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Abstract: Emulsions are of great importance due to their widespread occurrence in 

industries such as pharmaceutical, cosmetics, food, agricultural, and energy. In the energy 

industry, emulsions may be encountered in all stages of production, transportation, and 

extraction. Along with naturally occurring surfactants, solid particles such as asphaltenes, 

wax, clay, and silica are also present in crude oil. The formation and deposition of 

precipitated solids such as waxes, hydrates, and asphaltenes cause significant flow 

assurance problems for the energy industry. The motivation of this thesis was to develop 

a fundamental understanding of the hydrate formation mechanisms in waxy oil systems. 

This thesis focuses on the characterization of emulsions and hydrate formation in waxy 

oil systems in the presence of stabilizing agents such as a surfactant (span 80). A direct 

visualization and in-situ experimental method was developed for characterizing hydrate 

formation in waxy oil systems. Single water drop hydrate formation experiments were 

conducted with and without surfactant to evaluate the effect of wax concentration (1.25 

and 5 wt.%), and cooling rates (0.5, 1, and 2 °C/min) on hydrate formation. In surfactant 

free systems, the presence of wax in the oil phase was observed to enhance the diffusion 

resistance of cyclopentane transport to the bulk water phase and hence delay hydrate 

growth rate. Conversely, the presence of surfactant was observed to reduce the diffusion 

resistance and promote hydrate formation. Faster hydrate growth was observed in 

surfactant laden systems due to reduced interfacial tension, thereby enhancing the mass 

transfer of cyclopentane to the water phase. In the absence of surfactant, wax 

concentration and the cooling rates had a significant impact on the hydrate conversion 

time. However, such observations were not seen in the presence of a surfactant. A four 

step hydrate formation mechanism (wax precipitation, hydrate nucleation, lateral growth, 

and radial growth) in waxy oil systems was proposed based on the experimental data. 

Wax precipitation and hydrate nucleation were observed to be heat transfer limited 

processes. Lateral growth was governed by diffusion of cyclopentane to the oil/water 

interface, while radial growth was goverened by mass transfer of cyclopentane into the 

water drop. Interfacial tension was observed to play a major role in hydrate conversion 

rate. An in-situ experimental method was developed by direct visualization of hydrate 

growth in emulsions. Hydrate formation was observed to affect the emulsion 

morphology. Irreversible formation of multiple emulsions was observed upon hydrate 

dissociation.  
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CHAPTER I 

 

 

INTRODUCTION 

1.1. Overview 

Emulsions are colloidal dispersions of a liquid in another immiscible liquid stabilized 

using a surfactant and/ or solid particles [1]. Emulsions are of great importance due to their 

widespread occurrence in industries such as pharmaceutical, cosmetics, food, agricultural, and 

energy [2]. In the energy industry, emulsions may be encountered in all stages of production, 

transportation, and operation [3]. Along with naturally occurring surfactants, a wide variety of 

solid particles such as asphaltenes, waxes, clay, silica, and inorganic particles are also present 

in the crude oil [4]. The presence of such stabilizers in the crude oil results in production 

problems that are otherwise known as flow assurance issues. Flow assurance (coined by 

Petrobras) in the oil and gas industry simply means ensuring successful, continuous, 

economical, and environmentally safe transport of fluids from production to point of sale. Flow 

assurance problems encountered in the energy industry include formation and deposition of 

solids such as wax, asphaltenes, gas hydrates, inorganic solid/ scale deposits, slugging, and 

corrosion [2, 5]. In the energy industry, emulsions are difficult to treat due to the presence of 

a wide variety of stabilizers, thereby causing production and operational problems such as gas-

liquid separation, high production and treatment costs, productivity loss, and high pressure 
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losses [6].  Depositions of solids result in deferment (economic and production loss), safety, 

and environmental concerns [5, 7-9].  This thesis focuses on emulsions, primarily water-in-oil 

emulsions with applications pertinent to the energy industry. This thesis provides fundamental 

understanding of hydrate formation mechanism in waxy oil systems, concentrated water-in-oil 

emulsions, and emulsion characterization of either surfactant or solid particle stabilized 

systems. The insight gained from this thesis aids in the development of flow assurance 

mitigating strategies in emulsion forming systems. This chapter includes the motivation for the 

work presented in this thesis, literature review about emulsions, gas hydrates, and wax, and 

outline of this thesis.  

1.2. Motivation 

 

Hydrate formation, wax deposition, and other flow assurance issues are common in deep-

water extraction and production, as these systems are predisposed to extreme operating 

conditions such as low temperature and high pressures, thereby plugging pipelines.  Hence, 

addressing these flow assurance issues are critical, as they can occur anywhere and in multiple 

locations, and there are associated operating and maintenance costs involved in managing and 

mitigating pipeline blockages. Millions of dollars are spent on remediation strategies that 

include depressurization, chemical inhibitors/ injection method, mechanical, and thermal 

methods.  Though extensive research has been conducted on each of these flow assurance 

issues independently from both microscopic to macro-scale level, there is very minimal 

literature available when two or more of these issues occur simultaneously. Though hydrate 

formation in waxy crudes and emulsified systems have occurred in several instances in the 

oilfield, there is seldom any modeling or real-time experimental evidence available on 

understanding the hydrate formation mechanism in such waxy oil systems or waxy oil 
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emulsions [10-12]. This has provided an impetus to conduct an experimental investigation to 

understand hydrate formation mechanism in waxy oil systems. The motivation for this work is 

twofold and includes: 1) characterization of emulsions, hydrate formation in concentrated 

emulsions using a variety of stabilizing agents 2) hydrate formation mechanism in waxy oil 

systems a) without surfactant b) in the presence of a surfactant.  

Many researchers have established that solid stabilized/ Pickering emulsion is well 

known to form stable oil-water dispersions. Even though a significant amount of research has 

been conducted on solid-stabilized emulsions in flowing conditions, their effect on hydrate 

agglomeration, plugging, and transportability in the presence of wax crystals is unclear and 

requires further investigation. Figure 1.1 represents the water droplet stabilization mechanism 

in waxy oil systems, and the interaction of hydrate-forming guest molecules (cyclopentane) on 

wax stabilized emulsions. 

 

Figure 1.1: Mechanism depicting wax stabilized water-in-oil emulsion preventing/ 

minimizing hydrate agglomeration and plugging. A hydrate-wax slurry mixture is formed, 

flows through a pipeline and prevents plugging (adapted from Turner11) 
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This thesis provides fundamental understanding of hydrate formation mechanism in waxy 

oil systems and thereby, pave a way to developing efficient and reliable techniques to resolve 

aforementioned issues on pipeline plugging. This work involved experimental analysis to 

investigate the effect of wax on hydrate formation both in the presence and absence of 

surfactant. 

1.3. Literature Review 

1.3.1. Emulsions 

An emulsion is a heterogeneous mixture of two immiscible liquids (or phases) where 

one of the liquids, called dispersed phase, is present as droplets in another liquid continuous 

phase [13]. Emulsions generally consist of polar aqueous and a non-polar phase that are 

stabilized using a surface active agent called a surfactant. The phase in which the surfactant 

tends to be soluble is usually the continuous phase as governed by Bancroft’s rule [14-18]. 

Emulsions are classified as oil-in-water (o/w), water-in-oil (w/o), oil-in-water-in-oil (o/w/o), 

or water-in-oil-water (w/o/w) types, depending on the continuous phase and surfactant type. 

Oil-in-water emulsions are those in which the oil droplets are dispersed in water continuous 

phase and contain water-soluble surfactant with typically high hydrophile-lipophile balance 

(HLB) of  >8 [14-18]. Whereas water-in-oil emulsions are that kind where water droplets are 

suspended in oil continuous phase, and the surfactants are oil-soluble with a HLB ratio of <7. 

Surfactants consist of a polar head group (hydrophilic) soluble in the aqueous phase, and a 

non-polar tail group (lipophilic) soluble in the oil phase. Emulsions are made stable in the 

presence of adequate concentrations of surfactant and emulsification/ mixing conditions. 

Emulsions are thermodynamically unstable systems due to the high interfacial tension  two 
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immiscible phases, and the free energy of the system is not minimized [19, 20]. The role of a 

surfactant is to reduce the interfacial tension between the phases, thereby minimizing the free 

energy of the system. An emulsion is called stable when there is no change in the emulsion 

droplet size over time, which is generally achieved when the surfactant concentration and 

emulsification conditions (mixing speed, time) are optimized. The four ways in which an 

emulsion becomes unstable are: creaming (or sedimentation), flocculation, coalescence, and 

Ostwald ripening [13]. Changes in temperature, pH etc. also result in changes in emulsion 

properties. Creaming or sedimentation occurs due to the density difference between the two 

phases causing movement of the oil droplets (in o/w emulsions) or water droplets (in w/o 

emulsions). Flocculation occurs due to aggregation of emulsion droplets without rupturing the 

thin interfacial film, whereas, coalescence results in rupture of the interfacial film. Ostwald 

ripening occurs due to diffusion of smaller droplets into larger ones. 

 

Figure 1.2: Illustration of water-in-oil emulsion stabilized using a) surfactant b) solid particles 

(Pickering emulsion) 

 

In 1903, Ramsden observed that solid particles were capable of stabilizing emulsions, 

but it was Pickering who first established through extensive experimental study that solid 

particles function very similar to surfactant molecules in stabilizing oil-water interface [21, 
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22]. Figure 1.2 illustrates oil-water interface of an emulsion stabilized using either surfactant 

or solid particles. Pickering observed that solid particles that are wetted more by the oil phase 

and have a contact angle > 90°, act as an emulsifying agent for water-in-oil emulsions [23], 

whereas particles preferably wetted by the water phase and have a contact angle < 90°, 

produced oil-in-water emulsions [22, 23]. Ramsden and Pickering first quantified that 

emulsion stabilization by solid particles occurs as a result of strong adsorption at the oil-water 

interface [21]. Finkle et al established that the stability of emulsion was due to wetting of the 

particles and the type of emulsion formed [24]. Aveyard and Binks observed that the free 

energy of adsorption of particles caused emulsion stability [25]. Binks and Lumsdon 

demonstrated that inversion of emulsions was quantified by the solid particles wettability and 

contact angle [26]. Since the discovery of solid particle’s ability to stabilize emulsions, several 

studies have been conducted on emulsion characteristics. 

Several researchers identified that solid particles impart mechanical rigidity and 

viscosity to the interfacial film if the solid particles form a tightly packed network around the 

droplet [25, 27-30]. To this end, Simon et al studied the rheological properties of fumed silica 

stabilized emulsions [31]. They studied the rheological properties of o/w and w/o emulsions 

stabilized with particles of different polarity. Hydrophilic Aerosil R7200 and hydrophobic 

Aerosil R972 were considered as stabilizers for the emulsion systems. Rheological properties 

of w/o emulsions stabilized by hydrophobic particles were similar to o/w emulsions stabilized 

by hydrophilic particles. They also investigated the rheological properties of o/w emulsion 

stabilized by a mixture of particles keeping the total particle concentration constant but varying 

the mass ratio between particles. They observed that the viscosity and stability of the emulsion 

decreased with increase in the hydrophobic particle concentration. 
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Vignati et al examined the droplet interfacial tension of o/w Pickering emulsion using 

micropipette tensiometry [32]. The authors observed that the particle surface adhesion at the 

oil-water interface was strong and remained constrained at the droplet interface even upon 

dilution. The authors demonstrated that the stabilization mechanism in Pickering emulsion was 

due to steric hindrance or surface rheology effects. Fan and Striolo implemented particle 

dynamics simulation to study the influence of solid nanoparticles on the oil-water interfacial 

tension measurements [33]. The authors suggested that the interfacial tension depends directly 

on the particle coverage and the affinity of nanoparticles to the interface. They observed that 

increase in the primary particle size significantly increased the nanoparticles desorption 

energy, leading to larger surface coverage and interfacial tension reduction. 

Sullivan and Kilpatrick, Hannisdal, et al were some of the few researchers who 

investigated the effect of silica nanoparticles on model oil emulsion stability with application 

to the oil and gas industry [34, 35]. They demonstrated the stabilization mechanism of crude 

oil components with either only hydrophobic or hydrophilic silica, and the ease of achieving 

catastrophic phase inversion on emulsions stabilized by particles with intermediate wettability.  

This thesis focuses on water-in-oil emulsions stabilized using either surfactant (span 80) 

or solid particles (such as Aerosil R974, Aerosil R972, Aerosil R816). Different experimental 

techniques (inflow microscopy, acoustic spectroscopy, optical microscopy and interfacial 

tensiometer) were used for characterizing emulsion droplet size. All the work discussed in this 

thesis were conducted using deionized water as the aqueous phase, and either model mineral 

oil or decalin as the oil continuous phase.  
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1.3.2. Hydrates 

Gas hydrates or clathrates are non-stoichiometric, crystalline like structures formed 

from host water molecules and low molecular weight hydrocarbons (also known as guest 

molecules) such as methane, ethane, propane, carbon-dioxide, nitrogen etc. [9]. Gas hydrates 

are important primarily for two reasons: first, they serve as an energy source, and secondly, 

they cause plugging of pipelines. In the energy industry, addressing flow assurance issues due 

to hydrates is of primary importance due to deferred production, severe economic losses, 

safety, and environmental concerns. On the other hand, however, hydrates are believed to serve 

as a potential future energy source, as they can entrap large quantities of natural gas (1 m3 of 

hydrate can entrain almost 180 m3 of natural gas at ambient conditions). The thermodynamic 

conditions required for hydrate formation are low temperature, high pressure, and the presence 

of hydrate-forming gas molecules, free water or brine. Hydrates are classified as either 

structure I, II, or H depending on the cage size and fit of the guest molecule into the host 

molecule [36]. Structure I hydrates are composed of twelve pentagonal (512) and two hexagonal 

(62) cavities occupied by guest molecules (gases) such as methane, ethane, and carbon-dioxide 

[36]. Structure II hydrates are the most common type in the oil and gas industry and are 

composed of 51264 cavities and occupied by guest molecules such as propane and                                                                                                                                                                                                                                                                                                                                                                                                                

iso-butane. Structure H hydrates are composed of high molecular gas compounds and are the 

least common type [36]. This thesis focuses on structure II hydrates, with the only exception 

being that all the studies would be focused on cyclopentane hydrates which serve the same 

function as guest molecules in structure II gas hydrates. For the work discussed in this thesis, 

cyclopentane hydrates are used instead of gas hydrates due to pressure limitations in our 

laboratory facilities.  
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Since the discovery of hydrates by Hammerschmidt in early 1930’s, plugging due to 

hydrates has been a serious challenge to the petroleum industry [9]. Hydrate formation may 

occur during transient and abnormal operations such as start-up, restart, shut in, and in places 

in the pipeline where there is a change in flow geometry, across valves, risers, and 

offshore/subsea systems. In most cases, hydrate management is economically feasible and 

favorable when compared to complete avoidance due to excessive capital and operating costs 

involved in completely preventing hydrate formation [37]. The four methods used for hydrate 

management and removing hydrate blockages include pressure reduction/ depressurization, 

mechanical removal, chemical injection, and thermal application [9]. 

Hydrate dissociation by reducing pressure (depressurization) is the most widely used 

technique in regions where the chemical injection is not easily accessible. The mechanical 

removal method involves the use of coiled tubing which allows jetting of hot water to 

dissociate hydrate plugs. In the chemical injection method, agents such as methanol, glycols, 

anti-agglomerants etc. are injected into the pipeline wherever accessible to dissociate the plug. 

The two different kinds of chemical injection methods include: use of thermodynamic 

inhibitors or kinetic hydrate inhibitors (KHI). Thermodynamic inhibitors work by simply 

shifting the phase equilibria/ hydrate equilibrium conditions towards lower temperatures at 

fixed pressure. The most common thermodynamic inhibitor is methanol or glycol, but the 

drawback to this method is that large quantities of chemicals are required. The other kind of 

chemical injection method is called low dosage hydrate inhibitors (LDHI), which works by 

limiting hydrate growth rate and delaying hydrate formation but has no effect on hydrate phase 

boundaries. There are two different kinds of LDHI’s available: kinetic hydrate inhibitors (KHI) 

and anti-agglomerants. KHI’s delay the hydrate nucleation time and growth of hydrates, 
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whereas anti-agglomerants such as certain polymeric surfactants, work as an agent that prevent 

agglomeration/ coalescence of hydrate particles, thereby maintaining a hydrate slurry [38-41]. 

Certain surfactants such as span 80 perform the same function as an anti-agglomerant. Though 

chemical injection is one of the most commonly practiced methods in the industry, it is also 

mostly avoided due to associated costs involved in the separation of chemicals. The last method 

used for hydrate remediation is the thermal method, where the approach is to increase the 

temperature of the hydrate plug above the hydrate equilibrium/ dissociation temperature, which 

is usually performed by heating bundle or electric heating of pipeline. In the energy industry, 

though emulsions are known to produce production problems, recent studies have shown that 

stable water-in-oil emulsions promote successful transport of hydrate slurries similar to cold 

flow technology. The presence of a wide variety of surfactants and solid particles in the crude 

oil increase stability of emulsions and function similar to anti-agglomerants, thereby 

minimizing hydrate particle aggregation. Hence, there is an impetus to develop a fundamental 

understanding of the  hydrate formation mechanism in emulsions in the presence of a wide 

variety of stabilizing agents. This thesis primarily focuses on the hydrate formation mechanism 

in the presence of solid particles such as wax, and the characterization of such emulsions.  

 In this thesis, hydrate formation studies are conducted using cyclopentane in the oil 

continuous phase. Structure II hydrates commonly found in the oilfield are produced at high 

pressures. Reproducing such conditions in a laboratory scale setup are challenging due to 

pressure limitations and safety concerns. So, an alternative compound known as cyclopentane 

is used for hydrate formation. Cyclopentane and tetrahydrofuran (THF) are used as alternatives 

to conduct laboratory-scale hydrate studies [40, 42-47]. Both cyclopentane and THF are known 

to form structure II hydrates at atmospheric conditions. However, the literature shows that 
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cyclopentane is preferred as a hydrate-forming guest molecule over THF, as the latter is 

miscible in water and also possesses mass transfer limitations between the guest molecule-

water that is critical in gas hydrate forming systems [38, 48-50]. Hence, all the work presented 

in this thesis uses cyclopentane as an atmospheric model for gas hydrates in emulsions.  

1.3.3.Wax 

Waxes (particularly petroleum wax) are long chain, high molecular weight, saturated 

hydrocarbons with carbon compounds from C18 to C75 and melting points ranging from  35-70 

°C [51].  Wax present in crude oil consists of paraffin hydrocarbons (C18-C36) and naphthenic 

hydrocarbons (C30-C60). Petroleum wax consists of a mixture of light paraffinic, intermediate, 

and naphthenic hydrocarbons along with heavy organic compounds. Cloud point, also known 

as wax appearance temperature (WAT), is the temperature at which the first wax crystal begins 

to form [52]. At temperatures below WAT, wax crystals begin to precipitate and aggregate to 

form a network of crystals. The two main critical challenges that occur due to wax are gel 

formation and wax deposition [53].  Gel formation occurs typically at static conditions and 

when the system temperature falls below WAT, thereby resulting in the formation of an 

intermolecular network of wax particles. Wax deposition occurs when the oil temperature falls 

below the WAT, and a negative thermal gradient between bulk oil and pipe surface exists.  

Measuring WAT is one of the most critical parameters that helps establish a guideline 

on the temperature ranges to operate in such a manner as to avoid deposition problems. WAT 

is otherwise known as the highest temperature in which wax crystals are detected in the solid 

state. WAT is a function of the oil composition, cooling rate, thermal history, pressure, and 

fluid properties. Some of the most commonly used methods/ techniques for WAT measurement 
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include viscometry/ rheology, differential scanning calorimetry (DSC), Fourier transform 

infrared spectroscopy (FTIR), filter plugging, cold finger, cross-polarized microscopy (CPM), 

and ASTM visual techniques.  

Viscometry techniques utilize the rheological behavior of the oil as a function 

temperature and shear rate. If the sample exhibits Newtonian behavior and is a function of 

temperature alone, then it is above WAT. Whereas, below WAT, the rheological properties 

become dependent on the shear rate. WAT is determined as the point at which there is a sudden 

change in the viscosity-temperature relationship.  

DSC is one of the most widely used techniques for WAT measurement, which utilizes 

the heat of dissociation for detecting WAT. FTIR technique involves the use of infrared 

wavelengths to measure the increase in energy scattering during wax crystallization. CPM 

technique is a visual method for detecting wax crystals. This is one of the most widely used 

techniques for WAT measurement where an optical microscope with temperature controlled 

stage and an analyzer-polarizer are used, and WAT is measured as a function of cooling rate. 

Cold finger technique operates by generating a localized cold surface and is used to measure 

the quantity of kinetics of wax deposition. Except for cold finger, all the other techniques 

discussed above are used for WAT measurement, whereas, cold finger measures wax 

deposition [54]. In this thesis, CPM was used for WAT measurement. All the experimental 

work using waxy oil continuous phase discussed in chapter 5 was carried out using CPM. 

Wax deposition is a critical flow assurance issue that can occur at any stage during 

crude oil extraction, production, transportation, storage, and processing. As exploration and 

production move into deep-water and offshore drilling, wax deposition problems have been 



 

13 
 

increasing steadily, as these conditions are subject to low temperatures. Hence, it is essential 

to have prior knowledge of WAT deposition rate before approaching techniques for complete 

avoidance. The three remediation methods for addressing flow assurance issues due to wax 

are: mechanical, thermal, and chemical methods [4, 55].  

The mechanical methods involve the use of pigs, plunger lifts, and scrappers to remove 

wax deposited on pipe surfaces and prevent wax particles from agglomerating and causing 

gelling of the crude oil.  The thermal methods include the use of electric heating of pipelines, 

circulation of hot water or steam etc. This technique facilitates wax removal by maintaining 

the fluid temperature above the wax melting point. The chemical method aids in the use of 

chemicals known as wax inhibitors that modify the pipe wall surface and wax crystal 

properties. Wax inhibitors are classified into three categories: pour point depressants/ wax 

crystal modifiers, detergents, and dispersants. Pour point depressants are chemicals that build 

into wax crystals and modify the surface properties and agglomeration tendency of wax 

crystals, thereby lowering the pour point.  

In the present work, cyclopentane hydrate formation in waxy oil systems with and 

without surfactant are studied using model oils. This thesis provides fundamental 

understanding of the effect of wax, wax concentration, the effect of surfactant, and cooling 

rates on cyclopentane hydrate formation. For this work, CPM technique is used for hydrate 

and wax crystal characterization. This thesis provides an insight into emulsion properties upon 

hydrate dissociation in the presence of surfactant and wax.  
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1.4. Safety 

This thesis involved working with model oils such as crystal plus mineral oil, light 

mineral oil, solvents such as cyclopentane, decalin, surfactants, and solid particles. All the 

chemicals were stored in a flammable cabinet. Personal protective equipment, safe laboratory 

practices, and standard operating procedures were followed for all the work presented in this 

thesis. All the samples were properly labeled, stored in a fume hood when not in use, and 

properly disposed off according to EHS chemical disposal rules and regulations.  

1.5. Thesis Outline 

This thesis is arranged in 5 chapters followed by supplementary information and 

references. Chapter 2 describes transient emulsion properties of surfactant and solid stabilized 

water-in-oil emulsions.  The objective of this work was to elucidate the use of acoustic 

spectroscopy for characterizing emulsion stabilization/ destabilization mechanism in these 

emulsions. Acoustic spectroscopy measurements were carried out on these emulsions to 

determine the initial droplet size distributions and their evolution over a period of one week. 

A transient stability test was conducted to compare the behavior of surfactant and solid 

particles at the oil-water interface. Experimental results indicated that a destabilization 

mechanism, such as coalescence, can be characterized using acoustic spectroscopy. 

Characteristics prevalent in the coalescing system, such as broad droplet size distribution and 

polydispersity, were captured by acoustic spectroscopy in terms of change in the raw 

experimental attenuation.   

 Chapter 3 describes the characterization of concentrated water-in-oil emulsions under 

flowing conditions. In this work, an experimental flow loop setup equipped with an inflow 
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microscope was utilized to quantify emulsion drop size distributions as a function of water 

concentration, flow rate, temperature, and stabilizing agent type. This work showed that the 

drop size distribution was a function of temperature, water concentration, and flow rate for 

surfactant stabilized emulsions. The solid-stabilized emulsions indicated that only water 

concentration had an overall impact on the drop size distributions. Water concentration, flow 

rate, and temperature have a significant impact on the emulsion droplet size in surfactant 

stabilized systems.  

Chapter 4 illustrates the effect of hydrate formation on emulsion droplet size captured 

using optical microscopy. For this work, cyclopentane hydrate forming emulsions were 

prepared using a surfactant (span 80), solid particles (Aerosil R974, Aerosil R816) and at two 

different water concentrations of 10 and 40 vol.%. In-situ hydrate formation was observed in 

concentrated emulsions without dilution. Hydrate formation and ice melting were observed to 

occur simultaneously. Multiple emulsions formed, and eventually, a change in the emulsion 

droplet size was observed upon hydrate dissociation.  

Chapter 5 outlines single water drop hydrate formation mechanism in waxy oil systems 

with and without the presence of a surfactant. For this work, an Olympus BX53 temperature 

controlled and shear stage optical microscope was used for investigating hydrate formation as 

a function of wax concentration, heating/ cooling rates, and with and without the presence of 

surfactant (span80). In the absence of surfactant in the waxy oil continuous phase, the time 

required for visual observation of hydrate formation throughout the entire water droplet was 

observed to be higher at slower heating/cooling rates, and lower at faster rates irrespective of 

the wax concentration. However, such observations were not seen in waxy oil systems 

containing a fixed quantity of surfactant. Hydrate formation throughout the entire water droplet 
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surface area occurred in less than 20 minutes irrespective of the heating/cooling rates and wax 

concentration. Such observations were not seen in waxy oil systems without surfactant.  

Finally, chapter 6 discusses the preliminary experimental results on hydrate forming 

emulsions containing wax and surfactant as stabilizing agents. This chapter also discusses the 

significant modifications made to the flow loop setup described in chapter 3. The modifications 

made to the flow loop design enables characterizing the pressure drop across the various 

sections in the flow loop along with visual characterization of emulsions, hydrates, and wax. 

This chapter enlists significant contributions made in this and for future work.  
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CHAPTER II 

 

 

TRANSIENT STABILITY OF SURFACTANT AND SOLID STABILIZED 

WATER-IN-OIL EMULSIONS 
 

 

2.1. Introduction 

An emulsion is called stable if there is no phase separation against any 

destabilization phenomenon, such as coagulation and coalescence, phase inversion, 

creaming, sedimentation and Ostwald ripening, and if the emulsification process is possible 

[56]. Emulsifiers are additives that stabilize the oil-water interface. Surfactants are the 

usual choice for this purpose and have been available in the market as an emulsifier for 

both water-in-oil and oil-in-water emulsions. Surfactants are either ionic, non-ionic or 

zwitterionic in nature. Surfactants reduce interfacial tension, thereby promoting the 

creation of water-oil interface, and subsequently stabilizing the interface to resist 

coalescence [22, 57]. 

Emulsions stabilized using finely divided particles/ nanoparticles are called solid-

stabilized emulsions (also known as Pickering emulsions) [22, 57]. Solid stabilized 

emulsions have gained importance in the last two decades due to their applicability in many 

industries (such as food, agriculture, pharmaceutical), their enhanced emulsion   stability, 

and their ability to produce droplets ranging from a few microns to several millimeters 
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(Levine, Bowen et al. 1989). Pickering identified that solid particles had the  ability to 

produce stable emulsions, and therefore, these are called Pickering emulsions [22, 57]. 

Solid particles function in a manner similar to surfactants. However, the preferential 

wetting of solid particles plays a major role in determining whether oil-in-water or water-

in-oil emulsions are formed  [23]. Solid particles such as pre-treated silica (available in the 

market as Aerosil) have been widely used in the pharmaceutical and cosmetic industries as 

a stabilizer, and also in the oil and gas industry for producing stable and large droplet 

emulsions [58]. Solid particles such as hydrophobic silica are known to be preferentially 

wetted by the oil phase, and lead to the formation of water-in-oil emulsions; whereas, 

hydrophilic silica particles, which are preferentially wetted by the water phase, produce 

stable oil-in-water emulsions [24, 57, 59].  

Solid stabilized emulsions can be more stable, depending on surface coverage, as 

compared to surfactant stabilized emulsions, due to the strong adhesion of solid particles 

to the oil-water interface. The contact angle, coalescence kinetics, and particle interaction 

energy contribute to the stability of the emulsions  [59]. Stable emulsions are prepared 

when the particles are neither too hydrophilic nor hydrophobic and if there is complete 

surface coverage. Particles that form contact angle, θ >90° form a water-in-oil emulsion, 

whereas, θ < 90° leads to an oil-in-water emulsion [23, 24, 59]. The particle shape, size, 

and concentration greatly affect the emulsion stability and droplet size [60].  

Acoustic and electroacoustic spectroscopy are some of the most reliable techniques 

for characterizing concentrated dispersions and emulsions in-situ [61]. These ultrasound 

based methods were chosen over other traditional particle sizing techniques, such as 

dynamic light scattering, electron microscopy, etc., due to their ability to characterize 
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polydisperse and concentrated systems without dilution [61, 62]. For this study, we used 

an Acoustic/Electroacoustic spectrometer DT 1202 (produced by Dispersion Technology 

Inc.) for characterizing droplet size distribution of both surfactant and solid-stabilized 

emulsions [61, 62].  

The motivation behind this work was to demonstrate how acoustic spectroscopy 

can be utilized to capture emulsion stabilization/ destabilization phenomena in surfactant 

and solid-stabilized emulsions and characterize their transient stability over a period of 

time. For the purpose of this work, emulsions that exhibit two different kinds of 

stabilization/ destabilization mechanisms were studied using acoustic spectroscopy: one 

that undergoes coalescence, and a second that exhibits high stability. A surfactant-

stabilized emulsion was used for investigating the transient behavior of a highly stable 

emulsion since it is well known to produce stable and non-coalescing droplets when formed 

above the critical micelle concentration. Since coalescence in surfactant stabilized systems 

is well studied and understood, a solid stabilized emulsion was chosen for studying acoustic 

interrogation of a coalescing system. Another important goal of this work was to 

investigate how acoustic spectroscopy captures characteristics prevalent in coalescing 

droplets, such as polydispersity and broad drop size distribution. For the purpose of this 

study, both coalescing and highly stable emulsions were prepared using similar mixing 

conditions and composition.  

In this chapter, the droplet size distribution of water-in-oil emulsions stabilized 

using hydrophobic fumed silica (Aerosil R972) and a non-ionic surfactant, sorbitan 

monooleate (span 80) was studied at different time intervals after emulsification. Bottle 
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test and optical microscopy measurements were also carried out to validate the results 

obtained from acoustic spectroscopy.  

2.2. Material and Methods 

2.2.1. Emulsion Preparation 

The water-in-oil emulsions prepared for this study contained decalin with a density 

of 0.786 g/cm3, and ultra-pure, deionized water with a resistivity of 18.2 MΩcm.  Two 

different stabilizers used for this study were sorbitan monooleate (span 80) and 

hydrophobic fumed silica (Aerosil R972). Decalin was supplied by BDH chemicals.  

For a surfactant-stabilized emulsion, span 80, C24H44O6 (molecular weight = 428.6 

g/mol), supplied by Sigma Aldrich, with a density of 0.99 g/cm3 was used as an emulsifier. 

The critical micelle concentration of span 80 in solvents such as decalin (dielectric constant 

= 2.2) was identified as 1.5-2 wt.%[63]. Hence, the oil phase was composed of 2 wt.% of 

span 80. Span 80 is used in industries as a surface-active emulsifier. Span 80 is a non-ionic 

lipophilic emulsifier with a hydrophile-lipophile balance ratio (HLB) of 4.3. The low HLB 

ratio of Span 80 is well known to produce w/o emulsion.  

For Pickering emulsions, hydrophobic fumed silica (Aerosil R972) manufactured 

by Evonik Industries (Rheinfelden, Germany), with a tamped density of 1.06 g/cm3 was 

used as the stabilizing agent. Aerosil R972 is manufactured by flame pyrolysis of silica at 

1000 °C and surface treated with dichlorodimethyl silane to impart hydrophobic 

functionality. The primary particle size of Aerosil R972 is 16 nm, and the material typically 

exists as a sintered aggregate with size varying in the size range 100-300 nm. To keep the 
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emulsifier concentration constant for both kinds of emulsions, 2 wt.% aerosil R972 was 

dispersed in the oil phase. 

Both types of emulsions were prepared using an Ultraturrax T25 homogenizer with 

a maximum operating power of 25,000 rpm. The oil phase of the emulsions was prepared 

by mixing 81.98 vol.% of Decalin with 2.12 vol.% of the stabilizer using a spatula and 

homogenizing at 8000 rpm for 1 min to completely homogenize the oil phase. Then, 15.9 

vol.% of water was slowly added to the oil phase and the emulsion was mixed using the 

homogenizer at 8000 rpm for 10 minutes. 

2.2.2 Acoustic Spectroscopy 

For this work, an acoustic/electroacoustic spectrometer DT-1202 (manufactured by 

Dispersion Technology, Inc.) was used for characterizing both kinds of emulsions. A 

detailed description of this device is available in the literature [64] (Figure 2.1). The 

spectrometer is used for measuring drop size distribution, zeta potential, and conductivity 

simultaneously. The acoustic technique utilizes acoustic sound waves for measuring 

particle and drop size distributions. The electroacoustic technique utilizes both electric and 

acoustic signals for measuring the surface charge and zeta potential. 
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Figure 2.1: Representative image of DT 1202 acoustic and electroacoustic spectrometer. 

For this work, this instrument was used for measuring the emulsion droplet size, colloidal 

vibration current (CVI), and aqueous/ non-aqueous conductivity 

 

Acoustic particle sizing is regulated by two International Standards: ISO 20998 

Parts 1 and 2 [61, 62, 64]. The two essential features of the acoustic particle sizing 

technique that make it absolute and keep it from requiring calibration are pulse technique 

and variable gap method. The acoustic spectrometer works on the principle of generating 

pulses at 18 different frequencies within the range from 1 to 100 MHz, and 21 gaps between 

transmitter and receiver from 0.3 mm to 20 mm. A piezoelectric transducer (transmitter) 

converts these signals to ultrasound pulses of the same frequency. These ultrasound pulses 

propagate through a liquid sample, interact with the liquid and particles, and consequently 

attenuate. A second transducer (receiver) converts the received sound pulse into electric 

signals. The difference in the initial and final electric pulses serves as a measurement of 
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energy loss within the sample and is measured as attenuation. This energy loss is measured 

at variable gaps and frequencies between the transmitter and receiver. The variable gap 

method is coupled with the Beer-Lambert law for calculating attenuation coefficient, α, 

and per unit length (dB/cm/MHz) [65]. Like density, viscosity, and sound speed, acoustic 

attenuation is an intrinsic property, and unique to each system. The acoustic spectrometer 

measures the raw experimental attenuation, which is then fitted into theoretical models to 

predict the drop size distribution. The theoretical model used to predict the drop size 

distribution is a function of the experimental attenuation and intrinsic properties of the 

phases of the system. The software searches for the drop size distribution that provides the 

best fit to the experimental attenuation spectra and predicts the mean droplet size and 

distribution. 

2.2.3 Optical Microscopy 

For this work, a visualization technique was employed to quantify droplet size 

distributions and transient emulsion behavior through the use of an Olympus BX53 

polarized optical microscope with shear cell and temperature control (-50°C to 450°C) 

stage. The specifications of the microscope are discussed in detail in Chapters 3, 4, and 5. 

2.2.4 Experimental Procedure 

An emulsion sample of 180 g was prepared as described in the emulsion preparation 

method. Immediately after emulsification, the sample chamber of DT 1202 was filled with 

the emulsion, and the particle size, colloidal vibration current, and conductivity were 

measured and reported as “0th hour”. Transient emulsion stability and evolution of droplet 

size was studied at different time intervals. Measurements were reported as “48th hour” and 

“after 1 week” of emulsification. During the entire process, the emulsion samples were 
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constantly stirred on a Thermo Scientific Inc. (Ashville) magnetic stir plate with a 25.4 mm 

long stir bar at 800 rpm. The DT 1202 spectrometer was set up with a peristaltic pump 

operating at half of the full speed range to ensure that there was no phase separation within 

the sample chamber.  

Bottle test experiments were conducted to study the emulsion behavior and any de-

emulsification phenomena that might occur in these emulsions at different time intervals. 

Bottle tests simply consisted of placing a known amount of sample into a bottle and 

subsequently observing the behavior of the sample as a function of time. Optical 

microscopy was also employed to measure drop size distributions. 

2.3.Results and Discussion 

2.3.1 Emulsion stability using bottle tests 

The stability of emulsions against coalescence and phase separation was monitored 

and assessed using conventional bottle test methods. Sedimentation of the emulsion and 

separation of the oil phase was observed in both surfactant and solid particle stabilized 

emulsions (Figure 2.2). However, separation of the oil phase in the solid-stabilized 

emulsions was predominant at all-time intervals when compared to surfactant stabilized 

emulsions. As seen in Figure 2.2, though sedimentation in surfactant-stabilized emulsion 

is present, the cloudiness seen in the supernatant likely indicates a large amount of stable, 

small droplets being kept in suspension by Brownian motion. Rapid separation of the oil 

phase and sedimentation of droplets seen in solid-stabilized emulsions indicate two likely 

possibilities: a) the droplets are coalescing due to insufficient surface coverage, or b) 

droplets are experiencing sedimentation due to a density difference, with or without any 
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change in droplet size. No aqueous phase separation was noticed in either type of emulsion 

even after 1 week of emulsification.  

The evolution of both emulsions over time was followed simultaneously using 

optical microscopy and acoustic spectroscopy for up to 1 week after emulsification. The 

results obtained from these techniques are discussed in the following sections. 

 

Figure 2.2: Bottle test experiment showing the stability, phase separation and 

sedimentation of water droplets in surfactant stabilized water-in-oil and solid particle 

stabilized water-in-oil emulsion at different time intervals of sample preparation: a) 0th 

hour, b) after 48 hours of emulsion preparation, c) after 1 week of emulsion preparation. 

The sample was not stirred throughout this experiment. 
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2.3.2 Emulsion characterization: optical microscopy and acoustic/electroacoustic 

spectroscopy 

 

Figure 2.3: Optical microscopy images (20X magnification) of span 80 stabilized water-

in-decalin emulsion taken at different time intervals after emulsification a) 0th hour b) 48th 

hour c) after 1 week. 

 

Figure 2.4: Optical microscopy images (20X magnification) of fumed silica stabilized 

water-in-decalin emulsion taken at different time intervals after emulsification a) 0th hour 

b) 48th hour c) after 1 week. 

 

Optical microscopy experiments were conducted on the emulsion samples at time 

intervals at which bottle test experiments were carried out. Images shown in Figure 2.3 a) 

indicate that the droplet size distribution centered around 2 µm for the span80 stabilized 

emulsion at the 0th hour measurement. Whereas in the solid stabilized emulsions, the 
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distribution shifted towards larger droplet size with a mean size around 8 µm (Figure 2.4 

a). The solid stabilized emulsion also reveals polydisperse character with droplets in the 

size range of 2- 20 µm. Images shown in Figure 2.3 indicate that for span80 stabilized 

emulsions, the morphology of the droplets displays very little change with time. There was 

only a slight shift in the mean droplet size from 1.5 to 3 µm after 1 week of emulsification. 

Drelich et al., observed similar behavior in water-in-paraffin oil emulsion stabilized using 

span80 [66]. The authors observed that up to 7 days after emulsification, there was only a 

slight shift in the droplet size distribution from 1.5-3 µm [66]. 

Images in Figure 2.4 indicate the evolution of droplets over time with the 

distribution shifting towards larger droplet size. Figure 2.4 also reveals that a large number 

of small droplets coalesce to form bigger droplets, thus resulting in polydisperse behavior.  

 

Figure 2.5: Attenuation spectra of a) span 80 stabilized emulsion b) fumed silica stabilized 

emulsion at various time intervals using the acoustic spectrometer. Arrows show the trend 

in the attenuation spectra immediately and after 1 week of emulsion preparation at low and 

high frequency.  
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Figure 2.6: Experimental and theoretical attenuation spectra of water-in-oil emulsion 

measured immediately after sample preparation (0th hour attenuation) a) Attenuation 

spectra of span80 stabilized emulsion assuming thermal loss mechanism b) Attenuation 

spectra of fumed silica stabilized emulsion assuming scattering loss mechanism due to the 

presence of large droplets 

 

Figure 2.5 and Figure 2.6 a) and b) show the attenuation spectra of span80 and 

fumed silica stabilized emulsion (solid stabilized emulsion) respectively at three different 

time intervals (0th hour, after 48 hours and after 1 week of emulsification). Figure 2.5 and 

Figure 2.6 a) and b) show the evolution of attenuation spectra over time at the entire 

frequency range (1-100  MHz). Figure 2.5 indicates that for span80 stabilized emulsions, 

the low-frequency attenuation begins to decay with time. Whereas, this trend was not 

observed for solid-stabilized emulsions Figure 2.6 b). The high-frequency attenuation (>10 

MHz) was observed to increase for both kinds of emulsions with time. Dukhin and Goetz 

also observed a similar trend in the evolution of attenuation spectra for span80 stabilized 

emulsions [67]. The authors observed that for span80 stabilized water-in-kerosene oil 
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emulsion, the attenuation at lower frequency decays with time, whereas, at higher 

frequencies, it increases over time [67]. The measured raw attenuation is a combination of 

intrinsic, thermal, and scattering loss mechanisms. For this work, the intrinsic loss is the 

attenuation caused by the continuous oil phase (decalin). As seen in Figure 2.5 a), for the 

surfactant-stabilized emulsion, the thermal loss mechanism contributes to the overall 

attenuation. Whereas, for the solid stabilized emulsion, the scattering loss mechanism 

dominates the attenuation spectra over the entire frequency bandwidth with a decay in the 

attenuation due to a thermal loss at higher frequencies (Figure 2.6 b)). High-frequency 

attenuation is  caused by scattering loss which is sensitive to large droplet size [64]. For 

the two emulsion systems studied in this paper, the search routine in the DT-1202 software 

was modified to take into account only the thermal loss mechanism for surfactant stabilized 

emulsions and scattering loss for solid-stabilized emulsions. It was seen that the theoretical 

attenuation fits the experimental data with a fitting error of < 15% for both kinds of 

emulsions at all the measured time intervals. Thermal loss mechanism is sensitive at lower 

frequencies up to 10 MHz and small droplet sizes [64, 67]. Whereas, scattering loss 

mechanism is sensitive to higher frequencies and large droplet sizes [64, 67]. The evolution 

of attenuation directly indicates variation in the droplet size distribution. An increase in 

both the low and high-frequency attenuation as seen in Figure 2.6 b) indirectly indicates 

changes in the physical and morphological properties of the system such as droplet 

coalescence, polydispersity, and broad droplet size distributions. 
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Figure 2.7: Drop size distributions of a) span80 stabilized emulsion b) fumed silica 

stabilized emulsion at various time intervals using acoustic spectrometer  

Table 2.1: Average water droplet size in span80 and fumed silica stabilized emulsion 

measured at different time intervals after emulsion preparation using acoustic spectrometer 

 Sample 

Time after emulsion 

preparation 

Mean (µm) 

Surfactant-stabilized emulsion 

0th hour 2.0±0.32 

48th hour 3.4±0.47 

After 1 week 3.1±0.40 

Solid particle stabilized emulsion 

0th hour 6.4±0.18 

48th hour 23.9±0.60 

After 1 week 40.0±0.45 

 

  The acoustic spectrometer predicts the droplet size distribution based on raw 

attenuation loss mechanism. Droplet size distribution shown in Figure 2.7 a) and b) are a 

lognormal distribution that is generated as a result of the automatic calculation performed 
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by the DT 1202 software [64]. Figure 2.7 a) and Table 2.1 indicate that for the surfactant-

stabilized emulsion, no further increase in the mean droplet size is seen after 1 week of 

emulsification and ceases after reaching 3 µm. This could be attributed to the fact that there 

is leveling of attenuation at both low and high frequencies, as seen in Figure 2.5 a). This 

behavior indicates that the emulsion is stable against de-stabilization mechanisms such as 

coalescence. Table 2.1and Figure 2.7 b) indicates that droplet size evolves with time and 

leads to broad and polydisperse droplet size distributions for solid-stabilized emulsions. 

Figure 2.7 b) shows that with time, attenuation at both the low and high-frequency regions 

increases, thereby indicating the generation of small and large micron-sized, polydisperse 

droplets. This directly indicates that the Pickering emulsion is not stable against 

coalescence. Bottle test results shown in Figure 2.2 also support this observation. Images 

shown in Figure 2.4 illustrate that for solid-stabilized emulsions over time, a large number 

of small droplets coalesce to form bigger droplets. This behavior results in a shift in the 

distribution towards larger droplets. 

 Though solid particles are well known to produce stable emulsions, a lack of 

particles at the interface can also result in poor emulsion stability [27, 60]. Emulsions are 

stable against coalescence when the droplets are completely covered by a monolayer of 

solid particles [27, 68]. Several studies have shown that emulsion stability increases with 

increase in the concentration of particles [27, 69],[70],[71]. It has been previously found 

that as particle concentration increases, the average drop size of solid-stabilized emulsions 

decreases as more solid particles are available to stabilize small droplets [60, 72]. 

Depending on the amount of particles available and adsorbed on the droplet interface, the 

droplets that have insufficient surface coverage will continue to coalesce [60, 71, 73]. This 
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results in a decrease in the total surface area until there is a sufficient amount of solid 

surfactant available to stabilize the droplets against coalescence [27, 69]. 

 Binks and others have observed that solid particles adsorb at the droplet interface 

forming a hexagonal closed packed monolayer of particles [28, 68, 70, 71]. The amount of 

solid particles required to completely cover the droplets versus the amount of solid particles 

available would indicate whether the emulsion would be stable against coalescence [69]. 

Several studies have been conducted to understand the effect of particle concentration on 

emulsion stability [27, 60, 69, 74]. It has been observed that the emulsion droplet size and 

ratio of the amount of particles available to that required for complete coverage is a 

function of particle concentration [28, 69, 74, 75]. Studies have also shown that excess 

particles result in smaller droplet size emulsions and remain suspended in the continuous 

phase, causing an increase in the viscosity and producing emulsions stable against 

coalescence by forming a network of particles entrapping the water droplets [60, 69]. 

By knowing the oil concentration, droplet diameter, and interfacial area per unit 

mass of silica particles, we can predict the amount of silica needed to achieve monolayer 

coverage by hexagonal close packing [28, 69, 74, 75]. For this work, the interfacial area 

per unit mass of silica particles was calculated using the relationship predicted by Wiley 

and Aridity et al. [70, 71]. For the purpose of this work, we calculated that the amount of 

silica needed to achieve dense monolayer coverage was 4.08g.  The amount of silica 

available (the mass of silica particles in the emulsion was 2 g) was found to be less than 

the amount required to achieve monolayer coverage (4.08 g). This suggests that the droplets 

initially formed had incomplete surface coverage and showed the tendency of the droplets 

to coalesce. The results shown in Table 2.2 and Figure 2.7 b) agree with this findings.   
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Table 2.2: Colloidal vibration current (CVI) and conductivity of decalin, decalin with 

span80, decalin and fumed silica, span80 and fumed silica stabilized emulsion measured at 

various time intervals using acoustic spectrometer  

Sample CVI Conductivity (S/m) 

Decalin 30456 4.70E-12 

Decalin+ 2wt% Span80 30970 5.50E-08 

Decalin+ 2wt% Fumed Silica 30878 4.00E-12 

Span80 stabilized emulsion 

0th hour 19234 4.49E-08 

48th hour 4858 5.25E-08 

After 1 week 3970 3.70E-08 

Solid stabilize emulsion 

0th hour 7021 3.00E-12 

48th hour 5966 1.10E-11 

After 1 week 2193 8.90E-11 

 

For non-aqueous systems, electroacoustic/ zeta potential measurement involves a 

two-step process: 1. measurement of the background continuous phase colloidal 

vibrational signal (CVI) and 2. measurement of CVI signal of the emulsion [64]. As seen 

in Table 2.2 the presence of a stabilizing agent had no significant impact on the 

continuous phase “decalin” CVI. The CVI of the emulsion was calculated by subtracting 

the CVI contributed from the continuous oil phase “decalin”. It was observed that the 

addition of dispersed phase to the continuous oil phase resulted in a decrease in the 

decalin CVI (Table 2.2). CVI for both types of emulsions was observed to decrease with 

evolution in time.  
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Table 2.2 illustrates that immediately after emulsification, the CVI of surfactant 

and solid-stabilized emulsions decreased by 37% and 77%, respectively. This indicates that 

solid particles dramatically decrease the CVI magnitude of the emulsion. It was observed 

that for surfactant-stabilized emulsion, within 48 hours of emulsification, there was a 75% 

decrease in the emulsion CVI. For solid-stabilized emulsions, the CVI gradually decreases 

with time. 

CVI signal is a magnitude of the zeta potential and is used for calculating the 

surface charge of water droplets [64]. CVI is an intrinsic property of the sample and is a 

function of the fluid properties, droplet size, and dielectric constant of the liquid phase [64]. 

The magnitude of CVI has no direct correlation to emulsion stability but corresponds to 

the magnitude of zeta potential and changes in emulsion behavior and morphology [64]. 

CVI indicates the dynamic mobility of the droplets and is found to be proportional to the 

surface charge and droplet diameter [64]. The CVI values of solid-stabilized emulsions 

were found to be lower than surfactant stabilized emulsions at all-time intervals except 

after 48 hours of emulsification. The decrease in the magnitude of CVI indicates changes 

in the sample properties and emulsion behavior. 

A correlation between decay in surface charge and conductivity increase was 

established by Dukhin [67]. During coalescence, the droplets release ions into the 

continuous phase thereby decreasing their surface charge and increasing conductivity 

[67]. As seen in Table 2.2, the addition of a stabilizer to the continuous oil phase resulted 

in an increase in the conductivity. The conductivity of the initial emulsion (both span80 

and fumed silica stabilized emulsion) was greater than the continuous phase as a result of 

adsorption of the stabilizing agent to the oil-water interface. As described by Dukhin, 
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increases in the conductivity of an emulsion with time indicate changes in the chemistry 

of the system, such as coalescence [67]. 

A sharp increase in the conductivity was seen in solid stabilized emulsion (Table 

2.2). The conductivity of the emulsion increases during droplet coalescence .Coalescence 

causes the release of counter-ions from water droplets to the continuous phase and in turn 

results in an increase in the conductivity [67]. As seen in Figure 2.4 and Figure 2.7 b), the 

solid stabilized emulsion undergoes coalescence and a shift in the distribution towards 

larger droplet sizes. This causes an increase in the conductivity of the emulsion with time. 

2.4 Conclusions and Future Work 

 

In this chapter, the drop size distribution, surface properties, and transient stability of 

water-in-oil emulsion stabilized using a non-ionic surfactant (Span80) and hydrophobic 

fumed silica was measured using acoustic spectroscopy. Differences in terms of the 

evolution of drop size distribution and weakening of the surface charge of droplets were 

observed. Increases in the attenuation at low and high frequencies for solid-stabilized 

emulsions illustrate that droplet coalescence occurred, thereby leading to polydisperse 

morphologies and large droplet size emulsions. Optical microscopy results validate the 

droplet size distribution results obtained by acoustic spectroscopy. The acoustic 

spectroscopy technique can be used to characterize the transient behavior of emulsions, as 

it captures both morphological and physical changes in the emulsions through raw 

attenuation, surface charge, and conductivity measurements. Changes in the experimental 

attenuation and the colloidal vibration current can be used to illustrate changes in the 

physical properties of the emulsions.  
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Further experiments and evaluation of the droplet size distribution and transient 

stability for mixed surfactant and solid-stabilized emulsions as a function of water 

concentration and emulsifier concentration would provide more insight into emulsion 

stabilization mechanism and interfacial properties. To better understand the emulsion 

stabilization and destabilization mechanisms, further work will be performed on specific 

interfacial and rheological interactions between surfactant molecules and solid particles. 
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CHAPTER III 

 

 

CONCENTRATED EMULSION CHARACTERIZATION IN FLOWING 

CONDITIONS 

 

3.1. Introduction 

 

  Characterizing concentrated dispersions is of importance, as the formation and 

stabilization mechanisms of crude oil emulsions are challenging and require continuous 

development. Several studies have demonstrated that fundamental understanding of 

emulsion stability is imperative to predict strategies to address flow assurance related  

issues and the associated economic costs [10, 11, 76]. Hence, characterizing   concentrated 

systems stabilized using both surfactants as well as solid particles is imperative to predict 

the dynamic behavior of such complex emulsions under flowing conditions. 

 The objective of this chapter was to evaluate the effect of flow rate, water fraction, 

and temperature on the emulsion morphology and stability of both surfactant and solid 

particle stabilized emulsions. For this work, an experimental flow loop setup equipped 

with an inflow microscope was utilized to quantify the behavior of concentrated emulsions 

in flowing conditions.
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3.2. Materials and Methods 

 

3.2.1. Experimental Setup 

 

  An experimental flow loop setup equipped with an inflow microscope (Canty Inc.) 

was used for characterizing emulsion droplet size and distribution, the morphology of the 

droplets, and behavior of solid particles at the interface. The 8 ft X 8 ft flow loop consists 

of jacketed 1” stainless steel tubing with fluid circulated using a 5 hp progressive cavity 

pump. The flow loop can achieve temperatures in the range -30 ̊C to 125 ̊C and pressures 

up to 150 psig. The experimental setup is outlined in Figure 3.1.

 

Figure 3.1: Schematic of experimental flow loop setup to characterize concentrated 

emulsions in flowing conditions. 
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3.2.2. Materials and Experimental Procedure 

To confirm the performance of the inflow microscope, the particle size distribution 

of glass beads was measured in the flow loop. For this work, glass beads were purchased 

from Polysciences Inc. with a vendor specified mean size in the range of 30-50 µm. A 

deionized (DI) water suspension containing 0.5 wt. % glass beads were prepared by 

dispersing the particles directly in the reservoir (shown in Figure 3.1).  The glass beads 

suspension was circulated at 3.3 gpm using a progressive cavity pump. The flow loop was 

operated at room temperature during the entire experiment.  Real-time images and videos 

of the glass beads suspension obtained from the inflow microscope were utilized for 

measuring particle size distributions. A similar experiment was conducted using a DT 

1201 acoustic spectrometer (purchased from Dispersion Technology Inc.) to validate the 

results obtained from the inflow microscope. For the acoustic spectrometer measurements, 

a 10 wt. % glass beads sample was used instead of 0.5 wt. % suspension due to signal 

noise constraints of the acoustic spectrometer. Glass beads were suspended in DI water 

and circulated using the peristaltic pump attached to the acoustic spectrometer. 

  Water-in-oil emulsions were prepared using non-paraffinic Crystal Plus 70T 

Mineral Oil. The mineral oil with a density of 0.85 g/cc and viscosity of 40 cP at 25°C 

was purchased from STE Oils. For surfactant stabilized emulsions, a non-ionic surfactant, 

Span80 (sorbitan mono-oleate) was used as the emulsifier. Span 80 has a density of 0.99 

g/cc, and hydrophile-lipophile balance (HLB) of 4.3. For solid-stabilized emulsions, solid 

nanoparticles were used as the stabilizing agent. For this work, hydrophobic fumed silica 

nanoparticles, Aerosil R972 (purchased from Evonik Inc.) was used as the solid stabilizer. 

Aerosil R972 is made up of sintered aggregates of nanoparticles with a primary particle 
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size of 16 nm and aggregate size varying in the range 100 nm – 1 µm. Aerosil R972 is 

extremely hydrophobic and is known to form water-in-oil emulsions. Deionized water 

(DI-Water) with a resistivity of 18.1 mΩ was used as the dispersed phase. Emulsions were 

investigated with water fractions equal to 5, 10, and 20 vol. %. The surfactant/solids 

concentration was held constant at 1 vol. % for all samples. All samples were prepared 

gravimetrically, but concentrations are reported as vol. % to facilitate comparisons with 

other applications.  

  For the flow loop experiments, 4 gallons of emulsion were prepared using an 

Ultraturrax homogenizer at 3000 rpm for 5 mins. The emulsions were initially prepared 

outside the flow loop and transferred to the reservoir immediately after preparation and 

the temperature was maintained constant at 25°C using the recirculating chiller. The 

emulsion sample was circulated at three different flow rates (3.3 gpm, 6.6 gpm and 8.3 

gpm) at 25°C and the corresponding images and videos were captured using the inflow 

microscope. The emulsion sample was cooled from 25°C to 15°C while the sample still 

remained in the flow loop. The flow loop operating temperature was decreased by 

circulating the chiller fluid to a set point of 15°C. This temperature ensured that the upper 

pressure limit of the flow loop would not be exceeded at the high water concentrations. 

Images and videos of the emulsion were captured at 15°C at the three different flow rates 

(3 gpm, 6.6 gpm and 8.3 gpm). 

  A small quantity (25 mL) of the emulsion sample from the flow loop operating at 

25°C was used for conductivity measurements. A non-aqueous conductivity probe 

purchased from Dispersion Technology, Inc. was used in this work. Emulsion 

conductivity measurements were performed at 25°C. 
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3.3. Results and Discussion 

  Figure 3.2 a) illustrates the particle size distribution of a glass beads suspension in 

DI water obtained from the inflow microscope and acoustic spectrometer. Optical 

microscopy and scanning electron microscopy (SEM) were also employed to validate the 

results obtained from the inflow microscope. The mean particle diameter obtained from 

inflow microscopy and acoustic spectroscopy techniques were 37.7 and 33.8 µm, 

respectively. Though the mean particle diameters from the two techniques were not 

identical, both mean values were within the vendor specified range. Acoustic spectroscopy 

assumes a spherical morphology and predicts the hydrodynamic particle size [64], 

whereas the inflow optical microscopy technique is a direct visual interrogation of the 

system, and takes into account the particle aspect ratio. Images shown in Figure 3.2 b) and 

d) indicate that glass beads contain irregularly shaped debris (confirmed by discussions 

with the vendor), and contribute toward predicting a larger mean size, as seen by the 

inflow microscopy technique. 
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Figure 3.2: Glass beads particle size distribution (psd). a) Comparison of glass beads psd 

measured using inflow microscopy (0.5 wt. % glass beads) and acoustic spectroscopy (10 

wt. % glass beads b) Scanning electron microscopy image of 0.1 wt.% glass beads 

suspension c) Image captured by inflow microscope d) Optical microscope image of 0.5 

wt. % glass beads taken at 10X magnification. 

   

  Figures 3.3 and 3.4 represent droplet size distributions of solid stabilized 20 vol. 

% water-in-oil emulsion at three different flow rates at 25°C and 15°C, respectively. 

Inflow microscopy images seen in Figures 3 and 4 illustrate the presence of polydisperse 

and large water droplets in addition to small droplets. As seen in the distributions, as well 

as in images in Figures 3.3, the fluid flow rate was observed to have minimal effect on the 

droplet size and distributions. Results observed in Figures 3.3 and 3.4 indicate that solid 

particles impart mechanical rigidity to droplets and prevent droplet breakup and interfacial 

film rupture. The images shown in Figure 3.4 were captured when the process fluid 
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temperature was maintained at 15°C.  Figure 3.3 a) and 4 a) illustrate that with a decrease 

in process fluid temperature, the distribution shifted slightly to the left. 

 

Figure 3.3: Droplet size distribution of solid stabilized 20 vol. % water-in-oil emulsion 

and the corresponding images of the emulsion captured by an inflow microscope at 

different operating flow rates at 25°C. In the figure, a) comparison of the psd obtained 

from the inflow microscope of the emulsion at three different flow rates, and the images 

of emulsion captured at b) 3.3 gpm, c) 6.6 gpm, and d) 8.3 gpm. 
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Figure 3.4: Droplet size distribution of solid stabilized 20 vol. % water-in-oil emulsion 

and the corresponding images of the emulsion captured by an inflow microscope at 

different operating flow rates at 15°C. In the figure, a) comparison of the psd obtained 

from the inflow microscope of the emulsion at three different flow rates, and the images 

of emulsion captured at b) 3.3 gpm, c) 6.6 gpm, and d) 8.3 gpm. 

   

  A similar trend was observed for solid stabilized 5 vol. % and 10 vol. % water-in-

oil emulsions at both the operating temperatures. Droplet size distribution and their 

corresponding inflow microscopy images are not shown for every water concentration and 

emulsion type, as no drastic difference in the droplet behavior was observed as a function 

of flow rate and operating temperature. This work suggests that for solid-stabilized 

emulsions, the operating temperature has a negligible effect on the average droplet size, 

but it appears to influence the shape of the distributions. 
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Figure 3.5: Droplet size distribution of surfactant stabilized 20 vol. % water-in-oil 

emulsion and the corresponding images of the emulsion captured by the inflow 

microscope at different operating flow rates at 25°C. Figure a) shows a comparison of the 

psd obtained from the inflow microscope of the emulsion at three different flow rates, and 

the images of emulsion captured at b) 3.3 gpm, c) 6.6 gpm, and d) 8.3 gpm. 
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Figure 3.6: Droplet size distribution of surfactant stabilized 20 vol. % water-in-oil 

emulsion and the corresponding images of the emulsion captured by the inflow 

microscope at different operating flow rates at 15°C. Figure, a) shows a comparison of the 

psd obtained from the inflow microscope of the emulsion at three different flow rates, and 

the images of emulsion captured at b) 3.3 gpm, c) 6.6 gpm, and d) 8.3 gpm  

 

  Figures 3.5 and 3.6 represent the drop size distributions of surfactant stabilized 20 

vol. % water-in-oil emulsions at three different flow rates at 25°C and 15°C, respectively. 

The mean droplet size of the emulsion appeared to decrease with an increase in the flow 

rate (Figure 3.5). This indicates that the droplets are likely deformable and the operating 

flow rate can have an effect on the drop size distribution. With a decrease in the process 

fluid temperature from 25°C to 15°C, the average droplet size decreased (Table 1 and 

Figures 3.5 and 3.6). A decrease in the average droplet size that was observed at higher 
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flow rates and lower temperatures was possibly due to changes in the structure of the 

surfactant layer at the interface. Drelich et al observed that span 80 emulsions showed 

several destabilization processes due to change in the structure of the surfactant molecules 

at the oil-water interface [66]. 

  Several studies have identified that solid particles impart mechanical rigidity to 

the interfacial film as the solid particles form a tightly packed network around the droplets 

[77]. As the solid silica particles used for this work consisted of nanometer-sized particles 

sintered to form a fractal-like network, we observed that the emulsion droplets in solid-

stabilized emulsions were mechanically rigid and didn’t show droplet breakup at high 

flow rates (Figures 3.3 and 3.4). In addition, it has been shown that solid particles increase 

the viscosity of emulsions by facilitating the production of large emulsion droplets [66]. 

As the emulsion droplet size increases, the hydrodynamic distance between droplets 

decreases; thereby, increasing the emulsion viscosity [78]. 

  Though the emulsion stress-strain relationship was not investigated in the present 

work, visual observations suggest that solid particles acted as viscosity adjusters and 

produced more viscous emulsions even at low water fractions in contrast to surfactant 

stabilized emulsions. It was observed that the back-pressure on the pump while handling 

solid-stabilized emulsions was consistently 2-3 times higher than that of surfactant 

stabilized emulsions at all water fractions. Drelich et al performed rheological 

measurements on span 80 and Aerosil R711 solid particle stabilized water-in-paraffin oil 

emulsions to better understand the role of each of these systems on the emulsion 

stabilization and formation mechanism [66]. They observed that span 80 stabilized 

emulsions displayed a little change in the fluid flow behavior when compared to the 
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continuous paraffin oil phase (Newtonian behavior). The authors found that solid-

stabilized emulsions yielded non-Newtonian behavior likely due to the effect of the fractal 

network formed by silica particles in the continuous oil phase. Similar observations were 

made by other studies [78]. 

  Conductivity measurements indicate that hydrophobic Aerosil R972 solid particles 

produce highly non-aqueous emulsions with conductivity in the range of 10-11 S/m at all 

water concentrations investigated in this work; whereas the conductivity of surfactant 

stabilized emulsions increased from 10-9 S/m for the 5 vol. % water-in-oil emulsion to   

10-4 S/m for the 20 vol. % water-in-oil emulsion. 

 

Figure 3.7: Images of emulsions captured by the inflow microscope at different water 

concentrations at 25°C and a flow rate of 3.3 gpm. a), b) and c) represent images of solid-

stabilized emulsions at 5, 10, and 20 vol. % water concentration respectively. d), e) and f) 
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represent images of surfactant-stabilized emulsion at 5, 10, and 20 vol. % water 

concentration respectively. 

   

 Figure 3.7 provides inflow optical microscopy images captured at varying water 

concentrations at a fixed fluid flow rate of 3.3 gpm and 25°C.  As observed in Figures 3.3-

3.7 and Table 3.1, emulsion droplet size is a function of the dispersed phase concentration 

for both surfactant and solid-stabilized emulsions. The visual evidence shown in Figure 

3.7 illustrates the polydispersity of solid-stabilized emulsions, whereas, such 

polydispersity in the droplet size distribution was not well pronounced in surfactant 

stabilized emulsions. Figure 3.7 also illustrates the tendency of span 80 emulsions to 

flocculate.  

 

Figure 3.8: Images of solid-stabilized emulsions captured by the inflow microscope at 

different water concentrations and flow rates at 25°C. In the figure, a), b) and c) represent 
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images of the emulsion at 5, 10, and 20 vol. % water concentration respectively. i), ii) and 

iii) represent images of the emulsion at 3.3 gpm, 6.6 gpm and 8.3 gpm, respectively. 

 

 

Figure 3.9: Images of surfactant-stabilized emulsion captured by the inflow microscope 

at different water concentrations and flow rates at 25°C. Figures a), b) and c) represent 

images of the emulsion at 5, 10, and 20 vol. % water concentration respectively. i), ii) and 

iii) represent images of the emulsion at 3.3 gpm, 6.6 gpm and 8.3 gpm respectively. 

   

  Figures 3.8 and 3.9 correspond to the images captured by the inflow microscope 

to delineate the effect of water fraction and flow rate on the emulsion drop size distribution 

and morphology. As noticed in Figure 3.8, there appeared to be a negligible effect of flow 
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rate on the emulsion drop size and morphology. Figure 3.9 further illustrates the 

flocculation tendency of span 80 emulsions, even in flowing conditions. Figure 3.9 also 

illustrates the impact of water fraction and operating flow rate on the resulting drop size 

distributions. 

  Several studies have previously shown that there is a significant contrast in the 

interfacial properties between these two kinds of emulsions. Binks demonstrated that solid 

particles function in similar ways to surfactant molecules except that they don’t reduce 

the interfacial tension between the two immiscible phases [78]. Drelich et. al conducted 

interfacial tension measurements on Aerosil R711 and span 80 stabilized emulsions using 

a drop shape analysis system [66]. The results indicated that the presence of solid particles 

had no effect on the oil-water interfacial tension, whereas, for surfactant-stabilized 

emulsion, the oil-water interfacial tension decreased in the presence of surfactant 

molecules. This insight coupled with the visual observations made in the present work 

underscore the complexities that can arise in these systems. 
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Table 3.1: Mean emulsion droplet size of solid particle and surfactant stabilized water-

in-oil emulsions at different water concentrations, flow rates, and temperatures. The 

average droplet size was determined from the real-time images and videos captured from 

the inflow microscope. 

Water Concentration 

(Vol. %) 

Flow rate 

(gpm) 

Solid stabilized 

emulsions (µm) 

Surfactant-stabilized 

emulsions (µm) 

25°C 15°C 25°C 15°C 

 

5 

3.3 9.5 10.3 5.4 3.8 

6.6 9.1 10.7 4.3 3.2 

8.3 9.2 9.9 3.8 3.0 

 

10 

3.3 14.1 14.5 8.7 5.9 

6.6 13.9 13.6 6.7 4.4 

8.3 14.2 13.5 6.2 4.2 

 

20 

3.3 16.2 16.3 14.5 8.5 

6.6 16.8 16.2 11.3 7.8 

8.3 16.6 16.7 10.6 7.2 

 

3.4. Conclusion 

  The experimental flow loop setup equipped with an inflow microscope was 

successful in characterizing emulsion drop size distribution and morphology over a range 

of operating conditions. Inflow microscopy images and the drop size distributions of solid-

stabilized emulsions exhibited polydispersity. Surfactant-stabilized emulsions exhibited a 

comparatively smaller droplet size distribution. For solid-stabilized emulsions, 

temperature and fluid flow rate had a negligible effect on the drop size distributions (Table 
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3.1). Water concentration was identified as the primary variable that impacted the droplet 

size distributions. For surfactant stabilized emulsions, flow rate, operating temperature, 

and water concentration appeared to influence the droplet size distributions. Evolution of 

multimodal distributions with a decrease in temperature and increase in flow rate was 

observed in surfactant stabilized emulsions. These observations indicate that solid 

particles formed a steric barrier around the water droplets imparting rigidity and 

preventing droplet coalescence even in flowing conditions (Table 3.1). Surfactant-

stabilized emulsions were observed to form mechanically deformable droplets (Table 3.1). 

Further experimental investigation on the rheological and interfacial properties will be 

performed to evaluate the competitive effect of solid particles and surfactants on emulsion 

formation and stabilization mechanisms. The experimental results coupled with future 

investigations on the combined effect of solid particles and surfactants will provide new 

insights for developing strategies for handling complex emulsions that are prevalent in the 

energy industry. 
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CHAPTER IV 

 

 

IMPACT OF HYDRATE FORMATION ON EMULSION MORPHOLOGY IN 

SURFACTANT AND SOLID STABILIZED EMULSIONS 

 

4.1. Introduction  

 

Palermo et al and Turner proposed hydrate agglomeration and nucleation 

mechanism in w/o emulsion[79],[80]. To this end, Høiland et al explored the interaction 

between hydrates and emulsions at high water fraction[10]. Høiland et al also investigated 

the effect of hydrate particles on emulsion phase inversion. The authors observed that 

increase in water fraction resulted in emulsion inversion from water-in-oil (w/o) to oil-in-

water (o/w) type in the presence of Freon hydrates. Høiland et al developed and tested a 

method for evaluating the wettability of hydrate particles in crude oil systems. The authors 

assumed the solid particles present in the crude oil, such as silica, adsorb to hydrate the  

acting as colloidal stabilizers resulting in Pickering emulsions. The authors observed that 

hydrophobic solid particles adsorbed on the hydrate surface prevent hydrate 

agglomeration. 

Linares et al conducted experiments on gas hydrate formation in a water-in-model 

oil emulsions system[81]. The authors prepared emulsions that are common in crude oil  
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systems by varying the surfactant concentration and water content to demonstrate the 

stability of emulsions   upon ice and hydrate formation. The model oil (Crystal plus 70T 

mineral oil) used by Linares et al is similar to the model isoparaffinic oil system that will 

be used in this proposed work. Stable water-in-oil emulsions were prepared using span 80 

and AOT surfactant mixture. Stable emulsions were formed at varying water fractions 

(10-70 vol. %) and surfactant concentrations (1 and 5 wt. %). The authors observed that 

emulsion viscosity increased with increase in the water fraction. 

Sjöblom et al conducted experiments to investigate the properties of oils that 

contribute to hydrate plugging and non-plugging of pipelines[12]. Rheological, 

interfacial, micromechanical force, and droplet size measurements were examined for 

three different surface treated crude oil-water systems. The authors concluded that 

capillary attractive forces between hydrate particles contribute to hydrate agglomeration 

and plugging. Adsorption of solid particles on the oil-water interface, emulsion stability, 

high shear rate, low interfacial tension, and anti-agglomerants prevent hydrate particle 

adhesion and agglomeration. 

Lachance et al conducted several experiments on the formation of hydrate slurries 

in a once-through flow loop and field trial test [82]. Once through flow loop tests were 

conducted to simulate and provide insight into the evolution of hydrate formation in crude 

oil emulsions using span 80 as a surfactant. A Canty inflow microscope was utilized to 

obtain droplet size and distribution to study the effect of water cut on dispersion 

characterization and hydrate slurry formation. The emulsion droplet images and 

distribution captured by the inflow microscope were similar to the results we obtained for 

5 and 20 vol. % water-in-model oil emulsion stabilized using span 80 as a surfactant. The 
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authors concluded that water dispersion characteristics (water cut, fluid velocity, emulsion 

composition, and stability) showed the most effect on hydrate formation and aggregation. 

They observed that emulsions with high water cut aided in increasing droplet coalescence 

promoting hydrate formation. Increased emulsion stability aided in reducing hydrate 

aggregation tendencies. 

 Several studies have been conducted to investigate hydrate nucleation, crystal 

growth, and their morphology using cyclopentane [45-47, 83-86]. Hence, for this study, 

cyclopentane is used as a guest molecule in the hydrate forming emulsion. The focus of 

this work was to investigate hydrate formation in oil-dominated systems in the presence 

of different stabilizers such as surfactants and solid particles. Water-in-oil emulsions 

(water dispersed in continuous oil phase) is one of the most predominant multiphase flow 

situations encountered in the petroleum industry. In such oil dominated systems, hydrate 

blockages have been proposed to occur in a four-step mechanism [80, 87, 88]. Studies 

have shown that as the emulsion enters into a hydrate formation region (low temperature 

and high-pressure conditions favorable to hydrate formation), hydrate grows on water 

droplets similar to a shrinking core model, agglomerate, or plug flow line. As the hydrate 

shell grows around the water droplet, diffusion of gas through water droplets occurs as a 

function of droplet size. Hydrate agglomeration is prevented in the presence of small water 

droplets as the hydrates grow inward and result in a fully converted hydrate particle that 

remains suspended. Whereas, large droplets result in capillary attraction between hydrate 

particles due to water bridging, and cause agglomeration and eventually plugging [37]. 

Hence, it is imperative to determine the emulsion droplet size, hydrate crystal size, and 

hydrate morphology.  
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 Hydrate formation is an interfacial phenomenon, so understanding and quantifying 

interfacial behavior, such as surfactant type and distribution at the interface, is critical in 

order to develop hydrate management strategies [37]. As crude oil contains several 

naturally occurring surfactants, solid particles, and surface active materials, it is 

imperative to investigate hydrate crystal growth and interfacial characterization in the 

presence of surfactant and solid particles. Furthermore, hydrate characterization would 

provide an insight into processing efficiency and transportation of hydrate crystals and 

slurries. To this end, Karanjkar studied the effect of surfactant (Span 80) on hydrate 

formation and crystal morphology in cyclopentane hydrate forming systems using a 

visualization technique [44]. Single water drop microscopy experiments showed conical 

hydrate crystals with hairy or mushy hydrate morphology in a surfactant laden system. 

Such morphology was observed due to excess Laplace pressure generated by reduced 

interfacial tension in the presence of surfactant which resulted in inward growth of hydrate 

crystals. In the absence of surfactant, lateral growth of a faceted plate-like structure was 

observed. Similar work was conducted by Zylyftari et al. and Ahuja on hydrate formation 

in emulsions [46, 85]. A porous, hairy, or mushy hydrate structure was formed in the 

surfactant stabilized emulsions. To this end, Cha et al conducted visualization experiments 

to evaluate the effect of solid particle loading on hydrate formation[89]. Conical hydrate 

crystals with a hairy or mushy like structure were observed at solids loading < 1 wt. % of 

the oil phase, whereas, hydrate formation was greatly reduced or prevented in emulsions 

containing >2 wt. % solid concentration. Nakajima et al studied the effect of surfactants 

on energy storage in cyclopentane hydrate formation and observed hydrate morphology 

similar to that seen by Karanjkar [44, 50]. Several studies have shown that hydrate 
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formation leads to an abrupt increase in emulsion viscosity, and mechanical properties, 

thus leading to a sudden rise in system pressure and plugging of flow lines[43, 46, 56, 84, 

86, 90-92]. Peixinho et al. studied the effect of nucleation time and crystal growth time in 

cyclopentane hydrate forming emulsions [83].  

 Though several studies have been carried out on cyclopentane hydrate forming 

systems, limited laboratory scale experimental work has been conducted on hydrate 

characterization and emulsion properties after hydrate dissociation in concentrated 

emulsions [43-46, 85, 89]. Moreover, the effect of stabilizer type, and the water fraction 

on hydrate formation in emulsions is not comprehensively understood, and hence requires 

further investigation. This study probes the effect of stabilizer type and water fraction on 

emulsion droplet size before hydrate formation and upon hydrate dissociation in 

cyclopentane hydrate forming water-in-oil emulsions. In this study, emulsion droplet size 

and hydrate crystal formation are studied using visualization technique, and interfacial 

properties are characterized using IFT measurements. For this work, cyclopentane hydrate 

forming emulsions were prepared at two different water fractions (10 and 40 vol. %) and 

three different stabilizers, such as a non-ionic surfactant (span 80) and solid particles of 

different wettability (Aerosil R974 and Aerosil R816). Solid particles with different 

wettability were chosen to investigate the effect on hydrate formation and emulsion 

properties upon hydrate dissociation. In addition to visualization, a statistical analysis was 

performed to compare emulsion properties before and after hydrate dissociation. What 

follows is a detailed description of experimental procedure adopted to accomplish the 

objectives of this work.   
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4.2.Materials and Methods 

 

The experiments carried out in this work consist of several steps such as preparation 

of emulsion samples, cooling and heating process of the samples to study hydrate growth 

and dissociation and visualization of the samples during this process. Following is a brief 

description of the materials and methodology used to perform proposed experiments. 

4.2.1. Materials 

 

 Water-in-oil emulsions were prepared using Crystal Plus 70T mineral oil, 

cyclopentane, and stabilizers such as non-ionic surfactant (span 80) and solid particles 

(Aerosil R974 and Aerosil R816). Crystal Plus 70T (purchased from STE Oils) is a 

technical grade white mineral oil with a density of 825 kg/m3 at 25 oC and viscosity of 20 

cP at 25 oC. As discussed earlier, since Cyclopentane forms structure II hydrates at nearly 

atmospheric conditions, it was considered as an appropriate guest molecule for this work. 

Cyclopentane used for the experiments were of 99 wt.% purity, density of 750 kg/m3 

purchased from BDH chemicals. The continuous oil phase used in this work was prepared 

using a 50:50 equal volume mixture of crystal plus 70T mineral oil and cyclopentane. An 

equal volume mixture of mineral oil and cyclopentane ensured that cyclopentane was in 

stoichiometric excess (1 mol of cyclopentane:17 mol of water). This emulsion 

composition is similar to the study conducted by Karanjakar et al. [43]. For the control 

sample, the oil phase consisted of mineral oil and stabilizer. Deionized water obtained 

from a Millipore Direct Q3 system was used as the internal/aqueous phase. Two different 

water concentrations (10 and 40 vol.%) were used in this study to evaluate the effect of 
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low (10 vol.%) and high (40 vol.%) water cut on hydrate formation and emulsion 

morphology in water-in-oil emulsions. 

 

 The three kinds of stabilizers used for this study were span 80, Aerosil R974, and 

Aerosil R816. Span 80 (sorbitan monooeleate) was used for this study, as it is well known 

to form stable water-in-oil emulsions due to its low hydrophilic-lipophilic balance (HLB) 

of 4.3. Span 80 is a non-ionic surfactant with a density equal to 990 kg/m3 and was 

purchased from Sigma-Aldrich. The two kinds of solid particles (Aerosil R974 and 

Aerosil R816) used as stabilizers in this study were provided by Evonik Inc. Aerosil R974 

and Aerosil R816 are fumed silica particles synthesized by flame pyrolysis. The primary 

particle size of these fumed silica particles are around 10-20 nm with an agglomerate size 

< 1 µm. The two kinds of fumed silica particles used in this study have a tamped density 

of 50-60 g/L and a specific surface area of 200 m2/g. These two types of solid particles 

were used due to their difference in particle hydrophobicity/wettability. Aerosil R974 is 

highly hydrophobic and is always known to form water-in-oil emulsions at all water 

concentrations as compared to Aerosil R816. Aerosil R816 is synthesized with 

intermittent wettability and hydrophobicity and hence produces both water-in-oil and oil-

in-water emulsions depending on the aqueous phase concentration. These two types of 

solid particles were chosen to evaluate the effect of particle hydrophobicity on emulsion 

stability and hydrate formation. For both surfactant and solid particle stabilized emulsions, 

based on the oil concentration, the stabilizer concentration was kept constant at 0.1 vol. 

%. Karanjkar identified the critical micelle concentration (CMC) for span 80 to be equal 

to 0.03 vol. % for the oil mixture used in this study. Since our work is based on the 
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previous studies by Karanjkar and Ahuja, we decided to use 0.1 vol. % span 80 for 

surfactant stabilized emulsions [44, 85]. As one of our objectives was to probe the 

similarities/differences in hydrate formation in surfactant and solid-stabilized emulsions, 

we decided to keep the stabilizer concentration constant (0.1 vol. % of the oil phase) in 

both kinds of emulsions. The emulsion sample (50 g) used in this work was prepared by 

adding the stabilizer to the mixture containing equal volume fraction of mineral oil and 

cyclopentane. The stabilizer was dispersed well in the oil mixture by stirring it using a 

spatula. The aqueous phase was added to the oil mixture dropwise and mixed well using 

an IKA Ultraturrax T25 homogenizer at 2800 rpm for 5 min. Similar experiments were 

performed with a control sample.  The  control sample, however, did not show any sign 

of hydrate formation throughout the experiment in the hydrate formation zone. The control 

samples were prepared similarly except that the oil phase was composed of mineral oil 

and stabilizer instead of equal volume mixture of mineral oil and cyclopentane.  

4.2.2. Methods 

 

 To accomplish the objectives of this research, a step by step procedure consisting 

of measurements of interfacial tension, visualization, and image analysis/measurement 

was followed. 

4.2.2.1.Visualization technique 

 

 In this work, an Olympus BX53 polarized optical microscope equipped with a 

Linkam CSS 450 temperature controlled shear stage and a high-speed camera was used 

for visualization. The microscope was equipped with a Peltier stage that could operate in 

the temperature range of -45 °C to 450 °C and a maximum shear rate equal to 10 rad/s. It 
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should be noted that the samples under visualization were not subjected to shear 

throughout the course of the experiment. The temperature controlled stage consisted of a 

circular well mounted on a quartz window with a sample diameter of 30 mm and viewing 

diameter of 2.8 mm as shown in Figure 4.1. 

 

 

Figure 4.1: Schematic of the temperature controlled stage and the visualization setup used 

for experiments. 

 

 The emulsion sample of volume 0.5 mL at room temperature was loaded on the 

microscope stage. The experimental procedure followed in this work is similar to the work 

conducted by Ahuja [45] and Karanjkar [93]. However, the experimental conditions differ 

in terms of the oil composition, sample volume used for visualization, mixing conditions, 
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and the temperatures used for the quenching and reheating process.  For this work, the 

temperature profile used in the microscope is described below:  

a) The temperature stage was initially set to 25oC followed by the quenching process.  

Quenching of emulsion to form ice was identified to induce faster hydrate 

formation by overcoming long induction times during hydrate nucleation [93]. 

Hence, the temperature was lowered to -25 °C (Tice) at a rate of 10 °C/min to 

induce ice crystallization of the emulsion droplets. 

b) The sample was held at that temperature (Tice) until more than 50% of the water 

droplets were converted to ice. Visual observation was used to confirm that at least 

50% of the water droplets were converted to ice. Our experimental observations 

showed that at least 30 minutes of hold time was required to convert more than 

50% of the droplets to ice. The appearance of white spots on the water droplets 

indicates ice formation, as seen in Figure 4.2(e).  

c) Next, the temperature was increased from Tice to 0.1 °C (Thyd) at a rate of 2 °C/min 

and held at this temperature for 60 mins to allow the hydrate crystals to grow. A 

slower heating rate was chosen in this step to ensure melting of ice before hydrate 

formation.  

d) The temperature was increased back to 25 °C at a rate of 5 °C/min rate to study 

the effect of hydrate dissociation on emulsion droplet size. 
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Figure 4.2: Images captured (10x magnification) at various temperatures during hydrate 

characterization experiment for 0.1 vol. % surfactant stabilized 10 vol. % water emulsion.  

 

 Transient emulsion stability tests were conducted on hydrate forming emulsions 

by measuring the emulsion drop size distribution of a representative sample that was used 

for hydrate studies. The hydrates experiments were carried out within 5 mins of emulsion 

preparation, and the transient stability test was conducted after two hours on the same 
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sample. The drop size distribution for the emulsion before hydrate formation and after 

hydrate dissociation was determined using Image J software. For each sample, the 

algorithm illustrated in Figure 4.3 was followed to determine the size of each droplet and 

statistical parameters, such as mean droplet size and standard deviation of the droplets’ 

size.  

 

 

Figure 4.3: Image J algorithm to determine droplets’ size and distribution for different 

emulsion samples. 
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4.2.2.2.Interfacial tension 

 

 A high pressure, interfacial tensiometer (IFT) model # IFT-10-OS purchased from 

Core Lab Instruments (Tulsa, OK) was used for conducting dynamic interfacial tension 

measurements. The pendant drop method was used for measuring the interfacial tension 

of pure water-cyclopentane, 50:50 equal volume mixture of mineral oil-cyclopentane, and 

water in the absence of stabilizer and at 0.1 vol. % stabilizer (either surfactant or solid 

particles) concentration at ambient conditions. The measurements were conducted for a 

minimum of 5 min until steady state was reached as shown in Figure 4.4. The steady state 

was identified when the IFT measurements showed a variation less than 0.05 mN/m. The 

experiments were performed at least three times to quantify the precision of the technique. 

A summary of interfacial tension measurement of the different systems of interest for this 

study is given in Table 4.1. The interfacial tension of the oil-water system in the presence 

of 0.1 vol.% solid particles (50 mN/m) was observed to be the same as pure 

(oil+cyclopentane) - water (48.2 mN/m). This observation is congruent with Drelich et al, 

who observed that solid particles did not reduce the interfacial tension [56]. The plausible 

explanation for such behavior by solid particles on the oil-water interfacial tension could 

be attributed to the high amount of energy required by solid particles to desorb from the 

interface, whereas in the presence of a surfactant, the interfacial tension was reduced to 3 

mN/m [22].  
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Figure 4.4: Dynamic interfacial tension of 50:50 equal volume mixture of cyclopentane 

and crystal plus 70T mineral oil containing 0.1 vol.% span 80 measured using pendant 

drop technique 

 

Table 4.1: Summary of interfacial tension of oil-water interface in the absence 

and presence of a stabilizer. Oil here represents an equal volume mixture of crystal plus 

70T mineral oil and cyclopentane. 

System Dynamic Interfacial 

Tension (mN/m) 

Oil -water 48.36 ±0.06 

Oil+ 0.1 vol% Span 80 - water 3.04 ±0.02 

Oil+ 0.1 vol% Aerosil R816 - water 50.3 ±0.03 

Oil+ 0.1 vol% Aerosil R974 - water 50.16±0.05 

 

4.3. Results and Discussion  

 

 The images captured along the temperature variation for surfactant stabilized 10 vol. 

% water emulsion are presented in Figure 4.2 (a)-(l). Figure 4.2 (a) is a representative 

image of the emulsion at 25 oC during the start of the experiment. Figures 4.1 (b) to (d) 

are images captured during quenching of emulsion droplets to form ice. White spots 
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highlighted in Figures 4.1 (e) to (g) represent water droplets that are converted to ice. 

Water droplets that were converted to ice were found to melt around -0.4 oC. The sample 

was set to 0.1°C to observe hydrate formation in emulsions. A crystalline like structure 

was observed to grow at the interface of water droplets that were converted to ice and 

subsequently melted. Irregularly shaped crystals were observed and are highlighted in red 

in Figures 4.1 (i) and (j). Figures 4.1 (k) and (l) are representative images of the emulsion 

after hydrate dissociation. As seen in the images in Figure 4.1, after hydrate dissociation, 

the mean emulsion droplet size was greater when compared to droplet size at the start of 

the experiment. Similar observations were reported by Karanjkar [44].  

 Representative images of hydrate crystals and emulsion morphology at the hydrate 

formation zone (at 0.1°C) for surfactant stabilized 10 and 40 vol. % water emulsions are 

reported in Figure 4.5. Figure 4.6 represents images of hydrate crystals captured at higher 

magnification for surfactant stabilized 40 vol. % water-in-oil emulsion. A similar 

experimental procedure was carried out in the control sample which is devoid of hydrate 

forming compound (cyclopentane). Though conversion of water droplets into ice was 

observed in both control and hydrate forming emulsions, hydrate crystals were not 

observed in the control sample in the hydrate formation zone. 
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Figure 4.5: Images of hydrate crystals (at 10x magnification for 10 vol% and 20x 

magnification for 40 vol%) captured in the hydrate formation zone of 0.1 °C for surfactant 

stabilized emulsions with water concentrations equal to 10 and 40 vol% (scale bar = 100 

m). 
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Figure 4.6: Images of hydrate crystals in surfactant stabilized 40 vol. % water emulsion 

captured at 50x magnification. 
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Figure 4.7: Images of hydrate crystals captured in the hydrate formation zone of 0.1°C 

for Aerosil R974 stabilized 10 and 40 vol. % water concentration.  
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Figure 4.8: Hydrate crystals in Aerosil R974 stabilized 40 vol. % water emulsion. The 

regions highlighted in red indicate hydrate crystals 

 

  In solid-stabilized emulsions, hydrate formation was observed at all water 

fractions. However, a wide variety of hydrate crystallinity/ irregularity in the crystalline 

structure was observed (Figure 4.7). Figure 4.8 represents images of the hydrate crystal in 

Aerosil R974 stabilized 40 vol. % water emulsion. The tip of the crystals were observed 

to be pointing inward (Figure 4.8). Cha et al conducted a similar experiment on a 

cyclopentane hydrate slurry system with either span 80 or silica particles in the presence 

of fixed span 80 concentration [89]. They observed that at low particle concentration (<= 

1 wt. %), hydrate morphology was similar to that of a surfactant stabilized system. They 
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also observed that at high solid concentrations, the rate of hydrate formation and 

agglomeration was slow.  

  The irregularity and random growth of hydrate crystals in solid stabilized 

emulsions could be attributed to the effect of solid particles on the oil-water interfacial 

tension. Since solid particles have minimal effect on oil-water interfacial tension (Table 

4.1), it is hypothesized that during hydrate nucleation, the initial hydrate crystal doesn’t 

experience enough excess surface/Laplace pressure, thereby retarding the compression 

and lateral overgrowth of conical hydrate crystals into a hairy/ mushy structure. Karanjkar 

[93] observed that for surfactant free systems, a faceted plate like hydrate structure was 

observed where the lateral growth of hydrate leads to thin shell formation. The faceted 

shell formed by joining hydrate facets slows the radial growth of hydrate. At the 

experimental conditions studied in this paper, solid particles were shown to not 

significantly reduce the interfacial tension, unlike the surfactant laden system (Table 4.1).  

The possible reason could be that the solid particles at the interface form a physical barrier 

around the water droplets which slow down the diffusion of hydrate forming cyclopentane 

molecules from the oil phase to water droplets.  
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Table 4.2: Summary of average drop size of emulsions before hydrate formation and after 

hydrate dissociation. 

Emulsion 

Mean droplet size (µm)  Standard 

deviation 

Before hydrate 

formation 

Upon hydrate 

dissociation Water content (vol. %) Stabilizer 

 

10  

Span 80  14.7 ± 1.8 18.3 ± 2.6 

Aerosil R974 7.7 ± 0.5 8.3 ± 0.8 

Aerosil R816 13.7 ± 7.4 13.1± 3.8 

 

40  

Span 80  13.1 ± 4.6 16.2 ± 5.9 

Aerosil R974 24.6 ± 10.6 28.2 ± 9.0 

Aerosil R816 15.4 ± 4.4 15.0 ± 6.7 

 

 

Figure 4.9: Comparison of the emulsion droplet size distribution before hydrate formation 

and upon hydrate dissociation for 0.1 vol. % Span 80 (surfactant) stabilized 40 vol. % 

water-in-oil emulsion.  
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Figure 4.10: Comparison of the emulsion droplet size distribution before hydrate 

formation and upon hydrate dissociation for 0.1 vol. % Aerosil R974 (solid particle) 

stabilized 40 vol. % water emulsion. The distribution was obtained by counting the 

number of droplets from the inset.  
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  Comparing the drop size distribution of the emulsions before and after hydrate 

formation, as seen in Figures 4.9 and 4.10, it is evident that the emulsion droplet size 

increases upon hydrate dissociation in surfactant stabilized 40 vol. % water emulsion. 

Similar observations were seen in surfactant stabilized 10 vol. % water emulsion. These 

observations were not evident in solid stabilized emulsions. Table 4.2 summarizes the 

effect of stabilizer type on emulsion mean droplet size before hydrate formation and upon 

hydrate dissociation. Based on results shown in Table 4.2, upon hydrate dissociation, a 

significant difference in the mean droplet size was observed in surfactant stabilized 

emulsions. A significant difference in the mean droplet size was observed in surfactant 

stabilized emulsions at both 10 and 40 vol. % water concentration. However, this trend 

was not seen on solid stabilized emulsions.  

 Emulsion droplet deformation, which is a characteristic feature of surfactant stabilized 

emulsions, has a critical influence on changes in emulsion droplet size after hydrate 

dissociation. Changes in the structure of the surfactant layer at the interface occur due to 

variations in the sample temperature [56, 94]. During hydrate formation, the hydrate 

particles agglomerate, thereby promoting droplet coalescence upon dissociation. The 

combined effect of changes in surfactant properties at the interface and flocculation leads 

to an increase in the mean droplet size.  Conversely, solid particles are identified to impart 

mechanical rigidity to the oil-water interface by forming a network around water droplets 

and irreversibly adsorbing at the interface [22, 57]. The mechanical rigidity imparted by 

solid particles at the interface reduces flocculation and hydrate agglomeration. To this end, 

Venkataramani and Aichele conducted flow loop experiments on surfactant and on solid 

stabilized emulsions [95]. These experiments identified that for surfactant stabilized 
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emulsions, flow rate, and temperature has a significant impact on the emulsion droplet 

size. Solid stabilized emulsions did not exhibit changes in the mean droplet size and 

distributions with changes in flow rate and temperature.  

4.4. Conclusions 

 

  Hydrate formation was observed in surfactant and solid stabilized emulsions at 

both low and high water cuts. Hydrate crystals were observed at the oil-water interface in 

both surfactant and solid stabilized emulsions. However, a wide variety of crystallinity 

was present in solid stabilized emulsions. Solid particles were observed to have no effect 

on the pure oil-water interfacial tension thereby resulting in a lack of excess surface 

pressure at the oil-water interface that drives the inward growth of conical hydrate crystals. 

Therefore, irregularities in the hydrate crystal structure are expected in solid stabilized 

emulsions as supported by visual observations. Mean emulsion droplet size increased 

upon hydrate dissociation in surfactant stabilized emulsions. A significant difference in 

the mean droplet size was seen in surfactant stabilized emulsions at both water fractions 

(10 and 40 vol. %). Future work will focus on the impact of particle wettability and particle 

loading on hydrate formation in emulsions. 
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CHAPTER V 

 

 

SINGLE WATER DROP HYDRATE FORMATION IN WAXY OIL SYSTEMS 

5.1.Introduction 

 

Waxes are long chain, high molecular weight carbon compounds present in crude 

oil [51]. Visintin et al hypothesized that paraffin molecules stabilize emulsions by 

adsorbing at the oil-water interface, forming Pickering emulsions[96]. The authors 

predicted that paraffin crystals which precipitate at temperatures below the wax 

appearance temperature (WAT), adsorb on the droplet surface, cover it, and stabilize the 

emulsion forming floc-like network with dispersed water droplets entrapped in the wax 

crystal network [96]. Bilyeu et al  studied the mechanisms involved in treating a subsea 

bare flow line that was plugged with hydrates and waxes[97]. Bilyeu observed that it was 

easier to eliminate hydrates in a pipeline that is plugged with hydrates and waxes 

simultaneously. Waxes were difficult to eliminate due to hard gel-like network that 

remained in the flow line. Two sided depressurization and micro annular pressure pulse 

method were utilized to remove hydrates and waxes respectively. Though techniques are 

available to remove hydrates and wax plugs simultaneously, there is still no literature or 

experimental data available on hydrate formation mechanism in waxy oil systems. 
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Although considerable research has been conducted on emulsions, hydrates, and 

wax independently, there is a void left in understanding the fluid properties when these 

systems occur simultaneously. Multiphase flow systems with hydrates, wax, and 

emulsions are commonly found in the field. There is a lack of understanding of the 

relationship between emulsions and other types of dispersions, such as hydrates, wax, and 

hydrate formation in waxy oil systems under flowing conditions [98]. This has provided 

an impetus to conduct experimental investigations of crude oil emulsions under flowing 

conditions that can lead to improved understanding of the water – oil multiphase flow 

phenomenon, thereby paving a way to develop economically feasible flow assurance 

remediation strategies. 

  

5.2. Materials and Methods 

 

5.2.1. Materials 

 

  The objective of this work was to investigate the hydrate formation mechanism in 

waxy oil systems. For this purpose, a model waxy oil continuous phase was prepared using 

model oil (such as light mineral oil), cyclopentane, and paraffin wax. The experimental 

work conducted for this study was classified into two categories: first, in the absence of 

surfactant in the oil continuous phase, and second, containing a surfactant in the oil phase. 

For all the studies discussed in this work, an oil continuous phase was prepared using 3:1 

ratio of cyclopentane and mineral oil-wax mixture on a weight basis.  

 Light Mineral Oil with a density equal to 0.838 g/cc (at 25 °C), viscosity of 14.2 cP 

(at 40 °C) was purchased from Sigma-Aldrich. Paraffin wax (purchased from Sigma-
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Aldrich) with a melting point of 58-62 °C and viscosity of 3-6 cP at 100 °C was used in 

the oil phase.  The composition of the wax used in this study was determined by Gas 

Chromatography (GC) analysis and is provided in Table 5.1. The data presented in Table 

5.1 was obtained from Parthasarthi [99] 

Table 5.1:Composition of wax obtained from Gas Chromatography analysis [99] 

Component Composition (Mass %) 

nC20 0.05 

nC21 0.29 

nC22 1.07 

nC23 2.87 

nC24 5.09 

nC25 8.16 

nC26 13.42 

nC27 14.47 

nC28 12.45 

nC29 12.22 

nC30 10.7 

nC31 8.05 

nC32 6.01 

nC33 2.17 

nC34 1.38 

nC35 0.53 

nC36 0.41 

nC37 0.21 

nC38 0.19 

nC39 0.11 

nC40 0.15 

 

  As discussed earlier in chapter I, since cyclopentane forms structure II hydrates at 

nearly atmospheric conditions, it was considered as an appropriate hydrate-forming guest 
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molecule for this work. Cyclopentane (purchased from Alfa Aeaser) with a purity of 95%, 

density equal to 0.75 g/cm3 was used as a hydrate-forming guest molecule. For this work, 

two different wax concentrations: 1.25 wt.% (low wax content) and 5 wt.% (high wax 

content) were used to evaluate the effect of wax concentration on hydrate formation. The 

oil phase consisted of 75 wt. % cyclopentane, either 1.25 or 5 wt.% wax and the remaining 

was light mineral oil. The oil phase was prepared in small batches of 25g. Every data point 

shown in this work was repeated at-least three times using the same batch of sample. A 

high concentration of cyclopentane (75 wt.%) was used in the oil phase, although the 

stoichiometric ratio required for 1 mol of structure II/ cyclopentane hydrates is only 17 

mol of water. A high concentration of cyclopentane was used to ensure that hydrate 

formation would occur in the presence of wax in the oil phase and therefore would not 

become a limiting factor.   

  For the surfactant-free 1.25 wt.% wax system, the oil phase was prepared by first 

heating 23.75 wt.% of light mineral oil and 1.25 wt.% wax mixture to 100 °C on a stir/ 

hot plate in a glass beaker covered with parafilm for 24 hours. This step was done to ensure 

complete dissolution of wax nanocrystals and erase any wax crystallization history. After 

24 hours of heating, the temperature of the oil-wax mixture was reduced to 45 °C prior to 

adding cyclopentane to the oil-wax mixture. The oil-wax mixture was cooled to 45 °C, as 

the boiling point of cyclopentane is 49-50 °C (from MSDS). During the entire process, 

the sample was stirred using a 1” long stir bar on a stir/hot plate at 600 rpm. Similarly, 5 

wt.% wax in mineral oil-cyclopentane mixture was prepared by heating 20 wt.% mineral 

oil and 5 wt.% wax mixture to 100 C for 24 hours. 75 wt.% of cyclopentane was added 

after cooling the sample to 45 °C.  
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 For the surfactant-free case, two different kinds of control sample were prepared: 

one containing only cyclopentane as the oil phase, and the second containing 75 wt.% 

cyclopentane and 25 wt.% mineral oil. Deionized water with a resistivity of 18.1 MΩcm 

was used as the aqueous phase. 

 In order to correlate the experimental work discussed in this thesis to real world 

systems, a model waxy oil system was prepared in the presence of a stabilizing agent such 

as a surfactant. A stabilizer, such as a non-ionic surfactant (span 80), was added to the oil 

phase to evaluate the effect of hydrate formation in waxy oil systems in the presence of 

an emulsifier. The oil phase preparation for the surfactant laden system was identical to 

the surfactant-free case except that after the addition of cyclopentane to the mineral oil-

wax mixture, 0.1 wt.% span 80 was added the oil phase. The mineral oil composition was 

either 23.65 wt.% or 19.9 wt.% depending on the wax concentration. However, 

cyclopentane concentration was kept constant at 75 wt.% of the oil phase, and 

cyclopentane to mineral oil-wax mixture composition was kept constant at 3:1 ratio on a 

weight basis. Surfactant-containing 1.25 wt.% wax system was composed of 75 wt.% 

cyclopentane, 1.25 wt.% wax, 23.65 wt.% mineral oil, and 0.1 wt.% span 80. The control 

sample for the surfactant containing system was prepared with 0.1 wt.% span 80, 24.9 

wt.% mineral oil and 75 wt.% cyclopentane to evaluate the effect of wax on hydrate 

formation in the presence of an emulsifier. 

5.2.2. Visual/ Microscopy Method 

 

  Single water drop hydrate formation experiments were conducted using a 

temperature/ shear controlled microscope stage to evaluate the effect of wax concentration 
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and heating/ cooling rate on hydrate formation in waxy oil systems. For this work, an 

Olympus BX53 polarized optical microscope (equipped with a Linkam CSS 450 

temperature controlled shear stage) and a high-speed camera was used for visualization. 

The microscope is equipped with a Peltier stage that could operate in the temperature 

range of -45 °C to 450 °C and at a maximum shear rate of 10 rad/s. For this study, the 

samples under visualization were not subjected to shear throughout the course of the 

experiment. The temperature controlled stage consisted of a circular well mounted on a 

quartz window with a sample diameter of 30 mm and viewing diameter of 2.8 mm as 

shown in Figure 5.1. The stage was previously set to 25 °C before loading the sample. For 

single water drop hydrate experiments, approximately 100-150 µm diameter water drop 

(< 2 µL) was placed on the bottom stage of the shear/ temperature controlled microscope 

as shown in Figure 5.1. The sample cell was then filled with the oil continuous phase. The 

bottom stage was immediately covered with the lid of the temperature control stage as 

shown in Figure 5.1 to avoid vaporization of cyclopentane. The stage was then connected 

to a liquid nitrogen pump for operating at lower temperatures.  
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Figure 5.1: Schematic of temperature controlled and shear stage optical microscope 

equipped with cross polarizing lens 

 

The temperature profile used for this study is given below: 

 After loading the sample to the microscope stage that was previously set to 25 °C, 

the sample temperature was lowered to -25 °C at 2 °C/min rate to quench the water 

droplet to form ice. Quenching of water droplets to form ice was identified to 

reduce the stochastic hydrate induction time. 

 The sample was held at -25 °C for 5 min until a visually complete conversion of 

the water droplet to ice was observed.  
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 The sample was then heated to -0.5 °C at 2 °C/min rate to melt ice into liquid 

water. Ice melting was observed to begin when the sample temperature was around 

-1.5 °C to -1.0 °C, and was completed by the time the sample temperature reached 

-0.5 °C.  Hence, the sample was held at -0.5 °C for 5 min to ensure complete 

melting of ice into liquid water. The free liquid water available upon ice melting 

was identified to initiate hydrate nucleation by overcoming the long hydrate 

induction time that is otherwise associated with cyclopentane hydrate formation. 

Along with ice melting, hydrate nucleation and hydrate crystal growth were 

observed to occur simultaneously at the interface. However, hydrate crystals were 

easily distinguishable from ice, as these crystals were observed to form initially at 

the interface and subsequently grow inward.  

 The sample temperature was increased to 0.1 °C at 2 °C/min rate and held at this 

temperature for a minimum of 30 minutes or longer until visually complete 

conversion of the water droplet to hydrates was observed. If complete conversion 

was not observed by the end of 30 minutes, the hold time was increased by another 

30 minutes. This step was repeated until visually the entire water droplet was 

converted to hydrates and no further changes to the sample was observed through 

visualization. For this work, hydrate conversion time was calculated as the time 

taken at which the sample temperature reaches -0.5 °C to the time taken for the 

water droplet to completely convert into hydrates by means of visual observation 

(at 0.1 °C).  
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 After visually complete conversion was observed, the sample was heated back to 

25 °C at 2 °C/min rate and held at this temperature for 5 min to evaluate changes 

in the hydrate-wax system upon hydrate dissociation. 

 

Figure 5.2: Temperature profile used for hydrate formation in waxy oil systems. The figure 

illustrates physical changes to the sample captured at different operating conditions 

 

 Figures 5.2 and 5.3 illustrates the temperature profile used for this work and the 

physical changes to the sample captured using the visualization technique.  Throughout 
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the course of the experiment, the heating and cooling rate was kept constant. The above 

experimental procedure was repeated at 1 °C/min and 0.5 °C/min rates to evaluate the 

effect of heating and cooling rate on hydrate formation in waxy oil systems. This 

experiment was conducted to interrogate the effect of wax growth rate and crystal size on 

hydrate formation, and to validate the hypothesis that in waxy oil systems, slower cooling 

rate delays hydrate formation and hence, delays complete conversion.  

 

Figure 5.3: Images captured (10x magnification) at various temperatures during hydrate 

characterization in waxy oil system containing 1.25 wt.% wax in the mineral oil-
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cyclopentane mixture. The experiment was conducted at heating and cooling rate of 2 

°C/min. 

 

  The previously described experimental procedure was repeated even for surfactant 

containing oil phase where the wax concentration and heating/ cooling rates were varied 

to evaluate their effect on hydrate formation.  For all the control samples used in this study, 

the heating and cooling rate were kept constant at 2 °C/min as the control samples did not 

contain any wax. Moreover, it was observed through this work, as well as several others, 

that heating or cooling rate didn’t have a significant effect on hydrate formation or hydrate 

conversion time in systems containing either pure cyclopentane or cyclopentane-oil 

mixture [44]. However, in affected systems containing wax, the wax appearance 

temperature (WAT) was found to be dependent on the cooling rate. The hydrate formation 

experimental procedure was also repeated without quenching the water droplet to form 

ice. The sample was held at 0.1 °C instead of quenching to -25 °C for several hours (6 

hours). No hydrate formation was observed, thereby validating the long induction time 

associated with cyclopentane hydrates.  

5.3. Results and Discussion 

 

5.3.1. Effect of cooling rate, wax concentration, oil phase composition on wax      

appearance temperature (WAT) 

 

 Wax appearance temperature (WAT), also known as cloud point, is the highest 

temperature below which wax crystals are precipitated. It is also known as the temperature 

at which visible crystallization of wax occurs. WAT depends on the concentration of wax, 

crude oil properties, and the molecular weight of the waxes. Measuring WAT is critical 
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due to its ability to cause deferred production. In addition to this, WAT acts like a 

guideline for the operators above which the flow lines need to be operated for easy 

transportation of fluids. For this study, the WAT of wax-mineral oil, wax-mineral oil-

cyclopentane, and wax-mineral oil-cyclopentane-span 80 systems were measured at two 

wax concentrations (1.25 wt.%, and 5 wt.%) and three different cooling rates (0.5, 1, and 

2 °C/min). WAT measurements were conducted on six different continuous phases: 1.25 

wt.% wax in mineral oil, 1.25 wt.% wax in 23.75 wt.% mineral oil-75 wt.% cyclopentane, 

1.25 wt.% wax in 23.65 wt.% mineral oil-0.1 wt.% span 80-75 wt.% cyclopentane, 5 wt.% 

wax in mineral oil, 5 wt.% wax in 20 wt.% mineral oil-75 wt.% cyclopentane, 5 wt.% wax 

in 19.9 wt.% mineral oil-0.1 wt.% span 80-75 wt.% cyclopentane. 1 mL of the sample was 

placed in the sample chamber and WAT was measured by cooling the sample from 40 °C 

to 1 °C. The microscope stage was preheated to 40 °C prior to loading the sample and was 

held at this temperature for at-least 10 min and sheared at 0.1 rad/s prior to cooling the 

sample to ensure dissolution of wax crystals. However, the sample was not sheared during 

the course of the experiment and shearing of the sample was observed to have no overall 

effect on either the WAT or wax crystal size. The oil phase was heated no higher than 40 

°C, as the boiling point of cyclopentane is 45-50 °C. This step also ensured that the sample 

was above the cloud point, and erased any wax history due to nano-wax crystals.  

 The WAT of the system containing 5 wt.% wax in pure mineral oil was higher 

than WAT of 1.25 wt.% wax system at all three cooling rates (Table 5.2). As expected, 5 

wt.% wax-mineral oil system exhibited higher WAT when compared to 1.25 wt.% wax 

system due to a high concentration of wax in the system (5 wt.% wax system contains four 

times higher wax concentration than 1.25 wt.% wax system). Several studies have 
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established that wax concentration has a direct influence on the WAT, and WAT increases 

with an increase in wax concentration using solid-liquid equilibrium [100, 101]. The 

amount of wax available in the 5 wt.% system was four times the concentration in the 1.25 

wt.% system and hence, the density of nanometer-sized wax crystals is higher in the 5 

wt.% wax system. In these systems, as temperature decreases, greater precipitation and 

therefore faster aggregation of nanometer-sized wax crystals occurs at a comparatively 

higher temperature, resulting in higher WAT.  Table 5.2 illustrates a difference of at-least 

10° C in WAT between the 5 wt.% wax and 1.25 wt.% wax systems in pure mineral oil at 

all cooling rates, thereby demonstrating the influencing of wax concentration on WAT.  

Table 5.2: Wax appearance temperature (WAT) of the oil phase containing either 1.25 

wt.% or 5 wt.% wax at different cooling rates using cross-polarized microscopy  

 

 Table 5.2 indicates that the WAT was observed to be higher at a slower cooling 

rate and lower at a faster cooling rate. Since WAT is a kinetic process, cooling rate is 

Sample 
Cooling Rate (C/min) 

0.5 1 2 

1.25wt.% Wax+Mineral Oil 
15.6 14.8 13 

1.25wt.%Wax+23.75wt.% Mineral Oil+75wt.% Cyclopentane 14.6 13.8 13.5 

1.25wt.% Wax+0.1wt.% Span 80+23.75wt.% Mineral Oil+ 

75wt.% Cyclopentane  14.2 13.6 13.3 

5wt.% Wax+Mineral Oil 26.8 25.5 23.9 

5wt.% Wax+20wt.% Mineral Oil+ 75wt.% Cyclopentane 18.4 17.8 17.5 

5wt.% Wax+0.1wt.% Span 80+20wt.% Mineral Oil+75 wt.% 

Cyclopentane 
17.5 17.5 17.2 
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determined to have a strong influence on the WAT. At slower cooling rates, due to 

prolonged time for wax crystallization and aggregation, the WAT appears at much higher 

temperatures when compared to faster cooling rates. Prolonged aggregation time causes 

wax molecules to acquire a more ordered arrangement and increases the ability of wax 

crystals to align or fit together with adjacent crystals, thereby promoting nucleation and 

aggregation/ growth of wax crystals [102, 103]. Similarly, the length of the wax crystals 

appeared to be longer in slower cooling rates and smaller in faster cooling rates, as seen 

in Figure 5.3. Figure 5.3 illustrates the length of the wax crystals captured at 5 °C at three 

different cooling rates in wax-mineral oil mixture. The wax crystals appeared to be longer 

at slower cooling rates due to prolonged nucleation time. At slower cooling rates, 

prolonged nucleation time allows the precipitated nano wax crystals to act as a nucleation 

site for further crystal growth due to attractive forces between the wax crystals [102]. 

Hence a slower cooling rate promotes longer wax crystals and higher crystal growth rate. 

The average length of the wax crystals at 0.5 °C /min, 1 °C /min, and 2 °C/min rate were 

50, 30, and 25 µm respectively. 
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Figure 5.4: Wax crystal morphology of 1.25 wt.% wax and 5 wt.% wax in mineral oil 

system captured using cross-polarized optical microscope at 5 °C at three different cooling 

rates i) 0.5 °C/min ii) 1 °C/min iii) 2 °C/min. The scale bar indicates 100 µm. 

  

 WAT was also measured for the oil phase containing mineral oil-wax- 

cyclopentane mixture at different cooling rates. As seen in Table 5.2, the addition of 
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cyclopentane to the oil phase was observed to lower the WAT (when compared to the pure 

mineral oil-wax system) by 1 °C in 1.25 wt.% wax system, and by 7-8 °C in 5 wt.% wax 

system at all cooling rates. Since the wax molecule primarily consists of long chain 

hydrocarbon molecules (n-paraffin’s), the presence of cyclic compounds and any 

associated side branches is known to build into the wax crystals, thereby solubilizing some 

of the hydrocarbon chains in the wax molecules and lowering the WAT. The presence of 

cyclopentane in the waxy oil phase showed efficiency in reducing the WAT and presented 

a synergistic effect with a wax inhibitor (primary role of a wax inhibitor is to cause 

depression of WAT thereby delaying wax precipitation and plugging). Several studies 

have also shown that high concentrations of cyclic compounds introduce significant 

structural disorientation by solubilizing some of the carbon chains in the wax structure 

and lowering the cloud point [55, 104, 105]. As seen in this work, the addition of 

cyclopentane was observed to delay the aggregation of wax crystals, thereby resulting in 

smaller wax crystals and lower WAT irrespective of the cooling rate and wax 

concentration. Similar observations were seen in other studies in which the presence of 

asphaltene and other aromatic compounds had a strong impact on the WAT and crystal 

size [106]. The addition of a stabilizing agent such as a surfactant (Span 80) to the wax-

oil-cyclopentane mixture was observed to have minimal impact on WAT when compared 

to WAT of wax-oil-cyclopentane mixture at all cooling rates and wax concentrations 

except for 0.5 °C/min (Table 5.2). At the slowest rate, the WAT appeared to be lowered 

by 1 °C in the presence of a surfactant. Similar observations on the wax crystal size were 

seen in the oil-wax-cyclopentane mixture when compared to the wax-mineral oil mixture. 
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However, no noticeable difference in the wax crystal size was seen in the presence of a 

surfactant to the wax-oil-cyclopentane mixture.  

5.3.2. Effect of wax concentration and cooling rates on hydrate formation  

 

5.3.2.1 Surfactant-free case 

 

Single water drop hydrate formation experiments were conducted in an oil phase 

containing no surfactant. For this study, hydrate formation experiments were carried out 

in the oil phase containing: 1.25 wt.% wax- 23.75 wt.% oil- 75 wt.% cyclopentane, and 5 

wt.% wax- 20 wt.% oil-75 wt.% cyclopentane. Along with these systems, control 

experiments were conducted in pure cyclopentane and 25 wt.% oil-75 wt.% cyclopentane 

mixture to evaluate the effect of wax and the oil continuous phase on hydrate formation. 

All the control sample experiments were conducted at a constant heating and cooling rate 

of 2 °C/min.  Figure 5.5 illustrates hydrate formation in a pure cyclopentane – water 

system. Hydrate formation was observed to occur simultaneously upon ice melting and 

instantaneously on the availability of free liquid water. Figure 5.5 represents the hydrate 

morphology and changes occurring at the oil-water interface and the interior of the water 

droplet at different time intervals. The three step hydrate formation mechanism [a) hydrate 

nucleation b) lateral growth c) radial growth] was observed along with the time required 

for complete conversion of water droplet to hydrates through visual observation. For this 

work, what is considered as complete conversion is based on visual observation from two-

dimensional image. No quantification in terms of percent mass converted to hydrates was 

conducted, and therefore it can’t be qualitatively confirmed whether complete conversion 
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was achieved in a three dimensional aspect. In the presence of pure cyclopentane, the time 

required for complete conversion was approximately 27 minutes.  

 

Figure 5.5: Single water drop hydrate formation in control sample containing pure 

cyclopentane. The scale bar represents 100 µm. 

  

A similar experiment was conducted on the control sample with oil phase 

composition consisting of 25 wt.% mineral oil and 75 wt.% cyclopentane. Figure 5.6 

represents the morphological changes occurring during hydrate formation and the time 

required for complete conversion. For mineral oil- cyclopentane mixture, the time 

required for hydrate conversion was 33% more than the time required in pure 
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cyclopentane oil phase. The three step hydrate formation mechanism was predominantly 

seen in these systems. Figure 5.6 illustrates the changes occurring at the oil-water 

interface, progression from hydrate nucleation to lateral hydrate growth, and subsequent 

radial growth. The time required for complete conversion was observed to increase with 

decrease in cyclopentane concentration. A similar study was conducted by Karanjkar in 

which he observed an increase in the time required for hydrate shell formation with 

decrease in cyclopentane concentration due to reduced sub-cooling [44]. Along with radial 

growth, an outward growth of hydrate crystals was observed to occur, as shown in Figure 

5.6. However, the tip of the hydrate crystals was observed to be pointing inward toward 

the water droplet. Lateral growth of hydrate crystals occurred randomly anywhere at the 

interface and subsequently into the water droplet. As seen in Figure 5.6, hydrate crystals 

formed at the interface were observed to submerge into the water droplet and migrate 

inward as radial growth continued. The occurrence of radial growth of hydrate crystals 

was not limited to one particular point on the surface, but was in multiple locations, and 

even simultaneously on the water droplet surface. The initial water droplet size before and 

after hydrate formation was not significantly different (Figure 5.7). However, after hydrate 

dissociation, multiple emulsions were formed in both the control samples. The type of 

multiple emulsions formed in this case could be of oil-in-water-in-oil type with the 

cyclopentane or oil-cyclopentane mixture being the dispersed phase in the water droplet 

(Figure 5.7). 
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Figure 5.6: Images of control sample containing 25 wt.% mineral oil and 75 wt.% 

cyclopentane. The scale bar represents 100 µm. 
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Figure 5.7: Initial emulsion droplet size, droplet size before and after hydrate formation, 

multiple emulsion formation upon hydrate dissociation. The scale bar represents 100 µm.  

 

The effect of wax on hydrate formation is shown in Figure 5.8. Figure 5.8 

represents hydrate formation in 1.25 wt.% wax system at constant heating and cooling rate 

of 2 °C/min. The hydrate formation mechanism in a waxy oil system was found to be 

identical to hydrate formation in a pure cyclopentane or oil-cyclopentane mixture, except 

that in waxy oil systems, wax precipitation and formation of a gel-like network around the 

water droplet occurs prior to hydrate formation. During the cooling cycle, wax precipitates 

out of the solution and remains suspended in the oil. With further decrease in the 

temperature, the precipitated wax crystals were observed to aggregate to form an ordered 

arrangement of wax crystals forming a gel-like network. The gel-like network was 

observed to entrap the water molecule and act as a barrier for cyclopentane to diffuse into 

the water molecule. As seen in Figure 5.8, hydrate nucleation was observed to occur 

simultaneously along with ice melting. However, the wax crystals around the water 

droplet were identified to delay the time required for complete hydrate conversion. As 

indicated in Figure 5.8, the time required for complete conversion was approximately 52 

minutes. The time required for complete conversion in 1.25 wt.% wax system at 2 °C/min 



 

99 
 

cooling rate was observed to be 92.6%, and 31% more than the time required for hydrate 

formation in pure cyclopentane, and mineral oil-cyclopentane mixture respectively 

(Figures 5.5, 5.6, and 5.8).  

 

Figure 5.8: Time required for complete conversion for 1.25 wt.% wax system containing 

mineral oil and cyclopentane at 2 °C/min rate. The scale bar represents 100 µm. 

 

 Comparing the hydrate formation in waxy oil and non-waxy oil systems, though 

hydrate nucleation occurs randomly and instantaneously on the availability of free water 

from ice melting in both these systems, the time required for lateral growth and complete 

surface coverage with hydrate crystals and subsequent radial growth was further extended 

in the presence of wax (Figures 5.5, 5.6, and 5.8).  The aggregation of wax crystals at the 
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interface and the presence of a network or chain-like structure around the water droplet 

are hypothesized to minimize the interfacial area available for transport of hydrate forming 

moleculue (cyclopentane) into the water droplet. Hence, wax acts as a barrier for 

cyclopentante transport and enhance the diffusion resistance for hydrate formation. 

 A similar experiment was conducted on 1.25 wt.% wax system at varying heating 

and cooling rates (1 °C/min and 0.5 °C/min) to evaluate its effect on hydrate formation 

and time required for complete conversion. Figures 5.9 and 5.10 show the evolution of 

hydrate formation from ice melting to complete conversion at 1 °C/min, and 0.5 °C/min 

cooling rates respectively. The hydrate formation mechanism was observed to be identical 

in all the systems (three different cooling rates), but differences exist in the time required 

for complete conversion. For a 1.25 wt.% wax system, the time required for complete 

conversion was 96 minutes, and 129 minutes at 1 °C/min, and 0.5 °C/min, respectively. 

The time required for complete conversion at 1 °C/min, and 0.5 °C/min cooling rate were 

85%, and 148% more than the time required at 2 °C/min rate, respectively. The 

progression from hydrate nucleation to lateral and radial growth (in terms of time required 

for conversion) was found to be slower and more prolonged with a slower cooling rate 

due to precipitation of elongated wax crystals at the slower cooling rate (Figure 5.4). Wax 

crystals precipitated out of solution at slower cooling rates were observed to be longer, 

yielding to a strong and interconnected network of wax crystals at the oil-water and 

thereby reducing the interfacial area for diffusion of cyclopentane into water.  
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Figure 5.9: Hydrate formation in 1.25 wt.% wax system at constant heating and cooling 

rate of 1 °C/min at different time intervals. The scale bar represents 100 µm. 
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Figure 5.10: Hydrate formation in 1.25 wt.% wax system at constant heating and cooling 

rate of 0.5 °C/min at different time intervals. 

 

Another hydrate formation experiment was conducted on 5 wt.% wax-20 wt.% 

mineral oil-75 wt.% cyclopentane mixture to evaluate the effect of wax concertation on 

hydrate formation. Figure 5.11 shows the evolution of water droplets toward complete 

conversion into hydrates at different time intervals at a constant heating and cooling rate 

of 2 °C/min. Comparing the 1.25 wt.% wax and 5 wt.% wax systems at 2 °C/min rate, the 

average time required for complete conversion was found to increase with increase in wax 

concentration (Figures 5.5, 5.11). The time required for completion conversion for the  

sample shown in Figure 5.11 was 94 minutes. The time required for complete conversion 
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for 5 wt.% wax system at 2 °C/min rate was 3.5 times, and 2.6 times the conversion time 

required in pure cyclopentane and mineral oil-cyclopentane samples, respectively (Table 

5.3, and Table 5.4). For 5 wt.% wax system, a four times increase in the wax concentration 

yielded 57% increase in the average time for complete conversion when compared to 1.25 

wt.% wax system (Table 5.4).  

 

Figure 5.11: Hydrate formation in 5 wt.% wax system at constant heating and cooling 

rate of 2 °C/min at different time intervals. The scale bar represents 100 µm. 
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Table 5.3 represents the time required for complete conversion in control samples 

at a constant cooling rate of 2 °C/min , whereas Table 5.4 summarizes the effect of cooling 

rate and wax concentration on the time required for complete conversion. The data 

represented in Table 5.3 and Table 5.4 are an average of three independent measurements. 

As seen in Table 5.4, an increase in wax concentration resulted in an increase in time 

required for complete conversion. However, the trend was not identical at the slowest 

cooling rate for the 1.25 wt.% and 5 wt.% wax systems. Comparing the hydrate conversion 

time between 1.25 wt.% wax and 5 wt.% wax systems, a four times increase in the wax 

concentration (in 5 wt.% wax system) yielded a 30-minute increase in the time required 

for conversion at 2 °C/min rate. A 10-minute increase was seen at 1 °C/min, and on the 

contrary, a 10-minute decrease was seen at 0.5 °C/min cooling rate. The addition of 1.25 

wt.% wax to the mineral oil-cyclopentane mixture resulted in an increase in the hydrate 

conversion time by 3.5, 2.6, and 1.5 times when compared to the mineral oil-cyclopentane 

mixture at 2 °C/min, 1 °C/min, and 0.5 °C/min rates, respectively. A 5% increase in the 

wax concentration to the mineral oil-cyclopentane mixture resulted in a 3.2, 3, and 2.2 

times increase in the hydrate conversion time at 2 °C/min, 1 °C/min, and 0.5 °C/min rates, 

respectively. 
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Table 5.3: Summary of the average time required for visual observation of complete 

conversion of water droplet into hydrates in “surfactant-free” and “with surfactant” 

control samples at constant heating and cooling rate of 2 °C/min 

 

Sample 

Time for visual observation of 

complete conversion  at 2 °C/min 

cooling rate (minutes) 

Pure cyclopentane (100%) 27 mins 

25 wt.% mineral oil+75 wt.% cyclopentane 36 mins 

0.1 wt.% Span80+24.9 wt.% mineral oil+75 

wt.% cyclopentane 

16 mins 

 

Table 5.4: Summary of the average time required for visual observation of complete 

conversion of water droplet to hydrates at various wax concentrations and heating/ cooling 

rates 

Sample 

Time for visual observation of 

complete conversion at different 

cooling rates (minutes) 

0.5 

(°C/min) 

1 

(°C/min) 

2 

(°C/min) 

1.25wt.%Wax+23.75wt.% Mineral 

Oil+75wt.% Cyclopentane 
129.25 96.73 52.80 

5wt.% Wax+20wt.% Mineral Oil+ 75wt.% 

Cyclopentane 
116.53 108.76 82.25 

1.25wt.% Wax+0.1wt.% Span80+23.75wt.% 

Mineral Oil+ 75wt.% Cyclopentane 
24.53 19.53 18.25 

5wt.% Wax+0.1wt.% Span80+20wt.% 

Mineral Oil+75 wt.% Cyclopentane 
23.27 21.00 22.50 

 

 

5.3.2.2 Surfactant-containing systems 

 

To evaluate the effect of oil soluble surfactant such as Span 80 on hydrate 

formation, a control sample containing 0.1 wt.% Span 80, 24.9 wt.% mineral oil, and 75 

wt.% cyclopentane was prepared. As shown in Table 5.3, addition of surfactant (0.1 wt.% 

increase in span80 concentration) to the mineral oil-cyclopentane mixture resulted in a 
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55% decrease in the time required for complete conversion. A reduction in the conversion 

time was expected, as surfactant reduces the surface tension, thereby promoting the 

diffusion of cyclopentane into water molecules. The process leading to hydrate formation 

in surfactant stabilized system was identical to the surfactant-free case and involved the 

three-step mechanism:  hydrate nucleation, lateral growth, and radial growth. The only 

difference in these two systems was that the time required for complete conversion was 

significantly reduced in the presence of surfactant, thereby shortening the time interval 

between hydrate nucleation to radial growth. Figure 5.12 represents the time required for 

complete conversion of water droplets to hydrates at different time intervals in the 

presence of surfactant in a 1.25 wt.% wax system. As seen in Figure 5.12, hydrate 

nucleation occurred instantaneously on the availability of free water. However, the time 

required for progression from lateral growth to radial growth in a surfactant stabilized 

system was significantly reduced by at-least 65% - 80% at all cooling rates when 

compared to surfactant free systems. At 2 °C/min cooling rate, a 1.25 wt.% increase in the 

wax concentration to the surfactant-oil-cyclopentane mixture was observed to increase the 

hydrate conversion time by 14% when compared to the control system containing 

surfactant (Table 5.3, and Table 5.4). Decrease in the cooling rate was observed to have a 

significant increase in the time required for complete conversion from 14% to 53% when 

compared to the surfactant control sample. However, for the surfactant stabilized 1.25 

wt.% wax system, the hydrate conversion time was 7%, and 34% higher at 1 °C/min, and 

0.5 °C/min, respectively, when compared to the fastest cooling rate (2 °C/min). A 

minimum of 65% - 80% decrease in the hydrate conversion time was observed in the 

presence of surfactant in the 1.25 wt.% wax-oil-cyclopentane mixture at different cooling 
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rates when compared to its corresponding surfactant free system. Whereas, a 73% - 80% 

decrease in the hydrate conversion time was observed with the addition of 0.1 wt.% 

surfactant to 5 wt.% wax-oil-cyclopentane mixture. An increase in the wax concentration 

was shown to have minimal impact on the hydrate conversion time.  

Figure 5.13 represents the trend followed by the different systems on hydrate 

conversion as a function of cooling rate. An increase in the hydrate conversion time was 

observed with a decrease in the cooling rate for all samples, but the increase in conversion 

time was not significant in surfactant stabilized systems when compared to a surfactant 

free system. Though the trend followed by surfactant stabilized systems on hydrate 

conversion was identical to surfactant free systems, the difference between the conversion 

time as a function of wax concentration was not significant as it was in the surfactant-free 

case.  
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Figure 5.12: Hydrate formation in 1.25 wt.% wax system with 0.1 wt.% span 80, 23.65 

wt.% mineral oil, and 75 wt.% cyclopentane at 2 °C/min heating and cooling rate  
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Figure 5.13: Summary of time required for complete conversion of water droplet to 

hydrates through visual observation as function of cooling rates and wax concentrations. 

The solid data points indicate control samples 

 

5.3.2.3 Hydrate Formation Mechanism 

 

Figure 5.15 shows the hydrate formation mechanism in waxy oil systems. In waxy oil 

systems, in addition to the three step mechanism associated with cyclopentane hydrates, 

wax precipitation and aggregation is also involved. The experimental results shown in this 

work demonstrated that the presence of wax greatly influenced hydrate formation and time 
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required for complete conversion. Moreover, the factors affecting wax appearance 

temperature (WAT), such as wax concentration and cooling rate, were also found to have 

a significant impact on hydrate formation. The hydrate formation mechanism in waxy oil 

systems can be described in four steps: 

a) Wax precipitation around water droplet 

A decrease in temperature below the wax appearance temperature (WAT) results in 

precipitation of nano wax crystals. The decrease in temperature results in lowering of 

molecular motion, and the attractive forces between the crystals increases, thereby 

promoting the growth of an ordered network of wax crystals [102, 103]. Wax precipitation 

is a two-step mechanism and involves nucleation and growth. A decrease in the solution 

temperature causes aggregation of nano wax crystals (also known as nucleation) until the 

aggregates/nuclei reach a critical size in order to be visualized and become stable. Nuclei 

size begins to increase and growth of wax crystals occur due to attractive forces between 

the molecules [102, 103].  

b) Hydrate nucleation 

Quenching of water drops to form ice and subsequent melting of ice to free liquid 

water was demonstrated to initiate hydrate nucleation rather instantaneously and randomly 

anywhere at the oil-water interface. The free water available from ice melting was proven 

to reduce the stochastic long hydrate nucleation/ induction time that is otherwise 

associated with cyclopentane hydrates and promotes hydrate nucleation. A similar hydrate 

formation experiment was conducted without quenching the water droplet to form ice. 

Hydrate nucleation was not observed despite holding the sample at 0.1 C for several hours. 



 

111 
 

Hence, availability of free water from ice melting due to heat transfer was determined as 

the rate limiting step. Though availability of free water promotes hydrate nucleation, the 

driving force behind the immiscible cyclopentane oil phase to diffuse into water 

contributes significantly towards the overall hydrate formation mechanism. The driving 

force behind cyclopentane diffusion into water drop is due to chemical potential difference 

between the phases. The driving force for cyclopentane hydrate nucleation is analogous 

to that of gas hydrate nucleation. For gas hydrate systems, the difference between the 

chemical potential for the old and the new phase acts as the driving force for hydrate 

formation [107]. To understand the driving force for gas hydrate formation, Kaschiev 

suggested a three-phase system for one component gas at constant temperature and 

pressure (Figure 5.14) [107].  

 

(P,T) = const.  

Gas                               µgg 

Solution  

µhs= µgs +nw µw  

Hydrate                        µh 

Figure 5.14: Three phase system used for describing the driving force required for hydrate 

formation at constant temperature (T) and pressure (P) [107]. 



µµnewµold = µhs - µh                                                                                      Eq. 5.1       

G+nwH2O           G.nwH2O                                                                                   Eq. 5.2 

 µhs = µgs +nw µw                                                                                                   Eq. 5.3 

µµhsµh = µgs +nw µw - µh                                                                              Eq. 5.4       
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 At constant temperature T, and pressure P, the hydrate phase reaction occurring in 

solution is expressed as given in Eq. 5.2. According to the thermodynamic relation 

between chemical potentials in equilibria, the chemical potential of the hydrate building 

unit in solution (µhs)  is given in Eq. 5.3. The difference in the chemical potential, Δµ (also 

known as supersaturation) is the driving force for hydrate nucleation. Supersaturation (Δµ) 

is defined as chemical potential difference between the hydrate phase in solution (Δµhs), 

and hydrates (Δµh). Hydrate nucleation and crystal growth occurs until the system is 

supersaturated (Δµ > 0), indicating that the chemical potential of the old phase is greater 

than the new phase. In other terms, diffusion of hydrate-forming guest molecule into water 

occurs rapidly as long as the chemical potential of the guest molecule in the oil phase is 

greater than that in the aqueous phase. Once the system reaches equilibrium, diffusion 

doesn’t occur any further (Δµ= 0, system is saturated). Diffusion and hydrate nucleation 

ceases completely, and instead hydrate dissolution starts to occur when Δµ <0 

(undersaturated) [107].                                                                                                        

c) Lateral growth 

The nucleation of hydrate crystals at the interface further promotes the growth of 

hydrate crystals around the surface of the water droplet until the entire surface is covered 

with hydrate crystals. Figure 5.15 shows hydrate nucleation at the oil-water interface and 

the progression from hydrate nucleation to lateral growth where the entire surface of the 

water droplet is covered with hydrate crystals. In the presence of wax in the oil phase, a 

layer of wax crystals is formed at the interface and an interconnected or gel-like network 

exists around the water droplet. Wax crystals at the interface act as a barrier, thereby 

minimizing the interfacial area available for direct contact between the two immiscible 
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phases, and further elongating the time required for progression from hydrate nucleation 

to lateral growth. Wax crystals precipitated at the interface are dependent on the cooling 

rate and wax concentration. Wax enhances the diffusion resistance of cyclopentane 

transport to the bulk water phase and delays hydrate growth rate. 

d) Radial growth 

In waxy oil systems, progression from lateral growth/ complete surface coverage to 

radial growth is governed by mass transfer or diffusion of cyclopentane through the layer 

of wax crystals around the water droplet and through the hydrate shell formed during 

lateral growth. Thus, wax concentration, cooling rate, and diffusion determine the rate of 

radial growth.  

 

Figure 5.15: Hydrate formation mechanism in waxy oil systems. The water droplet is 

suspended in an oil phase containing either 1.25 or 5 wt.% wax in 1:3 ratio of mineral oil 

and cyclopentane on a weight basis.  
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The hydrate formation mechanism in waxy oil systems as described above can be 

primarily classified as a thermodynamically driven process until ice dissociation and 

hydrate nucleation occurs, following which kinetics dominates the formation mechanism. 

Though the formation mechanism in the presence of wax is identical to gas hydrate 

formation, the presence of wax was observed to enhance the diffusion resistance of 

hydrate formation. In the absence of a surfactant, the high interfacial tension between oil-

water interface along with the diffusion barrier created by wax crystals, reduces the rate 

of cyclopentane transport from the oil phase to the bulk water phase thereby resulting in 

slower hydrate growth rate. In the presence of a surfactant, the progression from lateral 

growth to radial growth is much faster when compared to the surfactant-free case, owing 

to a reduction in the interfacial tension. 

Severel studies have shown that surfactants greatly enhance the kinetics of hydrate 

formation by increasing the solubility of the hydrate forming guest molecule in the 

aqueous phase [108-113]. Increase in the solubility results in a decrease in the time 

required for the chemical potential difference (driving force for hydrate formation) to 

reach equilibrium (saturation). Surfactant molecules were observed to not only increase 

the solubility of hydrocarbon gas in the aqueous phase but also acts as a nucleating site, 

inducing the formation of hydrate crystals around the micelles [109]. However, several 

studies have shown that micelle formation is not responsible for faster hydrate growth rate 

as hydrate formation occurs at temperature below the Krafft point of the surfactant [112-

114]. Studies have shown that the presence of micelles  accelerate the hydrate growth rate 

by reducing the hydrate nucleation barrier (presence of surfactant results in lower 

induction time). Additionally it was observed that surfactants do not influence the 
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thermodynamic phase boundary as the surfactant molecules do not participate in hydrate 

formation. For this study, the surfactant concentration (0.1 wt.% of the oil phase) was 

above the critical micelle concentration (CMC) indicating the prence of micelles in the oil 

phase. Studies have shown that along with increase in the solubility of hydrate forming 

guest molecule, lower interfacial tension due to the presence of surfactants, favorably 

affects hydrate formation rate by enhancing the mass transfer and diffusion of hydrate 

forming gases to the bulk water [110-112, 115, 116]. Lowering of interfacial tension is 

also seen to significantly change the hydrate morphology resulting in catastrophic hydrate 

growth. It has been suggested that this catastrophic growth of hydrates in the presence of 

surfactants is probably due to continuous availability of water at the interface.  

 

5.4. Conclusions 

 

The presence of wax in the oil phase was observed to have a significant impact on 

the time required for complete conversion. For systems containing no surfactant, wax 

concentration, and cooling rate were observed to impact the time required for complete 

conversion. While in surfactant stabilized systems, cooling rate, and wax concentration 

didn’t have a significantly strong influence on the hydrate conversion time. The addition 

of mineral oil to cyclopentane oil phase was found to increase the hydrate conversion time 

by 33%, but addition of surfactant to the oil-cyclopentane mixture was found to reduce 

the hydrate conversion time by > 50%.  Presence of wax in the oil-cyclopentane mixture 

was observed to further increase the time required for complete conversion in the 

surfactant free case. Hydrate conversion time was identified to increase with slower 
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cooling rate irrespective of the wax concentration in the surfactant free system. Hydrate 

formation mechanism in waxy oil systems was hypothesized to be a four step process that 

includes: wax precipitation and aggregation, hydrate nucleation, lateral growth, and radial 

growth. 
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CHAPTER VI 

 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

 

6.1. Significant Contributions 

 

This thesis focuses on the characterization of emulsions and hydrates in waxy oil 

systems. A novel experimental method for characterizing hydrate formation with and 

without surfactant as a function of wax concentration (1.25 and 5 wt.% wax) and cooling 

rates (0.5, 1, and 2 °C/min) is presented. A direct visualization of hydrate growth in a 

single water drop suspended in the waxy oil phase is introduced in this thesis that can be 

used to visualize the changes occurring in the system when hydrates and wax occur 

simultaneously. The visualization experiment provided a fundamental understanding of 

the hydrate formation mechanism in the presence of wax and the effect of surfactant, wax 

concentration, and cooling rates on hydrate formation. The presence of wax in the oil 

phase was observed to enhance the diffusion resistance for cyclopentane transport from 

the oil phase to the bulk water phase. The presence of surfactant in the oil phase (waxy oil 

continuous phase) was observed to accelerate the hydrate formtion rate by a factor of 2.5-

5.3 when compared to the surfactant free waxy oil system. In surfactant containing 

systems, wax concentration and cooling rates were observed to have a minimal impact on 
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hydrate conversion time. Similar observations were not seen in the surfactant-free 

systems. In surfactant free systems, the slower cooling rate was identified to increase the 

hydrate conversion time. However, faster cooling rates resulted in a decrease in the 

hydrate conversion time. Precipitation of longer/ elongated wax crystals and formation of 

an inter-connected network of wax crystals at slower cooling rates were considered to 

minimize the contact area available between oil and water thereby delaying hydrate 

formation. A four step hydrate formation mechanism in waxy oil systems (wax 

precipitation, hydrate nucleation, lateral growth, and radial growth) was postulated based 

on the experimental data. The presence of wax was observed to delay the rate of diffusion 

of cyclopentane due to the chemical potential difference between cyclopentane in the oil 

phase  and aqueous phase (driving force for hydrate formation), high interfacial tension, 

and diffusion resistance. On the contrary, surfactant reduced the diffusion resistance of 

cyclopentane transport across the oil/water interface, thereby promoting hydrate growth. 

An in-situ, hydrate formation experimental method was developed using a visualization 

technique. The experimental method enabled direct visualization of changes occurring in 

the emulsion upon ice dissociation, hydrate formation, and hydrate dissociation. Ice 

melting and hydrate formation were observed to occur simultaneously. Hydrate crystals 

were observed to form at the oil-water interface and in-situ conversion of water droplets 

to hydrates were also captured using this method. An irreversible formation of multiple 

emulsions was observed upon hydrate dissociation.  

  This thesis provides a fundamental understanding of concentrated emulsion 

characterization at both quiescent and flowing conditions. Data are presented on 

concentrated emulsion characterization using several experimental techniques such as 
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inflow microscope, acoustic spectroscopy, and optical microscopy. The experimental 

results from each of these techniques were validated with other techniques used for 

emulsion characterization. A flow loop setup equipped with an inflow microscope was 

used for characterizing model water-in-oil emulsions. The effect of water cut (5, 10, and 

20 vol.%), stabilizer type (span 80 and aerosol R972), temperature (25 °C and 15 °C), and 

flow rate (3.3 gpm, 6.6 gpm and 8.3 gpm) on emulsion properties and droplet size 

distribution were measured. This work showed that the drop size distribution was a 

function of temperature, water concentration, and flow rate for surfactant stabilized 

emulsions. The solid stabilized emulsions indicated that only water concentration had an 

overall impact on the drop size distributions. 

Water-in-oil emulsions with a dispersed phase fraction equal to 15 wt.% were 

prepared using either a non-ionic surfactant or solid hydrophobic nanoparticles under 

identical conditions of high energy mixing. Acoustic spectroscopy measurements were 

carried out on these emulsions to determine the initial droplet size distributions and their 

evolution over a period of one week. Transient stability, solution conductivity, and surface 

charge measurements were conducted in parallel to compare the behavior of surfactant 

and solid particles at the oil-water interface. Coalescence of solid-stabilized emulsions led 

to broad droplet size distributions with larger droplets when compared to surfactant-

stabilized emulsions. Incomplete surface coverage by solid particles resulted in the 

emulsions being unstable against coalescence, thereby shifting the distribution towards 

larger droplet size. This behavior was captured by acoustic spectroscopy in terms of 

change in the raw experimental attenuation, colloidal vibration current, and conductivity 

measurements at different time intervals.  Conductivity measurements in solid stabilized 
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emulsions showed that with time, counter-ions from water droplets were released into the 

continuous oil phase, thereby increasing the conductivity of the emulsions. 

Complimentary bottle test and optical microscopy experiments were conducted on these 

emulsions to validate the droplet size distribution and transient behavior of emulsions 

measured using acoustic spectroscopy. 

6.2. Future Work 

 

Experimental investigations of hydrate formation in waxy oil systems were 

conducted in a small-scale laboratory setup. Single drop hydrate formation experiments 

were performed at various wax concentrations (1.25 and 5 wt.% wax) and cooling rates 

(0.5, 1, and 2 °C/min). The next step would be to interrogate the hydrate formation 

mechanism in waxy oil systems in the presence of multiple water droplets in the form of 

an emulsion. This work will be significant as oilfield emulsions are commonly 

encountered at high water concentrations, and it is imperative to develop experimental 

results that have direct applications for field study. Further experimental investigation on 

hydrate formation in waxy oil emulsions in flowing conditions would provide an insight 

into the flow behavior of hydrate forming emulsions in the presence of wax and stabilizing 

agents such as a surfactant. This work would lead to an understanding of multiphase fluid 

flow behavior due to hydrates, wax, and emulsions, thus paving a way to develop better 

economically feasible flow assurance remediation strategies  for a wide variety of 

industrial applications.  

Preliminary experimental work was conducted using optical microscopy to 

investigate hydrate formation in model waxy oil emulsions at various water 
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concentrations. For this work, hydrate-forming water-in-oil emulsions were prepared 

using paraffin wax, surfactant (span 80), cyclopentane, light mineral oil, and deionized 

water. An oil phase composition was prepared with a 50:50 mixture of light mineral oil 

and cyclopentane on an equal weight basis. Light mineral oil purchased from Sigma-

Aldrich was used as model mineral oil. 95% purity cyclopentane purchased from Alfa 

Aesar was used as the hydrate forming liquid molecule. An oil soluble non-ionic surfactant 

such as Span 80 was used as the stabilizing agent. For all the systems, the surfactant 

concentration was kept constant at 0.1 wt.%. Model paraffin wax with a melting point of 

58-62 °C was purchased from Sigma-Aldrich. The wax concertation was kept constant at 

1.25 wt.% for all the systems. A low wax concentration was chosen for this study in order 

to avoid phase separation issues at low temperatures and at high water concentration 

systems. Hydrate forming water-in-oil emulsions were prepared at 5, 10, 20, 30, and 40 

wt.% water concentrations. For 40 wt.% water-in-oil emulsion, an oil phase was prepared 

with 0.1 wt.% span80, 1.25 wt.% wax, and 58.65 wt.% of model mineral oil-cyclopentane 

mixture on 50:50 equal weight basis. For this work, 100 g basis of the sample was used. 

For preparing 100 g of a water-in-oil emulsion, an oil phase was prepared by heating 

29.325 wt.% mineral oil and 1.25 wt.% wax mixture to 100 °C for 24 hours to ensure 

complete wax dissolution and erase any thermal history. The sample was heated on a stir/ 

hot plate using a 1” long stir bar at 600 rpm. The sample temperature was reduced to 40 

°C prior to adding 29.325 wt.% cyclopentane and 0.1 wt.% span 80. The oil phase was 

stirred using an Ultra Turrax T25 homogenizer at 2800 rpm for one minute prior to adding 

the dispersed phase.  40 wt.% of water was added dropwise to the oil mixture and the 

sample was prepared using the homogenizer at 8000 rpm, for 20 mins. The sample was 
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immediately placed in the chiller previously set to 0.1 °C.  Figure 6.1 illustrates the chiller 

setup used for this work. After placing the sample in the chiller, it was constantly stirred 

using a homogenizer set at 3000 rpm to ensure mixing of the sample during hydrate 

formation. The sample temperature was measured periodically, and once the sample 

temperature reached approximately 1-2 °C, the sample was seeded using ice crystals. It 

took about 2 hours to reach this temperature after placing it in the chiller. A small quantity 

(less than one spatula full) of ice crystals were added to the sample and stirred well before 

placing it back into the chiller. The sample was constantly stirred after seeding. Within 2-

3 hours after seeding, the entire sample was converted into hydrates. Hydrate formation 

was confirmed, as the sample turned into a solid-like structure and didn’t flow (Figure 

6.2). After hydrate formation, the sample was kept at room temperature to investigate the 

effect of hydrate formation on emulsion droplet size distribution and its stability (Figure 

6.3). Phase separation was observed in this sample upon hydrate dissociation (Figures 6.3, 

and 6.4). A small amount of the sample from the emulsion layer in the phase separated 

sample was used to measure the emulsion droplet size upon hydrate dissociation (Figure 

6.4). A significant increase in the emulsion droplet size and distribution was observed 

after hydrate dissociation when compared to the initial emulsion droplet size. 

Simultaneously, an emulsion stability test was conducted to evaluate any changes in the 

emulsion droplet size over the course of the experiment (Figure 6.5). A transient stability 

test indicated no significant changes in the emulsion droplet size and distribution.  
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Figure 6.1: Experimental setup of the chiller used for carrying out hydrate formation 

experiment in waxy oil systems  

 

 

Figure 6.2: Visual confirmation of hydrate formation in 40 wt.% water-in-oil emulsion 

containing wax and surfactant in the oil phase 
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Figure 6.3: Evolution of sample from emulsification to hydrate formation, and to hydrate 

dissociation 

 

Figure 6.4: Emulsion after hydrate dissociation and microscope image of the sample 

taken from the emulsion layer of the sample subjected to hydrate formation. The scale bar 

represents 50 µm 
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Figure 6.5: Transient stability microscope images of the 40 wt.% water-in-oil emulsion 

used for hydrate studied in waxy oil systems. A) image of the emulsion sample at 0th hour 

(immediately after emulsification) b) image of the sample after 6 hours of emulsification. 

The scale bar represents 100 µm 

 

 A comparable experiment was conducted at 30, 20, 10, and 5 wt.% water 

concentrations. Hydrates were observed to form at 30 and 20 wt.% water concentrations. 

However, hydrate formation was not observed in 5 and 10 wt.% water concentrations, 

even after 12 hours of seeding. The next step forward would be to conduct in-situ hydrate 

formation in waxy oil emulsions using an optical microscope. A similar experimental 

procedure, as discussed in Chapter IV, can be used to investigate the changes in the 

emulsion properties and oil-water interface upon hydrate formation and dissociation. In 

order to correlate the experimental work discussed above to real world systems, a flow 

loop setup can be used to interrogate the multiphase fluid flow behavior in the presence 

of hydrates and wax. The flow loop setup discussed in Chapter III was redesigned and 

rebuilt into a horizontal setup. The modification to the experimental design was carried 

out in order to avoid any changes to the fluid property with change in the pipe orientation, 

and also to enable the use of hazardous chemicals such as crude oil and flammable 

materials. Consequently, the vertical flow loop setup discussed in Chapter III was 
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redesigned as shown in Figure 6.6. The new flow loop setup is equipped with pressure 

transducers at different locations in the flow loop test section to evaluate pressure changes 

along the length of the pipe. Any pressure fluctuations due to hydrate formation or wax 

build up can be easily detected using these transducers. This setup would also enable 

pressure drop calculation between two points in the test section associated with changes 

in the fluid property.  

 

 

 

 

 

 



 

127 
 

 

Figure 6.7: Flow loop setup used for emulsion, hydrates, and wax characterization. The 

flow loop setup is equipped with inflow microscope, pressure transducer for measuring 

properties under flowing conditions  
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APPENDICES 
 

 

APPENDIX A- IMAGES CAPTURED USING CROSS POLARIZED OPTICAL 

MICROSCOPY FOR HYDRATE FORMATION STUDIES IN WAXY OIL SYSTEMS 

Images at the oil-water interface captured at 20x magnification in surfactant free 1.25 wt.% wax 

in mineral oil-cyclopentane mixture 

 

 

 



 

 

APPENDIX B- DROP SIZE DISTRIBUTION OF  REFERENCE SYSTEMS USED FOR 

CALIBRATION 

Particle size distribution of 10 wt.% colloidal silica solution captured using acoustic 

spectroscopy. The inset image was captured using transmission electron microscopy (TEM) 

 

 

 

 

 

 

 

 

 

 

 



 

 

Particle size distribution of 0.1 wt.% Aerosil R972 in crystal plus 70T mineral oil in captured 

using acoustic spectroscopy. The inset image was captured using transmission electron 

microscopy (TEM) 

 

Nonaqueous conductivity measurement of water-in-oil emulsion stabilized using solid particle 

and surfactant discussed in Chapter II 
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APPENDIX C-    FLOW  LOOP SETUP USED  FOR EMULSION AND HYDRATE 

CHARACTERIZATION DESCRIBED IN CHAPTER III 
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