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SPECIES OF C3, C3-C4 INTERMEDIATES AND C4 
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Major Field: BIOCHEMISTRY AND MOLECULAR BIOLOGY 

 

MicroRNAs (miRNAs) are a group of small non-coding RNAs that negatively regulate 

expression of their target genes at the posttranscriptional level. The miRNA-mediated 

gene regulation has emerged as one of the critical modes of gene regulation important for 

almost all biological processes of a plant life cycle. However, the role of miRNAs in 

photosynthesis is unknown. Photosynthesis is a chief metabolic process through which 

plants synthesize carbohydrates in the presence of sunlight using atmospheric carbon 

dioxide and water. Flaveria genus belongs to the family Asteraceae and its species differ 

greatly in their mode of photosynthesis as different Flaveria spp. operate either C3, C3-

C4 intermediate, or C4 photosynthesis. This makes Flaveria a valuable model system to 

investigate, at the molecular level, how C4 type has evolved from the ancestral C3 type. 

To address whether or not miRNAs have a role in this process, we have analyzed 

miRNAs in the leaves as well as from the isolated mesophyll and bundle sheath cells of 

leaves from Flaveria robusta (C3), Flaveria ramosissima (C3-C4 intermediate) and 

Flaveria bidentis (C4). The analyses revealed significant differences for the abundances 

of various miRNA families in Flaveria robusta (C3), Flaveria ramosissima (C3-C4 

intermediate) and Flaveria bidentis (C4). To gain an insight into the miRNA targets in 

these plant species, degradome libraries were constructed and sequenced. This approach 

confirmed targets such as REVOLUTA (member of homeodomain-leucine zipper family) and 

Target of early activation tagged (EAT) for miR166 and miR172, respectively. Additionally, 

several other potential targets that could be regulated by miRNAs in the Flaveria spp. have 

been identified.  
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CHAPTER I 
 

 

INTRODUCTION 

Photosynthesis is a chief metabolic process through which plants synthesize 

carbohydrates (stored as starch) in the presence of sunlight using atmospheric carbon dioxide and 

water. It is unequivocally regarded as one of the most important biochemical pathways because 

all life existence depends on it for acquisition of energy and survival (Ehleringer et al., 1993). 

Most plant scientists in recent times are also targeting improving on the photosynthetic pathway 

in crops that are widely propagated in order to ensure increasing the amount of food production to 

match the ever increasing human and animal population (Furbank, 2017).  

Many evidences have so far suggested that photosynthesis has existed since the 

origination of life and this complex biochemical process has evolved over millions of years.  The 

ability to photosynthesize is known to be widely distributed in cyanobacteria and green plants. 

Plants incorporate carbon dioxide into the Calvin cycle (dark stage of photosynthesis) and reduce 

it to produce starch at the end of this process (Ehleringer et al., 1993). Based on the first stable 

carbon compound formed after carbon dioxide is incorporated, plants have been classified into C3 

or C4 photosynthesis. The C3 plants are characterized by a photosynthetically active mesophyll 

cells where CO2 fixation into the Calvin cycle occurs. Contrastingly, C4 plants possess two 

photosynthetically active cell types namely, mesophyll and bundle sheath cells. CO2 fixation 

occurs in the mesophyll cells whereas the Calvin cycle takes place in the bundle sheath cells. This 

distinctive feature in C4 plants ensures a sequestration of a high concentration of CO2 in the 

Calvin cycle containing bundle sheath cells required for photosynthesis.
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 As a result, C4 plants avoid photorespiration and so are photosynthetically more efficient 

than C3 plants (Ehleringer et al., 1997).  

Flaveria as a model system to study the evolution of C4 from its ancestral C3 photosynthesis 

C4 photosynthesis was initially discovered in sugarcane (Hatch and Slack, 1966). 

However, due to the lack of a phylogenetically close C3 taxa for sugarcane, the study for potential 

regulators of the C4 pathway is limited in this plant species. Flaveria genus belongs to the family 

Asteraceae (Powell, 1978). The genus includes annuals, perennials and shrubs that are mostly 

found in the Fehuacan valley of Mexico, Southern United States, Asia (India), West Indies 

(Greater Antilles), Africa, Australia and South America. An interesting and very relevant feature 

is that Flaveria spp. differ greatly in their mode of photosynthesis, i.e., different Flaveria spp. 

operate either C3, or C3-C4 intermediate or C4 photosynthesis (Table. 1) (Mckown et al., 2005). It 

is also easier to biochemically purify/isolate their mesophyll and bundle sheath cells from these 

species (Kanai and Edwards, 1973). These attributes make Flaveria spp a valuable model system 

to investigate at the molecular level, how C4 photosynthesis evolved from its ancestral C3 type. 

Table 1: Diversity of photosynthesis in Flaveria spp. (Modified from Gowik et al., 2011) (* 

denotes the species used in the current study). 

Flaveria spp. Photosynthetic type  

F. robusta C3 photosynthesis* 

F. ramosissima C3-C4 intermediate* 

F. sonorensis C3-C4 intermediate 

F. angustifolia C3-C4 intermediate 

F. anomala C3-C4 intermediate 

F. chloraefolia C3-C4 intermediate 

F. yucatan C3-C4 intermediate 

F. pubescens C3-C4 intermediate 

F. oppositifolia C3-C4 intermediate 

F. linearis C3-C4 intermediate 

F. floridana C3-C4 intermediate 

F.palmeri C4-like photosynthesis 
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F. vaginata C4-like photosynthesis 

F. brownii C4-like photosynthesis 

F. kochiana C4 photosynthesis 

F. campestris C4 photosynthesis 

F. australasica C4 photosynthesis 

F. trinervia C4 photosynthesis 

F. haumanii C4 photosynthesis 

F. bidentis C4 photosynthesis* 
 

MicroRNAs 

MicroRNAs (miRNAs) represent a class of endogenous small non-coding RNAs that regulate 

the expression of mRNAs that share sequence complementarity. MicroRNAs are at the heart of 

complex gene regulatory networks that control almost all growth and developmental processes of 

the plant life cycle including biotic and abiotic stress responses as well as nutrient deprived 

conditions (Jones-Rhoades et al., 2006; Sunkar et al., 2012). Several recent studies have focused 

on cataloguing miRNA populations from different plant species. Thus far, approximately 8,500 

miRNAs from 73 different plant species have been deposited at the miRBase 

(www.miRBase.org) but none from the Flaveria spp. 

Research Objectives 

Although miRNAs have been associated with almost all biological processes of a plant life 

cycle, their roles in photosynthesis, the most important metabolic process, remain unclear. 

Because miRNAs represent major gene regulatory molecules controlling a variety of biological 

processes, we hypothesize that miRNAs could play important roles in photosynthesis, specifically 

in C3 and C4 modes of photosynthesis. This can be tested by identifying miRNAs expressed in 

leaves of C3 and C4 plants that are closely related. C4 photosynthesis operates in two distinct 

types of cells, namely, mesophyll and bundle sheath cells. This thesis catalogues and 

characterizes miRNAs expressed in not only entire leaves but also in mesophyll and bundle 
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sheath cells of C3, C3-C4 intermediate and C4 Flaveria spp. (Table 1). The outcome of this 

research contributes clues about whether miRNAs could function in photosynthesis.
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CHAPTER II 
 

 

LITERATURE REVIEW 

2.1: Photosynthesis 

The photosynthesis process is divided into two main types namely C3 and C4 based on the 

first stable carbon product formed after fixation of CO2 from the atmosphere. Although 

atmospheric CO2 is the general source of carbon to both pathways, a 3-Carbon compound (3-

phosphoglycerate) is produced in the C3 pathway, whereas a 4-Carbon compound (oxaloacetate) 

is synthesized in the C4 pathway.  

2.1.1: C3 Photosynthesis 

In C3 photosynthesis (Fig. 2.1), atmospheric CO2 diffuses through the stomata into 

mesophyll cells, the carboxylation site of photosynthesis (Ehleringer, 1997). In this step, the 

substrate Ribulose-1,5-Bisphosphate (RuBP) is carboxylated with CO2 to generate 3-

phosphoglycerate (3-carbon compound) and this reaction is catalyzed by Ribulose-1,5-

Bisphosphate carboxylase/oxygenase (Rubisco).  
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Atmospheric CO2 

 

 

 

 

 

 

 

Figure 2.1: C3 plants possess only photosynthetic mesophyll cells. 

Plants that use C3 photosynthesis are predominantly characterized by the presence of 

Rubisco in their mesophyll cells (Edwards and Walker, 1983). About 95% of land plants 

including the most important crop plants such as rice, wheat, potato and tomato use the C3 

pathway of carbon fixation (Bond et al., 2005). Due to the high demand of CO2 for 

photosynthesis, C3 plants open their stoma frequently, resulting in increased loss of water through 

transpiration. Moreover, C3 plants often suffer from photorespiration due to the lack of an 

efficient CO2 concentrating mechanism (Sharkey, 1988). Photorespiration is a process in which 

the Rubisco enzyme preferentially catalyzes the oxidation of Ribulose-1,5-Bisphosphate (RuBP) 

to 3-phosphoglycerate (3-PGA) and phosphoglycolate. Photorespiration is known to metabolize 

ATP during its cycle rather than producing it (Leegod et al., 2007).  

2.1.2: C4 Photosynthesis 

Anatomically, the leaves of C4 plants possess Kranz anatomy, i.e., wreath-like arrangement 

of mesophyll cells around bundle sheath cells. In C4 photosynthesis, CO2 first enters the 

mesophyll cells and is converted to bicarbonate by carbonic anhydrase. The enzyme PEPCase 

(Phosphoenolpyruvate Carboxylase) then catalyzes the combination of bicarbonate and 

RuBP +CO2 
3-Phosphoglycerate 

(C3 compound) 

Starch RuBP

Mesophyll cell 
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phosphoenolpyruvate to form oxaloacetate, a 4-Carbon compound. Oxaloacetate is then 

converted into malate for transportation from the mesophyll cells to bundle sheath cells where 

carbon fixation occurs (Fig.2.2). In the bundle sheath cells, malate is decarboxylated to regenerate 

pyruvate and CO2. The CO2 is channeled into the Calvin cycle for starch formation whereas 

pyruvate is transported back into the mesophyll cell to repeat the entire cycle of carbon fixation 

(Sage et al., 2006). In the leaf of a C4 plant, enlarged bundle sheath cells and reduced interveinal 

distance contribute immensely to an increase in flow of photosynthetic metabolites between cells. 

Besides, the Kranz anatomy facilitates a high CO2 concentration at the active site of Rubisco 

(Dengler et al., 1999; Sage and Monson 1999; Still et al., 2003; Gowik et al., 2011). 

About 3% of land plants such as maize, sorghum and sugarcane use the C4 photosynthetic 

pathway (Sage et al., 2009 and Zhu et al., 2008). C4 plants have low rates of water loss 

(transpiration) compared to C3 plants. The existence of an efficient CO2 concentrating mechanism 

in C4 plants (which ensures a high concentration of CO2 around the Rubisco enzyme) is known to 

increase their photosynthetic efficiency.  

 

Figure 2.2: Cell-types and metabolites in C4 photosynthesis (PEP- Phosphoenolpyruvate) 
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2.1.3: C3-C4 intermediate Photosynthesis 

     C3-C4 intermediate photosynthesis is known to operate in Panicum spp., Mollugo spp., 

Moricandia spp., Alternanthera spp. and Flaveria spp. (Rawsthorne, 1992; Monson et al., 1989). 

It is referred to as such because its mechanisms involve 70% features of C3 and 30% of C4 

photosynthesis. It also may represent a transition stage in the evolution of C4 photosynthesis from 

C3 type (Monson et al., 1984; Rawsthorne et al., 1992). C3-C4 intermediates are characterized by 

low rates of photorespiration when compared to C3 plants because they possess a 

photorespiratory CO2 pump, also referred to as photorespiratory glycine shuttle that scavenges 

photorespiratory CO2 into the bundle sheath cells (Ku et al., 1991; Mallman et al., 2014).  

   

Figure 2.3:  Figure 2.10. Schematic representation of the photorespiratory pump in C3-C4  

Intermediate photosynthesis. Mesophyll and bundle sheath cells contain chloroplasts with  

functional Calvin cycle. Abbreviations: GDC-glycine decarboxylase; PCO-photosynthetic  

oxidative cycle; PCR- photosynthetic reductive cycle. 

 

During photorespiration, the Rubisco enzyme preferentially oxidizes RuBP instead of 

carboxylating it. As a result, phosphoglycolate is produced and C3-C4 intermediate plants use 

their photorespiratory CO2 pump to regenerate CO2 from phosphoglycolate through a series of 

reactions, which occur in the bundle sheath cells. The photorespiratory CO2 is generated from 

decarboxylation of glycine (product of photorespiration) in a reaction catalyzed by glycine 
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decarboxylase, which is restricted to the bundle sheath cells (Bauwe, 2011). Thus, although 

photorespiratory-derived glycine produced within the mesophyll cells but it is transferred to the 

bundle sheath cells for further metabolism, which ultimately results in the release of CO2 and 

NH3. By this pathway, C3-C4 intermediate plants ensure a high concentration of CO2 around 

Rubisco enzyme within the bundle sheath cells (Gowik et al., 2011; Sage et al., 2014). In C3 

plants, even though glycine decarboxylase enzyme is present in the mesophyll cells, the 

photorespiratory CO2 pump does not exist. C4 plants do not have glycine decarboxylase enzyme; 

instead they possess the Kranz anatomy, which ensures high CO2 concentration around Rubisco 

enzyme (Sage et al., 2014). 

2.2: Evolution of C4 photosynthesis  

The C4 cycle portrays a complex series of biochemical and anatomical modifications that 

contributes significantly to overcoming the deficiencies associated with the Rubisco enzyme (its 

oxygenase activity that competes with the carboxylase function thereby promoting 

photorespiration) and regulating the entire photosynthetic process (Mallman et al., 2014). 

The C4 photosynthesis has independently evolved over 62 times in 19 different lineages 

from the ancestral C3 type (Hausler et al., 2002). It has also been postulated that these frequent 

evolutionary changes are because of the ease in the recruitment of C4 cycle genes over the period 

of evolution (Sage et al., 2012). Intriguingly, some genes essential for the C4 pathway are also 

expressed in the leaves of C3 plants but at relatively low levels. These include genes that encode 

pyruvate phosphate dikinase, phosphoenolpyruvate carboxylase, NADP-dependent malate 

dehydrogenase and phosphoenolpyruvate carboxykinase (Brautigam et al., 2011; Gowik et al., 

2011; Bergh et al., 2014). The mechanisms by which these genes were recruited and are highly 

expressed in the C4 pathway are yet to be elucidated. Based on previous studies, it was postulated 

that the driving forces behind the evolutionary transformation of C3 to C4 photosynthetic pathway 

include photorespiration, drought, high temperatures and low concentration of CO2, which may 
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contribute to differences in leaf anatomy and cell specific expression of photosynthetic enzymes 

(Sage, 2001; 2004; McKnown et al., 2005; Gowik et al., 2011). In addition, gene duplication, 

differential gene expression patterns within cell types (mesophyll and bundle sheath cells) and 

photorespiratory CO2 pump have been suggested to be contributing factors that led to C4 

photosynthesis evolution (Gowik et al., 2011).  

2.2.1: Gene Duplication 

Gene duplication has been proposed as one of the factors for C4 photosynthesis 

evolution (Bergh et al., 2014). This postulation suggests that during gene duplication, the original 

ancestral gene is maintained while the duplicate form of the gene acquires some other beneficial 

or additive role that were absent in the ancestral gene. This additive role of the duplicated gene 

could result in significant changes in the regulation of plant metabolism as well the phenotype 

(Monson et al., 1999; Monson, 2003). As C4 photosynthetic evolution progressed gradually from 

C3 pathway, it was hypothesized that C4 cycle genes namely carbonic anhydrase, 

phosphoenolpyruvate carboxylase, malate dehydrogenase, malate decarboxylase enzyme and 

phosphoenolpyruvate carboxykinase underwent modifications and were recruited into the C4 

pathway (Huynen and Van Nimwegen, 1998; Harrison and Gerstein, 2002).  

2.2.2: Localization and alteration in gene expression within the mesophyll and bundle 

sheath cells 

In contrast to the above suggested gene duplication, localization and alterations in the 

expressions of specific genes in plant cell compartments are thought to play important roles in the 

evolution of C4 photosynthesis (Brautigam et al., 2011; Kulahoglu et al., 2014). Examples of 

enzymes that are expressed in specific plant cells within the leaves include carbonic anhydrase 

that catalyzes the conversion of CO2 to bicarbonate, Ribulose-1,5-Bisphosphate 

carboxylase/oxygenase that catalyzes the carboxylation of Ribulose-1,5-Bisphosphate to 3-

phosphoglycerate and pyruvate phosphate dikinase that catalyzes the regeneration of 
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phosphoenolpyruvate from pyruvate (Sheen 1991; Ludwig and Burnell, 1995). Even though gene 

duplication may play potential roles in the C4 evolution process, it does not necessarily contribute 

to cell specific expression of photosynthetic enzymes and proteins. It is important to note that for 

C4 photosynthesis to operate efficiently, an increase in the expression of C4 photosynthesis 

enzymes are required in both mesophyll and bundle sheath cells. In C3 photosynthesis however, 

few enzymes are required since the mesophyll cell is the only site of photosynthesis (Hibberd et 

al., 2010; Aubry et al., 2011). 

A recent comparative leaf transcriptome analysis of C3 and C4 Cleome spp. has 

suggested that C4 photosynthesis evolution occurred due to an upregulation of genes that encode 

for C4 photosynthesis enzymes in C4 plants compared with C3 plants. The leaf transcriptome 

studies of Cleome spinosa (C3) and Cleome gynandra (C4) revealed enhanced expression of C4 

photosynthesis transcripts in C. gynandra than in C. spinosa. The upregulated transcripts include 

carbonic anhydrase, phosphoenolpyruvate carboxylase, malate dehydrogenase, NADP-Malic 

enzyme, pyruvate carboxykinase, pyruvate orthophosphate dikinase, bile acid sodium symporter, 

pyruvate orthophosphate dikinase and ribulose bisphosphate carboxylase/oxygenase small-

subunit (Brautigam et al., 2011). Furthermore, transcripts which encode GOLDEN2-LIKE 

transcription factors (associated with chloroplast positioning in cells and plasmodesmata 

conductance) in Arabidopsis were also more highly expressed in C4 plants than in C3 plants 

(Oikawa et al., 2003; Levy et al., 2007). Leaf transcriptome analysis of C3, C3-C4 intermediate 

and C4 Flaveria spp. (Gowik et al., 2011; Mallman et al., 2014) has also been studied and the 

results complement the findings in Cleome spp. (Table 2.1).  

Generally, C4 photosynthesis involves the transport of large amounts of metabolites 

across the chloroplast but C3 pathway requires less. However, an interesting observation made 

from the transcriptome data of C4 and C3-C4 intermediate Flaveria spp. was the increase in 

expressions of the alanine aminotransferase gene in F. ramosissima (C3-C4 intermediate) 



11 

 

compared to F. trinervia (C4). Cytoplasmic and mitochondrial aspartate aminotransferase as well 

as mitochondrial NAD-malate dehydrogenase genes however, was significantly upregulated in F. 

ramosissima (C3-C4) than in F. robusta (C3) and F. bidentis C4. The upregulation of transcripts 

of regulatory proteins such as pyruvate orthophosphate dikinase regulatory protein and 

transporters of serine and glycine in F. ramosissima (C3-C4 intermediates) than in C3 and C4  

Flaveria spp. confirms the proposition that C3-C4 intermediate photosynthesis involves the 

shuttling of more photosynthesis metabolites between plant cells (Gowik et al., 2011). 

Table 2.1: The normalized abundances of transcripts associated with C4 cycle in Flaveria spp. 

(Gowik et al., 2011) 

C4 Cycle 

transcripts 

F. trinervia 

(C4) 

F. bidentis 

(C4) 

F. ramosissima 

(C3-C4) 

F. robusta 

(C3) 

F. pringlei 

(C3) 

PPDK 18,213 17,580 2,330 101 140 

PEPC 25,975 12,502 3,894 167 254 

NADP-MDH 3,679 3,516 674 156 245 

PEP-CK 24 38 9 31 9 

          

PEPC-K 147 140 48 14 9 

PPDK-RP 274 476 54 61 36 

          

BASS 2 2,873 2,870 1,043 110 230 

DiT 1 303 517 167 172 82 

Key: PPDK=Pyruvate orthophosphate dikinase; PEPC=Phosphoenolpyruvate Carboxylase; 

NADP-MDH=NADP Malate dehydrogenase; PEP-CK= Phosphoenolpyruvate Carboxykinase; 

PEPC-K= Phosphoenolpyruvate Carboxylase; PPDK-RP= Pyruvate orthophosphate dikinase 

regulatory protein; BASS 2= Bile Acid Sodium Symporter; DiT 1= Dicarboxylate Transporter 1 

2.2.3: Kranz Anatomy formation in C4 plants 

Anatomical studies of C4 plants have revealed the presence of a wreath-like arrangement 

of bundle sheath and mesophyll cells around the vascular tissue (Kranz anatomy) and this is 

absent in C3 and C3-C4 intermediates (Ku et.al., 1991; Muhaidat et. al., 2007). This unique 

arrangement of cells in the leaf ensures the availability of increased CO2 concentration within the 

bundle sheath cells, where Rubisco is located (Ludwig, 2013). Kranz anatomy formation has been 

proposed as the initial step towards C4 photosynthesis evolution. Recent studies have identified 

that the SCARECROW (SCR) transcription factor, which originally functions in root vein 
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formation, is also involved in bundle sheath cells proliferation (Bergh et al., 2014). This finding is 

a key step into identifying genes involved in regulating Kranz anatomy formation in C4 plants 

(Slewinski et al., 2012).  

Comparative analysis of leaf transcriptome of maize (C4) and rice (C3) revealed 

differential expression of 425 genes between them. Of these, 71 genes have been predicted to 

encode transcription factors that could potentially regulate the Kranz anatomy (Wang et al., 

2013). Putative negative regulators (members of transcription factor gene families such as AP2, 

bZIP, bHLH, HB, MADS, NAC, SBP, MYB, CAMTA and ARF) of Kranz anatomy were highly 

expressed in rice but repressed in maize (Wang et al., 2013). On the other hand, several 

transcription factor gene families such as AP2, bHLH, C2H2, GATA, GRAS, GRF, HD-ZIP, 

MADS, MYB and SBP factors that potentially function as positive regulators of Kranz anatomy 

were found to be highly expressed in maize (C4 plant) but at very low levels in rice (C3) (Wang et 

al., 2013; Slewinski et al., 2012). Intriguingly, several of the above mentioned transcription factor 

families are known to be regulated at the post-transcriptional level by conserved miRNAs in 

plants (Table 2.2).  

The anatomy of leaves of C3-C4 intermediate species show bundle sheath cells 

surrounding vascular bundles but the mesophyll cells do not form a distinct wreath-like 

arrangement around the bundle sheath cells as observed in the leaves of C4 species. Rather, they 

are sparsely arranged just as in C3 species, which results in large interveinal distances between 

the mesophyll and bundle sheath cells (Brown and Hattersley, 1989). This arrangement facilitates 

loss of CO2 during its transport from the mesophyll to bundle sheath cells. It is worth noting that 

F. ramosissima (C3-C4 intermediate) also exhibits an arrangement similar to the Kranz anatomy 

but the arrangement of bundle sheath and mesophyll cells are less distinctive (Bouton et al., 

1986).   
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Table 2.2: Candidate transcription factors that positively regulate Kranz anatomy in maize (Wang 

et al., 2013) 

Putative Positive Regulators Transcription Factors 

GRMZM2G146688 AP2-EREBP family 

GRMZM2G151542 AP2-EREBP family 

GRMZM2G021573 AP2-EREBP family 

GRMZM2G399072 AP2-EREBP family 

GRMZM2G121309 Aux/IAA family 

GRMZM2G163975 bHLH FAMILY 

GRMZM2G098988 bHLH FAMILY 

GRMZM2G045883 bHLH FAMILY 

GRMZM2G015666 bHLH FAMILY 

GRMZM2GO82586 bHLH FAMILY 

AC215201.3-FG008 bHLH FAMILY 

GRMZM2G095899 bHLH FAMILY 

GRMZM2G178182 bHLH FAMILY 

GRMZM2G123900 C2C2-Dof OBP3-like 

GRMZM2G318592 C2H2 family 

GRMZM2G028046 C2H2 family MRPI-like 

GRMZM2G136494 C2H2 family MRPI-like 

GRMZM2G150011 C2H2 family DOT5-like 

GRMZM2G002280 C3HC4 RING ZnF 

GRMZM2G462623 DP-1 family 

GRMZM2G140669 GATA ZnF family 

GRMZM2G132794 GATA ZnF family (SHR) 

GRMZM2G172657 GATA ZnF family (SHR) 

GRMZM2G131516 GATA ZnF family (SCR1) 

 

  

 

 

 

 

 

 

 



14 

 

Putative Positive Regulators Transcription factors  

GRMZM2G119359 GRF 

GRMZM5G850129 GRF 

GRMZM5G893117 GRF 

GRMZM2G178102 HD-ZIP III family 

GRMZM2G098813 LFY family (ZFL 1) 

GRMZM2G471089 MADS family 

GRMZM2G171365 MADS family (ZmMADS1) 

GRMZM2G469304 
Putative Ternary complex factor 

MIP1 

GRMZM2G039074 Myb family KAN-like 

GRMZM2G374986 Myb family 

GRMZM5G887276 Myb family 

GRMZM2G111045 Myb family MIXTA-like 

GRMZM2G040924 Myb family MIXTA-like 

GRMZM2G312419 Myb family LOF-like 

GRMZM2G131577 Basic TF (NAC domain) 

GRMZM2G126018 SBP family 

GRMZM2G061734 SBP family 

GRMZM2G148467 SBP family 

GRMZM2G097275 SBP family 

GRMZM2G472945 TLP-family 

GRMZM2G377217 WRKY family 

GRMZM2G425236 ZnF-HD family 

GRMZM2G417229 ZnF-HD family 

GRMZM2G069365 ZnF-HD family 
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Table 2.3: Candidate transcription factors that negatively regulate Kranz anatomy in maize 

(Wang et al., 2013) 

Putative Negative Regulators Transcription Factors 

GRMZM2G086573 AP2-EREBP family 

GRMZM2G156006 AP2-EREBP family 

GRMZM2G028980 ARF family 

GRMZM2G085751 bHLH family 

GRMZM2G064638 bHLH family 

GRMZM2G045109 bHLH family 

GRMZM2G180406 bHLH family 

GRMZM2G137541 bHLH family 

GRMZM2G077124 bZIP family 

GRMZM2G052102 bZIP family 

GRMZM2G000842 bZIP family 

GRMZM2G176063 C2C2-Dof family 

GRMZM2G140694 C2C2-Dof family 

GRMZM2G171600 CAMTA family 

GRMZM2G132367 HB family 

GRMZM2G062244 HB family 

GRMZM2G060544 LOB family 

GRMZM2G005155 MADS family 

GRMZM2G137510 MADS family 

GRMZM2G181030 MYB-related family 

GRMZM2G003715 NAC family 

GRMZM2G065451 SBP family 

GRMZM2G170034 LIM domain ZnF 

 

2.2.4: Photorespiratory CO2 pump formation  

Another step towards the evolution of C4 photosynthesis is the formation of 

photorespiratory CO2 pump or glycine shuttle (Bauwe et al., 2010). This shuttle is characterized 

by compartmentalization of glycine decarboxylase within the bundle sheath cells. Thus, the gene 

expression for this enzyme is restricted to the bundle sheath cells. Hence, products of 

photorespiration (glycine) are channeled from the mesophyll cells into the bundle sheath cells for 

decarboxylation to generate CO2. Due to the activities of glycine shuttle, the carboxylation 

efficiency of Rubisco increases, while its oxygenase efficiency reduces. This ultimately increases 
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the efficiency of photosynthesis (Gowik et al., 2011; Bauwe et al., 2010). This unique feature is 

restricted to the C3-C4 intermediate plants. 

2.3: Regulation of Photosynthesis 

It is known that during the evolution of C4 photosynthesis cycle from the ancestral C3 

type, significant changes at the molecular level did occur (Hausler et al., 2002). Moreover, C4 

photosynthesis has independently evolved over 62 times in 19 different lineages. It has also been 

postulated that these frequent evolutionary changes are because of the ease in the recruitment of 

C4 cycle genes over the period of evolution (Sage et al., 2012). Genes required for regulating C4 

photosynthesis cycle exist in ancestral C3 plants but they have been predicted to have different 

functions that include regulating some non-photosynthetic processes in C3 plants (Taylor et al., 

2010). An example is the activity of pyruvate orthophosphate dikinase in nitrogen mobilization in 

leaves of C3 plants during senescence. In C4 plants however, pyruvate orthophosphate dikinase is 

utilized in the regeneration of phosphoenolpyruvate (Aoyagi et al., 1984). Another enzyme is β-

carbonic anhydrase (an isoform of carbonic anhydrase) known to regulate lipid biosynthesis in 

cotton seeds and root nodules of legumes (Hoang et al., 1999; Hoang and Chapmann, 2002). In 

C4 photosynthesis however, carbonic anhydrase promotes the production and continuous 

transport of CO2 to the carboxylation reaction site (Price et al., 1994; Aubry et al., 2011). Another 

regulatory enzyme is phosphoenolpyruvate carboxylase, which regulates nitrogen assimilation, 

the tricarboxylic acid cycle and biosynthesis of amino acids in C3 plants depending on growth 

stage of the plant development (Melzer et al., 1987; Guy et al., 1989). In the C4 photosynthesis 

cycle, phosphoenolpyruvate carboxylase is a key enzyme that catalyzes the production of 

oxaloacetate, which is the source of CO2 for photosynthesis after decarboxylation (Aubry et al., 

2011). Such genes need to be modified in order to increase their transcript abundance, alter their 

roles, and acquire cell-specific expression (Gowik et al., 2004). Even though, it has been 

suggested that no novel elements are required for utilization of the C4 cycle, altered gene 
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expression patterns are essential to the development, regulation of the Kranz anatomy formation 

(specific arrangement of mesophyll and bundle sheath cells), and cell-specific accumulation of 

enzymes (Sage, 1999). 

2.4 The importance of transcription factors and untranslated regions (UTRs) in the 

transcripts in regulating photosynthetic genes 

Thus far, our understanding of the role of transcription factors in C4 photosynthesis is 

limited. Studies in maize have suggested that the activity of transcription factors such as Golden2 

and Golden-like1 transcription factors may be important in the evolution of C4 photosynthesis 

(Hall et al., 1998). This may be due to their ability to target high numbers of photosynthesis 

related genes in Arabidopsis (Waters et al., 2009).  

Studies about photosynthesis related genes have underpinned the major role that 

untranslated regions (UTRs) of mRNAs play in cell specific patterns of gene expression (Ludwig, 

2013). For instance, nucleotide sequences in the 5’ and 3’ UTR regions have been identified to be 

involved in regulation of carbonic anhydrase expression in mesophyll cells of C4 plants (Kajala et 

al., 2012). Similar observations have also been made in the specific expression of Rubisco in the 

bundle sheath cells and Pyruvate phosphate dikinase (PPDK) expression in the mesophyll cells of 

F. bidentis (C4). The UTR region of small subunit of Rubisco has been identified as a stability 

determinant involved in the increased accumulation of RBCS transcripts in bundle sheath cells of 

C4 plants (Patel et al., 2006; Ludwig et al., 2013). In addition, MeI (codes for NADP-ME) 

expression levels in F. bidentis (C4) are also known to be regulated by nucleotide sequences at the 

3’UTR and 5’UTR regions of the gene (Lai et al., 2002; Ludwig et al., 2013).  
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2.5: Endogenous small RNAs (sRNAs) 

Endogenous small non-coding RNAs of about 20-24 nucleotides have been identified to 

regulate gene expression in plants and animals (Ambros, 2004; Bartel, 2004). On the basis of the 

nature (single-stranded or double-stranded) of the precursor transcripts as well as processing steps 

involved in their biogenesis, small RNAs are broadly categorized into two classes, i.e., 

microRNAs (miRNAs), and small interfering RNAs (siRNAs). Similarities between miRNAs and 

siRNAs include their size and both are incorporated into RISC and act as specificity 

determinants. However, the fundamental difference between siRNAs and miRNAs is lies in their 

precursors from which they are generated. siRNAs are processed from long, double stranded 

RNAs whereas miRNAs are processed from single stranded RNA molecules that can adopt an 

imperfect stem-loop secondary structure (Lagos-Quintana et al., 2001; Lau et al., 2001).  

Within the siRNAs, various sub-classes have been characterized. These include trans-

acting short interfering RNA (tasi-RNAs - a class of siRNAs that are generated from a non-

coding transcript that is cleaved due to miRNA targeting them - such cleaved transcripts are in 

turn converted into double stranded RNAs due to RNA dependent RNA Polymerase activity - 

which is again processed into 21-nt long siRNAs that in turn regulates the abundance of protein 

coding mRNAs by guiding a cleavage), phasiRNAs (Phased siRNAs - that are derived from the 

dsRNA resulting from miRNA targeting a protein coding mRNAs), natural antisense siRNAs 

(natsiRNAs - are derived from the dsRNA resulting from the expression of both sense and 

antisense strands of the same locus) and heterochromatic siRNAs (hc-siRNAs – derived from the 

transcripts originated from the heterochromatin) in plants (Brodersen and Voinnet, 2006; Sunkar 

and Zhu, 2007).  
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2.6: MicroRNAs  

Plant miRNAs are of approximately 21 nucleotides long and form key components of a 

complex network of gene regulatory pathways (Jones-Rhoades et al, 2006). MicroRNAs were 

first identified in Caenorhabditis elegans in 1993 (Lee et al., 1993) and in Arabidopsis in 2002 

(Llave et al., 2002). Since then approximately 36,000 miRNAs have been identified from diverse 

species of plants, animals, including viruses (www.miRBase.org).  

2.7: MicroRNA biogenesis and their mode of action in plants 

In plants, miRNAs are generated from the dicing of the primary miRNA transcripts that 

adopt a hairpin-like structure by the members of the DICER-LIKE (DCL) protein family (Xie et 

al., 2004; McHale et al., 2013).  

Initially, RNA POLYMERASE II transcribes primary miRNA transcripts from the 

miRNA genes in a similar fashion as mRNA transcription. The resulting RNA molecule adopts a 

hairpin-like structure. Dicer-like 1 (DCL1) enzyme together with HYPONASTIC LEAVES 

(HYL1 which is a double stranded RNA binding protein), SERRATE (SE), a zinc-finger protein 

and DAWDLE (DDL-RNA binding protein) (Han et al., 2004; Vazquez et al., 2004; Lobbes et 

al., 2006; Yang et al., 2006) dices the stem-loop structure and releases miRNA (guide strand) and 

miRNA* (passenger strand) duplex. The terminal sugar at the 3’ ends of miRNA’s duplexes are 

methylated by HUA ENHANCER 1 (HEN 1), a methyl transferase (Yu et al., 2005). In the 

absence of methylation, the miRNA duplex is subjected to uridylation and can be degraded by 

small RNA degrading nucleases (Ramachandran et al., 2008). Additionally, methylation of 

miRNA duplexes is essential to avoid any modification of their 3’ends (Chen 2005; Yang et al., 

2006). All these above mentioned steps involving miRNA biogenesis occurs in the nucleus (Fig. 

2.4). The methylated miRNA-miRNA* duplex released in the nucleus are exported to the 

cytoplasm by a nuclear membrane-localized transport protein called HASTY (HST). In the 

cytosol, the guide miRNA is unwound from the passenger miRNA* and loaded onto Argonaute 1 
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(AGO1) of the RNA-Induced Silencing Complex (RISC). The miRNA* strand is then degraded 

and persists at low levels (Jones-Rhoades et al, 2006). The incorporated miRNA guides the RISC 

in recognizing target mRNA based on perfect or near perfect sequence complementarities 

between the nucleotides of the mature miRNA and the mRNA target. This results in mRNA 

cleavage and degradation or repression of protein synthesis (translation) or even both in plants 

(Tang et al., 2003; Bartel et al., 2004; Baulcombe et al., 2004; Aukerman and Sakai, 2003; Chen, 

2004). miRNAs linked with developmental roles show regions of activity that apparently 

coincides entirely with the site of transcription of miRNA-coding genes (Parizotto et al., 2004). 

This characteristic of miRNAs makes them cell-type specificity determinants in plant leaves.  

 

Figure 2.4: Plant miRNAs biogenesis and function (modified from Jones-Rhoades et al., 2006) 
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2.8: Conserved and non-conserved miRNAs in plants 

Based on their conservation, miRNAs have been classified into conserved and non-

conserved miRNAs. Until date, 22 miRNA families (Table 2.4) are known to be highly conserved 

between monocotyledonous and dicotyledonous plants (Jones-Rhoades et al., 2006). In addition 

to conserved miRNA families, recent advancements in sequencing technologies (that could 

sequence to a greater depth) have led to the discovery of lineage-specific and species-specific 

miRNA families in plants. For instance, miR403, a dicot-specific miRNA, has been found to be 

abundantly expressed in dicots but absent in monocots (Sunkar and Zhu, 2004; Sunkar and 

Jagadeeswaran, 2008). On the other hand, miR444 (Sunkar et al., 2005; Lu et al., 2008) has been 

identified in all monocots but not in dicots profiled to date. Some other lineage-specific miRNAs 

have been found to be conserved in closely related legumes, such as Medicago truncatula, 

chickpea, soybean and alfalfa but not in Arabidopsis, rice, or other non-leguminous plants 

(Jagadeeswaran et al., 2009). The prevalence of miRNAs specifically encoded in plant lineages 

and species portrays the existence of a complex network of post-transcriptional regulation that 

operates in plants. These lineage-specific and species-specific miRNAs may be involved in 

regulating metabolic pathways unique to a particular lineage or plant species.  
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Table 2.4: Highly conserved miRNA families and their target gene families in higher plants 

miRNA family  Target gene family  

miR156  SBP Factors  

miR159  MYB Factors  

miR160  Auxin Response Factors  

miR162  DCL-1  

miR164  NAC Factors  

miR165/166  HD-ZIP Factors  

miR167  Auxin Response Factors  

miR168  Argonaute-1  

miR169  NFY subunits or CAAT box Binding Factors  

miR170/171  Scarecrow-like Factors  

miR172  AP2-like Factors  

miR319  TCP Factors  

miR390/Tas3-siRNA  Auxin Response Factors  

miR393  TIR1 (F-box proteins)  

miR394  F-Box proteins  

miR395  ATP Sulfurylases and a sulfate transporter  

miR396  Growth Regulating Factors  

miR397  Laccases  

miR398  Cu/Zn SODs  

miR399  E2 ligase and a phosphate transporter  

miR408  Plantacyanin  

miR444  MADS-box factors  

 

 Over the years, it has been well established that miRNAs are important regulators of gene 

expressions critical for apical meristem maintenance, leaf morphogenesis and development, 

flower formation and development, root growth and development, vegetative-to-reproductive 

phase transitions and myriad of other developmental processes (Aukerman et al., 2003; Palatnik 

et al., 2003; Chen et al., 2004; Schwab et al., 2005; Guo et al., 2005; Baker et al., 2005; Xie et al., 

2006; Sieber et al., 2007; Wang et al., 2008; Carlesbecker et al., 2010; Schommer et al., 2012; 

Lima et al., 2012; Yang et al., 2013). Besides, miRNAs have been shown to alter their 

abundances in response to diverse biotic/abiotic stress conditions including nutrient deficiencies 

(Sunkar et al., 2007; 2012). Such an altered expression of miRNAs should affect the abundances 

of their target genes, which could contribute for plant fitness to survive the stressful conditions 

(Sunkar, 2010). 
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CHAPTER III 
 

 

METHODOLOGY 

Two approaches have been successfully used to identify and characterize miRNAs in 

plants. These include direct sequencing of small RNA libraries or bioinformatic prediction of 

miRNAs. The drawback of the bioinformatics approach is that it can only predict conserved 

miRNAs provided the sequenced genome information of the species in question is available. The 

leaves of F. robusta (C3) only possess mesophyll cells, whereas F. ramosissima (C3-C4 

intermediate) and F. bidentis (C4) have distinct bundle sheath cells in addition to the mesophyll 

cells. In this study, we sequenced small RNAs using a high throughput sequencing platform for 

identification of miRNAs not only in entire leaves but also in mesophyll and bundle sheath cells 

of three different Flaveria spp. 

 3.1: Plant material 

 To date 21 species of Flaveria have been identified (Table 1). The unique feature of this 

genus is that its’ species are represented by C3, C3-C4 intermediate and C4 photosynthesis. Three 

Flaveria spp. namely Flaveria robusta (C3), Flaveria ramosissima (C3-C4 intermediate) and 

Flaveria bidentis (C4) were used in present investigation. These species were selected because 

they have been used for transcriptome and other molecular or biochemical studies (Gowik et al., 

2011; Sage et al., 2012 and Mallman et al., 2014).  
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 3.2: Growth Conditions 

 Seeds of the above named three Flaveria spp. were germinated in pots filled with 1:2:1 

parts of sand, top soil and vermiculite, respectively, for 14 days at 26°C in a growth chamber. 

They were watered once every 3 days for four weeks, after which the seedlings were maintained 

in a growth chamber at 28/18°C with 16/8 h day/night cycle (day/night cycle) and 65% relative 

humidity. Light was provided by a combination of fluorescent and incandescent lamps.  

3.3: Harvesting leaves from Flaveria spp. 

The second and fourth pairs of matured, fully expanded leaves were harvested from four- 

month-old F. robusta (C3), F. ramosissima (C3-C4 intermediate), and F. bidentis (C4) in the 

presence of light. They were immediately flash frozen in liquid nitrogen and stored at -80°C until 

used for downstream analysis.  

3.4: Isolation of total RNA from the leaves 

Approximately 1g of frozen leaf tissue from each Flaveria spp. was ground into fine powder 

using a mortar and pestle. The powder was transferred to a 20ml centrifuge tube containing 10ml 

of Trizol and incubated at room temperature for 5 minutes. The tubes were then centrifuged at 

13,000g for 5 minutes. The supernatant formed was decanted into a clean 50ml centrifuge tube 

and chloroform (1ml: 200μl) was added to it. The resultant mixture was vigorously vortexed 

twice and then centrifuged at 13,000g for 30 minutes. The aqueous supernatant layer formed was 

carefully pipetted into a new 50ml centrifuge tube and equal volumes of isopropanol were added 

to it. The supernatant was discarded and the RNA precipitate The mixture was incubated at room 

temperature for 10 minutes and centrifuged at 13,000g for 30 minutes. formed at the bottom of 

the tube was washed twice with 80% cold ethyl alcohol. The RNA pellet was then air-dried at 

room temperature whilst on ice for about 15 minutes and then dissolved in DEPC treated (RNase 

free) water. The quality of total RNAs was assessed by absorbance ratio (A260/A280) using a 
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Nanodrop ND-1000 spectrophotometer as well as by ribosomal RNA integrity using gel 

electrophoresis. 

3.5: Small RNA library construction 

 The Truseq Small RNA Library Preparation protocol from Illumina was followed in 

constructing small RNA libraries for Flaveria spp. In short, approximately 10µg of total RNA 

sample was ligated with 3’ and 5’ illumina adapters, respectively. Using T4 RNA ligase, both 

ligation reactions (5’ and 3’ ligations) were performed at 37°C for 1 to 2 hours. This was 

followed by a reverse transcription (RT) to generate cDNA, which was amplified using 25 cycles 

by polymerase chain reaction (PCR). The amplified PCR product was size fractionated on 6% 

PAGE, purified and used for sequencing.  
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Figure 3.1: Basic outline of small RNA library construction. 

3.6: Analysis of small RNA libraries  

 Firstly, the sequences in the small RNA libraries that match perfectly to 3’ and 5’ adapter 

sequences were removed because these represent adapter self-ligation products. Next, the 5’ 

adapter was trimmed off and the small RNA was extracted from the reads. The small RNA reads 

that are shorter than 17 nucleotides and longer than 28 nucleotides were discarded. The remaining 

reads were BLAST searched against sequence entries in the European ribosomal RNA database 

to remove those sequences that match with rRNAs, tRNAs, snRNAs and snoRNAs. The 

remaining reads were mapped to conserved miRNA sequences downloaded from miRBase21 

(www. miRBase.com) for identifying homologs of conserved miRNAs in Flaveria spp. In 

addition, the normalized frequencies for the miRNA families identified were recorded in Reads 

Per Ten million (RPTM). Normalized frequency (the number of reads for each miRNA family in 

the library divided by the total number of reads for that library and multiplied by 10,000,000 

million.  Figure 3.2 shows a summary of the steps that were involved in analyzing the sequence 

reads generated from small RNA libraries. 
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Figure 3.2: Basic outline of sequence analysis to identify conserved miRNAs. 

3.7: Small RNA blot analysis for characterizing miRNA abundances in leaves  

Small RNA blot analyses were performed to validate the results obtained from the high 

throughput sequencing of leaf small RNA libraries of F. robusta (C3), F. ramosissima (C3-C4 

intermediate) and F. bidentis (C4). In brief, 20µg of total RNA extracted from the leaves of each 

of the Flaveria spp. were resolved on a 15% denaturing polyacrylamide gel. The size fractionated 

RNAs were electrophoretically transferred from the gel onto Hybond-N+ blotting membranes 

using a wet-blot transfer unit. The membranes were UV cross-linked and baked for 2 hours at 

80°C in order to immobilize the RNAs. The membranes were then prehybridized in PerfectHYB+ 

hybridization buffer (Sigma) at 37°C in an incubation chamber for at least 3 hours. This was 

followed by hybridization of the membranes using p32-labelled oligonucleotide probes. The 

probes represent DNA oligonucleotides whose sequences are complementary to miRNA 

sequences, which were end-labeled with γ-32P-ATP in a reaction catalyzed by T4 polynucleotide 

kinase. After overnight hybridization, the membranes were washed with buffer containing 2xSSC 

and 0.1% SDS at 50°C and briefly air-dried. The membranes were exposed to a phosphorscreen 

for about 2 hours to overnight at room temperature. The phosphorscreen was scanned with a 

typhoon scanner to detect the signals derived as a result of probe hybridization with the miRNAs. 

3.8: Enzymatic isolation of mesophyll cells from leaves of Flaveria spp. 

The leaves of F. robusta (C3) only possess photosynthetic mesophyll cells, whereas F. 

ramosissima (C3-C4 intermediate) and F. bidentis (C4) have distinct bundle sheath cells in 

addition to the mesophyll cells. In order to gain an insight into the differences in miRNA 

compositions within these named cells, mesophyll and bundle sheath cells were isolated from 

their leaves. The procedures described by Kanai and Edwards (1973), Lahiri et al., (2000) and 

Chang et al., (2012) were followed in isolating mesophyll cells from the leaves of Flaveria spp. 
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In brief, the harvested leaves were cut into 2mm segments with a sterilized razor blade and 

immersed into the digestion medium (1.5% cellulose Onozuka, 0.1% macerase Onozuka, 0.6M 

sorbitol, 20mM 2-[N-morpholino] ethane sulfonic acid [MES] pH 5.8, 100mM β-

mercaptoethanol, 1mM calcium chloride and 10mM dithiothreitol) and incubated at room 

temperature for 3 hours. The mixture was filtered through a 500µm mesh and the mesophyll cells 

were extracted into the filtrate. The residues left on the mesh were washed gently with 0.6M 

sorbitol to release any additional mesophyll cells into the filtrate. The collected filtrate was 

further filtered through 80µm nylon mesh to separate mesophyll cells that could be entangled 

with bundle sheath strands. The resultant filtrate, which contains the mesophyll cells were 

collected and then centrifuged at 500g for 10 minutes. The supernatant was discarded and the 

precipitate formed represent pure mesophyll cells, which were suspended in Trizol for isolating 

total RNA.  

 3.9: Mechanical isolation of bundle sheath cells from the leaves of Flaveria spp. 

The enzymatic digestion procedure for isolating mesophyll cells was known to cause 

damage to bundle sheath cells (Potter and Black, 1982). Therefore, a mechanical procedure 

described by Edwards and Black (1971) was followed to isolate bundle sheath cells from the 

leaves of C3-C4 intermediate and C4 Flaveria spp. The leaves were cut into 2mm segments and 

immersed in isolation buffer (50mM Tris-HCL pH 8.0, 0.6M sorbitol, 5mM MgCl2, and 100mM 

β-mercaptoethanol) and then homogenized using a Warring blender for 1 minute at high speed. 

This was followed with filtration of the homogenate through 500µm nylon mesh and discarding 

of the filtrate.  The homogenization and filtration steps were repeated twice and the bundle sheath 

cells were again filtered through 80µm nylon mesh. The residues (bundle sheath cells) were then 

washed with cold isolation buffer to discard any attached mesophyll cells associated with the 

bundle sheath cells. This step was repeated three times to ensure purity of isolated bundle sheath 

cells. The residue (bundle sheath cells) was then suspended in Trizol for isolating total RNA.  
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3.10: Immunoblot analysis of Rubisco and PEPC for monitoring purity of isolated 

mesophyll and bundle sheath cells  

It has been established that Rubisco enzyme operates within the bundle sheath cells of C4 

plants. On the other hand, it is abundant within the mesophyll cells of C3 plants. It has also been 

confirmed that PEPC enzyme operates within the mesophyll cells of C4 plants. In order to 

monitor the purity of isolated mesophyll and bundle sheath cells from the leaves of three Flaveria 

spp., the expressions of Rubisco and PEPC proteins (markers for specific cell types in C3 and C4 

plant species) were investigated by using immunoblot assay. To achieve this, total proteins were 

extracted from the isolated mesophyll and bundle sheath cells using protein extraction buffer 

(0.7M sucrose, 0.5M Tris, 30mM HCl, 50mM EDTA, 0.1M KCl, 2% 2-mercaptoethanol and 

2mM PMSF). The extraction process was similar for both cells and it involved homogenization of 

the cells by grinding followed by centrifugation. The supernatant formed was collected and 

Bradford’s Assay was performed to determine total protein concentration. Approximately, 7µg of 

the total protein in the supernatant was mixed with 4X protein sample buffer (40% Glycerol, 240 

mM Tris/HCl pH 6.8, 8% SDS, 0.04% bromophenol blue and 5% beta-mercaptoethanol) and 

loaded onto SDS-PAGE gels (consisting of 5% stacking gel and 12% separating gel for size 

fractionation). A protein marker was also loaded to assist in identifying proteins of interest based 

on their molecular weight. After resolving the proteins on the SDS-PAGE gel at 100V for an 

hour, one of the gels was stained with Commassie Blue reagent for about 2 hours and then 

destained using de-staining buffer (20% methanol and 10% glacial acetic acid) overnight at room 

temperature.  For immunoblotting analysis, the resolved proteins were transferred onto a 

nitrocellulose membrane (Thermo Scientific) using an electroblotting semi dry transfer apparatus 

for 10 minutes. The membrane was stained using Ponceau reagent to check for successful transfer 

of proteins onto the nitrocellulose membrane. Then the membrane surface was blocked using 5% 

nonfat dry milk powder and 0.1% Tween 20 in Tris-buffered saline (TTBS) for an hour. This was 

followed by incubation of the membrane with polyclonal rabbit anti-Rubisco antibodies (1:5,000 
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dilution) (kind gift from Susanne von Caemmerer, Australian National University, Canberra) for 

overnight. The membrane was washed and incubated in goat anti-rabbit polyclonal antibody 

(secondary antibody), conjugated with Horse Radish Peroxidase (HRP) (1: 10,000 dilution) for 2 

hours. The unbound secondary antibodies were washed off the membrane three times using 

TTBS. Using ECL developing reagent (Thermo Scientific), the blots were incubated for 5 

minutes, exposed to X-ray film and developed using X-ray developer. The molecular weight of 

the detected Rubisco protein was estimated based on the molecular standards present in the 

protein ladder.  The same procedures were used for PEPC (Agrisera antibodies) protein detection. 

However, due to low levels of PEPC in the mesophyll cells of F. ramosissima (C3-C4 

intermediate) and F. bidentis (C4), a high concentration of polyclonal rabbit anti-PEPC antibodies 

(1: 2,000 dilution) and goat anti-rabbit polyclonal antibody conjugated with HRP (1: 5,000 

dilution) were used. 

3.11: Total RNA Isolation from the bundle sheath and mesophyll cells 

 The protocol described in section 3.7 was followed in isolating total RNAs from the 

isolated mesophyll and bundle sheath cells of Flaveria spp. Again, the quality of total RNA 

extracted independently from both cell types was assessed by absorbance ratio (A260/A280) 

using Nanodrop ND-1000 spectrophotometer as well as by ribosomal RNA integrity after size 

fractionation on an agarose gel. The RNA was used for constructing the small RNA libraries 

(section 3.5). 

3.12: Construction of degradome libraries from the leaves of Flaveria spp.   

A defining feature of miRNA-guided silencing in plants is that cleavage occurs precisely 

between the 10th and 11th nucleotide, counting from the 5’ end of miRNA in the complementary 

region of the target transcripts. When miRNA guides cleavage on their target mRNA, two 

fragments namely the 5’ (7-methylguanosine capped end) and 3’ends (polyadenylated end) of 

cleaved mRNAs are released. Degradome analysis is a high throughput sequencing-based 
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approach that sequences uncapped poly-adenylated transcripts including cleaved mRNA targets 

as a result of miRNA targeting them (Addo-Quaye et al., 2008; German et al., 2008; Li et al., 

2010).  Degradome sequencing was used to identify targets of miRNAs in Flaveria spp.  

To construct degradome libraries from the leaves of Flaveria spp., total RNAs were first 

extracted as explained previously (section 3.7). The polyadenylated mRNA fragments were 

purified from total RNAs using the MicroPoly ‘A’ Purist kit (Ambion). Using T4 RNA ligase, the 

5’end of the 3’ cleaved fragment containing poly ‘A’ mRNA was ligated to an RNA adapter 

containing the MmeI restriction enzyme recognition site. Reverse transcription was carried out to 

generate the first strand cDNA using an oligo (dT) primer and reverse transcriptase. The cDNA 

formed, was amplified through 5 cycles of Polymerase Chain Reaction (PCR) and the product 

was digested with MmeI restriction enzyme. The 20-base pair long digested products were ligated 

to double stranded DNA adapter and amplified using 20 cycles of PCR. The amplified product 

was purified and sequenced. The schematic flow chart showing the steps followed for degradome 

libraries construction is summarized in Figure 3.3. 
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Figure 3.3: Basic outline of degradome library construction. 

3.13: Computational analysis of degradome library sequencing reads 

 Computational algorithms such as CleaveLand pipeline and SeqTar 

(idm.fudan.edu.cn/zhengyun) have been developed for identifying miRNA guided cleavages on 

miRNA-targeted transcripts present in the sequenced degradome libraries. In this study, SeqTar 

computational pipeline was used in analyzing the degradome data of miRNA guided cleavages on 

targets in Flaveria spp. The SeqTar pipeline utilizes two features, i.e., (i) alignment of miRNAs 

and their corresponding target gene and (ii) evaluation of number of reads identified at the centre 

Extraction and purification of Poly´A´ mRNA from total RNA 

Ligation of 3’cleaved fragments of the target mRNAs  

Synthesis of cDNA by reverse transcription using oligo dT primer 

Amplification of cDNA by short cycle of PCR 

digestion of the PCR product using MmeI restriction enzyme 

DNA Adapter ligation to the digested PCR product 

Further amplification (20 cycles) of the ligated PCR product 

High-throughput sequencing of the PCR product 
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of the miRNA: mRNA complementary region (Zheng et al., 2012). The target genes identified for 

each Flaveria spp. were limited to identifying miRNAs-target gene pairs containing less than four 

mismatches. The annotation for each identified target gene was obtained from the BLAST 

searches against the protein data base at the NCBI. Figure 3.4 shows a summary of the steps that 

were followed to identify the targets of miRNAs in each Flaveria spp. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Flow chart for identifying miRNA targets in Flaveria spp.

Selection of reads with high total percentage reads  

Application of SeqTar tool for target genes 

identification 

Selection of reads with less than four mismatches  

Raw reads obtained from High-throughput 

sequencing 

Deriving putative annotations for proteins encoded 

by target genes from NCBI database 
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CHAPTER IV 
 

 

RESULTS 

4.1: Identification of conserved miRNAs in Flaveria spp. 

Conserved plant miRNAs can be predicted in silico by the computational approach 

(Zhang et al., 2006; Sunkar and Jagadeeswaran, 2008). This approach requires the availability of 

sequenced and assembled genome and/or significant numbers of Expressed Sequence Tags 

(ESTs). Cloning and high-throughput sequencing of small RNA libraries is another approach to 

identifying conserved and known miRNAs in plants (Lu et al., 2008; Sunkar et al., 2008). 

Currently for Flaveria spp., the genome has not been sequenced and the numbers of ESTs are 

also very limited. Due to these limitations, cloning and high-throughput sequencing of small 

RNA libraries is the best approach to identify miRNAs expressed in Flaveria spp.  Therefore, 

small RNA libraries were constructed from the leaves of F. robusta (C3), F. ramosissima (C3-C4 

intermediate) and F. bidentis (C4) to identify miRNAs in the entire leaves. Additionally, to 

characterize miRNA component in the mesophyll and bundle sheath cells of C3, C3-C4 and C4 

photosynthesis small RNA libraries were constructed from mesophyll and bundle sheath cells of 

F. robusta (C3), F. ramosissima (C3-C4 intermediate) and F. bidentis (C4).  
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4.2: Analysis of Small RNA libraries generated from the leaves of Flaveria spp. 

The small RNAs ranging in size between 18 - 28 nucleotides were used for the analysis. 

The summary of small RNA reads that can be mapped to various RNA categories such as 

mRNAs, ncRNAs, repeats and miRBase have been recorded (Table 4.1). There were also small 

RNAs that could not be mapped to annotated miRNAs or mRNAs or other categories of RNAs 

suggesting that they might represent endogenous siRNAs or degradation products from mRNAs. 

Mapping these reads require assembled transcripts or genomes. Within all small RNA libraries 

constructed from the leaves, the distribution of the small RNA sizes and their abundances were 

depicted in Figure 4.1.  In all three Flaveria spp., two peaks, i.e., one at 21 nt and the other at 24 

nt size classes were commonly observed for the total reads from the small RNA libraries (Fig 

4.1). Such a bimodal distribution of small RNA sizes has been widely documented for plant small 

RNA populations. However, after the removal of redundant reads, the 24 nt size class of small 

RNAs was the highest in the unique small RNA reads for all three Flaveria spp. (Fig. 4.1) and 

such a pattern for 24 nt size class in the unique reads has also been well characterized in different 

plant species.  

To identify homologs of conserved and known miRNAs in the small RNA libraries from 

the leaves, the unique reads were mapped to the miRBase21. This analysis revealed that the small 

RNA population from Flaveria spp. was represented by 42 known miRNA families. Of these, 39 

were identified in F. robusta (C3), 37 in F. ramosissima (C3-C4 intermediate) and 35 in F. 

bidentis (C4).  Within these known miRNA families, 21 families belonging to the highly 

conserved miRNA families were present in small RNA libraries of F. robusta (C3) and F. 

ramosissima (C3-C4 Intermediate). In F. bidentis (C4), 20 highly conserved miRNA families 

were recovered from the leaves. The commonly identified 20 conserved miRNA families in 

leaves of all three Flaveria spp. include miR156, miR159, miR160, miR162, miR164, 

miR165/166, miR167, miR168, miR169, miR171, miR172, miR319, miR390, miR393, miR394, 
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miR395, miR396, miR397, miR398, miR399. In addition to these, miR408 was found in only F. 

robusta (C3) and F. ramosissima (C3-C4 intermediate) but not from F. bidentis (C4). As expected, 

miR444, another miRNA family known to be conserved in monocots was not identified in any of 

the three Flaveria spp.  

Most conserved miRNA families in the leaf small RNA libraries recorded higher 

abundances (Fig 4.2). Of these, miR166 was by far the most abundantly expressed miRNA family 

in the leaves of all three Flaveria spp. (Fig. 4.2A). The other abundantly expressed miRNA 

families (more than 5,000 RPTM) are represented by miR396, miR169, miR156, miR159, 

miR167, miR168 and miR403 (Fig 4.2). Other highly conserved miRNA families such as 

miR170/171 and miR398 recorded moderate abundances with their normalized frequencies 

ranging between 1,000 - 5,000 RPTM. Some of the highly conserved miRNA families however, 

recorded low (below 100 RPTM) expression levels as exemplified by miR394 and miR408 

families (Fig. 4.1). Besides the above mentioned highly conserved miRNA families, several 

known miRNAs (known to be expressed in different plant species but not all plant species 

suggesting that these belong to less conserved miRNA families in plants) were also identified.  

These miRNA families include miR477, miR482, miR530, miR858, miR2111, miR2118, 

miR5139, and miR6173, whose abundances were less than 100 RPTM but more than 10 RPTM. 

A few other less conserved miRNA families were also recovered from Flaveria spp. whose 

abundances were extremely low (less than 10 RPTM) and these include miR894, miR1509, 

miR2643, miR4995, miR5072, miR5083, miR5162, miR5368, miR5770, miR6113, miR6478, 

miR8155 and miR8175. 

An in depth analysis into the abundances of miRNA families in leaves revealed greater 

differences between F. robusta (C3), F. ramosissima (C3-C4 intermediate) and F. bidentis (C4). 

miRNA families such as miR156, miR160, miR162, miR164 and miR390 recorded low 

abundances in F. robusta (C3) but in moderate abundances both in F. ramosissima (C3-C4 
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intermediate) and F. bidentis (C4). miR397 recorded moderate frequencies in F. robusta (C3) but 

was low in F. bidentis (C4). Overall, several conserved miRNA families (miR156/157, miR159, 

miR162, miR167, miR168, miR169, miR170/171 and miR393) were more abundantly expressed 

in leaves of F. bidentis (C4) than in C3-C4 intermediate and C3 Flaveria spp. 

Most conserved miRNA families are represented by multiple loci/isoforms in plants. The 

abundances of miRNA isoforms within miRNA family varied greatly for all three Flaveria spp. 

Out of 129 individual miRNA homologs found in the library, miR166 family was represented by 

the most number (23) of isoforms in Flaveria spp. Within the miR166 family members, miR166a 

was the most abundantly expressed. Similarly, miR396 family was represented with 16 members, 

of which miR396n was the most abundantly expressed isoform. For both miR167 and miR398, 

ten isoforms were recovered from each family. Within the miR398 family, miR398f was the most 

abundant whereas in the miR167 family, miR167a recorded the highest abundance. miR156 was 

represented by 9 members, miR169 family by 8 members, miR159 family by 7 members, miR168 

and miR171 family by 6 members, miR395 by 5 members, miR319 by 4 members, miR160 and 

miR393 by 3 members and lastly, miR162 with 2 members. The remaining miRNA families were 

represented by single isoforms in the Flaveria spp. (Table 4.6) 

Besides the identification of known miRNAs in leaves, miRNA* for 6 known miRNAs 

were also identified (Table 4.2). While miR170*, miR393*, miR403* and miR530* were 

expressed in all three Flaveria spp., the rest of the miRNA* (miR397, miR408, miR530) were 

either expressed in only one or two of the three Flaveria spp. 
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Table 4.1: A summary of total and unique reads distribution of small RNA libraries generated 

from the leaves of Flaveria spp. 

  F. robusta (C3) F. ramosissima (C3-C4) F. bidentis (C4) 

RNA Category reads unique  reads unique  reads unique  

Flaveria-mRNAs 7,319,605 536,281 4,877,428 417,041 6,583,769 545,597 

ncRNAs 5,120,895 160,629 3,107,292 156,747 4,560,134 203,684 

Pre-miRbase21 1,353,781 1,258 663,086 1,256 680,665 1,547 

repeats 2,605,109 91,127 1,613,341 90,159 2,738,186 111,526 

total 12,556,812 3,000,228 10,538,559 2,373,791 10,191,249 2,270,350 

 

A)                      B) 
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C)        D) 

                     

 

E)                   F) 

                      

Figure 4.1 (A-F): Small RNA read length vs their abundances in the small RNA libraries from the 

leaves of F. robusta (C3), F. ramosissima (C3-C4 intermediate) and F. bidentis (C4). 
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A)                                                                         B)                                                                                      

               

 

 

C)                                                                              D) 
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E)                                                                                 

 

Figure 4.2 (A-E): The normalized frequencies of conserved miRNA families in the leaves of F. 

robusta (C3), F. ramosissima (C3-C4 intermediate) and F. bidentis (C4). 

Table 4.2: A summary of miRNA* families and their normalized abundances in small RNA 

libraries from the leaves. 

miRNA * F. robusta (C3) F. ramosissima (C3-C4) F. bidentis (C4) 

miR170 33 19 52 

miR393 2 10 9 

miR397 14 - - 

miR408 2 2 - 

miR530 2 1 10 

miR403 1,688 6,229 7,117 

 

4.3: Expression analyses of conserved miRNAs in leaves of Flaveria spp. using small RNA 

blot analyses. 

 The sequencing and computational analysis of small RNA libraries revealed the identity 

of various miRNA families that are expressed in three Flaveria spp. The analyses also revealed 

the differences in abundances for various miRNA families between three Flaveria spp. In order to 

validate those differences independently, small RNA blot analyses was used. U6, a small non-

coding nuclear RNA (snRNA) was used as a loading control to ensure uniformity in quantity of 

total RNAs that were resolved on the gel.  
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 Small RNA blot analyses revealed that several of the most conserved miRNA families 

were differentially expressed between F. robusta (C3), F. ramosissima (C3-C4 intermediate) and 

F. bidentis (C4) as observed in sequencing-based profiles. Based on their signal intensities, 

miR156, miR159, miR168, miR393 and miR395 were found to be more abundantly expressed in 

leaves of F. bidentis (C4) than in F. ramosissima (C3-C4 intermediate) and F. robusta (C3) 

(Fig.4.3). Some conserved miRNAs such as, miR162 and miR164 could not be detected in the 

leaves of all three Flaveria spp., which could be due to their extremely low abundances. Indeed, 

the sequencing-based profiles also suggest that these miRNAs have been expressed at very low 

levels.  Although most of the differences in expression levels between the sequencing approach 

and small RNA blot analysis were correlated, there were instances in which the expression levels 

for miR159, miR160 and miR168 were only showed weak correlations between the two 

approaches, i.e., normalized frequencies derived in the sequencing approach and signal intensities 

observed in small RNA blot analysis. This discrepancy could potentially be attributed to biased 

ligation efficiencies of different miRNAs with the RNA adapters or other factors such as biased 

sequencing associated with specific miRNAs. In summary, results from the small RNA blot 

analysis of miRNAs in leaves of all three Flaveria spp. suggests an elevated expression of most 

conserved miRNAs in F. bidentis (C4) than in F. ramosissima (C3-C4 intermediate) and F. 

robusta (C3) and this trend was similar to what was observed in the sequencing-based profiles. 
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E)      F) 

                                   

                                     

G) H) 
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Figure 4.3 (A-I): Distinct expression patterns of conserved miRNAs in F. bidentis (C4), F. 

robusta (C3) and F. ramosissima (C3-C4 intermediate) as determined by small RNA blot analyses 

and densitometry. 

4.4: Analysis of small RNA libraries generated from mesophyll cells of Flaveria spp 

To gain an insight into the miRNA composition and expression patterns of different 

miRNA families within the mesophyll and bundle sheath cells of Flaveria spp., small RNA 

libraries were constructed from total RNAs isolated from these cells. The purity of isolated 

mesophyll cells was assessed by determining Rubisco in the mesophyll cells of F. robusta (C3) 

and in the bundle sheath cells of F. ramosissima (C3-C4 intermediate) and F. bidentis (C4), 

whereas PEPC in the mesophyll cells of F. ramosissima (C3-C4 intermediate) and F. bidentis 

(C4). 

(I) 

 

 

 

 

 

 

 

 

 

 

Rubisco 
SSU 

Fig. 4.4(I) Immunodetection of Rubisco small subunit in the mesophyll cells of F. robusta (C3) and in the 

bundle sheath cells of F. ramosissima (C3-C4 intermediate) and F. bidentis (C4). The gel stained 

with Coomassie Blue was shown as loading control. 
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(II) 

 

 

 

 

 

 

Fig. 4.4 (II) Immunodetection of PEPC in the mesophyll cells F. ramosissima (C3-C4 

intermediate) and F. bidentis (C4). The gel stained with Coomassie Blue was shown as loading 

control. 

Because the bundle sheath cells are not well developed in F. robusta (C3), miRNAs were 

only analyzed in the mesophyll cells in this species whereas in case of the F. ramosissima (C3-C4 

intermediate) and F. bidentis (C4) both mesophyll and bundle sheath cells were analyzed. The 

read distributions of mesophyll small RNA libraries obtained after high-throughput sequencing 

are summarized in Table 4.3. The total reads were represented by 27,048,733, 30,692,393 and 

36,402,516 from the F. robusta (C3), F. ramosissima (C3-C4 intermediate) and F. bidentis (C4), 

respectively. After removal of redundant reads, the unique reads were represented by 591,013 in 

F. robusta (C3), 922,852 in F. ramosissima (C3-C4 intermediate) and 1,343,281 in F. bidentis 

(C4).  Of these, 717 unique reads from F. robusta (C3), 708 unique reads from F. ramosissima 

(C3-C4 intermediate) and 800 unique reads from F. bidentis (C4) were mapped to the pre-

miRBase that has precursor sequences of miRNAs (Table 4.3). Further, these unique reads were 

matched with the miRBase21 for identification of conserved miRNA homologs. Similar to what 

was observed in the whole leaf small RNA libraries, only a small portion of the total unique reads 

could be mapped to the miRBase21.  

PEPC 



47 

 

The small RNAs ranged between 18-28 nucleotides from the mesophyll cells were used 

for further analysis. The nucleotide lengths of total and unique small RNA reads of mesophyll 

cell were similar to those observed in the libraries constructed from the whole leaves. Analysis of 

the total reads of mesophyll cell small RNA libraries of F. robusta (C3), revealed one peak at 21 

nt size class. By contrast, the total small RNA reads from the mesophyll cells of F. ramosissima 

(C3-C4 intermediate) and F. bidentis (C4) revealed two peaks, one each at 22 nt and 26 nt. Small 

RNAs consisting of 21 nt size which is largely represented by the miRNAs was present in both 

total and unique reads but they were less abundant compared to the other size classes (Fig. 4.5C-

F). Nucleotide length based analysis of unique reads generated from the mesophyll cells of all 

three Flaveria spp. revealed that the 24-nt long small RNAs were more abundant than the 21 nt 

long small RNAs. Generally, most 21 nt long small RNAs represent miRNAs, tasiRNAs or 

phasiRNAs, whereas most 24-26 nt long small RNAs represent heterochromatic small interfering 

RNAs (Lu et al., 2006).  

In order to identify homologs of conserved miRNAs in mesophyll cell small RNA 

libraries of all three Flaveria spp., the unique reads were mapped to miRBase21. This resulted in 

the identification of 32 conserved miRNA families. Of these, 20 miRNA families belong to the 

highly conserved miRNA families and the remaining were grouped as less conserved miRNA 

families. Unlike in the small RNA libraries from the entire leaves where qualitative differences 

were minimal between the three Flaveria spp., miRNA composition in the mesophyll cells is 

different. Of the 20 highly conserved miRNA families, three families (miR160, miR164 and 

miR390) were not found in mesophyll cells of F. robusta (C3). Similarly in case of F. 

ramosissima (C3-C4 intermediate), 16 of the 21 highly conserved miRNA families were detected 

but not miR160, miR164, miR169, miR390 and miR393 families.  In the case of F. bidentis (C4), 

20 highly conserved miRNA families were identified. Interestingly, miR394 family was not 

recovered from the mesophyll cells of all three Flaveria spp.  Within the highly conserved 
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miRNA families, fourteen families that include miR156, miR159, miR162, miR165/166, 

miR167, miR168, miR170/171, miR319, miR395, miR396, miR397, miR398, miR399 and 

miR403 were commonly identified in the mesophyll cells of all three Flaveria spp. (Fig.4.6). 

Moreover, these fourteen miRNA families that were commonly detected in the mesophyll cells of 

three Flaveria spp. were also differentially expressed as some of these were more abundantly 

expressed in C3 while some others were more abundant in C4 Flaveria spp. For instance, 

miR156, miR159, miR166, miR167, miR168, miR319, miR396, miR397 and miR398 family 

frequencies were highly abundant in the mesophyll cells of F. robusta (C3) than in F. 

ramosissima (C3-C4 intermediate) or F. bidentis (C4). With the exception of miR170/171 family, 

which was more abundantly expressed in F. bidentis (C4), the abundances of most of these above 

mentioned miRNA families were relatively higher in the mesophyll cells of F. ramosissima (C3-

C4 intermediate) than in F. bidentis (C4). Surprisingly, unlike what was observed in the small 

RNA libraries of whole leaves in which most conserved miRNAs were more abundantly 

expressed in F. bidentis (C4), several of the highly conserved miRNA families were expressed at 

relatively low levels in the mesophyll cells of F. bidentis (C4) (Fig4.6). In addition to the 

identification of conserved miRNAs, miRNA* for 6 miRNA families (miR162*, miR170*, 

miR393*, miR397*, miR403* and miR408*) were identified in the mesophyll cell small RNA 

libraries (Table 4.4).  

Table 4.3: A summary of total and unique reads distribution of small RNA libraries sequenced 

from the mesophyll cells of Flaveria spp. 

Categories 
F. robusta (C3) F. ramosissima (C3-C4) F. bidentis (C4) 

reads unique reads unique reads unique 

Flaveria-

mRNAs 
24,823,680 279,961 28,929,872 586,897 35,293,910 1,004,559 

ncRNAs 18,128,338 58,013 20,601,038 87,924 25,397,956 119,305 

premiRbase21 4,518,324 717 709,823 708 523,949 800 

repeats 6,366,347 29,770 5,356,715 41,329 11,043,014 58,472 

total 27,048,733 591,013 30,692,393 922,852 36,402,516 1,343,281 
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C)                D) 

                      

 

 

 

 

 

 

 



50 

 

E) F) 

                  

Figure 4.5 (A-F): Small RNA read length vs their abundances in the small RNA libraries from the 

mesophyll cells of F. robusta (C3), F. ramosissima (C3-C4 intermediate) and F. bidentis (C4). 

 

A) B) 
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C) D) 

                  

E) F) 

             

Figure 4.6 (A-F): Conserved miRNA families’ distribution in mesophyll cell sRNA libraries of F. 

robusta (C3), F. ramosissima (C3-C4 intermediate) and F. bidentis (C4). 
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Table 4.4: Summary of normalized abundances of miRNA* families identified in the mesophyll 

cell small RNA libraries 

miRNA * F. robusta (C3) F. ramosissima (C3-C4) F. bidentis (C4) 

miR162 - 9 3 

miR170 3 - - 

miR393 1 - - 

miR397 11 2 - 

miR408 6 - - 

miR403 133 107 73 

 

4.5: Analysis of small RNA libraries generated from the bundle Sheath cells 

 In order to obtain insight into the miRNA composition within the bundle sheath 

cells of Flaveria spp., small RNA libraries were constructed from total RNAs isolated from these 

cells of F. ramosissima (C3-C4 intermediate) and F. bidentis (C4).  These cells were not well-

developed in F. robusta (C3), thus were not analyzed. The purity of isolated bundle sheath cells 

was assessed by determining Rubisco in the bundle sheath cells of F. ramosissima (C3-C4 

intermediate) and F. bidentis (C4). 

 

 

 

 

 

Fig. 4.7 Immunodetection of Rubisco in the bundle sheath cells of F. ramosissima (C3-C4 

intermediate) and F. bidentis (C4). The gel stained with Coomassie Blue was shown as loading 

control. 
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The total and unique small RNA reads ranging in size 18 to 28 nucleotides were used for 

the analyses of small RNA population in the bundle sheath cells of Flaveria spp.  Interestingly, in 

the case of both F. ramosissima (C3-C4 intermediate) and F. bidentis (C4), the sizes of total small 

RNA reads and their abundances revealed a highly conspicuous peak for 21 nt size class but only 

a minor peak for the 24 nt size class (Fig. 4.8). This feature suggests that the small RNA reads 

consisting of 21 nt were the most abundant in the total reads identified from the bundle sheath 

cells. In contrast, 24 nt size class was the most abundant and 21 nt size class were represented by 

a minor peak in the case of unique reads obtained from the bundle sheath cells. This suggests that 

only a small fraction may represent miRNAs in the small RNA population from the bundle sheath 

cells of F. ramosissima (C3-C4 intermediate) and F. bidentis (C4).  

The read distribution of small RNAs to different RNA categories in the bundle sheath 

cells of two Flaveria spp. are summarized in Table 4.5. Similar to what was observed in the small 

RNAs from the leaves and mesophyll cells of all three Flaveria spp., only a small fraction of the 

entire unique reads could be mapped to the miRBase21. For example, out of the total unique 

reads of 2,764,943 in F. ramosissima (C3-C4 intermediate) and 762,544 in F. bidentis (C4), only 

1,461 and 829 unique reads, respectively, were mapped to miRBase21. The mapping of unique 

small RNA reads to the miRBase21 resulted in the identification of 34 known miRNA families. 

Of these, 22 families belong to highly conserved miRNA families and the remaining families 

belong to less conserved miRNA families. In the small RNA libraries of F. ramosissima (C3-C4 

intermediate), 31 known miRNAs were identified and this include all 21 highly conserved 

miRNA families. In the case of F. bidentis (C4), with the exception of miR160, 390 and miR408, 

the remaining 18 highly conserved miRNA families were identified. miR394 family was not 

recovered from the bundle sheath cells of either F. ramosissima (C3-C4 intermediate) or F. 

bidentis (C4).  
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 Within the highly conserved miRNA families, the normalized frequencies between 

different miRNA families greatly varied in the bundle sheath cells. For instance, miR166, 

miR159, miR396, miR398 and miR167 abundances were very high (above 47,708 RPTM) in 

bundle sheath cells of both F. ramosissima (C3-C4 intermediate) and F. bidentis (C4). On the 

other hand, several miRNA families (miR160, miR169, and miR390) are expressed at relatively 

low levels in bundle sheath cells of F. ramosissima (C3-C4 intermediate) or F. bidentis (C4) (Fig 

4.9).  Interestingly, miR160, miR164 and miR390 families were detected only in the bundle 

sheath cells of F. ramosissima (C3-C4 intermediate) but not in F. bidentis (C4). Most importantly, 

miRNA families (miR159, miR162, miR168, miR170/171, miR319, miR393, miR397 and 

miR403) were more abundantly expressed in the bundle sheath cells of F. ramosissima (C3-C4 

intermediate) than in F. bidentis (C4). On the other hand, miR395 levels were more abundant in 

the bundle sheath cells of F. bidentis (C4) than in F. ramosissima (C3-C4 intermediate). Overall, 

the conserved miRNA families were more abundantly expressed than the less conserved miRNA 

families in the bundle sheath cell small RNA libraries. This is very similar to what was observed 

in the case of mesophyll cell and whole leaf small RNA libraries. In addition, miRNA* for 6 

known miRNA families were identified (Table 4.6). These miRNA* were highly expressed in 

bundle sheath cells of F. ramosissima (C3-C4 intermediate) than in F. bidentis (C4). 

Table 4.5: A summary of total and unique reads distribution of small RNA libraries generated 

from the bundle sheath cells of Flaveria spp. 

Categories 

F. ramosissima (C3-C4 

intermediate)-bundle 

sheath 

F. bidentis (C4)-

bundle sheath 

reads unique reads unique 

Flaveria-

mRNAs 
22,790,661 584,040 28,384,655 192,921 

ncRNAs 15,213,919 101,022 25,746,480 81,362 

premiRbase21 5,555,240 1,461 11,798,661 829 

repeats 6,969,173 35,488 10,913,000 40,769 

total 30,553,548 2,764,943 32,936,658 762,544 
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A)       B) 

         

C)            D) 

         

Figure 4.8 (A-D): Small RNA read length vs their abundances in the small RNA libraries from 

the bundle sheath cells of F. robusta (C3), F. ramosissima (C3-C4 intermediate) and F. bidentis 

(C4). 
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A)                                                                          

        

B) 

 

C)  

  

Figure 4.9 (A-C): Conserved miRNA families and their normalized frequencies in the bundle 

sheath cells of F. robusta (C3), F. ramosissima (C3-C4 intermediate) and F. bidentis (C4). 
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Table 4.6: A summary of normalized abundances of miRNA* families in the bundle sheath cells. 

miRNA * F. ramosissima 

(C3-C4) 

F. bidentis 

(C4) 

miR162 58 8 

miR170 - 7 

miR393 7 - 

miR397 4 - 

miR408 3 - 

miR403 2,865 882 

 

Table 4.7: A summary of individual miRNAs within a family and their normalized abundances in 

leaves, mesophyll cells and bundle sheath cells of three Flaveria spp. 

C3   C3-C4  Intermediate   C4  

   

F.robusta-

leaves  

 F.robusta-
mesophyll  

 

F.ramosissima-

leaves  

 F.ramosissima-
mesophyll  

 F.ramosissima-
bundle sheath  

 F. 

bidentis-

leaves  

 F. bidentis -
mesophyll  

 F.bidentis-
bundle sheath   miRNA  

 miR156a      34                  65                603                 42                912   1,218                   7                549  

 miR156b     11                    2                  32                 -                    21   1,264                   1                  73  

 miR156c      111                111             1,573                 64             1,006    2,599                   9                696  

 miR156d     34                  65                601                 42                909     1,214                   7                548  

 miR156e      43                  18                383                 21                204      549                   3                228  

 miR156f    -                      1                  18                   2                111         51                 -                    11  

 miR156g      34                  78                603                 43                945   1,220                   7                553  

 miR156h     34                  78                603                 43                945   1,220                   7                553  

 miR156i    108                338             1,231               137             1,049    1,996                 15                864  

 miR157a   11                    2                  32                 -                    21   1,264                   1                  73  

 miR159a     5,429           32,475           15,153            4,088         169,649    24,640            3,258           68,439  

 miR159b   2,594           15,065             6,782            2,149         120,542    15,773            1,887           48,526  

 miR159c  6                  52                  16                   6             1,043   81                   7                140  

 miR159d  3,115           16,887             7,529            2,228         121,855   16,329            1,941           49,155  

 miR159e   2,634           15,361             6,791            2,155         120,599    15,796            1,894           48,608  

 miR159f  91                350                162               140           11,113   457               180             1,421  

 miR159g        25                110                  96                 17             1,660   227                 27                313  

 miR160a    53                   -               1,203                 -                    35   691                   1                   -    

 miR160b   56                   -               1,206                 -                    35       696                   1                   -    

 miR160c   58                   -               1,211                 -                    35  698                   1                   -    

 miR162a     -                     -                    39                   9                  58    157                   3                    8  
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 miR162b    -                      2                183               126             1,389     601                 18                390  

 miR164a   31                   -                  257                 -                      6    196                 -                     -    

 miR165a   307                162                179                 27                336   117                 11                172  

 miR166a    887,122         334,320         421,139          55,125         351,774    304,746          10,878         353,947  

 miR166b  886,559         334,128         420,947          55,096         351,660  304,570          10,875         353,811  

 miR166c  2,026                771             1,687               326           12,889  3,695               132             4,248  

 miR166d   1,159                158                875                 95                911  2,306                 67                190  

 miR166e   2,673                886             2,250               375           13,294   4,074               147             4,564  

 miR166f    1,240                417             1,012               276             2,324    2,624               147             6,293  

 miR166d    158                  23                275                   5                189   278                   2                  45  

 miR166h   5,941             2,609             2,489               503           17,125    5,182               218             6,401  

 miR166i  142                159                  96                 23                149  61                   4                152  

 miR166j  100                  10                  51                   5                  22       30                   1                  15  

 miR166k   5,036             5,854           24,795            2,614           12,369   13,439               857           28,271  

 miR166l        46                    1                  79                 -                    38     176                   1                  13  

miR166m    10,797           12,860             5,442            1,731           26,183    22,065            1,905           61,732  

 miR166n   1,991                769             1,666               325           12,883    3,684               131             4,246  

 miR166o    45                626                104               111                804      263               122             1,773  

 miR166p  273                199                192                 32                224      104                   6                188  

 miR166q    2,025                771             1,687               326           12,888  3,695               132             4,248  

 miR166r  444                    3                  43                 -                    27       35                   1                    5  

 miR166s      1,236                417             1,007               276             2,323     2,622               147             6,292  

 miR166t  2,672                886             2,246               374           13,285  4,071               147             4,558  

 miR166u  417                334                302                 56                345      404                   9                349  

 miR166v    7,167             1,316             8,213               372             3,083     9,253               345           10,571  

miR166w   8,487           11,813             4,440            1,537           23,294  18,344            1,661           57,506  

 miR167a     5,560             2,798           14,027               896           49,887  20,627               616           46,709  

 miR167b   124                  26                524                 13             4,996      1,074                 12                999  

 miR167c   123                  26                518                 13             4,992  1,062                 12                996  

 miR167d      163                381                337               307           37,390   926               118           35,547  

 miR167e     88                  26                264                 13             4,920   775                 12                967  

 miR167f   132                389                380               308           37,427   968               121           35,560  

 miR167g    99                381                285               307           37,388    831               118           35,546  

 miR167h   87                  24                257                 12             4,919   767                 12                962  

 miR167i   90                  26                293                 12             4,938   799                 12                968  

 miR167j   90                  26                294                 12             4,938        801                 12                968  

 miR168a   178                  79                140                 10             2,266   1,015                 28                967  

 miR168b   1,695                342             2,002                 46             2,886   11,695                 55             1,320  
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 miR168c  185                  84                146                 11             2,276   1,063                 29                968  

 miR168d   136                  54                  97                   6                252        292                   3                  91  

 miR168e   -                      6                    5                   3                157   15                 15                  21  

 miR168f    11                   -                    24                 -                    99   82                 -                      5  

 miR169a   13,887                    4             7,701                 -                      8  27,224                   1                   -    

 miR169b  13,886                    4             7,696                 -                      7  27,222                   1                   -    

 miR169c  
         

13,892  
                  4             7,701                 -                      8     27,226                   1                   -    

 miR169d   169                   -                    98                 -                     -       394                 -                     -    

 miR169e  13,886                    4             7,702                 -                      7    27,223                   1                   -    

 miR169f  13,894                    4             7,718                 -                      8   27,249                   1                    2  

 miR169g    13,894                    4             7,718                 -                      8     27,249                   1                    2  

 miR169h   169                   -                    98                 -                     -      394                 -                     -    

 miR171a     -                      1                    6                   6                879     19                   1                  22  

 miR171b    533                    1                440                   1                    2      883                 -                    12  

 miR171c   2                   -                      1                   1                  19     444                   1                  31  

 miR171d   50                    1                175                 -                      1     183                 -                    10  

 miR171e       -                     -                     -                     1                  19      377                   1                  27  

 miR171f    2                    7                    5                   2                  85        1,522                 16                114  

 miR172a    231                    2                232                 -                    19    194                 -                      4  

 miR172b    232                    2                234                 -                    20       203                 -                      4  

 miR319a    471                368                821                 23                114      876                 47                    4  

 miR319b    143                268                419                 17                  83         493                 41                    3  

 miR319c   366                336             1,015                 23                213         838                 49                  27  

 miR319d   146                268                421                 17                  83         493                 41                    3  

 miR3630  1                  45                   -                   50                  56        1                 12                  19  

 miR390a  49                   -                  274                 -                      9   376                 -                     -    

 miR393b   95                   -                  253                 -                    22    466                 -                      2  

 miR393c  38                   -                  121                 -                    28    311                 -                      5  

 miR393d   89                    3                  86                 -                    24    146                 -                      2  

 miR395a           -                     -                     -                   -                      1   14                   3                239  

 miR395b  249                  13                197                   6             1,176     783                   7                500  

 miR395c  249                               13                197                   6             1,184     783                   7                500  

 miR395d     -                     -                     -                   -                      6      33                   7                321  

 miR395e   56                  19                  15                   1                198       12                 25                765  

 miR396a    90                361                101               154             1,812       110                 68                689  

 miR396b   4,339             1,098                431                 79             3,218       545                 11                274  

 miR396c    198                157                  37                 20             1,785       93                   6                176  

 miR396d    539                  28                249                   3                264        316                   4                  43  
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 miR396e    4                    6                    5                   1                205       19                   2                  12  

 miR396f  17                  17                    4                   2                  44        8                 -                      7  

 miR396g  17                  17                    4                   2                  45        7                 -                      7  

 miR396h     2                  15                    9                   3                  22      103                   2                  27  

 miR396i     5,348             5,825             1,689               524             5,014       3,240                 96             3,422  

 miR396j   192                156                  36                 20             1,784      92                   6                176  

 miR396k  4                                     6                    5                   1                205      19                   2                  12  

 miR396l   4                  27                    9                   9                147        14                   2                  43  

 
miR396m  

4,349                       1,102                435                 79             3,221       549                 11                274  

 miR396n   77,991                114,689           47,898          24,486         255,357    59,562            8,334         260,492  

 miR396o  501                          5,164                740            3,719           83,816  1,566                         702           46,598  

 miR396p  55                                 37                    9                   3                  75     12                 -                      4  

 miR397a  581                            113                174                 23                398    19                   3                  45  

 miR397b  573                            113                157                 22                390    19                   3                  45  

 miR398a  7                    8                    7                 -                  137    5                 -                      8  

 miR398b  7                    8                    7                 -                  137     5                 -                      8  

 miR398c  126                              34                287                   3                253     34                   1                  49  

 miR398d  2                  31                   -                     6                  73      -                     8                  57  

 miR398e  465                                9                   -                   -                      1      -                   -                      1  

 miR398f     1,750         293,307                416          37,897         210,126     196          13,643         284,868  

 miR398g    796             1,820                    8                 74                537   4                 36                562  

 miR398h    7                    8                    7                 -                  137    5                 -                      9  

 miR398i    7                    8                    7                 -                  137    5                 -                      8  

 miR398j    30                469                    6                 66                485    3                 34                530  

 miR403     1,688                133             6,229               107             2,865     7,117                 73                882  

 miR6111  338                  15                354                   8                422      1,081                   9                169  

 miR6114        357                    6                    6                 -                      1       156                 -                    48  

 miR6478   162                   -                  211                2                  16       601                   3                    9  

 miR8175   24                   -                    54                 -                      9        521                 -                     -    

 miR858a   27                  18                    7                   4                131        48                 17                  49  

 miR858b  37                                 26                    8                   6                187       70                 20                  56  

 miR858c  222                          1,173                248               183             8,262       599               568             2,429  
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4.6: Degradome Library Construction and Sequencing Analysis 

In higher plants, most miRNAs regulate the expression of their target genes by cleavage 

of mRNAs within the complementary region to the miRNAs (Llave et al., 2002). When miRNAs 

guides cleavage on their target mRNAs, 5’ and 3’ cleaved mRNA fragments will be released. 

RNA adapter was ligated to the 5’end of the 3’ cleaved mRNA fragments (targets of miRNAs), 

amplified using few PCR cycles, digested and then DNA adapters were ligated and further 

amplified and the resultant PCR product was sequenced, a procedure known as ‘degradome’ or 

‘PARE (Parallel Analysis of RNA Ends)’ analysis (Addo-Quaye et al., 2008; German et al., 

2008).  In order to identify potential targets for the miRNAs in the leaves of F. robusta (C3), F. 

ramosissima (C3-C4 intermediate), and F. bidentis (C4), degradome libraries were constructed, 

sequenced and the datasets were analyzed using the SeqTar pipeline (Zheng et al., 2012). Overall, 

21,007,764, 18,407,012 and 20,519,940 reads from F. robusta (C3), F. ramosissima (C3-C4 

intermediate), and F. bidentis (C4) respectively were sequenced from the degradome libraries. 

Upon further processing of the total reads, a total of 862,199, 1,106,857 and 1,173,019 unique 

reads were obtained for F. robusta, F. ramosissima and F. bidentis, respectively (Table 5.4). In 

all three degradome libraries, reads that were mapped to the non-coding RNAs and repeat 

sequences were highly represented. Only 851,256, 480,130 and 1,001,359 total reads represented 

by 239,564, 249,713 and 477,500 unique reads were mapped to the mRNAs from the Flaveria 

spp. 
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Table 4.8: Summary of reads distribution of degradome libraries constructed from the leaves of 

three Flaveria spp. 

Category F. robusta (C3) F. ramosissima (C3-C4) F.bidentis (C4) 

reads unique reads unique reads unique  

Flaveria-mRNAs 851,256 239,564 480,130 249,713 1,001,359 477,500 

ncRNAs 527,466 17,894 183,063 16,681 293,935 18,831 

premirbase21 16,540 258 29,466 582 36,003 719 

repeats 424,089 10,118 91,076 9,266 198,523 10,426 

Total reads 21,007,764 862,199 18,407,012 1,106,857 20,519,940 1,173,019 

 

4.7: Identification of Targets of conserved miRNAs in Flaveria spp. 

 Until date, the CleaveLand pipeline has been the largely used computational pipeline for 

identifying plant miRNA targets present in degradome libraries (Addo-Quaye et al., 2009 and 

Zheng et al., 2012). However, the steps followed in CleaveLand method have been suggested to 

be too rigid and less flexible. This could result in omission of some potential miRNA targets 

(Zheng et al., 2012). On the other hand, a recently developed SeqTar algorithm is a more relaxed 

and effective pipeline for identifying cleaved miRNA targets with more mismatches from raw 

degradome data in plants.  Therefore, SeqTar pipeline was used in identifying miRNA: mRNA 

pairs using the unique reads obtained from the degradome reads of each Flaveria spp. The 

analysis revealed only a small number of transcripts as targets for miRNAs in each of the 

Flaveria spp. investigated. In F. robusta (C3), 4 transcripts were identified as putative targets. 

These targets encode proteins namely REVOLUTA, member of homeodomain-leucine zipper 

family (HD-ZIP family), Target of early activation tagged (EAT) and Molecular chaperone DnaJ 

(Table 4.9). In F. ramosissima (C3-C4 intermediate), 3 transcripts were identified as targets 

(Protein ABIL4, hypothetical protein) and Choline/ethanolamine phosphotransferase 1) for 

miR159, miR160 and miR168 (Table 5.6). Lastly, in F. bidentis (C4), three transcripts, i.e., MYB 

domain transcription factor and Protein tyrosine phosphatase were identified as targets for 

miR398 and miR858 (Table 5.1).  
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Table 4.9: Identification of targets of conserved miRNAs in F. robusta (C3) 

 

miRNAs 

Total 

Mismatches 

Total 

Reads 

Percentage 

Reads 

Reference  

Full Name 

Encoded 

protein 

miR166d 1 4 25 c49724 REVOLUTA, member of homeodomain-

leucine zipper family 

miR172a 0.5 3 66.67 c47181 Target of early activation tagged (EAT) 

miR319a 2.5 2 50 c46580 Molecular chaperone DnaJ 

miR319a 4 198 2.02 c32054 Unknown protein 

 

Table 5.0: Identification of targets of conserved miRNAs in F. ramosissima (C3-C4 intermediate) 

miRNAs Total 

Mismatches 

Total 

Reads 

Percentage Reference Full 

Name 

Encoded protein 

protein 

miR159a 4 19 10.53 TR4898 Protein ABIL4 

miR160a 1 9 11.11 TR17740 hypothetical protein 

 

miR168f 

 

4 

 

184 

 

0.54 

 

TR20673 

Choline/ethanolamine 

phosphotransferase 1 

 

Table 5.1: Identification of targets of conserved miRNAs in F. bidentis (C4) 

 

miRNAs 

Total_ 

Mismatches 

Total 

Reads 

Percentage Reference Full 

Name 

Encoded 

Protein 

miR398c 2 9 11.11 c23379 Hypothetical protein 

miR858b 3 6 16.67 c2950 MYB domain protein 111 

miR858c 4 217 9.22 c9922 Protein tyrosine phosphatase 
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Figure 4.10: T-plots showing cleavage abundance of predicted targets of conserved miRNAs in F. 

robusta (C3). 

    

 

Figure 4.11: T-plots showing cleavage abundance of predicted targets of conserved miRNAs in F. 

ramosissima (C3-C4 intermediate) 
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Figure 4.12: T-plots showing cleavage abundance of predicted targets of conserved miRNAs in F. 

bidentis (C4). 
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CHAPTER V 
 

 

DISCUSSION 

Currently, about 3% of the world’s total terrestrial plant species use the C4 

photosynthetic pathway for carbon fixation whereas, 95% of them use the C3 pathway for carbon 

assimilation (Chang et al., 2012). More C3 plants than C4, represent most of the world’s staple 

crops such as Oryza sativa, Triticum aestivum and Glycine max (Hibberd et al., 2008). Due to the 

inefficiency in photosynthesis and water use, most C3 plants may be unable to thrive well under 

current global weather conditions including rising temperatures (Chang et al., 2012). This 

problem could at least partly be mitigated by effectively incorporating the desirable C4 pathway 

traits and their regulatory networks into C3 plants.  To achieve this daunting task, we need a 

thorough understanding of gene regulatory networks that contribute for C4 photosynthesis.  

Flaveria has been widely used as a model plant system for investigating the evolution of 

C4 photosynthesis from the ancestral C3 type (Gowik et al., 2011). To obtain molecular insights 

especially in identifying genes associated with the evolution of C4 photosynthesis from C3, recent 

studies compared the transcriptome profiles of F. robusta (C3), F. ramosissima (C3-C4 

intermediate) and F. bidentis (C4). Such comparative analyses between C3 and C4 plants yielded 

major differences with respect to the abundances of various C4 photosynthesis enzymes as well as 

diverse families of transcription factors (Gowik et al., 2011; Wang et al., 2013 and Mallman et 

al., 2014). However, the role of miRNAs in this important biochemical process is almost 

unknown. Thus far, the miRNA component has not been investigated in Flaveria spp.  
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In order to understand the roles of miRNAs in C3, C3-C4 intermediate and C4 

photosynthesis, miRNA profiles were compared in Flaveria spp. that differ in their mode of 

photosynthesis. Anatomically, the C3 and C4 leaves were distinct represented by mesophyll and 

bundle sheath cells in C4 and only mesophyll cells in C3 plants. Therefore, the miRNA 

component in mesophyll and bundle sheath cells isolated from matured F. robusta (C3), F. 

ramosissima (C3-C4 intermediate) and F. bidentis (C4) were also investigated. In addition to this, 

three degradome libraries were constructed from the leaves of the above named species in order 

to identify the targets for the miRNAs in Flaveria spp. 

5.1:  Identification of conserved miRNAs and determining their differential abundances in 

the leaves of three Flaveria spp. 

Extensive small RNA sequencing approaches from diverse plant species resulted in 

identification and deposition of vast number of miRNAs at the miRBase. At least 21 miRNA 

families have shown a high degree of conservation among land plants suggesting conserved 

biological functions for these miRNAs in all higher plants (Axtell et al., 2005; An et al., 2011).  

The computational analysis of the small RNA reads from the leaves of three Flaveria 

spp. resulted in identification of homologs of 21 conserved miRNA families in F. robusta (C3) 

and F. ramosissima (C3-C4 intermediate). In F. bidentis (C4) however, 20 conserved miRNAs 

were identified. miR408, which was expressed in F. robusta (C3) and F. ramosissima (C3-C4 

intermediate), was not recovered from F. bidentis (C4). It is worth mentioning that even in F. 

robusta (C3) and F. ramosissima (C3-C4 intermediate), miR408 levels were extremely low (3 or 2 

RPTM). The non-recovery of miR408 could simply be due to its extreme low abundance in F. 

bidentis (C4). 

Among all conserved miRNA families, miR166 family was the most abundantly 

expressed in all three Flaveria spp. investigated. However, miR166 family abundances greatly 

differed between the three Flaveria spp. In leaves of F. robusta (C3), its levels were almost twice 
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that of the F. ramosissima (C3-C4 intermediate) and F. bidentis (C4). Similar differences were 

also observed in the mesophyll cells in which miR166 family displayed greater abundances in F. 

robusta (C3) but much lower levels in F. ramosissima (C3-C4 intermediate) and F. bidentis (C4). 

The miR166 family abundances were very similar in the bundle sheath cells of F. ramosissima 

(C3-C4 intermediate) and F. bidentis (C4). The abundantly expressed miR166 in the leaves of all 

Flaveria spp. suggest an important role for this miRNA family. The miR166 family is known to 

target HD-ZIP transcription factors that in turn regulate leaf polarity and floral development in 

plants (Emery et al., 2003, Jung and Park, 2007; Nogueira et al., 2007). Thus far, miR166 has not 

been linked with photosynthesis either biochemically or anatomically. The present investigation 

has revealed clear differences with respect to the abundances of miR166 family not only in entire 

leaves but also in the mesophyll cells of C3 and C4 Flaveria spp. This suggests an important role 

for this miRNA family in either the origination or maintenance of anatomical or biochemical 

differences associated with the C3 and C4 photosynthesis. It is worth noting that the differences in 

miR166 abundances in bundle sheath cells of C3-C4 intermediate and C4 Flaveria spp., were only 

marginal.  

In the leaves, miR396 was abundantly expressed in F. robusta (C3) compared with F. 

ramosissima (C3-C4 intermediate) and F. bidentis (C4). Similarly, in the mesophyll cells, miR396 

levels were several fold greater in F. robusta (C3) compared with F. ramosissima (C3-C4 

intermediate) and F. bidentis. However, its levels in bundle sheath cells did not differ between F. 

ramosissima (C3-C4 intermediate) and F. bidentis (C4). miR396 is known to regulate several 

Growth regulating factors in plants, which is important for leaf growth and development 

including adaxial-abaxial polarity formation during leaf morphogenesis (Liu et al., 

2009; Rodriguez et al., 2010; Wang et al. 2011). Similar to the miR166, miR396 family has not 

been linked with photosynthesis, but it’s differential expression in Flaveria spp., differing in their 

mode of photosynthesis, suggest a potential role in C3 and C4 photosynthesis.  
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miR159 and miR319 are two highly conserved miRNA families in land plants and have 

been shown to be involved in regulating leaf morphogenesis, plant growth and reproduction. 

miR159 represses MYB transcription factor genes, miR319 targets TCP transcriptional factors in 

plants (Jones-Rhoades et al., 2006). The activities of miR159 and its corresponding target genes 

have been shown to regulate seed germination, vegetative growth and reproductive organs 

development (Alonso-Peral et al, 2010; Allen et al., 2007 and Reyes et al., 2007) but miR319 and 

its target, TCP, regulate leaf morphology and senescence (Palatnaik et al., 2003 and Schommer et 

al., 2008). Interestingly, in the entire leaves both miR159 and miR319 levels were relatively high 

in F. bidentis (C4) compared with F. robusta (C3) and F. ramosissima (C3-C4 intermediate). By 

contrast in mesophyll cells, both miR159 and miR319 levels were several fold greater in F. 

robusta (C3) compared with F. ramosissima (C3-C4 intermediate) and F. bidentis (C4). Within 

the bundle sheath cells, miR159 and miR319 levels were greater in F. ramosissima (C3-C4 

intermediate) compared with F. bidentis (C4). Such differential expression of both miR159 and 

miR319 that share very high sequence homologies suggests a putative role for both of these 

miRNA families in C3 and C4 photosynthesis. 

Auxin signaling plays a central role in regulating diverse aspects of plant growth and 

development. Intriguingly, several key proteins (TIR1 and ARFs) involved in auxin signaling are 

regulated by miR160 (ARFs), miR167 (ARFs) and miR393 (TIR1) families as well as miR390-

dependent TAS3 siRNAs (ARFs) (Jones-Rhoades et al., 2006). The profiling of miRNAs in 

leaves of three Flaveria spp. revealed distinct differences with respect to the expression levels of 

these miRNAs that fine tune auxin signaling in plants.  For instance, miR167 levels in leaves 

were much greater in F. bidentis (C4) but intermediate in F. ramosissima (C3-C4 intermediate) 

and very low in F. robusta (C3).  These differences were further confirmed using small RNA blot 

analysis in these three plant species. Interestingly, miR167 levels in the mesophyll cells were 

found to be opposite to what was observed in the entire leaves, as its levels were much greater in 
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F. robusta (C3), but intermediate in F. ramosissima (C3-C4 intermediate) and very low in F. 

bidentis (C4).  Similarly, miR160 expression levels greatly differed; a very low level in leaves of 

F. robusta (C3), but much higher levels in both F. ramosissima (C3-C4 intermediate) and F. 

bidentis (C4).  These differences were also confirmed in small RNA blot analysis. Surprisingly 

miR160 was almost not represented in three small RNA libraries constructed from the mesophyll 

cells. However, miR160 was recovered from the bundle sheath cells of both F. ramosissima (C3-

C4 intermediate) and F. bidentis (C4) although its abundances were much higher in F. 

ramosissima (C3-C4 intermediate) compared with F. bidentis (C4).  Also, miR393 differed greatly 

differed between Flaveria spp.  miR393 levels that targets TIR1 (an auxin receptor) was found to 

be relatively high in leaves of F. bidentis (C4) and intermediate in F. ramosissima (C3-C4 

intermediate) and low in F. robusta (C3). These differences in miR393 expression levels were 

also confirmed in small RNA blot analysis.  miR393 reads were hardly recovered from the small 

RNA libraries of mesophyll cells of all three Flaveria spp. On the other hand, these were 

differentially expressed in bundle sheath cells, i.e., more abundant in F. ramosissima (C3-C4 

intermediate) and extremely low in F. bidentis (C4). These results imply that miRNAs that fine 

tune auxin signaling differ greatly not only in the entire leaves but also in mesophyll and bundle 

sheath cells of three Flaveria spp. that differ in their mode of photosynthesis. These results 

support the notion that the miRNA-controlled auxin signaling is an important factor that could 

contribute to the differences in photosynthesis.  

Small RNA analyses from the leaves revealed that the miR168 was highly expressed in 

F. bidentis (C4) compared with F. ramosissima (C3-C4 intermediate) and F. robusta (C3).   Small 

RNA blot analysis also confirmed the greater abundances in F. bidentis (C4). By contrast, 

miR168 levels were high in the mesophyll cells of F. robusta (C3) than in F. ramosissima (C3-C4 

intermediate) and F. bidentis (C4).  miR168 is involved in regulating the expression of AGO1, 

which is critical for normal growth and development (Vaucheret et al., 2004). AGO1 is an 
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important component of the RNA-induced Silencing Complex into which mature miRNA is 

incorporated prior to target mRNA cleavage (Baldrich et al., 2014; Vaucheret, 2008 and Voinnet, 

2009). The differential abundances of miR168 in total leaves, mesophyll and bundle sheath cells 

of F. robusta (C3) than in F. ramosissima (C3-C4 intermediate) and F. bidentis (C4) suggests a 

role in photosynthesis perhaps by differentially regulating various miRNA targets in these 

Flaveria spp. 

In general, miR395 abundances are known to be extremely low in several plants that have 

been grown on optimal nutrients. However, miR395 has been shown to be highly inducible 

during sulfate-deprivations (Jones-Rhoades et al., 2006; Sunkar et al., 2007). miR395 was 

differentially expressed in three Flaveria spp. In leaves, miR395 was found to be more abundant 

in F. bidentis (C4) than in F. ramosissima (C3-C4 intermediate) and F. robusta (C3) as 

determined by small RNA blot analysis. Interestingly, miR395 was also recovered from both the 

bundle sheath and mesophyll cells. It was more abundantly expressed in bundle sheath cells than 

in mesophyll cells. miR395 which targets a sulfate transporter and three ATP Sulfurylases, fine 

tunes sulfate uptake and assimilation in plants.  Sulfur assimilation and metabolism which largely 

occurs in the chloroplast was thought to be associated with C4 photosynthesis (Kopriva and 

Kopriva, 2005). Earlier comparative transcriptomic analyses between Flaveria spp. that utilizes 

C3, C4, and C3–C4 intermediate photosynthesis suggested a potential link between sulfate 

assimilation and C4 photosynthesis (Weckopp and Kopriva, 2014). These analyses pointed out 

that there exists a greater need for reduced sulfur in C4 photosynthetic plants (Weckopp and 

Kopriva, 2014). Although the results presented from the miRNA analysis here do not agree with 

this hypothesis, (a greater need for reduced sulfur in C4 photosynthetic plants) the greater 

abundances of miR395 in F. bidentis (C4) suggests it diminishes sulfur reduction rather than 

enhance it. In addition, the identified differential expression patterns of miR395 appear to have an 

important role in C3 and C4 photosynthesis. 
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5.2:  Identification of targets of conserved miRNAs in Flaveria spp. 

 Following the analysis of the degradome library using SeqTar pipeline, only a small 

number of target transcripts were identified for some conserved and known miRNAs of Flaveria 

spp. Most of these predicted targets are non-conserved targets for the conserved miRNAs. This 

observation supports the suggestion that some conserved miRNAs may have non-conserved 

targets in distinct plant species (German et al., 2008 and Li et al., 2010). Many conserved miRNA 

targets could not be identified as miRNA targets in Flaveria spp., due to lack of a well-assembled 

Flaveria transcriptome.  

5.3: Does miRNAs play a role in Photosynthesis? 

 C4 photosynthesis is believed to have evolved independently from ancestral C3 pants 

through intermediary forms (Sage et al., 2012; Schluter et al., 2016) and the evolution process is 

postulated to have involved modifications in leaf anatomy and changes in gene expression 

(Brautigam and Gowik, 2016). In C4 photosynthetic species especially, the unique arrangement of 

mesophyll and bundle sheath cells in the leaves have been suggested to be crucial for 

photosynthesis (Sage and Monson, 1999). To date, the roles of miRNAs in photosynthesis are yet 

to be convincingly demonstrated. Although our study could not directly establish a link between 

miRNAs and the different forms of Photosynthesis, the differential expression of several 

conserved miRNA families, not only in leaves but also in mesophyll and bundle sheath cells, 

argues that such differential expressions could impact on the target gene expression differently. 

The identified differences with respect to the miRNAs require further analysis, but they lay a 

strong foundation to investigate the significance of miRNA-controlled gene regulation not only in 

C3 and C4 photosynthesis but also in the evolution of C4 from C3 photosynthesis. Because most 

conserved miRNAs regulate transcription factors, their differential regulation as determined by 

miRNAs in a cell-specific manner could differently impinge on the transcription factor controlled 

down-stream gene expression. This could in turn be important for the anatomical and biochemical 
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differences that exist between C3 and C4 photosynthetic plants and in the process, miRNAs might 

have played a significant role in the evolution of C4 photosynthesis from the C3 type.  
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CHAPTER VI 
 

 

CONCLUSION 

By constructing small RNA libraries and performing high throughput sequencing of 

small RNAs from leaves of three Flaveria spp., the following known miRNA families were 

identified. i.e., 39 in F. robusta (C3), 37 in F. ramosissima (C3-C4 intermediate) and 35 in F. 

bidentis (C4). From the differential expression patterns, miR156, miR159, miR162, miR167, 

miR168, miR169, miR170/171 and miR393 showed a more abundant expression in leaves of C4 

than in C3 Flaveria spp. These sequencing-based differences in conserved miRNA profiles were 

largely confirmed using small RNA blot analysis. The miRNA analysis in the mesophyll cells 

revealed major differences between the three Flaveria spp. Although fourteen miRNA families 

were commonly detected in the mesophyll cells of the Flaveria spp., they were differently 

expressed. i.e., miR166, miR159, miR398, miR396 and miR319 family frequencies were more 

abundant in the mesophyll cells of F. robusta (C3) than in F. bidentis (C4). On the other hand, 

miR160, miR390 and miR393 families were more abundantly expressed in the bundle sheath 

cells of F. ramosissima (C3-C4 intermediate) but not in F. bidentis (C4).  

 To date, no known targets of conserved miRNAs in Flaveria spp. have been identified. 

From the three degradome libraries constructed, only a small number of homologs of conserved 

miRNA targets were identified. Rather, non-conserved targets of conserved miRNAs were 

identified.
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 In the degradome libraries of F. robusta (C3), REVOLUTA (member of homeodomain-leucine 

zipper family), Target of early activation tagged (EAT) and Molecular chaperone DnaJ were 

identified as potential targets of miR166, miR172 and miR319, respectively. In the libraries of F. 

ramosissima (C3-C4 intermediate), Protein ABIL4, hypothetical protein and 

Choline/ethanolamine and phosphotransferase 1 respectively were identified as potential targets 

of miR159, miR160 and miR168, respectively. Lastly in the libraries of F. bidentis (C4), MYB 

domain protein, hypothetical protein 111 and Protein tyrosine phosphatase transcripts were 

identified as potential targets of miR398, miR858b and miR858c respectively.  

 Overall the results did not identify any potential target transcripts that can be directly 

associated with photosynthesis. However, due to the lack of a sufficient number of annotated 

transcripts from the Flaveria spp., we were prevented from identifying all miRNA targets. The 

missing link between the conserved miRNAs in Flaveria spp. and their roles in photosynthesis 

could be best elucidated with help of a well-assembled transcriptome database of Flaveria spp. 

This will assist in identifying all the potential miRNA targets that could function in 

photosynthesis regulation. 

 In conclusion, this study contributes to unearthing the identity of miRNAs in Flaveria 

spp. Most importantly, the expression profiles of conserved miRNAs differed greatly in leaves, in 

mesophyll cells and in bundle sheath cells of F. robusta (C3), F. ramosissima (C3-C4 

intermediate) and F. bidentis (C4). Such differences in miRNA expression patterns in C3, C3-C4 

intermediate and C4 Flaveria spp. makes them potential regulators of photosynthesis.  
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