Depth (MPD) in accordance with Practice ASTM E1845 or the RMS or 

both for collected texture profile. Prowell and Hanson (2005) applied CT meter to collect macro-

texture profiles on different asphalt sections and concluded CT meter produced comparable result 

with the ASTM E965 sand patch test. Watson et al. (2011) collected texture data on different 

locations by CT meter and demonstrated greater texture number existed in warmer months than 

the cooler months. 

 

(a) LS-40 Scanner 

 

(b) 3D Pavement Surface View 

Figure 2.4 LS-40 Portable 3D Surface Analyzer 
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A 3D surface measurement and analysis device, named LS-40 Portable 3D Surface Analyzer 

(Figure 2.4), scans a 4.5” by 4” areas and produces a high resolution (0.01mm) digital surface 

structure with an intensity image and a surface depth related range image. LS-40 provides the 

data to calculate mean profile depth (MPD) by processing thousands of profiles over the entire 

scanned surface according to ASTM E1845 specifications, with optional processing modules of 

measuring other surface features, such as aggregate form factor, angularity calculation based on 

multiple contour measurements, and micro-texture indicators, such as Slope Variance (SV) and 

Root Mean Square (RMS). LS-40 can be not only used in the laboratory, but also be placed on a 

localized pavement surface area in the field to collect 2048 times 2448 cloud points at ultra-high 

resolution of 0.01mm (0.0004 inches). Liu and Shalaby (2015) applied photometric stereo device 

to collect and reconstruct pavement 3D surface, calculated simulated mean texture depth, root-

mean-square roughness, skewness and kurtosis to relate texture to noise and friction performance. 

 

Figure 2.5 RoboTex (Moravec 2013) 

RoboTex is a line laser-based pavement texture profiler proposed by Transtec Group with 

capability of producing 3D texture images continuously (Figure 2.5). It measures in three 

dimensions with sub-millimeter accuracy and produce standard texture metrics such as MPD. 
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Figure 2.6 Stationary Laser Profilometer (Miller et al. 2012) 

Stationary Laser Profilometer (SLP) is another line laser-based stationary pavement texture 

profiler with high repeatability (Figure 2.6). SLP could capture the micro-texture and macro-

texture spectrum of asphalt mixtures and generate corresponding parameter to characterize 

pavement texture properties (Miller et al., 2012; Chen et al., 2015). 

 

Figure 2.7 High Speed Profiler 

There are also many High Speed Profilers (Figure 2.7) that collecting pavement texture profile 

and calculating MPD in network evaluation. McGhee et al. (2003) conducted validation 

experiment of high-speed texture measuring equipment, and the result demonstrated extremely 
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well correlation with the static referencing device. Flintsch et al. (2012) pointed out a device that 

measures friction and macro-texture concurrently was needed to determine both low-speed and 

high-speed friction performance from a single measurement pass. Moreover, measurement of 

pavement micro-texture is still limited by laser’s accuracy and more research should incorporate 

micro-texture to predict pavement skid resistance. 

2.2 Pavement Skid Resistance and Measurement 

2.2.1 Pavement Skid Resistance 

Hall et al. (2009) concluded pavement friction was the force that resists the relative motion 

between a vehicle tire and a pavement surface. Pavement friction is the result of a complex 

interplay between two principal frictional force components—adhesion and hysteresis (Figure 

2.8). Adhesion is the friction that results from the small-scale bonding/interlocking of the vehicle 

tire rubber and the pavement surface as they come into contact with each other. It is a function of 

the interface shear strength and contact area. The hysteresis component of frictional forces results 

from the energy loss due to bulk deformation of the vehicle tire. That loss leaves a net frictional 

force which can help to stop the forward motion. Najafi et al. (2015) revealed pavement friction 

coefficient was a critical factor influencing the crash ratios on both wet and dry condition for 

urban roads.  

Friction numbers less than 38 should be reported to the transportation divisions in North Carolina 

for possible surface treatment or resurfacing of the pavement (Corley-Lay, 1998). Friction 

number 30 (20) tested with ribbed (smooth) tire according to ASTM E 274 is defined as threshold 

for further investigation and remedial action in California, Michigan and New York (Virginia) 

(McGovern et al., 2011). The Mu values, collected via Scandinavian Airport and Road Systems 

AB (SARSYS) Friction Tester (SFT), below 0.6 require planning maintenance, and of 0.5 are the 

minimum acceptable value according to Federal Aviation Administration’s criteria (Watkins et 

al., 2010). 
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Figure 2.8 Key Mechanisms of Pavement-Tire Friction (Hall et al., 2009) 

Because adhesion force is developed at the pavement–tire interface, it is most responsive to the 

micro-level asperities (micro-texture) of the aggregate particles contained in the pavement 

surface. In contrast, the hysteresis force developed within the tire is most responsive to the 

macro-level asperities (macro-texture) formed in the surface via mix design and/or construction 

techniques. As a result of this phenomenon, adhesion governs the overall friction on smooth-

textured and dry pavements, while hysteresis is the dominant component on wet and rough-

textured pavements. Labbate (2001) considered pavement surface condition (including asphalt 

type, nominal aggregate size, and texture depth) and contact area (considering tire loading, 

inflation pressure and type of tire) simultaneously to investigate the pavement skid resistance 

performance. The result implied dynamic trend of skid resistance development: an initial loss in 

early life followed by an increase and thereafter a reduction to equilibrium conditions. 

Hall et al. (2009) grouped four categories factors that influencing pavement friction force: 

pavement surface characteristics, vehicle operational parameters, tire properties, and 

environmental factors. Pavement surface texture is characterized by the asperities present in a 

pavement surface. Such asperities may range from the micro-level roughness contained in 

individual aggregate particles to a span of unevenness stretching several feet in length.  
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The influence of asphalt mixture type and Portland cement concrete surface textures on pavement 

friction performance had been widely studied (Asi, 2007; Ahammed & Tighe, 2008). Studies also 

found that air temperature and pavement temperature could affect pavement friction performance 

in short- and long-term, and at low testing speed, friction tended to decrease with increasing of 

pavement temperature while vice versa for high testing speed (Luo, 2003; Fuents, 2009; Jahromi 

et al., 2011). Roe et al. (1998) claimed that friction decreased with the increase of testing speed 

and reached the minimum level by about 100 km/h for smooth tire, the level of high-speed 

friction depended on a large extent on the low-speed friction, and friction on surfaces with low 

texture depth fell more rapidly with speed increasing than for coarse textured surfaces. Wilson 

(2006) identified up to 30% variation of friction performance over short period and seasonal 

variation of friction coefficient was not obvious nor predictable sinusoidal shape. Kotek and 

Florkova (2014) did long time friction monitoring on various pavements and derived that friction 

coefficient were affected by characteristics such as age of wearing course, traffic intensity, and 

climate conditions of pavement, and there was no definite dependency of friction on traffic 

intensity. Dan et al. (2015) measured friction coefficient on pavement specimen with different 

age, water, snow, ice, and temperature condition, the result implied that new pavement exhibited 

higher sensitivity to temperature variation in friction performance than other factors, and the 

friction evaluation models and friction levels for different pavement conditions were proposed. 
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2.2.2 Skid Resistance Measurement 

 

Figure 2.9 Machine Wehner/Schulze (Do et al., 2007) 

Wehner-Schulze machine was developed in Germany and widely used in polishing and 

measuring skid resistance and macro- or micro-texture profile of aggregate or pavement mix 

specimen (Figure 2.9). Kane et al. (2010) utilized Wehner-Schulze-machine to simulate the 

polishing process and measure friction on pavement specimen in lab, and developed a model to 

predict texture or friction evaluation due to traffic polish. Ueckermann et al. (2015) employed 

Wehner/Schulze machine in lab and ViaFriction in field to collect friction data and validate the 

proposed rubber friction model which can calculate skid resistance based on the measured 

texture. Do et al. (2007) applied Webner/Schulze machine to collect skid resistance as well as 

texture profiles of asphalt mix under different traffic polishing levels, and compared the result 

with field test of friction performance. The result demonstrated that once the asphalt binder was 

removed, the pavement friction performance was controlled mainly by the micro-texture of 

aggregate. Studies using Wehner-Schulze machine to predict pavement or aggregate skid 

resistance can be found in other references (Do et al., 2009; Arampamoorthy & Patrick, 2011; 

Chen & Wang, 2011; Dunford et al., 2012; Dunford, 2013; Friel et al., 2013,). 
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Figure 2.10 British Pendulum Tester 

The British Pendulum Tester (BPT) is a dynamic pendulum impact-type tester used to measure 

the energy loss when a rubber slider edge is propelled over a test surface (Figure 2.10). ASTM 

E0303-93R13 illustrates the procedure for measuring surface friction properties using the BPT. A 

drag pointer indicates the BPT Number: the greater the friction between the slider and the test 

surface, the more the swing is retarded, and the larger the BPN reading. Steven (2009) established 

a temperature correction equation for the BPT and evaluated the influence of different operators, 

instruments, levels of slider pad wear and temperature. Asi (2007) applied BPT to evaluate skid 

resistance performance of different pavement mixes considering different binder contents, 

different aggregates along with different mixture design procedures. 
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Figure 2.11 Dynamic Friction Tester 

ASTM E1911-09a provides specification on measuring paved surface frictional properties using 

the Dynamic Friction Tester (DFT) (Figure 2.11). The DFT consists of a horizontal spinning disk 

fitted with three spring loaded rubber sliders. The water is sprayed in front of the sliders and a 

constant load is applied to the slider as the disk rotates on the test surface. The torque is 

monitored continuously as the disk rotational velocity reduces due to the friction between the 

sliders and the test surface, and then used to calculate the friction coefficient at 20, 40, 60, and 80 

km/h. 

 

Figure 2.12 Locked-Wheel Skid Trailer 
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The Locked-Wheel Skid Trailer (ASTM E274-06) measures the steady-state friction force on a 

locked test wheel as it is dragged under constant load and at constant speed (typically at 64 km/h 

[40 mph]) over a wet pavement surface (Figure 2.12). In this test, water is sprayed on the 

pavement surface in front of the test tire when the tire reaches test speed in order to simulate wet 

conditions. Friction of the pavement surface is determined from the resulting force or torque and 

is reported as skid number (SN). A higher SN indicates greater frictional resistance. Friction 

measured from this device is related to braking without antilock brakes. The Locked-Wheel Skid 

Trailer operates with a slip ratio of unity. Both rib and smooth tires can be used in the test, as 

standardized by ASTM E501-94 and ASTM E524-88, respectively. Kotek and Kovac (2015) 

measured pavement skid resistance by different tires, and inferred that micro-texture had more 

influence on friction coefficient tested by tread tire because the grooves in the tire tread provide 

channels much larger than the macro-texture of pavement surfaces, while macro-texture 

contributed more variation to friction performance measured with smooth tire. 

 

Figure 2.13 Mu-Meter 

Another method testing side force friction on paved surface is pulling the Mu-Meter (Figure 2.13) 

over a pavement surface at a constant speed while the test wheels are under a constant static load. 
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(ASTM E670-09). This method provides data of the side force friction (and other data) along the 

whole length of the test surface being tested which is applied to a variety of computerized 

algorithms enabling the production of results including (but not limited to) rolling averages, 

numeric and graphical representations, friction mapping and reports formatted in the layout 

approved by a wide variety of national airport regulators. 

 

Figure 2.14 Grip Tester 

Grip Tester (Figure 2.14) has been used in recent years by FHWA on many demonstration 

projects in the United State. It is designed to continuously measure the longitudinal friction along 

the wheel path operating around the critical slip of an ABS at highway speed across the entire 

stretch of a road with much lower water consumption, which can provide greater detail about 

spatial variability and be an ideal option for project and network level friction management. The 

device has the capability to test at highway speeds (50 mph/80 km/h) as well as low speeds (20 

mph/32 km/h) using a constant water film thickness. The collected data are recorded in 3-ft (0.9 

m) intervals by default and can be adjusted by the user. It also follows ASTM E274 - 11 

"Standard Test Method for Skid Resistance of Paved Surfaces Using a Full-Scale Tire". 
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ASTM E1960 (2015) introduced the calculation procedure to produce the International Friction 

Index (IFI) from pavement macro-texture and wet pavement friction by different devices using 

smooth tread test tire. Yager (2013) also covered other pavement friction and texture measuring 

devices used in airport runway survey worldwide and provided friction rating based on friction 

readings of different equipment. Detailed requirement, maintenance procedure and relevant 

measuring equipment for airport pavement skid resistance management were documented in FAA 

AC 150/5320-12C (FAA, 1997). 

2.3 Relationship between Pavement Texture and Skid Resistance 

Various researches were conducted in past decades to explore the relationship between pavement 

texture and skid resistance performance. Gardiner et al. (2004) measured friction on sites with 

Superpave and Marshall Mix designs, the result revealed that friction related more to the nominal 

maximum size of aggregate, which is the key factor in change in pavement surface macrotexture, 

rather than mix design practices. Li et al. (2007) evaluated the influence of the aggregates 

characteristics on pavement friction performance considering different mixture designs and 

texture properties, and concluded coarse aggregate pavement generated more consistent friction 

performance than other regular mixes. Asi (2007) did friction test over different pavement mixes, 

the result implied that harder aggregate induced higher friction value while vice versa for asphalt 

content. Kumar and Wilson (2010) demonstrated more than 24% improvement in skid resistance 

performance when Grade 6 was used comparing with Grade 4 for two geologically similar 

sourced aggregate chips. 

Dr. Masad and his team did a lot of research on aggregate texture and its relationship to HMA 

pavement surface skid resistance. Masad (2007) measured the skid resistance of pavements 

constructed using three different aggregate sources and three different aggregate gradations. The 

skid resistance was found to be related not only to average aggregate texture, but also to the 

texture distribution within an aggregate sample. The developed method can be used in models for 
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predicting the change in asphalt pavement skid resistance as a function of aggregate texture, 

mixture properties, and environmental conditions. Masad et al (2009) and Rezaei et al. (2009) 

developed a model to determine the skid resistance (IFI) of an asphalt mixture based on aggregate 

characteristics and gradation. The parameters of this model were determined as functions of 

initial and terminal aggregate texture, rate of change in aggregate texture after different polishing 

intervals, and the Weibull distribution parameters describing aggregate gradation. A lot aggregate 

properties measurement in surface mixes and conducted field pavement friction and texture 

measurements on selected sections were finished. Consequently, a method and software were 

developed for predicting asphalt pavement skid resistance incorporating aggregate resistance to 

polishing, mixture gradation, and traffic (Masad et al., 2010; Masad et al., 2011; Rezaei & Masad, 

2013). 

Do et al. (2009) proposed a predictive model of the skid resistance incorporating the polishing, 

the binder removal and the ageing effect, and the predictions exhibited similar trend as the field 

observations. Goodman (2009) did friction and texture measurement on pavement with different 

asphalt mixtures at various levels of polishing in lab and field, and developed series of models 

introducing friction and texture at the mix design stage. Kassem et al. (2013) conducted a series 

of lab test with the objective to develop a predictive model for friction loss on pavement surface. 

Tests demonstrates aggregate with higher hardness has higher abrasive resistance. Coarse 

aggregate gradation shows bigger MPD value than fine mixture, while micro-texture decreases 

with increasing of polishing number and decreasing of aggregate hardness. Finally, the 

international friction index (IFI) predictive model was built considering texture, aggregate 

angularity, and aggregate gradation. Arambula et al. (2013) concluded aggregate with higher 

soundness value and polishing resistance such as (SAC-A) exhibited higher friction number than 

SAC-B. Ahammed and Tighe (2012) summarized an equation to predict skid number considering 

MTD, vehicle speed along and aggregate type with a fair correlation. Researchers employed CT 
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meter and DF Tester to obtain pavement texture and friction data, and decomposed texture by 

‘Hilbert-Huang transform’ into ‘base intrinsic mode functions’ to predict friction (Rado & Kane, 

2014; Kane et al., 2015).  

Other researchers try to predict pavement skid resistance by incorporating pavement micro-

texture. Ergun et al. (2004) measured friction and macro-texture of pavement on road sections 

with different surface characteristics in Belgian. Micro-texture measurement of pavement core 

sample token at same sections were conducted in lab. Finally, after statistically analyzing on 

micro- and macro-texture, a new model is founded to predict road surface friction. Results show 

that at any speed there are strong effects from both macro- and micro-texture on road surface 

frictions. Serigos (2013) collected pavement micro-texture by AMES Laser Texture Scanner 

(LTS) which can collect 1 point every 0.015 mm. After analyzing the accurate texture profile, the 

research realized skid resistance at low speeds of the wet pavement surfaces was significantly 

affected by both the micro-and the macro-texture of the pavement surface. Incorporating the 

characterization of the surface micro-texture to the macro-texture significantly improved the 

prediction of the pavement skid resistance. In another research, micro-texture was measured by a 

laser scanner with 0.015mm resolution, Slop Variance (SV) and Root Mean Square (RMS) were 

calculated based on micro-texture profile and researcher stated pavement friction number 

increases as micro-texture SV and RMS values increase (Li et al, 2015). Ueckermann et al. 

(2015) measured pavement macro- and micro-texture by optical testing system and proposed a 

rubber friction model to predict surface skid resistance, and concluded non-contact skid resistance 

measurement was possible in the future. 

2.4 Summary 

In a summary, there are tremendous researches on pavement texture and surface skid resistance 

properties. However, the relationship between pavement texture and friction is not fully 

understood yet. For one reason, these two have been recognized as individual aspects of 
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pavement surface characteristics for a long time. The data collection and data analysis of 

pavement friction is different from that for pavement texture. For another reason, pavement 

texture is just one of factors affecting pavement friction measurement result. Parameters such as 

pavement temperature, testing speed, testing tire slip ratio, and so on, also bring influence to the 

collected friction data. 

Secondly, although there are studies trying to relate pavement texture and friction data, the results 

are limited to small number of pavement types or finite accuracy performance. Research focus on 

the contribution of pavement micro-texture to friction is limited in the field. A friction prediction 

model with consistently high accuracy for various roads is not available yet. Finally, with the 

development of survey technology and computing power of computers, it is possible to provide 

in-depth understanding of the relationship between texture and friction for the purpose of 

developing friction prediction model with consistently high accuracy to replace existing friction 

measurement methodologies. Therefore, the object of this study is to exploring pavement 2D/3D 

texture data and surface skid resistance using soft computing techniques to perform non-contact 

pavement friction evaluation. 
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CHAPTER III NOVEL MACRO- AND MICRO-TEXTURE INDICATORS FOR 

PAVEMENT FRICTION USING HIGH-RESOLUTION 3D SURFACE DATA 

 

 

 

 

3.1 3D Areal Texture Parameters 

After a thorough literature review, there are five different categories of 3D areal parameters used 

in various areas: height parameters, volume parameters, hybrid parameters, spatial parameters, 

and feature parameters, all of which are calculated and used to relate pavement texture 

characteristics to friction performance in this study. The first four categories of parameters are 

generally classified as field parameters which are calculated using all the data point measured in a 

3D surface. The last category is calculated based upon the features which play specific role in a 

particular function on a 3D image. For each category, several different texture parameters are 

used for various purposes. The definitions of the 3D areal parameters and their calculations for 

each category are provided in the following sections. 

3.1.1 Height Parameters 

The arithmetic mean height (Sa), the root mean square height (Sq), the skewness (Ssk), the 

Kurtosis (Sku), the maximum height of the surface (Sp, Sv, and Sz), and the traditional MPD are 

typical height texture parameters. The definitions of Sa, Sq, Ssk, and Sku are shown in Equation 1 

individually 

𝑆𝑎 =
1

𝐴
∬ 𝑧(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

𝐴
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𝑆𝑞 = √
1

𝐴
∬ 𝑧2(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

𝐴

 

𝑆𝑠𝑘 =
1

𝑆𝑞
3

1

𝐴
∬ 𝑧3(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

𝐴

 

𝑆𝑘𝑢 =
1

𝑆𝑞
4

1

𝐴
∬ 𝑧4(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

𝐴
                                                (3.1) 

Where z(x, y) is the height of pixel in mm at location (x, y) within the 3D image (Leach, 2012). 

Sp is the maximum peak height, Sv is the maximum pit height, and Sz is the maximum height of 

the surface (Leach, 2012). The calculation of MPD is defined in ASTM standard (ASTM E1845-

15), which only considers the average height of the two highest peaks of two 50 mm profile 

segments. Sa is generally used to capture the roughness variation of road surfaces under traffic 

wear in laboratory (Dunford, 2012). Sa and Sq are insensitive in differentiating peaks, valleys and 

the spacing of the various texture features, thus pavement surfaces with same Sa or Sq may 

function quite differently (Michigan Metrology, 2014). 

3.1.2 Volume Parameters 

 

(a) Definition of Material Ratio (27) 

Cutting Plane 

Bearing Surface 
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(b) Areal Material Ratio Curve 

Figure 15 Calculation of Volume Parameters 

The volume parameters, including the void volume (Vv), the material volume (Vm), the peak 

material volume (Vmp), the core material volume (Vmc), the core void volume (Vvc) and the 

dales void volume (Vvv), are function related parameters (Leach, 2012;Michigan Metrology, 

2014). The material ratio (mr), defined in Figure 3.1(a), is the ratio in percentage of the length of 

bearing surface at any specified depth in a profile (Michigan Metrology, 2014). mr simulates 

surface wear of a 3D pavement surface which provides a bearing surface for vehicle tires. As the 

cutting plane moves down from the highest peak to the lowest valley of a profile, mr will increase 

along with the bearing surface and range up to 100%. The areal material ratio curve (the dashed 

line as shown in Figure 3.1(b)) is the cumulative curve of mr from the highest peak to the lowest 

valley (Michigan Metrology, 2014). 

Vv (Vm) for a material ratio mr is calculated by integrating the volume enclosed above (below) 

the 3D texture image and below (above) the horizontal cutting plane at the height corresponding 

to mr (Leach, 2012). Vvc (Vmc) is defined as the difference between two void (material) volume 

mr 
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values calculated at different heights corresponding to mr1 and mr2, while Vvv (Vmp) is defined 

as the void (material) volume calculated at the height corresponding to mr2 (mr1) 

𝑉𝑣𝑐 = 𝑉𝑣(𝑚𝑟1) − 𝑉𝑣(𝑚𝑟2) 

𝑉𝑚𝑐 = 𝑉𝑚(𝑚𝑟2) − 𝑉𝑚(𝑚𝑟1) 

𝑉𝑣𝑣 = 𝑉𝑣(𝑚𝑟2) 

𝑉𝑚𝑝 = 𝑉𝑚(𝑚𝑟1)                                                      (3.2) 

Where mr1 = 10%, mr2 = 80%, and the unit of volume parameters is mm3/mm2 herein (Leach, 

2012). In Figure 3.5(b), Vvc (Vmc) is the area enclosed above (below) the areal material ratio 

curve and between the heights corresponding to mr1 and mr2, and Vvv (Vmp) is the area 

enclosed above (below) the areal material ratio curve and between the height corresponding to 

mr2 (mr1). The volume parameters can characterize wear and rolling properties during a running-

in procedure (Deltombe et al., 2011; Adelle, 2006). Vmc is useful to understand how much 

material is available for load support once the top levels of a surfaces are worn away (Michigan 

Metrology, 2014). 

3.1.3 Hybrid Parameters 

The hybrid parameters are useful to consider both the height and spacing information of a 3D 

image simultaneously to evaluate texture characteristic (Li et al., 2016). The root mean square 

gradient (Sdq) and developed interfacial area ratio (Sdr) are defined as Equation 3.3 and 

considered herein to differentiate the surface with similar degree of roughness (Leach, 2012; 

Michigan Metrology, 2014). Sdq and Sdr are affected both by texture amplitude and spacing: a 

surface with same roughness and wider spaced texture may induce a lower value of Sdq or Sdr 

(Michigan Metrology, 2014). 
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𝑆𝑑𝑞 = √
1

𝐴
∬ (

𝜕𝑧2

𝜕𝑥
+

𝜕𝑧2

𝜕𝑦
) 𝑑𝑥𝑑𝑦 

𝑆𝑑𝑟 =
(𝑇𝑒𝑥𝑡𝑢𝑟𝑒_𝑆𝑢𝑟𝑓𝑎𝑐𝑒_𝐴𝑟𝑒𝑎)−(𝐶𝑟𝑜𝑠𝑠_𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙_𝐴𝑟𝑒𝑎)

𝐶𝑟𝑜𝑠𝑠_𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙_𝐴𝑟𝑒𝑎
                                           (3.3) 

3.1.4 Spatial Parameters 

The calculation of spatial parameters involves the understanding of the autocorrelation function 

(ACF) which evaluates the correlation of the original surface and the duplicated surface with a 

relatively shift (Dx, Dy) (Leach, 2012; Michigan Metrology, 2014). The autocorrelation length 

(Sal) defines the distance over the surface such that the new location will have minimal 

correlation with the original location, and the texture aspect ratio (Str) is the division of the Sal 

and the length of slowest decay ACF in any direction (Michigan Metrology, 2014). The texture 

direction (Std), with values between 0º and 180º, is also included to identify the angular direction 

of the dominant lay comprising a surface (Leach, 2012; Michigan Metrology, 2014). Str can be 

applied to evaluate surface texture isotropy, and Sal may find application related to the interaction 

of electromagnetic radiation with the surface and also tribological characteristics such as friction 

and wear (Leach, 2012; Michigan Metrology, 2014). 

3.1.5 Feature Parameters 

The feature parameters herein consider the peak density (Spd), the peak curvature (Spc), and the 

significant height (S5p, S5v, and S10z). A surface point higher than its surrounding area is called 

a peak, and the significant peaks on a surface are segmented by inverting the surface and applying 

the watershed segmentation algorithm and the pruning of the change tree by a specified pruning 

factor (Leach, 2012). Spd and Spc are defined in Equation 3.4 with unites of 1/mm2 and 1/mm 

respectively (Leach, 2012; Michigan Metrology, 2014). S5p (S5v) is the arithmetic mean height 

of the five highest (lowest) significant peaks (pits), and S10z is simply the sum of S5p and S5v 

with unit of mm (Leach, 2012). 
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Spd can be used in applications where contact is involved along with other parameters, and the 

peak density can be used to quantify aggregate micro-texture with respect to wear in laboratory 

(Nataadmadja et al., 2012; Leach, 2012). Spc is useful in predicting the degree of elastic and 

plastic deformation of a surface under different loading conditions and thus may be used in 

predicting friction, wear and real area of contact for thermal/electrical applications (Michigan 

Metrology, 2014). The curvature of a profile was able to quantify aggregate micro-texture with 

respect to the surface friction under wear condition in laboratory (Nataadmadja et al., 2012). 

𝑆𝑝𝑑 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑎𝑘𝑠

𝐴𝑟𝑒𝑎
 

𝑆𝑝𝑐 =
1

𝑁
∬ (

𝜕2𝑧(𝑥,𝑦)

𝜕𝑥2 ) + (
𝜕2𝑧(𝑥,𝑦)

𝜕𝑦2 ) 𝑑𝑥 𝑑𝑦
𝑃𝑒𝑎𝑘−𝐴𝑟𝑒𝑎

                                   (3.4) 

3.2 Field Data Collection 

3.2.1 LTPP SPS-10 Testing Site 

The Long Term Pavement Performance (LTPP) recently initiated the Specific Pavement Study 10 

(SPS-10) to evaluate the short and long term performance of warm mix asphalt (WMA) mixtures 

in relative to the conventional hot mix asphalt (HMA). The WMA technology is defined as an 

asphalt concrete paving material produced and placed at temperatures approximately 50 ºF cooler 

than those used for conventional HMA (Prowell et al., 2012). The experimental matrix includes, 

at a minimum, one HMA control section and two WMA test sections using foaming process and 

chemical additive with 10-25% RAP and RAS content (Puccinelli et al., 2014). Under the SPS-10 

experiment initiative, the Oklahoma Department of Transportation (ODOT) constructed six LTPP 

SPS-10 sections on State Highway 66 (SH-66) in Yukon in November 2015. The annual average 

daily traffic (AADT) on this road section is 5,900. The average temperature ranges from 35.9 ºF 

in January to 81.2 ºF in July. This newly constructed site is selected as the testing bed in this 

study to collect pavement 3D texture and friction data. 
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Figure 16 LTPP SPS-10 Site in Oklahoma 
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Table 3.1 lists the experiment design for the SPS-10 sections, and Figure 3.2 shows the site 

location and the corresponding length for each section. As shown in Table 3.1, Sections 1 to 3 are 

the required SPS-10 experimental designs, while Sections 4 to 6 are the supplemental sections 

with mixes chosen by the ODOT Division Office. Sections 1 to 3 are constructed as the 

conventional HMA control section, WMA using Astec double barrel green (foaming process) and 

Evotherm M1A (chemical additive) with the same aggregate combination. Sections 4 and 5 are 

WMA using Evotherm M1A constructed with the same aggregate combination as the first three 

sites but different binder grades. Section 6 is constructed with stone matrix asphalt (SMA) 

without fibers (typically used to combat drain down issues) using the same binder grade as those 

in the first three Sections. The insoluble residue values of the aggregates used in Section 6 and 

mainline are different from the other sites.  

Table 3.1 Experiment Design for LTPP SPS-10 Site in Oklahoma 

Section 

ID 
Binder Comment 

Aggregate 

Combination 

Insoluble 

Residue 

(%) 

1 PG 70-28 HMA with RAP + RAS 1 56.3 

2 PG 70-28 WMA Foaming with RAP + RAS 1 56.3 

3 PG 70-28 WMA Chemical with RAP + RAS 1 56.3 

4 PG 64-22 WMA Chemical with RAP + RAS 1 56.3 

5 PG 58-28 WMA Chemical with RAP + RAS 1 56.3 

6 PG70-28 WMA Stone mix with mineral filler 2 43.6 

Mainline PG70-28 HMA with RAP 3 60.8 

Note:  

Aggregate Combination 1 contains 38% 5/8 Chips + 35% Stone Sand + 12% Sand + 12% 

RAP + 3% RAS; 

Aggregate Combination 2 contains 90% 5/8 Chips + 10 Mineral Filler; 

Aggregate Combination 3 contains 34% 5/8 Chips + 13% Scrns. + 30% Stone Sand + 

13% Sand + 10% RAP. 
 

The gradation curves of the aggregate combinations are shown in Figure 3.3. The gradation of 

aggregate combination 1 and 3 is close to each other, whereas the aggregate combination 2 for the 
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SMA MWA is distinctively different. All the gradations of the mixes meet the corresponding 

specification requirements for ODOT. 

 

Figure 17 Gradation Curves for Aggregate Combinations 

3.2.2 Data Collection Devices 

A 3D surface measurement and analysis device, named LS-40 Portable 3D Surface Analyzer 

(Figure 3.4(a)) (LS-40 for short), scans a 114.3 mm (4.5 in.) by 101.6 mm (4 in.) pavement 

surface and collects 3D texture data with height resolution (z) at 0.01 mm (0.00039 in.) and 

lateral resolution (x, y) at 0.05 mm (0.0020 in.). LS-40 provides 3D surface data to calculate 

MPD by processing thousands of profiles over the entire scanned surface according to ASTM 

standard (ASTM E1845-15), with optional processing modules of measuring other surface 

features, such as aggregate form factor, angularity calculation based on multiple contour 

measurements, and micro-texture indicators, such as Root Mean Square (RMS). LS-40 can not 

only be used in the laboratory, but also be placed on a localized pavement surface area in the field 

to collect 2048 by 2448 cloud points for pavement texture characterization. Figures 3.4(c) and 

3.4(e) are two example 3D pavement data collected on Section 2 and 6 respectively. 
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(a) LS-40 Portable 3D Surface Analyzer 

 

(b) Dynamic Friction Tester 

 

(c) 3D Texture Data (Section 2) 
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(d) DFT Friction Data (Section 2) 

 

(e) 3D Texture Data (Section 6) 

 

(f) DFT Friction Data (Section 6) 

Figure 18 Data Collection Devices and Example Data Sets 
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ASTM E1911-09a provides specification on measuring paved surface frictional properties using 

the Dynamic Friction Tester (DFT). A DFT (Figure 3.4(b)) consists of a horizontal spinning disk 

fitted with three spring loaded rubber sliders. The water is sprayed in front of the sliders and a 

constant load is applied to the slider as the disk rotating on the test surface. The torque is 

monitored continuously as the disk rotational velocity reduces due to the friction between the 

sliders and the test surface, then it is used to calculate the surface friction coefficients. DFT has 

been widely used in friction measurement under various conditions to explore the speed 

dependency of pavement friction by measuring friction at various speeds. Figures 3.4(d) and 

3.4(f) are two example DFT friction data measured at the same locations where texture data are 

collected as demonstrated in Figures 3.4(c) and 3.4(e). 

3.3 Preliminary Result 

The data collection efforts described herein include two data collection activities, the first on 

November 13th, 2015 immediately after the construction of the testing site and the second on 

May 25th 2016 when the Sections were approximately 6-month in age, on the six LTPP SPS-10 

Sections and the transition sections in-between. LS-40 Portable 3D Surface Analyzer and DFT 

were used to measure pavement 3D surface data and friction data separately in the right wheel-

path (approximately 0.9 m (3 ft.) from the shoulder) in parallel at the same predefined locations. 

Within each LTPP SPS-10 section, three pairs of LS-40 3D data and DFT friction data were 

obtained at 30 m (100 ft.) interval starting from the beginning of the section. As the mainline after 

each LTPP SPS-10 section, another three pairs of pavement texture and friction measurement 

were conducted at 91 m (300 ft.) interval from the ending of the section. Therefore, thirty-six 

pairs of pavement 3D texture and friction data measurement were obtained for each data 

collection. Finally, sixty-nine pairs of pavement texture and friction data are analyzed in this 

article after three data sets are removed due to the bad data quality. 
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(a) Friction Number at 70 km/h 

 

(b) Friction Number at 60 km/h 

 

(c) Friction Number at 50 km/h 
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(d) Friction Number at 40 km/h 

 

(e) Friction Number at 30 km/h 

 

(f) Friction Number at 25 km/h 
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(g) Friction Number at 20 km/h 

 

(h) Friction Number at 15 km/h 

 

(i) Friction Number at 10 km/h 
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(j) MPD 

Figure 19 Average DFT Friction at Various Testing Speeds and MPD Summary 
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(0.037 in.), 0.91 mm (0.036 in.), 0.93 mm (0.037 in.), 0.88 mm (0.035 in.), and 2.21 mm (0.087 

in.) in 2016. 

Generally the evolution of skid resistance with an initial increase in friction coefficient occurs in 

the following months immediately after the laying of the road surface. Due to the applications of 

traffic polish, the bitumen film which masks the aggregate is gradually removed and the 

pavement friction number gradually increases. During the binder removal phase, more aggregate 

is exposed to the pavement surface. The binder removal period could range from 6 months to 2 

years (Do et al. 2007). Since 64 km/h (40 MPH) is the standard testing speed to collect friction 

number (ASTM E1911-09a), it is logical that the friction numbers have increased over the last 6 

month as shown in Figure 3.5(b). In addition, “new” surface texture may be generated under 

potential “differential” traffic polishing (Nataadmadja et al. 2012), which probably results in the 

increase of the average MPD values during the last 6-month period. 

On the other hand, Section 6 shows distinct higher average MPD values comparing to those on 

the other sections for both data collections (Figure 3.5(j)), while the average DFT friction 

numbers on Section 6 are relatively lower for testing speeds over 25 km/h (16 MPH) (Figures 

3.5(a) to 3.5(f)). The relatively lower insoluble residue value of the aggregate (Table 3.1) and the 

observed thick bitumen film after construction are the possible reasons for the lower skid 

resistance of Section 6. In addition, friction and MPD data on Section 6 show opposite 

development tendency for both collection events at speeds lower than 20 km/h (12 MPH) 

(Figures 3.5(g) to 3.5(j)). Since MPD fails to capture the differences and variations in friction 

performance both at high and low speeds, new texture parameters are needed to be developed to 

relate pavement texture with friction performance at macro- and micro-level. 
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3.4 Selection of 3D Texture Parameters 

3.4.1 Correlation Analysis 

Considering all five categories of 3D areal parameters aforementioned, there are twenty-four 

different parameters available to represent the 3D texture characteristics of a pavement surface. 

The calculation of those parameters are calculated via the Mountains® software. The correlation 

analysis is conducted within each category and among different categories to remove the 

parameters who exhibit strong correlations and remove their potential multicollinearity for 

regressional friction model development. Correlation coefficient of 0 means that there is no 

correlation, -1 denotes a perfect negative correlation, while +1 suggests a perfect positive 

correlation between the two variables. A correlation greater than 0.8 is generally described as 

strong, whereas a correlation less than 0.5 is generally described as weak (Correlation 

Coefficient, 2016). 

3.4.2 Correlations within Each Category 

The correlation coefficients within each category are summarized in Tables 3.2(a) to 3.2(c).  

• Based on Table 3.2(a), Sq and Ssk are kept to represent as the height parameters since 

their correlation coefficients with other parameters are less than 0.5. The traditional 

texture indicator MPD is excluded herein because it is highly correlated with many height 

parameters such as Sq, Sp, Sv, Sz, and Sa. 

• Based on Table 3.2(b), only Vmc is kept as the volume parameter, and Sdq is selected as 

the hybrid parameter to evaluate the friction performance between the vehicle tire and the 

pavement surface. 

• Based on Table 3.2(c), Sal and Str are selected as the spatial parameters while Spd, Spc 

and S5v are selected as feature parameters due to their lower correlation coefficients with 

other parameters. 
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In summary, after the correlation analysis within each texture parameter category, only Sq, Ssk, 

Vmc, Sdq, Sal, Str, Spd, Spc and S5v are determined as the potential 3D areal parameters, which 

are not highly correlated within each category, for the development of relationship between 

pavement texture and friction performance. 

3.4.3 Correlations among Categories 

Subsequently, correlation analysis among different categories is performed for the previously 

identified 3D parameters within each category, since correlations may be strong among the 

parameters within different categories. As shown in Table 3.2(d), Sq, Sdq, Str, Spc, and S5v are 

excluded because their correlation coefficients with other parameters are larger than 0.5. 

Correspondingly, Ssk, Vmc, Sal and Spd, which represents the height, volume, spatial and feature 

attributes of a 3D surface respectively, are selected as the final list of the 3D areal parameters for 

friction model development. The statistics of the selected 3D areal parameters on each SPS-10 

section and transition are plotted in Figure 3.6 to evaluate the variations of these texture 

indicators between these two data collection events:  

• Vmc and Spd demonstrate decreasing tendency with traffic polish for most locations 

(Figures 3.6(b) and 3.6(c)), while Ssk and Sal exhibit inconsistent tendency (Figures 

3.6(a) and 3.6(d)). 

• As can be seen in Figure 3.6(c) and Figure 3.4(i), the development of Spd corresponds 

well to the variation tendency of DFT friction number at the speed of 10 km/h (6 MPH). 

• On the other hand, because Vmc represents the part of the surface material which does 

not interact with another surface in contact (25), the smaller the Vmc value, the more 

surface materials are involved in the contact process with vehicle tires. Therefore, it is 

observed from Figure 3.6(b) and Figures 3.5(a) and 3.5(b) that the development of Vmc 

corresponds well to the variation tendency of friction number at speeds over 60 km/h (37 

MPH) for all the sections. 
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Table 3.2 Correlation Analyses of 3D Areal Texture Parameters 

Parameter Sq Ssk Sku Sp Sv Sz Sa MPD 

Sq 1.0 -0.2 0.3 0.9 0.9 1.0 1.0 0.9 

Ssk -0.2 1.0 -1.0 -0.3 -0.2 -0.1 -0.1 -0.2 

Sku 0.3 -1.0 1.0 0.4 0.3 0.2 0.2 0.3 

Sp 0.9 -0.3 0.4 1.0 1.0 0.9 0.9 0.9 

Sv 0.9 -0.2 0.3 1.0 1.0 0.9 0.9 0.9 

Sz 1.0 -0.1 0.2 0.9 0.9 1.0 1.0 0.9 

Sa 1.0 -0.1 0.2 0.9 0.9 1.0 1.0 0.9 

MPD 0.9 -0.2 0.3 0.9 0.9 0.9 0.9 1.0 

(a) Height Parameters 

Parameter Vm Vv Vmp Vmc Vvc Vvv Sdq Sdr 

Vm 1.0 0.7 1.0 0.7 0.7 0.6 - - 

Vv 0.7 1.0 0.7 1.0 1.0 1.0 - - 

Vmp 1.0 0.7 1.0 0.7 0.7 0.6 - - 

Vmc 0.7 1.0 0.7 1.0 1.0 0.9 - - 

Vvc 0.7 1.0 0.7 1.0 1.0 0.9 - - 

Vvv 0.6 1.0 0.6 0.9 0.9 1.0 - - 

Sdq - - - - - - 1.0 0.8 

Sdr - - - - - - 0.8 1.0 

(b) Volume and Hybrid Parameters  

Parameter Sal Str Std Spd Spc S10z S5p S5v 

Sal 1.0 -0.3 -0.1 - - - - - 

Str -0.3 1.0 0.5 - - - - - 

Std -0.1 0.5 1.0 - - - - - 

Spd - - - 1.0 -0.3 -0.3 -0.3 -0.3 

Spc - - - -0.3 1.0 0.9 0.8 0.9 

S10z - - - -0.3 0.9 1.0 0.9 0.9 

S5p - - - -0.3 0.8 0.9 1.0 0.6 

S5v - - - -0.3 0.9 0.9 0.6 1.0 

(c) Spatial and Feature Parameters 

Parameter Sq Ssk Vmc Sdq Sal Str Spd Spc S5v 

Sq 1.0 -0.2 1.0 0.7 -0.1 0.6 -0.3 0.8 0.8 

Ssk -0.2 1.0 0.0 0.2 0.2 0.2 0.4 0.1 -0.0 

Vmc 1.0 0.0 1.0 0.7 -0.1 0.6 -0.3 0.9 0.9 

Sdq 0.7 0.2 0.7 1.0 -0.0 0.4 -0.1 0.8 0.7 

Sal -0.0 0.2 -0.1 -0.0 1.0 -0.3 -0.1 -0.1 -0.1 

Str 0.6 0.2 0.6 0.4 -0.3 1.0 -0.1 0.5 0.5 

Spd -0.3 0.4 -0.3 -0.1 -0.1 -0.1 1.0 -0.3 -0.3 

Spc 0.8 0.1 0.9 0.8 -0.1 0.5 -0.3 1.0 0.9 

S5v 0.8 -0.0 0.9 0.7 -0.1 0.5 -0.3 0.9 1.0 

(d) Among Categories 
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(a) Skewness, Ssk 

 

(b) Core Material Volume, Vmc  

 

(c) Peak Density, Spd 
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(d) Autocorrelation Length, Sal 

Figure 20 Comparisons of Selected 3D Pavement Texture Parameters 

3.5 Friction Prediction Models based on Selected 3D Areal Texture Parameters 

3.5.1 Model Development 

The sixty-nine sets of DFT friction numbers at different speeds along with the selected 3D areal 

texture parameters, Ssk, Vmc, Sal and Spd, are prepared for model development. Every other data 

sets are used to develop the friction prediction model at different speeds, while the remaining data 

sets are reserved for model validation. Multivariate linear regression analysis is conducted to 

identify the significant confidence level of the selected 3D areal texture parameters on friction 

number at different speeds, and the results are summarized in Table 3.3: 

• Vmc and Spd show consistently significant influence on friction numbers for testing 

speeds over 25 km/h (16 MPH) and less than 20 km/h (12 MPH), individually. 

• Ssk is identified as a significant parameter for DFT friction tested at speed of 10 km/h (6 
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Table 3.3 Significance of Selected 3D Texture Parameters on DFT Friction at 

Different Speeds 

3D 

Parameters 

Friction Number 

DFT70 DFT60 DFT50 DFT40 DFT30 DFT25 DFT20 DFT15 DFT10 

Ssk - - - - - - - * * 

Vmc ** ** ** ** ** * - - * 

Sal - - - - - - - - - 

Spd - - - - - - * ** *** 

Note:  

DFTxx means the DFT friction number collected at speed xx km/h; Significance codes:  

‘***’ p < 0.001, ‘**’ p < 0.01, ‘*’ p < 0.05, ‘-’ p > 0.05. For example ‘*’ indicates the P-

value is less than 0.05 and the parameter is significant to the friction number; ‘-’ means 

the P-value is larger than 0.05 and the parameter is not significant to the friction number. 
 

Subsequently, friction prediction models are developed based on only the significant 3D areal 

parameters at different speeds. The estimated regression coefficients and P-values of friction 

prediction models are summarized in Table 3.4. All the P-values for the 3D areal texture 

parameter herein are smaller than 0.05 in the proposed model, indicating their significance to 

pavement friction. Therefore the friction number at different speeds are valid and can be 

calculated based on the selected 3D areal parameters as Equation 3.5, 

𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑁𝑢𝑚𝑏𝑒𝑟 = 𝑎 + ∑ T𝑖 ∗ 𝑏𝑖
3
1                                                   (3.5) 

Where a is the estimated coefficient for intercept, Ti represents the Vmc, Ssk and Spd of a 3D 

pavement surface, and bi is the estimated coefficient for the corresponding 3D areal parameter at 

different speeds. 
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Table 3.4 Statistic Results of Friction Prediction Models 

Friction 

Estimated Coefficients and P-value Validation Result 

Item Coefficient P-value R2 SSE 
# 

Samples 

Models based on Selected 3D Areal Texture Parameters 

70 km/h 
Intercept 0.395 6.36E-26 

0.58 0.031 

34 

Vmc -0.138 8.07E-05 

60 km/h 
Intercept 0.394 7.58E-26 

0.57 0.034 
Vmc -0.144 4.54E-05 

50 km/h 
Intercept 0.391 4.38E-26 

0.54 0.038 
Vmc -0.136 7.63E-05 

40 km/h 
Intercept 0.394 3.83E-26 

0.48 0.044 
Vmc -0.127 0.00018 

30 km/h 
Intercept 0.399 2.74E-25 

0.37 0.057 
Vmc -0.110 0.001804 

25 km/h 
Intercept 0.405 1.16E-24 

0.29 0.066 
Vmc -0.091 0.012268 

20 km/h 
Intercept 0.362 2.81E-23 

0.33 0.089 
Spd 0.001 0.003921 

15 km/h 
Intercept 0.368 5.68E-21 

0.38 0.131 
Spd 0.002 8.28E-05 

10 km/h 

Intercept 0.414 1.63E-07 

0.54 0.209 
Ssk 0.027 0.043722 

Vmc 0.181 0.002568 

Spd 0.004 3.21E-06 

Models based on MPD 

70 km/h 
Intercept 0.401 2.44E-20 

0.30 0.051 

34 

MPD -0.055 5.52E-03 

60 km/h 
Intercept 0.399 4.80E-20 

0.29 0.055 
MPD -0.056 5.15E-03 

50 km/h 
Intercept 0.397 1.91E-20 

0.26 0.060 
MPD -0.054 5.76E-03 

40 km/h 
Intercept 0.399 1.09E-20 

0.25 0.063 
MPD -0.050 0.00832 

30 km/h 
Intercept 0.407 1.06E-20 

0.26 0.067 
MPD -0.048 0.01288 

25 km/h 
Intercept 0.420 5.22E-21 

0.26 0.069 
MPD -0.048 0.01302 

20 km/h 
Intercept 0.441 5.12E-20 

0.21 0.097 
MPD -0.048 0.02860 

15 km/h 
Intercept 0.473 1.29E-16 

0.10 0.192 
MPD -0.048 0.10751 

10 km/h 
Intercept 0.531 6.87E-13 

0.16 0.373 
MPD -0.061 0.18092 
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3.5.2 Model Verification 

 
(a) Proposed Model (60 km/h) 

 
(b) Proposed Model (10 km/h) 

Figure 21 Validation Result of Proposed Model 

Based on Equation 3.5, the predicted friction numbers of the validation data sets are calculated 

and compared with the actual friction numbers to validate the proposed models. The validation 

results of the developed friction prediction model at different speeds are also summarized in 

Table 3.4. The R-squared values are 0.54 to 0.58 between the predicted and the actual DFT 

friction numbers at speeds from 10 km/h (6 MPH) to 70 km/h (44 MPH), respectively. Generally 

speaking, the friction prediction models at higher testing speeds have better performance than 

those at lower speeds. The sum of squared error (SSE) for the proposed models at speed 70 km/h 
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(44 MPH) to 10 km/h (6 MPH) increases from 0.031 to 0.209. Example of the actual and the 

predicted friction numbers at high and low speeds are compared in Figure 3.7. 

 
(a) Friction Model via MPD (60 km/h) 

 
(b) Friction Model via MPD (10 km/h) 

Figure 22 Validation Result of Model via MPD 

To demonstrate the advantages of the proposed parameters, linear regression friction prediction 

models at different testing speeds are also developed considering MPD as the influencing texture 

parameter. The estimated regression coefficients and P-values are also provided in Table 3.4. The 

P-values for the MPD based models are smaller than 0.05 for testing speeds over 20 km/h (12 

MPH), indicating the significance of MPD to pavement friction at high speed. However, the P-

values are greater than 0.05 for models at the testing speeds of 15 km/h (9 MPH) and 10 km/h (6 

MPH), indicating the insignificance of MPD to pavement friction at low speed. The R-squared 
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values of the MPD based models range from 0.1 to 0.3 between the predicted and actual DFT 

friction numbers, which are much lower than those for the proposed models based on the 3D 

texture indicators. In addition, the sum of squared errors of prediction (SSE) in the MPD based 

model are consistently higher than those in the models from this paper, proving that the DFT 

friction models based on the selected 3D areal texture parameters are more robust. Examples of 

the actual and the predicted friction numbers at high and low speeds are compared in Figure 3.8. 

Based on Tables 3.3 and 3.4, Vmc is the only significant parameter on friction number for the 

models at speeds over 20 km/h (12 MPH), whereas the Spd is the only significant parameter on 

friction number for the models at speeds 20 km/h (12 MPH) and 15 km/h (9 MPH). Even though 

there are three significant parameters in the model at 10 km/h, Spd is the dominate parameter 

over the other two based on their P-values. Therefore, it can be concluded that Vmc and Spd are 

the 3D areal parameters corresponding to macro- and micro-texture for friction prediction at high 

(over 40 km/h (25 MPH)) and low speeds (lower than 15 km/h (9 MPH)). 

3.6 Summary 

The objective of this chapter is to identify suitable pavement texture parameters under 3D to 

characterize pavement surface texture and friction performance. The LS-40 Portable 3D Surface 

Analyzer and the Dynamic Friction Tester with necessary software tools are used to perform 

pavement texture and friction data collection and subsequent calculation of 3D areal parameters 

and friction numbers at different testing speeds. The 3D surface range data with the resolution of 

0.01 mm (0.00039 in.) and 0.05 mm (0.0020 in.) in vertical and lateral direction are collected on 

the newly constructed LTPP SPS-10 site in Oklahoma with 6 WMA sections. Twenty-four 3D 

areal texture parameters from five categories, including height parameter, volume parameters, 

hybrid parameters, spatial parameters and feature parameters, are explored in the study and 

calculated for each 3D surface data collection to comprehensively evaluate the pavement surface 

texture characteristics. 
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Correlation analysis is performed within each texture indicator category and among the categories 

to select the most relevant and representative 3D areal parameters for friction model 

development. The results show that Vmc (a volume parameter) and Spd (a feature parameter) can 

relate the pavement texture at macro- and micro-level for friction in wet conditions at high and 

low speeds respectively. Multivariate linear regression pavement friction prediction models are 

developed based on the selected 3D areal texture parameters at different speeds. The validation 

results demonstrate that the developed friction prediction models produce fairly accurate friction 

predictions. The selected 3D texture parameters provide better alternative to characterize texture 

attributes with respect to pavement friction performance, and have the potential to replace the 

existing contact-based friction measurement methodologies which require consuming water and 

testing tires with non-contact high-resolution 3D laser-imaging based techniques. 

However, the novel 3D texture parameter analysis in this dissertation is limited in this chapter 

only because of two reasons. Firstly, it requires traffic control to perform static testing using LS-

40 and DFT to collect high resolution 3D texture data and corresponding friction data. It’s 

difficult for the research team to gather more high resolution 3D texture data on different 

pavement types. Secondly, 2D macro-texture data is extensively collected at highway speed by 

DOTs. With the application of High Speed Profiler, it’s easier for the research team to perform 

2D macro-texture profile data collection on different pavement surfaces without traffic control. 

Therefore, following chapters will apply other computing techniques to analyze 2D macro-texture 

profile for friction prediction. 
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CHAPTER IV WAVELET BASED MACRO-TEXTURE ANALYSIS FOR 

PAVEMENT FRICTION PREDICTION 

 

 

 

 

4.1 Wavelet Methodology 

Wavelet is an irregular and asymmetric waveform within limited duration that has an average 

value of zero, and it can be stretched or compressed to match signal at different locations and 

scales and therefore represent signal in frequency and time domain simultaneously (Misiti et al., 

2000). Wavelet transform has been widely used in many civil engineering applications, such as 

damage detection (Hester & Gonzalez, 2012), corrosion detection (Abbasnia & Farsaei, 2013), 

crack detection (Wang et al., 2007), effectiveness evaluation of pavement maintenance treatments 

(Wei et al., 2005; Alhasan et al., 2016; Hassan, 2015), pavement macro-texture profile analysis 

(Zelelew et al., 2013; Zelelew et al., 2014). Discrete wavelet transform is applied herein to 

decompose pavement macro-texture profiles into multi-level decompositions in the form of 

approximation signal and detailed signals. The macro-texture profile can be represented as a 

series of profiles corresponding to distinct wavelength sub-bands (Zelelew et al., 2014) 

𝑠(𝑡) = 𝑎𝐿(𝑡) + ∑ 𝑑𝑗(𝑡)𝐿
𝑗=1                                                    (4.1) 

where 𝑎𝐿(𝑡) is the approximation signal corresponding to the longer wavelength, 𝑑𝑗(𝑡) is the 

detail components relating to the shorter wavelength at level j, and L is the number of sub-bands 

or decomposition levels.  
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After profile decomposition, the energy of each decomposition level can be applied to interpret 

pavement macro-texture profile at various scales (Wei et al., 2005; Zelelew et al., 2014). The 

energy content for a particular decomposed sub-band is obtained as below (Zelelew et al., 2014) 

𝐸𝑗
𝑑 = ∑ |𝑑𝑗(𝑥)|

2𝑁
𝑖=1                                                              (4.2) 

where 𝐸𝑗
𝑑 and 𝑑𝑗(𝑥) are the wavelet energy indicator and detail coefficients for the jth 

decomposition level of a macro-texture profile, and N is the number of data points in the 

decomposed macro-texture profile. Specifically, the total energy (TE) of given macro-texture 

profile is the summation of 𝐸𝑗
𝑑 from the first to the Lth sub-band and can be calculated as 

(Zelelew et al., 2014): 

𝑇𝐸 = ∑ 𝐸𝑗
𝑑𝐿

𝑗=1                                                               (4.3) 

The relative energy (RE) is the percentage of the energy at the jth decomposed sub-band as 

compared to the total energy (Zelelew et al., 2014): 

𝑅𝐸𝑗 =
𝐸𝑗

𝑑

𝑇𝐸
× 100%                                                         (4.4) 

The REs at various sub-bands constitute the energy distribution of a given macro-texture profile 

at different wavelengths. 
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4.2 Data Collection and Preliminary Result 

4.2.1 Data Collection 

 

(a) Oklahoma City (Urban Interstate Highways) 

 

(b) Salina (Rural State Highway) 

Figure 23 HFST Sites in Oklahoma 

High Friction Surface Treatment (HFST) has gained its popularity in recent years in the United 

States with proved capability in improving pavement friction and thus roadway safety particularly 
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at horizontal curves (ATSSA, 2013; Merritt, 2014). The data collection in this paper includes 

macro-texture and friction testing of two HFST sites on Interstate 40 (I-40), one HFST site on 

Interstate 44 (I-44) and three HFST sites on State Highway 20 (SH-20) in Oklahoma. The 

locations of the six HFST sites are shown in Figure 4.1. Sites 1-3 were built at three locations in 

the Oklahoma City metropolitan area, while Sites 4-6 located on curvy two-lane rural highway 

with various longitudinal grades without shoulder. The existing pavements on I-40, I-44, and SH-

20 were constructed with stone matrix asphalt (SMA), Portland cement concrete (PCC), and 

conventional hot mix asphalt (HMA) respectively. HFST were installed on all the three traffic 

lanes in the east bound of I-40 and the west bound of I-44, while one lane for both directions on 

SH-20. Considering different traffic directions and number of lanes of these sites, 15 data 

collections were conducted in November 2015 and the detailed information for each site is 

summarized in Table 4.1. 

Table 4.1 Information of HFST Sites 

Note: AADT is annual average daily traffic. 

Data 

Collection 

ID 

Lane 

/Direction 
Site ID 

Site 

Location 

Abutting 

Pavement 
AADT 

Functional 

Class 

Radius 

(M) 

Grade 

(%) 

1 Right 

Site 1 

I-40 SMA 64678 Interstate 

2000 -2.5 2 Middle 

3 Left 

4 Right 

Site 2 2000 -1.5 5 Middle 

6 Left 

7 Right 

Site 3 I-44 Concrete 129000 Interstate 2000 -2 8 Middle 

9 Left 

10 North 
Site 4 

SH-20 HMA 390 
Minor 

Arterial 

400 3.5 
11 South 

12 North 
Site 5 500 3 

13 South 

14 North 
Site 6 200 -3.5 

15 South 
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4.2.2 Data Collection Devices 

The AMES Model 8300 Survey Pro High Speed Profiler (Figure 4.2(a)) is used to collect surface 

macro-texture data at 0.0005 m (0.020 in) sampling interval at highway speeds. Mean Profile 

Depth (MPD) is calculated as the pavement texture index based on the ASTM E1845-15 

standard. Grip Tester (Figure 4.2(b)), designed following the ASTM E2340/E2340M-11R15 

standard, can continuously measure pavement longitudinal friction operating around the critical 

slip of an anti-lock braking system (ABS). Comparing to the traditional locked-wheel friction 

testing method, Grip Tester can provide greater details of skid resistance with spatial variability 

for project and network level friction management. The device can operate at highway speed of 

80 km/h (50 MPH) as well as low speed of 32 km/h (20 MPH) using the desired water film 

thickness sprayed in front of the testing tire during data collection. 

The friction numbers were reported for each data collection to represent the pavement surface 

skid resistance conditions. To determine the effectiveness of HFST in improving surface 

properties, all the data sets are collected beginning 100 m (328 ft.) to 150 m (492 ft.) before and 

through 100 m (328 ft.) to 150 m (492 ft.) after each HFST section. 

 
(a) High Speed Profiler 
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(b) Grip Tester 

Figure 24 Field Data Collection Devices 

4.2.3 Preliminary Results 

Friction numbers and MPD values were obtained at 1 meter interval for the HFST sites. Examples 

of pavement friction number and MPD data are shown in Figures 4.3 and 4.4 to demonstrate 

pavement friction and macro-texture conditions for these sites. 

All sites show clear improvement of skid resistance and differentiation of the HFST section from 

the abutting pavements for all the data collections (Figures 4.3(a) and 4.4(a)). The average 

friction number on HFST sections is 1.00, while the friction number of abutting pavement 

surfaces without HFST has an average of 0.50. The differences of MPD between the HFST 

sections and adjacent pavements vary among these data sets. For example, MPD values of 

collection #7 are much higher on HFST section in contrast to those on the abutting concrete 

pavement (Figure 4.3(b)), whereas MPDs of collection #1 don't show noticeable difference 

between the HFST section and its adjacent pavement (Figure 4.4(b)). On average, the mean value 

of MPD on the 6 HFST sites is 1.70 mm (0.067 in.), while the MPDs of the regular pavement 

surfaces has an average of 1.34 mm (0.053 in.). 
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Figure 25 Distinct Friction and MPD Difference (Data Collection #7) 
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Figure 26 Distinct Friction Difference Only (Data Collection #1) 

The scatter plot between friction numbers and the corresponding MPDs of collection #1 are 

demonstrated in Figure 4.5. For the 691 pairs of friction number and MPD values, the R-squared 

value of the regression is close to 0. It means no direct relationships can be developed between 

pavement friction number and MPDs. 
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Figure 27 Scatter Plot of Friction Number and MPD (Data Collection #1) 

A paired t-test with equal variance was performed for each HFST site. Since the length of HFST 

application and non-HFST surfaces (lead-in and lead-out) may not be the same, the sample sizes 

for the t-tests are not equal and the missing value codes (NA) for these sections with fewer 

observations are added in the test data. The P-value is used to determine whether the difference 

between the mean of two groups is likely to be due to chance. The t-test results for friction 

number and MPD for data collection are summarized in Table 4.2. There is strong evidence that 

the HFST surfaces have significantly different friction number and surface texture MPD values 

than the abutting pavement (with an average of P value = 0 for all the HFST sites). 
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Table 4.2 T-Test Results for Friction Number and MPD 

Data 

Collection 

ID 

Friction Number MPD (mm) 

Mean - 

HFST 

Mean - 

Non 

HFST 

P 

value 

Sig. 

Diff? 

Mean - 

HFST 

Mean - 

Non 

HFST 

P 

value 

Sig. 

Diff? 

1 1.10 0.50 0.00 Yes 1.85 1.66 0.00 Yes 

2 1.03 0.47 0.00 Yes 1.80 1.69 0.00 Yes 

3 1.02 0.42 0.00 Yes 1.82 1.77 0.00 Yes 

4 1.08 0.59 0.00 Yes 1.82 1.60 0.00 Yes 

5 1.00 0.44 0.00 Yes 1.78 1.51 0.00 Yes 

6 1.05 0.58 0.00 Yes 1.82 1.54 0.00 Yes 

7 1.00 0.47 0.00 Yes 1.77 0.92 0.00 Yes 

8 1.01 0.41 0.00 Yes 1.83 0.70 0.00 Yes 

9 1.02 0.33 0.00 Yes 1.71 0.72 0.00 Yes 

10 0.86 0.59 0.00 Yes 1.85 1.40 0.00 Yes 

11 0.87 0.45 0.00 Yes 1.84 1.20 0.00 Yes 

12 1.03 0.62 0.00 Yes 1.28 1.03 0.00 Yes 

13 0.99 0.48 0.00 Yes 1.37 1.31 0.00 Yes 

14 1.04 0.67 0.00 Yes 1.37 1.26 0.00 Yes 

15 0.93 0.54 0.00 Yes 1.49 1.42 0.00 Yes 

4.3 Wavelet Analysis of Macro-texture Profiles 

A Daubechies wavelet of order 3 (db3) is selected as the mother wavelet and the wavelet analysis 

is carried out using the MATLAB Wavelet Toolbox to decompose the collected macro-texture 

profiles. Subsequently, TE and RE are calculated every 1 meter and compared among the four 

pavement types to reveal the distinct characteristics of macro-texture composition. 

With the sample interval of 0.483 mm for the obtained macro-texture profiles, there are 2072 data 

points for every 1 meter of macro-texture profile, which requires a total of 11 decomposition 

levels for wavelet analysis (211 = 2048). However it is widely accepted that the upper bound of 

macro-texture wavelength is 50 mm, and therefore only 7 decomposition levels, denoted as Level 

1 (D1) through Level 7 (D7), are considered in this paper to calculate TE and RE at 1 meter 

interval for the macro-texture profiles.
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Figure 28 Wavelet Decompositions of Macro-texture Profiles 
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4.3.1 Total Energy Analysis 

The original macro-texture profiles and the decomposed macro-texture profiles for the seven 

decomposition levels are shown in Figure 4.6. In total there are four kinds of pavement surfaces 

in the data collection, including the three existing surfaces (hot mix asphalt – HMA on SH20, 

stone-matrix asphalt – SMA on I40, Portland cement concrete –PCC on I44) and the HFST. For 

the jth decomposition results, the horizontal axis shows the number of data points and the vertical 

axis represents the amplitude of pavement macro-texture profiles. The equivalent wavelengths for 

each decomposition level are provided on the right margin of the figure. 

The total energies of the macro-texture profiles for the four pavement surface types are calculated 

and provided in Figure 4.7 for each decomposition level. The overall total energies on SMA, 

HMA, HFST, and PCC pavement are 2,254, 1,532, 1,401, and 337 mm2 respectively. The 

sequence of the overall TE among the pavement categories agrees well with the coarseness level 

of pavement macro-texture profiles observed from Figure 4.6. For friction, the average friction 

numbers are 0.50, 0.56, 1.0, and 0.40 for the SMA, HMA, HFST, and PCC pavements. Therefore, 

a pavement section with coarser macro-texture doesn’t guarantee a higher pavement friction 

number. For example, the total energy of the HFST sections is 1401 mm2, which is not the 

maximum among the four pavement surfaces, while it has the highest friction number. 
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Note: The number in the bracket is the corresponding wavelength of each decomposition 

level. 

Figure 29 Total Energy Distribution 

4.3.2 Relative Energy Analysis 

Considering the wide range of wavelength (0.5~50 mm) for macro-texture, pavement macro-

textures at various wavelengths may have different contributions to pavement friction 

performance. Therefore, it’s necessary to investigate the relative energy distribution of macro-

texture profiles at each decomposition level and how it impacts the friction performance for 

different pavement surface types. The cumulative RE distribution at each decomposition level is 

shown in Figure 4.8. 

It is noticed that (1) more than 50% of energy of macro-texture on HFST sections stores within 

the first four decomposition levels, which correspond to wavelengths ranging from 0.97 mm to 

7.72 mm; (2) while more than half of the energy of the macro-textures for the other three 

pavement types distributes within the last three decomposition levels, which correspond to 

wavelengths from 15.44 mm to 61.77 mm. 
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Note: The number in the bracket is the corresponding wavelength of each decomposition 

level. 

Figure 30 Cumulative Relative Energy Distribution 

Table 4.3 Correlation Coefficients between RE and Friction Number 

Site ID 
Correlation Coefficients 

D1 D2 D3 D4 D5 D6 D7 

1 0.93 0.95 0.94 -0.21 -0.86 -0.74 -0.02 

2 0.06 0.35 0.76 0.58 -0.34 -0.33 -0.37 

3 -0.39 0.12 0.79 0.86 0.26 -0.57 -0.45 

4 0.29 0.52 0.83 0.79 -0.39 -0.77 -0.55 

5 0.58 0.68 0.76 0.50 -0.65 -0.63 -0.47 

6 0.81 0.84 0.73 -0.19 -0.75 -0.62 -0.05 

Subsequently, correlation analysis between relative energy of macro-texture at various 

decomposition levels and friction number is performed. The correlation coefficients are 

summarized in Table 4.3 for each site. Correlation coefficient of 0 means that there is no 

correlation, -1 denotes a perfect negative correlation, while +1 suggests a perfect positive 

correlation between the two variables. For these six sites, the correlation coefficients between 

REs and friction number are negative from the 5th to the 7th composition levels (D5 to D7) 

(except D5 at Site 3), and positive from the 1st to the 3rd composition levels (D1 to D3) (except 
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D1 at Site 3). In other words, the pavement friction performance improves with macro-texture at 

wavelength from 0.97 mm to 3.86 mm while decreases with macro-texture at wavelength from 

15.44 mm to 61.77 mm. The correlation coefficient between the relative energy at the 4th 

composition level (D4) and friction number varies among the sites, which indicates that the 

contribution of pavement macro-texture at the wavelengths between 3.86 mm and 7.72 mm to 

pavement friction is inconsistent and depending on the pavement surface type. 

4.4 Friction Prediction Model 

Table 4.4 Estimated Coefficients and P-value for Friction Prediction Model 

Item Intercept TE RE1 RE2 RE3 RE4 RE5 RE6 RE7 

Coefficient 0.142 6.34E-05 0.092 -0.113 0.1 0.004 -0.039 0.01 0.016 

P-value 0.042 6.03E-06 0.007 0.006 0.003 0.003 0.002 0.001 0.001 

The collected macro-texture profiles and friction data of collection #1, #7, and #12 are combined 

by pavement types (SMA, HMA, PCC and HFST) as regression data set for friction prediction 

model development. Multivariate linear regression is performed to predict friction number based 

on the TE and RE of pavement macro-texture profiles: 

𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑁𝑢𝑚𝑏𝑒𝑟 = 𝑎 + 𝑇𝐸 ∗ 𝑏 + ∑ 𝑅𝐸𝑗
7
𝑗=1 ∗ 𝑐𝑗                       (4.5) 

where a, b, and cj are the estimated coefficients for intercept, TE and 𝑅𝐸𝑗 separately. The 

estimated regression coefficients and corresponding P-values of the multivariate model are 

summarized in Table 4.4. All P-values of TE and 𝑅𝐸𝑗 herein are smaller than 0.05, indicating 

their significance to pavement friction. 

Based on the generated coefficients, all the collected macro-texture profiles and friction data for 

the 15 data collections are used to validate the proposed model. The validation result of the 

developed friction prediction model is summarized in Table 4.5. The number of friction data 
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samples ranges from 358 to 1184 for each data collection. R-squared values range from 0.42 to 

0.93, with the highest R squares for I-40 sections, followed by I-44 and SH-20. 

Table 4.5 Validation Result of Friction Prediction Model 

Site 

Location 
Site ID 

Data 

Collection 

ID 

R2 SSE No. of Points 

I-40 

Site 1 

1 0.93 2 654 

2 0.90 4 628 

3 0.83 4 750 

Site 2 

4 0.85 3 584 

5 0.84 4 597 

6 0.79 6 607 

I-44 Site 3 

7 0.79 7 621 

8 0.62 13 618 

9 0.78 11 610 

SH-20 

Site 4 
10 0.71 10 358 

11 0.79 5 402 

Site 5 
12 0.53 5 361 

13 0.78 3 510 

Site 6 
14 0.67 9 1184 

15 0.42 8 700 

Examples of validation with the highest (Collection #1 of Site #1 on I-40) and the lowest 

(Collection #15 of Site #6 on SH-20) R-squared values are shown in Figure 4.9. Site 1 locates on 

I-40 with moderate horizontal curve, minimum longitudinal grade, and minor distress on the 

existing surface, while Site 6 locates on SH-20 with sharp horizontal reverse curves, steep 

longitudinal grades, and significant amount of defects on the existing pavement. For data 

collections on sharp curves with the existence of lateral gravity forces, centrifugal forces, and 

possible consistent acceleration/deceleration of the data collection vehicle, the friction and macro-

texture data collected generally show significant higher variabilities, resulting in the low R-

squared values in the models. 
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(a) Prediction with the Highest R-squared Value (Collection #1) 

 

(b) Prediction with the Lowest R-squared Value (Collection #15) 

Figure 31 Example of Pavement Friction Prediction Result 

It should be emphasized that the quality of texture and friction data is critical for a robust model 

development. HFST Site #1 was installed on moderate curves on asphalt pavement surface, and 

the adjacent pavement had minor pavement surface distress. The data collected on Site #1 
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exhibits high repeatability and consistency among the data collection on the multiple lanes. 

Therefore, the regression friction models have high R-squared values on Site #1. HFST Sites 2 

and 3 were installed on bridge decks with existing asphalt and concrete surfaces on slightly 

curved highways. Even though minor distress were observed before installation, faulting along 

the slab joints on the deck are noticeable. As a result, the macro-texture and friction data contain 

significant amount of data points with abnormal measurement values especially along the joints. 

The vehicle excitation also happens when vehicle moving on the transition section between 

pavement and bridge deck. Due to the vehicle excitation, the repeatability and consistency of 

friction and macro-texture data collection on Site #2 and Site 3 are not as good as those collected 

on Site #1. Accordingly, the regression models have lower R-squared values as compared to those 

for Site #1. 

Sites #4 to #6 are located on SH-20 on a low volume roadway but with many sharp horizontal 

curves and longitudinal grades. In addition, the existing pavements had experienced extensive 

crack sealing and rutting on the surface. The data sets collected on these sites have the lowest 

repeatability and consistency, leading to the low levels of R-squared values. 

4.5 Summary 

In this chapter, discrete wavelet transform is implemented to decompose pavement surface 2D 

macro-texture data into multi-scales to extract more information from 2D macro-texture profile. 

Pavement 2D macro-texture and friction data on six HFST sites that were installed on existing 

SMA, PCC, and HMA pavement surfaces are analyzed. 15 pairs of pavement 2D macro-texture 

and friction data were collected with length ranging from 358 m (1174 ft.) to 1184 m (3885 ft.) 

considering the number of lanes and traffic directions of the sites. Total energy and the relative 

energy distributions are calculated for the decomposed 2D macro-texture profiles from wavelet 

transform, and the relationship between the energy indicators and pavement friction performance 
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is studied. Pavement friction prediction model is developed based on multivariate linear 

regression method incorporating energy indicators of pavement macro-texture. 

The average MPD and friction numbers on HFST sections are 1.70 mm (0.067 in.) and 1.00 

respectively, while the MPD and friction numbers of non-HFST surfaces have the average of 1.34 

mm (0.053 in.) and 0.50. For Site #1 and #2, the friction data is significantly higher on HFST 

sections than those on adjacent SMA pavements, whereas the MPD values exhibit minor 

difference between HFST and existing pavement surface. Even though it is widely accepted that 

pavement skid resistance is tied to surface macro-texture, MPD alone is not adequate for the 

pavement friction prediction. 

The energy distributions for macro-texture on the different pavement surfaces could vary 

significantly. On HFST sections, more than 50% of the energy is distributed within the 1st to the 

4th decompositions levels (D1 to D4), with the wavelengths ranging from 0.97 mm to 7.72 mm. 

While for the other three pavement surface types, including SMA, PCC, and tradition HMA, 

more than 50% of the energy of macro-texture profiles is distributed within the 5st to the 7th 

decomposition levels (D5 to D7) with longer wavelengths ranging from 15.44 mm to 61.77 mm. 

Seven decomposition levels are considered in this paper for macro-texture analysis. All the 

energy indicators for the seven levels show significant contributions to the pavement friction 

performance and are used as the independent variables for friction model development. The 

energies at wavelengths from 0.97 mm to 3.86 mm contributes positively to pavement friction 

while those at wavelengths from 15.44 mm to 61.77 mm demonstrates negative impacts.  

It is worth mentioning that the pavement types and collected 2D texture data are limited in this 

chapter because only 6 HFST sites are tested. With the idea of improving the pavement categories 

and the size of collected texture data for the non-contact friction model development, more 

powerful computing techniques, such as machine learning, should be implemented.  
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CHAPTER V CONVOLUTIONAL NEURAL NETWORK BASED FRICTION 

PREDICTION MODEL USING PAVEMENT MACRO-TEXTURE DATA 

 

 

 

 

5.1 Deep Learning 

Substantial effort has been put into studies in the non-contact prediction of pavement friction. 

Experiment-based and model-based friction estimation methods have shown their advantage with 

reasonable accuracy and repeatability using data collected in vehicle or tire via optical sensor, 

acoustic sensor, tire tread sensor, or camera (Khaleghian et al., 2017). “Hilbert-Huang transform”, 

fractal analysis, power spectral analysis, wavelet analysis, or other novel methods have been 

applied with the purpose to explore unconventional parameters characterizing texture properties 

and reveal the linkage of pavement texture with pavement friction prediction (Kane et al., 2015; 

Villani et al., 2014; Hartikainen et al., 2014; Yang et al., 2017; Li et al., 2017). However, no 

consistent relationships between pavement texture and friction have been developed so far. This 

study attempts to use a new analysis technique to understand if a consistent relationship on a 

quantitative scale exists. 

Artificial Neural Network (ANN) is defined as “a computing system made up of a number of 

simple, highly interconnected processing elements which process information by their dynamic 

state response to external inputs” (Caudill, 1987). ANN typically contains input layer, hidden 

layer, and output layer which are connected via numerous interconnected “nodes” containing 

“activation function”. ANN can extract patterns and detect trends in complicated data sets which  
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are too complex to be analyzed by either humans or other traditional computing techniques 

(Stergious & Siganos, 2017). Traditional ANN has been around for decades, and applications of 

traditional ANN in transportation engineering include simulating pavement structural condition 

(Plati et al., 2016), predicting the rate of vehicle crashes (Najafi et al., 2016), and estimation of 

tire/road fiction force (Matuško et al., 2008; Luque, 2013). Nevertheless, traditional ANN is 

limited to shallow layers of neurons due to restriction of training speed. 

With vast improvement in computing and processing power of computers in the last two decades, 

deep learning (or deep neural network) with millions to billions of artificial neurons and modified 

network structures has recently become an extreme powerful methodology with exceptional 

performance in addressing difficult problems such as object detection and classification in image 

processing, speech recognition and text classification in natural language processing (Längkvist et 

al., 2014; Sutskever et al., 2014; LeCun et al., 2015; Schmidhuber, 2015). Convolutional Neural 

Network (CNN), one of the most popular methodologies in deep learning, has demonstrated 

many research and commercial successes (Krizhevsky et al., 2012; Wang et al., 2012; Abdel-

Hamid, 2014). CNN has also been successfully applied in solving challenges in transportation 

industry, such as traffic sign classification and pavement crack detection (Cireşan et al., 2011; 

Zhang et al., 2016; Zhang et al., 2017). 

5.2 Field Data Collection 

5.2.1 Data Collection Sites 

The data collection effort described herein covers 49 HFST sites in 12 states for a research project 

sponsored by the Federal Highway Administration (FHWA). HFST, as one of the innovations in 

Every Day Counts program of FHWA, has been installed at numerous horizontal curves 

throughout the U.S. with demonstrated effectiveness in improving skid resistance and reducing 

crashes (Izeppi et al., 2010; Sprinkel et al., 2015; Li et al., 2016). The locations of the data 

collection sites are shown in Figure 5.1. Pavement macro-texture with AMES profiler and friction 
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data with Grip Tester are collected at traffic speed. 50 data collections are conducted herein 

considering the directions and number of lanes for each site. The length of data collection ranges 

from 374 m (1227 ft.) to 5,342 m (17527 ft.). 

 

Figure 32 Data Collection Sites 

Besides HFST sections, the adjacent untreated lead-in and lead-out sections, including flexible 

pavements, rigid pavements, and bridge decks with or without grooving, are also included in the 

data collection for a wide variety of pavement texture profiles and friction characteristics ranging 

from the highest value (1.0) to the lowest value (0.2). Example pavement sections and 

corresponding route names are displayed in Figure 5.2. 
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(a) HFST Pavement (GA-140) 

 

(b) Flexible Pavement (TN-298) 

 

(c) Rigid Pavement (OK-I44) 
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(d) Bridge Deck (WV-I64) 

 

(e) Grooved Flexible Pavement (MO-I44) 

 

(f) Grooved Rigid Pavement (WI-I94) 

Figure 33 Examples of Collected Pavement Categories 



80 
 

5.2.2 Preliminary Result 

Texture data was collected at the speed of 80 km/h (50 MPH) when possible, or the allowable 

driving speed limits on sharp curves or ramps. Similarly, friction data was collected at the 

standard designated testing speed of 64 km/h (40 MPH) when possible, or the allowable driving 

speed. 

 

 
(a) Apparent Friction and MPD Improvement (Site A: IA-I380) 
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(b) Apparent Friction but Minor MPD Improvement (Site B: OK-SH20) 

Figure 34 Examples of Preliminary Result 

Firstly, MPD is calculated and friction number is recorded at every 1 m (3.28 ft.) to represent 

pavement texture and skid resistance characteristic. Pavement friction and MPD on two example 

sites are displayed in Figure 5.3. For both sites, the HFST sections provide distinct higher friction 

number as compared to adjacent untreated lead-in and lead-out sections. The average friction 

numbers on HFST sections are 0.72 and 0.77, while the friction of abutting untreated pavement 

surfaces have an average of 0.34 and 0.25. For the first site (Figure 5.3(a)), HFST generates 

noticeable higher MPD value than the neighboring regular sections: the mean MPDs are 1.30 mm 

(0.0511 in.) on HFST and 0.82 mm (0.0323 in.) on abutting pavement. However, for the second 

site (Figure 5.3(b)), the untreated pavements next to the HFST produce similar MPD value as the 

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250

Fr
ic

ti
o

n
 N

u
m

b
er

Distance (m)

0

0.4

0.8

1.2

1.6

2

2.4

0 50 100 150 200 250

M
P

D
 (

m
m

)

Distance (m)

HFST Section 

HFST Section 



82 
 

HFST section: the average MPDs are 1.21 mm (0.0476 in.) on HFST and 1.18 mm (0.0465 in.) 

on untreated pavements. This example indicates that pavement section with higher friction 

number doesn’t necessarily show higher MPD.  

Furthermore, the scatterplot of MPD and friction number can assist exploring the relationship 

between pavement skid resistance and traditional texture indicator MPD. As shown in Figure 

5.4(a), a fairly good linear relationship is obtained for Site A, with the coefficient of 

determination of 0.6881. However, for Site B, since the HFST section maintains significantly 

higher skid resistance but similar MPD as compared to the untreated abutting pavement sections 

(Figure 5.3(b)). The coefficient of determination is only 0.0194 for Site B, which is displayed in 

Figure 5.4(b). This inconsistent relationship is actually not uncommon per the research team’s 

experience and prior studies by others. As a result, the conventional pavement texture indicator 

MPD is inadequate to predict pavement friction number consistently for diversified pavement 

surfaces. 

 
(a) Site A: IA-I380 
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(b) Site B: OK-SH20 

Figure 35 Relationship of Friction Number and MPD 

5.3 Methodology 

This chapter proposes FrictionNet to predict pavement friction number via macro-texture data as 

the only input. Rather than calculating MPD or applying traditional signal analysis techniques to 

represent texture characteristic with respect to friction performance, FrictionNet implements a 

Convolutional Neural Network (CNN) based architecture to explore one-to-one correspondence 

between pavement texture and friction data. With a given texture profile, FrictionNet is designed 

to predict the corresponding friction number ranging from 0.2 to 1.0 by simulating testing with a 

Grip Tester. 

5.3.1 Data Preparation 

All pavement macro-texture and friction data used in this article are collected by the High Speed 

Profiler and Grip Tester as introduced in Chapter 4.2. For each data collection, measured macro-

texture profile and friction number are paired every 1 meter for the following training process. 

Instead of using raw macro-texture profile, spectrogram of macro-texture profile is computed and 

passed to the CNN network as the training input. Every 1 meter long raw macro-texture profile 

contains 2,000 points, and it is represented via a spectrogram with dimension of 50 × 38. This 

preprocessing method of raw texture profile can be found in other studies of natural language 
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processing which also deals with one-dimensional (1D) signal in CNN network training for 

information retrieval (Dieleman and Schrauwen 2014, and Huang et al. 2015). Figure 5.5 shows a 

spectrogram example which represents the time and frequency decomposition of macro-texture 

profile. As the collected friction numbers, they are rounded to the nearest 0.1 with a range from 

0.2 to 1.0 which represents the most likely friction number for diversified pavement surface 

categories. 

 

Figure 36 Example Spectrogram of Texture Profile 

In total, there are 50 data collections accomplished on those field sites with a total length of 

63,648 m (208,818.9 ft.). It is worth mentioning that these collected data is highly imbalanced 

over different classes. In other words, the obtained texture and friction data has an imbalanced 

distribution between the different classes. For example, there are 15,319 friction value equal to 

0.8 whereas only 2,328 of them are 1.0. However, this imbalanced data will underperform CNN 

since CNN assumes a balanced distribution of classes in the training data. Therefore, sampling 

method, as introduced in other studies (Chen et al., 2004; He & Garcia, 2009), is adopted herein 

to generate a balanced distribution of classes in the prepared dataset and to improve the 

performance of proposed model. Finally, 63,000 pairs of macro-texture and friction data with 

balanced distribution of classes are prepared by the research team for the development of 
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FrictionNet. 80%, 10%, and 10% of the prepared data are randomly selected with the purpose for 

training, validation, and testing, respectively. 

5.3.2 Architecture 

 

Figure 37 FrictionNet Architecture 

As depicted in Figure 5.6, the proposed FrictionNet is constituted by six layers: two convolution 

layers, three fully-connected layers, and one output layer. The input of the proposed FrictionNet 

is spectrogram of raw texture profile with size of 50 × 38. The output layer produces the 

probability distribution of predicted friction level over the 9 class friction numbers via softmax 

function. There are 64 and 96 kernels with size 3 × 3 for the first and second convolutional layers. 

64, 96, and 32 neurons are contained in each fully-connected layer from the left to the right as 

shown in Figure 5.6. Average pooling of size 2 × 2 without overlapping is followed after each 

convolutional layer. The activation function herein for convolutional and fully-connected layers is 

the hyperbolic tangent function which is commonly used as the activation function in artificial 

neural networks (Ciresan et al., 2012).  

The tuned parameters with a total number of 606,409 in FrictionNet are summarized in Table 5.1 

for each layer. The network is trained with 350 iterations through the training data set with 50,400 

pairs of pavement texture spectrogram and friction data. With one NVIDIA GeForce GTX 

TITAN Black graphics processing unit (GPU) card, the training process takes 2.73 hours and 

reaches a high training and validation accuracy. The library MXNet 
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(https://mxnet.incubator.apache.org/) in R is implemented herein for the development of 

FrictionNet. 

Table 5.1 Parameters for FrictionNet 

Layer Number of Parameters 

Layer 1: Convolution 640 

Layer 2: Convolution 55,392 

Layer 3: Fully Connected 540,736 

Layer 4: Fully Connected 6,240 

Layer 5: Fully Connected 3,104 

Layer 6: Output 297 

Total 606,409 

5.4 Training Techniques 

5.4.1 Learning Method 

Stochastic gradient descent is adopted in this CNN model as learning method with a batch size of 

30 examples, momentum of 0.9, and weight decay of 0.0005. A small weight decay is important 

to tune the CNN model, and the update of weight is defined as 

{
𝑣𝑖+1 = 0.9 ∗ 𝑣𝑖 − 0.0005 ∗ 𝜖 ∗ 𝑤𝑖 − 𝜖 ∗ 〈

𝜗𝐿

𝜗𝑤
|𝑤𝑖〉𝐷𝑖

𝑤𝑖+1 =  𝑤𝑖 + 𝑣𝑖+1

                                      (5.1) 

where i is the iteration index, v is the momentum variable, 𝜖 is the learning rate, and 〈
𝜗𝐿

𝜗𝑤
|𝑤𝑖〉𝐷𝑖

 is 

the average over the ith batch 𝐷𝑖 of the deviative of the objective with respect to 𝑤, evaluated at 

𝑤𝑖 (Krizhevsky et al., 2012). 

5.4.2 Weight Initialization 

Right weight initialization can insure the network converging with reasonable training time and 

the loss function not going anywhere. The weights in each layer of proposed network is initialized 

via the Xavier initialization which is designed to keep the scale of gradients roughly the same in 

all layers. This initializer fills the weights with random numbers in the range of [-c, c], where 𝑐 =
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√
2.34

𝑛𝑖
 in this model and 𝑛𝑖 is the number of neurons feeding into weights (Glorot & Bengio, 

2010). 

5.4.3 Combat Overfitting 

Overfitting refers to a model that models the training data too well that the noise or random 

fluctuations in the training data is picked up and learned as concepts by the model (Brownlee, 

2016). Overfitting can occur during tuning those 606,409 parameters in the FrictionNet model. 

Regularization methods including L2 regularization and dropout layers are applied to combat 

overfitting and make the network better at generalizing beyond the training data. L2 

regularization, also known as weight decay, modifies the cost function by adding an extra term 

which is the sum of the squares of all the weights in the network. The extra term can be expressed 

as 

𝐿2 𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑇𝑒𝑟𝑚 =  
𝜆

2𝑛
∑ 𝜔2

𝜔                                             (5.2) 

where 𝜆 > 0 is known as the regularization parameter, and n is the size of the training set 

(Nielsen, 2017).  

Dropout layer is another efficient technique to reduce overfitting and gives major improvements 

over other regularization methods (Krizhevsky et al., 2012; Srivastava et al., 2014). Two dropout 

layers are utilized herein after the first and the second fully-connected layers with probability of 

0.25. With this dropout layer, 25% of the hidden neurons in the first two fully-connected layers 

will be randomly deleted during training. This significantly increases the robustness of model 

with different random subsets of the neurons, and therefore reduce test errors and overfitting 

(Krizhevsky et al., 2012). 

5.4.4 Cost Function 

Cross Entropy is employed in FrictionNet as cost function to address the learning slowdown issue 

and measure how close the actual output to the desired output (Nielsen, 2017). Since the 
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prediction of friction number via FrictionNet is a discrete multi-class classification problem, the 

Cross Entropy in this article can be defined as 

𝐻(𝑝, 𝑞) =  − ∑ 𝑝(𝑥)𝑙𝑜𝑔𝑞(𝑥)𝑥                                                  (5.3) 

where p and q are the actual and predicted friction number at xth training individually. Cross 

Entropy can improve the learning speed and learn at a rate controlled by the similarity between 

the actual and predicted friction number (Zhang et al., 2017). 

5.4.5 Softmax Function 

Softmax function is popular as the final layer of a neural network which yields the predicted 

probability scores for the class label to deal with multi-class classification challenges (Glorot & 

Bengio, 2010; Krizhevsky et al., 2012; Abdel-Hamid et al., 2014; Nielsen, 2017). The calculated 

probabilities range from 0 to 1 for each class, while the sum of all probabilities will be 1. The 

target class will have the highest probability score among all the classes. The softmax function 

can be explained as 

𝑃(𝑦 = 𝑗|𝑧(𝑖)) = ∅𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧(𝑖)) =
𝑒𝑧(𝑖)

∑ 𝑒
𝑧

𝑘
(𝑖)

𝑘
𝑗=0

                                            (5.4) 

where the net input z is defined as 𝑧 =  𝑤0𝑥0 + 𝑤1𝑥1 + ⋯ + 𝑤𝑚𝑥𝑚 = ∑ 𝑤𝑙𝑤𝑙
𝑚
𝑙=0  (w is the 

weight vector, x is the feature vector of a training sample, and 𝑤0 is the bias unit) (Raschka, 

2015). It computes the probability that this training sample x(i) belongs to class j given the weight 

and net input z(i). Accordingly, softmax function is applied in the output layer herein so that the 

FrictionNet can predict friction number over 9 classes ranging from 0.2 to 1.0 with 0.1 as interval.  

5.4 Results 

In this multi-class classification problem, the performance of FrictionNet is evaluated via 

classification accuracy score which is defined as the number of correct predictions made divided 
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by the total number of predictions made by the model, multiplied by 100 to turn it into a 

percentage. The classification accuracy score can be expressed as 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑦, 𝑦̂) =
1

𝑛
∑ 1(𝑦̂𝑖 == 𝑦𝑖)𝑛−1

𝑖=0 ∗ 100                                           (5.5) 

where 𝑦̂ and y are the predicted and actual friction number.  

 

Figure 38 Classification Accuracy Summary 

50,400 and 6,300 pairs of pavement texture spectrogram and friction data are involved in the 

training and validation of FrictionNet. The classification accuracies for training and validation 

data are displayed in Figure 5.7. The training only takes 350 iterations and 2.73 hours before 

reaching satisfactory accuracy. With the L2 regularization and dropout layers, the validation 

classification accuracy stays close to that of training data during training, which indicates no 

overfitting problem happens in this model. Particularly, the highest classification accuracy 

96.85% for FrictionNet is observed at the 314th iteration. Therefore, the parameters saved at the 
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314th iteration are considered as optimal. Using the optimal parameters, the classification 

accuracy on training data arrives at 96.85% while it attains 88.92% for validation data. 

In addition, the classification accuracy for testing data with another 6,300 samples is 88.37% 

using the optimal parameters. The detailed predicted and actual friction numbers for testing data 

are summarized in Table 5.2. The numbers located along the diagonal represent the correct 

predictions, while the numbers site below or above the diagonal denote the wrong predictions. As 

shown in Table 5.2, few predictions generate result away from the diagonal, which demonstrates 

that FrictionNet can predict correct friction number with adequate accuracy. To better visualize 

the performance of FrictionNet, the actual and predicted friction number of 50 randomly selected 

samples from the testing data are plotted in Figure 5.8. Only 3 false predictions appear in this 

random sample. Once again, the proposed network can predict pavement friction number with 

high accuracy using texture data as input. 

Table 5.2 Summary of Testing Accuracy 

Testing Accuracy 
Predicted Friction Number 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Actual 

Friction 

Number 

0.2 687 17 12 12 8 5 4 0 4 

0.3 20 577 34 12 12 3 10 5 2 

0.4 24 54 557 18 16 6 9 7 6 

0.5 16 28 16 618 12 3 8 3 2 

0.6 9 18 5 4 638 7 8 3 3 

0.7 4 11 5 2 2 659 9 2 3 

0.8 10 34 11 11 18 28 562 39 13 

0.9 9 8 7 6 4 11 28 616 7 

1 0 1 2 0 0 1 2 0 653 
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Figure 39 Testing Result Demonstration 

5.5 Summary 

Different from applying wavelet methodology to decompose 2D macro-texture profiles in 

Chapter 4, a Convolutional Neural Network (CNN) based efficient network architecture 

christened as FrictionNet is developed using 2D macro-texture data as a whole for pavement 

friction prediction with more data sets gathered on more pavement types. Data collections are 

accomplished via AMES High Speed Profiler for 2D macro-texture profile and Grip Tester for 

friction data on 49 field sites in 12 states. Diversified pavement types are included in the study, 

such as HFST, flexible pavement, rigid pavement, bridge deck, and grooved pavement.  

Using 504,000 pairs of pavement texture and friction data prepared by the research team, 

FrictionNet is trained on one GPU device recursively with 350 iterations. The input to 

FrictionNet is spectrogram of pavement texture profile, and the corresponding output is the 

predicted friction levels from 0.2 to 1.0 in 0.1 interval. FrictionNet encloses 606,409 parameters 

to train with an architecture of two convolution layer, three fully-connected layers, and one output 

layer. The training of FrictionNet is successfully completed with various efficient training 

1 2 3 
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techniques, including stochastic gradient descent, Xavier initialization, L2 regularization and 

dropout layers, Cross Entropy, and softmax function. Then another two disparate datasets with 

6,300 samples are processed by the trained FrictionNet with the purpose for validation and 

testing. The overall accuracy of FrictionNet on the training, validation, and testing datasets are 

96.85%, 88.92%, and 88.37%, respectively. The result demonstrates the proposed algorithm 

consistently previses the friction number for various field sites with pavement macro-texture data 

as the only input. This research demonstrates the potential of using highway speed non-contact 

texture measurements for pavement friction evaluation with applications of deep-learning 

techniques. 
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CHAPTER VI CONCLUSIONS AND FUTURE WORK 
 

 

 

 

6.1 Conclusions 

This research investigates the possibility of using non-contact pavement texture measurements for 

pavement friction evaluation based on three different soft computing methodologies. Ultra-high 

resolution 3D surface image and 2D texture profile are collected by LS-40 Portable 3D Surface 

Analyzer and AMES High Speed Profiler, while a Dynamic Friction Tester and Grip Tester are 

applied to measure the corresponding friction data. Novel 3D macro- and micro-texture 

parameters are calculated for the high-resolution 3D texture data, while discrete wavelet analysis 

and CNN based model are applied to better utilize the high speed texture profile data for 

pavement friction prediction. 

Chapter 3 explores five categories of 3D areal texture parameters to characterize pavement 

texture attributes and develop friction prediction models with the most influencing 3D texture 

parameters. The newly constructed LTPP SPS-10 site in Oklahoma is selected as the testing bed. 

Twenty-four 3D texture parameters are calculated for the high-resolution 3D texture data. 

Correlation analyses is conducted to exclude those who exhibit strong correlations and remove 

the potential multicollinearity for regressional friction model development. The core material 

volume and the peak density are identified as the most influential macro- and micro-texture 

parameters which exhibit good correlation with friction data at high- and low-speed  
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in wet conditions. The results indicate the identified 3D texture parameters provide better 

alternatives to characterize pavement surface texture attributes with respect to the pavement 

friction performance. The pavement friction model is therefore developed based on the selected 

3D texture parameters. 

Chapter 4 implements discrete wavelet transform to decompose pavement 2D macro-texture 

profile data into multi-scale characteristics and investigate their suitability for pavement friction 

prediction. Pavement 2D macro-texture and friction data were collected within the left wheel-path 

from six HFST sites in Oklahoma. The collected macro-texture profiles are decomposed into 

multiple wavelengths, and the Total Energy (TE) and Relative Energy (RE) are calculated as 

indicators to represent macro-texture characteristics at various wavelengths. Correlation analysis 

is performed to examine the contribution of the energy indicators on pavement friction. The 

macro-texture energy within wavelengths from 0.97 mm to 3.86 mm contributes positively to 

pavement friction performance while the energy within wavelengths from 15.44 mm to 61.77 mm 

shows negative contributions. Subsequently, pavement friction prediction model is developed 

incorporating the macro-texture energy indicators. 

Chapter 5 implements deep learning, the fastest-growing technique in machine learning, to 

investigate the application of pavement texture profile data for pavement skid resistance analysis. 

49 HFST sites distributed in 12 states are tested including various types of lead-in and lead-out 

pavement sections. FrictionNet, a Convolutional Neural Network (CNN) based DL architecture, 

is developed to predict pavement friction levels using texture profile as a whole. This architecture 

is composed of six layers including two convolution layers, three fully-connected layers, and one 

output layer, with 606,409 tuned hyper-parameters. 50,400 pairs of texture and friction data sets 

are employed for training, while another 12,600 pairs for validation and testing. The input data of 

the FrictionNet is the spectrogram of the original texture profile at every meter, and the output of 

FrictionNet is the friction levels ranging from 0.2 to 1.0 in 0.1 intervals. The FrictionNet achieves 
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96.85% accuracy for training, 88.92% for validation, and 88.37% for testing. The result 

demonstrates the potential of using highway speed non-contact texture measurements for 

pavement friction evaluation. 

6.2 Future Work 

In Chapter 3, only sixty-nine pairs of data sets are collected in this study for the selection of 3D 

pavement texture parameters and the development of friction prediction models. Additional 3D 

data sets should be collected on various pavement categories in the future to validate the 

applicability of the identified 3D texture parameters and optimize the performance of proposed 

friction prediction models. In addition, additional 3D texture parameters should be explored to 

better capture the pavement texture and characterize friction simultaneously. 

In Chapter 4, it is recognized that pavement surface conditions and the geometric characteristics 

of the roadway could significantly impact the repeatability and the accuracy of 2D macro-texture 

and friction data collection using High Speed Profiler and Grip Tester. For example, the Sites #4 

to #6 locate on a low volume road with sharp horizontal curves, and steep longitudinal grades and 

extensive cracking and defects on the existing surfaces. The 2D macro-texture and friction data 

collected on these sites show extensive variations with many abnormal data points, therefore the 

proposed friction prediction model on these sites are less robust comparing to the result on the 

other sections. In future, perform pavement texture and friction data collection simultaneously to 

reduce the side effect of vehicle wondering during data collection. 

In Chapter 5, a CNN based model is utilized to train FrictionNet with  macro-texture profile data 

as the inputs. Many other deep learning methodologies, such as VGG and recurrent neural 

network (RNN) should be tested in the future to further improve the accuracy of FrictionNet. 

Besides, time series texture data measured over time should be added in the future to explore the 

capability of FrictionNet for pavement friction deterioration.  
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