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Abstract: This dissertation reports on the experimental investigation of quantum state 
evolution using the atomic-optical quantum delta kicked rotors (AOQDKR) with a Bose-
Einstein condensate (BEC) of 87Rb atoms. To achieve the AOQDKR, a BEC was 
periodically exposed to short pulses of a horizontal optical standing wave which was 
formed from the interference of two off-resonant laser beams. In the first set of 
experiments, the fidelity (overlap) between the perturbed and unperturbed quantum states 
was studied. To study the fidelity of quantum state evolution, ε-classical maps with 
different kicking strength was given. It shows that as the kicking strength gets stronger, 
the area of the island is smaller while the chaotic region gets bigger. Experimentally a 
perturbation was introduced to the system by applying different kicking strength, the 
overlapping of the momentum distribution of these two sets of experiments decays with 
the perturbation. The effect of finite pulse length was also discussed: the fidelity decay 
rate is proportional to the pulse length. In the second set of experiments, the quantum 
ratchet with different initial states was studied. The theoretical analysis of the intrinsic 
mechanism of a quantum ratchet illuminates that peaks in the wave function of the initial 
state containing more than one plane waves arise at positions where the gradient of the 
standing wave happens to be the greatest. The more of the plane waves, the higher and 
narrower of the peaks. Experiments were carried out to observe an on-resonant atomic 
ratchet by exposing an initial atomic state which was a superposition of two or more 
momentum states to the AOQDKR. The dispersion of the momentum of ratchet current 
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CHAPTER I

INTRODUCTION

1.1 Bose-Einstein condensate

Bose-Einstein condensation (BEC) is one of the most special properties for bosonic atoms.

At very low temperatures, a large fraction of these atoms can rapidly enter the very lowest

motional energy state. Atoms in such state are undistinguishable from one another. Because

they are similar to each other and cannot be distinguished, this state of matter is sometimes

called a “super atom”. Temperature is really describing the range of speeds of the bunch

of atoms together. Since atoms in a BEC stay in the lowest energy level, the temperature

of BEC is the one closest to “absolute zero”, which is about 10�9K for Alkali atoms in

a typical optical trap. In 2001 Eric Cornel and Carl Wieman from JILA, University of

Colorado (Anderson et al., 1995) and Wolfgang Ketterle from MIT (Davis et al., 1995a)

won the Nobel Prize for realizing a BEC in a dilute gas.

The history of BEC begins with Satyendra Nath Bose in the early 1920s. Bose assumed

certain rules for deciding when two photons should be counted up as either identical or

di↵erent. We now call these rules “Bose statistics” (Bose, 1924). This concept attracted

Einstein’s attention and later was applied on the case of noninteracting atoms by Einstein

which is now known as “Bose-Einstein Statistics” (Einstein, 1924, 1925).

It is di�cult to realize BEC: on the one hand we want atoms to have a very low temperature,

while on the other hand we need atoms to stay in a gaseous state. Perhaps the first step
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along the road to achieving BEC was the creation of the magnetio-optical trap (MOT).

Migdall, et al. first suggested the idea of the (MOT) in 1985 (Migdall et al., 1985). Chu,

et al. observed optically trapped atoms by applying six laser beams from six directions in

1986 (Chu et al., 1986). Robb, et al. realized the first MOT in 1987 (Raab et al., 1987).

Davis, et al. and Petrich, et al. firstly demonstrated evaporative cooling in 1994 (Petrich

et al., 1994; Davis et al., 1994).

In general, to make a BEC one should prepare a source of cold atoms, load the atoms into

a magnetic or far-o↵-resonant optical trap (FORT) and evaporate the hot atoms or atoms

with high energy to reduce the temperature to get BEC. For preparing a source of cold

atoms, almost all of the research groups use a MOT. A MOT utilizes the combination of

magnetic fields and laser light to trap and cool the atoms. However, the lowest temperature

and highest phase space densities (a space in which all possible states of a system are

represented) achievable with a MOT are not good enough to realize a BEC. That is the

reason to use a FORT and evaporation. A FORT is used to increase the density of cold

atoms and has the advantage that constituent light is too far from resonance to heat the

atoms up by spontaneous emission.

1.2 Thesis organization

Two important aspects of the atom optics kicked rotor are investigated in this thesis: fidelity

of quantum state and quantum ratchet. In order to provide a theoretical and experimental

backdrop for these two studies, we start Chapter 2 with a review of the atom-optics quantum

delta kicked rotor. In this Chapter we discuss the connections between the classical delta

kicked rotor and quantum delta kicked rotor as well as the di↵erences. Phenomena quantum

resonance and quantum anti-resonance are also discussed. The nonlinearity of the system

which is because of the interaction of the atoms is also discussed in this Chapter.

The quantum delta kicked rotor in experiments is sending a pulsed standing wave of light

detuned from atomic resonance to a BEC. Thus an overview of the realization of BEC is
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discussed in Chapter 3. The theoretical background including laser cooling, magneto-optical

trapping, far-o↵-resonance trapping, and evaporative cooling is given in this Chapter.

A detailed description of the components used in the experiments and their purpose are

given in Chapter 4, which is organized in a manner that gives a step by step by tour in the

lab. The experimental set up includes rubidium dispenser, vacuum system, laser optical

system, MOT beam alignment, polarization of the MOT beam, magnetic coil, CO
2

laser,

imaging system, BEC procedure, and kicking system.

The evolution of quantum state under a small perturbation is the the subject of Chapter

5. In order to study how stable are the quantum states under the application of a small

perturbation, experiments with and without the small perturbation are conducted. The

overlap of perturbed and unperturbed quantum states which is known as fidelity is studied.

The ✏-classical maps with di↵erent kicking strength is also given in this Chapter.

In Chapter 6, the theoretical intrinsic mechanism of quantum ratchet is discussed. Di↵erent

quantum ratchet with di↵erent initial states are given theoretically and experimentally. The

sensitivity of the ratchet to the phase of the initial state is also investigated. Some other

experiments with di↵erent time between pulses is performed too.

Finally, in Chapter 7 the summary of the thesis and the outlook for the future work are

laid out.
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CHAPTER II

THE ATOM-OPTICS QUANTUM DELTA KICKED ROTOR

One of the most important questions in physics that needs to be solved is to understand-

ing the crossover between classical and quantum behavior. In a classical nonlinear system,

the boundary between the two paradigms becomes clear. Classically, the nonlinear system

exhibits chaos and it is impossible to predict its long term behavior. However, because of

linearity of the Schrödingier equation, an equivalent quantum mechanical system is com-

pletely determined. The atom-optical delta kicked rotor is one tool to study this behavior

and can be realized with a sample of ultra-cold atoms kicked by short pulses of an optical

standing wave.

2.1 Classical �-kicked rotor

The �-kicked rotor is a quantum pendulum exposed to a potential which is on and o↵

periodically in time (Haake; Stöckmann; Izrailev, 1990; Fishman, 1996). The model can be

defined as a particle of mass M with linear momentum p̂, constrained to move in circle of

radius R, which is driven by a periodic constant force referred to as kicks. The model is

sketched in Figure 2.1, together with the train of periodic �-like kicks. The Hamiltonian of

the kicked rotor is

H =
J 02

2I
+ V

0

cos(✓)
X

q

�(t � qT ). (2.1)
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Here J 0 = |~R ⇥ ~p| is the angular momentum and I = MR2 is the moment of inertia, ✓ is

the angular displacement, V
0

is the kick strength, t is the time and q is the number of the

kicks which are switched on at time intervals of T . The Hamiltonian equations of motion

can be written as

@H

@✓
= �J̇ 0 = V

0

sin(✓)
X

q

�(t � qT ) (2.2)

@H

@J 0 = ✓̇ =
J 0

I
. (2.3)

Integrating equation 2.2 and 2.3 over one period between t = N and t = N + 1, one get

✓q+1

� ✓q =
J 0
q+1

T

I
(2.4)

J 0
q+1

� J 0
q = V

0

sin ✓q. (2.5)

By applying the rescaled variables J = J 0T
I and K = TV0

I , equation 2.4 and 2.5 can be

written as

✓q+1

= ✓q + Jq+1

(2.6)

Jq+1

= Jq + K sin ✓q. (2.7)

This is known as the Chirikov-Taylor standard map where the dynamics are completely

determined by the stochasticity parameter K (Gutzwiller, 1990; Chirikov, 1979). As shown

in Figure 2.2, the phase space (✓, J) is dominated by stable closed curves for small values

of K, while chaotic regions dominate the phase space for large values of K. The transition

from stability to global chaos occurs at K ⇡ 0.9716 (Greene, 1979; MacKay, 1983).

2.2 Atom optics �-kicked rotor

The quantum �-kicked rotor is the quantum mechanical analogue of the classical �-kicked

rotor. It can be realized by exposing a sample of atoms to short periodic pulses of far-

5



θ

F=g(t)sin(θ)

T

g(t)

t

Figure 2.1: Periodically kicked quantum pendulum, where the kicking force F (t) is periodic
with time interval T and in the angle variable ✓.
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Figure 2.2: Classical �-kicked rotor phase space for di↵erent kick strengths K. As K
increases, the chaotic region gets bigger.
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detuned light (Moore et al., 1994). The Hamiltonian is

H =
P̂ 2

2M
+ ~�d cos(GX̂)

tX

q=0

�(t � qT ), (2.8)

here P̂ is the momentum, M is the mass of an atom, G = 4⇡
� = 2⇡

�G
is the grating wave

vector with �G the spatial period of the standing wave, X̂ is the position, t is the continuous

time variable, q is the number of kicks with time interval T , and �d = ⌦

24t
8�L

is the strength

of the kick, where ⌦ is the Rabi frequency between the ground and excited states, 4t is the

length of a pulse and �L is the detuning of the laser frequency from the atomic transition.

Writing the above Hamiltonian in dimensionless units is more convenient, which is

H =
p̂2

2
+ �d cos(x̂)

tX

q=1

�(t0 � q⌧). (2.9)

Here H = MH
~2G2 and t0 = 2⇡t

T 1
2

. p̂ =
ˆP

~G is the scaled momentum in unit of two photon recoils.

x̂ = GX̂ is the scaled position in units of spatial period of the standing wave. ⌧ = 2⇡T
T 1

2

is

the scaled pulse period, where T 1
2
= 2⇡M

~G2 is the half Talbot time. When the pulse period is

an integer multiple of the Talbot time (TT = 4⇡M
~G2 ), the free evolution of the wave between

application of the kicking force can be neglected (Deng et al., 1999; Lepers et al., 2008).

The periodic potential provides the connection between the particle propagating along it

and the kicked rotor: the position of the particle can be folded into an angular coordinate

✓ = x mod 2⇡. From the quantum mechanical perspective the periodicity of the potential

allows one to use Bloch’s theorem on the atomic de-Broglie wave (Kittel and McEuen,

1976). The solutions are then invariant under translations by one period of the particle

quasimomentum. If we write the momentum as p = n + �, where n is the integer part

and � is the fractional part. � is also called the quasimomentum. In terms of photon

exchange, each atom absorbs a photon from one of the standing wave beams followed by

its subsequent stimulated emission into the other beam. The net result is that the atomic

momentum can only change by two photon recoils (~G) leaving the fractional part of its

momentum (quasimomentum) unchanged.
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2.3 Quantum resonance and anti-resonance

The Standard map can be quantized and the state evolution from one kick to immediately

before the next kick is determined by the unitary Floquet operator

Û = ÛfreeÛkick

= e�i p̂
2

2 ⌧e�i�d cos(x̂). (2.10)

Û describes a free evolution given by e�i p̂
2

2 ⌧ , followed by the kick operator e�i�d cos(x̂). The

wave function after t kicks is given as

| (t⌧)i = Û t| (0)i. (2.11)

When the time period ⌧ is an integer multiple of 4⇡, ⌧ = 4⇡`, the free evolution factor is

unity. The system evolves freely over the kicking period with phases that are determined

by the eigenenergies n2

2

. The free evolution is that e�in
2

2 ⌧ = 1. So the application of t

kicks with strength �d is equivalent to the application of one kick with strength t�d. The

operator for t kicks is

Û t = e�it�d cos(x̂). (2.12)

The probability for the atoms on initial momentum state |0i to be transferred to the state

|ni by t kicks is

pn = |hn|Û t|0i|2

= J2

n(t�d). (2.13)

Here the kick operator is expanded in the momentum basis by the Jacobi-Anger relation

e�it�d cos(x̂) =
1X

n=�1
(�i)nJn(t�d)e

inx̂, (2.14)

9



where Jn is the Bessel function of first kind and order n. Then the mean energy at the end

of t kicks is

hEi =
1X

n=�1
n2pn

=
1

2
t2�2d. (2.15)

This is the very typical characteristic of a quantum rotor resonance: the mean energy grows

quadratically in time, as shown in Figure 2.3.

Let’s consider the situation that the time period ⌧ is an odd integer multiple of 2⇡ with

zero initial momentum state. The wave function after one period evolution is

| (T = T 1
2
)i = e�i p̂

2

2 ⌧e�i�d cos(x̂)| 
0

i

=
1X

n=�1
(�i)nJn(�d)e

inx̂e�i⇡n2 | 
0

i

=
1X

n=�1
(i)nJn(�d)e

inx̂| 
0

i

= ei�d cos(x̂)| 
0

i. (2.16)

The phase factor can be canceled by the next kick operator Ûkick It shows that when the

kicking period is an odd integer multiple of 2⇡, the phase evolution changes the sigh and

can be canceled by the next kick with the same kicking period showed in Figure 2.3. This

phenomenon is known as quantum anti-resonance.

2.4 Nonlinearity

In the study of atom-optics quantum delta kicked rotor, it is necessary to account for

the interaction of the atoms. This is known as the nonlinearity and chaotic behavior can

originate from these many-body dynamics. We use the time-dependent Gross-Pitaevskii

equation to describe a BEC in a harmonic confinement with nonlinearity. This equation

10



Figure 2.3: Momentum distribution according to number of kicks at quantum resonance
(a) with a quadratic growth in mean energy (b) and anti-resonance (c) with an oscillation
mean energy (d).
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has the following form (Wimberger et al., 2005):

i~@ (~r, t)
@t

=

"
�~2r2

2M
+

M!2

xx
2

2
+

M!2

r⇢
2

2
+ V

0

cos(2kLx)
+1X

m=�1
F (t � mT ) + gN | (~r, t)|2

#
 (~r, t),

(2.17)

with ⇢2 = y2 + z2.  (~r, t) represents the condensate wave function, and M is atomic mass.

The nonlinear coupling constant is given by g = 4⇡~2a/M , N is the number of atoms in the

condensate, a is the s-wave scattering length and kL is the wave vector of the laser creating

the optical potential. Assuming the laser is switched on at time instants separated by T ,

with maximum amplitude V
0

and periodic pulse shape function F (t) of unit amplitude and

duration �T ⌧ T . Here the fifth term is the nonlinear term. Therefore the mean field

energy for a system is

Emeanfield =
4⇡~2a

M
n0, (2.18)

with n0 represents the density of the atoms in a condensate.

It is not good to look at the nonlinearity isolated from the other energies in the system. We

should compare the nonlinearity with other energy like the recoil energy of a laser pulse to

determine if the nonlinear e↵ect should be counted. The recoil energy of the laser pulse is

Erecoil =
V
0

~
�T

, (2.19)

where �T is the pulse length. It is easy to get the ratio of the mean field energy to the

recoil energy:

r =
Emeanfield

Erecoil
=

4⇡~a�Tn0

MV
0

. (2.20)

To determine the density of the atoms n0 in a condensate, we need the number of the

atoms in a condensate and the volume of the condensate. It is not hard to estimate the

number of the atoms in a condensate by using matlab program. In our lab the average

number of atoms in a BEC is about 70, 000. However we can’t directly measure the volume

of a BEC because BEC is generated at the center of a vacuum chamber. What we can

do is estimate the diameter of the CO2 beam at the center of the vacuum chamber. The
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estimated diameter of the CO2 beam is no less than 20µm, thus the volume of a BEC is no

less than 8⇥10�15m3. As a result, the estimated density of the atoms n0 is about 1019m�3.

The s-wave scattering length a is 10�9m3 for Rubidium atoms, the pulse length �T in our

experiments is 0.56⇥10�6s, the atomic mass M is 1.44⇥10�25kg, and the amplitude of the

pulse V
0

is no more 10. Therefore, the reasonable value of the ratio of the mean field energy

to the recoil energy in our lab is about 10�5, which means the nonlinearity is negligible and

can be ignored.
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CHAPTER III

LASER COOLING AND TRAPPING

3.1 Magneto-optical Trap

The technique of a magneto-optical trap uses laser cooling in conjunction with magnetic

trapping to create samples of cold, neutral atoms at temperatures around 10�6K. Atoms in

MOT are slowed to speeds of 10 centimeters per second.

3.1.1 Laser cooling

The very basic idea of laser cooling is that by shining laser light on atoms, photons bounces

o↵ of atoms with more energy than when they hit the atoms which makes atoms slower,

in other words colder. Steven Chu and his co-workers won the Nobel Prize in 1997 for

experimentally realizing it (Chu et al., 1986).

Photons have very little momentum. Compared to atoms, they are like ping-pong balls

compared to a moving train. It is possible to change the speed and direction of a train

by shooting enough ping-pong balls at it. Similarly, when an atom absorbs a photon, it

is kicked in the direction of the photon before absorption. However, only the light with

exactly the right frequency can do this (Allen and Eberly, 2012).

Then Doppler shift is applied to avoid hitting the slow atoms while hitting the fast atoms to

slow them down. The Doppler shift says that when the observer is moving toward the source

14



of the wave, it sees the wave frequency shifted to a bluer color, and when it is going away

from the source of the wave, it sees the wave frequency shifted to a redder color (Ballot,

1845). So with the laser light frequency detuned below the atomic resonant frequency, atoms

traveling towards the laser source see the laser light shifted closer to resonant frequency.

As a result, the atoms scatter more photons and decrease the velocity. If atoms travel away

from the laser source, they see the laser light shifted further away from resonant frequency.

In that case, the laser light just goes right by the atoms (Chu et al., 1985).

With just one detuned laser beam it can only slow atoms down in one direction. But the

atoms in the chamber are bouncing around in all directions. To slow all the atoms down one

need to send three pairs of counter propagating laser beams in three orthogonal directions

into the chamber. Note that this damping force is velocity-dependent and non-conservative.

Then if all the laser beams are detuned below the atomic resonant frequency all the atoms

will get cold. Physicists call this optical molasses.

To derive the damping force equation, we start from the quantum mechanical force operator,

F̂ = �rĤ, (3.1)

whose expectation value is the average damping force. Here Ĥ(t) = Ĥ
0

+ Ĥ 0(t) is the total

system Hamiltonian with Ĥ
0

, the field free time independent Hamiltonian and Ĥ 0(t), the

time dependent interaction Hamiltonian. The expectation value is given by

hF̂ i = Tr(⇢̂F̂ ), (3.2)

where ⇢̂ is the density matrix. Its time evolution is given by

d⇢̂

dt
= � i

~ [Ĥ, ⇢̂], (3.3)

here

[Ĥ, ⇢̂] = Ĥ ⇢̂� ⇢̂Ĥ. (3.4)
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For Ĥ
0

, its eigenvalue is En = ~!n and the eigenfunctions are �n(~r) which are linearly

independent and form a complete set. To calculate the force on the atoms by the laser field,

it is good to start with the solution of the time dependent Schrödinger equation

Ĥ(t) (~r, t) = i~@ (~r, t)
@t

. (3.5)

Here the wave function  (~r, t) can be expanded in terms of �n(~r), thus

Ĥ(t) (~r, t) = [Ĥ
0

+ Ĥ 0(t)]
X

k

ck(t)�k(~r). (3.6)

Applying Eq. (3.6) to Eq. (3.5), integrating over spatial coordinates ~r and multiplying by

�⇤j (~r) one gets

i~dcj(t)

dt
= cj(t)Ej +

X

k

ck(t)Ĥ
0
jk(t), (3.7)

where Ĥ
0
jk(t) = h�j |Ĥ 0

(t)|�ki. When considering a simple two state atom the problem is

known as the Rabi two-level problem and has two coupled di↵erential equations (Allen and

Eberly, 2012)

i~dcg(t)

dt
= cg(t)(Eg + Ĥ

0
gg) + ce(t)Ĥ

0
ge(t), (3.8)

and

i~dce(t)

dt
= ce(t)(Ee + Ĥ

0
ee) + cg(t)Ĥ

0
eg(t). (3.9)

Where Ĥ
0
ge(t) = Ĥ

0⇤
e.g.(t). The subscripts e and g are excited and ground states respectively.

The interaction term is given by Ĥ
0
eg(t) = �~µ · ~E(~r, t) (Bernath, 2005). Here ~E(~r, t) is the

electric field and ~µ = qhe|~✏·~r|gi is the induced dipole moment with the light polarization unit

vector ~✏. Due to the odd parity of Ĥ
0
, only opposite parity atomic states can couple through

the dipole interaction (Ĥ
0
ee(t) = Ĥ

0
gg(t) = 0) giving the final form of the Hamiltonian matrix

as

Ĥ =

0

B@
0 �~µ · ~E⇤(~r, t)

�~µ · ~E(~r, t) ~!e

1

CA . (3.10)
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By applying Eq. (2.10) to Eq. (2.3), the time evolution of the density matrix is

0

B@
⇢̇gg ⇢̇⇤eg

⇢̇eg ⇢̇ee

1

CA = i

0

B@
⌦⇤(~r, t)⇢eg � ⌦(~r, t)⇢⇤eg !e⇢

⇤
eg � ⌦⇤(~r, t)u

�!e⇢eg + ⌦(~r, t)u �⌦⇤(~r, t)⇢eg + ⌦(~r, t)⇢⇤eg

1

CA , (3.11)

where ⌦(~r, t) = ~µ · ~E(~r, t)/~ is the Rubi frequency and u = ⇢gg � ⇢ee is the population

di↵erence. For a closed two level system, the total population is conserved so ⇢ee + ⇢gg = 1

and ⇢eg = ⇢⇤ge. Thus the optical Bloch equation can be written as (Metcalf and Van der

Straten, 1999)
d⇢eg(t)

dt
= ��

2
⇢eg � i!e⇢eg + i⌦(~r, t)u (3.12)

and

du

dt
= �(1� u) + i

⇥
⌦⇤(~r, t)⇢eg � ⌦(~r, t)⇢⇤eg

⇤
. (3.13)

The spontaneous emission rate is � = !3

`µ
2/3⇡✏

0

~c3, where !` is the laser frequency. The

first term in the equations represent the e↵ect of spontaneous emission in the evolution of

the density matrix. By rewriting ⇢eg = �ege
�i!`t and ~E(~r, t) = ~E(~r) cos(!`t) Eq. (3.12)

and Eq. (3.13) reduce to

d�eg
dt

= �
⇣�
2
� i�

⌘
�eg +

iu⌦(~r)

2
(3.14)

and

du

dt
= �(1� u) + i

⇥
⌦⇤(~r)�eg � ⌦(~r)�⇤eg

⇤
. (3.15)

We ignore the the terms with high frequencies 2!` because they average to zero. � = !`�!e

is the laser frequency detuning from the atomic transition. The steady solutions of Eq.

(3.14) and Eq. (3.15) are

�eg =
2⌦

��� + i�
2

�

�2

1 +

⇣
2�
�

⌘
2

+ 2⌦

2

�2

� (3.16)

and

u =
1 +

⇣
2�
�

⌘
2


1 +

⇣
2�
�

⌘
2

+ 4⌦

2

�2

� . (3.17)
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For the case where electric field is produced by a traveling wave propagating in z-direction,

E(z) = E
0

cos(kz � !`t). By applying Eq. (3.10) in Eq. (3.1), the force operator can be

written as

F̂ =

0

B@
0 µ@E⇤

(z)
@z

µ@E(z)
@z 0

1

CA . (3.18)

Thus Eq. (3.2) can be written as

hF̂ i = Tr(⇢̂F̂ ) = µ
@E

@z
�⇤ege

i!`t + µ
@E⇤

@z
�ege

i!`t. (3.19)

Substituting Eq. (3.16) in Eq. (3.19), the force on a stationary atom is

F =
~k�s

2


1 +

⇣
2�
�

⌘
2

+ s

� , (3.20)

where s = 2⌦2/�2 is the saturation parameter.

For the case of an atom moving with velocity v, because of Doppler shift it will see the

laser frequency detuned by � ± kv. The plus (minus) sign refers to an atom moving in the

opposite (same) direction to the laser beam. Thus the force on a moving atom is

F = ± ~k�s

2


1 +

⇣
2(�⌥kv)

�

⌘
2

+ s

� , (3.21)

where the plus (minus) refers to the force applied on an atom moving along (opposite)

the direction of light field. Considering the case of an atom experiencing two counter

propagating beams in z-direction, the total force on the atom will be

F =
~k�s

2


1 +

⇣
2(��kv)

�

⌘
2

+ s

� � ~k�s

2


1 +

⇣
2(�+kv)

�

⌘
2

+ s

� . (3.22)
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Assuming Doppler shift is smaller than �, the damping force is a velocity dependent force

F = ��v, where �, the damping coe�cient, can be written as

� =
8~k2s�

�
h
1 + 4

�2 (� � kv) + s
i h

1 + 4

�2 (� + kv) + s
i . (3.23)

This equation can be understood as with laser frequency detuned below zero i.e., � <

0, atoms traveling towards the laser source see the laser light shifted closer to resonant

frequency while atoms traveling away from the laser source see the laser light shifted further

away from resonant frequency (Shrestha, 2013).

With this damping force one may think of slowing atoms down to velocity zero and obtaining

temperature zero. This is impossible, because of the recoil e↵ect of a single photon. This

is the ultimate limit of temperature for atoms to be cooled using laser beams. The random

nature of the photon scattering process causes a di↵usion of atoms in momentum space

and atoms are heated. When the laser cooling rate is equal to the recoil heating rate, the

temperature is the lowest one for optical molasses. This is called Doppler temperature TD

and is given by

TD =
~�
2kB

, (3.24)

where kB is the Boltzmann constant and � is the nature line width. For rubidium 87 the

Doppler temperature is 146 µK.

It was surprising that in early experiments a temperature was found which was much lower

than the Doppler temperature (Lett et al., 1988). This sub-Doppler temperature can be

explained by the theory of multilevel structure of the atomic states and the optical pumping

among these sublevels (Phillips, 1998; Gould et al., 1987). Ultimately however, the lowest

temperature achievable by laser cooling will be determined by the energy of a single photon.

This is known as the recoil temperature and is given by

Tr =
~2�2

mkB
, (3.25)

which is 360 nK for rubidium 87.
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3.1.2 Magneto-optical Trap

Magneto-optical trapping (MOT) is the most popular approach for setting up an appa-

ratus for trapping neutral atoms. The very basic idea for a MOT is that an appropriate

inhomogeneous magnetic field and arrangement of near-resonant laser beams leads to a

trapping force. For simplicity, consider atomic transitions where Jg = 0 and Je = 1. To

further simplify the model let us assume that the atomic motion is only in the z-direction.

Atoms are subjected to a linearly inhomogeneous magnetic field B(z) = B
0

z, which splits

the excited state into its three Zeeman components Me = �1, 0, and +1 shown in Figure

3.4. Adding two counter-propagating laser beams of opposite circular polarization, each

detuned below the zero field atomic resonance completes the requirements for making the

MOT. For B > 0, because of the Zeeman shift, the excited state Me = +1 is shifted up while

the excited state Me = �1 is shifted down. At position Z 0, the magnetic field tunes the

�M = �1 transition closer to resonance (or closer to laser frequency) and the �M = +1

transition further away from resonance. The polarization of the laser beam incident from

right is chosen to be �� and correspondingly for the one incident from left the polarization

is �+. Thus more photons are scattered form the �� beam than the �+ beam. As a result,

the atoms are driven towards the center of the trap where the magnetic field is zero. On the

other side of the center of the trap, for B < 0 the shift of the Me = ±1 states are reversed,

and more photons are scattered from �+ beam. So the atoms sitting at the left side are

driven towards the center of the trap as well. In the optical molasses, the damping force

due to the Doppler shift slows down the atoms and the magnetic field facilitates pushing

atom to the center of the trap. A 3D extension of a MOT scheme can be implemented by

using three pairs of counter-propagating laser beams in three orthogonal directions.

3.2 Evaporative cooling

In the early days of laser cooling, there was a great hope that atoms could be cooled without

any limitations. However people later realize that it is impossible because of the recoil
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Figure 3.1: !` is the laser frequency. For atoms at position Z 0 the transition �M = �1 is
closer than �M = +1. More photons are scattered form the �� beam than the �+ beam.
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heating which is already discussed in the previous section. Thus the maximum achievable

phase space density, ⇢ = n�3dB, with laser cooling is about 10�5 to 10�4 (i.e. obtaining µK

temperatures), and the density of the atomic gas increases. But as the density increases,

the collision rate between atoms with one in the excited state increases as well. Since the

energy is inelastic, the energy exchange induces heating e↵ect on the atoms. As a result,

near resonance light should be avoided in order to obtain BEC. So laser cooling alone is

not enough for BEC. One way to increase phase space density is to use evaporative cooling

(Hess, 1985, 1986; Hess et al., 1987). This idea was firstly proposed by Harald Hess for

atomic Hydrogen. His idea was based on the preferential removal of atoms with energy

higher than the average from a trap, followed by rethermalization of the remaining atoms

by elastic collisions. Since both the temperature and volume decrease, the phase space

density can increase. In 1994 the technique was extended to alkali atoms by combining

evaporative cooling with laser cooling (Anderson et al., 1995).

3.2.1 Far-o↵-resonance trap

Evaporative cooling of atomic gases requires an environment for the atoms which insulate

them from the “hot world”. Therefore, a wall-free confinement of the atomic cloud would

be ideal. Because of the recoil limit, none of the elements of the MOT can be used. As a

result, there are mainly two methods used to provide this kind of confinement: magnetic

fields or far-o↵-resonant optical fields.

A far-o↵-resonant trap (FORT) is based on the fact that an o↵-resonant laser creates a

potential which is attractive or repulsive depending on whether it is red or blue detuned

from an atomic transitions. The trap depth depends approximately on the laser intensity

I divided by the detuning �` (U ⇡ ~I
4�`

), while the spontaneous scattering rate depends

on intensity divided by the square of the detuning (� ⇡ �I
4�2`

, where � is the spontaneous-

emission rate of the atom) (Miller et al., 1993). Therefore the advantage of a large detuning

is that one can reduce the rate of scatter while keeping the same potential well depth.
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3.2.2 Evaporative cooling

There are di↵erent models for the evaporative cooling process (Doyle et al., 1991; Davis

et al., 1995b; Wu and Foot, 1996). We will review a simple but instructive model which is

given by Davis et al. (Davis et al., 1995b). Evaporative cooling is the same physics that

cools a cup of hot co↵ee. In the co↵ee, the most energetic water molecules escape from the

cup and come o↵ as steam. When they do this, they take away more than their share of

heat, and the atoms left behind in the cup are colder because on average they have lost

energy. To make BEC, the most energetic atoms are allowed to escape from the FORT.

In Davis’s model, the trap depth is lowered in one single step to a finite value ⌘kBT . The

e↵ect of removal of high energy atoms on the thermodynamical quantities is calculated.

The remaining fraction of atoms is ⌫ = N 0

N . The decrease in temperature which is due to

the release of the hot atoms is defined as

� =
log(T 0/T )

log ⌫
. (3.26)

Here the primed quantities refer to values after the evaporative cooling process. In a d-

dimensional potential, U(r) / r
d
⇠ and the volume V / T ⇠ (Bagnato et al., 1987) where

⇠ describes the type of the potential. Thus the scaling of the important thermodynamic

quantities are N 0 = N⌫, T 0 = T⌫� , and V 0 = V ⌫�⇠. The phase space density ⇢ = n�3dB

scales as ⇢0 = ⇢⌫1��(⇠+ 3
2 ). Here the value of ⇠ describes the type of the potential. For a

linear potential like a spherical quadrupole trap ⇠ = 3, while for a harmonic potential as in

an optical trap ⇠ = 3

2

. One can track the evolution of the thermodynamical quantities with

the lowering of the trap depth if ⇠, ⌫(⌘) and �(⌘) are given. The density of states for atoms

in a trapping potential U(x, y, z) is

D(E) =
2⇡(2M)

3
2

~3

Z

V

p
E � U(x, y, z)d3r. (3.27)
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After the trap depth has been decreased to ⌘kBT , the fraction of atoms remaining in the

trap is

⌫(⌘) =
1

N

Z ⌘kBT

0

D(E)e
�E�µ

kBT dE, (3.28)

where µ is the chemical potential of the gas. The occupation number is given by the

Maxwell-Boltzmann distribution e
�E�µ

kBT since the e↵ects of quantum statistics can be ne-

glected for a dilute gas. One can rewrite Eq. (3.24) as

⌫(⌘) =

Z ⌘

0

�(✏)e�✏d✏ (3.29)

where ✏ = E
kBT is the reduced energy and the reduced density of states is

�(✏) =
✏
1
2+⇠

�(3
2

) + ⇠
. (3.30)

After truncation, the total energy of the atoms is ↵(⌘)NkBT where

↵(⌘) =

Z ⌘

0

✏�(✏)e�✏d✏. (3.31)

Therefore the average total energy per atom in units of kBT is ↵(⌘)/⌫(⌘). For ⌘� > 1,

the average total energy is ↵(1)/⌫(1) = (3
2

+ ⇠)/1. Thus the decrease in temperature is

T 0

T
=

↵(⌘)/⌫(⌘)

↵(1)/⌫(1)
. (3.32)

Plugging Eq. (3.28) to Eq. (3.22), one get

�(⌘) =
log

h
↵(⌘)

⌫(⌘)↵(1)

i

log [⌫(⌘)]
. (3.33)

For a specific type of potential one can determine the value of �. For ⇠ = 3

2

,

⌫(⌘) =
1

�(3)

Z ⌘

0

✏2e�✏d✏ = 1� 2 + 2⌘ + ⌘2

2e⌘
, (3.34)
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and

↵(⌘) =
1

�(3)

Z ⌘

0

✏3e�✏d✏ = 3� 6 + 6⌘ + 3⌘2 + ⌘3

2e⌘
, (3.35)

where �(n) = (n� 1)! and
R

u(x)v(x)dx = u
R

vdx� R
u0 R vdxdx. Here it can be seen that

for the same truncation, a higher phase space density is achieved with a larger ⇠ due to a

faster shrinking of volume with decreasing temperature (V 1T ⇠) (Talukdar, 2010).
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CHAPTER IV

EXPERIMENTAL APPARATUS

A detailed description of the components used in the experiments and their purpose are

given in this chapter. It will be organized in a manner that gives a step by step tour in

the lab. We choose rubidium 87 as the atom and place them in a chamber which is kept

in an ultra-high vacuum by the vacuum system. All the light with the right frequencies

is prepared on one optical table, and is then sent to the other table on which the vacuum

chamber is placed. The laser beams are sent into the chamber from six directions. With

the help of a magnetic field, which is generated by strong currents in a pair of coils, atoms

can be trapped when a MOT is formed. Then a CO
2

laser beam is sent right through the

cloud of atoms to further cool them down. The BEC is invisible, so we need some imaging

beam to make it visible. Thus imaging system is introduced.

4.1 Rubidium dispenser

We use a rubidium dispenser in our lab as the source of atoms. The reasons we use rubidium

87 are:

a) The excitation frequency from the ground state to the first state is in the near IR region,

thus it is possible for one to generate the light with a cheap diode laser.

b) Because rubidium has high vapor pressure at room temperature, it is easy to generate

enough atomic vapor with a small current.
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c) The collision properties make it easy to lower the temperature of the atoms to an ultra

cold temperature with evaporative cooling.

Rubidium dispensers are widely used in atomic research to make simple atom sources. In

the dispensers, atoms are released from a metal surface as the temperature increases. We

send current through the dispenser, and control the temperature by increasing or decreasing

the current. Thus, finding the right current is important. With too low a current, the MOT

will be too small to generate a BEC. With a too high a current, the possibility of collision

between atoms will increase dramatically and the atom energy cannot be lowered further.

Also too many background collision makes it hard to hold the atoms in the FORT for

very long. Besides, high current will decrease the life expectancy of the dispenser as well.

For a new rubidium dispenser, the current can be set at 2 A and be gradually increased

to 4 A near the end of its life when the dispenser has been depleted of rubidium atoms.

Usually, we choose the current in which the MOT loading time is about 20 seconds. Our

rubidium dispenser is a commercial product from SAES Getters (RB/NF/4.8/17FT10+10).

To start a new dispenser, it needs to be run at high current for several minutes to remove

the oxide layer. During the initial bake out of the vacuum system, it is also necessary to

run the dispenser at a high current for several minutes to remove the absorbed water and

other impurities. We installed three rubidium dispensers in the vacuum chamber which can

support experiments for several years.

4.2 Vacuum system

The vacuum system mainly consists of vacuum chamber and pump. A good vacuum cham-

ber has to attain an ultra-high vacuum and have good optical access. The vacuum chamber

is the heart of the BEC experiment and is where the atoms are trapped, BEC generated,

and the experiment carried out. Our vacuum chamber consists of a six-way cross with an

octagonal multiport chamber from MDC vacuum products attached to one of the flanges.

These components are all stainless steel and are shown in Figure 4.1. There are four 2

inch diameter antireflection coated and quartz viewports for directing the MOT beams into
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the chamber. There are four 1 inch diameter ZnSe viewports with low absorption at 10.6

µm which are used for directing the high power CO
2

laser beams into the chamber. One

5 inch diameter quartz viewport is attached to one side of the six way cross and another

is attached to the large opening on the orthogonal chamber. Each viewport had a conflat

flange sealing surface which enabled baking to 200oC.

There is an outlet valve that can be connected to a turbo-molecular pump (model number

151 C) on one side of the six-way cross which is used during the initial pumping of the

vacuum system. On another side of the six-way cross there is a two port generic Varian

style 8liter/s ion pump powered by Terrenova 751 controller. Three SAES Getter rubid-

ium dispenser sources are installed in the vacuum chamber and are connected to electric

feedthrough terminals installed on one side of the six-way cross. The remaining side of the

six way cross was sealed. It was very important to reduce stray magnetic fields in the region

of the MOT. Thus the vacuum chamber was shielded from the ion pump’s magnetic field

using magnetic shield.

Prior to assembling the vacuum system, all parts were cleaned with methanol to remove

any foreign material. To prevent contamination, gloves were worn to handle the clean

components as well. Argon gas was pumped into the system, during the assembly of the

viewports, to minimize the build up of normal atmospheric gas (especially water vapor) on

the vacuum walls. A Leybold Trivac-b model D1.6B rotary vane roughing pump maintained

proper inlet pressure for the turbo pump. This step only takes a few minutes. Then the

Turbo-molecular pump is on and maintains a minimum pressure of 8 ⇥ 10�9 Torr with

an inlet pressure of 10�3 Torr. The Varian 0351 vacuum gauge is installed to indicate

pressures in the range of atmospheric down to 10�4 Torr. Leaks were checked by applying

either helium gas or methanol. Its signal is a rapid rise in pressure on the vacuum gauge.

While the roughing and turbo pumps were working the vacuum chamber was baked in a

tent with insulating sides. The temperature was gradually increased in 20oC increments to

a maximum of 200oC over two days. Then the vacuum chamber was left to bake for three

days to ensure that most of the water and other impurities outgassed from the chamber’s

walls. While baking, the turbo-molecular pump was running to keep the pressure about
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Figure 4.1: Schematic drawing of the vacuum system showing the six-way cross and an
octagonal multi-port chamber.
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10�8 Torr. The temperature was decreased gradually and the heaters were turned o↵. A

Varian Valcon Plus 55 ion pump was used for further pumping the chamber. After a couple

of weeks of operation, the vacuum reached the low 10�11 Torr.

4.3 Laser optical system

One of the most important parts in generating a BEC is a frequency stabilized laser system.

Precise and rapid control of the laser frequencies and powers are required. All of the optics

necessary to prepare the laser light to trap and cool the atoms were placed on a single

optical table referred to here as the “laser table”. There are two sets of lasers set up on this

table: the mast laser (and associated injection locked slave lasers), and the repump laser.

One grating stabilized DL 100 Toptica laser in a temperature controlled housing was used

as the master laser, which was operated in cw mode and had an output power of about

20 mW. Its frequency was locked to a frequency near the transition between the 52S
1/2

F = 2 ground state and the cross over line between the 52P
3/2 F 0 = 2 and F 0 = 3 excited

states as shown in Figure 4.2. Because the output power was not su�cient to produce a

MOT, three other home built diode lasers were used as slave lasers. The slave lasers were

Sharp Microelectronics 784 nm wavelength diode lasers with a 100 mW maximum output

power. These slave lasers were powered by Thorlab LDC500 current controllers and the

temperature was maintained with a thermoelectric cooler driven by the Thorlab TEC2000

Thermoelectric Temperature Driver. Following the injection locking techniques, the modes

of the slave lasers were identical to the mode of the master laser. Another grating stabilized

DL 100 Toptica laser in a temperature controlled housing was used as the repump laser.

Its frequency was locked to a frequency near the transition between 52S
1/2 F = 1 ground

state and 52P
3/2 F = 2 excited state. Laser beams from the slave lasers and repump laser

were transferred to the BEC vacuum chamber table by optical fibers.
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Figure 4.2: Hyperfine splitting of rubidium 87 D2 line (Ye et al., 1996; Bize et al., 1999).
The transitions for the MOT light was on resonant between F = 2 and F 0 = 3; the transition
for repump was on resonant between F = 1 and F 0 = 2.
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4.3.1 Optical setup

Figure 4.3 shows the optical setup for the lasers and the optical components. The shape

of the collimated laser beam out of the master laser head was elliptical initially. The laser

beam profile was changed into a circular shape by passing through a pair of anamorphic

prisms. A half-wave plane was placed right after the anamorphic prisms and rotated the

beam polarization. There was a polarizing beam splitter cube (PBSC) placed after the

half wave plane with its rotation axis at 45o to the vertical. The half wave plane rotated

the beam polarization so that all the light went through the PBSC. After the PBSC there

was a Faraday rotator (isolator) which rotated the beam polarization from 45o clockwise

to horizontally polarized. Any reflected beam with horizontal polarization, passing from

the reverse direction through the Faraday rotator, had its polarization rotated in the other

direction and was eliminated by the PBSC in front of laser; while the injected beam with

a vertical polarization was not blocked by the PBSC and was sent into the laser head.

About 7 mW of light from the master laser was sent into main slave laser for injection

locking. To monitor if the laser frequency was correct or not, small amount of light was

sent through a rubidium vapor cell and into a Thorlab PDA 400 photodiode to see if there

was an absorption dip on the oscilloscope. All the rest of the lasers were setup with similar

procedures.

4.3.2 Saturated absorption spectroscopy

In order to lock the lasers, a saturated absorption spectroscopy signal for the master laser

and repump lasers was needed for input to the laser circuity. Since the hyperfine structure

of the saturated absorption spectroscopy covers a frequency range smaller than the Doppler

broadened spectrum, one more laser beam was needed to distinguish the fine spectral lines.

The technique of saturated absorption spectroscopy involved splitting the light exiting the

laser into a low power “probe” beam and high power “saturating” beam. The low power was

below the saturation intensity while the high power was above the saturation intensity. The

two beams were approximately counter propagating through a vapor cell. The probe beam
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Figure 4.3: Optical setup for laser table shows various optical components and lasers used
to prepare the MOT.
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was sent into a photodiode which was placed right after the cell as shown in Figure 4.3.

The hyperfine structure of rubidium 87 determined by saturation absorption spectroscopy

is given in Figure 4.4, where the peak (a) is for the MOT transition and the peak (b) is for

the repump transition.

To form a MOT, the lasers needed to be locked near to a spectral line. The laser beam

was di↵racted from a grating and the first order di↵raction was sent back into the diode

as optical feedback (Maki et al., 1993). The zeroth order exited the cavity housing and

was available for the experiment. Initial adjustment of the laser required the first order

di↵raction to be aligned back into the diode. We firstly lowered the current using the

SC100 current control to about 41 mA to find the first order beam. Secondly by adjusting

the horizontal and vertical micrometer screws on the grating mount we aligned the first

order di↵raction back into the laser. Once they were aligned with each other, the beam

should flash, corresponding to a reduction in the laser threshold current. After that, the

current can be lowered down to 40 mA. Finally, we turned the laser current back to the

normal number (for the master laser it was 87 mA, for the repump laser it was 85 mA),

and fine tuned the horizontal micrometer screw to get the mode. Because of the changing

of the temperature and humidity, occasionally the laser mode was not good enough to lock

the frequency, and we had to fine tune the horizontal screw to get the mode back. A piezo

actuator was attached to the grating mount and provided fine tuning of the wavelength

through the SC100 scan control in the supply rack.

4.3.3 Acousto-optical modulator

During the experimental process the laser beam frequency was switched through di↵erent

values. Therefore, having precise control of the laser frequency and intensity was critical

for our experiments. The frequencies were:

1. Light with detuning -17 MHz from the 52S
1/2 F = 2 ! 52P

3/2 F 0 = 3 transition to make

the MOT.
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(a)

(b)

Figure 4.4: (a) The saturated absorption line for the repump beam, where the peak marked
by an arrow is the frequency of the transition 52S

1/2 F = 1 ! 52P
3/2 F 0 = 2; (b) The

saturated absorption line for the MOT light, where the peak marked by an arrow is the
frequency of the transition 52S

1/2 F = 2 ! the cross line between 52P
3/2 F 0 = 2 and F 0 = 3.
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2. Light with detuning -78 MHz from the 52S
1/2 F = 2 ! 52P

3/2 F 0 = 3 transition for

optical molasses cooling and loading atoms into the optical trap.

3. Light with 0 detuning (on resonance) from the 52S
1/2 F = 2 ! 52P

3/2 F 0 = 3 transition

for imaging.

4. Light for from 52S
1/2 F = 1 ! 52P

3/2 F 0 = 2 transition for the repump laser.

An cousto-optical Modulator (AOM) was used to switch these frequencies because of its

accuracy and fast switching time. To meet the requirements of the first three detunings,

we used an ISOMET 1205 C-2 AOM called the “master AOM” which was placed behind

the main slave laser. To avoid the deflection of the beam, the AOM was set in a double

pass configuration as shown in Figure 4.3. After double passing the AOM, the main slave

laser beam was injected into the slave 1 laser head with a frequency f = f
0

+2fAOM . Here

f
0

was the master laser frequency and the first order on each pass through the AOM was

selected. The light beams from the slave 1 and slave 2 lasers were sent through another

ISOMET 1205 C-1 AOM together, which gave frequency -80 MHz by selecting the negative

first order. Thus the final detuning from resonance achieved by the light before entering

the fiber was given as

� = �133.3MHz + 2fAOM � 80MHz. (4.1)

As a result, for a MOT detuning of -17MHz the master AOM should be driven at frequency

98.15 MHz; for the cooling detuning of -78 MHz, the master AOM should be driven at

frequency 67.65 MHz; for the imaging detuning of 0, the master AOM should be driven

at frequency 106.65 MHz. It is worth noting that the beam size through the AOM had a

significant impact on the switching time. Therefore, all of the AOMs were placed at the

focus of an approximately one-to-one telescope.

4.3.4 Repump laser

It was possible that part of the atoms in the 52P
3/2 F 0 = 3 excited state decayed to the

52S
1/2 F = 1 ground state through spontaneous emission. Such a process eliminated the
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atoms from interacting with the trapping beams and destroyed the MOT quickly. To prevent

this situation, a repump laser was used. One grating stabilized DL 100 Toptica laser in a

temperature controlled housing was used as the repump laser, which was operated in cw

mode. Its frequency was locked to the cross over line between the 52S
1/2 F = 1 ground

state and 52P
3/2 F 0 = 1 to 52P

3/2 F 0 = 2 excited state. This enable the atoms to be exited

from the 52S
1/2 F = 1 ground state to the 52P

3/2 F 0 = 2 excited state and then eventually

decay back to the 52S
1/2 F = 2 ground state. Atoms in this state can interact with the

main MOT light again. The whole process is like a closed cycle.

The optical alignment of the repump laser was similar to the master laser and is shown in

Figure 4.3. The laser was double passed through an ISOMET 1205 C-2 AOM which was

driven by an ISOMET301B voltage tunable RF driver. The first order beam after the AOM

(about 2.5 mW) was selected to be sent into the fiber which transferred the repump beam

to the BEC table together with the MOT beam. After obtaining a MOT, during the process

of loading the atoms into the optical dipole trap, the repump beam power was decreased to

optimize the loading. We controlled the repump power by changing the RF power in the

AOM via a voltage controlled attenuator.

4.4 MOT beam alignment

Laser beams from the laser table were sent to the BEC table through fibers. The laser

beams out of the fibers were used as the MOT beams and the imaging beam. The optical

setup on the BEC table is shown in Figure 4.5. The beam out of fiber 1, containing the

slave beam and repump beam, was split by a PBSC into two beams, one was for MOT beam

1, while the other one was for MOT beam 2. The beam out of fiber 2, containing the slave

beam only, was split by a partial reflector into two parts; the main part was for the MOT

beam, while the other component was for the imaging system. Using the combination of

two lenses, the MOT beams were expanded to about one inch diameter. Furthermore, the

MOT beams were separately sent through quarter wave plates to make the light circularly

polarized. All of the three MOT beams were sent into the vacuum chamber orthogonally,
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and were retro-reflected by mirrors. These six beams were aligned to intersect at the center

of the chamber, with the MOT appearing near the intersection of the beams. It is shown

in Figure 4.1.

To separately control the laser beams on and o↵ at di↵erent times, fast mechanical shut-

ters (UNIBLITZ LS2T2) were used. These shutters were controlled by drivers which were

connected to the digital voltage signals of PCI 6713 card on the computer.

4.5 Polarization of the MOT beams

After the alignment of the MOT beams, the next step was to set their polarizations. The

sense of the current and orientation of coils which produced the magnetic field gradient

determined the orientation of the respective circular polarizations. The four beams propa-

gating in the direction perpendicular to the MOT coil axis should have the same circular

polarization. Here the circular polarization was taken relative to the beam direction, and

not an external quantization axis. The remaining two beams, propagating along the di-

rection of the MOT coil axis, need to have opposite circular polarization to the first four

beams (again relative to the direction of propagation). In principle the beam polarization

and the MOT coil current should be determined initially. It is easier in practice to set

the polarizations relative to each other first and then try both directions of the MOT coil

currents to determine which sign of the magnetic field gradient makes the MOT work.

A polarization analyzer was used to set the circular polarizations. It consisted of a polarizing

beam splitter cube (PBSC) and a quarter wave plate. For a quarter wave plate, if the angle

between the polarization of the incident linearly polarized beam and the wave plate axis

of the quarter wave plate is 45o, the emergent beam is circularly polarized. Keeping the

same waveplate angle, if the light is double passed through the waveplate, i.e. by mirror

reflection, the waveplate will rotate the plane of linear polarization to an angle of 90o. Using

this method, the MOT beam was sent through the PBSC and then the quarter wave plate

and was reflected by a mirror which was placed right after the wave plate. To initially
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Figure 4.5: Experimental configuration for the three MOT beams on the BEC table.
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set the quarter wave plate’s orientation, the wave plate was then rotated to maximize the

power of the reflected beam out of the PBSC.

To make the MOT beams circularly polarized correctly, the beams were sent through the

wave plate of the analyzer. Then the quarter wave plates from Figure 4.5 were rotated to

maximize the output beam power from PBSC. The output beam could either pass through

the PBSC or reflect from it. Which one depended on which of the two circular polarizations

was present.

4.6 Magnetic coil

In the previous chapter, we discussed the necessity of a magnetic field for trapping the atoms.

Therefore, a suitable magnetic field gradient was important for making BEC successfully.

The MOT magnetic field was provided by a pair of coils called the “main coils” which

were 6 inches in diameter, and were setup in an anti-Helmotz configuration (identical coils

separated by a distance equal to their diameter with current flowing in opposite directions).

The coils had 25 turns of copper tube with a square cross section of external dimension

of 0.125 inch and internal dimension of 0.016 inch. They were designed in such way that

coolant could circulate internally, so a large current could be applied if needed without

worry about the overheating of the coils. In our experiments, a 16 A current was supplied

to trap and cool atoms. An inhomogeneous magnetic field between the coils was produced

with a field gradient of about 16 G/cm and a zero field at the center of the chamber as shown

in Figure 4.6. The current was supplied by a remotely programmable Lambda ESS 45-333-

2-D DC power supply which required a three phase 190-250 V, 60 A AC input. The power

supply was reconfigured so that it was able to supply up to 400 A DC current controllable

with an external 0 V to 5 V analog signal. The resistance of the copper tube in main coils

was 2.356 m⌦/m so the total resistance of a coil was only 28 m⌦ (L = 12m). With the

help of this information, a cooling system can be designed according to the estimation of

the heat energy developed in the coil.
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Three pairs of nulling coils were positioned on six sides of the chamber to counteract the

Earth’s magnetic field and any stray field produced by other sources. The coils in a pair

had current flowing in the same direction and each pair was controlled by a di↵erent DC

power supply. The MOT position could be moved with the nulling coil currents because the

position of the zero of the magnetic field was changed by the application of an o↵set field.

4.7 CO2 laser

The far o↵-resonance trap (FORT) was realized by a 50 W Coherent GEM Select 50 CO
2

laser. Because of its 10.6 µm wavelength, the laser was far detuned from the atomic reso-

nance and its e↵ect on the atoms could be approximated to that of a static electric field.

The output CO
2

laser power, after a 40 MHz RF-driven AOM, was 30 W on the first order

which overlapped the MOT for a loading time of typically 20 seconds. The MOT beam

detuning was then increased to -78 MHz for optical molasses cooling. Then the repump

power was decreased to produce a temporal dark MOT. Atoms started entering into a state

that is “dark” to the cooling light during this step. The resultant decrease in the recoil

heating and excited state collisions lead to an increase in the phase space density. After

about 100 ms, the MOT and repump beams were cut o↵ and the magnetic coil current

switched o↵ too.

4.7.1 CO
2

laser configuration and alignment

The CO
2

beam was passed through a water cooled Intra Action Corp. Model AGM-406B1

AOM driven by Intra Action Modulator Driver Model GE-4030H which was electronically

controlled by using an analog voltage signal from the computer. We placed the AOM as

close as possible to the laser head in order to minimize the di↵ractive divergence of the

beam due to the long wavelength. The zeroth order beam after the AOM was sent into a

beam dump, while the first order beam after the AOM which was about 30 W was directed

into the chamber through three lenses. The first two lenses formed a beam expender in a
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Figure 4.6: Schematic drawing of the coil system. The pair of coils is placed in anti-
Helmholtz configuration.

42



telescopic configuration. The third lens with a focal length of 1.5 inches was installed in

the chamber. The beam was directed into the chamber through a 1 inch diameter ZnSe

viewport. At the center of the chamber, the final spot size of the beam was !
0

= �f
⇡R ,

where f is the focal length of the lens and R is the radius of the beam incident on the third

lens. For the processes of loading and evaporation, the beam waist was set large and small

respectively. In order to change the beam size in experiments, the second lens was mounted

on an Aerotech translation stage Model 101SMB2-HM driven by a Soloist driver interface,

as shown in Figure 4.7. The beam emerging from chamber was sent into a dump for safety.

Though the configuration of the CO
2

system was simple, the alignment was not easy because

of its invisibility to the eye and the dangerous high power. The method used for CO
2

laser

alignment was to send a low power visible laser (HeNe laser) in the reverse direction all

the wayback to the CO
2

laser head. Because the MOT was formed at the center of the

chamber, the HeNe laser was sent from the dump position through the center of both the

ZnSe viewports. Then the HeNe laser was sent through the center of the lenses and back

the CO
2

laser by mirrors with two pinhole apertures used to define the beam path. The last

step was removing the HeNe laser and sending the CO
2

laser through the same apertures

by adjusting the mirrors before the apertures. After this procedure the CO
2

beam almost

passed through the center of the ZnSe viewports and hence through the position where

MOT was placed. It was important to know that the CO
2

beam center must stay at the

same point before and after moving the translation stage. To check if the CO
2

beam was

aligned with the MOT, we usually reduced the MOT detuning to about -23 MHz, and

turned on and o↵ the light every 500 ms. If we saw a flashing line through the MOT, the

beam was at the right position. If not, we slowly modified the three nulling coil currents to

move the MOT around until we saw the flashing line through the MOT.

4.7.2 Optics and detection

Because of the high absorption of glass and quartz at the 10.6 µm wavelength of the CO
2

laser, the usual optics were not useful for the CO
2

laser system. One of the materials
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Figure 4.7: CO
2

laser beam setup.
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with the lowest absorption coe�cient at this wavelength was Zinc-Selenide (ZnSe). We

used thermal plates to detect and align the beam. Thermal image plates were made with

an anodized aluminum heat sink overlaid with thermal sensitive phosphor. When these

thermally sensitive phosphor plates were exposed to infrared laser radiation, the absorbed

energy raised the surface temperature and produced corresponding thermal images. These

images appeared as dark spots when illuminated by ultraviolet light (3600 nm), and the

darkness of the spot increased with laser power. A MACKEN Instruments’ Lamp Model

22-UV was used to sensitize the plates.

4.8 Imaging system

In order to observe and measure the number of atoms, we used the method of absorption

imaging. The absorptive technique was based on the resonant interaction of the light with

the atoms. From fiber 2, a small portion of light known as the “imaging light” (shown

on Figure 4.5) was on resonant with the atomic transition from 52S
1/2, F = 2 ! 52P

3/2,

F 0 = 3. The beam was expanded to 1 cm diameter by two lenses and was passed through

a quarter wave plate to make it circularly polarized. The atoms were exposed to a weak

50 to 60 µs pulse from imaging light. The intensity of the beam is reduced when the

atoms scatter photons from the imaging beam. Therefore the atoms cast a shadow in the

beam which was imaged onto a high resolution CCD camera ANDOR DV437-BV which was

cooled to -20o to reduce dark count noise. The imaging configuration is shown on Figure

4.8. A 4⇥ microscopic objective was used to magnify the image (Boiron et al., 1998; Silvera

and Walraven, 1980). The other two lenses are used to collimate the imaging beam. Two

security CCD cameras were used to monitor the MOT in real time.

In order to calculate the number of the atoms, we calculated the absorption rate for a low

power beam (I ⌧ Is) traveling in the z-direction

dI

dz
= ��nI, (4.2)
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where n is the density of atoms and I is the imaging beam intensity. � = ~!�
2Is

= 3�2

2⇡ is the

scattering cross section, where ! is the laser frequency, � is the natural linewidth, and Is is

the saturation intensity. From equation 2.2, the intensity is

I(x, y) = I 0o(x, y) exp(��ñ), (4.3)

where ñ is the column density (atom number per unit area). In order to find the intensity

I(x, y), we usually took two images each time. The two images were taken with and without

atoms which gave intensity I
1

and I
0

respectively. The intensity profile is given as

I(x, y) =
I
0

I
1

. (4.4)

By integrating over the column density, the atom number is

N = �S

�

X

pixels

ln(I), (4.5)

where S is 13µm2 and is the scaled area of a pixel for the CCD camera. A Gaussian fit to

the absorption profile determined the atom cloud size.

4.9 Bose-Einstein condensation procedure

Let us now examing the procedure for creating a BEC. To start an experiment about 30

million atoms were trapped in the MOT. The first order di↵racted beam from the AOM

with a power 30 W was overlapped with the MOT for about 20 seconds. Then the MOT

beam detuning was decreased to -78 MHz for optical molasses cooling. This was followed

by reduction of the repump intensity by a factor of at least 10 to produce a temporal

dark MOT (Kuppens et al., 2000; Ketterle et al., 1993). After about 100 ms, the MOT

beams and repump beams were extinguished and the magnetic coil current was turned o↵

simultaneously. After the FORT loading, the FORT beam was compressed such that its

waist decreased from 100 µm to 25 µm in a time of about 1 seconds. This increased the
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elastic collision rate and hence the e�ciency of the evaporative cooling. About 600,000

atoms were loaded in the FORT at this point. The atoms were then subjected to forced

evaporative cooling where the trap depth was lowered at an exponential rate by reducing

the CO
2

laser beam power to around 1 W. This took 2 seconds and was called “evaporative

cooling 1”. The following step, “evaporative cooling 2”, involved the reduction of laser power

in a series of tiny steps, after each of which the atoms were allowed time to rethermalize.

The power was reduced to about 50 mW in 3 seconds and a pure condensate with around

40000 atoms in the 52S
1/2 F = 1 ground state was produced. To take an image of the BEC,

the repump beam was turned on again to pump the atoms of the BEC to the 52S
1/2 F = 2

state. After 9 ms of expansion, a 100 ns pulse of on-resonance imaging light shone on the

BEC. Because of absorption, the shadow of the BEC was observed on the CCD camera.

4.10 Kicking system

Kicking was one of the most important research tools for the experiments described in this

report. The kicking laser was derived from a slave laser which was injection locked to the

transition from the 52S
1/2 F = 2 ground state to the cross over line between the 52P

3/2

F 0 = 2 and F 0 = 3 excited state. The setup of the kicking laser is shown in Figure 4.3.

Referenced to the 52S
1/2 F = 1 ground state of the BEC, this light was 6.835 GHz red

detuned (shown in Figure 4.2). The kicking laser was transported to the BEC table by a

single mode polarization preserving fiber. On the BEC table, the kicking beam out of the

fiber was split into two beams by a non-polarizing beam splitter cube. Each of these beams

was separately passed through an Isomet Model 40N AOM. The first order di↵racted beams

out of the AOMs both had powers of about 5 mW. This light was directed into the vacuum

chamber from two sides to form a horizontal standing wave. To increase the standing wave

amplitude, lenses were used to focus the beams at the center of the vacuum chamber. Half-

wave plates were used to ensure that the electric field vector of the beams was horizontal

so they could interfere and produce the standing wave. Each beam was aligned so that it
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made 53o with the vertical forming a standing wave with a spatial periodicity of

�G =
�

2 sin 53o
, (4.6)

where � = 780nm.

The rf waveform driving each AOM was supplied by an arbitrary waveform generator

HP8770A which passed through a 1 W amplifier. The first order laser beam di↵racted

by the AOM was frequency shifted by an amount equal to the frequency of the driving

rf signal. One of the AOMs was driven by a function generator HP8770A at a fixed 40

MHz frequency, while the other AOM was driven at a variable frequency by a separate

HP8770A which was phase-locked to the first one. Each of these function generators was

programmed using a GPIB interface card, so all of the RF waveform properties could be

directly controlled from a LabView program. By adjusting the variable part of the frequency

!D =
2⇡

T
1/2

� +
1

2
Gat, (4.7)

where G = 2⇡
�G

was the grating vector of the standing wave and T
1/2 was the half Talbot

time, the initial momentum �, and acceleration a of the standing wave were all controllable.
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CHAPTER V

FIDELITY OF QUANTUM STATE EVOLUTION

It is interesting to know how stable are quantum states under the application of a small

perturbation. Peres was one of the first to discuss the stability of quantum motion in chaotic

and regular systems in 1984 (Peres, 1984). The evolution of a quantum state is altered

when a small perturbation is added to the Hamiltonian. As time goes on, the overlap of the

perturbed and unperturbed states shows an indication of the stability of quantum motion.

Peres argued that if a quantum system has a regular classical analog (regular Hamiltonian),

the overlap remains appreciable on a time average with large fluctuations. On the other

hand, if a quantum system has a chaotic classical analog (chaotic Hamiltonian), the overlap

tends to be small and its fluctuations are small too. This research is meaningful for the study

of quantum information processing and transmission where the degradation of quantum

information is critical. The fidelity of the quantum states with di↵erent perturbation is

discussed.

5.1 Fidelity of quantum evolution

The quantum �-kicked rotor (QDKR) has proved to be a paradigmatic model to study the

overlap of perturbed and unperturbed quantum states. The Hamiltonian describing the

51



dynamics of the QDKR in dimensionless units is

H =
p̂2

2
+ �d[1 + cos(x̂)]

NX

q=1

�(t � q⌧). (5.1)

The wave function after t kicks is given as

| (t0 = t⌧)i = ÛN | (t = 0)i

=
X

n

cn|ni. (5.2)

Here Û is the Floquet operator as seen in equation 3.25, |ni are momentum eigenstates in

units of ~G.

Another wave function after t kicks with a di↵erent kicking strength is given as

|'(t = N⌧)i = ÛN |'(t = 0)i

=
X

n

bn|ni. (5.3)

The overlap between the eigenstates of the two wave functions is

F = |h'| i|2

=

�����
X

n

b⇤ncn

�����

2

, (5.4)

which is how we define a “fidelity”.

For simulation, we should expand the Floquet operator. For the kick operator (as shown

in equation 3.29), in the case when a random phase shift is introduced into the model, we

need to replace the term cos(x̂) with cos(x̂ + �rnd). Therefore in the form of a matrix, the
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kick operator is

Ûkick = e�i�d cos(x̂+�rnd)

= ei�rnd

+1X

n=�1
inJn(�d)e

inx̂

= ei�rnd

+1X

n=�1

+1X

m=�1
in�mJn�m(�d)|nihm|. (5.5)

For the free-evolution operator, the momentum p can take any value in real space, which

can be separated as an integer part n and a fractional part �. Therefore,

Ûfree = e�i p̂
2

2 ⌧

=
+1X

⌫=�1
e�i (n+�)2

2 ⌧�f⌫ |fih⌫|. (5.6)

By applying the expanded Floquet operator to equation 5.3, the wave functions can be

solved and furthermore the fidelity can be determined.

5.2 Simulation and experiment data analysis

In the preliminary experiments, the time between pulses was not chosen to be the Talbot

time (or an integer multiple thereof), which meant the dynamics of the kicked rotor in phase

space could not be described by classical �-kicked rotor (equation 3.21 and equation 3.22).

For o↵-resonance time intervals ⌧ (⌧ = 2⇡`+ ✏), ✏-classical theory (where the time between

pulses is o↵ from but still close to the Talbot time) should be applied. The dynamics can

be given as (Fishman et al., 2003; Sadgrove et al., 2005)

✓q+1

= ✓q + Jq (5.7)

Jq+1

= Jq + k̃ sin(✓q+1

), (5.8)

where k̃ = |✏|�d is a scaled kicking strength, Jq = ✏pq + `⇡ + ⌧� is the scaled momentum

variable, and ✓ = X mod (2⇡)+⇡[1�sign(✏)]/2 is the scaled position, exploiting the spatial
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periodicity of the kick potential. Figure 5.1 shows the ✏-classical maps with di↵erent kicking

strength �d. Here the time between pulses was 70 µs, thus ✏ = 2.1842. It is clear that as

the �d increases, the main island at the center of the map is smaller and smaller.

We introduced a perturbation to the system by applying di↵erent kicking strength �d. To

see how a perturbation e↵ects the evolution of quantum states, a BEC was kicked by a

standing wave with �d1, and another BEC with the same initial momentum � = 0 was

kicked by a standing wave with �d2 which was slightly di↵erent from �d1. Figure 5.2 shows

the simulation with �d1 fixed at 0.7 and �d2 increased from 0.75 to 1.0. Therefore the ��d is

from 0.05 to 0.3. The simulation tells us the fidelity decay rate becomes bigger when the �d

di↵erence increases. This can be easily understood by connecting the fidelity to the maps

showed in Figure 5.1. When the perturbation is large, i.e. the �d di↵erence is large, the

BEC overlaps more of the chaotic part of the phase space. The islands in Figure 5.1 with

a bigger kicking strength are much smaller than those with smaller kicking strength, so the

BEC overlaps more chaotic regions of phase space. Thus the fidelity in Figure 5.2 should

decay faster. However, when the perturbation is small and the �d di↵erence is small, the

possibility for the system to stay in the island is higher since the island is bigger. Therefore

the fidelity is expected to decay slower.

The e↵ect of finite pulse length can also be important. Though the kicking pulse is assumed

as a �-kick, in a real experiment this is not possible. This can result in a di↵erent evolution.

Figure 5.3 shows the fidelity with di↵erent pulse lengths which increase from 1.024 µs to

1.624 µs with interval 0.2 µs. Here �d1 = 0.7 and �d2 = 0.85. From the figure, it can be seen

that the fidelity decays faster as the pulse length increases. Figure 5.2 shows the fidelity

decays faster with bigger �d.

Experiments were taken with parameters that matched those of the simulation. The time

between pulses was 70 µs, initial momentum � = 0, and the standing wave pulse length

was 1.024 µs. Atoms were kicked out of the p = 0 state with kicking strength �d1 and

di↵racted into the other momentum states. Then the atoms were kicked by another set of

kicks with kicking strength �d2 as shown in Figure 5.4. Fidelity was the quantity to measure
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Φd=1.3

Φd=1.25Φd=1.2Φd=1.15Φd=1.1

Φd=1.05Φd=1
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Figure 5.1: T is 70µs for all of the maps here, which means ✏ = 2.1842. The �d for each of
them are from 0.7 to 1.5 with interval 0.05. It is clear that as the �d increases, the main
island at the center of the map is decreasing. The region out of the island is chaotic.
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Figure 5.2: �d1 is fixed at 0.7, while �d2 for the purple curve is 0.75, for the blue curve is
0.8, for the black curve is 0.9, for the cyan curve is 1.0.
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Figure 5.3: With longer pulse length, fidelity decays faster.
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the overlap between the two sets of kicking as shown in Figure 5.5. The way we calculate

fidelity in the experiment was:

F =
X

n

r
pn1pn2
pt1pt2

, (5.9)

where pn1 was the number of the atoms on state n with the first set of kicks of �d1, pn2 was

the number of the atoms on state n with the second set of kicks of �d2, n was the order

of the state, and pt1 and pt2 were the total number of atoms in all the states for the two

sets of kicking evolution. It can be seen that the experiment data matches the simulation

quite well. The random phase noise due to spontaneous emission p = 8�

� �d = 0.007�d was

considered in simulation as well.

5.3 Future research

One of the main objects in the future is to prepare a superposition of two identical initial

states for the experiment. In the current experiments, we start from a BEC under identical

environment. Though the BECs are the same, we cannot assume that they are in the same

initial momentum states in phase space. According to the dynamics shown by Eq. (5.7)

and Eq. (5.8), maps are di↵erent with di↵erent kicking strength. Therefore the two BECs

are not in the same map and are incomparable. In Peres’ proposal, the initial states with

and without perturbation are the same, which means the experiment should start from the

same point on the phase space. For this reason, to prepare a superposition of two BECs

simultaneously Bragg pulse may be used in the future. A Bragg pulse is a long and weak

intensity pulse which creates a superposition of two momentum states. Furthermore, to kick

the two BECs simultaneously, two optical standing waves from two pairs of kicking beams

will be prepared as well. The second pair of kicking beams will be sent into the vacuum

chamber with a di↵erent angle between the two beams, thus the grating vector can work

on the second BEC.

Another thing that needs careful consideration is that the maps shown in Figure 5.1 were

drawn assuming ✏-classical theory. The pulse period T , the time between pulses, was 70 µs

58



Number of kicks

Number of kicks

Φd=1, T=70 us

Φd=1.3, T=70 us

Figure 5.4: The “big pictures” of momentum distribution of the experiments. It shows how
atoms evolve as time goes on. For the top picture, kicking strength was 1; for the bottom
picture, kicking strength was 1.3. The time between the pulses for both of the picture was
70 µs.
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Figure 5.5: Experimental data for fidelity v.s. simulation. Red stars with error bars are
experimental data; black dots were simulation.
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which is far from the Talbot time of 103 µs. Thus the classical map shown of Eq. (5.7)

(5.8) are not really suitable. There is a limitation for the ✏-classical theory’s validity which

is |✏| << 1. For T = 70µs, ✏ is 2.26 and is really too large to use ✏-classical theory. In the

future, we will try the very general map without any scaling to plot the dynamics of the

atom. We also plan to take more experimental data closer to the Talbot time resonances.
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CHAPTER VI

QUANTUM-RESONANCE RATCHETS WITH DIFFERENT INITIAL

STATES

6.1 Introduction

Understanding the nature of quantum transport is an important problem in physics espe-

cially for quantum chaos. The delta-kicked rotor, an ideal system for studying quantum

transport, is realized by exposing a sample of cold atoms to short pulses of an optical

standing wave. This is the so-called atom optics quantum kicked rotor (AOQKR) (Moore

et al., 1994). The implementation of the AOQKR in experiments was a breakthrough in the

study of quantum chaos, and the system has now been widely used in elucidating phenomena

like dynamical localization (Moore et al., 1994), quantum resonances (QRs) (Moore et al.,

1994; Ryu et al., 2006; Izrailev, 1990), quantum accelerator modes (QAMs) (Fishman et al.,

2002, 2003; Behinaein et al., 2006; Ramareddy et al., 2010; Oberthaler et al., 1999; Shrestha

et al., 2013b), quantum fidelity (McDowall et al., 2009; Shrestha et al., 2013c; Ullah and

Hoogerland, 2011; Talukdar et al., 2010), and quantum ratchets (Monteiro et al., 2002;

Dana et al., 2008; Sadgrove et al., 2007a; Salger et al., 2009; Astumian and Hänggi, 2002;

Sadgrove et al., 2007b; Dana and Roitberg, 2007; Schanz et al., 2001; Lundh and Wallin,

2005; Wickenbrock et al., 2011; Shrestha et al., 2013a). The later are quantum-mechanical

systems where currents of particles are produced without any biasing force. These ratchets

have been proposed as mechanisms for Hamiltonian quantum ratchets (Salger et al., 2009).

In previous experimental observations of quantum ratchets (Dana et al., 2008; Sadgrove
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et al., 2007b; Shrestha et al., 2012), it was found that only a relatively small component of

the initial wave function was involved in the momentum current. It is therefore natural to

ask if it is possible to improve upon the mode matching between the initial state and the

ratchet state so as to increase the participation in the ratchet. One of our motivations for

enhancing the e�ciency of the quantum ratchet is the possible use of such a system as the

walk in experiments on quantum random walks (Ma et al., 2006; Summy and Wimberger,

2016).

The structure of this paper is as follows; we begin by providing a theoretical analysis of the

intrinsic mechanism of a quantum ratchet. We then present the experimental realizations of

the momentum currents using di↵erent initial states that have been prepared using Bragg

di↵raction with light pulses. We demonstrate how di↵erent phases on the initial state wave

function can a↵ect the momentum current. Finally, we examine how the momentum current

depends on the number of momentum states in the initial wave function. In particular, we

present results showing a connection between the number of momentum state components

and the dispersion of the ratchet.

6.2 Theory

We start by summarizing the basic dynamics of the AOQKR system (Fishman et al., 2003;

Behinaein et al., 2006; Talukdar et al., 2010; Sadgrove et al., 2005; Oskay et al., 1999). The

Hamiltonian in dimensionless unit is given by:

Ĥ =
p̂2

2
+ �dV (x̂)

NX

t=1

�(t0 � t⌧), (6.1)

where p̂ is the momentum in units of ~G (two photon recoils). �d is the strength of the

kicks, and is given by �d = ⌦24t/8�L, where 4t is pulse length, ⌦ = ~µ · ~E(~r)/~ is the

Rabi frequency, and �L is the detuning of the kicking laser from the atomic transition.

V (x̂) = cos(Gx + �) is the standing wave with a grating vector G = 2⇡/�G. �G is the

spatial period of the standing wave, and is determined by the direction of the laser beams

63



as their wavelength. Here, x is position in units of G�1, and � is an o↵set phase. t0 is the

continuous time variable, and t counts the number of kicks. ⌧ = 2⇡T/T
1/2 is the scaled

pulse period where T is the real pulse period and T
1/2 = 2⇡M/~G2 is the half-Talbot time

for an atom with mass M . The momentum is changed in quanta of ~G in this system, and

as a result p can be broken down as p = n+�, where n and � are the integer and fractional

parts of the momentum respectively. �, also known as the quasi-momentum, is a conserved

quantity .

A convenient picture of the ratchet mechanism can be derived by considering the gradient

of the standing wave as the driving force on the wave function. From this standpoint,

ensuring that the wave function is greatest at positions with larger gradients should produce

stronger forces and the possibility of a ratchet, with the sign of the gradient determining

the ratchet’s direction. To create a spatially non-uniform atomic distribution, an initial

state that is comprised of a superposition of two or more plane waves is used:

| i =
X

n

ein⇡/2|ni, (6.2)

where |ni is equal to |n~Gi. As will be seen shortly, the phase prefactors shift the maxima

of the spatial wave function distribution to where the potential gradient is greatest.

Considering the case of a single Bose-Einstein condensation (BEC) for the initial state, the

wave function in momentum space can be written as

| (p)i = e�i(p�p0)2/2�p2 (6.3)

with p
0

= 0~G. Here p
0

is the central initial momentum, �p is the width of the BEC, and

p is the continuous momentum variable. In order to study the wave function in the frame

of the standing wave, we transform into position space by using a Fourier transformation.

The wave function in position space is

|�(x)i = Ae�2�p2(Gx)2ei�Gx, (6.4)
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where A is the amplitude. For our BEC �p ⌧ 1, so that |h�(x)|�(x)i|2 is close to a uniform

distribution. Therefore there is no biased force and hence no ratchet (Moore et al., 1994;

Ryu et al., 2006; Izrailev, 1990).

When the initial state contains two or more plane waves, the wave function in momentum

space should be:

| (p)i =
X

n

ein⇡/2e�i(p�pn)2/2�p2 . (6.5)

The wave function in position space after a Fourier transform looks like:

|�(x)i =
X

n

Ane�2�p2(Gx)2ei(�+pn)Gx. (6.6)

By plotting |h�(x)|�(x)i|2 and the standing wave potential together, it is noticeable that

peaks in the wave function arise at positions where the gradient of the standing wave

happens to be the greatest (see Fig. 6.1). Naturally, the more plane waves contained in the

initial state, the more localized the wave function should become. In Fig. 6.1, the bold solid

line is the standing wave, the dashed and dotted lines are the wave functions in position

space for the initial states with a superposition of seven plane waves:
P

3

n=�3

e�in⇡/2|ni
and two plane waves: |0i + ei⇡/2|1i respectively. The dashed line is much taller and has a

reduced full width at half maximum (FWHM). Figure 6.2 shows that as the number of the

plane waves in the initial state increases, the corresponding FWHM of the wave function

decreases. Since a peak with larger FWHM experiences a smaller overall gradient and a

larger variation in the gradient, we expect that a “cleaner” ratchet requires more plane

waves in the initial superposition. The e↵ective force

Z ⇡

�⇡
|�(x)|2 dV (x) (6.7)

of the standing wave (integrate the absolute square of wave function with the standing wave

gradient) for di↵erent initial states was also calculated. The dashed line in Fig. 6.2 shows

that the e↵ective force increases with the number of the plane waves in the initial state.
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Figure 6.1: The solid line is the standing wave intensity for potential V (x̂). The dashed
line is the wave function for a superposition of seven plane waves:

P
3

n=�3

e�in⇡/2|ni. The

dotted line is the wave function for a superposition of two plane waves: |0i + ei⇡/2|1i. All
the wave functions here were normalized using the

P
3

n=�3

e�in⇡/2|ni in arbitrary units.
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Figure 6.2: The solid line is the theoretical FWHM of wave function in position space vs
number of plane waves, while the dashed line is the theoretical e↵ective force of the standing
wave. The diamond is the magnitude of e↵ective force for initial state e�i⇡|� 2i+ e�i⇡/2|�
1i+ ei⇡/2|1i+ ei⇡|2i.
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To ensure the peak of the wave function appears at the right point of the standing wave:

Gx = ⇡/2, the phase for each plane wave is extremely important. As mentioned previously,

it should be set to ein⇡/2, where n is the momentum state index. If the phases di↵er from

these values the peak of the wave function in position space will shift away from the greatest

gradient and the driving force from the gradient of the standing wave will become weaker.

We also point out that to maximize the ratchet, the momentum states in the initial su-

perposition should be consecutive. In another words, the momentum di↵erence between

neighboring momentum states should be ~G. The diamond in Fig. 6.2 is the magnitude

of e↵ective force for the initial state with four nonconsecutive momentum states, which is

smaller than the one with four consecutive momentum states. Figure 6.3 shows the wave

function in position space for initial states with a superposition of nonconsecutive momen-

tum states. Note that besides the wave function peak at the greatest gradient point, there

is also considerable wave function amplitude at positions where the gradient is zero or of

opposite sign. This can provide explanation for why the ratchet is weak or even disap-

pears in experiments with there initial states. The dashed line represents the initial state:

e�i⇡|� 2i+ e�i⇡/2|� 1i+ ei⇡/2|1i+ ei⇡|2i and shows a relatively large peak at the greatest

gradient point. Thus the ratchet e↵ect should still exist although weaker than the ratchet of

initial state with four consecutive momentum states. The dotted line represents the initial

state: e�i⇡|� 2i+ ei⇡|2i, and shows no e↵ective force. Finally, the dash-dot line is for the

initial state: e�i⇡/2|�1i+ei⇡/2|1i. Note that the two wave function peaks appear at points

where the positive and negative gradient is greatest on the standing wave. This suggests

that we should expect two ratchets with opposite direction simultaneously.

6.3 Experimental setup

Our experimental apparatus is similar to the one described in Ref. [24]. A BEC with about

70,000 87Rb atoms was created in the 5S
1/2, F = 1 hyperfine ground states in a focused

CO
2

laser beam using an all-optical trapping technique (Chu et al., 1986). The order of the

ratio of the mean field energy to the recoil energy is about 10�5, which put us in the region
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Figure 6.3: The solid line is the standing wave intensity for potential V (x̂). The dashed
line is the wave function for a superposition of nonconsecutive plane waves: e�i⇡| � 2i +
e�i⇡/2| � 1i + ei⇡/2|1i + ei⇡|2i. The dotted line is the wave function for a superposition of
nonconsecutive plane waves: e�i⇡|�2i+ei⇡|2i. The dash-dot line is the wave function for a
superposition of nonconsecutive plane waves: e�i⇡/2|� 1i+ ei⇡/2|1i. All the wave functions
here were normalized using the e�i⇡|�2i+ e�i⇡/2|�1i+ ei⇡/2|1i+ ei⇡|2i in arbitrary units.
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that the nonlinearity is negligible and can be ignored. Immediately after the BEC was

released from the trap, we applied a series of horizontal optical standing wave pulses. This

standing wave was formed by two laser beams with a wavelength of � = 780 nm, which was

6.8 GHz red detuned from the 5S
1/2, F = 1 transition �! 5P

3/2, F 0 = 3 transition. Each

laser beam was aligned 53� from the vertical to give a standing wave with a spacial period

of �G = �/(2 sin 53�). This led to a half-Talbot time of T
1/2 ⇡ 51.5 µs, with the primary

QRs falling at integer multiples of this time (Moore et al., 1994; Ryu et al., 2006; Izrailev,

1990). To create the necessary standing wave pulses, we controlled the phase, intensity,

pulse length, and the relative frequency between the two laser beams. This was achieved

by passing each of the standing wave’s constituent laser beams through an acousto-optic

modulator (AOM) driven by an arbitrary waveform generator. The nodes of the standing

wave moved with a velocity given by v = 2⇡4f/G with4f being of the frequency di↵erence

of the two beams. The quasimomentum, �, of the BEC relative to the standing wave is

proportional to v and therefore � can be controlled through 4f . The kicking pulse length

was fixed at 0.576 µs to ensure that the experiments were performed in the Ramam-Nath

regime. In other words, the distance momentum states traveled during a pulse was much

smaller than the spatial period of the standing wave.

To prepare an initial state comprised of a superposition of several plane waves, a sequence

of longer standing wave pulses were applied in the Bragg configuration (Torii et al., 2000).

Such pulses connect two momentum states with an interaction matrix given by

U =

0

BB@
cos(⌦B⌧B

2

) �i sin(⌦B⌧B
2

)ei�

�i sin(⌦B⌧B
2

)e�i� cos(⌦B⌧B
2

)

1

CCA , (6.8)

where ⌦B is the e↵ective Rabi frequency, ⌧B is the Bragg pulse length, and � is the phase.

To see how these were utilized in our experiment, consider the preparation of a superposition

of five momentum states. As shown in Fig. 6.4, in this case we need four Bragg pulses.

The first Bragg pulse with initial quasi-momentum � = 0.5 di↵racts atoms into states |0i
and |1i. The second Bragg pulse with � = �0.5 di↵racts atoms into states |0i and | � 1i
without a↵ecting the atoms in state |1i. Similarly, the third and fourth Bragg pulses, with
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� = 1.5 and � = �1.5, di↵ract atoms into states |1i, |2i and |�1i, |�2i respectively. All of
the Bragg pulses were applied consecutively without dwell time between the pulses. There

is considerable freedom in the choice of pulse length, however in our case this was set at

103 µs or a Talbot time. This ensured that the free evolution of each of the prepared states

was always 1̂ while additional Bragg pulses were applied and could thus be ignored. The

intensity for di↵erent Bragg pulses was carefully adjusted to make the population in each

state equal. We complemented this scheme for superpositions comprising up to 7 states.

To our knowledge such large superpositions have not been created previously and may have

applications in atom interferometry (Kovachy et al., 2010). There are two possible methods

to select an appropriate phase for each momentum state so as to maximize the ratchet e↵ect.

One is to set the phase on each momentum state |ni according to n⇡/2. For example, with

five momentum states, the phases on | � 2i, | � 1i, |0i, |1i, |2i should be �⇡, �⇡/2, 0,

⇡/2, ⇡. The other method of phase preparation is to set all of the momentum states with

a phase of zero and then shift the position of the standing wave by a quarter of its spatial

period. Because of the imaginary nature (i factor) of the o↵-diagonal elements of Eq. 6.8, a

phase of ±⇡/2 is automatically added to each state created by a Bragg pulse. This produces

a phase of �n⇡/2 for states n = ... � 3,�2,�1, 0, 1, 2, 3.... Therefore, for the first phase

preparation method the phases added to the momentum states should be: �2⇡, �⇡, 0, ⇡,
2⇡. Similarly, for the second methods, the phases added to the momentum states should

be: �⇡, �⇡/2, 0, ⇡/2, ⇡. For simplicity, in our experiments we chose to set the o↵set phase

of standing wave � = ⇡/2 and keep the phases of momentum states zero (see Fig. 6.4).

As can be seen from the previous discussion, the phases of the components of the super-

position are extremely important for the ratchet dynamics. Hence it is critical that any

unknown phases be controlled and if possible eliminated. To this end we implemented a

⇡/2� ⇡� ⇡/2 Mach-Zehnder Bragg interferometer (Torii et al., 2000) with which we could

measure such phases. In particular we were able to eliminate extraneous phase shifts due

to gravity (non-horizontal standing wave) and ac-Stark shifts due to small amounts of stray

light.
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Figure 6.4: Experimental schematic showing preparation of the five component initial state:P
2

n=�2

|ni.
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Following the Bragg preparation, the delta-like kick rotor pulses were immediately applied.

These di↵racted the atoms into a wide range of momentum states. For the kicking pulses,

the pulse length was 0.576 µs, the pulse strength �d ⇠ 1.4, the phase � in the potential

was ⇡/2. The time between kicking pulses was 51.5 µs (half-Talbot time) with initial

momentum � = 0.5 to maintain QR. In order to measure the momentum distribution after

the pulse sequence, atoms were absorption imaged following a free flight time of 9 ms.

Several examples of time-of-flight images of the BEC vs t are shown in Fig. 6.5.

6.4 Data analysis and discussion

We have performed a comprehensive experimental study of the dispersion of the momentum

of BEC as function of several variables. Normalized dispersion of the momentum of BEC

is defined as:

D(t) =
hp2t i � hpti2
hp2

0

i � hp
0

i2 , (6.9)

where hpti is the mean momentum, hp2t i is the mean of momentum square, and t is the kick

number. The dispersion is used to describe the quality of the ratchet current: the closer

D(t) is to 1 the better the ratchet state maintains its initial form. Reducing change in the

dispersion is an important property for applications, such as quantum random walk (Summy

and Wimberger, 2016). We now discuss the sensitivity of the ratchet current dispersion to

the initial state. Figure 6.6 shows the dependence of the dispersion on kick number t for

� = ⇡/2, � = 0.5 and the time between kicking pulses T = T
1/2. The experimental results

are in good agreement with the simulation and show that the more momentum states in the

initial state, the smaller dispersion. In other words, to improve the quality of the ratchet

we need to generate an initial state with a large number of plane waves in its superposition.

As discussed before, the ratchet is highly sensitive to the phase of the initial state. To

illustrate this point experiments were carried out with the initial state
P

2

n=�2

|ni where an
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Figure 6.5: Experimental time-of-flight images as a function of t. Overall the relative phases
of the momentum components in the initial states were zero. The initial state in (a) was a
superposition of two momentum states: |0i+|1i. The initial state in (b) was a superposition
of three momentum states:

P
1

n=�1

|ni. The initial state in (c) was a superposition of four

momentum states:
P

2

n=�1

|ni. The initial state in (d) was a superposition of five momentum

states:
P

2

n=�2

|ni. The initial state in (e) was a superposition of seven momentum states:P
3

n=�3

|ni. The initial state in (f) was a superposition of two momentum states: |�1i+ |1i.
The t = 0 images show the initial states.
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Figure 6.6: Experimental data showing normalized dispersion vs kick number t with
the standing wave phase � = ⇡/2, � = 0.5, and T = T

1/2 for initial state
P

3

n=�3

|ni
(squares), initial state

P
2

n=�2

|ni (asterisks), initial state P2

n=�1

|ni (triangles), initial stateP
1

n=�1

|ni (diamonds), and initial state
P

1

n=0

|ni (circles). The inset gives a closer view
of the dispersion. Representative error bars are given for: 7 momentum states, kick=5; 2
momentum states, kick=5.
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extra phase ⇡/2 was added to momentum state |1i. Figure 6.7 shows that the dispersion

grows more quickly when the phase of momentum state |1i di↵ers from the optimal value.

We also investigated the ratchet current using kicks separated by di↵erent QR times. In

principle kicking pulses separated by T = 0 with � = 0 or T = TT (Talbot time) with � = 0

should give the same ratchet current as T = T
1/2 with � = 0.5. The experimental results

show that with the same initial state, dispersion is smallest with T = 0 and largest with

T = TT (see Fig. 6.8). The reason is probably that phase noise from the environment and

de-phasing of the initial state are minimized by setting the time T = 0. This also supports

the observation that the ratchet is sensitive to the phase of the initial state. In addition,

the e↵ective finite width in quasi-momentum space can become important as T gets larger.

This is because in the ✏-classical theory, ✏⇥�� gives the e↵ective width in quasi-momentum

space, so that in case of T = 0 �� is e↵ectively 0 (Wimberger and Sadgrove, 2005). This

may have advantages for the practical implementations in interferometry.

Experiments with the initial state |� 1i+ |1i highly support the idea in Fig. 6.3 that there

are two identical peaks appearing at the points of greatest positive and negative gradient.

Experimental results in Fig. 6.5(f) show two ratchets with opposite directions. This e↵ect

might be applied in atomic interferometry (Mazzoni et al., 2015).

6.5 Conclusions

Experiments were carried out to observe an on-resonant atomic ratchet by exposing an

initial atomic state which was a superposition of two or more momentum states to a series

of standing wave pulses. We measured the dispersion of the momentum of ratchet current

as a function of kick number t. The stronger ratchet current gives a smaller dispersion. We

verified that the ratchet current was stronger with a initial state containing more consecutive

momentum states. We studied the e↵ect from the phase of the initial state to the ratchet

current. A small error on the phase will cause a change in the dispersion which is not

negligible. We also performed some other experiments with di↵erent time between the
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Figure 6.7: Experimental data showing normalized dispersion vs kick number t with the
standing wave phase � = ⇡/2, � = 0, and T = TT/2 for initial state
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|ni. The dashed
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The solid line is for an initial state where the phase of momentum state |1i is ⇡/2.

77



0 1 2 3 4 5
Kicks

0.5

1

1.5

2

2.5

3

3.5

4

4.5

N
or

m
al

iz
ed

 D
is

pe
rs

io
n

T = 0 µs
T = 51.5 µs
T = 103 µs

Figure 6.8: Experimental data showing normalized dispersion vs kick number t for initial
state

P
2

n=�2

|ni with the standing wave phase � = ⇡/2. The solid line is for � = 0 and
T = 0. The dashed line is for � = 0.5 and T = 51.5 µs (half-Talbot time). The dash-dot
line is for � = 0 and T = 103 µs (Talbot time).
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kicking pulses and concluded that shorter time between the pulses was better to minimize

perturbation of the environment and re-phasing of the initial state.
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CHAPTER VII

CONCLUTION

7.1 Summary

To study the fidelity of quantum state evolution, ✏-classical maps with di↵erent kicking

strength was given. It shows that as the kicking strength gets stronger, the area of the

island is smaller while the chaotic region gets bigger. Experimentally we introduced a

perturbation to the system by applying di↵erent kicking strength, the overlapping of the

momentum distribution of these two sets of experiments decays with the perturbation. The

e↵ect of finite pulse length was also discussed: the fidelity decay rate is proportional to the

pulse length.

The theoretical analysis of the intrinsic mechanism of a quantum ratchet illuminates that

peaks in the wave function of the initial state containing more than one plane waves arise

at positions where the gradient of the standing wave happens to be the greatest. The more

of the plane waves, the higher and narrower of the peaks. Experiments were carried out

to observe an on-resonant atomic ratchet by exposing an initial atomic state which was a

superposition of two or more momentum states to a series of standing wave pulses. We

measured the dispersion of the momentum of ratchet current as a function of kick number

t. The stronger ratchet current gives a smaller dispersion. We verified that the ratchet

current was stronger with an initial state containing more consecutive momentum states.

We studied the e↵ect from the phase of the initial state to the ratchet current. A small error
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on the phase will cause a change in the dispersion which is not negligible. We also performed

some other experiments with di↵erent time between the kicking pulses and concluded that

shorter time between the pulses was better to minimize perturbation of the environment

and re-phasing of the initial state.

7.2 Future work

For the project of the fidelity of quantum state evolution, one of the main objects in the

future is to prepare a superposition of two identical initial states for the experiment. In

the current experiments, we start from a BEC under identical environment. Though the

BECs are the same, we cannot assume that they are in the same initial momentum states

in phase space because maps are di↵erent with di↵erent kicking strength. Therefore the

two BECs are not in the same map and are incomparable. In Peres’ proposal, the initial

states with and without perturbation are the same, which means the experiment should

start from the same point on the phase space. For this reason, to prepare a superposition

of two BECs simultaneously Bragg pulse may be used in the future. Furthermore, to kick

the two BECs simultaneously, two optical standing waves from two pairs of kicking beams

will be prepared as well. The second pair of kicking beams will be sent into the vacuum

chamber with a di↵erent angle between the two beams, thus the grating vector can work on

the second BEC. Another thing that needs careful consideration is that the maps shown in

Figure 5.1 were drawn assuming ✏-classical theory. There is a limitation for the ✏-classical

theory’s validity which is |✏| << 1. For pulse period T = 70µs, ✏ is 2.26 and is really too

large to use ✏-classical theory. In the future, we will try the very general map without any

scaling to plot the dynamics of the atom. We also plan to take more experimental data

closer to the Talbot time resonances.

For the on-resonance atomic quantum ratchet which was observed in state F = 1, with the

slight modification on the existing experimental setup, we have realized that a microwave

can be applied between the Bragg pulses and the regular kicking pulses. This microwave can

pump half of the atoms to F = 2 energy state and keep the rest of the atoms in the F = 1
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ground state with the same momentum states. By carefully selecting the frequency of the

kicking pulses, we can kick the atoms in both F = 1 and F �2 states simultaneously. In the

imaging procedure, a microwave will be applied again to image the momentum distribution

of the atoms in F = 2 state. It is interesting of the quantum ratchet for the atoms in F = 2

state.
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We demonstrate quantum resonance ratchets created with Bose-Einstein condensates exposed to pulses of an
off-resonant standing light wave. We show how some of the basic properties of the ratchets are controllable
through the creation of different initial states of the system. In particular, our results prove that through an
appropriate choice of initial state it is possible to reduce the extent to which the ratchet state changes with respect
to time. We develop a simple theory to explain our results and indicate how ratchets might be used as part of a
matter-wave interferometer or quantum random walk experiment.
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I. INTRODUCTION

Understanding the nature of quantum transport is an
important problem for quantum chaos and for many condensed
matter systems [1]. The δ-kicked rotor is an ideal system for
studying quantum transport and can be realized by exposing a
sample of cold atoms to short pulses of an optical standing
wave. This is the so-called atom optics quantum kicked
rotor (AOQKR) [2]. The implementation of the AOQKR in
experiments was a breakthrough in the study of quantum chaos,
and the system has now been widely used in elucidating phe-
nomena like dynamical localization [2], quantum resonances
(QRs) [2–4], quantum accelerator modes (QAMs) [5–10],
fidelity [11–14], and quantum ratchets [15–24]. In contrast
to Brownian ratchets [25], quantum ratchets do not experience
dissipative processes or a net biasing force [26]. Hence these
systems have been proposed as the basis for a Hamiltonian
quantum ratchet [18]. In previous experimental observations
of quantum ratchets [16,25,27,28], it was found that only
a relatively small component of the initial wave function
contributed to the ratchet current. It is therefore natural to
ask if it is possible to improve the mode matching between the
initial state of a system and the ratchet state so as to increase
the participation in the ratchet. This could be important
for applications in atom optics such as interferometry. Our
motivation for enhancing the efficiency of the quantum ratchet
is the possible use of such a system as the walk component in
experiments on quantum random walks [29–31].

The structure of this paper is as follows: we begin by
providing a theoretical analysis of the intrinsic mechanism of
a quantum ratchet. This includes the development of a simple
classical picture that can explain many of the features of the
ratchet. We then present the experimental realization of the
momentum currents using initial states that have been prepared
using Bragg diffraction with light pulses. We demonstrate how
different phases on the initial-state wave function can affect the
momentum current and examine how the momentum current
depends on the number of momentum states in the initial wave
function. In particular, we present results showing a connection
between the number of momentum-state components and the
“dispersion” of the ratchet.

II. THEORY

We start by summarizing the basic dynamics of the AOQKR
system. The Hamiltonian in dimensionless units is given
by [32]

Ĥ = p̂2

2
+ φdV (x̂)

N∑

t=1

δ(t ′ − tτ ), (1)

where p̂ is the scaled momentum in units of ~G (two photon
recoils) and φd is the strength of the kicks and is given by
φd = $2△t/8δL, where △t is pulse length, $ = µ⃗ · E⃗(r⃗)/~
is the Rabi frequency, and δL is the detuning of the kicking
laser from the atomic transition. V (x̂) = cos(Gx + γ ) is the
potential created by a standing wave with a grating vector
G = 2π/λG. λG is the spatial period of the standing wave
and is determined by the direction of the laser beams and
their wavelength. Here, x is position, and γ is an offset
phase; t ′ is the continuous time variable, and t counts the
number of kicks; τ = 2πT/T1/2 is the scaled pulse period
where T is the real pulse period and T1/2 = 2πM/~G2 is the
half-Talbot time for an atom with mass M . The momentum
is changed in quanta of ~G in this system, and as a result p
can be broken down as p = n + β, where n and β are the
integer and fractional parts of the momentum, respectively.
β, known as the quasimomentum, is a conserved quantity
[33].

A convenient picture of the ratchet mechanism can be
derived by considering the gradient of the standing wave as
the driving force on the wave function. From this standpoint
ensuring that the wave function is maximized near positions
with larger gradients in the potential should produce a net force
and hence the possibility of a ratchet. In this picture the sign
of the potential gradient near the wave function’s maxima will
determine the ratchet’s direction. One way to create a spatially
nonuniform atomic wave function is to use an initial state that
is comprised of a superposition of two or more plane waves:
|ψ⟩ =

∑
n einπ/2|n⟩, where |n⟩ refers to the state |n~G⟩. As

will be seen shortly, the phase prefactors shift the maxima of
the spatial wave function to where the potential gradient is
greatest.
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FIG. 1. The solid line is the standing-wave intensity for potential
V (x). The dashed line is the wave function for a superposition of
seven plane waves:

∑3
n=−3 e−inπ/2|n⟩. The dotted line is the wave

function for a superposition of two plane waves: |0⟩ + eiπ/2|1⟩.

Considering the case of a single Bose-Einstein condensate
(BEC) for the initial state, the wave function in momentum
space can be written as ψ(p) = δ(p) assuming the BEC has a
narrow momentum width. Here p is the continuous momentum
variable. In order to study the wave function in the frame of
the standing wave, we transform it into position space by using
a Fourier transformation. The magnitude of the wave function
in position space is |φ(x)| =

√
G/2π . Since this is uniform in

x, the average force is zero and according to the simple picture
described above no ratchet is formed.

When the initial state contains two or more plane waves,
the wave function in position space can be written as

φ(x) = A
∑

n

e−inπ/2eipnx/�, (2)

where A is the normalization factor. By plotting |φ(x)|2 and the
standing-wave potential together, it is noticeable that peaks of
the wave function arise at positions where the gradient of the
standing wave happens to be the greatest (see Fig. 1). Naturally,
the more plane waves composing the initial state, the more
localized the wave function should become. In Fig. 1, the bold
solid line is the standing wave, and the dashed and dotted lines
are the wave functions for the initial states with a superposition
of seven plane waves,

∑3
n=−3 e−inπ/2|n⟩, and two plane waves,

|0⟩ + eiπ/2|1⟩, respectively. The dashed line is much taller
and has a reduced full width at half maximum (FWHM).
Figure 2 shows that, as the number of consecutive plane
waves in the initial state increases, the corresponding FWHM
of the wave function decreases. Since a peak with larger
FWHM experiences a smaller overall gradient and a larger
variation in the gradient, we expect that a “cleaner” ratchet
will require more plane waves in the initial superposition. The
effective force Feff =

∫ π

−π
|φ(x)|2dV (x) of the standing wave

(integrate the absolute square of wave function with the
standing-wave gradient) for different initial states was also
calculated. The dashed line in Fig. 2 shows that Feff increases
with the number of the plane waves in the initial state.
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FIG. 2. The solid line is the theoretical full width at half maximum
(FWHM) of the wave function in position space vs the number of
plane waves, while the dashed line is the theoretical effective force of
the standing wave. The diamond is the magnitude of effective force
for the initial state e−iπ |−2⟩ + e−iπ/2|−1⟩ + eiπ/2|1⟩ + eiπ |2⟩. Note
that in this case the n = 0 state is missing.

To ensure the peak of the wave function appears at a position
that will maximize Feff (in this case Gx = π/2), the phase
for each plane wave is extremely important. For this reason
the phases should be set to einπ/2, where n is the momentum-
state index. If the phases differ from these values the peak of
the wave function in position space will shift away from the
greatest gradient and the effective force will become weaker.
We also point out that to maximize the ratchet, the momentum
states in the initial superposition should be consecutive. In
other words, the momentum difference between neighboring
momentum states should be ~G. Figure 3 shows the wave
function in position space for initial states with a superposition
of nonconsecutive momentum states. Note that besides the
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FIG. 3. The solid line is the standing-wave intensity for potential
V (x). The dashed line is the wave function for a superposition
of nonconsecutive plane waves: e−iπ |−2⟩ + e−iπ/2|−1⟩ + eiπ/2|1⟩ +
eiπ |2⟩. The dotted line is the wave function for a superposition of
nonconsecutive plane waves: e−iπ |−2⟩ + eiπ |2⟩. The dash-dotted line
is the wave function for a superposition of nonconsecutive plane
waves: e−iπ/2|−1⟩ + eiπ/2|1⟩.
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wave function peak at the greatest gradient point, there is
also considerable wave-function amplitude at positions where
the gradient is zero or of opposite sign. This can provide an
explanation for why the ratchet is weak or even absent in
experiments with these initial states. The dashed line represents
the initial state, e−iπ |−2⟩ + e−iπ/2|−1⟩ + eiπ/2|1⟩ + eiπ |2⟩,
and shows a relatively large peak at the greatest gradient
point. Thus the ratchet effect should still exist, although it
is weaker than the ratchet from an initial state with four
consecutive momentum states. This can be seen in Fig. 2,
where the diamond indicates Feff for this state. In Fig. 3 the
dotted line represents the initial state: e−iπ |−2⟩ + eiπ |2⟩. This
has Feff = 0. Finally, the dash-dotted line is for the initial state:
e−iπ/2|−1⟩ + eiπ/2|1⟩. Note that two wave-function peaks
appear at points where the positive and negative gradient is
greatest on the standing wave. This suggests that we should
expect two simultaneous ratchets with opposite directions.

III. EXPERIMENTAL SETUP

Our experimental apparatus is similar to the one described
in Ref. [24]. A BEC with about 70 000 87Rb atoms was created
in the 5S1/2, F = 1 hyperfine ground states in a focused
CO2 laser beam using an all-optical trapping technique [34].
The ratio of the mean-field energy to the recoil energy is
approximatively 1 × 10−5, which puts us in the region where
the nonlinearity has a negligible effect on the dynamics.
Immediately after the BEC was released from the trap, we
applied a series of horizontal optical standing-wave pulses.
The standing wave was formed by two laser beams with a
wavelength of λ = 780 nm, which was 6.8 GHz red-detuned
from the 5S1/2,F = 1 −→ 5P3/2,F

′ = 3 transition. Each laser
beam was aligned 53◦ from the vertical to give a standing-wave
spatial period of λG = λ/(2 sin 53◦). This led to a half-Talbot
time of T1/2 ≈ 51.5 µs, with the primary QRs falling at integer
multiples of this time [3]. To create the necessary standing-
wave pulses, we controlled the phase, intensity, pulse length,
and relative frequency between the two laser beams. This was
achieved by passing each of the standing wave’s constituent
laser beams through an acousto-optic modulator (AOM) driven
by an arbitrary waveform generator. The nodes of the standing
wave moved with a velocity given by v = 2π#f/G with #f
being the frequency difference between the two beams. The
momentum of the BEC, p, relative to the standing wave is
proportional to v and therefore p can be controlled through
#f . The kicking pulse length was fixed at 600 ns to ensure
that the experiments were performed in the Raman-Nath
regime [35,36]. In other words, the evolution of the wave
function due to its kinetic energy is ignored during the pulse.

To prepare an initial state comprised of a superposition
of several plane waves, a sequence of longer standing-wave
pulses were applied in the Bragg configuration [37]. Such
pulses connect two momentum states with an interaction
matrix given by

U =
(

cos
(

$BτB

2

)
−i sin

(
$BτB

2

)
exp(iγB)

−i sin
(

$BτB

2

)
exp(−iγB) cos

(
$BτB

2

)
)

,

(3)

FIG. 4. Experimental schematic showing preparation of the five-
component initial state:

∑2
n=−2 |n⟩.

where $B is the effective Rabi frequency, τB is the Bragg pulse
length, and γB is the offset phase of the standing wave used for
a Bragg pulse. To understand how Bragg pulses were utilized
in our experiment, consider the preparation of a superposition
of five momentum states. Figure 4 shows the procedure for
creating this superposition. In the first setup a Bragg pulse
with p = 0.5 diffracts atoms from |0⟩ to |1⟩. The second
Bragg pulse with p = −0.5 diffracts atoms from |0⟩ to |−1⟩
without affecting the atoms in state |1⟩. Similarly, the third
and fourth Bragg pulses, with p = 1.5 and p = −1.5, diffract
atoms from |1⟩ to |2⟩ and from |−1⟩ to |−2⟩, respectively.
All of the Bragg pulses were applied consecutively without
dwell time between the pulses. There is considerable freedom
in the choice of pulse length; however, in our case this was
set at 103 µs or 1× Talbot time. This ensured that the free
evolution of each of the prepared states was always 1̂ during
the application of subsequent Bragg pulses. The intensity
for the different pulses was carefully adjusted to make the
population in each state equal. We implemented preparation
schemes like this for superpositions comprising up to seven
states. The relative phases between the Bragg prepared states
are critically important to the dynamics of the ratchet. We
performed the experiments so that all of the phases of the
states in the superposition were identical. This was achieved
by setting γB = −π/2 or γB = π/2 depending on whether we
were coupling states with #n = −1 or #n = 1, respectively.

Following the Bragg preparation, the δ-like kick rotor
pulses were immediately applied. These diffracted the atoms
into a wide range of momentum states. For the kicking pulses,
the pulse strength φd ∼ 1.4, and the phase γ in the potential
was π/2. This is mathematically equivalent to individually
setting the phases of the initial momentum states to be einπ/2,
which is required to maximize the ratchet. For all but a few
experiments, the time between kicking pulses was 51.5 µs
(half-Talbot time) with initial momentum β = 0.5 to maintain
QR. In order to measure the momentum distribution after the
pulse sequence, atoms were absorption imaged following a free
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FIG. 5. Experimental time-of-flight images as a function of t .
The relative phases of the momentum components in the initial
states were zero. The initial states were (a) |0⟩ + |1⟩, (b)

∑1
n=−1 |n⟩,

(c)
∑2

n=−1 |n⟩, (d)
∑2

n=−2 |n⟩, (e)
∑3

n=−3 |n⟩, and (f) |−1⟩ + |1⟩. In
each case the t = 0 images show the initial state. Panels (a)–(e) show
the single ratchets with positive directed currents. In (f) a symmetric
double ratchet is seen.

flight time of 9 ms. Several examples of time-of-flight images
of the BEC vs t are shown in Fig. 5. Of particular note is the
experiment with the initial state |−1⟩ + |1⟩ [Fig. 5(f)]. These
data highly support the idea from Fig. 3 that the two identical
peaks appearing at the points of greatest positive and negative
gradient should produce two ratchets with opposite directions.
This effect might be applied in atomic interferometry as a
beam splitter [38].

As can be seen from the previous discussion, the phases of
the components of the superposition are extremely important
for the ratchet dynamics. Hence it is critical that any unwanted
phases be controlled and if possible eliminated. To this end
we implemented a Mach-Zehnder Bragg interferometer [37]
with which we could measure such phases. In particular, we
were able to reduce extraneous phase shifts due to gravity
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FIG. 6. Experimental data showing normalized dispersion vs kick
number t with β = 0.5 and T = T1/2 for initial states

∑3
n=−3 |n⟩

(squares),
∑2

n=−2 |n⟩ (asterisks),
∑2

n=−1 |n⟩ (triangles),
∑1

n=−1 |n⟩
(diamonds), and

∑1
n=0 |n⟩ (circles). The inset gives a closer view

of the dispersion. Representative error bars are given for seven
momentum states, five kicks; two momentum states, five kicks.

(nonhorizontal standing wave) and ac Stark shifts (due to small
amounts of stray light) to levels where they were insignificant
for the ratchet experiment.

IV. DATA ANALYSIS AND DISCUSSION

A large part of the motivation for the work presented
here is to understand the behavior of ratchets with different
initial states. To this end we have performed a comprehensive
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FIG. 7. Experimental data showing normalized dispersion vs kick
number t with β = 0.5 and T = T1/2 for initial state

∑2
n=−2 |n⟩. The

dashed line is for an initial state with optimal phase (net phase on
each momentum state is zero). The solid line is for an initial state
where the phase of momentum state |1⟩ is π/2.
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FIG. 8. Experimental data showing normalized dispersion vs kick
number t for initial state

∑2
n=−2 |n⟩ with the standing-wave phase

γ = π/2. The solid line is for β = 0 and T = 0. The dashed line is
for β = 0.5 and T = 51.5 µs (half-Talbot time). The dash-dotted line
is for β = 0 and T = 103 µs (Talbot time).

experimental study of the “dispersion” of a ratchet as a function
of several variables. We define the normalized dispersion of a
ratchet as

D(t) =
〈
p2

t

〉
− ⟨pt ⟩2

〈
p2

0

〉
− ⟨p0⟩2

, (4)

where ⟨pt ⟩ is the mean momentum, ⟨p2
t ⟩ is the mean of mo-

mentum squared, and t is the kick number (t = 0 corresponds
to the initial distribution). The dispersion is an objective way
of describing the “quality” of the ratchet current: the closer
D(t) is to 1 the closer the ratchet state resembles its initial
form. Reducing the amount by which the dispersion increases
can be important for applications, such as realizing quantum
random walks [30]. We now examine the sensitivity of the
ratchet current dispersion to the initial state. Figure 6 shows
the dependence of the dispersion on kick number t for β = 0.5
and T = T1/2. The experimental results are in line with what
we would expect by looking at the wave-function plots in Fig. 1
and show that a larger number of momentum states in the initial
state produces a smaller dispersion. In other words, to improve
the quality of the ratchet we need to generate an initial state
with a large number of plane waves in its superposition.

As discussed before, the ratchet is sensitive to the phases
in the initial state. To illustrate this point, experiments were
carried out with an initial state

∑2
n=−2 |n⟩ in which an extra

phase π/2 was added to momentum state |1⟩. Figure 7 shows
that the dispersion grows more quickly when the phase of
momentum state |1⟩ differs from the optimal value.

We also investigated the ratchet current using kicks sep-
arated by different QR times. In principle, kicking pulses
separated by T = 0 with β = 0 or T = TT (Talbot time) with
β = 0 should give the same ratchet current as T = T1/2 with
β = 0.5. The experimental results show that, with the same
initial state, dispersion is smallest with T = 0 and largest
with T = TT (see Fig. 8). The reason is probably that phase
noise from the environment and dephasing of the initial state
($β, the width of the initial state, is small but not zero and
results in phase evolution during T ) are minimized by setting
the T = 0 [39]. This is supported by the observation that the
ratchet is sensitive to the phase of the initial state.

V. CONCLUSIONS

Experiments were carried out to create an on-resonant
atomic ratchet by exposing an initial atomic state which was
a superposition of two or more momentum states to a series
of standing-wave pulses. A picture that we used to understand
many of the features of the ratchet considers the effective
force produced by the standing-wave pulses. When more than
one plane wave is present in the initial state this force can
be nonzero. We defined and measured the dispersion of the
momentum of the ratchet current as a function of kick number
t . It was verified that the ratchet dispersion grew more slowly
when the initial state contained a large number of consecutive
momentum states. We studied the effect from the phase of the
initial state to the ratchet current. A small error in the phase
causes a change in the dispersion which is not negligible.
We also performed experiments with different times between
the kicking pulses and concluded that shorter times between
were better so as to minimize perturbations from the envi-
ronment that cause dephasing of ratchet states. We hope that
this work will provide the basis for further studies of ratchets,
particularly as they pertain to their application for experiments
with quantum random walks.
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